WO2021215327A1 - Halogen-containing polyether polyol - Google Patents

Halogen-containing polyether polyol Download PDF

Info

Publication number
WO2021215327A1
WO2021215327A1 PCT/JP2021/015427 JP2021015427W WO2021215327A1 WO 2021215327 A1 WO2021215327 A1 WO 2021215327A1 JP 2021015427 W JP2021015427 W JP 2021015427W WO 2021215327 A1 WO2021215327 A1 WO 2021215327A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halogen
polyether polyol
structural unit
mol
Prior art date
Application number
PCT/JP2021/015427
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木茉由加
大浜俊生
大谷泰歩
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021032276A external-priority patent/JP2021172817A/en
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2021215327A1 publication Critical patent/WO2021215327A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/22Cyclic ethers having at least one atom other than carbon and hydrogen outside the ring
    • C08G65/24Epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds

Definitions

  • the present disclosure relates to a halogen-containing polyether polyol having good reactivity with isocyanate, which is a raw material of polyurethane having excellent mechanical properties.
  • the polyether polyol can be obtained by ring-opening polymerization of alkylene oxide, and is used as a soft segment of polyurethane in a wide range of applications such as paints, adhesives, sealants, and foams for automobile seats.
  • a halogen-containing polyether polyol is known as a raw material for a polyurethane-based adhesive having excellent shear strength and flame retardancy (see, for example, Patent Document 1).
  • the halogen-containing polyether polyol can be synthesized by ring-opening polymerization of the halogen-containing alkylene oxide using an acid catalyst such as a boron trifluoride compound.
  • an acid catalyst such as a boron trifluoride compound.
  • such halogen-containing polyether polyols contain a large amount of by-products such as unsaturated components produced by side reactions during production. Therefore, the obtained polyurethane has many defective portions and the crosslink density is lowered, so that there is a problem that physical properties such as hysteresis loss and compression residual strain rate are lowered.
  • a compound metal cyanide complex is known as a polymerization catalyst for an alkylene oxide that can obtain a polyol having a low degree of unsaturation, and has also been developed for the polymerization of halogen-containing alkylene oxides (see, for example, Non-Patent Document 1).
  • one aspect of the present invention is directed to providing a halogen-containing polyether polyol having excellent reactivity with isocyanate and having good curability, which is a raw material for producing polyurethane having excellent mechanical properties.
  • Each aspect of the present invention is [1] to [7] shown below.
  • [1] It is represented by the following formula (1), the molecular weight is 500 or more and 10,000 or less, the degree of unsaturation is 0.02 meq / g or less, and the ratio of having the structural unit [II] at the terminal is 2 mol% or more and 99.5 mol%.
  • the following halogen-containing polyether polyols The following halogen-containing polyether polyols.
  • Q represents a polymer component containing the following structural unit [I] and the following structural unit [II], m is an integer of 2 to 3, and R 1 is an active hydrogen-containing compound residue. show.
  • A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • Q represents a polymer component containing the following structural unit [III] and the following structural unit [IV].
  • n represents an integer of 2 or more and 100 or less.
  • X is a chlorine atom in the structural unit [I] and A is a hydrogen atom, a methyl group or an ethyl group in the structural unit [II]. .. [4]
  • a polyurethane characterized by containing the halogen-containing polyether polyol residue according to any one of [1] to [4] in the molecular structure.
  • a polyurethane foam having a foaming ratio of 1.2 times or more and 100 times or less, which comprises the halogen-containing polyether polyol residue according to any one of [1] to [4] in the molecular structure.
  • the halogen-containing polyether polyol which is one aspect of the present invention, is a raw material for producing polyurethane having excellent reactivity with isocyanate and excellent mechanical properties with good curability.
  • the halogen-containing polyether polyol according to one aspect of the present invention is represented by the above formula (1), has a molecular weight of 500 or more and 10,000 or less, an degree of unsaturation of 0.02 meq / g or less, and a structural unit at the terminal. It is a halogen-containing polyether polyol having a proportion of [II] of 2 mol% or more and 99.5 mol% or less.
  • Q represents a polymer component containing the above structural unit [I] and the above structural unit [II].
  • X represents a halogen atom
  • A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • the proportion of the structural unit [II] at the terminal is 2 mol% or more and 99.5 mol% or less, and the reactivity with isocyanate is improved. Therefore, 50 mol% or more and 99.5 mol% or less is preferable. , 70 mol% or more and 0.5 mol% or less is more preferable.
  • the halogen atom represented by X in the structural unit [I] is not particularly limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a fluorine atom, a chlorine atom, and a bromine atom are preferable from the viewpoint of ease of handling, and a fluorine atom or a chlorine atom is more preferable.
  • the hydrogen atom represented by A or the hydrocarbon having 1 to 10 carbon atoms is not particularly limited, and is, for example, a hydrogen atom, a methyl group, an ethyl group, a vinyl group, or n-propyl.
  • Q is a polymer component containing the above structural unit [I] and the above structural unit [II], and the arrangement of the structural units may be random or block, but the isocyanate of the halogen-containing polyether polyol is isocyanate. Since the reactivity with the compound tends to be good, the structural unit [III] which is a polymer component of the structural unit [I] and the structural unit [IV] which is a polymer component of the structural unit [II] are included. It is preferably a block.
  • the active hydrogen-containing compound residue represented by R 1 is not particularly limited, and examples thereof include a hydroxy residue, an amine residue, a carboxylic acid residue, and a thiol residue.
  • the active hydrogen-containing compound containing such an active hydrogen-containing compound residue is not particularly limited, but for example, a hydroxy compound, an amine compound, a carboxylic acid compound, a thiol compound, a polyether polyol having a hydroxyl group, a polyester polyol, and the like. Examples thereof include a polycarbonate polyol.
  • hydroxy compound examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol.
  • Examples of the amine compound include ethylenediamine, 1,3-propylenediamine, 1,4-, 1,2-butylenediamine and the like.
  • Examples of the carboxylic acid compound include phthalic acid and adipic acid.
  • Examples of the thiol compound include ethanedithiol and butanedithiol.
  • polyether polyol having a hydroxyl group examples include polypropylene glycol, polyethylene glycol, polybutylene glycol having a molecular weight of 200 to 2000, and a copolymer thereof.
  • active hydrogen-containing compound containing an active hydrogen-containing compound residue since the halogen-containing polyether polyol according to one aspect of the present invention can be efficiently produced, ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol can be efficiently produced.
  • the molecular weight of the halogen-containing polyether polyol according to one aspect of the present invention is 500 or more and 10,000 or less, and the molecular weight is 500 or more because it is excellent in handleability when used as a raw material for polyurethane and the production efficiency of polyurethane. It is preferably 7,000 or less, and more preferably 500 or more and 5,000 or less.
  • the degree of unsaturation of the halogen-containing polyether polyol according to one aspect of the present invention is 0.02 meq / g or less, and physical properties such as hysteresis loss and compression residual strain rate of the obtained polyurethane are improved. Therefore, 0.015 meq / g. It is preferably g or less.
  • the Mw / Mn of the halogen-containing polyether polyol according to one aspect of the present invention is preferably 2.00 or less, more preferably 1.50 or less, because the moldability when made into a polyurethane resin is improved.
  • Polystyrene is used as a standard substance, and the number average molecular weight determined by gel permeation chromatography measurement is Mn, and the weight average molecular weight is Mw).
  • the primaryization rate of the terminal hydroxyl group in the halogen-containing polyether polyol according to one aspect of the present invention is not particularly limited, but the variation in reactivity is small, the reaction is uniform, and the molecular weight distribution and composition of the obtained polyurethane are uniform. It is preferable that it is less than 10%.
  • the halogen-containing polyether polyol according to one aspect of the present invention is not particularly limited and can be produced by a conventionally known production method. For example, it can be obtained by ring-opening polymerization of two or more types of alkylene oxides using an active hydrogen-containing compound as an initiator in the presence of a composition containing an onium salt, a Lewis acid and an active hydrogen-containing compound.
  • Examples of the first alkylene oxide at that time include halogen-containing alkylene oxides, and specific examples thereof include epichlorohydrin, epibromohydrin, and epifluorohydrin. Among these, epichlorohydrin is preferable because it is easily available and the obtained polyalkylene oxide has a high industrial value.
  • Examples of the second alkylene oxide include alkylene oxides having 2 to 12 carbon atoms, and specifically, ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and isobutylene oxide. , Butadiene monooxide, pentene oxide, styrene oxide, cyclohexene oxide and the like. Among these, ethylene oxide, propylene oxide, and 1,2-butylene oxide are preferable because alkylene oxide is easily available and the obtained polyalkylene oxide has high industrial value.
  • the first and second alkylene oxides may be used alone or in combination of two or more.
  • the onium salt is not particularly limited, and examples thereof include phosphazenium salt, ammonium salt, and phosphonium salt.
  • the structure of the phosphazenium salt is not particularly limited, but is represented by, for example, the following formula (2).
  • R 2 and R 3 are independently each of a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, a ring structure in which R 2 and R 3 are bonded to each other, R 2 to each other or R 3 to each other. ring structure but bonded to each other, Z - represents an hydroxy anion, alkoxy anion having 1 to 4 carbon atoms, carboxy anion, alkyl carboxy anion having 2 to 5 carbon atoms, chlorine anion, bromine anion, iodine anion or bicarbonate anions ..
  • the hydrocarbon group having 1 to 20 carbon atoms represented by R 2 and R 3 is not particularly limited, but for example, a methyl group, an ethyl group, a vinyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, and an allyl group.
  • Cyclooctyl group nonyl group, cyclononyl group, decyl group, cyclodecyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group and the like.
  • R 2 and R 3 are bonded to each other to form a ring structure
  • examples of the case where R 2 and R 3 are bonded to each other to form a ring structure include a pyrrolidinyl group, a pyrrolyl group, a piperidinyl group, an indrill group, an isoindrill group and the like.
  • the ring structure R 2 s or R 3 together are bonded to each other, it is not particularly limited, for example, one substituent is an ethylene group, a propylene group, is an alkylene group such as butylene group, together with the other substituent
  • one substituent is an ethylene group, a propylene group, is an alkylene group such as butylene group, together with the other substituent
  • the bonded ring structure can be mentioned.
  • R 2 and R 3 are preferably a methyl group, an ethyl group, or an isopropyl group from the viewpoint that they are alkylene oxide polymerization catalysts having particularly excellent catalytic activity and the raw materials are easily available.
  • Z ⁇ in the above formula (2) is a hydroxy anion, an alkoxy anion having 1 to 4 carbon atoms, a carboxy anion, an alkyl carboxy anion having 2 to 5 carbon atoms, or a hydrogen carbonate anion.
  • the alkoxy anion having 1 to 4 carbon atoms is not particularly limited, and examples thereof include methoxy anion, ethoxy anion, n-propoxy anion, isopropoxy anion, n-butoxy anion, isobutoxy anion, and t-butoxy anion. Can be done.
  • the alkylcarboxy anion having 2 to 5 carbon atoms is not particularly limited, and for example, acetoxy anion, ethyl carboxy anion, n-propyl carboxy anion, isopropyl carboxy anion, n-butyl carboxy anion, iso butyl carboxy anion, and t-butyl carboxy anion.
  • Anions and the like can be mentioned.
  • a hydroxy anion and a hydrogen carbonate anion are particularly preferable because they are halogen-containing alkylene oxide polymerization catalysts having excellent catalytic activity.
  • the phosphazenium salt represented by the above formula (2) is not particularly limited, but specifically, tetrakis (1,1,3,3-tetramethylguanidino) phosphonium hydroxide and tetrakis (1,1). , 3,3-Tetraethylguanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetra (n-propyl) guanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetraisopropylguanidino) phosphonium hydroxyd Do, tetrakis (1,1,3,3-tetra (n-butyl) guanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetraphenylguanidino) phosphonium hydroxide, tetrakis (1,1,3, 3-Tetrabenzylguanidino) phosphonium hydroxide, t
  • tetrakis (1,1,3,3-tetramethylguanidino) phospasenium hydroxide and tetrakis (1,1,3) are used as catalysts for producing halogen-containing polyether polyols having excellent catalytic performance.
  • 3-Tetramethylguanidino) phosphazenium hydrogen carbonate, tetrakis [tris (dimethylamino) phosphoranilideneamino] phosphonium hydroxide are particularly preferred.
  • the structure of the ammonium salt or the phosphonium salt is represented by, for example, the following formula (3).
  • D represents a nitrogen atom or a phosphorus atom
  • R 4, R 5, R 6 and R 7 are each independently an alkyl group which may having 1 to 20 carbon atoms may include a hetero atom, an aryl It represents a group, an alkoxy group, a dialkylamino group, a halogen atom or a hydrogen atom
  • E represents a counterion composed of an inorganic or organic group. Two to four of R 4 to R 7 may be bonded to form a cyclic structure, or a hetero atom may be contained in the cyclic structure.
  • the alkyl group or aryl group having 1 to 20 carbon atoms represented by R 4 , R 5 , R 6 and R 7 is not particularly limited, but for example, methyl group, ethyl group, vinyl group, normal propyl group and isopropyl.
  • cyclopropyl group allyl group, normal butyl group, isobutyl group, t-butyl group, cyclobutyl group, normalpentyl group, neopentyl group, cyclopentyl group, normalhexyl group, cyclohexyl group, phenyl group, heptyl group, cycloheptyl
  • Examples include a group, a benzyl group, a trill group, an octyl group, a cyclooctyl group, a xsilyl group, and the like, and examples of the alkoxy group include a methoxy group, an ethoxy group, a vinyloxy group, a normal propoxy group, an isopropoxy group, a cyclopropoxy group, and an allyloxy group.
  • Normal butoxy group Isobutoxy group, t-butoxy group, Cyclobutoxy group, Normalpentyloxy group, Neopentyloxy group, Cyclopentyloxy group, Normalhexyloxy group, Cyclohexyloxy group, Phenoxy group, Propyloxy group, Cycloheptyloxy group
  • Examples include a group, an octyloxy group, a benzyloxy group, a triloxy group, a cyclooctyloxy group, and a xsilyloxy group
  • examples of the dialkylamino group include a dimethylamino group, a diethylamino group, a pyrrolidino group, a piperidino group, a dinormal propylamino group, and a diisopropyl. Examples thereof include an amino group and a dicyclopropylamino group.
  • R 4 , R 5 , R 6 and R 7 can independently contain an alkyl group or an aryl group having 1 to 10 carbon atoms which may contain a hetero atom. It is preferably a methyl group, an ethyl group, a normal butyl group or a normal octyl group or a phenyl group.
  • Examples of the structure of the ammonium salt in which two or three of R 4 to R 7 are bonded to form a cyclic structure include a pyridinium salt and an imidazolium salt, which serve as a catalyst for producing a halogen-containing polyether polyol having excellent catalytic activity. Therefore, it is preferably an imidazolium salt.
  • E in the above formula (3) is an inorganic or organic group.
  • a halogen atom, a hydroxyl group, an alkoxyl group, an amino group, a carboxyl group, a sulfonic acid group, a boron hydride group, and a hexafluorophosphate group are exemplified and used for catalytic activity. Since it is an excellent catalyst for producing a halogen-containing polyether polyol, it is preferably any of a bromine atom, a chlorine atom, an iodine atom and a hexafluorophosphate group.
  • ammonium salt or phosphonium salt represented by the above formula (3) is not particularly limited, but specifically, tetramethylammonium bromide, tetraethylammonium bromide, tetranormal propylammonium bromide, tetranormal butylammonium bromide, tetranormalal.
  • Pentylammonium bromide tetranormal hexyl ammonium bromide, tetranormal heptyl ammonium bromide, tetranormal octyl ammonium bromide, tetramethyl ammonium chloride, tetraethyl ammonium chloride, tetranormal propyl ammonium chloride, tetranormal butyl ammonium chloride, tetranormal pentyl ammonium chloride, tetra.
  • tetranormal octyl ammonium chloride tetranormal octyl ammonium bromide
  • tetranormal butyl phosphonium bromide are preferably used because they serve as catalysts for producing halogen-containing polyether polyols having excellent catalytic activity.
  • examples of Lewis acid include aluminum compounds, zinc compounds, and boron compounds.
  • Examples of the aluminum compound include trimethylaluminum, triethylaluminum, triisobutylaluminum, trinormalhexylaluminum, triethoxyaluminum, triisopropoxyaluminum, triisobutoxyaluminum, triphenylaluminum, diphenylmonoisobutylaluminum, monophenyldiisobutylaluminum and the like.
  • Organic aluminum; aluminoxane such as methylaluminoxane, isobutylaluminoxan, methyl-isobutylaluminoxan; inorganic aluminum such as aluminum chloride, aluminum hydroxide, aluminum oxide can be mentioned.
  • Examples of the zinc compound include organic zinc such as dimethyl zinc, diethyl zinc and diphenyl zinc; and inorganic zinc such as zinc chloride and zinc oxide.
  • Examples of the boron compound include triethylborane, trimethoxyborane, triethoxyborane, triisopropoxyborane, triphenylborane, tris (pentafluorophenyl) borane, trifluoroborane and the like.
  • organoaluminum, aluminoxane, and organozinc are preferable, and organoaluminum is particularly preferable because it is a catalyst for producing a halogen-containing polyether polyol having excellent catalytic performance.
  • an onium salt is added to 1 mol of active hydrogen in the active hydrogen-containing compound. Is preferably 0.001 to 0.1 mol, particularly preferably 0.001 to 0.05 mol.
  • the amount of Lewis acid is 0.002 to 0.2 mol with respect to 1 mol of active hydrogen in the active hydrogen-containing compound. It is preferably 0.002 to 0.1 mol, and particularly preferably 0.002 to 0.1 mol.
  • the polymerization pressure is preferably in the range of normal pressure to 1.0 MPa, preferably in the range of normal pressure to 0.5 MPa.
  • the polymerization temperature is in the range of 0 to 180 ° C, more preferably in the range of 50 to 130 ° C.
  • the polymerization reaction can be carried out in a solvent-free manner or in a solvent.
  • a solvent examples include benzene, toluene, xylene, cyclohexane, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, 1,4-dioxane, 1,2-dimethoxyethane and the like. ..
  • the structure of the polyurethane according to one aspect of the present invention is not particularly limited as long as the halogen-containing polyether polyol residue according to one aspect of the present invention is contained in the molecular structure, and may be a crosslinked product or a linear structure. However, it may be branched.
  • the method for producing polyurethane according to one aspect of the present invention is not particularly limited, and examples thereof include reacting a halogen-containing polyether polyol according to one aspect of the present invention with a polyisocyanate compound.
  • the polyisocyanate compound is not particularly limited, and examples thereof include aromatic isocyanate compounds, aliphatic isocyanate compounds, alicyclic isocyanate compounds, and polyisocyanate derivatives thereof.
  • aromatic isocyanate compound examples include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate, or a mixture thereof) (TDI) and phenylenedi isocyanate (m- or p).
  • Examples of the aliphatic isocyanate compound include trimethylene diisocyanate, 1,2-propylene diisocyanate, and butylene diisocyanate (tetramethylene diisosianate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, and 1,3-butylene).
  • Diisocyanis Diisocyanis
  • hexamethylene diisocyanate pentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanis methyl capate, lysine diisocyanis, lysine ester triisocyanis, Examples thereof include 1,6,11-undecanetriisocyanis, 1,3,6-hexamethylene triisocyanate, trimethylhexamethylene diisocyanate, and decamethylene diisocyanate.
  • Examples of the monocyclic alicyclic isocyanate compound include 1,3-cyclopentanediisocyanate, 1,3-cyclopentenediisocyanate, cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexanediisocyanate), and the like.
  • crosslinked cyclic alicyclic isocyanate compound examples include norbornene diisocyanate, norbornane diisocyanate methyl, bicycloheptane triisocyanate, siisocyanatomethylbicycloheptane, and di (diisocyanatomethyl) tricyclodecane.
  • derivatives of these polyisocyanates include multimers of the above-mentioned isocyanate compounds (dimeric, trimeric, pentameric, hepta, uretidinedione, ureitoneimine, isocyanurate-modified, polycarbodiimide, etc.).
  • Urethane modified product for example, urethane modified product obtained by modifying or reacting a part of isocyanate groups in the above isocyanate compound or multimer with monool or polyol
  • Biuret modified product for example, reaction between the above isocyanate compound and water.
  • a biuret modified product produced by the above an allophanate modified product (for example, an allophanate modified product produced by the reaction of the above isocyanate compound with a monool or polyol component), a urea modified product (for example, a reaction between the above isocyanate compound and a diamine).
  • an allophanate modified product for example, an allophanate modified product produced by the reaction of the above isocyanate compound with a monool or polyol component
  • a urea modified product for example, a reaction between the above isocyanate compound and a diamine.
  • the above isocyanate compound or its derivative may be used alone or in combination of two or more.
  • the composition may be heated up to 200 ° C., or dioctyltin dilaurate or dibutyltin dilaurate.
  • Triethylamine triethylenediamine, stanas octoate, dibutyltin di-2-ethylhexanoate, sodium o-phenylphenate, potassium oleate, tetra (2-ethylhexyl) titanate, stannic chloride, second chloride
  • a catalyst such as iron or antimony trichloride
  • the polyurethane according to one aspect of the present invention can be used for urethane foam applications such as hard foam or soft foam. It can also be used for coatings / coatings, adhesives / adhesives, sealants, thermoplastic or thermosetting elastomers, leather, spandex, various inks and the like. .. ⁇ Polyurethane foam> Polyurethane-based foams are roughly classified into soft-based and hard-based foams. However, when a polyurethane foam is to be obtained by using the halogen-containing polyether polyol according to one aspect of the present invention, both soft and hard foams have been conventionally used. A known production method can be applied.
  • a room temperature liquid mixture in which the halogen-containing polyether polyol according to one aspect of the present invention is mixed with other known polyols, catalysts, foam stabilizers, cross-linking agents, foaming agents, communicating agents and the like, if necessary.
  • examples thereof include a method in which the liquid is stirred and mixed, then mixed with the polyisocyanate compound by stirring, injected into an appropriate mold, and foamed and cured.
  • halogen-containing polyether polyol is mixed with other known polyols, catalysts, foam stabilizers, foaming agents and polyisocyanate compounds by a known stirring and mixing machine to obtain an effervescent mixture.
  • a known stirring and mixing machine examples thereof include a method of preparing the mixture, injecting it into a mold having an open top surface, freely foaming it, and curing and molding it as a slab.
  • the foaming ratio of the polyurethane foam according to one aspect of the present invention is not particularly limited, but is preferably 1.2 times or more and 100 times or less, and 10 times or more and 80 times or less in order to improve handleability. It is particularly preferable to have.
  • the polyurethane foam according to one aspect of the present invention is not particularly limited in its intended use, and is for automobiles and vehicles because of the characteristics of the polyurethane foam composed of the reaction product of the composition according to one aspect of the present invention. It can be used for applications to which soft polyurethane foam is applied, such as ceiling materials, seats, pillows, furniture / interior, bedding, shoe soles, sponges, various cushions, tennis balls, and landing mats. Further, the polyurethane foam according to one aspect of the present invention can be used in applications to which a hard polyurethane foam such as a heat insulating / cold insulating material, a vibration isolating / sound absorbing material, a cushioning material, and a buoyancy material is applied.
  • a hard polyurethane foam such as a heat insulating / cold insulating material, a vibration isolating / sound absorbing material, a cushioning material, and a buoyancy material is applied.
  • civil engineering as materials and anti-vibration materials, as well as chair core materials, door panels, decorative crafts, entertainment equipment (cooler boxes / water cylinders), teaching materials (three-dimensional maps, etc.), mold materials / jigs, surfing cores Materials, RIM method products (ski core materials, racket core materials, housings), packing materials, etc. can be mentioned.
  • halogen-containing polyether polyol (Analytical method of halogen-containing polyether polyol) (1) Molecular weight of halogen-containing polyether polyol (unit: g / mol) The hydroxyl value d (unit: mgKOH / g) of the halogen-containing polyether polyol was measured by the method described in JIS K-1557. The number of functional groups of the obtained halogen-containing polyether polyol was defined as e, and the molecular weight of the halogen-containing polyether polyol was calculated by the following formula.
  • r is the integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from the structural unit [I] derived at about 5.3-5.4 ppm is bonded
  • s is the methylene group to which the primary hydroxyl group is bonded near 4.3 ppm. Represents the integral value of the signal derived from the group.
  • t is the integrated value of the signal derived from the methyl group bonded to the carbon to which the secondary hydroxyl group is bonded in the vicinity of 1.3-1.4 ppm
  • r is the structural unit [I] in the vicinity of 5.2-5.4 ppm and the structural unit [I].
  • the integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from [II] is bonded, and s represents the integrated value of the signal derived from the methylene group to which the primary hydroxyl group is bonded near 4.3 ppm.
  • r is the integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from the structural unit [I] derived from the structural unit [I] is bonded at about 5.3-5.4 ppm
  • v is the structural unit around 5.1-5.2 ppm
  • [ II] represents the integrated value of the signal derived from the methine group to which the secondary hydroxyl group is bonded
  • s represents the integrated value of the signal derived from the methylene group to which the primary hydroxyl group is bonded at around 4.3 ppm.
  • Example 1 Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 214.3 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.32 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • a contained polyether polyol [A-1] was obtained.
  • the obtained halogen-containing polyether polyol [A-1] had a molecular weight of 2500 g / mol, an unsaturated degree of 0.002 meq / g, Mw / Mn of 1.36, and a terminal [II] ratio of 90 mol%.
  • Example 2 Polypropylene glycol (PPG) with a molecular weight of 600 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP600; hydroxyl value 187 mgKOH / g ] 242.7 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.26 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • a halogen-containing polyether polyol [A-2] was obtained.
  • the obtained halogen-containing polyether polyol [A-2] had a molecular weight of 3020 g / mol, an unsaturated degree of 0.008 meq / g, Mw / Mn of 1.40, and a terminal [II] ratio of 89 mol%.
  • Example 3 Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 226.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.56 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • halogen-containing polyether polyol [A-3] had a molecular weight of 2040 g / mol, an unsaturated degree of 0.004 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 54 mol%.
  • Example 4 Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 226.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.56 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • halogen-containing polyether polyol [A-4] had a molecular weight of 2020 g / mol, an unsaturated degree of 0.003 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 35 mol%.
  • Example 5 Polypropylene glycol (PPG) with a molecular weight of 1000 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP1000; hydroxyl value 112 mgKOH / g ] 291.5 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 2.38 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • halogen-containing polyether polyol [A-5] had a molecular weight of 4700 g / mol, an unsaturated degree of 0.004 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 83 mol%.
  • Example 6 Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 180.2 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.63 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • halogen-containing polyether polyol [A-6] was obtained.
  • the obtained halogen-containing polyether polyol [A-6] had a molecular weight of 3010 g / mol, an unsaturated degree of 0.008 meq / g, Mw / Mn of 1.48, and a terminal [II] ratio of 82 mol%.
  • Example 7 Polypropylene glycol (PPG) with a molecular weight of 1000 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP1000; hydroxyl value 112 mgKOH / g ] 136.0 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 1.00 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours.
  • PPG Polypropylene glycol
  • a halogen-containing polyether polyol [A-7] was obtained.
  • the obtained halogen-containing polyether polyol [A-7] had a molecular weight of 9300 g / mol, an unsaturated degree of 0.016 meq / g, Mw / Mn of 1.62, and a terminal [II] ratio of 85 mol%.
  • Polyester polyol (PES) for hard foam with a molecular weight of 600 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Kawasaki Kasei Co., Ltd., (trade name) Maximol RLK-087; hydroxyl group Value 203 mgKOH / g] 335.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 9.78 g were added.
  • the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 9.30 g of triisopropoxyaluminum (PADM manufactured by Kawaken Fine Chemical Co., Ltd.) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was carried out for 2 hours to obtain the composition [A-8].
  • the obtained composition [A-8] was heated to 95 ° C., and 360 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C.
  • Comparative example 1 Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2-liter four-flask equipped with a stirring blade [manufactured by Sanyo Kasei Kogyo Co., Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / G] 181.54 g and Tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 3.66 g were added.
  • PPG Polypropylene glycol
  • the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 34.0 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., TiBAL) was added, the internal temperature was set to 100 ° C., and a vacuum treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [B-1] was obtained.
  • the temperature of the obtained composition [B-1] was raised to 95 ° C., and 1000 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was performed at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa to remove pale yellow halogen-containing poly. An ether polyol [B-1] was obtained.
  • the obtained halogen-containing polyether polyol [B-1] had a molecular weight of 3010 g / mol, an unsaturated degree of 0.005 meq / g, Mw / Mn of 1.46, and a terminal [II] ratio of 1 mol%.
  • the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours to obtain a composition [B-2].
  • the temperature of the obtained composition [B-2] was raised to 95 ° C., and 840 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours.
  • ECH epichlorohydrin
  • aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa.
  • ethylene oxide EO
  • EO ethylene oxide
  • a contained polyether polyol [B-2] was obtained.
  • the obtained halogen-containing polyether polyol [B-2] had a molecular weight of 2200 g / mol, an unsaturated degree of 0.08 meq / g, Mw / Mn of 2.46, and a terminal [II] ratio of 53 mol%.
  • ⁇ Catalyst> In both Examples and Comparative Examples, a solution (TEDA-L33 manufactured by Tosoh Corporation) in which triethylenediamine was dissolved in dipropylene glycol at a concentration of 33% by weight as a catalyst and tin octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., Nikkaoku) were used. Chix tin) was used.
  • ⁇ Isocyanate compound> In each of the Examples and Comparative Examples, tolylene diisocyanate (Coronate T-80 manufactured by Tosoh Corporation) having a mixing ratio of 2,4 / 2,6 isomers of 80/20 was used.
  • the halogen-containing polyether polyol and water are mixed at the blending ratios shown in Table 3, and a catalyst and a foam stabilizer are further mixed with the mixture, and the mixture is mixed with a small high-speed stirrer (PRIMIX manufactured by PRIMIX Corporation).
  • the mixture was stirred and mixed at 2000 rpm for 20 minutes to obtain a stirred mixture (hereinafter referred to as premix) excluding the isocyanate compound.
  • ⁇ Making polyurethane foam Isocyanate group reactive groups (NCO reactivity) capable of reacting the premixes 1 to 9 prepared as described above with the NCO group including the total amount of isocyanate groups (NCO group) and the hydroxyl group (OH group) contained in water.
  • Compression residual strain rate The produced polyurethane foam was placed in a constant temperature room at 23 ° C and 50Rh% for 24 hours.
  • the compression residual strain rate was measured by the A method based on JIS K-6400.
  • a polyurethane foam was prepared using Premix 1 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 36 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 10 A polyurethane foam was prepared using Premix 2 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 35 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 11 A polyurethane foam was prepared using Premix 3 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 32 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 12 A polyurethane foam was prepared using Premix 4 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 33 times, and had good curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 13 A polyurethane foam was prepared using Premix 5 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 34 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 14 A polyurethane foam was prepared using Premix 6 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 35 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 15 A polyurethane foam was prepared using Premix 7 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 30 times, was excellent in curability, and had good tensile strength, compressive hardness, and compressive residual strain rate.
  • Example 16 A polyurethane foam was prepared using Premix 8 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 31 times, was excellent in curability, and had good tensile strength, compressive hardness, and compressive residual strain rate.
  • a polyurethane foam was prepared using Premix 8 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 28 times and was inferior in curability, tensile strength, compressive hardness, and compressive residual strain rate.
  • a polyurethane foam was prepared using Premix 9 according to the above-mentioned method for producing a polyurethane foam, and evaluated.
  • the polyurethane foam had a foaming ratio of 33 times and had good curability, but was inferior in tensile strength, compressive hardness, and compressive residual strain rate.

