CN114887863B - 一种超声探头及其制备方法 - Google Patents

一种超声探头及其制备方法 Download PDF

Info

Publication number
CN114887863B
CN114887863B CN202210545313.XA CN202210545313A CN114887863B CN 114887863 B CN114887863 B CN 114887863B CN 202210545313 A CN202210545313 A CN 202210545313A CN 114887863 B CN114887863 B CN 114887863B
Authority
CN
China
Prior art keywords
temperature
protective film
low
piezoelectric
damping block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210545313.XA
Other languages
English (en)
Other versions
CN114887863A (zh
Inventor
王纪超
刘小川
秦经刚
周海山
王万景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Xihe Superconducting Technology Co ltd
Original Assignee
Hefei Xihe Superconducting Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Xihe Superconducting Technology Co ltd filed Critical Hefei Xihe Superconducting Technology Co ltd
Priority to CN202210545313.XA priority Critical patent/CN114887863B/zh
Publication of CN114887863A publication Critical patent/CN114887863A/zh
Application granted granted Critical
Publication of CN114887863B publication Critical patent/CN114887863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明公开了一种超声探头及其制备方法,采用钎焊法加耐低温胶封装方法制备耐低温(4.2K)超声探头,相比只采用钎焊法制备的耐低温探头,可以承受更多次的低温(4.2K)到室温冷热循环,从而大大提高了探头的使用寿命。同时,锡焊法焊接温度低、压电材料的可选择范围广,进一步降低了探头制作成本。因此,是一种有潜力应用于检测超低温工件的超声探头及制备方法。

