WO2021217573A1 - 控制数据传输速率的方法、装置、通信设备及存储介质 - Google Patents
控制数据传输速率的方法、装置、通信设备及存储介质 Download PDFInfo
- Publication number
- WO2021217573A1 WO2021217573A1 PCT/CN2020/088240 CN2020088240W WO2021217573A1 WO 2021217573 A1 WO2021217573 A1 WO 2021217573A1 CN 2020088240 W CN2020088240 W CN 2020088240W WO 2021217573 A1 WO2021217573 A1 WO 2021217573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- session
- ambr
- network slice
- pdu
- terminal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
- H04W28/22—Negotiating communication rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0027—Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0072—Transmission or use of information for re-establishing the radio link of resource information of target access point
Definitions
- the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to a method, device, communication device, and storage medium for controlling a data transmission rate.
- Network slicing technology is a technology that switches a physical network into multiple virtual end-to-end networks.
- each virtual network can obtain logically independent network resources, and each network slice can be isolated from each other. Therefore, when an error or failure occurs in a certain network slice, it will not affect other network slices.
- the advantage of network slicing is that it allows network operators to select the characteristics required for each network slice according to their needs. For example, low latency, high throughput, high connection density, high spectrum efficiency, etc. Not only that, operators can change and add network slicing features without considering the impact of the rest of the network, which saves time and reduces costs.
- the network can aggregate the maximum bit rate (session-AMBR, Session Aggregate Maximum Bit Rate) of a certain packet data unit (PDU, Packet Data Unit) session in the network slicing according to the agreement between the operator and the user.
- the terminal aggregate maximum bit rate (UE-AMBR, UE Aggregate Maximum Bit Rate) of a terminal is limited.
- the data transmission rate control of the slicing network still has the problem of inaccuracy, which will cause the data transmission of the slicing network to exceed the transmission capacity of the slicing network.
- the embodiment of the present disclosure discloses a method for controlling a data transmission rate, wherein, when applied to a session management function (SMF), the method includes:
- the maximum data rate of the terminal using a network slice determine the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session that the terminal uses the network slice for data transmission; wherein, the packet data unit (PDU)
- the aggregate maximum bit rate (session-AMBR) of the session is less than or equal to the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session subscribed by the terminal.
- the maximum aggregate bit rate (session-AMBR) of the packet data unit (PDU) session of the terminal using the network slice for data transmission is determined ,include:
- the packet data unit (PDU) session to be allocated aggregate maximum bit rate (session-AMBR) of the terminal in the network slice is assigned the aggregate maximum bit rate (session-AMBR) -AMBR).
- the method further includes:
- the remaining aggregate maximum bit rate (session-AMBR) is sent to the policy control function (PCF); wherein, the remaining aggregate maximum bit rate (session-AMBR) is used by the policy control function (PCF) to formulate the terminal The rate allocation strategy.
- PCF policy control function
- the sending the remaining aggregate maximum bit rate (session-AMBR) to the policy control function (PCF) includes:
- the control function sends a session management policy control creation service (Npcf_SMPolicyControl_Create) message carrying the remaining aggregate maximum bit rate (session-AMBR).
- the method further includes:
- the determining the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses the network slice for data transmission according to the maximum data rate of a network slice used by the terminal includes:
- the aggregate maximum bit rate (session-AMBR) is equally distributed among multiple packet data unit (PDU) sessions of the network slice.
- the evenly distributing the aggregate maximum bit rate (session-AMBR) among multiple packet data unit (PDU) sessions of the network slice includes:
- PDU packet data unit
- the maximum data rate is equally allocated to the established packet data units again (PDU) session and the packet data unit (PDU) session to be established.
- the determining the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses the network slice for data transmission according to the maximum data rate of a network slice used by the terminal includes:
- a packet data unit (PDU) session of the terminal in the network slice is allocated an aggregate maximum bit rate (session-AMBR).
- session-AMBR aggregate maximum bit rate
- the maximum data rate is a non-guaranteed channel quality (QoS, Quality of Service) stream bit rate.
- QoS Quality of Service
- an apparatus for controlling a data transmission rate which is applied to a session management function (SMF), and the apparatus includes a determining module, wherein,
- the determining module is configured to determine the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses the network slice for data transmission according to the maximum data rate of a network slice used by the terminal; wherein The maximum aggregate bit rate (session-AMBR) of the packet data unit (PDU) session is less than or equal to the maximum aggregate bit rate (session-AMBR) of the packet data unit (PDU) session subscribed by the terminal.
- session-AMBR maximum aggregate bit rate
- the determining module is further configured to:
- the packet data unit (PDU) session to be allocated aggregate maximum bit rate (session-AMBR) of the terminal in the network slice is assigned the aggregate maximum bit rate (session-AMBR) -AMBR).
- the device further includes a sending module, wherein:
- the sending module is configured to send the remaining aggregate maximum bit rate (session-AMBR) to a policy control function (PCF); wherein, the remaining aggregate maximum bit rate (session-AMBR) is used for the policy control Function (PCF) formulates the rate allocation strategy of the terminal.
- PCF policy control Function
- the sending module is further configured to:
- the device further includes a receiving module configured to receive a packet carrying the maximum aggregate bit rate to be allocated (session-AMBR) sent by the policy control function (PCF) A response message for the rate allocation strategy of a data unit (PDU) session; wherein the rate allocation strategy is formulated based on the remaining aggregate maximum bit rate (session-AMBR).
- a receiving module configured to receive a packet carrying the maximum aggregate bit rate to be allocated (session-AMBR) sent by the policy control function (PCF) A response message for the rate allocation strategy of a data unit (PDU) session; wherein the rate allocation strategy is formulated based on the remaining aggregate maximum bit rate (session-AMBR).
- the determining module is further configured to:
- the aggregate maximum bit rate (session-AMBR) is equally distributed among multiple packet data unit (PDU) sessions of the network slice.
- the determining module is further configured to:
- PDU packet data unit
- the maximum data rate is equally allocated to the established packet data units again (PDU) session and the packet data unit (PDU) session to be established.
- the determining module is further configured to:
- a packet data unit (PDU) session of the terminal in the network slice is allocated an aggregate maximum bit rate (session-AMBR).
- session-AMBR aggregate maximum bit rate
- the determining module is further configured to make the maximum data rate a non-guaranteed channel quality (QoS) stream bit rate.
- QoS non-guaranteed channel quality
- a communication device including:
- a memory for storing executable instructions of the processor
- the processor is configured to implement the method described in any embodiment of the present disclosure when running the executable instruction.
- a computer storage medium stores a computer executable program, and the executable program is executed by a processor to implement the method described in any embodiment of the present disclosure.
- the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses the network slice for data transmission is determined;
- the aggregate maximum bit rate (session-AMBR) of a packet data unit (PDU) session is less than or equal to the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session subscribed by the terminal.
- the maximum data rate is also set for each of the network slices, and the maximum data transmission rate of each network slice can be limited, compared to the aggregation of only the packet data unit (PDU) sessions.
- the maximum data rate (session-AMBR) and the terminal’s aggregate maximum data rate (UE-AMBR) are limited, and the aggregate maximum data rate of a packet data unit (PDU) session (session- AMBR) can make the data transmission rate control of the network slice more accurate.
- Figure 1 is a schematic structural diagram of a wireless communication system.
- Fig. 2 is a flow chart showing a communication network architecture according to an exemplary embodiment.
- Fig. 3 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 4 is a flowchart showing a network slicing according to an exemplary embodiment.
- Fig. 5 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 6 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 7 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 8 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 9 is a flow chart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 10 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 11 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 12 is a flowchart showing a method for controlling a data transmission rate according to an exemplary embodiment.
- Fig. 13 is a block diagram showing a device for sending data according to an exemplary embodiment.
- Fig. 14 is a block diagram showing a user equipment according to an exemplary embodiment.
- Fig. 15 is a block diagram showing a base station according to an exemplary embodiment.
- first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
- word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
- FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipment 110 and several base stations 120.
- the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
- the user equipment 110 may communicate with one or more core networks via a radio access network (RAN).
- RAN radio access network
- the user equipment 110 may be an Internet of Things user equipment, such as a sensor device, a mobile phone (or called a "cellular" phone).
- a computer with Internet of Things user equipment for example, can be a fixed, portable, pocket-sized, handheld, computer built-in or vehicle-mounted device.
- station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote user equipment (remote terminal), access user equipment (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
- the user equipment 110 may also be a device of an unmanned aerial vehicle.
- the user equipment 110 may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless user equipment connected to the trip computer.
- the user equipment 110 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
- the base station 120 may be a network side device in a wireless communication system.
- the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as the new air interface system or 5G NR system. Alternatively, the wireless communication system may also be the next-generation system of the 5G system.
- the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network).
- the base station 120 may be an evolved base station (eNB) used in a 4G system.