Abstract

The present disclosure addresses the problem of providing a chlorine-containing polyether polyol which is highly reactive with an isocyanate and serves as a starting material for a polyurethane that exhibits excellent mechanical properties. A halogen-containing polyether polyol which is represented by formula (1) and has a molecular weight of from 500 to 10,000 and a degree of unsaturation of 0.02 meq/g or less, wherein the ratio of having structural unit (II) at an end is from 2 mol% to 99.5 mol%. (In formula (1), Q represents a polymer component that contains structural unit (I) and structural unit (II); m represents an integer from 2 to 3; and R1 represents an active hydrogen-containing compound residue.) (In formula (I), X represents a halogen atom.) (In structural unit (II), A represents a hydrogen atom or a hydrocarbon group having from 1 to 10 carbon atoms.)

Description

ハロゲン含有ポリエーテルポリオールHalogen-containing polyether polyol
 本開示は、機械物性に優れるポリウレタンの原料となる、イソシアネートとの反応性が良好なハロゲン含有ポリエーテルポリオールに関する。 The present disclosure relates to a halogen-containing polyether polyol having good reactivity with isocyanate, which is a raw material of polyurethane having excellent mechanical properties.
 ポリエーテルポリオールは、アルキレンオキシドを開環重合することで得ることができ、ポリウレタンのソフトセグメントとして、塗料や接着剤、シーリング剤、自動車シート用フォーム等幅広い用途で用いられている。 The polyether polyol can be obtained by ring-opening polymerization of alkylene oxide, and is used as a soft segment of polyurethane in a wide range of applications such as paints, adhesives, sealants, and foams for automobile seats.
 さらに、せん断強度、難燃性に優れるポリウレタン系接着剤の原料としてハロゲン含有ポリエーテルポリオールが知られている(例えば、特許文献1参照)。ハロゲン含有ポリエーテルポリオールは三フッ化ホウ素化合物のような、酸触媒を用い、ハロゲン含有アルキレンオキシドを開環重合することにより合成できる。しかし、このようなハロゲン含有ポリエーテルポリオールには、製造する際の副反応により生成する不飽和成分等の副生成物が多く含まれていた。そのため、得られるポリウレタンには欠陥部分が多く架橋密度が低下するため、ヒステリシスロス、圧縮残留歪率等の物性が低下するといった問題点があった。 Further, a halogen-containing polyether polyol is known as a raw material for a polyurethane-based adhesive having excellent shear strength and flame retardancy (see, for example, Patent Document 1). The halogen-containing polyether polyol can be synthesized by ring-opening polymerization of the halogen-containing alkylene oxide using an acid catalyst such as a boron trifluoride compound. However, such halogen-containing polyether polyols contain a large amount of by-products such as unsaturated components produced by side reactions during production. Therefore, the obtained polyurethane has many defective portions and the crosslink density is lowered, so that there is a problem that physical properties such as hysteresis loss and compression residual strain rate are lowered.
 不飽和度の低いポリオールが得られるアルキレンオキシドの重合触媒として、複金属シアン化物錯体が知られており、ハロゲン含有アルキレンオキシドの重合へも展開されている(例えば、非特許文献1参照)。 A compound metal cyanide complex is known as a polymerization catalyst for an alkylene oxide that can obtain a polyol having a low degree of unsaturation, and has also been developed for the polymerization of halogen-containing alkylene oxides (see, for example, Non-Patent Document 1).
日本国特開平2-202573号公報Japanese Patent Application Laid-Open No. 2-202573
 しかしながら、このような塩素化ポリエーテルポリオールは、末端水酸基とイソシアネートとの反応性が低いため、ポリウレタンを製造する際の硬化性に課題があった。そこで、本発明の一態様は、機械物性に優れたポリウレタンを製造する原料となる、イソシアネートとの反応性に優れ、硬化性良好なハロゲン含有ポリエーテルポリオールを提供することに向けられている。 However, since such a chlorinated polyether polyol has low reactivity between the terminal hydroxyl group and isocyanate, there is a problem in curability when producing polyurethane. Therefore, one aspect of the present invention is directed to providing a halogen-containing polyether polyol having excellent reactivity with isocyanate and having good curability, which is a raw material for producing polyurethane having excellent mechanical properties.
 本発明の各態様は以下に示す[1]~[7]である。
[1]
 下記式(1)で示され、分子量が500以上10,000以下で、不飽和度が0.02meq/g以下でかつ、末端に構造単位[II]を持つ割合が2mol%以上99.5mol%以下であるハロゲン含有ポリエーテルポリオール。
Each aspect of the present invention is [1] to [7] shown below.
[1]
It is represented by the following formula (1), the molecular weight is 500 or more and 10,000 or less, the degree of unsaturation is 0.02 meq / g or less, and the ratio of having the structural unit [II] at the terminal is 2 mol% or more and 99.5 mol%. The following halogen-containing polyether polyols.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(上記式(1)中、Qは下記構造単位[I]と下記構造単位[II]とを含む重合体成分を表し、mは2~3の整数、Rは活性水素含有化合物残基を表す。) (In the above formula (1), Q represents a polymer component containing the following structural unit [I] and the following structural unit [II], m is an integer of 2 to 3, and R 1 is an active hydrogen-containing compound residue. show.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式[I]中、Xはハロゲン原子を表す。) (In formula [I], X represents a halogen atom.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(上記構造単位[II]中、Aは水素原子又は炭素数が1~10の炭化水素基を表す。)
[2]
 Qが下記構造単位[III]と下記構造単位[IV]とを含む重合体成分を表すことを特徴とする、上記式(1)で示される[1]に記載のハロゲン含有ポリエーテルポリオール。
(In the structural unit [II], A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
[2]
The halogen-containing polyether polyol according to [1] represented by the above formula (1), wherein Q represents a polymer component containing the following structural unit [III] and the following structural unit [IV].
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(上記構造単位[III]中、lは2以上100以下の整数を表す) (In the above structural unit [III], l represents an integer of 2 or more and 100 or less)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(上記構造単位[IV]中、nは2以上100以下の整数を表す。)
[3]
 上記構造単位[I]中、Xが塩素原子であり、上記構造単位[II]中、Aが水素原子、メチル基又はエチル基である[1]又は[2]に記載のハロゲン含有ポリエーテルポリオール。
[4]
 末端に構造単位[II]を持つ割合が50mol%以上99.5mol%以下の[1]乃至[3]のいずれかに記載のハロゲン含有ポリエーテルポリオール。
[5]
 オニウム塩、ルイス酸及び活性水素含有化合物を含む組成物の存在下、アルキレンオキシドの開環重合を行うハロゲン含有ポリエーテルポリオールの製造方法であって、前記活性水素含有化合物中の活性水素1モルに対する、前記オニウム塩の使用量が0.001~0.1モルの範囲であり、前記ルイス酸の使用量が0.002~0.2モルの範囲であることを特徴とする[1]乃至[4]のいずれかに記載のハロゲン含有ポリエーテルポリオールの製造方法。
[6]
 [1]乃至[4]のいずれかに記載のハロゲン含有ポリエーテルポリオール残基を分子構造中に含有することを特徴とするポリウレタン。
[7]
 [1]乃至[4]のいずれかに記載のハロゲン含有ポリエーテルポリオール残基を分子構造中に含有することを特徴とする、発泡倍率1.2倍以上100倍以下のポリウレタンフォーム。
(In the structural unit [IV], n represents an integer of 2 or more and 100 or less.)
[3]
The halogen-containing polyether polyol according to [1] or [2], wherein X is a chlorine atom in the structural unit [I] and A is a hydrogen atom, a methyl group or an ethyl group in the structural unit [II]. ..
[4]
The halogen-containing polyether polyol according to any one of [1] to [3], wherein the proportion having the structural unit [II] at the terminal is 50 mol% or more and 99.5 mol% or less.
[5]
A method for producing a halogen-containing polyether polyol in which ring-opening polymerization of an alkylene oxide is carried out in the presence of a composition containing an onium salt, a Lewis acid and an active hydrogen-containing compound, wherein the active hydrogen in the active hydrogen-containing compound is 1 mol. [1] to [1] to [1], wherein the amount of the onium salt used is in the range of 0.001 to 0.1 mol, and the amount of the Lewis acid used is in the range of 0.002 to 0.2 mol. 4] The method for producing a halogen-containing polyether polyol according to any one of.
[6]
A polyurethane characterized by containing the halogen-containing polyether polyol residue according to any one of [1] to [4] in the molecular structure.
[7]
A polyurethane foam having a foaming ratio of 1.2 times or more and 100 times or less, which comprises the halogen-containing polyether polyol residue according to any one of [1] to [4] in the molecular structure.
 本発明の一態様であるハロゲン含有ポリエーテルポリオールは、イソシアネートとの反応性に優れ、硬化性良好な機械物性に優れたポリウレタンを製造する原料となる。 The halogen-containing polyether polyol, which is one aspect of the present invention, is a raw material for producing polyurethane having excellent reactivity with isocyanate and excellent mechanical properties with good curability.
 <ハロゲン含有ポリエーテルポリオール>
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールは、上記式(1)で示され、分子量が500以上10,000以下で、不飽和度が0.02meq/g以下でかつ、末端に構造単位[II]を持つ割合が2mol%以上99.5mol%以下のハロゲン含有ポリエーテルポリオールである。
<Halogen-containing polyether polyol>
The halogen-containing polyether polyol according to one aspect of the present invention is represented by the above formula (1), has a molecular weight of 500 or more and 10,000 or less, an degree of unsaturation of 0.02 meq / g or less, and a structural unit at the terminal. It is a halogen-containing polyether polyol having a proportion of [II] of 2 mol% or more and 99.5 mol% or less.
 上記式(1)中、Qは上記構造単位[I]と上記構造単位[II]とを含む重合体成分を表す。上記構造単位[I]中、Xはハロゲン原子を表し、上記構造単位[II]中、Aは水素原子又は炭素数が1~10の炭化水素基を表す。 In the above formula (1), Q represents a polymer component containing the above structural unit [I] and the above structural unit [II]. In the structural unit [I], X represents a halogen atom, and in the structural unit [II], A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
 上記式(1)中、末端に上記構造単位[II]を持つ割合が2mol%以上99.5mol%以下であり、イソシアネートとの反応性が向上するため、50mol%以上99.5mol%以下が好ましく、70mol%以上0.5mol%以下がより好ましい。 In the above formula (1), the proportion of the structural unit [II] at the terminal is 2 mol% or more and 99.5 mol% or less, and the reactivity with isocyanate is improved. Therefore, 50 mol% or more and 99.5 mol% or less is preferable. , 70 mol% or more and 0.5 mol% or less is more preferable.
 上記構造単位[I]中、Xで表されるハロゲン原子は、特に限定しないが、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらのうち、取扱いの容易さよりフッ素原子、塩素原子、臭素原子が好ましく、フッ素原子又は塩素原子であることがより好ましい。 The halogen atom represented by X in the structural unit [I] is not particularly limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Of these, a fluorine atom, a chlorine atom, and a bromine atom are preferable from the viewpoint of ease of handling, and a fluorine atom or a chlorine atom is more preferable.
 上記構造単位[II]中、Aで表される水素原子又は炭素数が1から10の炭化水素としては、特に限定しないが、例えば、水素原子、メチル基、エチル基、ビニル基、n-プロピル基、イソプロピル基、シクロプロピル基、アリル基、n-ブチル基、イソブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、へプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基が挙げられる。これらのうち、前駆物質の入手しやすさと重合の進行しやすさより、水素原子、メチル基、エチル基、が好ましい。 In the structural unit [II], the hydrogen atom represented by A or the hydrocarbon having 1 to 10 carbon atoms is not particularly limited, and is, for example, a hydrogen atom, a methyl group, an ethyl group, a vinyl group, or n-propyl. Group, isopropyl group, cyclopropyl group, allyl group, n-butyl group, isobutyl group, t-butyl group, cyclobutyl group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, phenyl group, Examples thereof include a heptyl group, a cycloheptyl group, an octyl group, a cyclooctyl group, a nonyl group, a cyclononyl group and a decyl group. Of these, a hydrogen atom, a methyl group, and an ethyl group are preferable from the viewpoint of easy availability of a precursor and easy progress of polymerization.
 上記式(1)中、Qが上記構造単位[I]と上記構造単位[II]とを含む重合体成分であり、構造単位の配列はランダムでもブロックでも良いが、ハロゲン含有ポリエーテルポリオールのイソシアネート化合物との反応性が良好となりやすいため、上記構造単位[I]の重合体成分である上記構造単位[III]と上記構造単位[II]の重合体成分である上記構造単位[IV]を含むブロックであることが好ましい。 In the above formula (1), Q is a polymer component containing the above structural unit [I] and the above structural unit [II], and the arrangement of the structural units may be random or block, but the isocyanate of the halogen-containing polyether polyol is isocyanate. Since the reactivity with the compound tends to be good, the structural unit [III] which is a polymer component of the structural unit [I] and the structural unit [IV] which is a polymer component of the structural unit [II] are included. It is preferably a block.
 上記式(1)中、Rで表される活性水素含有化合物残基としては、特に限定しないが、例えばヒドロキシ残基、アミン残基、カルボン酸残基、チオール残基等が挙げられる。 In the above formula (1), the active hydrogen-containing compound residue represented by R 1 is not particularly limited, and examples thereof include a hydroxy residue, an amine residue, a carboxylic acid residue, and a thiol residue.
 また、このような活性水素含有化合物残基を含む活性水素含有化合物としては、特に限定しないが、例えば、ヒドロキシ化合物、アミン化合物、カルボン酸化合物、チオール化合物、水酸基を有するポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール等を挙げることができる。 The active hydrogen-containing compound containing such an active hydrogen-containing compound residue is not particularly limited, but for example, a hydroxy compound, an amine compound, a carboxylic acid compound, a thiol compound, a polyether polyol having a hydroxyl group, a polyester polyol, and the like. Examples thereof include a polycarbonate polyol.
 ヒドロキシ化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、2,5-ヘキサンジオール、1,3-シクロヘキサンジオール、2-メチルペンタン-2,4-ジオール、2,5-ジメチル-2,5-ヘキサンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール等を挙げることができる。 Examples of the hydroxy compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol. , 1,6-hexanediol, 1,9-nonanediol, 2,5-hexanediol, 1,3-cyclohexanediol, 2-methylpentane-2,4-diol, 2,5-dimethyl-2,5- Examples thereof include hexanediol, glycerin, trimethylolpropane, hexanetriol and the like.
 アミン化合物としては、例えば、エチレンジアミン、1,3-プロピレンジアミン、1,4-又は、1,2-ブチレンジアミン等を挙げることができる。 Examples of the amine compound include ethylenediamine, 1,3-propylenediamine, 1,4-, 1,2-butylenediamine and the like.
 カルボン酸化合物としては、例えば、フタル酸、アジピン酸等を挙げることができる。 Examples of the carboxylic acid compound include phthalic acid and adipic acid.
 チオール化合物としては、例えばエタンジチオール、ブタンジチオール等を挙げることができる。 Examples of the thiol compound include ethanedithiol and butanedithiol.
 水酸基を有するポリエーテルポリオールとしては、例えば、分子量200~2000のポリプロピレングリコール、ポリエチレングリコール、ポリブチレングリコール及びその共重合体等を挙げることができる。 活性水素含有化合物残基を含む活性水素含有化合物としては、本発明一態様にかかるハロゲン含有ポリエーテルポリオールを効率よく製造することが可能となることから、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,9-ノナンジオール、2,5-ヘキサンジオール、2-メチルペンタン-2,4-ジオール、エチレンジアミン、分子量200~2000のポリプロピレングリコール、分子量が350~2500のポリエステルポリオール、分子量が350~1000のポリカーボネートポリオール、が好ましく、トリプロピレングリコール、2,5-ヘキサンジオール、1,9-ノナンジオール、分子量が200~1000のポリプロピレングリコール、分子量が350~2500のポリエステルポリオールがより好ましい。 Examples of the polyether polyol having a hydroxyl group include polypropylene glycol, polyethylene glycol, polybutylene glycol having a molecular weight of 200 to 2000, and a copolymer thereof. As the active hydrogen-containing compound containing an active hydrogen-containing compound residue, since the halogen-containing polyether polyol according to one aspect of the present invention can be efficiently produced, ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol can be efficiently produced. , Tripropylene glycol, 1,9-nonanediol, 2,5-hexanediol, 2-methylpentane-2,4-diol, ethylenediamine, polypropylene glycol with a molecular weight of 200 to 2000, polyester polyol with a molecular weight of 350 to 2500, molecular weight Is preferably 350 to 1000, and more preferably tripropylene glycol, 2,5-hexanediol, 1,9-nonanediol, polypropylene glycol having a molecular weight of 200 to 1000, and polyester polyol having a molecular weight of 350 to 2500.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの分子量は500以上10,000以下であり、ポリウレタン用原材料として用いる際の取扱い性、ポリウレタンの生産効率に優れたものとなることから、分子量500以上7,000以下であることが好ましく、500以上5,000以下であることがより好ましい。 The molecular weight of the halogen-containing polyether polyol according to one aspect of the present invention is 500 or more and 10,000 or less, and the molecular weight is 500 or more because it is excellent in handleability when used as a raw material for polyurethane and the production efficiency of polyurethane. It is preferably 7,000 or less, and more preferably 500 or more and 5,000 or less.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの不飽和度は、0.02meq/g以下であり、得られるポリウレタンのヒステリシスロス、圧縮残留歪率等の物性が向上するため、0.015meq/g以下が好ましい。 The degree of unsaturation of the halogen-containing polyether polyol according to one aspect of the present invention is 0.02 meq / g or less, and physical properties such as hysteresis loss and compression residual strain rate of the obtained polyurethane are improved. Therefore, 0.015 meq / g. It is preferably g or less.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールのMw/Mnは、ポリウレタン樹脂とする際の成形性が向上するため、2.00以下が好ましく、1.50以下であることがより好ましい(ただし、ポリスチレンを標準物質としてゲルパーミテーションクロマトグラフィー測定から求めた数平均分子量をMn、重量平均分子量をMwとする)。 The Mw / Mn of the halogen-containing polyether polyol according to one aspect of the present invention is preferably 2.00 or less, more preferably 1.50 or less, because the moldability when made into a polyurethane resin is improved. , Polystyrene is used as a standard substance, and the number average molecular weight determined by gel permeation chromatography measurement is Mn, and the weight average molecular weight is Mw).