Description

一种超声探头及其制备方法
技术领域
本发明为一种超声探头及其制备方法,属于超声无损检测领域。
背景技术
磁约束核聚变装置是最有希望实现可控核聚变反应堆的装置。为提供强磁约束,装置核芯部件一般采用基于大截面导体的大型超导磁体,而磁体中的特殊工件设计一般采用异型复合或连接结构。由于涉及超低温、高真空、大电流、高磁场,大科学装置中特殊工件的结构安全是保证其安全运行的关键。常规的结构设计中一般只考虑初期应力和塑性变形,但在结构制造和使用过程中,特别是承受大的意外载荷后(4.2K低温、15T高磁场、1000kN/m的电磁力),结构可能产生一定的塑性变形和残余应力,进而对结构完整性产生很大影响。强磁场、聚变堆等大科学装置的超导磁体需要运行在低温(4.2K)条件下,复合材料的异型结构或连接件在室温到低温的冷应力作用下极易产生微裂纹,在电磁应力作用下裂纹会持续扩展,将直接引起料断裂韧性和疲劳寿命的变化,导致结构件的损坏。因此,正确评价低温复杂工况下特殊结构件内部缺陷变化,对保证大科学装置磁体系统的结构完整性非常重要。
超声波探伤方法依靠超声波在连续介质中的传播特性识别并检测材料内部缺陷,是一种无损,高效且常用的无损检测方法。目前常规的无损检测温度范围多在-70℃-室温范围内,有两个方面影响因素,一是由于超声探头主要元件压电材料的居里温度,居里温度时压电材料压电效应的转变温度,高于居里温度时,压电材料将失去压电效应;二是超声探头主要元件压电材料与延迟块及背衬材料的连接工艺,目前主要采用胶粘方式,所使用的胶在晶粒高低温热循环以后,由于胶与压电材料和其他元件的热膨胀系数差异,使得界面出现脱粘,从而影响探头性能。
从极少关于低温超声探头研制的文献报道可知,采用高温钎焊方法可制备出耐低温超声探头,但是较高的钎焊温度使得压电材料的材料选择非常窄(常见的为铌酸锂),大大限制了耐低温探头的拓展与应用。本发明在已有高温钎焊铌酸锂技术的基础上,通过采用钎焊加耐低温胶封装的新技术方法,完善了以铌酸锂作为压电材料的低温超声探头制备方法,大大提高了其使用过程中的稳定性。同时,发展了以常规压电陶瓷为压电材料的锡焊加耐低温胶封装制备工艺。为进一步推进超声探头在超低温领域的应用提供了一种新的思路和技术途径。因此,本发明提及的以铌酸锂单晶或者常规压电陶瓷作为压电材料,钎焊法及耐低温胶封装工艺制备耐低温超声探头的技术路径是新颖且有前景的探头制备方法。
发明内容
本发明是为解决超低温服役环境下工件的无损检测难题,试图提供一种可靠的耐低温超声探头及制备方法。本发明提供一种超声探头及其制备方法。所述的超声探头为一种适用于超低温环境使用的超声探头。本方法是通过改进现有技术,完善了以铌酸锂晶体作为压电材料的高温钎焊法制备方法,通过在钎焊后采用耐低温胶封装的方法,提高了超声探头在低温常温下的耐疲劳性能;并以此为基础,发展了以常规压电陶瓷作为压电材料,锡焊后采用耐低温胶封装的探头制备方法,大大拓展了耐低温超声探头压电材料的可使用范围,从而降低了探头的制作成本。
本发明中,术语“超低温”是指温度在液氦温度即4.2K。
本发明是通过以下技术方案实现的:
一种超声探头,包含壳体、压电元件和导线;压电元件采用耐低温胶封装在壳体中,压电元件包含压电材料、保护膜和阻尼块,压电材料放置在保护膜与阻尼块中间,压电材料上下面连接导线,压电材料、保护膜和阻尼块通过钎焊和胶装连接;所述的压电材料为居里温度大于250℃的压电陶瓷或居里温度大于600℃的单晶材料;所述的保护膜为氧化铝陶瓷或者纯钨;所述的阻尼块为多孔氧化铝陶瓷;所述的钎焊为锡焊或铝钎焊。
进一步的,一种适用于超低温环境使用的超声探头及其制备方法,探头主要元件由压电材料、保护膜和阻尼块钎焊后胶装制备。所述的压电材料为压电陶瓷或单晶材料;所述的保护膜为氧化铝陶瓷或者纯钨;所述的阻尼块为多孔氧化铝陶瓷。所述的钎焊工艺包括锡焊及铝钎焊。所述的胶为耐低温胶。
制备如上所述的超声探头的方法,当压电材料采用压电陶瓷时,所述方法包括如下步骤:
(1)首先将压电陶瓷表面、氧化铝保护膜表面和多孔氧化铝阻尼块表面溅射金属。其中压电陶瓷表面溅射金属除了充当电极作用,还可提高与锡焊接性。氧化铝和多孔氧化铝表面溅射金属充当提高焊接性作用。
(2)锡焊压电陶瓷、保护膜和阻尼块,同时在压电材料上下表面锡焊导线,得到锡焊后的保护膜/压电陶瓷/阻尼块组件。
(3)将锡焊后的保护膜/压电陶瓷/阻尼块组件装入探头壳体中固定后,采用耐低温胶将壳体与整个组件缝隙填充装配。
(4)将耐低温胶灌装浸没整个保护膜/压电陶瓷/阻尼块组件。
(5)利用耐低温胶进行最后封装。
制备如上所述的超声探头的方法,当压电材料采用单晶材料时,所述方法包括如下步骤:
(1)利用铝基钎料或银基钎料直接一体钎焊纯钨片/单晶材料/阻尼块或者氧化铝/单晶材料/阻尼块,钎焊同时焊接导线。