- the base station 120 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
- eNB evolved base station
- gNB base station
- the base station 120 adopts a centralized and distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
- the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC media access control
- the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
- a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
- an E2E (End to End) connection may also be established between the user equipment 110.
- V2V vehicle to vehicle
- V2I vehicle to Infrastructure
- V2P vehicle to pedestrian
- the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiment.
- the above-mentioned wireless communication system may further include a network management device 130.
- the network management device 130 may be a core network device in a wireless communication system.
- the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
- the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
- SGW Serving GateWay
- PGW Public Data Network GateWay
- Policy and Charging Rules function unit Policy and Charging Rules
- Function PCRF
- HSS Home Subscriber Server
- an embodiment is used to describe a 5G system architecture that uses an application to control a data transmission rate.
- the 5G system architecture mainly includes the following network elements: authentication server function (AUSF, Authentication Server Function) 21, unified data management (UDM, Unified Data Management) 22, access and mobility management function (AMF, Access and Mobility Management Function 23, Session Management Function (SMF, Session Management Function) 24, Policy Control Function (PCF, Policy Control Function) 25, Application Function (AF, Application Function) 26, Data Network (DN, Data Network) 27.
- AUSF Authentication Server Function
- UDM Unified Data Management
- AMF Access and Mobility Management Function
- Session Management Function Session Management Function
- PCF Policy Control Function
- AF Application Function
- DN Data Network
- User Plane Function User Plane Function
- Radio Access Network RAN, Radio Access Network
- the terminal 30 is connected to the access and mobility management function 23 through the N1 interface; the wireless access network 29 is connected to the access and mobility management function 23 through the N2 interface; the wireless access network 29 is connected to the user plane function 28
- the entities are connected through the N3 interface; the user plane function 28 and the session management function 24 are connected through the N4 interface; the policy control function 25 and the application function 26 are connected through the N5 interface; between the user plane function 28 and the data network 27 Connect through the N6 interface; the session management function 24 and the policy control function 25 are connected through the N7 interface; the access and mobility management function 23 and the unified data management 22 are connected through the N8 interface; the user plane function 28 is through the N9 interface Connection; the unified data management 22 and the session management function 24 are connected through the N10 interface; the access and mobility management function 23 and the session management function 24 are connected through the N11 interface; the authentication server function 21 is connected with the accounting and mobile new management The functions 23 are connected through the N12 interface; the authentication server function 21 and the unified data management 22 are
- this embodiment provides a method for controlling the data transmission rate, which is applied to the session management function (SMF), and the method includes:
- Step 31 Determine the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses a network slice for data transmission according to the maximum data rate of a network slice used by the terminal; among them, the packet data unit (PDU) session
- the aggregate maximum bit rate (session-AMBR) is less than or equal to the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session subscribed by the terminal.
- the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a road side unit (RSU, Road Side Unit), a smart home terminal, an industrial sensor device, and/or a medical device, etc.
- a mobile phone a wearable device
- vehicle-mounted terminal a road side unit (RSU, Road Side Unit)
- RSU Road Side Unit
- smart home terminal an industrial sensor device, and/or a medical device, etc.
- each terminal can access multiple different network slices; each network slice can include multiple different packet data unit (PDU) sessions.
- PDU packet data unit
- the terminal has access to three different network slices, namely network slice 1, network slice 2, and network slice 3.
- Network slice 2 includes three packet data unit (PDU) sessions, which are session 1, session 2, and session 3.
- a packet data unit (PDU) session may be a connection between the terminal and the packet data network.
- different network slices may correspond to different types of application scenarios.
- network slice 1 is used in enhanced Mobile Broadband (eMBB) scenarios
- network slice 2 is used in large-scale Machine Type Communication (mMTC) scenarios
- network slice 3 is used in high-reliability and low-latency communications (uRLLC, Ultra Reliable & Low Latency Communication) scene.
- eMBB enhanced Mobile Broadband
- mMTC Machine Type Communication
- uRLLC Ultra Reliable & Low Latency Communication
- the maximum data rate is used to characterize the ability of each network slice to transmit data.
- the data transmitted per unit time of each network slice cannot be greater than the maximum data rate.
- the sum of the aggregate maximum bit rate (session-AMBR) of the session transmission data of multiple different packet data units (PDU) included in each network slice cannot be greater than the maximum data rate.
- the maximum data rate may include an uplink (UL, Up Link) maximum data rate and a downlink (DL, Down Link) maximum data rate of a network slice.
- UL uplink
- DL downlink
- the maximum uplink data rate and the maximum downlink data rate of all network slices accessed by the terminal are stored in the unified data management (UDM), and the session management function (SMF) can be obtained from the unified data management (UDM) The maximum uplink data rate and the maximum downlink data rate of any network slice.
- UDM unified data management
- SMF session management function
- the size of the maximum uplink data rate and the maximum downlink data rate of the network slice may be determined according to application scenarios.
- the maximum uplink data rate may be set to be less than the first threshold, and the maximum downlink data rate may be set to be greater than the second threshold.
- the first threshold is less than the second threshold.
- the maximum data rate of each network slice is evenly allocated to the aggregate maximum bit rate (session-AMBR) of multiple different packet data unit (PDU) sessions.
- session-AMBR aggregate maximum bit rate
- the maximum data rate of each network slice is non-uniformly allocated to the aggregate maximum bit rate (session-AMBR) of multiple different packet data unit (PDU) sessions.
- the maximum data rate of each network slice is 10M
- the network slice contains 3 packet data unit (PDU) sessions, namely Session 1, Session 2 and Session 3. Then 3M can be allocated to Session 1, and 5M to Session 2 , Allocate 2M to Session 3.
- each network slice may allocate the maximum data rate to multiple different packet data unit (PDU) sessions included in the network slice. In another embodiment, each network slice may allocate only a portion of the maximum data rate to multiple different packet data unit (PDU) sessions included in the network slice.
- PDU packet data unit
- each packet data unit (PDU) session corresponds to a subscribed aggregate maximum bit rate (session-AMBR), and the data transmission rate of each packet data unit (PDU) session cannot be greater than the subscribed aggregate bit rate Maximum bit rate (session-AMBR).
- session-AMBR subscribed aggregate maximum bit rate
- the contracted aggregate maximum bit rate is the maximum uplink data rate and/or the maximum downlink data rate set by the network according to the agreement between the operator and the user.
- the aggregate maximum bit rate defines the upper limit of the sum of the bit rates of all non-guaranteed bit rate (GBR, Guaranteed Bit Rate) quality of service (QoS) streams of a packet data unit (PDU) session.
- the sum of the bit rates of all non-guaranteed bit rate (GBR) quality of service (QoS) streams of a packet data unit (PDU) session cannot be greater than the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU).
- different packet data unit (PDU) sessions may use the aggregate maximum bit rate (session-AMBR) corresponding to different subscriptions.
- session-AMBR aggregate maximum bit rate
- the terminal subscribes to the maximum aggregate bit rate (session-AMBR)
- the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session subscription may be stored in the unified data management (UDM).
- UDM unified data management
- a maximum data rate is also set for each network slice, and the maximum data transmission rate for each network slice can be limited, compared to the maximum aggregation rate for only packet data unit (PDU) sessions.
- the data rate (session-AMBR) and the terminal’s aggregate maximum data rate (UE-AMBR) are limited, and the aggregate maximum data rate of a packet data unit (PDU) session (session-AMBR) is limited according to the maximum data rate of each network slice. ) Can make the data transmission rate control of the network slice more accurate, and improve the efficiency of data transmission of the network slice.
- this embodiment provides a method for controlling the data transmission rate.
- step 31 according to the maximum data rate of the terminal using a network slice, the packet data unit ( PDU)
- Step 51 Determine the remaining aggregate maximum bit rate (session-AMBR) of the terminal in the network slice based on the maximum data rate and the maximum aggregate bit rate (session-AMBR) of the packet data unit (PDU) sessions allocated to the terminal in the network slice .
- the network slice allocates only the part of the maximum data rate in the network slice to the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session of the terminal.
- session-AMBR aggregate maximum bit rate
- two sessions have been established in the network slice, namely, packet data unit (PDU) session 1 and packet data unit (PDU) session 2, respectively.
- the maximum data rate of the network slice is 10M.
- the network slice allocates 2M to packet data unit (PDU) session 1, and the network slice allocates 2M to packet data unit (PDU) session 2, so the maximum data rate still has 6M remaining ( The remaining 6M is the currently available rate), it can be determined that the remaining aggregate maximum bit rate (session-AMBR) of the terminal in the network slice is 6M.
- the remaining aggregate maximum bit rate (session-AMBR) of the terminal in the network slice is determined, and the session to be established can be assigned the aggregate maximum bit rate (session-AMBR) based on the remaining aggregate maximum bit rate (session-AMBR).