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールにおける末端水酸基の1級化率は、特に限定しないが、反応性のバラツキが小さく、均一に反応し、得られるポリウレタンの分子量分布や組成が均一になりやすいため、10%未満であることが好ましい。 The primaryization rate of the terminal hydroxyl group in the halogen-containing polyether polyol according to one aspect of the present invention is not particularly limited, but the variation in reactivity is small, the reaction is uniform, and the molecular weight distribution and composition of the obtained polyurethane are uniform. It is preferable that it is less than 10%.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールは、特に制限はなく、従来公知の製造方法で製造することができる。
例えば、オニウム塩、ルイス酸及び活性水素含有化合物を含む組成物の存在下、活性水素含有化合物を開始剤とし、2種類以上のアルキレンオキシドを開環重合することにより得られる。
The halogen-containing polyether polyol according to one aspect of the present invention is not particularly limited and can be produced by a conventionally known production method.
For example, it can be obtained by ring-opening polymerization of two or more types of alkylene oxides using an active hydrogen-containing compound as an initiator in the presence of a composition containing an onium salt, a Lewis acid and an active hydrogen-containing compound.
 その際の第一のアルキレンオキシドとしては、例えば、ハロゲン含有アルキレンオキシドを挙げることができ、具体的には、エピクロロヒドリン、エピブロモヒドリン、エピフルオロヒドリン等を挙げることができる。これらの中で、入手が容易で、得られるポリアルキレンオキシドの工業的価値の高いことから、エピクロロヒドリンが好ましい。 Examples of the first alkylene oxide at that time include halogen-containing alkylene oxides, and specific examples thereof include epichlorohydrin, epibromohydrin, and epifluorohydrin. Among these, epichlorohydrin is preferable because it is easily available and the obtained polyalkylene oxide has a high industrial value.
 第二のアルキレンオキシドとしては、例えば、炭素数2~12のアルキレンオキシドを挙げることができ、具体的には、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、ブタジエンモノオキシド、ペンテンオキシド、スチレンオキシド、シクロヘキセンオキシド等を挙げることができる。これらの中で、アルキレンオキシドの入手が容易で、得られるポリアルキレンオキシドの工業的価値の高いことから、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシドが好ましい。 Examples of the second alkylene oxide include alkylene oxides having 2 to 12 carbon atoms, and specifically, ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, and isobutylene oxide. , Butadiene monooxide, pentene oxide, styrene oxide, cyclohexene oxide and the like. Among these, ethylene oxide, propylene oxide, and 1,2-butylene oxide are preferable because alkylene oxide is easily available and the obtained polyalkylene oxide has high industrial value.
 第一及び第二のアルキレンオキシドは、いずれも単一で用いても2種以上を混合して用いても良い。 The first and second alkylene oxides may be used alone or in combination of two or more.
 オニウム塩は特に限定しないが、ホスファゼニウム塩、アンモニウム塩、ホスホニウム塩等を挙げることができる。 The onium salt is not particularly limited, and examples thereof include phosphazenium salt, ammonium salt, and phosphonium salt.
 ホスファゼニウム塩の構造は特に限定しないが、例えば、下記式(2)で表される。 The structure of the phosphazenium salt is not particularly limited, but is represented by, for example, the following formula (2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(2)中、R及びRは各々独立して、水素原子又は炭素数1~20の炭化水素基、RとRが互いに結合した環構造、R同士又はR同士が互いに結合した環構造、Zはヒドロキシアニオン、炭素数1~4のアルコキシアニオン、カルボキシアニオン、炭素数2~5のアルキルカルボキシアニオン、塩素アニオン、臭素アニオン、よう素アニオン又は炭酸水素アニオンを表す。 In the above formula (2), R 2 and R 3 are independently each of a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, a ring structure in which R 2 and R 3 are bonded to each other, R 2 to each other or R 3 to each other. ring structure but bonded to each other, Z - represents an hydroxy anion, alkoxy anion having 1 to 4 carbon atoms, carboxy anion, alkyl carboxy anion having 2 to 5 carbon atoms, chlorine anion, bromine anion, iodine anion or bicarbonate anions ..
 R、Rで表される炭素数1~20の炭化水素基としては、特に限定しないが、例えば、メチル基、エチル基、ビニル基、n-プロピル基、イソプロピル基、シクロプロピル基、アリル基、n-ブチル基、イソブチル基、t-ブチル基、シクロブチル基、n-ペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基、へプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基、シクロデシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基等を挙げることができる。 The hydrocarbon group having 1 to 20 carbon atoms represented by R 2 and R 3 is not particularly limited, but for example, a methyl group, an ethyl group, a vinyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, and an allyl group. Group, n-butyl group, isobutyl group, t-butyl group, cyclobutyl group, n-pentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, phenyl group, heptyl group, cycloheptyl group, octyl group. , Cyclooctyl group, nonyl group, cyclononyl group, decyl group, cyclodecyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecil group and the like.
 RとRが互いに結合し環構造を形成した場合としては、例えば、ピロリジニル基、ピロリル基、ピペリジニル基、インドリル基、イソインドリル基等を挙げることができる。 Examples of the case where R 2 and R 3 are bonded to each other to form a ring structure include a pyrrolidinyl group, a pyrrolyl group, a piperidinyl group, an indrill group, an isoindrill group and the like.
 R同士又はR同士が互いに結合した環構造としては、特に限定しないが、例えば、一方の置換基がエチレン基、プロピレン基、ブチレン基等のアルキレン基となって、他方の置換基と互いに結合した環構造を挙げることができる。 The ring structure R 2 s or R 3 together are bonded to each other, it is not particularly limited, for example, one substituent is an ethylene group, a propylene group, is an alkylene group such as butylene group, together with the other substituent The bonded ring structure can be mentioned.
 これらの中で、R及びRとしては、特に触媒活性に優れるアルキレンオキシド重合触媒となり、原料の入手が容易という点から、メチル基、エチル基、イソプロピル基であることが好ましい。 Among these, R 2 and R 3 are preferably a methyl group, an ethyl group, or an isopropyl group from the viewpoint that they are alkylene oxide polymerization catalysts having particularly excellent catalytic activity and the raw materials are easily available.
 また、上記式(2)におけるZは、ヒドロキシアニオン、炭素数1~4のアルコキシアニオン、カルボキシアニオン、炭素数2~5のアルキルカルボキシアニオン、又は炭酸水素アニオンである。 Further, Z − in the above formula (2) is a hydroxy anion, an alkoxy anion having 1 to 4 carbon atoms, a carboxy anion, an alkyl carboxy anion having 2 to 5 carbon atoms, or a hydrogen carbonate anion.
 炭素数1~4のアルコキシアニオンとしては、特に限定しないが、例えば、メトキシアニオン、エトキシアニオン、n-プロポキシアニオン、イソプロポキシアニオン、n-ブトキシアニオン、イソブトキシアニオン、t-ブトキシアニオン等を挙げることができる。 The alkoxy anion having 1 to 4 carbon atoms is not particularly limited, and examples thereof include methoxy anion, ethoxy anion, n-propoxy anion, isopropoxy anion, n-butoxy anion, isobutoxy anion, and t-butoxy anion. Can be done.
 炭素数2~5のアルキルカルボキシアニオンとしては、特に限定しないが、例えば、アセトキシアニオン、エチルカルボキシアニオン、n-プロピルカルボキシアニオン、イソプロピルカルボキシアニオン、n-ブチルカルボキシアニオン、イソブチルカルボキシアニオン、t-ブチルカルボキシアニオン等を挙げることができる。 The alkylcarboxy anion having 2 to 5 carbon atoms is not particularly limited, and for example, acetoxy anion, ethyl carboxy anion, n-propyl carboxy anion, isopropyl carboxy anion, n-butyl carboxy anion, iso butyl carboxy anion, and t-butyl carboxy anion. Anions and the like can be mentioned.
 これらの中で、Zとしては、触媒活性に優れるハロゲン含有アルキレンオキシド重合触媒となることから、ヒドロキシアニオン、炭酸水素アニオンが特に好ましい。 Among these, as Z − , a hydroxy anion and a hydrogen carbonate anion are particularly preferable because they are halogen-containing alkylene oxide polymerization catalysts having excellent catalytic activity.
 上記式(2)で示されるホスファゼニウム塩としては、特に限定しないが特に限定しないが、具体的には、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラ(n-プロピル)グアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラ(n-ブチル)グアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラフェニルグアニジノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラベンジルグアニジノ)ホスホニウムヒドロキシド、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホニウムヒドロキシド、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホニウムヒドロキシド、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトラエチルグアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトラ(n-プロピル)グアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトライソプロピルグアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトラ(n-ブチル)グアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトラフェニルグアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,1,3,3-テトラベンジルグアニジノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホニウムハイドロゲンカーボネート、テトラキス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホニウムハイドロゲンカーボネート等を例示することができる。 The phosphazenium salt represented by the above formula (2) is not particularly limited, but specifically, tetrakis (1,1,3,3-tetramethylguanidino) phosphonium hydroxide and tetrakis (1,1). , 3,3-Tetraethylguanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetra (n-propyl) guanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetraisopropylguanidino) phosphonium hydroxyd Do, tetrakis (1,1,3,3-tetra (n-butyl) guanidino) phosphonium hydroxide, tetrakis (1,1,3,3-tetraphenylguanidino) phosphonium hydroxide, tetrakis (1,1,3, 3-Tetrabenzylguanidino) phosphonium hydroxide, tetrakis (1,3-dimethylimidazolidine-2-imino) phosphonium hydroxide, tetrakis (1,3-dimethylimidazolidine-2-imino) phosphonium hydroxide, tetrakis (1,3-dimethylimidazolidine-2-imino) 1,3,3-Tetramethylguanidino) phosphonium hydrogen carbonate, tetrakis (1,1,3,3-tetraethylguanidino) phosphonium hydrogen carbonate, tetrakis (1,1,3,3-tetra (n-propyl) guanidino) phosphonium Hydrogen carbonate, tetrakis (1,1,3,3-tetraisopropylguanidino) phosphonium hydrogen carbonate, tetrakis (1,1,3,3-tetra (n-butyl) guanidino) phosphonium hydrogen carbonate, tetrakis (1,1,3) , 3-Tetraphenylguanidino) phosphonium hydrogen carbonate, tetrakis (1,1,3,3-tetrabenzylguanidino) phosphonium hydrogen carbonate, tetrakis (1,3-dimethylimidazolidine-2-imino) phosphonium hydrogen carbonate, tetrakis (1) , 3-Dimethylimidazolidine-2-imino) Phosphonium hydrogen carbonate and the like can be exemplified.
 また、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(ジエチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(ジn-プロピルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、1-tert-ブチル-4,4,4-トリス(ジメチルアミノ)-2,2-ビス(トリス(ジメチルアミノ)ホスホラニリデンアミノ)-2λ5,4λ5-カテナジ(ホスファゼン)、テトラキス[トリス(ジイソプロピルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(ジn-ブチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(ジフェニルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシド、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(ジエチルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(ジn-プロピルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(ジイソプロピルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(ジn-ブチルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(ジフェニルアミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート、テトラキス[トリス(1,3-ジメチルイミダゾリジン-2-イミノ)ホスホラニリデンアミノ]ホスホニウムハイドロゲンカーボネート等を例示することができる。 In addition, tetrakis [tris (dimethylamino) phosphoranilideneamino] phosphonium hydroxide, tetrakis [tris (diethylamino) phosphoranilideneamino] phosphonium hydroxide, tetrakis [tris (din-propylamino) phosphoranilideneamino] phosphonium hydroxydo Do, 1-tert-butyl-4,4,4-tris (dimethylamino) -2,2-bis (tris (dimethylamino) phosphoranilideneamino) -2λ5,4λ5-catenadi (phosphazene), tetrakis [tris (tris (dimethylamino) Diisopropylamino) phosphoranilideneamino] phosphonium hydroxide, tetrakis [tris (din-butylamino) phosphoranilideneamino] phosphonium hydroxide, tetrakis [tris (diphenylamino) phosphoranilideneamino] phosphonium hydroxide, tetrakis [tris] (1,3-Dimethylimidazolidine-2-imino) Phospholanylideneamino] Phosphonium hydroxide, Tetrakiss [Tris (dimethylamino) phosphoranylideneamino] Phosphonium Hydrogen carbonate, Tetrax [Tris (diethylamino) Phoslanylideneamino] Phosphonium Hydrogen carbonate, tetrakis [tris (di-propylamino) phosphoranilideneamino] phosphonium hydrogen carbonate, tetrakis [tris (diisopropylamino) phosphoranilideneamino] phosphonium hydrogen carbonate, tetrakis [tris (di-n-butylamino) phosphorani Examples include lideneamino] phosphonium hydrogen carbonate, tetrakis [tris (diphenylamino) phosphoranilideneamino] phosphonium hydrogen carbonate, tetrakis [tris (1,3-dimethylimidazolidine-2-imino) phosphoranilideneamino] phosphonium hydrogen carbonate, etc. can do.
 これらの中で、触媒性能に優れるハロゲン含有ポリエーテルポリオール製造触媒となることから、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムヒドロキシド、テトラキス(1,1,3,3-テトラメチルグアニジノ)ホスファゼニウムハイドロゲンカーボネート、テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムヒドロキシドが特に好ましい。 Among these, tetrakis (1,1,3,3-tetramethylguanidino) phospasenium hydroxide and tetrakis (1,1,3) are used as catalysts for producing halogen-containing polyether polyols having excellent catalytic performance. 3-Tetramethylguanidino) phosphazenium hydrogen carbonate, tetrakis [tris (dimethylamino) phosphoranilideneamino] phosphonium hydroxide are particularly preferred.
 本発明の一態様においてアンモニウム塩又はホスホニウム塩の構造は、例えば、下記式(3)で表される。 In one aspect of the present invention, the structure of the ammonium salt or the phosphonium salt is represented by, for example, the following formula (3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(3)中、Dは窒素原子又はリン原子を表し、R、R、R及びRはそれぞれ独立して、ヘテロ原子を含んでも良い炭素数1~20のアルキル基、アリール基、アルコキシ基、ジアルキルアミノ基、ハロゲン原子又は水素原子を表し、Eは無機又は有機の基からなる対イオンを表す。R~Rのうち2~4つが結合して環状構造を形成しても良く、またその環状構造中にヘテロ原子を含んでいても良い。 In the formula (3), D represents a nitrogen atom or a phosphorus atom, R 4, R 5, R 6 and R 7 are each independently an alkyl group which may having 1 to 20 carbon atoms may include a hetero atom, an aryl It represents a group, an alkoxy group, a dialkylamino group, a halogen atom or a hydrogen atom, and E represents a counterion composed of an inorganic or organic group. Two to four of R 4 to R 7 may be bonded to form a cyclic structure, or a hetero atom may be contained in the cyclic structure.
 R、R、R及びRで表される炭素数1~20のアルキル基又はアリール基としては、特に限定しないが、例えば、メチル基、エチル基、ビニル基、ノルマルプロピル基、イソプロピル基、シクロプロピル基、アリル基、ノルマルブチル基、イソブチル基、t-ブチル基、シクロブチル基、ノルマルペンチル基、ネオペンチル基、シクロペンチル基、ノルマルヘキシル基、シクロヘキシル基、フェニル基、へプチル基、シクロヘプチル基、ベンジル基、トリル基、オクチル基、シクロオクチル基、キシリル基等が例示され、アルコキシ基としては、メトキシ基、エトキシ基、ビニルオキシ基、ノルマルプロポキシ基、イソプロポキシ基、シクロプロポキシ基、アリルオキシ基、ノルマルブトキシ基、イソブトキシ基、t-ブトキシ基、シクロブトキシ基、ノルマルペンチルオキシ基、ネオペンチルオキシ基、シクロペンチルオキシ基、ノルマルヘキシルオキシ基、シクロヘキシルオキシ基、フェノキシ基、へプチルオキシ基、シクロヘプチルオキシ基、オクチルオキシ基、ベンジルオキシ基、トリルオキシ基、シクロオクチルオキシ基、キシリルオキシ基が例示され、ジアルキルアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ピロリジノ基、ピペリジノ基、ジノルマルプロピルアミノ基、ジイソプロピルアミノ基、ジシクロプロピルアミノ基等が挙げられる。 The alkyl group or aryl group having 1 to 20 carbon atoms represented by R 4 , R 5 , R 6 and R 7 is not particularly limited, but for example, methyl group, ethyl group, vinyl group, normal propyl group and isopropyl. Group, cyclopropyl group, allyl group, normal butyl group, isobutyl group, t-butyl group, cyclobutyl group, normalpentyl group, neopentyl group, cyclopentyl group, normalhexyl group, cyclohexyl group, phenyl group, heptyl group, cycloheptyl Examples include a group, a benzyl group, a trill group, an octyl group, a cyclooctyl group, a xsilyl group, and the like, and examples of the alkoxy group include a methoxy group, an ethoxy group, a vinyloxy group, a normal propoxy group, an isopropoxy group, a cyclopropoxy group, and an allyloxy group. , Normal butoxy group, Isobutoxy group, t-butoxy group, Cyclobutoxy group, Normalpentyloxy group, Neopentyloxy group, Cyclopentyloxy group, Normalhexyloxy group, Cyclohexyloxy group, Phenoxy group, Propyloxy group, Cycloheptyloxy group Examples include a group, an octyloxy group, a benzyloxy group, a triloxy group, a cyclooctyloxy group, and a xsilyloxy group, and examples of the dialkylamino group include a dimethylamino group, a diethylamino group, a pyrrolidino group, a piperidino group, a dinormal propylamino group, and a diisopropyl. Examples thereof include an amino group and a dicyclopropylamino group.