(2)将铝钎焊后的保护膜/单晶材料/阻尼块组件装入探头壳体中固定后,采用耐低温胶将壳体与整个组件缝隙填充装配。
(3)将耐低温胶灌装浸没整个保护膜/单晶材料/阻尼块组件。
(4)利用耐低温胶对壳体进行最后封装。
所述的溅射金属为金、银、铂、铜或者镍,所述的铝基钎料元素成分为Al-2.5Mg-0.2Si-0.4Fe-0.2Cr wt%或其他Al基钎料,银基钎料元素成分为72Ag-28Cu wt%或其他Ag基钎料。
本发明制备方法包含两个必须的工序,钎焊和耐低温胶封装。
本发明的有益效果在于:
本发明采用钎焊法加耐低温胶封装方法制备耐低温超声探头,相比只采用钎焊法制备的耐低温探头,可以承受更多次的室温到低温冷热循环,从而大大提高了探头的使用寿命。同时,锡焊法焊接温度低、同时压电材料的可选择范围广,进一步降低了探头制作成本。因此,是一种有潜力应用于检测超低温工件的超声探头及制备方法。
附图说明
图1为耐低温超声探头示意图;
图2压电元件钎焊组合方式(保护膜/压电材料/阻尼块)。
其中,1-接头,2-导线,3-耐低温胶,4-阻尼块,5-第一钎料,6-压电材料,7-第二钎料,8-保护膜,9-壳体缝隙,10-壳体。
具体实施方式
下面结合附图及具体实施例详细介绍本发明。但以下的实施例仅限于解释本发明,本发明的保护范围应包括权利要求的全部内容,而且通过以下实施例的叙述,本领域的技术人员是可以完全实现本发明权利要求的全部内容。
图1所示为耐低温超声探头示意图。一种耐低温超声探头,包括接头1、导线2、耐低温胶3、阻尼块4、第一钎料5、压电材料6、第二钎料7、保护膜8、壳体缝隙9和壳体10。探头主要结构包含压电元件、壳体10和接线。压电元件包含保护膜8、压电材料6和阻尼块4三种材料。接线包含接头1和导线2,导线2与接头1连接。其中,压电元件采用保护膜8/第二钎料7/压电材料6/第一钎料5/阻尼块4的方式依次叠放并进行钎焊。导线2有两根,其中一根置于保护膜8与压电材料6中间,另一根置于压电材料6与阻尼块4中间。压电元件置于壳体10中,采用耐低温胶3浸没封装。壳体缝隙9采用耐低温胶3进行封装。
所述的压电材料6为居里温度大于250℃的压电陶瓷或居里温度大于600℃的单晶材料。所述的保护膜8为氧化铝陶瓷或者纯钨。所述的阻尼块4为多孔氧化铝陶瓷。所述的钎焊工艺包括锡焊、铝钎焊或银钎焊。所述的胶为耐低温胶3,耐温度4.2K。
在一个可选的实施例中,现以压电陶瓷为例,对本发明超声探头及制备工艺进行介绍。
本发明的上述耐低温超声探头的制备工艺,当压电材料6采用压电陶瓷时制备工艺步骤为:
1)首先将多孔氧化铝阻尼块4的表面,压电陶瓷的表面和氧化铝保护膜8的表面分别采用磁控溅射法镀一层厚度约5-2000纳米的银涂层。其中压电陶瓷表面溅射金属除了充当电极作用,还可提高与锡焊接性。氧化铝保护膜8和多孔氧化铝阻尼块4表面溅射金属充当提高焊接性作用。
2)然后将溅射涂层后的保护膜8、溅射涂层后的压电陶瓷和溅射涂层后的阻尼块4依次叠层放置,将锡片放置在溅射涂层后的压电材料6和溅射涂层后的阻尼块4之间,将锡片放置在溅射涂层后的压电材料6及溅射涂层后的保护膜8之间,如图2所示。同时放置导线2,导线2在压电陶瓷上下面各一根。
3)将叠放好的压电元件放入真空炉中进行锡焊,锡焊温度230℃-300℃以保证锡片熔化,焊接时间10-60min,真空度10-2Pa-10-4Pa之间,焊接结束后实现压电元件各材料的连接。得到锡焊后的保护膜/压电材料/阻尼块组件。
4)将锡焊后的保护膜/压电材料/阻尼块组件装入壳体10中,采用耐低温胶3将压电元件与壳体之间的壳体缝隙9封装,将耐低温胶灌装浸没整个保护膜/压电材料/阻尼块组件,耐低温胶要浸没阻尼块4。
5)将两根导线2与BNC接头1的接线柱采用电铬铁进行锡焊连接。
6)利用耐低温胶封装BNC接头1与壳体10缝隙。
在一个可选的实施例中,本发明的上述耐低温超声探头的制备工艺,当压电材料6采用单晶材料时制备工艺步骤为:
1)将保护膜材料(纯钨片或氧化铝),单晶材料和阻尼块4(多孔氧化铝材料)按照上述顺序叠放,将铝基钎料置于保护膜8和单晶材料中间,将铝基钎料置于单晶材料与阻尼块4之间,导线2共两根,分别置于单晶材料两侧与铝基钎料中间。
2)将叠放好的保护膜/单晶材料/阻尼块组件放入真空炉中进行钎焊,焊接温度600-700℃,保温时间30-90min,真空度10-3Pa-10-4Pa,随炉缓慢冷却至室温。
3)将铝钎焊后的保护膜/压电材料/阻尼块组件装入壳体10中,采用耐低温胶3将壳体10与压电元件缝隙填充封装。
4)将耐低温胶灌装浸没整个保护膜/压电材料/阻尼块组件。
5)将两根导线2与BNC接头1的接线柱采用电铬铁进行锡焊连接。
6)利用耐低温胶封装BNC接头1与壳体10缝隙。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (2)