- Step 52 Based on the remaining aggregate maximum bit rate (session-AMBR), assign the aggregate maximum bit rate (session-AMBR) to the packet data unit (PDU) session to be assigned the aggregate maximum bit rate (session-AMBR) of the terminal in the network slice .
- session-AMBR aggregate maximum bit rate
- two sessions have been established in the network slice, namely, packet data unit (PDU) session 1 and packet data unit (PDU) session 2, respectively.
- the maximum data rate of the network slice is 10M, where the network slice allocates 2M to packet data unit (PDU) session 1, and the network slice allocates 2M to packet data unit (PDU) session 2, so the maximum data rate still has 6M remaining ( The remaining 6M is the currently available rate), it can be determined that the remaining aggregate maximum bit rate (session-AMBR) of the terminal in the network slice is 6M.
- the maximum aggregate bit rate (session-AMBR) of session 3 of the packet data unit (PDU) subscribed by the terminal is 5M
- the remaining aggregate maximum bit rate (session-AMBR) of 6M cannot be fully allocated to the aggregate to be allocated.
- the packet data unit (PDU) session 3 with the maximum bit rate (session-AMBR) only the remaining 5M aggregate maximum bit rate (session-AMBR) will be allocated to the packet data unit to be allocated with the maximum aggregate bit rate (session-AMBR) (PDU) Session 3.
- the allocation of the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session to which the aggregate maximum bit rate (session-AMBR) is to be allocated will also be limited by the aggregate maximum bit rate (session-AMBR) subscribed by the terminal, so that The rate control of network slicing transmission data is more precise.
- a method for controlling a data transmission rate is provided in this embodiment, wherein the method further includes:
- Step 61 Send the remaining aggregate maximum bit rate (session-AMBR) to the policy control function (PCF); wherein the remaining aggregate maximum bit rate (session-AMBR) is used by the policy control function (PCF) to formulate the rate allocation strategy of the terminal.
- session-AMBR the remaining aggregate maximum bit rate
- PCF policy control function
- the rate allocation strategy of the terminal may be a strategy for allocating the remaining aggregate maximum bit rate (session-AMBR) to the session to be established in the network slice.
- session-AMBR the remaining aggregate maximum bit rate
- the rate allocation strategy of the terminal may be a strategy authorized by a policy control function (PCF).
- PCF policy control function
- the remaining aggregate maximum bit rate may be sent to the policy control function (PCF) periodically.
- PCF policy control function
- the remaining aggregate maximum bit rate (session-AMBR) is sent to the policy control function (PCF).
- PCF policy control function
- this embodiment provides a method for controlling data transmission rate, wherein sending the remaining aggregate maximum bit rate (session-AMBR) to the policy control function PCF includes:
- the policy control function (PCF) to which the packet data unit (PDU) to be allocated the aggregate maximum bit rate (session-AMBR) belongs )
- Npcf_SMPolicyControl_Create session management policy control creation service
- Npcf_SMPolicyControl_Create session management policy control creation service
- only the packet data unit to be allocated aggregate maximum bit rate (session-AMBR) may be (PDU)
- PCF policy control function
- Npcf_SMPolicyControl_Create session management policy control creation service
- the establishment of each packet data unit to be assigned aggregate maximum bit rate (session-AMBR) successively, the establishment of each packet data unit to be assigned aggregate maximum bit rate (session-AMBR) During a unit (PDU) session, it is necessary to send the policy control function (PCF) to which the packet data unit (PDU) session to which the maximum aggregate bit rate (session-AMBR) is to be allocated carries the remaining aggregate maximum bit rate (session-AMBR)
- PCF policy control function
- the session management policy controls the creation service (Npcf_SMPolicyControl_Create) message.
- this embodiment provides a method for controlling a data transmission rate, where the method further includes:
- Step 81 Receive a response message sent by the PCF carrying the rate allocation strategy of the packet data unit (PDU) session to be allocated the maximum aggregate bit rate (session-AMBR); where the rate allocation strategy is based on the remaining aggregate maximum bit rate (session-AMBR) ) Formulation.
- PDU packet data unit
- session-AMBR maximum aggregate bit rate
- the rate allocation strategy of the terminal may be a strategy for allocating the remaining aggregate maximum bit rate (session-AMBR) to the session to be established in the network slice.
- session-AMBR the remaining aggregate maximum bit rate
- the rate allocation strategy of the terminal may be a strategy authorized by a policy control function (PCF).
- PCF policy control function
- the remaining aggregate maximum bit rate is 6M.
- the terminal's contract to be assigned the maximum aggregate bit rate (session-AMBR) packet data unit (PDU) session aggregate maximum bit rate (session-AMBR) of 5M the remaining aggregate maximum bit rate (session-AMBR) of 5M will be allocated Assign a packet data unit (PDU) session for which the aggregate maximum bit rate (session-AMBR) is to be allocated.
- this embodiment provides a method for controlling the data transmission rate.
- step 31 according to the maximum data rate of a network slice used by the terminal, a packet data unit ( PDU)
- PDU packet data unit
- session-AMBR The maximum aggregate bit rate of the session
- Step 91 Based on the maximum data rate, the aggregate maximum bit rate (session-AMBR) is equally distributed among multiple packet data unit (PDU) sessions of the network slice.
- session-AMBR aggregate maximum bit rate
- it may be a number of packet data unit (PDU) sessions that evenly allocate all the maximum data rates to the network slice.
- the maximum data rate is 6M, and all 6M is allocated to multiple packet data unit (PDU) sessions of the network slice.
- part of the maximum data rate is evenly allocated to multiple packet data unit (PDU) sessions of the network slice.
- the maximum data rate is 6M, and only 5M is allocated to multiple packet data unit (PDU) sessions of the network slice.
- this embodiment provides a method for controlling the data transmission rate.
- the aggregate maximum bit rate (session-AMBR) is equally distributed among multiple packet data unit (PDU) sessions of the network slice. ),include:
- Step 101 If multiple packet data unit (PDU) sessions to be established are simultaneously established in a network slice, the maximum data rate is evenly allocated to the packet data unit (PDU) sessions to be established;
- PDU packet data unit
- PDU packet data unit
- the maximum data rate of the network slice is 6M
- the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session to be established subscribed by the terminal is 6M.
- the maximum data rate of the network slice is 6M
- the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session to be established subscribed by the terminal is 6M.
- the aggregate maximum bit rate (session-AMBR) allocated to the packet data unit (PDU) session 1 is 6M.
- the maximum data rate is equally allocated to the established packet data unit (PDU) session 1 and the packet data unit (PDU) session 2 to be established, then 3M is allocated to the established packet data unit (PDU) session 1 and 3M is allocated to the packet data unit (PDU) session 2 to be established.
- this embodiment provides a method for controlling the data transmission rate.
- step 31 according to the maximum data rate of a network slice used by the terminal, a packet data unit ( PDU)
- PDU packet data unit
- session-AMBR The maximum aggregate bit rate of the session
- Step 111 Based on the maximum data rate obtained from the unified data management (UDM), assign the aggregate maximum bit rate (session-AMBR) to the packet data unit (PDU) session of the terminal in the network slice.
- UDM unified data management
- the maximum data rate may include an uplink (UL, Up Link) maximum data rate and a downlink (DL, Down Link) maximum data rate of a network slice.
- the maximum uplink data rate and the maximum downlink data rate of all network slices accessed by the terminal are stored in the unified data management (UDM), and the session management function (SMF) can be obtained from the unified data management (UDM) The maximum uplink data rate and the maximum downlink data rate of any network slice.
- the maximum data rate is the non-guaranteed bit rate (GBR) channel quality (QoS) streaming bit rate.
- the non-guaranteed bit rate (GBR) channel quality (QoS) flow means that the network does not limit the minimum data transmission rate.
- the business needs to withstand the requirement of reducing the rate, due to the non-guaranteed bit rate (GBR) channel Quality (QoS) flow bearers do not need to occupy fixed network resources, so they can be maintained for a long time.
- Example 1 Please refer to Figure 2 again for the network architecture using this method.
- this embodiment provides a method for controlling a data transmission rate, and the method includes the following steps:
- Step s1 the terminal initiates a session establishment request to the session management function (SMF).
- SMF session management function
- Step s2 the session management function (SMF) obtains the contracted aggregate maximum bit rate (session-AMBR) and the maximum data rate of the network slice from the unified data management (UDM), where the maximum data rate includes: the maximum uplink data rate and the maximum downlink Data rate.
- SMF session management function
- UDM unified data management
- Step s3 Determine the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses a network slice for data transmission according to the maximum data rate of a network slice used by the terminal; among them, the packet data unit (PDU) session
- the aggregate maximum bit rate (session-AMBR) is less than or equal to the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session subscribed by the terminal.