 触媒活性に優れるハロゲン含有ポリエーテルポリオール製造触媒となることから、R、R、R及びRはそれぞれ独立して、ヘテロ原子を含んでも良い炭素数1~10のアルキル基又はアリール基であることが好ましく、メチル基、エチル基、ノルマルブチル基又はノルマルオクチル基又はフェニル基であることが特に好ましい。 Since it is a halogen-containing polyether polyol production catalyst having excellent catalytic activity, R 4 , R 5 , R 6 and R 7 can independently contain an alkyl group or an aryl group having 1 to 10 carbon atoms which may contain a hetero atom. It is preferably a methyl group, an ethyl group, a normal butyl group or a normal octyl group or a phenyl group.
 R~Rのうち2つ又は3つが結合して環状構造を形成したアンモニウム塩の構造としては、ピリジニウム塩、イミダゾリウム塩が例示され、触媒活性に優れるハロゲン含有ポリエーテルポリオール製造触媒となることからイミダゾリウム塩であることが好ましい。 Examples of the structure of the ammonium salt in which two or three of R 4 to R 7 are bonded to form a cyclic structure include a pyridinium salt and an imidazolium salt, which serve as a catalyst for producing a halogen-containing polyether polyol having excellent catalytic activity. Therefore, it is preferably an imidazolium salt.
 上記式(3)におけるEは無機又は有機の基である。 E in the above formula (3) is an inorganic or organic group.
 これらの中で、特に限定しないが、具体的には、ハロゲン原子、水酸基、アルコキシル基、アミノ基、カルボキシル基、スルホン酸基、水素化ホウ素基、ヘキサフルオロリン酸基が例示され、触媒活性に優れるハロゲン含有ポリエーテルポリオール製造触媒となることから、臭素原子、塩素原子、ヨウ素原子、ヘキサフルオロリン酸基のいずれかであることが好ましい。 Among these, although not particularly limited, specifically, a halogen atom, a hydroxyl group, an alkoxyl group, an amino group, a carboxyl group, a sulfonic acid group, a boron hydride group, and a hexafluorophosphate group are exemplified and used for catalytic activity. Since it is an excellent catalyst for producing a halogen-containing polyether polyol, it is preferably any of a bromine atom, a chlorine atom, an iodine atom and a hexafluorophosphate group.
 上記式(3)で表されるアンモニウム塩又はホスホニウム塩としては、特に限定しないが、具体的には、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラノルマルプロピルアンモニウムブロミド、テトラノルマルブチルアンモニウムブロミド、テトラノルマルペンチルアンモニウムブロミド、テトラノルマルヘキシルアンモニウムブロミド、テトラノルマルヘプチルアンモニウムブロミド、テトラノルマルオクチルアンモニウムブロミド、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラノルマルプロピルアンモニウムクロライド、テトラノルマルブチルアンモニウムクロライド、テトラノルマルペンチルアンモニウムクロライド、テトラノルマルヘキシルアンモニウムクロライド、テトラノルマルヘプチルアンモニウムクロライド、テトラノルマルオクチルアンモニウムクロライド、1-ブチル-3-メチルイミダゾリウムクロリド、1-ブチル-2,3-ジメチルイミダゾリウムクロリド、1-エチル-3-メチルイミダゾリウムクロリド、テトラメチルホスホニウムブロミド、テトラエチルホスホニウムブロミド、テトラノルマルプロピルホスホニウムブロミド、テトラノルマルブチルホスホニウムブロミド、テトラノルマルペンチルホスホニウムブロミド、テトラノルマルヘキシルホスホニウムブロミド、テトラノルマルヘプチルホスホニウムブロミド、テトラノルマルオクチルホスホニウムブロミド、テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラノルマルプロピルホスホニウムクロライド、テトラノルマルブチルホスホニウムクロライド、テトラノルマルペンチルホスホニウムクロライド、テトラノルマルヘキシルホスホニウムクロライド、テトラノルマルヘプチルホスホニウムクロライド、テトラノルマルオクチルホスホニウムクロライド、ブロモトリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスファート等が例示される。 The ammonium salt or phosphonium salt represented by the above formula (3) is not particularly limited, but specifically, tetramethylammonium bromide, tetraethylammonium bromide, tetranormal propylammonium bromide, tetranormal butylammonium bromide, tetranormalal. Pentylammonium bromide, tetranormal hexyl ammonium bromide, tetranormal heptyl ammonium bromide, tetranormal octyl ammonium bromide, tetramethyl ammonium chloride, tetraethyl ammonium chloride, tetranormal propyl ammonium chloride, tetranormal butyl ammonium chloride, tetranormal pentyl ammonium chloride, tetra. Normal hexyl ammonium chloride, tetranormal heptyl ammonium chloride, tetranormal octyl ammonium chloride, 1-butyl-3-methylimidazolium chloride, 1-butyl-2,3-dimethylimidazolium chloride, 1-ethyl-3-methylimidazolium Chloride, Tetramethylphosphonium bromide, Tetraethylphosphonium bromide, Tetranormalpropylphosphonium bromide, Tetranormal butylphosphonium bromide, Tetranormal pentylphosphonium bromide, Tetranormalhexylphosphonium bromide, Tetranormal heptylphosphonium bromide, Tetranormal octylphosphonium bromide, Tetramethylphosphonium Chloride, tetraethylphosphonium chloride, tetranormalpropylphosphonium chloride, tetranormal butylphosphonium chloride, tetranormalpentylphosphonium chloride, tetranormalhexylphosphonium chloride, tetranormalheptylphosphonium chloride, tetranormaloctylphosphonium chloride, bromotris (dimethylamino) phosphonium hexafluoro Phosphate and the like are exemplified.
 これらの中で、触媒活性に優れるハロゲン含有ポリエーテルポリオール製造触媒となることから、テトラノルマルオクチルアンモニウムクロリド、テトラノルマルオクチルアンモニウムブロミド、テトラノルマルブチルホスホニウムブロミドが好ましく用いられる。 Among these, tetranormal octyl ammonium chloride, tetranormal octyl ammonium bromide, and tetranormal butyl phosphonium bromide are preferably used because they serve as catalysts for producing halogen-containing polyether polyols having excellent catalytic activity.
 本発明の一態様において、ルイス酸としては、例えば、アルミニウム化合物、亜鉛化合物、ホウ素化合物等を挙げることができる。 In one aspect of the present invention, examples of Lewis acid include aluminum compounds, zinc compounds, and boron compounds.
 アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、トリイソブトキシアルミニウム、トリフェニルアルミニウム、ジフェニルモノイソブチルアルミニウム、モノフェニルジイソブチルアルミニウム等の有機アルミニウム;メチルアルミノキサン、イソブチルアルミノキサン、メチル-イソブチルアルミノキサン等のアルミノキサン;塩化アルミニウム、水酸化アルミニウム、酸化アルミニウム等の無機アルミニウムを挙げることができる。 Examples of the aluminum compound include trimethylaluminum, triethylaluminum, triisobutylaluminum, trinormalhexylaluminum, triethoxyaluminum, triisopropoxyaluminum, triisobutoxyaluminum, triphenylaluminum, diphenylmonoisobutylaluminum, monophenyldiisobutylaluminum and the like. Organic aluminum; aluminoxane such as methylaluminoxane, isobutylaluminoxan, methyl-isobutylaluminoxan; inorganic aluminum such as aluminum chloride, aluminum hydroxide, aluminum oxide can be mentioned.
 亜鉛化合物としては、例えば、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛等の有機亜鉛;塩化亜鉛、酸化亜鉛等の無機亜鉛を挙げることができる。 Examples of the zinc compound include organic zinc such as dimethyl zinc, diethyl zinc and diphenyl zinc; and inorganic zinc such as zinc chloride and zinc oxide.
 ホウ素化合物としては、トリエチルボラン、トリメトキシボラン、トリエトキシボラン、トリイソプロポキシボラン、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリフルオロボラン等を挙げることができる。 Examples of the boron compound include triethylborane, trimethoxyborane, triethoxyborane, triisopropoxyborane, triphenylborane, tris (pentafluorophenyl) borane, trifluoroborane and the like.
 これらの中でも、触媒性能に優れるハロゲン含有ポリエーテルポリオール製造用触媒となることから、有機アルミニウム、アルミノキサン、有機亜鉛が好ましく、有機アルミニウムが特に好ましい。 Among these, organoaluminum, aluminoxane, and organozinc are preferable, and organoaluminum is particularly preferable because it is a catalyst for producing a halogen-containing polyether polyol having excellent catalytic performance.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの製造方法において、ハロゲン含有ポリエーテルポリオールを効率よく製造することが可能となることから、活性水素含有化合物中の活性水素1モルに対し、オニウム塩は0.001~0.1モルが好ましく、0.001~0.05モルであることが特に好ましい。 In the method for producing a halogen-containing polyether polyol according to one aspect of the present invention, since the halogen-containing polyether polyol can be efficiently produced, an onium salt is added to 1 mol of active hydrogen in the active hydrogen-containing compound. Is preferably 0.001 to 0.1 mol, particularly preferably 0.001 to 0.05 mol.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールを効率よく製造することが可能となることから、活性水素含有化合物中の活性水素1モルに対し、ルイス酸は0.002~0.2モルが好ましく、0.002~0.1モルであることが特に好ましい。 Since the halogen-containing polyether polyol according to one aspect of the present invention can be efficiently produced, the amount of Lewis acid is 0.002 to 0.2 mol with respect to 1 mol of active hydrogen in the active hydrogen-containing compound. It is preferably 0.002 to 0.1 mol, and particularly preferably 0.002 to 0.1 mol.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの製造方法において、重合圧力は、常圧~1.0MPaの範囲、好ましくは、常圧~0.5MPaの範囲が良い。本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの製造方法において、重合温度は、0~180℃の範囲であり、50~130℃の範囲がより好ましい。 In the method for producing a halogen-containing polyether polyol according to one aspect of the present invention, the polymerization pressure is preferably in the range of normal pressure to 1.0 MPa, preferably in the range of normal pressure to 0.5 MPa. In the method for producing a halogen-containing polyether polyol according to one aspect of the present invention, the polymerization temperature is in the range of 0 to 180 ° C, more preferably in the range of 50 to 130 ° C.
 本発明の一態様にかかるハロゲン含有ポリエーテルポリオールの製造方法において、重合反応は無溶媒でも、溶媒中でも行うこともできる。溶媒を使用する際は、溶媒としては、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン、1,4-ジオキサン、1,2-ジメトキシエタン等を挙げることができる。
<ポリウレタン>
 本発明の一態様にかかるポリウレタンの構造は、本発明の一態様にかかるハロゲン含有ポリエーテルポリオール残基を分子構造中に含有していれば特に制限はなく、架橋体でも良いし、直鎖状でも分岐状でも良い。
In the method for producing a halogen-containing polyether polyol according to one aspect of the present invention, the polymerization reaction can be carried out in a solvent-free manner or in a solvent. When a solvent is used, examples of the solvent include benzene, toluene, xylene, cyclohexane, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, 1,4-dioxane, 1,2-dimethoxyethane and the like. ..
<Polyurethane>
The structure of the polyurethane according to one aspect of the present invention is not particularly limited as long as the halogen-containing polyether polyol residue according to one aspect of the present invention is contained in the molecular structure, and may be a crosslinked product or a linear structure. However, it may be branched.
 また、本発明の一態様にかかるポリウレタンの製造方法は特に限定されないが、本発明の一態様にかかるハロゲン含有ポリエーテルポリオールとポリイソシアネート化合物とを反応させることが挙げられる。 Further, the method for producing polyurethane according to one aspect of the present invention is not particularly limited, and examples thereof include reacting a halogen-containing polyether polyol according to one aspect of the present invention with a polyisocyanate compound.
 ここで、ポリイソシアネート化合物としては特に限定されず、例えば、芳香族イソシアネート化合物、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、及びこれらのポリイソシアネート誘導体等が挙げられる。 Here, the polyisocyanate compound is not particularly limited, and examples thereof include aromatic isocyanate compounds, aliphatic isocyanate compounds, alicyclic isocyanate compounds, and polyisocyanate derivatives thereof.
 これらの中で、芳香族イソシアネート化合物としては、例えば、トリレンジイソシアネート(2,4-若しくは2,6-トリレンジイソシアネ-ト、又はそれらの混合物)(TDI)、フェニレンジイソシアネート(m-若しくはp-フェニレンジイソシアネート、又はそれらその混合物)、4,4’-ジフェニルジイソシアネート、ジフェニルメタンジイソシアネート(4,4’-、2,4’-若しくは2,2’-ジフェニルメタンジイソシアネート、又はそれらの混合物)(MDI)、4,4’-トルイジンイソシアネート(TODI)、4,4’-ジフェニルエーテルジイソシアネート、キシリレンジイソシアネート(1,3-若しくは1,4-キシリレンジイソシアネート、又はそれらの混合物)(XDI)、テトラメチルキシリレンジイソシアネート(1,3-若しくは1,4-テトラメチルキシリレンジイソシアネート、又はそれらの混合物)(TMXDI)、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、ナフタレンジイソシアネート(1,5-、1,4-若しくは1,8-ナフタレンジイソシアネート、又はそれらの混合物)(NDI)、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、ポリメチレンポリフェニレンポリイソシアネート、ニトロジフェニル-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート等が挙げられる。 Among these, examples of the aromatic isocyanate compound include tolylene diisocyanate (2,4- or 2,6-tolylene diisocyanate, or a mixture thereof) (TDI) and phenylenedi isocyanate (m- or p). -Phenylene diisocyanate or a mixture thereof), 4,4'-diphenyldiisocyanate, diphenylmethane diisocyanate (4,4'-, 2,4'-or 2,2'-diphenylmethane diisocyanate, or a mixture thereof) (MDI), 4,4'-toluidine isocyanate (TODI), 4,4'-diphenyl ether diisocyanate, xylylene diisocyanate (1,3- or 1,4-xylylene diisocyanate, or a mixture thereof) (XDI), tetramethylxylylene diisocyanate (1,3- or 1,4-tetramethylxylylene diisocyanate, or a mixture thereof) (TMXDI), ω, ω'-diisocyanate-1,4-diethylbenzene, naphthalene diisocyanate (1,5-, 1,4- Or 1,8-naphthalenediisocyanate or a mixture thereof) (NDI), triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, polymethylenepolyphenylene polyisocyanate, nitrodiphenyl-4,4'-diisocyanate, 3,3 Examples thereof include'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropanediisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate and the like.
 脂肪族イソシアネート化合物としては、例えば、トリメチレンジイソシアネート、1,2-プロピレンジイソシアネート、ブチレンジイソシアネート(テトラメチレンジイソシアネ-ト、1,2-ブチレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート)、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,6-ジイソシアネートメチルカプエート、リジンジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート等が挙げられる。 Examples of the aliphatic isocyanate compound include trimethylene diisocyanate, 1,2-propylene diisocyanate, and butylene diisocyanate (tetramethylene diisosianate, 1,2-butylene diisocyanate, 2,3-butylene diisocyanate, and 1,3-butylene). Diisocyanis), hexamethylene diisocyanate, pentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 2,6-diisocyanis methyl capate, lysine diisocyanis, lysine ester triisocyanis, Examples thereof include 1,6,11-undecanetriisocyanis, 1,3,6-hexamethylene triisocyanate, trimethylhexamethylene diisocyanate, and decamethylene diisocyanate.
 単環式脂環族イソシアネート化合物としては、例えば、1,3-シクロペンタンジイソシアネート、1,3-シクロペンテンジイソシアネート、シクロヘキサンジイソシアネート(1,4-シクロヘキサンジイソシアネ-ト、1,3-シクロヘキサンジイソシアネート)、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート、IPDI)、メチレンビス(シクロヘキシルイソシアネート(4,4’-、2,4’-若しくは2,2’-メチレンビス(シクロヘキシルイソシアネート、又はそれらの混合物)(水添MDI)、メチルシクロヘキサンジイソシアネート(メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、ビス(イソシネートメチル)シクロヘキサン(1,3-若しくは1,4-ビス(イソシアネートメチル)シクロヘキサン、又はそれらの混合物)(水添XDI)、ダイマー酸ジイソシアネート、トランスシクロヘキサン1,4-ジイソシアネート、水素添加トリレンジイソシアネート(水添TDI)、水素添加テトラメチルキシリレンジイソシアネート(水添TMXDI)等が挙げられる。 Examples of the monocyclic alicyclic isocyanate compound include 1,3-cyclopentanediisocyanate, 1,3-cyclopentenediisocyanate, cyclohexanediisocyanate (1,4-cyclohexanediisocyanate, 1,3-cyclohexanediisocyanate), and the like. 3-Isocyanate Methyl-3,5,5-trimethylcyclohexylisocyanate (isophorone diisocyanate, IPDI), methylenebis (cyclohexylisocyanate (4,4'-, 2,4'-or 2,2'-methylenebis (cyclohexylisocyanate, or them) (Hydrocyanate MDI), methylcyclohexanediisocyanate (methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, bis (isosinate methyl) cyclohexane (1,3- or 1,4-bis) (Isocyanate methyl) cyclohexane or a mixture thereof) (hydrogenated XDI), dimerate diisocyanate, transcyclohexane 1,4-diisocyanate, hydrogenated tolylene diisocyanate (hydrogenated TDI), hydrogenated tetramethylxylylene diisocyanate (hydrogenated) TMXDI) and the like.
 架橋環式脂環族イソシアネート化合物としては、例えば、ノルボルネンジイソシアネート、ノルボルナンジイソシアネートメチル、ビシクロヘプタントリイソシアネート、シイソシアナートメチルビシクロヘプタン、ジ(ジイソシアナートメチル)トリシクロデカン等が挙げられる。 Examples of the crosslinked cyclic alicyclic isocyanate compound include norbornene diisocyanate, norbornane diisocyanate methyl, bicycloheptane triisocyanate, siisocyanatomethylbicycloheptane, and di (diisocyanatomethyl) tricyclodecane.