1.一种超低温环境使用的超声探头,其特征在于,包含壳体、压电元件和导线;压电元件采用耐低温胶封装在壳体中,压电元件包含压电材料、保护膜和阻尼块,压电材料放置在保护膜与阻尼块中间,压电材料上下面连接导线,压电材料、保护膜和阻尼块通过钎焊和胶装连接;所述的压电材料为居里温度大于250℃的压电陶瓷或居里温度大于600℃的单晶材料;所述的保护膜为氧化铝陶瓷或者纯钨;所述的阻尼块为多孔氧化铝陶瓷;所述的钎焊为锡焊、铝钎焊或银钎焊;所述的超低温为4.2K;所述的耐低温胶耐温度4.2K;
所述的压电材料采用压电陶瓷时,所述的超声探头通过如下方法制备:
(1)首先将压电陶瓷表面、氧化铝保护膜表面和多孔氧化铝阻尼块表面溅射金属,金属为金、银、铂、铜或者镍;
(2)锡焊压电陶瓷、保护膜和阻尼块,同时在压电陶瓷上下表面锡焊导线,得到锡焊后的保护膜/压电陶瓷/阻尼块组件;
(3)将锡焊后的保护膜/压电陶瓷/阻尼块组件装入探头壳体中固定后,采用耐低温胶将壳体与整个组件缝隙填充装配;
(4)将耐低温胶灌装浸没整个保护膜/压电材料/阻尼块组件;
(5)利用耐低温胶对壳体进行最后封装;
当压电材料采用单晶材料时,所述的超声探头通过如下方法制备:
(1)利用铝基或银基钎料直接一体钎焊保护膜/单晶材料/阻尼块,将导线放置在保护膜/单晶材料和阻尼块/单晶材料中间同时钎焊,得到铝钎焊后的保护膜/单晶材料/阻尼块组件;
(2)将铝钎焊后的保护膜/单晶材料/阻尼块组件装入探头壳体中固定后,采用耐低温胶将壳体与整个组件缝隙填充装配;
(3)将耐低温胶灌装浸没整个保护膜/单晶材料/阻尼块组件;
(4)利用耐低温胶对壳体进行最后封装。
2.根据权利要求1所述的超声探头,其特征在于,铝基钎料元素成分为Al-2.5Mg-0.2Si-0.4Fe-0.2Cr wt%,银基钎料元素成分为72Ag-28Cu wt%。
CN202210545313.XA 2022-05-19 2022-05-19 一种超声探头及其制备方法 Active CN114887863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210545313.XA CN114887863B (zh) 2022-05-19 2022-05-19 一种超声探头及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210545313.XA CN114887863B (zh) 2022-05-19 2022-05-19 一种超声探头及其制备方法