- the maximum data rate of the terminal using a network slice determine the aggregate maximum bit rate (session-AMBR) of the packet data unit (PDU) session that the terminal uses for data transmission on the network slice, including: based on the maximum data rate and the allocation in the network slice Give the terminal's packet data unit (PDU) session aggregate maximum bit rate (session-AMBR), determine the remaining aggregate maximum bit rate (session-AMBR) of the terminal in the network slice; based on the remaining aggregate maximum bit rate (session-AMBR), Assign the maximum aggregate bit rate (session-AMBR) to the packet data unit (PDU) session to which the terminal in the network slice is to be assigned the maximum aggregate bit rate (session-AMBR).
- session-AMBR aggregate maximum bit rate of the packet data unit (PDU) session that the terminal uses for data transmission on the network slice, including: based on the maximum data rate and the allocation in the network slice Give the terminal's packet data unit (PDU) session aggregate maximum bit rate (session-AMBR), determine the remaining aggregate maximum bit rate (session-AMBR) of the terminal
- Step s4 the session management function (SMF) sends a session management policy control creation service (Npcf_SMPolicyControl_Create) message to the policy control function (PCF) to request the establishment of the SM policy control association, and the message contains the remaining aggregate maximum bit rate (session-AMBR).
- session-AMBR session management policy control creation service
- Step s5 the policy control function (PCF) generates an authorized aggregate maximum bit rate (session-AMBR) according to the configured policy, and generates a trigger condition associated with the session management policy.
- PCF policy control function
- Step s6 the policy control function (PCF) sends an application management policy control creation service (Npcf_AMPolicyControl_Create) response message to the session management function (SMF), and the message contains the session management policy and the trigger condition associated with the session policy.
- the session management strategy includes a packet data unit (PDU) session rate allocation strategy.
- Step s7 the session management function (SMF) generates quality of service (QoS) rules and quality of service (QoS) files according to the authorized aggregate maximum bit rate (session-AMBR), and the session management function (SMF) transfers to the access and mobility management function (AMF) Send a message, the message contains quality of service (QoS) rules and quality of service (QoS) files.
- QoS quality of service
- QoS quality of service
- QoS quality of service
- QoS quality of service
- QoS quality of service
- step s8 the session management function (SMF) issues quality of service (QoS) files to the wireless access network through the N2 interface, and issues quality of service (QoS) rules to the terminal through the N1 interface.
- QoS quality of service
- the maximum data rate is also set for each network slice, and the maximum data transmission rate of each network slice can be limited, compared to only for the packet data unit (PDU) session.
- the aggregate maximum data rate (session-AMBR) and the terminal’s aggregate maximum data rate (UE-AMBR) are limited, and the aggregate maximum data rate of a packet data unit (PDU) session is limited according to the maximum data rate of each network slice ( session-AMBR) can make the data transmission rate control of the network slice more accurate, and improve the efficiency of data transmission in the network slice.
- an embodiment of the present disclosure provides a device for controlling a data transmission rate, which is applied to a session management function (SMF), and the device includes a determining module 131, wherein:
- the determining module 131 is configured to determine the maximum aggregate bit rate (session-AMBR) of a packet data unit (PDU) session in which the terminal uses a network slice for data transmission according to the maximum data rate of a network slice used by the terminal; wherein, packet data
- the aggregate maximum bit rate (session-AMBR) of a unit (PDU) session is less than or equal to the aggregate maximum bit rate (session-AMBR) of a packet data unit (PDU) session subscribed by the terminal.
- the determining module 131 is further configured to:
- the PDU session to which the terminal in the network slice is to be allocated the aggregate maximum bit rate (session-AMBR) is allocated the aggregate maximum bit rate (session-AMBR).
- the device further includes a sending module 132, wherein:
- the sending module 132 is configured to send the remaining aggregated maximum bit rate (session-AMBR) to the policy control function (PCF); wherein the remaining aggregated maximum bit rate (session-AMBR) is used for the policy control function (PCF) to formulate terminal Rate allocation strategy.
- session-AMBR the remaining aggregated maximum bit rate
- PCF policy control function
- the sending module 132 is further configured to:
- the policy control function (PCF) to which the packet data unit (PDU) to be allocated the aggregate maximum bit rate (session-AMBR) belongs )
- the device further includes a receiving module 133, which is configured to receive a packet data unit (PDU) session sent by a policy control function (PCF) carrying a maximum aggregate bit rate (session-AMBR) to be allocated
- PDU packet data unit
- PCF policy control function
- session-AMBR maximum aggregate bit rate
- the rate allocation strategy is a response message; wherein, the rate allocation strategy is formulated based on the remaining aggregate maximum bit rate (session-AMBR).
- the determining module 131 is further configured to:
- the aggregate maximum bit rate (session-AMBR) is equally distributed among multiple packet data unit (PDU) sessions of the network slice.
- the determining module 131 is further configured to:
- PDU packet data unit
- PDU packet data unit
- PDU packet data unit
- the determining module 131 is further configured to:
- the aggregate maximum bit rate session-AMBR is allocated to the packet data unit (PDU) session of the terminal in the network slice.
- the determining module 131 is further configured to set the maximum data rate to be a non-guaranteed channel quality (QoS) stream bit rate.
- QoS non-guaranteed channel quality
- An embodiment of the present disclosure provides a communication device, and the communication device includes:
- a memory for storing executable instructions of the processor
- the processor is configured to implement the method applied to any embodiment of the present disclosure when running the executable instruction.
- the processor may include various types of storage media.
- the storage media is a non-transitory computer storage medium that can continue to memorize and store information thereon after the communication device is powered off.
- the processor may be connected to the memory through a bus or the like, and is used to read an executable program stored on the memory.
- the embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer executable program, and the executable program is executed by a processor to implement the method described in any embodiment of the present disclosure. .
- Fig. 14 is a block diagram showing a user equipment (UE) 800 according to an exemplary embodiment.
- the user equipment 800 may be a mobile phone, a computer, a digital broadcast user equipment, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
- the user equipment 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, and a sensor component 814 , And communication component 816.
- the processing component 802 generally controls the overall operations of the user equipment 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
- the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the foregoing method.
- the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
- the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
- the memory 804 is configured to store various types of data to support operations on the user equipment 800. Examples of such data include instructions for any application or method operated on the user equipment 800, contact data, phone book data, messages, pictures, videos, etc.
- the memory 804 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable and Programmable read only memory
- PROM programmable read only memory
- ROM read only memory
- magnetic memory flash memory
- flash memory magnetic or optical disk.
- the power supply component 806 provides power for various components of the user equipment 800.
- the power supply component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the user equipment 800.
- the multimedia component 808 includes a screen that provides an output interface between the user equipment 800 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
- the multimedia component 808 includes a front camera and/or a rear camera. When the user equipment 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
- the audio component 810 is configured to output and/or input audio signals.
- the audio component 810 includes a microphone (MIC), and when the user equipment 800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
- the received audio signal may be further stored in the memory 804 or transmitted via the communication component 816.
- the audio component 810 further includes a speaker for outputting audio signals.
- the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module.
- the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
- the sensor component 814 includes one or more sensors for providing the user equipment 800 with various aspects of status evaluation.
- the sensor component 814 can detect the on/off status of the device 800 and the relative positioning of components.
- the component is the display and the keypad of the user device 800.
- the sensor component 814 can also detect the user device 800 or a component of the user device 800.
- the position of the user changes, the presence or absence of contact between the user and the user equipment 800, the orientation or acceleration/deceleration of the user equipment 800, and the temperature change of the user equipment 800.
- the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
- the sensor component 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- the communication component 816 is configured to facilitate wired or wireless communication between the user equipment 800 and other devices.
- the user equipment 800 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
- the communication component 816 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 816 further includes a near field communication (NFC) module to facilitate short-range communication.
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- the user equipment 800 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field-available A programmable gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
- ASIC application specific integrated circuits
- DSP digital signal processors
- DSPD digital signal processing devices
- PLD programmable logic devices
- FPGA field-available A programmable gate array
- controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
- non-transitory computer-readable storage medium including instructions, for example, the memory 804 including instructions, and the foregoing instructions may be executed by the processor 820 of the user equipment 800 to complete the foregoing method.
- the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
- an embodiment of the present disclosure shows a structure of a base station.
- the base station 900 may be provided as a network side device.
- the base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932, for storing instructions that can be executed by the processing component 922, such as application programs.
- the application program stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
- the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the base station, for example, the method shown in FIGS. 2-6.
- the base station 900 may also include a power supply component 926 configured to perform power management of the base station 900, a wired or wireless network interface 950 configured to connect the base station 900 to the network, and an input output (I/O) interface 958.
- the base station 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例提供了一种控制数据传输速率的方法,其中,应用于会话管理功能(SMF)中,方法包括:根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)小于或等于终端签约的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
Description
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种控制数据传输速率的方法、装置、通信设备及存储介质。
网络切片技术是一种将一个物理网络切换成多个虚拟的端到端网络的技术。一方面,每一个虚拟的网络都可获得逻辑上独立的网络资源,各个网络切片之间可以相互隔离。因此,当某一个网络切片中产生错误或者故障时,并不会影响其他的网络切片。另一方面,网络切片的优势在于其能让网络运营商根据需要选择每个网络切片所需的特性。例如,低延迟、高吞吐量、高连接密度、高频谱效率等。不仅如此,运营商无需考虑网络其余部分的影响就可以进行网络切片的特性更改和添加,既节省了时间又降低了成本支出。
在网络切片技术中,网络可以根据运营商和用户约定对网络切片中某一个分组数据单元(PDU,Packet Data Unit)会话的会话聚合最大比特速率(session-AMBR,Session Aggregate Maximum Bit Rate)和某一个终端的终端聚合最大比特速率(UE-AMBR,UE Aggregate Maximum Bit Rate)进行限制。但是,切片网络的数据传输速率控制仍然存在不准确的问题,会导致切片网络的数据传输超越切片网络的传输能力。
发明内容
本公开实施例公开了一种控制数据传输速率的方法,其中,应用于会话管理功能(SMF)中,所述方法包括:
根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络 切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,所述分组数据单元(PDU)会话的所述聚合最大比特速率(session-AMBR)小于或等于所述终端签约的所述分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
在一个实施例中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
基于所述最大数据速率和所述网络切片中已分配给所述终端的所述分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),确定所述网络切片中所述终端的剩余聚合最大比特速率(session-AMBR);
基于所述剩余聚合最大比特速率(session-AMBR),给所述网络切片中所述终端的待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,所述方法,还包括:
将所述剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF);其中,所述剩余聚合最大比特速率(session-AMBR)用于所述策略控制功能(PCF)制定所述终端的速率分配策略。
在一个实施例中,所述将所述剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF),包括:
响应于待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话建立,向所述待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话所属的所述策略控制功能(PCF)发送携带有所述剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息。
在一个实施例中,所述方法,还包括:
接收所述策略控制功能(PCF)发送的携带有所述待分配聚合最大比特 速率(session-AMBR)的分组数据单元(PDU)会话的速率分配策略的响应消息;其中,所述速率分配策略基于所述剩余聚合最大比特速率(session-AMBR)制定。
在一个实施例中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
基于所述最大数据速率,在所述网络切片的多个分组数据单元(PDU)会话间平均分配所述聚合最大比特速率(session-AMBR)。
在一个实施例中,所述在所述网络切片的多个分组数据单元(PDU)会话间平均分配所述聚合最大比特速率(session-AMBR),包括:
若在所述网络切片中同时建立多个待建立的分组数据单元(PDU)会话,将所述最大数据速率平均分配给所述待建立的分组数据单元(PDU)会话;
或者,
若在所述网络切片中先后建立多个分组数据单元(PDU)会话,响应于每次建立所述分组数据单元(PDU)会话,重新将所述最大数据速率平均分配给已建立的分组数据单元(PDU)会话和待建立的分组数据单元(PDU)会话。
在一个实施例中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
基于从统一数据管理(UDM)中获取的所述最大数据速率,给所述网络切片中所述终端的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,所述最大数据速率为非保障信道质量(QoS,Quality of Sevice)流比特速率。
根据本公开实施例的第二方面,提供一种控制数据传输速率的装置,其中,应用于会话管理功能(SMF)中,所述装置包括确定模块,其中,
所述确定模块,被配置为:根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,所述分组数据单元(PDU)会话的所述聚合最大比特速率(session-AMBR)小于或等于所述终端签约的所述分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
在一个实施例中,所述确定模块,还被配置为:
基于所述最大数据速率和所述网络切片中已分配给所述终端的所述分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),确定所述网络切片中所述终端的剩余聚合最大比特速率(session-AMBR);
基于所述剩余聚合最大比特速率(session-AMBR),给所述网络切片中所述终端的待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,所述装置还包括发送模块,其中,
所述发送模块,被配置为将所述剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF);其中,所述剩余聚合最大比特速率(session-AMBR)用于所述策略控制功能(PCF)制定所述终端的速率分配策略。
在一个实施例中,所述发送模块,还被配置为:
响应于待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话建立,向所述待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话所属的所述PCF发送携带有所述剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息。
在一个实施例中,所述装置还包括接收模块,所述接收模块,被配置 为接收所述策略控制功能(PCF)发送的携带有所述待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话的速率分配策略的响应消息;其中,所述速率分配策略基于所述剩余聚合最大比特速率(session-AMBR)制定。
在一个实施例中,所述确定模块,还被配置为:
基于所述最大数据速率,在所述网络切片的多个分组数据单元(PDU)会话间平均分配所述聚合最大比特速率(session-AMBR)。
在一个实施例中,所述确定模块,还被配置为:
若在所述网络切片中同时建立多个待建立的分组数据单元(PDU)会话,将所述最大数据速率平均分配给所述待建立的分组数据单元(PDU)会话;
或者,
若在所述网络切片中先后建立多个分组数据单元(PDU)会话,响应于每次建立所述分组数据单元(PDU)会话,重新将所述最大数据速率平均分配给已建立的分组数据单元(PDU)会话和待建立的分组数据单元(PDU)会话。
在一个实施例中,所述确定模块还被配置为:
基于从统一数据管理(UDM)中获取的所述最大数据速率,给所述网络切片中所述终端的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,所述确定模块还被配置为所述最大数据速率为非保障信道质量(QoS)流比特速率。
根据本公开实施例的第三方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第四方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,所述分组数据单元(PDU)会话的所述聚合最大比特速率(session-AMBR)小于或等于所述终端签约的所述分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。这里,针对每个所述网络切片还设置了一个所述最大数据速率,可以对每个网络切片传输数据的最大速率进行了限制,相较于仅针对所述分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)和终端的聚合最大数据速率(UE-AMBR)做限制的方式,根据每个网络切片的最大数据速率限制分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)能够使得网络切片的数据传输速率控制更加精确。
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种通信网络架构的流程图。
图3是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图4是根据一示例性实施例示出的一种网络切片的流程图。
图5是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图6是根据一示例性实施例示出的一种控制数据传输速率的方法的流 程图。
图7是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图8是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图9是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图10是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图11是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图12是根据一示例性实施例示出的一种控制数据传输速率的方法的流程图。
图13是根据一示例性实施例示出的一种发送数据的装置的框图。
图14是根据一示例性实施例示出的一种用户设备的框图。
图15是根据一示例性实施例示出的一种基站的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示 其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系 统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备 130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了方便对本公开任一实施例的理解,首先通过一个实施例对应用控制数据传输速率的的5G系统架构进行说明。
如图2所示,5G系统架构主要包括如下网元:鉴权服务器功能(AUSF,Authentication Server Function)21、统一数据管理(UDM,Unified Data Management)22、接入和移动性管理功能(AMF,Access and Mobility Management Function)23、会话管理功能(SMF,Session Management Function)24、策略控制功能(PCF,Policy Control Function)25、应用功能(AF,Application Function)26、数据网络(DN,Data Network)27、用户面功能(UPF,User Plane Function)28、无线接入网络(RAN,Radio access Network)29和终端30等。其中,终端30与接入与移动性管理功能23之间通过N1接口连接;无线接入网络29与接入和移动性管理功能23之间通过N2接口连接;无线接入网络29与用户面功能28实体之间通过N3接口连接;用户面功能28与会话管理功能24之间通过N4接口连接;策略控制功能25与应用功能26之间通过N5接口连接;用户面功能28与数据网络27之间通过N6接口连接;会话管理功能24与策略控制功能25之间通过N7接口连接;接入和移动性管理功能23与统一数据管理22之间通过N8接口连接;用户面功能28之间通过N9接口连接;统一数据管理22与会话 管理功能24之间通过N10接口连接;接入和移动性管理功能23与会话管理功能24之间通过N11接口连接;鉴权服务器功能21与计入和移动新管理功能23之间通过N12接口连接;鉴权服务器功能21与统一数据管理22之间通过N13接口连接;接入和移动性管理功能23之间通过N14接口连接;接入和移动性管理功能23与策略控制功能25之间通过N15接口连接。在一个实施例中,本公开任一实施例控制数据传输速率的方法可以应用于会话管理功能24(SMF)中。
如图3所示,本实施例中提供一种控制数据传输速率的方法,其中,应用于会话管理功能(SMF)中,该方法包括:
步骤31,根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)小于或等于终端签约的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
这里,终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
在一个实施例中,每个终端可以接入多个不同的网络切片;每个网络切片可以包含多个不同的分组数据单元(PDU)会话。例如,请参见图4,终端接入了3个不同的网络切片,分别为网络切片1、网络切片2和网络切片3。网络切片2包括3个分组数据单元(PDU)会话,分别为会话1、会话2和会话3。这里,分组数据单元(PDU)会话可以是终端和分组数据网之间的一个连接。
在一个实施例中,不同的网络切片可以对应不同类型的应用场景。例如,网络切片1应用于增强移动带宽(eMBB,enhanced Mobile Broadband) 场景;网络切片2应用于大规模机器类型通信(mMTC,massive Machine Type Communication)场景;网络切片3应用于高可靠低时延通信(uRLLC,Ultra Reliable&Low Latency Communication)场景。
在一个实施例中,最大数据速率用于表征每个网络切片传输数据的能力。这里,每个网络切片单位时间内传输数据的不能大于最大数据速率。
在一个实施例中,每个网络切片所包含的多个不同的分组数据单元(PDU)会话传输数据的聚合最大比特速率(session-AMBR)之和,不能大于最大数据速率。
在一个实施例中,最大数据速率可以包括一个网络切片的上行(UL,Up Link)最大数据速率和下行(DL,Down Link)最大数据速率。
在一个实施例中,统一数据管理(UDM)中保存有终端所接入的所有网络切片的最大上行数据速率和最大下行数据速率,会话管理功能(SMF)可以从统一数据管理(UDM)中获取任一一个网络切片的最大上行数据速率和最大下行数据速率。
在一个实施例中,网络切片的上行最大数据速率和下行最大数据速率的大小可以根据应用场景确定。在一个实施例中,在直播视屏播放的应用场景中,由于下行数据量较大,上行数据量较小,可以设置上行最大数据速率小于第一阈值,设置下行最大数据速率大于第二阈值。其中,第一阈值小于第二阈值。这里,根据应用场景确定网络切片的上行最大数据速率和下行最大数据速率可以提升网络切片的数据的整体传输效率。
在一个实施例中,每个网络切片的最大数据速率,被均匀分配多个不同的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
在一个实施例中,每个网络切片的最大数据速率,被非均匀地分配给多个不同的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。例如,每个网络切片的最大数据速率为10M,网络切片包含3个分组数据单元(PDU)会话,分别为会话1、会话2和会话3,则 可以分配3M给会话1,分配5M给会话2,分配2M给会话3。
在一个实施例中,每个网络切片可以将最大数据速率全部分配给网络切片所包含的多个不同的分组数据单元(PDU)会话。在另一个实施例中,每个网络切片可以只将最大数据速率的部分分配给网络切片所包含的多个不同的分组数据单元(PDU)会话。
在一个实施例中,每个分组数据单元(PDU)会话都对应有一个签约的聚合最大比特速率(session-AMBR),每个分组数据单元(PDU)会话传输数据的速率都不能大于签约的聚合最大比特速率(session-AMBR)。
在一个实施例中,签约的聚合最大比特速率(session-AMBR)是网络根据运营商和用户的约定设置的最大上行数据速率和/或最大下行数据速率。这里,聚合最大比特速率(session-AMBR)定义了一个分组数据单元(PDU)会话的所有非保障比特速率(GBR,Guaranteed Bit Rate)服务质量(QoS)流的比特率之和的上限。一个分组数据单元(PDU)会话的所有非保障比特速率(GBR)服务质量(QoS)流的比特速率之和不能大于该分组数据单元(PDU)的聚合最大比特速率(session-AMBR)。在一个实施例中,不同的分组数据单元(PDU)会话可用对应不同的签约的聚合最大比特速率(session-AMBR)。终端在签约聚合最大比特速率(session-AMBR)时,可以有多个聚合最大比特速率供终端选择。
在一个实施例中,分组数据单元(PDU)会话签约的聚合最大比特速率(session-AMBR)可以是存储在统一数据管理(UDM)中。
在本公开实施例中,针对每个网络切片还设置了一个最大数据速率,可以对每个网络切片传输数据的最大速率进行了限制,相较于仅针对分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)和终端的聚合最大数据速率(UE-AMBR)做限制的方式,根据每个网络切片的最大数据速率限制分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)能够使得网络切片的数据传输速率控制更加精确,提高了网络切片传输数 据的效率。
如图5所示,本实施例中提供一种控制数据传输速率的方法,其中,步骤31中,根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
步骤51,基于最大数据速率和网络切片中已分配给终端的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),确定网络切片中终端的剩余聚合最大比特速率(session-AMBR)。
在一个实施例中,网络切片只将网络切片中最大数据速率的部分分配给了终端的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
在一个实施例中,网络切片中已经建立了2个会话,分别为分组数据单元(PDU)会话1和分组数据单元(PDU)会话2。网络切片的最大数据速率为10M,其中,网络切片给分组数据单元(PDU)会话1分配了2M,网络切片给分组数据单元(PDU)会话2分配了2M,则最大数据速率还有6M剩余(剩余的6M即为当前可用的速率),则可以确定网络切片中终端的剩余聚合最大比特速率(session-AMBR)为6M。
这里,确定了网络切片中终端的剩余聚合最大比特速率(session-AMBR),就能够基于剩余聚合最大比特速率(session-AMBR)给待建立的会话分配聚合最大比特速率(session-AMBR)。
步骤52,基于剩余聚合最大比特速率(session-AMBR),给网络切片中终端的待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,网络切片中已经建立了2个会话,分别为分组数据单元(PDU)会话1和分组数据单元(PDU)会话2。网络切片的最大数据速率为10M,其中,网络切片给分组数据单元(PDU)会话1分配了2M, 网络切片给分组数据单元(PDU)会话2分配了2M,则最大数据速率还有6M剩余(剩余的6M即为当前可用的速率),则可以确定网络切片中终端的剩余聚合最大比特速率(session-AMBR)为6M。
在一个实施例中,如果终端签约的分组数据单元(PDU)会话3的聚合最大比特速率(session-AMBR)为5M,6M剩余聚合最大比特速率(session-AMBR)并不能全部分配给待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话3,只会将5M的剩余聚合最大比特速率(session-AMBR)分配给待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话3。
这里,待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)分配还会被终端签约的聚合最大比特速率(session-AMBR)限制,使得网络切片传输数据的速率控制更加精确。
如图6所示,本实施例中提供一种控制数据传输速率的方法,其中,所述方法,还包括:
步骤61,将剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF);其中,剩余聚合最大比特速率(session-AMBR)用于策略控制功能(PCF)制定终端的速率分配策略。
在一个实施例中,终端的速率分配策略可以是将剩余聚合最大比特速率(session-AMBR)分配给网络切片中待建立会话的策略。
在一个实施例中,终端的速率分配策略可以是经过策略控制功能(PCF)授权的策略。
在一个实施例中,可以是周期性地将剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF)。
在另一个实施例中,可以是在每次建立分组数据单元(PDU)会话时,将剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF)。
如图7所示,本实施例中提供一种控制数据传输速率的方法,其中,将剩余聚合最大比特速率(session-AMBR)发送给策略控制功能PCF,包括:
响应于待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话建立,向待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话所属的策略控制功能(PCF)发送携带有剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息。这里,利用会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息发送剩余聚合最大比特速率(session-AMBR),能够提升会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息的兼容性。同时,减少了网络的消息开销。
在一个实施例中,响应于多个待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话同时建立,可以只向待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话所属的策略控制功能(PCF)发送一次携带有剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息。
在一个实施例中,响应于多个待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话先后建立,在建立每个待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话时,都需要向待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话所属的策略控制功能(PCF)发送携带有剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息。
如图8所示,本实施例中提供一种控制数据传输速率的方法,其中, 该方法,还包括:
步骤81,接收PCF发送的携带有待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话的速率分配策略的响应消息;其中,速率分配策略基于剩余聚合最大比特速率(session-AMBR)制定。
在一个实施例中,终端的速率分配策略可以是将剩余聚合最大比特速率(session-AMBR)分配给网络切片中待建立会话的策略。
在一个实施例中,终端的速率分配策略可以是经过策略控制功能(PCF)授权的策略。
在一个实施例中,剩余聚合最大比特速率(session-AMBR)为6M。终端签约的待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)为5M,会将5M的剩余聚合最大比特速率(session-AMBR)分配给待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话。
如图9所示,本实施例中提供一种控制数据传输速率的方法,其中,步骤31中,根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
步骤91,基于最大数据速率,在网络切片的多个分组数据单元(PDU)会话间平均分配聚合最大比特速率(session-AMBR)。
在一个实施例中,可以是将全部最大数据速率平均分配给网络切片的多个分组数据单元(PDU)会话。例如,最大数据速率为6M,将6M全部分配给网络切片的多个分组数据单元(PDU)会话。
在另一个实施例中,可以是将部分最大数据速率平均分配给网络切片的多个分组数据单元(PDU)会话。例如,最大数据速率为6M,只将5M分配给网络切片的多个分组数据单元(PDU)会话。
如图10所示,本实施例中提供一种控制数据传输速率的方法,其中,步骤91中,在网络切片的多个分组数据单元(PDU)会话间平均分配聚合最大比特速率(session-AMBR),包括:
步骤101,若在网络切片中同时建立多个待建立的分组数据单元(PDU)会话,将最大数据速率平均分配给待建立的分组数据单元(PDU)会话;
或者,
若在网络切片中先后建立多个分组数据单元(PDU)会话,响应于每次建立分组数据单元(PDU)会话,重新将最大数据速率平均分配给已建立的分组数据单元(PDU)会话和待建立的分组数据单元(PDU)会话。
在一个实施中,网络切片的最大数据速率为6M,终端签约的待建立的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)为6M。网络切片中的分组数据单元(PDU)会话为3个,则每个待建立的分组数据单元(PDU)会话分配的聚合最大比特速率(session-AMBR)为2M。
在一个实施例中,网络切片的最大数据速率为6M,终端签约的待建立的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)为6M。在第一时刻,在分组数据单元(PDU)会话1建立时,给分组数据单元(PDU)会话1分配的聚合最大比特速率(session-AMBR)为6M。在第二时刻,在分组数据单元(PDU)会话2建立时,重新将最大数据速率平均分配给已建立的分组数据单元(PDU)会话1和待建立的分组数据单元(PDU)会话2,则给已建立的分组数据单元(PDU)会话1分配3M,给待建立的分组数据单元(PDU)会话2分配3M。
如图11所示,本实施例中提供一种控制数据传输速率的方法,其中,步骤31中,根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:
步骤111,基于从统一数据管理(UDM)中获取的最大数据速率,给 网络切片中终端的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,最大数据速率可以包括一个网络切片的上行(UL,Up Link)最大数据速率和下行(DL,Down Link)最大数据速率。在一个实施例中,统一数据管理(UDM)中保存有终端所接入的所有网络切片的最大上行数据速率和最大下行数据速率,会话管理功能(SMF)可以从统一数据管理(UDM)中获取任意一个网络切片的最大上行数据速率和最大下行数据速率。
在一个实施例中,最大数据速率为非保障比特速率(GBR)信道质量(QoS)流比特速率。这里,非保障比特速率(GBR)信道质量(QoS)流是指网络不限制最低的数据传输速率,在网络拥挤的情况下,业务需要承受降低速率的要求,由于非保障比特速率(GBR)信道质量(QoS)流承载不需要占用固定的网络资源,因而可以长时间地维持。
为了方便对本公开实施例进一步的理解,以下通过一个示例性实施例对本公开一种控制数据传输速率的方法进行进一步说明。
示例1:应用该方法的网络架构请再次参见图2.
如图12所示,本实施例中提供一种控制数据传输速率的方法,该方法包括如下步骤:
步骤s1,终端向会话管理功能(SMF)发起会话建立请求。
步骤s2,会话管理功能(SMF)从统一数据管理(UDM)获取签约的聚合最大比特速率(session-AMBR)及网络切片的最大数据速率,其中,最大数据速率包括:最大上行数据速率和最大下行数据速率。
步骤s3,根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)小于或等于终端签约的分组数据单元(PDU)会话的聚 合最大比特速率(session-AMBR)。根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),包括:基于最大数据速率和网络切片中已分配给终端的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),确定网络切片中终端的剩余聚合最大比特速率(session-AMBR);基于剩余聚合最大比特速率(session-AMBR),给网络切片中终端的待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话分配聚合最大比特速率(session-AMBR)。
步骤s4,会话管理功能(SMF)向策略控制功能(PCF)发送会话管理策略控制创建服务(Npcf_SMPolicyControl_Create)消息请求建立SM策略控制关联,消息中包含剩余聚合最大比特速率(session-AMBR)。
步骤s5,策略控制功能(PCF)根据配置的策略生成授权的聚合最大比特速率(session-AMBR),并生成会话管理策略关联的触发条件。
步骤s6,策略控制功能(PCF)向会话管理功能(SMF)发送应用管理策略控制创建服务(Npcf_AMPolicyControl_Create)响应消息,消息中包含会话管理策略和会话策略关联的触发条件。这里,会话管理策略包括分组数据单元(PDU)会话的速率分配策略。
步骤s7,会话管理功能(SMF)根据授权的聚合最大比特速率(session-AMBR)生成服务质量(QoS)规则和服务质量(QoS)文件,会话管理功能(SMF)向接入与移动性管理功能(AMF)发送消息,消息中包含服务质量(QoS)规则和服务质量(QoS)文件。
步骤s8,会话管理功能(SMF)通过N2接口向无线接入网下发服务质量(QoS)文件,通过N1接口向终端下发服务质量(QoS)规则。
本示例中,针对每个所述网络切片还设置了一个所述最大数据速率,可以对每个网络切片传输数据的最大速率进行了限制,相较于仅针对所述分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)和终端 的聚合最大数据速率(UE-AMBR)做限制的方式,根据每个网络切片的最大数据速率限制分组数据单元(PDU)会话的聚合最大数据速率(session-AMBR)能够使得网络切片的数据传输速率控制更加精确,提高了网络切片传输数据的效率。
如图13所示,本公开实施例提供一种控制数据传输速率的装置,其中,应用于会话管理功能(SMF)中,该装置包括确定模块131,其中,
确定模块131,被配置为:根据终端使用一个网络切片的最大数据速率,确定终端使用网络切片进行数据传输的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR);其中,分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)小于或等于终端签约的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR)。
在一个实施例中,确定模块131,还被配置为:
基于最大数据速率和网络切片中已分配给终端的分组数据单元(PDU)会话的聚合最大比特速率(session-AMBR),确定网络切片中终端的剩余聚合最大比特速率(session-AMBR);
基于剩余聚合最大比特速率(session-AMBR),给网络切片中终端的待分配聚合最大比特速率(session-AMBR)的PDU会话分配聚合最大比特速率(session-AMBR)。
在一个实施例中,该装置还包括发送模块132,其中,
发送模块132,被配置为将剩余聚合最大比特速率(session-AMBR)发送给策略控制功能(PCF);其中,剩余聚合最大比特速率(session-AMBR)用于策略控制功能(PCF)制定终端的速率分配策略。
在一个实施例中,发送模块132,还被配置为:
响应于待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话建立,向待分配聚合最大比特速率(session-AMBR)的分组 数据单元(PDU)会话所属的策略控制功能(PCF)发送携带有剩余聚合最大比特速率(session-AMBR)的会话管理策略控制创建服务Npcf_SMPolicyControl_Create消息。
在一个实施例中,该装置还包括接收模块133,接收模块133,被配置为接收策略控制功能(PCF)发送的携带有待分配聚合最大比特速率(session-AMBR)的分组数据单元(PDU)会话的速率分配策略的响应消息;其中,速率分配策略基于剩余聚合最大比特速率(session-AMBR)制定。
在一个实施例中,确定模块131,还被配置为:
基于最大数据速率,在网络切片的多个分组数据单元(PDU)会话间平均分配聚合最大比特速率(session-AMBR)。
在一个实施例中,确定模块131,还被配置为:
若在网络切片中同时建立多个待建立的分组数据单元(PDU)会话,将最大数据速率平均分配给待建立的分组数据单元(PDU)会话;
或者,
若在网络切片中先后建立多个分组数据单元(PDU)会话,响应于每次建立分组数据单元(PDU)会话,重新将最大数据速率平均分配给已建立的分组数据单元(PDU)会话和待建立的分组数据单元(PDU)会话。
在一个实施例中,确定模块131还被配置为:
基于从统一数据管理UDM中获取的最大数据速率,给网络切片中终端的分组数据单元(PDU)会话分配聚合最大比特速率session-AMBR。
在一个实施例中,确定模块131还被配置为最大数据速率为非保障信道质量(QoS)流比特速率。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现应用于本公开任意实施例所述的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图14是根据一示例性实施例示出的一种用户设备(UE)800的框图。例如,用户设备800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,用户设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制用户设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分 步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在用户设备800的操作。这些数据的示例包括用于在用户设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为用户设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为用户设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述用户设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当用户设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当用户设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的 音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为用户设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为用户设备800的显示器和小键盘,传感器组件814还可以检测用户设备800或用户设备800一个组件的位置改变,用户与用户设备800接触的存在或不存在,用户设备800方位或加速/减速和用户设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于用户设备800和其他设备之间有线或无线方式的通信。用户设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微 处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由用户设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图15所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法,例如,如图2-6所示方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络,和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅 由所附的权利要求来限制。
Claims (14)
- 一种控制数据传输速率的方法,其中,应用于会话管理功能SMF中,所述方法包括:根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元PDU会话的聚合最大比特速率session-AMBR;其中,所述PDU会话的所述session-AMBR小于或等于所述终端签约的所述PDU会话的session-AMBR。
- 根据权利要求1所述的方法,其中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元PDU会话的聚合最大比特速率session-AMBR,包括:基于所述最大数据速率和所述网络切片中已分配给所述终端的所述PDU会话的session-AMBR,确定所述网络切片中所述终端的剩余session-AMBR;基于所述剩余session-AMBR,给所述网络切片中所述终端的待分配session-AMBR的PDU会话分配session-AMBR。
- 根据权利要求2所述的方法,其中,所述方法,还包括:将所述剩余session-AMBR发送给策略控制功能PCF;其中,所述剩余session-AMBR用于所述PCF制定所述终端的速率分配策略。
- 根据权利要求3所述的方法,其中,所述将所述剩余session-AMBR发送给策略控制功能PCF,包括:响应于待分配session-AMBR的PDU会话建立,向所述待分配session-AMBR的PDU会话所属的所述PCF发送携带有所述剩余session-AMBR的会话管理策略控制创建服务Npcf_SMPolicyControl_Create消息。
- 根据权利要求3所述的方法,其中,所述方法,还包括:接收所述PCF发送的携带有所述待分配session-AMBR的PDU会话的速率分配策略的响应消息;其中,所述速率分配策略基于所述剩余session-AMBR制定。
- 根据权利要求1所述的方法,其中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元PDU会话的聚合最大比特速率session-AMBR,包括:基于所述最大数据速率,在所述网络切片的多个PDU会话间平均分配所述session-AMBR。
- 根据权利要求6所述的方法,其中,所述在所述网络切片的多个PDU会话间平均分配所述session-AMBR,包括:若在所述网络切片中同时建立多个待建立的PDU会话,将所述最大数据速率平均分配给所述待建立的PDU会话;或者,若在所述网络切片中先后建立多个PDU会话,响应于每次建立所述PDU会话,重新将所述最大数据速率平均分配给已建立的PDU会话和待建立的PDU会话。
- 根据权利要求1所述的方法,其中,所述根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元PDU会话的聚合最大比特速率session-AMBR,包括:基于从统一数据管理UDM中获取的所述最大数据速率,给所述网络切片中所述终端的分组数据单元PDU会话分配聚合最大比特速率session-AMBR。
- 根据权利要求1所述的方法,其中,所述最大数据速率为非保障信道质量QoS流比特速率。
- 一种控制数据传输速率的装置,其中,应用于会话管理功能SMF中,所述装置包括确定模块,其中,所述确定模块,被配置为:根据终端使用一个网络切片的最大数据速率,确定终端使用所述网络切片进行数据传输的分组数据单元PDU会话的聚合最大比特速率session-AMBR;其中,所述PDU会话的所述session-AMBR小于或等于所述终端签约的所述PDU会话的session-AMBR。
- 根据权利要求10所述的装置,其中,所述确定模块,还被配置为:基于所述最大数据速率和所述网络切片中已分配给所述终端的所述PDU会话的session-AMBR,确定所述网络切片中所述终端的剩余session-AMBR;基于所述剩余session-AMBR,给所述网络切片中所述终端的待分配session-AMBR的PDU会话分配session-AMBR。
- 根据权利要求11所述的装置,其中,所述装置还包括发送模块,其中,所述发送模块,被配置为将所述剩余session-AMBR发送给策略控制功能PCF;其中,所述剩余session-AMBR用于所述PCF制定所述终端的速率分配策略。
- 一种通信设备,其中,包括:天线;存储器;处理器,分别与所述天线及存储器连接,被配置为通过执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至权利要求9任一项提供的方法。
- 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至权利要求9任一项提供的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/997,349 US20230224769A1 (en) | 2020-04-30 | 2020-04-30 | Method and apparatus for controlling data transmission rate communication device, and storage medium |
PCT/CN2020/088240 WO2021217573A1 (zh) | 2020-04-30 | 2020-04-30 | 控制数据传输速率的方法、装置、通信设备及存储介质 |
CN202080000839.9A CN114270934A (zh) | 2020-04-30 | 2020-04-30 | 控制数据传输速率的方法、装置、通信设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/088240 WO2021217573A1 (zh) | 2020-04-30 | 2020-04-30 | 控制数据传输速率的方法、装置、通信设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021217573A1 true WO2021217573A1 (zh) | 2021-11-04 |
Family
ID=78331672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/088240 WO2021217573A1 (zh) | 2020-04-30 | 2020-04-30 | 控制数据传输速率的方法、装置、通信设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230224769A1 (zh) |
CN (1) | CN114270934A (zh) |
WO (1) | WO2021217573A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118301676A (zh) * | 2023-01-03 | 2024-07-05 | 中国电信股份有限公司 | 带宽资源分配方法、装置、电子设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347736A (zh) * | 2017-01-25 | 2018-07-31 | 维沃移动通信有限公司 | 资源共享的控制方法、执行实体及资源共享配置实体 |
CN108632887A (zh) * | 2017-03-23 | 2018-10-09 | 华为技术有限公司 | 一种控制传输速率的方法和系统 |
US20200120548A1 (en) * | 2017-06-16 | 2020-04-16 | Huawei Technologies Co., Ltd. | Handover method that is based on dc and device |
-
2020
- 2020-04-30 WO PCT/CN2020/088240 patent/WO2021217573A1/zh active Application Filing
- 2020-04-30 CN CN202080000839.9A patent/CN114270934A/zh active Pending
- 2020-04-30 US US17/997,349 patent/US20230224769A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108347736A (zh) * | 2017-01-25 | 2018-07-31 | 维沃移动通信有限公司 | 资源共享的控制方法、执行实体及资源共享配置实体 |
CN108632887A (zh) * | 2017-03-23 | 2018-10-09 | 华为技术有限公司 | 一种控制传输速率的方法和系统 |
US20200120548A1 (en) * | 2017-06-16 | 2020-04-16 | Huawei Technologies Co., Ltd. | Handover method that is based on dc and device |
Non-Patent Citations (2)
Title |
---|
SAMSUNG: "Solution for KI#3 limitation of data rate per network slice", 3GPP DRAFT; S2-2000694, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Incheon, Korea; 20200113 - 20200117, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051842749 * |
ZTE: "Solution for KI#3 data rate per slice per UE", 3GPP DRAFT; S2-2000379, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Seoul, South Korea; 20200113 - 20200117, 7 January 2020 (2020-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051842451 * |
Also Published As
Publication number | Publication date |
---|---|
CN114270934A (zh) | 2022-04-01 |
US20230224769A1 (en) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021243618A1 (zh) | 一种资源调度的方法、装置、通信设备及存储介质 | |
WO2021007823A1 (zh) | 信息指示、确定方法及装置、通信设备及存储介质 | |
WO2020252794A1 (zh) | 能力参数处理方法及装置、通信设备及存储介质 | |
WO2021114244A1 (zh) | 数据处理方法及装置、通信设备及存储介质 | |
WO2021163930A1 (zh) | 信息处理方法、装置、基站、终端及存储介质 | |
WO2021217595A1 (zh) | 数据传输处理方法、装置、通信设备及存储介质 | |
WO2021030979A1 (zh) | 数据处理方法及装置、通信设备及存储介质 | |
WO2022006759A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2021174494A1 (zh) | 增强上行覆盖的处理方法、装置及存储介质 | |
WO2021217573A1 (zh) | 控制数据传输速率的方法、装置、通信设备及存储介质 | |
WO2022198589A1 (zh) | 降低干扰的方法及装置、通信设备和存储介质 | |
WO2022126576A1 (zh) | 无线通信方法及装置、通信设备及存储介质 | |
WO2021232281A1 (zh) | 数据传输方法、装置、通信设备及存储介质 | |
US20220408469A1 (en) | Downlink control information configuration method and apparatus, and communication device and storage medium | |
WO2021007791A1 (zh) | 资源配置的方法及装置、通信设备及存储介质 | |
WO2021109002A1 (zh) | 信息处理方法、装置、基站、用户设备及存储介质 | |
WO2023245448A1 (zh) | 一种信息传输方法、装置、通信设备及存储介质 | |
WO2022040897A1 (zh) | 传输调度方法、装置、通信设备和存储介质 | |
WO2021208046A1 (zh) | 传输处理方法、装置、用户设备、基站及存储介质 | |
WO2024055331A1 (zh) | 信息处理方法以及装置、通信设备及存储介质 | |
WO2023245457A1 (zh) | 一种信息传输方法、装置、通信设备及存储介质 | |
WO2023206529A1 (zh) | 一种系统消息传输方法、装置、通信设备及存储介质 | |
WO2024000518A1 (zh) | 信息处理方法、装置、通信设备及存储介质 | |
WO2024020756A1 (zh) | 无线通信方法、装置、通信设备及存储介质 | |
WO2022236611A1 (zh) | 服务质量指示确定方法、装置、通信设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20933818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20933818 Country of ref document: EP Kind code of ref document: A1 |