 また、これらのポリイソシアネートの誘導体としては、例えば、上記イソシアネート化合物の多量体(2量体、3量体、5量体、7量体、ウレチジンジオン、ウレイトンイミン、イソシヌレート変性体、ポリカルボジイミド等)、ウレタン変性体(例えば、上記イソシアネート化合物又は多量体におけるイソシアネート基の一部を、モノオール又はポリオールで変性又は反応したウレタン変性体等)、ビウレット変性体(例えば、上記イソシアネート化合物と水との反応により生成するビウレット変性体等)、アロファネート変性体(例えば、上記イソシアネート化合物とモノオール又はポリオール成分との反応により生成するアロファネート変性体等)、ウレア変性体(例えば、上記イソシアネート化合物とジアミンとの反応により生成するウレア変性体等)、オキサジアジントリオン(例えば、上記イソシアネート化合物と炭酸ガス等との反応により生成するオキサジアジントリオン等)等を挙げることができる。 Examples of derivatives of these polyisocyanates include multimers of the above-mentioned isocyanate compounds (dimeric, trimeric, pentameric, hepta, uretidinedione, ureitoneimine, isocyanurate-modified, polycarbodiimide, etc.). , Urethane modified product (for example, urethane modified product obtained by modifying or reacting a part of isocyanate groups in the above isocyanate compound or multimer with monool or polyol), Biuret modified product (for example, reaction between the above isocyanate compound and water). (For example, a biuret modified product produced by the above), an allophanate modified product (for example, an allophanate modified product produced by the reaction of the above isocyanate compound with a monool or polyol component), a urea modified product (for example, a reaction between the above isocyanate compound and a diamine). (Urea modified product, etc. produced by
 なお、上記のイソシアネート化合物又はその誘導体は単独で用いてもよいし、2種以上で用いてもよい。 The above isocyanate compound or its derivative may be used alone or in combination of two or more.
 なお、本発明の一態様にかかる、ハロゲン含有ポリエーテルポリオールとポリイソシアネート化合物とを反応させポリウレタンを得る場合は、例えば、200℃を上限に組成物を加温したり、ジオクチルスズジラウレート、ジブチルスズジラウレート、トリエチルアミン、トリエチレンジアミン、スタナスオクトエート、ジブチルスズジ-2-エチルヘキサノエ-ト、ナトリウム o-フェニルフェネート、カリウムオレート、テトラ(2-エチルヘキシル)チタネ-ト、塩化第二スズ、塩化第二鉄、三塩化アンチモン等の触媒を加えたりすると、ハロゲン含有ポリエーテルポリオールとイソシアネート化合物の反応が加速され、短時間でポリウレタンを得ることができる。 When a polyurethane is obtained by reacting a halogen-containing polyether polyol and a polyisocyanate compound according to one aspect of the present invention, for example, the composition may be heated up to 200 ° C., or dioctyltin dilaurate or dibutyltin dilaurate. , Triethylamine, triethylenediamine, stanas octoate, dibutyltin di-2-ethylhexanoate, sodium o-phenylphenate, potassium oleate, tetra (2-ethylhexyl) titanate, stannic chloride, second chloride When a catalyst such as iron or antimony trichloride is added, the reaction between the halogen-containing polyether polyol and the isocyanate compound is accelerated, and polyurethane can be obtained in a short time.
 本発明の一態様にかかるポリウレタンとしては、硬質フォーム又は軟質フォームのようなウレタンフォーム用途に用いることができる。また、コーテイング剤・塗料(Coatings)、粘着剤・接着剤(Adhesives)、シーリング材(Sealants)、熱可塑性又は熱硬化性のエラストマー(Elastomers)等、皮革、スパンデックス、各種インキ等に用いることができる。
<ポリウレタンフォーム>
 ポリウレタン系のフォームは、軟質系と硬質系に大別されるが、本発明の一態様にかかるハロゲン含有ポリエーテルポリオールを用いて、ポリウレタンフォームを得ようとすると、軟質、硬質いずれにおいても、従来公知の製造方法が適用できる。
The polyurethane according to one aspect of the present invention can be used for urethane foam applications such as hard foam or soft foam. It can also be used for coatings / coatings, adhesives / adhesives, sealants, thermoplastic or thermosetting elastomers, leather, spandex, various inks and the like. ..
<Polyurethane foam>
Polyurethane-based foams are roughly classified into soft-based and hard-based foams. However, when a polyurethane foam is to be obtained by using the halogen-containing polyether polyol according to one aspect of the present invention, both soft and hard foams have been conventionally used. A known production method can be applied.
 例えば、本発明の一態様にかかるハロゲン含有ポリエーテルポリオールに、必要に応じて、公知の他のポリオール、触媒、整泡剤、架橋剤、発泡剤、連通化剤等を配合した室温液状の混合液を撹拌混合した後に、ポリイソシアネート化合物と攪拌混合し、適当な金型内に注入し、発泡硬化させる方法が挙げられる。 For example, a room temperature liquid mixture in which the halogen-containing polyether polyol according to one aspect of the present invention is mixed with other known polyols, catalysts, foam stabilizers, cross-linking agents, foaming agents, communicating agents and the like, if necessary. Examples thereof include a method in which the liquid is stirred and mixed, then mixed with the polyisocyanate compound by stirring, injected into an appropriate mold, and foamed and cured.
 また、本発明の一態様にかかるハロゲン含有ポリエーテルポリオールに、公知の他のポリオール、触媒、整泡剤、発泡剤及びポリイソシアネート化合物を公知の撹拌混合機により混合して、発泡性の混合物を調製し、これを天面開放状態のモールド内に注入して自由発泡させ、スラブとして硬化成形する方法が挙げられる。 Further, the halogen-containing polyether polyol according to one aspect of the present invention is mixed with other known polyols, catalysts, foam stabilizers, foaming agents and polyisocyanate compounds by a known stirring and mixing machine to obtain an effervescent mixture. Examples thereof include a method of preparing the mixture, injecting it into a mold having an open top surface, freely foaming it, and curing and molding it as a slab.
 本発明の一態様にかかるポリウレタンフォームの発泡倍率は、特に限定しないが、取り扱い性が良好となるため、1.2倍以上、100倍以下であることが好ましく、10倍以上、80倍以下であることが特に好ましい。 The foaming ratio of the polyurethane foam according to one aspect of the present invention is not particularly limited, but is preferably 1.2 times or more and 100 times or less, and 10 times or more and 80 times or less in order to improve handleability. It is particularly preferable to have.
 本発明の一態様にかかるポリウレタンフォームは、利用される用途に特別な制限が加わるものでなく、本発明の一態様にかかる組成物の反応生成物からなるポリウレタンフォームの特徴から、自動車・車両用の天井材やシート、枕、家具・インテリア、寝装具、シューソール、スポンジ、各種クッション、テニスボール、着地マット等、軟質系のポリウレタンフォームが適用される用途に用いることができる。また、本発明の一態様にかかるポリウレタンフォームは、断熱・保冷材、防振・吸音材、緩衝材、浮力材等の硬質系のポリウレタンフォームが適用される用途に用いることができる。例えば、漁船・大型船・冷凍貨物船・LNG船、LPG船、液化ガス船、コンテナーの断熱材やFRPボートの芯材、大型船舶・救命艇・ブイ・浮き類の浮力材として船舶用に、冷凍車・保冷車・鉄道のコンテナー、タンクローリーの断熱材、車両・トラックの天井の断熱材としての車両用に、化学工業設備タンク・配管の断熱材、重油タンク・配管等の保温材、LPG・LNG低温液化ガス保冷・配管の断熱材、断熱カバー、タンク蓋用としてプラント用に、冷蔵庫・冷凍機の断熱材、エアコンの断熱部材、ショーケース・ストッカー・自動販売機・温水器・貯湯槽等の各種断熱機器の断熱材用に、さらに、住宅・オフィスビルの断熱材(壁、床下、天井、屋根下等)、断熱建材(ラミネートボード、複合パネル、サイデイング材等) 、浴槽(ステンレス・FRP・ほうろう)の断熱材、冷凍倉庫・冷蔵倉庫・農業倉庫・畜舎等の断熱材、ボイド充填(断熱サッシ)、恒温室・地域集中冷暖房の断熱材としての建築・建材用に、道路床の断熱材や振動防止材としての土木用に、その他として、椅子芯材、ドアーパネル、装飾工芸品、娯楽用具(クーラーボックス・水筒) 、教材(立体地図等) 、型材・治具関係、サーフィンの芯材、RIM方式製品(スキー芯材・ラケット芯材・ハウジング類)、梱包材等が挙げられる。 The polyurethane foam according to one aspect of the present invention is not particularly limited in its intended use, and is for automobiles and vehicles because of the characteristics of the polyurethane foam composed of the reaction product of the composition according to one aspect of the present invention. It can be used for applications to which soft polyurethane foam is applied, such as ceiling materials, seats, pillows, furniture / interior, bedding, shoe soles, sponges, various cushions, tennis balls, and landing mats. Further, the polyurethane foam according to one aspect of the present invention can be used in applications to which a hard polyurethane foam such as a heat insulating / cold insulating material, a vibration isolating / sound absorbing material, a cushioning material, and a buoyancy material is applied. For example, for ships such as fishing boats, large ships, refrigerated cargo ships, LNG ships, LPG ships, liquefied gas ships, container insulation materials, FRP boat core materials, and large ships, life-saving boats, buoys, and floats. For vehicles such as refrigerated vehicles / cold storage vehicles / railway containers, tank lorry insulation materials, vehicle / truck ceiling insulation materials, chemical industry equipment tank / piping insulation materials, heavy oil tank / piping insulation materials, LPG / LNG low temperature liquefied gas cold insulation / pipe insulation, insulation cover, tank lid for plants, refrigerator / refrigerator insulation, air conditioner insulation, showcase / stocker / vending machine / water heater / hot water tank, etc. Insulation materials for various types of insulation equipment, as well as insulation materials for houses and office buildings (walls, underfloor, ceiling, under roof, etc.), insulation building materials (laminated boards, composite panels, siding materials, etc.), bathtubs (stainless steel / FRP)・ Insulation of road floors for insulation of horo), insulation of frozen warehouses, refrigerated warehouses, agricultural warehouses, livestock barns, void filling (insulation sashes), insulation of constant temperature greenhouses and centralized heating and cooling For civil engineering as materials and anti-vibration materials, as well as chair core materials, door panels, decorative crafts, entertainment equipment (cooler boxes / water cylinders), teaching materials (three-dimensional maps, etc.), mold materials / jigs, surfing cores Materials, RIM method products (ski core materials, racket core materials, housings), packing materials, etc. can be mentioned.
 以下、実施例により本発明を説明するが、本実施例は何ら本発明を制限するものではない。まず、ハロゲン含有ポリエーテルポリオールの分析方法及び製造方法について説明する。 Hereinafter, the present invention will be described with reference to Examples, but the present Examples do not limit the present invention at all. First, an analysis method and a production method of the halogen-containing polyether polyol will be described.
 (ハロゲン含有ポリエーテルポリオールの分析方法)
(1)ハロゲン含有ポリエーテルポリオールの分子量(単位:g/mol)
 JIS K-1557記載の方法により、ハロゲン含有ポリエーテルポリオールの水酸基価d(単位:mgKOH/g)を測定した。得られるハロゲン含有ポリエーテルポリオールの官能基数をeとし、次式によりハロゲン含有ポリエーテルポリオールの分子量を算出した。
(Analytical method of halogen-containing polyether polyol)
(1) Molecular weight of halogen-containing polyether polyol (unit: g / mol)
The hydroxyl value d (unit: mgKOH / g) of the halogen-containing polyether polyol was measured by the method described in JIS K-1557. The number of functional groups of the obtained halogen-containing polyether polyol was defined as e, and the molecular weight of the halogen-containing polyether polyol was calculated by the following formula.
   分子量=(56100/d)×e。
(2)ハロゲン含有ポリエーテルポリオールの分子量分布(単位:無し)
 ゲル・パーミェション・クロマトグラフ(GPC)(東ソー社製、HLC8020)を用い、テトラヒドロフランを溶媒として、40℃で測定を行い、標準物質としてポリスチレンを用い、ハロゲン含有ポリエーテルポリオールの数平均分子量(Mn)、重量平均分子量(Mw)とした。
Molecular weight = (56100 / d) x e.
(2) Molecular weight distribution of halogen-containing polyether polyol (unit: none)
Using a gel permeation chromatograph (GPC) (HLC8020 manufactured by Tosoh Corporation), measurement was performed at 40 ° C. using tetrahydrofuran as a solvent, polystyrene was used as a standard substance, and the number average molecular weight (Mn) of the halogen-containing polyether polyol (Mn). , Weight average molecular weight (Mw).
 上記方法で算出したMn、Mwから、ハロゲン含有ポリエーテルポリオールの分子量分布(Mw/Mn)を算出した。
(3)ハロゲン含有ポリエーテルポリオールの不飽和度(単位:meq/g)
 JIS K-1557記載の方法により、ハロゲン含有ポリエーテルポリオールの不飽和度を算出した。
(4)ハロゲン含有ポリエーテルポリオールの末端構造[II]を持つ割合(単位:mol%)
 ハロゲン含有ポリエーテルポリオールをd-クロロホルム中で無水トリフルオロ酢酸と反応させることによりトリフルオロ酢酸エステルとし、核磁気共鳴測定装置(日本電子社製、JNM-ECZ400S)を用いたプロトン核磁気共鳴分光(H-NMR)スペクトル分析を行い、末端水酸基の1級化率を、次式により算出した。
From the Mn and Mw calculated by the above method, the molecular weight distribution (Mw / Mn) of the halogen-containing polyether polyol was calculated.
(3) Degree of unsaturation of halogen-containing polyether polyol (unit: meq / g)
The degree of unsaturation of the halogen-containing polyether polyol was calculated by the method described in JIS K-1557.
(4) Percentage of halogen-containing polyether polyol having the terminal structure [II] (unit: mol%)
Proton nuclear magnetic resonance spectroscopy (JNM-ECZ400S, manufactured by JEOL Ltd.) was used to obtain trifluoroacetic anhydride by reacting a halogen-containing polyether polyol with trifluoroacetic anhydride in d-chloroform. 1 1 H-NMR) spectral analysis was performed, and the primaryization rate of the terminal hydroxyl group was calculated by the following formula.
 1)上記式(1)中、Xが塩素原子でAが水素原子の場合
   末端構造[II]率(mol%)=[(s/2)/(r+s/2)]×100。
1) In the above formula (1), when X is a chlorine atom and A is a hydrogen atom, the terminal structure [II] rate (mol%) = [(s / 2) / (r + s / 2)] × 100.
 ここで、rは5.3-5.4ppm付近の構造単位[I]由来の2級水酸基の結合したメチン基由来の信号の積分値、sは4.3ppm付近の1級水酸基の結合したメチレン基由来の信号の積分値を表す。 Here, r is the integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from the structural unit [I] derived at about 5.3-5.4 ppm is bonded, and s is the methylene group to which the primary hydroxyl group is bonded near 4.3 ppm. Represents the integral value of the signal derived from the group.
 2)上記式(1)中、Xが塩素原子でAがメチル基の場合
   末端構造[II]率(mol%)=[(t/3)/(u+s/2)]×100。
2) In the above formula (1), when X is a chlorine atom and A is a methyl group, the terminal structure [II] ratio (mol%) = [(t / 3) / (u + s / 2)] × 100.
 ここで、tは1.3-1.4ppm付近の2級水酸基が結合した炭素に結合したメチル基由来の信号の積分値、rは5.2-5.4ppm付近の構造単位[I]及び[II]由来の2級水酸基の結合したメチン基由来の信号の積分値、sは4.3ppm付近の1級水酸基の結合したメチレン基由来の信号の積分値を表す。 Here, t is the integrated value of the signal derived from the methyl group bonded to the carbon to which the secondary hydroxyl group is bonded in the vicinity of 1.3-1.4 ppm, and r is the structural unit [I] in the vicinity of 5.2-5.4 ppm and the structural unit [I]. The integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from [II] is bonded, and s represents the integrated value of the signal derived from the methylene group to which the primary hydroxyl group is bonded near 4.3 ppm.
 3)上記式(1)中、Xが塩素原子でAがエチル基の場合
    末端構造[II]率(mol%)=[v/(r+v+s/2)]×100。
3) In the above formula (1), when X is a chlorine atom and A is an ethyl group, the terminal structure [II] ratio (mol%) = [v / (r + v + s / 2)] × 100.
 ここで、rは5.3-5.4ppm付近の構造単位[I]由来の2級水酸基の結合したメチン基由来の信号の積分値、vは5.1-5.2ppm付近の構造単位[II]由来の2級水酸基の結合したメチン基由来の信号の積分値、sは4.3ppm付近の1級水酸基の結合したメチレン基由来の信号の積分値を表す。 Here, r is the integrated value of the signal derived from the methine group to which the secondary hydroxyl group derived from the structural unit [I] derived from the structural unit [I] is bonded at about 5.3-5.4 ppm, and v is the structural unit around 5.1-5.2 ppm [ II] represents the integrated value of the signal derived from the methine group to which the secondary hydroxyl group is bonded, and s represents the integrated value of the signal derived from the methylene group to which the primary hydroxyl group is bonded at around 4.3 ppm.
 実施例1.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]214.3g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、4.32gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液40.2mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-1]を得た。得られた組成物[A-1]を95℃に昇温し、エピクロロヒドリン(ECH)840mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、エチレンオキシド(EO)140gを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留エチレンオキシドの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-1]を得た。得られたハロゲン含有ポリエーテルポリオール[A-1]の分子量は2500g/mol、不飽和度は0.002meq/g、Mw/Mnは1.36、末端[II]率は90mol%であった。
Example 1.
Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 214.3 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.32 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 40.2 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., TiBAL) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-1] was obtained. The temperature of the obtained composition [A-1] was raised to 95 ° C., and 840 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, 140 g of ethylene oxide (EO) was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual ethylene oxide was removed under a reduced pressure of 0.5 kPa to remove pale yellow halogen. A contained polyether polyol [A-1] was obtained. The obtained halogen-containing polyether polyol [A-1] had a molecular weight of 2500 g / mol, an unsaturated degree of 0.002 meq / g, Mw / Mn of 1.36, and a terminal [II] ratio of 90 mol%.
 実施例2.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量600のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP600;水酸基価187mgKOH/g]242.7g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、3.26gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソプロポキシアルミニウム(川研ファインケミカル社製、PADM)の1.0mol/Lのトルエン溶液30.3mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-2]を得た。得られた組成物[A-2]を95℃に昇温し、エピクロロヒドリン(ECH)720mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、プロピレンオキシド(PO)150mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留POの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-2]を得た。得られたハロゲン含有ポリエーテルポリオール[A-2]の分子量は3020g/mol、不飽和度は0.008meq/g、Mw/Mnは1.40、末端[II]率は89mol%であった。
Example 2.
Polypropylene glycol (PPG) with a molecular weight of 600 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP600; hydroxyl value 187 mgKOH / g ] 242.7 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.26 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 30.3 mL of a 1.0 mol / L toluene solution of triisopropoxyaluminum (PADM manufactured by Kawaken Fine Chemicals Co., Ltd.) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to prepare the composition. [A-2] was obtained. The temperature of the obtained composition [A-2] was raised to 95 ° C., and 720 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, 150 mL of propylene oxide (PO) was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual PO was removed under a reduced pressure of 0.5 kPa to obtain a pale yellow color. A halogen-containing polyether polyol [A-2] was obtained. The obtained halogen-containing polyether polyol [A-2] had a molecular weight of 3020 g / mol, an unsaturated degree of 0.008 meq / g, Mw / Mn of 1.40, and a terminal [II] ratio of 89 mol%.
 実施例3.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]226.6g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、4.56gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液42.5mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-3]を得た。得られた組成物[A-3]を95℃に昇温し、ECH720mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、PO100mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留POの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-3]を得た。得られたハロゲン含有ポリエーテルポリオール[A-3]の分子量は2040g/mol、不飽和度は0.004meq/g、Mw/Mnは1.45、末端[II]率は54mol%であった。
Example 3.
Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 226.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.56 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 42.5 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., TiBAL) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-3] was obtained. The obtained composition [A-3] was heated to 95 ° C., and 720 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, 100 mL of PO was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual PO was removed under a reduced pressure of 0.5 kPa to remove a pale yellow halogen-containing polyether polyol. [A-3] was obtained. The obtained halogen-containing polyether polyol [A-3] had a molecular weight of 2040 g / mol, an unsaturated degree of 0.004 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 54 mol%.
 実施例4.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]226.6g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、4.56gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液42.5mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-4]を得た。得られた組成物[A-4]を95℃に昇温し、ECH720mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、PO65mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留POの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-4]を得た。得られたハロゲン含有ポリエーテルポリオール[A-4]の分子量は2020g/mol、不飽和度は0.003meq/g、Mw/Mnは1.45、末端[II]率は35mol%であった。
Example 4.
Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 226.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 4.56 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 42.5 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., TiBAL) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-4] was obtained. The obtained composition [A-4] was heated to 95 ° C., and 720 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, while intermittently supplying 65 mL of PO so as to maintain the reaction pressure of 0.25 MPa or less, after the reaction was completed, residual PO was removed under a reduced pressure of 0.5 kPa to remove a pale yellow halogen-containing polyether polyol. [A-4] was obtained. The obtained halogen-containing polyether polyol [A-4] had a molecular weight of 2020 g / mol, an unsaturated degree of 0.003 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 35 mol%.
 実施例5.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量1000のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP1000;水酸基価112mgKOH/g]291.5g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、2.38gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液21.86mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-5]を得た。得られた組成物[A-5]を95℃に昇温し、ECH840mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、PO105mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留POの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-5]を得た。得られたハロゲン含有ポリエーテルポリオール[A-5]の分子量は4700g/mol、不飽和度は0.004meq/g、Mw/Mnは1.45、末端[II]率は83mol%であった。
Example 5.
Polypropylene glycol (PPG) with a molecular weight of 1000 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP1000; hydroxyl value 112 mgKOH / g ] 291.5 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 2.38 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 21.86 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (TiBAL manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-5] was obtained. The obtained composition [A-5] was heated to 95 ° C., and 840 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, 105 mL of PO was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual PO was removed under a reduced pressure of 0.5 kPa to remove a pale yellow halogen-containing polyether polyol. [A-5] was obtained. The obtained halogen-containing polyether polyol [A-5] had a molecular weight of 4700 g / mol, an unsaturated degree of 0.004 meq / g, Mw / Mn of 1.45, and a terminal [II] ratio of 83 mol%.
 実施例6.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]180.2g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、3.63gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液33.8mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-6]を得た。得られた組成物[A-6]を95℃に昇温し、ECH840mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留ECHの除去をおこなった。次いで、ブチレンオキシド(BO)220mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留BOの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-6]を得た。得られたハロゲン含有ポリエーテルポリオール[A-6]の分子量は3010g/mol、不飽和度は0.008meq/g、Mw/Mnは1.48、末端[II]率は82mol%であった。
Example 6.
Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 180.2 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 3.63 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 33.8 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (TiBAL manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, the internal temperature was set to 100 ° C., and a vacuum treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-6] was obtained. The obtained composition [A-6] was heated to 95 ° C., and 840 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual ECH was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Then, 220 mL of butylene oxide (BO) was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual BO was removed under a reduced pressure of 0.5 kPa to obtain a pale yellow color. A halogen-containing polyether polyol [A-6] was obtained. The obtained halogen-containing polyether polyol [A-6] had a molecular weight of 3010 g / mol, an unsaturated degree of 0.008 meq / g, Mw / Mn of 1.48, and a terminal [II] ratio of 82 mol%.
 実施例7.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量1000のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP1000;水酸基価112mgKOH/g]136.0g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、1.00gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液9.3mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-7]を得た。得られた組成物[A-7]を95℃に昇温し、ECH840mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留ECHの除去をおこなった。次いで、ブチレンオキシド(BO)134mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留BOの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-7]を得た。得られたハロゲン含有ポリエーテルポリオール[A-7]の分子量は9300g/mol、不飽和度は0.016meq/g、Mw/Mnは1.62、末端[II]率は85mol%であった。
Example 7.
Polypropylene glycol (PPG) with a molecular weight of 1000 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Chemical Industries, Ltd. (trade name) Sanniks PP1000; hydroxyl value 112 mgKOH / g ] 136.0 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 1.00 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 9.3 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (TiBAL manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [A-7] was obtained. The obtained composition [A-7] was heated to 95 ° C., and 840 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual ECH was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Then, while intermittently supplying 134 mL of butylene oxide (BO) so as to maintain the reaction pressure of 0.25 MPa or less, after the reaction was completed, the residual BO was removed under a reduced pressure of 0.5 kPa to obtain a pale yellow color. A halogen-containing polyether polyol [A-7] was obtained. The obtained halogen-containing polyether polyol [A-7] had a molecular weight of 9300 g / mol, an unsaturated degree of 0.016 meq / g, Mw / Mn of 1.62, and a terminal [II] ratio of 85 mol%.
 実施例8.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量600の硬質フォーム用ポリエステルポリオール(PES)[川崎化成社製、(商品名)マキシモールRLK-087;水酸基価203mgKOH/g]335.6g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、9.78gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソプロポキシアルミニウム(川研ファインケミカル社製、PADM)を9.30g加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[A-8]を得た。得られた組成物[A-8]を95℃に昇温し、ECH360mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、PO330mLを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留POの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[A-8]を得た。得られたハロゲン含有ポリエーテルポリオール[A-8]の分子量は1730g/mol、不飽和度は0.014meq/g、Mw/Mnは1.64、末端[II]率は88mol%であった。
Example 8.
Polyester polyol (PES) for hard foam with a molecular weight of 600 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Kawasaki Kasei Co., Ltd., (trade name) Maximol RLK-087; hydroxyl group Value 203 mgKOH / g] 335.6 g and tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.), 9.78 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 9.30 g of triisopropoxyaluminum (PADM manufactured by Kawaken Fine Chemical Co., Ltd.) was added, the internal temperature was set to 100 ° C., and a reduced pressure treatment of 0.5 kPa was carried out for 2 hours to obtain the composition [A-8]. The obtained composition [A-8] was heated to 95 ° C., and 360 mL of ECH was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, while intermittently supplying 330 mL of PO so as to maintain the reaction pressure of 0.25 MPa or less, after the reaction was completed, residual PO was removed under a reduced pressure of 0.5 kPa to remove a pale yellow halogen-containing polyether polyol. [A-8] was obtained. The obtained halogen-containing polyether polyol [A-8] had a molecular weight of 1730 g / mol, an unsaturated degree of 0.014 meq / g, Mw / Mn of 1.64, and a terminal [II] ratio of 88 mol%.
 上記実施例1~8の結果を表1に併せて示す。 The results of Examples 1 to 8 above are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 比較例1.
 攪拌翼を付した2リットルの四つフラスコに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]181.54g、及びテトラブチルアンモニウムブロミド(富士フイルム和光純薬社製)、3.66gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行った。その後、トリイソブチルアルミニウム(富士フイルム和光純薬社製、TiBAL)の1.0mol/Lのトルエン溶液34.0mLを加え、内温を100℃とし、0.5kPaの減圧処理を2時間行い、組成物[B-1]を得た。得られた組成物[B-1]を95℃に昇温し、エピクロロヒドリン(ECH)1000mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[B-1]を得た。得られたハロゲン含有ポリエーテルポリオール[B-1]の分子量は3010g/mol、不飽和度は0.005meq/g、Mw/Mnは1.46、末端[II]率は1mol%であった。
Comparative example 1.
Polypropylene glycol (PPG) with a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2-liter four-flask equipped with a stirring blade [manufactured by Sanyo Kasei Kogyo Co., Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / G] 181.54 g and Tetrabutylammonium bromide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 3.66 g were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours. Then, 34.0 mL of a 1.0 mol / L toluene solution of triisobutylaluminum (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., TiBAL) was added, the internal temperature was set to 100 ° C., and a vacuum treatment of 0.5 kPa was performed for 2 hours to compose the composition. The thing [B-1] was obtained. The temperature of the obtained composition [B-1] was raised to 95 ° C., and 1000 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was performed at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa to remove pale yellow halogen-containing poly. An ether polyol [B-1] was obtained. The obtained halogen-containing polyether polyol [B-1] had a molecular weight of 3010 g / mol, an unsaturated degree of 0.005 meq / g, Mw / Mn of 1.46, and a terminal [II] ratio of 1 mol%.
 比較例2.
 攪拌翼を付した2リットルのオートクレーブに、活性水素含有化合物として2個の水酸基を有する分子量400のポリプロピレングリコール(PPG)[三洋化成工業社製、(商品名)サンニックスPP400;水酸基価280mgKOH/g]269.0g、及び三フッ化ホウ素ジエチルエーテル錯体[富士フイルム和光純薬社製]3.59gを加えた。フラスコ内を窒素雰囲気とした後、内温を100℃とし、0.5kPaの減圧下で2時間脱水処理を行い、組成物[B-2]を得た。得られた組成物[B-2]を95℃に昇温し、エピクロロヒドリン(ECH)840mLを間欠的に4時間かけて供給した。エピクロロヒドリン供給後、内温85~90℃の範囲で2時間エージングを行った後、95℃、0.5kPaの減圧下で残留エピクロロヒドリンの除去をおこなった。次いで、エチレンオキシド(EO)140gを反応圧力0.25MPa以下を保つように間欠的に供給しながら、反応させた反応終了後、0.5kPaの減圧下で残留エチレンオキシドの除去をおこない、淡黄色のハロゲン含有ポリエーテルポリオール[B-2]を得た。得られたハロゲン含有ポリエーテルポリオール[B-2]の分子量は2200g/mol、不飽和度は0.08meq/g、Mw/Mnは2.46、末端[II]率は53mol%であった。
Comparative example 2.
Polypropylene glycol (PPG) having a molecular weight of 400 having two hydroxyl groups as an active hydrogen-containing compound in a 2 liter autoclave equipped with a stirring blade [manufactured by Sanyo Kasei Kogyo Co., Ltd. (trade name) Sanniks PP400; hydroxyl value 280 mgKOH / g ] 269.0 g and 3.59 g of boron trifluoride diethyl ether complex [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.] were added. After the inside of the flask was made to have a nitrogen atmosphere, the internal temperature was set to 100 ° C., and dehydration treatment was carried out under a reduced pressure of 0.5 kPa for 2 hours to obtain a composition [B-2]. The temperature of the obtained composition [B-2] was raised to 95 ° C., and 840 mL of epichlorohydrin (ECH) was intermittently supplied over 4 hours. After supplying epichlorohydrin, aging was carried out at an internal temperature of 85 to 90 ° C. for 2 hours, and then residual epichlorohydrin was removed under a reduced pressure of 95 ° C. and 0.5 kPa. Next, 140 g of ethylene oxide (EO) was intermittently supplied so as to maintain the reaction pressure of 0.25 MPa or less, and after the reaction was completed, residual ethylene oxide was removed under a reduced pressure of 0.5 kPa to remove pale yellow halogen. A contained polyether polyol [B-2] was obtained. The obtained halogen-containing polyether polyol [B-2] had a molecular weight of 2200 g / mol, an unsaturated degree of 0.08 meq / g, Mw / Mn of 2.46, and a terminal [II] ratio of 53 mol%.
 上記比較例1.2の結果を表2に併せて示す。 The results of Comparative Example 1.2 above are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014

<ポリオールプレミックスの調整>
(1)原料
<<市販のPPG>>
 いずれの実施例、比較例においても、三洋化成社製のサンニックスGP-3000を使用した。
<発泡剤>
 いずれの実施例、比較例においても、発泡剤として、イオン交換水を使用した。
<整泡剤>
 いずれの実施例、比較例においても、シリコーン系整泡剤として、東レ・ダウコーニング社製のSZ-1327を使用した。
<触媒>
 いずれの実施例、比較例においても、触媒としてトリエチレンジアミンをジプロピレングリコールに33重量% の濃度で溶かした溶液(東ソー社製、TEDA-L33)とオクチル酸錫(日本化学産業社製、ニッカオクチックス錫)を使用した。
<イソシアネート化合物>
 いずれの実施例、比較例においても、2,4/2,6異性体の混合比率が80/20のトリレンジイソシアネート(東ソー社製、コロネートT-80)を使用した。

<Adjustment of polyol premix>
(1) Raw material << Commercially available PPG >>
In all of the examples and comparative examples, Sanniks GP-3000 manufactured by Sanyo Kasei Co., Ltd. was used.
<foaming agent>
In all of the examples and comparative examples, ion-exchanged water was used as the foaming agent.
<Foaming agent>
In each of the Examples and Comparative Examples, SZ-1327 manufactured by Toray Dow Corning Co., Ltd. was used as the silicone-based defoaming agent.
<Catalyst>
In both Examples and Comparative Examples, a solution (TEDA-L33 manufactured by Tosoh Corporation) in which triethylenediamine was dissolved in dipropylene glycol at a concentration of 33% by weight as a catalyst and tin octylate (manufactured by Nippon Kagaku Sangyo Co., Ltd., Nikkaoku) were used. Chix tin) was used.
<Isocyanate compound>
In each of the Examples and Comparative Examples, tolylene diisocyanate (Coronate T-80 manufactured by Tosoh Corporation) having a mixing ratio of 2,4 / 2,6 isomers of 80/20 was used.
 表3に示す配合比で、ハロゲン含有ポリエーテルポリオールと水を混合し、さらに、その混合物に、触媒、整泡剤を混合し、それらの混合物を小型の高速撹拌機(プライミクス社製PRIMIX)を用いて毎分2000回転で20分間撹拌混合し、イソシアネート化合物を除く撹拌混合物(以下、プレミックスと記す)を得た。 The halogen-containing polyether polyol and water are mixed at the blending ratios shown in Table 3, and a catalyst and a foam stabilizer are further mixed with the mixture, and the mixture is mixed with a small high-speed stirrer (PRIMIX manufactured by PRIMIX Corporation). The mixture was stirred and mixed at 2000 rpm for 20 minutes to obtain a stirred mixture (hereinafter referred to as premix) excluding the isocyanate compound.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<ポリウレタンフォームの作製>
 上記のように調整したプレミックス1~9を、イソシアネート基の全量(NCO基)と水に含まれる水酸基(OH基)を含めて当該NCO基と反応しうるイソシアネート基反応性基(NCO反応性基)の比率、すなわちNCO/NCO反応性基=1.0となるように所定量のイソシアネート化合物を加え、小型の高速撹拌機(プライミクス社製PRIMIX)を用いて毎分4000回転で8秒間撹拌混合した後、250mm×250mm×250mmのアクリル水槽に直ちに注入し、ポリウレタンフォームを得た。
(ポリウレタンフォームの評価方法)
(1)発泡倍率
 JIS Z-8804に記載の方法で測定したプレミックスの密度を、JIS Z-8807に記載の方法で測定したポリウレタンフォームの密度で除して求めた。
(2)硬化性
 作製したポリウレタンフォームを23℃、50Rh%の恒温室で4時間静置させたのち、フォームカッターを用いてカットした断面を指で押した時の触感と、FT-IR()を用いて2250cm-1付近のNCO基由来のピーク減少量より転化率を算出し、硬化性を評価した。
A:べたつき無し且つ、NCO転化率が85%以上
B:べたつき無し且つNCO転化率が75%以上85%未満、又は強く押した場合にのみ若干のべたつき有り且つNCO転化率が75%以上
C:べたつき有り又は、NCO転化率が75%未満
(3)引張強度
 作製したポリウレタンフォームを23℃、50Rh%の恒温室で24時間静置させたのち、JIS K―6400に準拠した手法で引張強度を測定した。
A:70kPa以上
B:50kPa以上、60kPa未満
C:50kPa未満
(4)圧縮硬度
作製したポリウレタンフォームを23℃、50Rh%の恒温室で24時間静置させたのち、JIS K―6400に準拠した手法で25%圧縮硬度を測定した。
A:70N/314cm以上
B:60N/314cm以上、70N/314cm未満
C:60N/314cm未満
(5)圧縮残留歪率
 作製したポリウレタンフォームを23℃、50Rh%の恒温室で24時間静置させたのち、JIS K―6400に準拠したA法にて圧縮残留歪率を測定した。
A:10%未満 
B:10%以上、20%未満
C:20%以上
(6)難燃性
作製したポリウレタンフォームを23℃、50Rh%の恒温室で24時間静置させたのち、200mm×10mm×10mmの試験片として水平に保持し、左端から38mm炎を15秒接炎しA標線(左端から38mmの位置)からの燃焼距離を測定。試験回数は10回とし、平均値をその試験片の燃焼距離とした。
A:51mm未満
B:51mm以上、127mm未満
C:127mm以上

 実施例9.
 上記ポリウレタンフォームの作製方法に従い、プレミックス1を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が36倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に優れるポリウレタンフォームだった。
<Making polyurethane foam>
Isocyanate group reactive groups (NCO reactivity) capable of reacting the premixes 1 to 9 prepared as described above with the NCO group including the total amount of isocyanate groups (NCO group) and the hydroxyl group (OH group) contained in water. A predetermined amount of isocyanate compound is added so that the ratio of (groups), that is, NCO / NCO reactive group = 1.0, and the mixture is stirred at 4000 rpm for 8 seconds using a small high-speed stirrer (PRIMIX manufactured by Primix). After mixing, it was immediately poured into a 250 mm × 250 mm × 250 mm acrylic water tank to obtain a polyurethane foam.
(Evaluation method of polyurethane foam)
(1) Foaming Magnification The premix density measured by the method described in JIS Z-8804 was divided by the density of the polyurethane foam measured by the method described in JIS Z-8807 to obtain the value.
(2) Curability The produced polyurethane foam was allowed to stand in a constant temperature room at 23 ° C. and 50 Rh% for 4 hours, and then the tactile sensation when the cross section cut with a foam cutter was pressed with a finger and FT-IR (). The conversion rate was calculated from the peak reduction amount derived from the NCO group near 2250 cm -1 and the curability was evaluated.
A: No stickiness and NCO conversion rate is 85% or more B: No stickiness and NCO conversion rate is 75% or more and less than 85%, or there is some stickiness and NCO conversion rate is 75% or more only when pressed strongly C: Sticky or NCO conversion rate is less than 75% (3) Tensile strength After allowing the produced polyurethane foam to stand in a constant temperature room at 23 ° C and 50 Rh% for 24 hours, the tensile strength is determined by a method based on JIS K-6400. It was measured.
A: 70 kPa or more B: 50 kPa or more, less than 60 kPa C: less than 50 kPa (4) Compression hardness A method based on JIS K-6400 after allowing the produced polyurethane foam to stand in a constant temperature room at 23 ° C and 50 Rh% for 24 hours. 25% compression hardness was measured in.
A: 70N / 314cm 2 or more B: 60N / 314cm 2 or more, 70N / 314cm less than 2 C: 60N / 314cm less than 2 (5) Compression residual strain rate The produced polyurethane foam was placed in a constant temperature room at 23 ° C and 50Rh% for 24 hours. After allowing to stand still, the compression residual strain rate was measured by the A method based on JIS K-6400.
A: Less than 10%
B: 10% or more, less than 20% C: 20% or more (6) Flame-retardant After allowing the produced polyurethane foam to stand in a constant temperature room at 23 ° C. and 50 Rh% for 24 hours, a 200 mm × 10 mm × 10 mm test piece. Hold the flame horizontally for 15 seconds from the left end and measure the combustion distance from the A mark line (38 mm from the left end). The number of tests was 10, and the average value was taken as the burning distance of the test piece.
A: Less than 51 mm B: 51 mm or more and less than 127 mm C: 127 mm or more

Example 9.
A polyurethane foam was prepared using Premix 1 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 36 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例10.
 上記ポリウレタンフォームの作製方法に従い、プレミックス2を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が35倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に優れていた。
Example 10.
A polyurethane foam was prepared using Premix 2 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 35 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例11.
 上記ポリウレタンフォームの作製方法に従い、プレミックス3を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が32倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に優れていた。
Example 11.
A polyurethane foam was prepared using Premix 3 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 32 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例12.
 上記ポリウレタンフォームの作製方法に従い、プレミックス4を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が33倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率は良好だった。
Example 12.
A polyurethane foam was prepared using Premix 4 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 33 times, and had good curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例13.
 上記ポリウレタンフォームの作製方法に従い、プレミックス5を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が34倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に優れていた。
Example 13.
A polyurethane foam was prepared using Premix 5 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 34 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例14.
 上記ポリウレタンフォームの作製方法に従い、プレミックス6を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が35倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に優れていた。
Example 14.
A polyurethane foam was prepared using Premix 6 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 35 times and was excellent in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 実施例15.
 上記ポリウレタンフォームの作製方法に従い、プレミックス7を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が30倍で、硬化性に優れ、引張強度と圧縮硬度と圧縮残留歪率は良好だった。
Example 15.
A polyurethane foam was prepared using Premix 7 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 30 times, was excellent in curability, and had good tensile strength, compressive hardness, and compressive residual strain rate.
 実施例16.
 上記ポリウレタンフォームの作製方法に従い、プレミックス8を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が31倍で、硬化性に優れ、引張強度と圧縮硬度と圧縮残留歪率は良好だった。
Example 16.
A polyurethane foam was prepared using Premix 8 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 31 times, was excellent in curability, and had good tensile strength, compressive hardness, and compressive residual strain rate.
 上記実施例9~16の結果を表4に併せて示す。 The results of Examples 9 to 16 are also shown in Table 4.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 比較例3.
 上記ポリウレタンフォームの作製方法に従い、プレミックス8を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が28倍で、硬化性、引張強度、圧縮硬度、圧縮残留歪率に劣るものだった。
Comparative example 3.
A polyurethane foam was prepared using Premix 8 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 28 times and was inferior in curability, tensile strength, compressive hardness, and compressive residual strain rate.
 比較例4.
 上記ポリウレタンフォームの作製方法に従い、プレミックス9を用いてポリウレタンフォームを作製し、評価を行った。当該ポリウレタンフォームは、発泡倍率が33倍で、硬化性は良好だったが、引張強度、圧縮硬度、圧縮残留歪率に劣るものだった。
Comparative example 4.
A polyurethane foam was prepared using Premix 9 according to the above-mentioned method for producing a polyurethane foam, and evaluated. The polyurethane foam had a foaming ratio of 33 times and had good curability, but was inferior in tensile strength, compressive hardness, and compressive residual strain rate.
 上記比較例3,4の結果を表5に併せて示す。 The results of Comparative Examples 3 and 4 above are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく、様々な変更や修正を加えることができることは当業者にとって明らかである。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the essence and scope of the invention.
 なお、2020年4月21日に出願された日本特許出願2020-075198号、及び2021年3月2日に出願された日本特許出願2021-032276号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The specification, claims, drawings and abstracts of Japanese Patent Application No. 2020-075198 filed on April 21, 2020 and Japanese Patent Application No. 2021-032276 filed on March 2, 2021. The entire contents of the document are cited herein and incorporated as disclosure of the specification of the present invention.

Claims (7)

  1.  下記式(1)で示され、分子量が500以上10,000以下で、不飽和度が0.02meq/g以下でかつ、末端に下記構造単位[II]を持つ割合が2mol%以上99.5mol%以下であるハロゲン含有ポリエーテルポリオール。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、Qは下記構造単位[I]と下記構造単位[II]とを含む重合体成分を表し、mは2~3の整数、Rは活性水素含有化合物残基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式[I]中、Xはハロゲン原子を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記構造単位[II]中、Aは水素原子又は炭素数が1~10の炭化水素基を表す。)
    It is represented by the following formula (1), the molecular weight is 500 or more and 10,000 or less, the degree of unsaturation is 0.02 meq / g or less, and the ratio of having the following structural unit [II] at the end is 2 mol% or more and 99.5 mol. % Or less halogen-containing polyether polyol.
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1), Q represents a polymer component containing the following structural unit [I] and the following structural unit [II], m is an integer of 2 to 3, and R 1 is an active hydrogen-containing compound residue. show.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula [I], X represents a halogen atom.)
    Figure JPOXMLDOC01-appb-C000003
    (In the structural unit [II], A represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
  2.  Qが下記構造単位[III]と下記構造単位[IV]とを含む重合体成分を表すことを特徴とする、上記式(1)で示される請求項1に記載のハロゲン含有ポリエーテルポリオール。
    Figure JPOXMLDOC01-appb-C000004
    (上記構造単位[III]中、lは2以上100以下の整数を表す)
    Figure JPOXMLDOC01-appb-C000005
    (上記構造単位[IV]中、nは2以上100以下の整数を表す。)
    The halogen-containing polyether polyol according to claim 1, wherein Q represents a polymer component containing the following structural unit [III] and the following structural unit [IV].
    Figure JPOXMLDOC01-appb-C000004
    (In the above structural unit [III], l represents an integer of 2 or more and 100 or less)
    Figure JPOXMLDOC01-appb-C000005
    (In the structural unit [IV], n represents an integer of 2 or more and 100 or less.)
  3.  上記構造単位[I]中、Xが塩素原子であり、上記構造単位[II]中、Aが水素、メチル基又はエチル基である請求項1又は2に記載のハロゲン含有ポリエーテルポリオール。 The halogen-containing polyether polyol according to claim 1 or 2, wherein X is a chlorine atom in the structural unit [I] and A is a hydrogen, methyl group or ethyl group in the structural unit [II].
  4.  末端に構造単位[II]を持つ割合が50mol%以上99.5mol%以下である請求項1乃至3のいずれかに記載のハロゲン含有ポリエーテルポリオール。 The halogen-containing polyether polyol according to any one of claims 1 to 3, wherein the proportion having the structural unit [II] at the terminal is 50 mol% or more and 99.5 mol% or less.
  5.  オニウム塩、ルイス酸及び活性水素含有化合物を含む組成物の存在下、アルキレンオキシドの開環重合を行うハロゲン含有ポリエーテルポリオールの製造方法において、前記活性水素含有化合物中の活性水素1モルに対する、前記オニウム塩の使用量が0.001~0.1モルの範囲であり、前記ルイス酸の使用量が0.002~0.2モルの範囲であることを特徴とする請求項1乃至4のいずれかに記載のハロゲン含有ポリエーテルポリオールの製造方法。 In a method for producing a halogen-containing polyether polyol in which a ring-opening polymerization of an alkylene oxide is carried out in the presence of a composition containing an onium salt, a Lewis acid and an active hydrogen-containing compound, the above-mentioned method with respect to 1 mol of active hydrogen in the active hydrogen-containing compound. Any of claims 1 to 4, wherein the amount of the onium salt used is in the range of 0.001 to 0.1 mol, and the amount of the Lewis acid used is in the range of 0.002 to 0.2 mol. A method for producing a halogen-containing polyether polyol according to the above.
  6.  請求項1乃至4のいずれかに記載のハロゲン含有ポリエーテルポリオール残基を分子構造中に含有することを特徴とするポリウレタン。 A polyurethane characterized by containing the halogen-containing polyether polyol residue according to any one of claims 1 to 4 in the molecular structure.
  7.  請求項1乃至4のいずれかに記載のハロゲン含有ポリエーテルポリオール残基を分子構造中に含有することを特徴とする、発泡倍率1.2倍以上100倍以下のポリウレタンフォーム。 A polyurethane foam having a foaming ratio of 1.2 times or more and 100 times or less, which comprises the halogen-containing polyether polyol residue according to any one of claims 1 to 4 in the molecular structure.
PCT/JP2021/015427 2020-04-21 2021-04-14 Halogen-containing polyether polyol WO2021215327A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020075198 2020-04-21
JP2020-075198 2020-04-21
JP2021-032276 2021-03-02
JP2021032276A JP2021172817A (en) 2020-04-21 2021-03-02 Halogen-containing polyether polyol

Publications (1)

Publication Number Publication Date
WO2021215327A1 true WO2021215327A1 (en) 2021-10-28

Family

ID=78269275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015427 WO2021215327A1 (en) 2020-04-21 2021-04-14 Halogen-containing polyether polyol

Country Status (1)

Country Link
WO (1) WO2021215327A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171766A1 (en) * 2022-03-11 2023-09-14 東ソー株式会社 Composition for flexible polyurethane foam formation and flexible polyurethane foam
WO2023171762A1 (en) * 2022-03-11 2023-09-14 東ソー株式会社 Flexible polyurethane foam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064347A (en) * 1999-09-01 2001-03-13 Toyota Motor Corp Production of low-density flexible polyurethane foam for vehicle seat cushion
JP2014101529A (en) * 2014-03-13 2014-06-05 Nippon Zeon Co Ltd Polyether polymer
JP2017141432A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Composition comprising phosphazenium compound, lewis acid and active hydrogen-containing compound
JP2018002846A (en) * 2016-06-30 2018-01-11 東ソー株式会社 Composition containing onium salt, lewis acid compound, and active hydrogen-containing compound
JP2018123294A (en) * 2017-01-27 2018-08-09 東ソー株式会社 Halogen-containing polyether polyol and polyurethane comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064347A (en) * 1999-09-01 2001-03-13 Toyota Motor Corp Production of low-density flexible polyurethane foam for vehicle seat cushion
JP2014101529A (en) * 2014-03-13 2014-06-05 Nippon Zeon Co Ltd Polyether polymer
JP2017141432A (en) * 2016-02-10 2017-08-17 東ソー株式会社 Composition comprising phosphazenium compound, lewis acid and active hydrogen-containing compound
JP2018002846A (en) * 2016-06-30 2018-01-11 東ソー株式会社 Composition containing onium salt, lewis acid compound, and active hydrogen-containing compound
JP2018123294A (en) * 2017-01-27 2018-08-09 東ソー株式会社 Halogen-containing polyether polyol and polyurethane comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171766A1 (en) * 2022-03-11 2023-09-14 東ソー株式会社 Composition for flexible polyurethane foam formation and flexible polyurethane foam
WO2023171762A1 (en) * 2022-03-11 2023-09-14 東ソー株式会社 Flexible polyurethane foam

Similar Documents

Publication Publication Date Title
CN102341420B (en) Highly elastic flexible polyurethane foams
JP6953850B2 (en) Halogen-containing polyether polyol and polyurethane composed of it
US11352479B2 (en) Rigid polyurethane foam containing reactive flame retardant
US20090036562A1 (en) Process for preparing closed-cell water-blown rigid polyurethane foams having improved mechanical properties
WO2021215327A1 (en) Halogen-containing polyether polyol
WO2022158396A1 (en) Halogen-containing polyetherester polyol
JP2006063344A (en) Active hydrogen component and method for producing foam
EP3374410A1 (en) Reactive flame retardants for polyurethane and polyisocyanurate foams
JP4883490B2 (en) Composition for forming water-foamed rigid polyisocyanurate foam, method for producing water-foamed rigid polyisocyanurate foam using the composition, and water-foamed rigid polyisocyanurate foam obtained by the production method
JP3948014B2 (en) Method for producing rigid polyisocyanurate foam
CN105555850B (en) The pure and mild polyol blend of polyester polyols and rigid polyurethane foams manufacture
JP2020180169A (en) Polyurethane foam-forming composition
CN103619904A (en) Polyol formulations for improved green strength of polyisocyanurate rigid foams
JP7072345B2 (en) Polyurethane foam-forming composition
JP2021172817A (en) Halogen-containing polyether polyol
PL208904B1 (en) Method of preparing polyurethane-modified polyisocyanurate foam
EP0635527B1 (en) Use of a halogen-free trialkyl phosphate in a process for producing polyisocyanurate foams
JP2022111064A (en) Halogen-containing polyetherester polyol
JP5206303B2 (en) Composition for producing flame retardant rigid polyurethane foam, method for producing flame retardant rigid polyurethane foam using the composition, and flame retardant rigid polyurethane foam obtained by the production method
JP2007217648A (en) Water-foamable composition for forming rigid polyisocyanurate foam, method for producing water-foamed rigid polyisocyanurate foam using the composition, and water-foamed rigid polyisocyanurate foam obtained by the production method
CN103890047A (en) Polyether alcohols containing particles
JP2020180170A (en) Halogen-containing polyether polyol composition
WO2023074676A1 (en) Polyol composition for polyurethane foam
JP2014524493A (en) Method for producing rigid polyurethane foam
EP0702051A1 (en) Polyurethanes having improved physical properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21793003

Country of ref document: EP

Kind code of ref document: A1