Publications (2)

Publication Number Publication Date
CN114887863A CN114887863A (zh) 2022-08-12
CN114887863B true CN114887863B (zh) 2023-07-25

Family

ID=82724637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210545313.XA Active CN114887863B (zh) 2022-05-19 2022-05-19 一种超声探头及其制备方法

Country Status (1)

Country Link
CN (1) CN114887863B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116174832A (zh) * 2023-04-21 2023-05-30 中国科学院合肥物质科学研究院 一种压电传感器探头设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195373A (en) * 1991-04-17 1993-03-23 Southwest Research Institute Ultrasonic transducer for extreme temperature environments
US6558332B1 (en) * 2001-05-30 2003-05-06 Nihon Dempa Kogyo Co., Ltd. Array type ultrasonic probe and a method of manufacturing the same
US20030189391A1 (en) * 2002-03-29 2003-10-09 Yasuo Shimizu Ultrasonic probe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212919B (en) * 1987-11-25 1991-06-26 Ishikawajima Harima Heavy Ind Probe for an ultrasonic flaw detector
JP3378396B2 (ja) * 1995-02-17 2003-02-17 株式会社東芝 超音波プローブ
KR101196214B1 (ko) * 2010-09-06 2012-11-05 삼성메디슨 주식회사 초음파 진단장치용 프로브
CN105178949A (zh) * 2015-09-11 2015-12-23 中国石油天然气集团公司 一种超声波探头
CN210221922U (zh) * 2019-01-21 2020-03-31 奥声(上海)电子科技有限公司 一种用于动车组空心轴超声检测的单晶爬波探头
CN111537606B (zh) * 2020-04-30 2021-08-10 中国科学院合肥物质科学研究院 无损检测装置及无损检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195373A (en) * 1991-04-17 1993-03-23 Southwest Research Institute Ultrasonic transducer for extreme temperature environments
US6558332B1 (en) * 2001-05-30 2003-05-06 Nihon Dempa Kogyo Co., Ltd. Array type ultrasonic probe and a method of manufacturing the same
US20030189391A1 (en) * 2002-03-29 2003-10-09 Yasuo Shimizu Ultrasonic probe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Marcantonio Catelani.Experimental Stress Characterization of a Biomedical Ultrasound Probe Soldered With Innovative Silver Isotropically Conductive Adhesive.IEEE Transactions on instrumentation and measurement.2011,第3卷(第61期),719-728. *

Also Published As

Publication number Publication date
CN114887863A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
CN112008180B (zh) 一种Ni3Al基单晶合金的高性能钎焊方法
CN114887863B (zh) 一种超声探头及其制备方法
JP4964009B2 (ja) パワー半導体モジュール
Tribula et al. Observations on the mechanisms of fatigue in eutectic Pb-Sn solder joints
CN102221429B (zh) 高温压力与温度的复合传感器及制备方法
KR101466799B1 (ko) 2세대 고온초전도 선재의 초음파용접 접합방법
CN102425879B (zh) 高轨道空间用温差电致冷器的制备方法
JPS63123841A (ja) 複合プリフォーム
Nishimura et al. Development of ultrasonic welding for IGBT module structure
Chilton et al. Fatigue failure in a model SMD joint
JP2003338641A (ja) 熱電素子
US5895533A (en) Beryllium-copper bonding material
US3657801A (en) Method of joining certain metals
Kido et al. Development of copper-copper bonding by ultrasonic welding for IGBT modules
Xie et al. Bending-peeling method to research the effect of lateral stress on superconductivity of REBCO tape at liquid-nitrogen temperature
JPH11135084A (ja) 電池用アルミニウム製封口蓋
Johnson Die bond failure modes
APARICIO Study on electro-mechanical stability of REBCO tape lap joints for segmented fabrication of high-temperature superconducting fusion magnets
CN113900286B (zh) 一种smt型光隔离器的制造方法
CN116174832A (zh) 一种压电传感器探头设计方法
Yu et al. Long-term Reliability of Nickel Micro-Plating Bonding by Using Resonant Type Fatigue Testing Machine
O'Connor et al. The Use of Induction Heating Methods for the Production of Vacuum-tight Silver Soldered Connections
Yue et al. Study on the degradation of welding strength in ceramic substrates subjected to temperature cycling
CN118629984A (zh) 新型集成电路功率器件
JPS6310406A (ja) 配線材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221221

Address after: 2/F, Building 18, Big Data Industrial Park, No. 868, Qinghe Road, Luyang District, Hefei City, Anhui Province, 230000

Applicant after: Hefei Xihe Superconducting Technology Co.,Ltd.

Address before: 230000 Building 9, Wenhua garden, Binhu excellence City, Baohe District, Hefei City, Anhui Province

Applicant before: Energy Research Institute of Hefei comprehensive national science center (Anhui Energy Laboratory)

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant