WO2021215265A1 - Carbon dioxide absorbing material, carbon dioxide absorbing material production method, carbon dioxide separation body and carbon dioxide separation and recovery device - Google Patents

Carbon dioxide absorbing material, carbon dioxide absorbing material production method, carbon dioxide separation body and carbon dioxide separation and recovery device Download PDF

Info

Publication number
WO2021215265A1
WO2021215265A1 PCT/JP2021/014974 JP2021014974W WO2021215265A1 WO 2021215265 A1 WO2021215265 A1 WO 2021215265A1 JP 2021014974 W JP2021014974 W JP 2021014974W WO 2021215265 A1 WO2021215265 A1 WO 2021215265A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
secondary amine
containing organopolysiloxane
dimensional structure
absorbent
Prior art date
Application number
PCT/JP2021/014974
Other languages
French (fr)
Japanese (ja)
Inventor
北村 武昭
Original Assignee
株式会社 Acr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Acr filed Critical 株式会社 Acr
Priority to JP2022516957A priority Critical patent/JP7333674B2/en
Publication of WO2021215265A1 publication Critical patent/WO2021215265A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a carbon dioxide absorbent and a method for producing a carbon dioxide absorbent, which adsorbs and separates carbon dioxide from the atmosphere at normal temperature and pressure, and recovers or supplies carbon dioxide under vacuum pressure. Further, the present invention relates to a carbon dioxide separator and a carbon dioxide separation / recovery device that separates, recovers or supplies carbon dioxide with energy saving.
  • plants promote photosynthesis by absorbing carbon dioxide as they grow. It is known that the growth rate of plants is increased by promoting photosynthesis.
  • carbon dioxide By absorbing carbon dioxide from the stomata of the leaves, it promotes photosynthesis, has a taste of vegetables, flowers and fruit trees, has a long shelf life after harvesting, has a great effect on color gloss and enlargement, and has a great effect on vegetables, flowers, Fruit trees can be produced with higher quality.
  • the period requiring carbon dioxide is long, from the growing period to the late flowering period and the harvesting period, and in large-scale house cultivation and indoor cultivation, it is replaced with artificial meteorological equipment, gas cylinders, door rai ice and carbon dioxide generators.
  • the problem was that the frequency was high and the cost was high.
  • Patent Document 1 discloses a solid carbon dioxide absorber in which mesoporous silica such as SBA-15 having high thermal stability is used as a support and a silane coupling agent is chemically bonded to the surface thereof.
  • the silane coupling agent is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- ( 2-Aminoethyl) -3-aminopropylmethyldimethoxysilane, (3-trimethoxysilylpropyl) diethylenetriamine, in which alcohol is formed at the end of the molecule to form silanol obtained by hydrolysis, and the support is silica and dehydrated. It is condensed and bonded.
  • the other of the molecules consists of an organic alkyl chain with primary and / or secondary amino groups.
  • the silane coupling agent cannot fill the entire pore volume of the mesoporous silica support, has a low density of amino groups that absorb carbon dioxide, and has a problem that the reaction point for absorption is not sufficient. Further, although 3-aminopropyltriethoxysilane APS (gel) alone is disclosed in Examples, the specific surface area is as small as 2 m 2 / g, and the amount of CO 2 adsorbed in the absence of water is inferior.
  • Patent Document 2 discloses a solid carbon dioxide absorber supported on a support by using 2-isopropylaminoethanol alone or a mixture of piperazines.
  • Patent Document 3 discloses a carbon dioxide separating material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on the support.
  • Patent Document 4 describes tertiary alkanolamines and tertiary alkylamines as catalysts such as bis (2,4-pentanenate) magnesium, bis (2,4-pentanezionate) cobalt, and bis (2,4-pentane).
  • catalysts such as bis (2,4-pentanenate) magnesium, bis (2,4-pentanezionate) cobalt, and bis (2,4-pentane).
  • a suspended liquid adsorbent or a solid adsorbent carried on a support is disclosed.
  • Japanese Unexamined Patent Publication No. 2004-261670 Japanese Unexamined Patent Publication No. 2012-139622
  • Japanese Patent No. 6600457 Japanese Patent No. 6463186
  • the present invention is a method for producing a solid carbon dioxide absorber and a carbon dioxide absorber that can separate and absorb carbon dioxide in a gas containing carbon dioxide and recover carbon dioxide efficiently with energy saving only at a vacuum pressure close to normal pressure.
  • An object of the present invention is to provide a carbon dioxide separator and a carbon dioxide separation / recovery apparatus using a carbon dioxide absorber.
  • the carbon dioxide absorbent provided by the first aspect of the present invention is to absorb and separate carbon dioxide from the atmosphere, normal temperature and pressure at the gas pressure of the source.
  • the second aspect of the present invention is that the absorbed and separated carbon dioxide is separated and recovered by a VSA (Vacuum Swing Adsorption) method having a vacuum pressure of -80 kPaG to -101 kPaG (gauge pressure) at room temperature, and the separation and recovery energy is 1.0 GJ.
  • VSA Vauum Swing Adsorption
  • the purpose is to make / t-CO 2 equivalent and separation cost 1000 yen / t-CO 2 equivalent.
  • Patent Documents 1, 2, 3 and 4 primary, secondary and tertiary amine compounds are impregnated into a porous support to form a solid carbon dioxide absorber, and these amine compounds and carbon dioxide are used.
  • the primary amine and the secondary amine react with 2 mol of amine and CO 2 as in formulas (a) and (d) to produce carbamate and absorb CO 2.
  • the CO 2 gas contains water, it reacts as in the formulas (b), (c), formula (e), and formula (f) to generate hydrogen carbonate ions and absorb CO 2.
  • Absorption of CO 2 is the sum of the heat of formation is an exothermic reaction, primary amines> secondary amine> larger in the order of tertiary amines, CO 2 absorption rate is faster trend.
  • the desorption (regeneration) of CO 2 is an endothermic reaction, and the speeds of absorption and desorption are in a trade-off relationship.
  • the reaction heat of the tertiary amine is smaller than that of the primary and secondary amines, the absorption rate is slow and the desorption (regeneration) rate is high. Deprived of heat, the desorption speed is not fast.
  • the solid carbon dioxide absorbent of the present invention has a porous structure having a specific surface area of 100 m 2 / g or more, which is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure itself without being encapsulated in a porous support. Therefore, the effective density of amine functional groups per unit weight is high, and a large amount of carbon dioxide can be absorbed. Furthermore, since it is composed of organopolysiloxane, it is highly hydrophobic, and it is not affected by the water content in the gas at most, and only the reaction of formula (d) that produces carbamate is dominant, and the reaction is because the functional group is a secondary amine. The heat is moderate and the absorption rate and desorption rate are well-balanced, enabling efficient separation and recovery of carbon dioxide.
  • the CO 2 absorber of the present invention has reached a secondary amine-containing organopolysiloxane.
  • the present inventors have been able to absorb carbon dioxide in the air, at room temperature and under normal pressure, and desorb it under vacuum pressure to recover carbon dioxide.
  • a low cost carbon dioxide absorber and recovery method can be provided. That is, the present invention constitutes the following items 1 to 13.
  • a carbon dioxide absorbent that separates and recovers carbon dioxide and is characterized by being composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following general formula [I]. ..
  • Item 2 The carbon dioxide absorber according to Item 1, wherein the secondary amine-containing organopolysiloxane is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [II].
  • Item 3 The carbon dioxide absorber according to Item 1, wherein the secondary amine-containing organopolysiloxane is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [III].
  • Item 4 The carbon dioxide absorber according to any one of Items 1 to 3, wherein the secondary amine-containing organopolysiloxane having a three-dimensional structure does not invade or composite with the porous support.
  • Item 5 The carbon dioxide absorber according to any one of Items 1 to 4, wherein the primary average particle size of the secondary amine-containing organopolysiloxane having a three-dimensional structure is 500 nm or less.
  • Item 6 The carbon dioxide absorber according to any one of Items 1 to 5, wherein the specific surface area of the secondary amine-containing organopolysiloxane having a three-dimensional structure is 100 m 2 / g or more.
  • Item 7 The carbon dioxide absorber according to any one of Items 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having a three-dimensional structure and aminosilane form a siloxane bond.
  • Item 8 The carbon dioxide absorber according to any one of Items 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having a three-dimensional structure and an alkoxysilane form a siloxane bond.
  • the secondary amine-containing organopolysiloxane having the three-dimensional structure includes bis [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, and bis (3-triethoxysilylpropyl).
  • Item 2 The carbon dioxide absorber according to any one of Items 1 to 6, wherein at least one is selected from the group of amine and bis [3- (triethoxysilyl) propyl] ethylenediamine and dehydrated and condensed. Manufacturing method.
  • the aminosilane is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl)-.
  • Item 7 The method for producing a carbon dioxide absorbent, which is one or more selected from the group of 3-aminopropylmethyldimethoxysilane and (3-trimethoxysilylpropyl) diethylenetriamine.
  • the alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyl.
  • the alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyl.
  • the method for producing a carbon dioxide absorbent according to Item 8 wherein the method for producing a carbon dioxide absorbent is one or more selected from triethoxysilane, diethoxydiphenylsilane, n-propyltriethoxysilane, hexyltriethoxysilane, and decyltriethoxysilane.
  • a wall-flowing ceramic honeycomb and a carbon dioxide absorbent composed of a secondary amine-containing organopolysiloxane having the three-dimensional structure according to any one of Items 1 to 8 are provided, and the carbon dioxide absorbent is the wall-flowing ceramic honeycomb.
  • Item 13 The carbon dioxide separation and recovery device according to Item 12, wherein carbon dioxide is adsorbed and separated under normal temperature and pressure, and carbon dioxide is supplied at room temperature at a vacuum pressure of ⁇ 80 kPaG to ⁇ 101 kPaG (gauge pressure).
  • a carbon dioxide separation and recovery device including a carbon separator.
  • the carbon dioxide absorber of the present invention is more efficient and practical because it can increase the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide with a short time decompression, and is suitable for carbon dioxide reuse. ing.
  • the carbon dioxide absorber of the present invention does not deteriorate the performance of absorption, desorption and reabsorption even when water vapor coexists, and does not require a dehumidification step. It is possible to reduce costs by using the system.
  • FIG. 1 A conceptual diagram of a molecular structure in which a carbon dioxide absorbent material made of a secondary amine-containing organopolysiloxane having a three-dimensional structure has absorbed carbon dioxide.
  • a carbon dioxide absorber in which the end of a secondary amine-containing organopolysiloxane having a three-dimensional structure is modified with N- (2-aminoethyl) -3-aminopropyltrimethoxysilane has a molecular structure in which carbon dioxide is absorbed.
  • FIG. 6 is a conceptual diagram of a molecular structure in which a carbon dioxide absorbent material in which the end of a secondary amine-containing organopolysiloxane having a three-dimensional structure is modified with n-propyltrimethoxysilane absorbs carbon dioxide.
  • Conceptual diagram of carbon dioxide separation and recovery device Conceptual diagram of carbon dioxide separation and recovery device.
  • the carbon dioxide absorber of the present invention is composed only of a secondary amine-containing organopolysiloxane having a three-dimensional structure without being supported on a porous support.
  • n is more preferably an integer of 100 or more.
  • X is more preferably an integer of 1 to 3.
  • an amino represented by the following formula [II] having one secondary amine between two siloxane bonds examples include compounds.
  • n 10 or more.
  • the carbon dioxide absorbent made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention preferably has a primary average particle size of 500 nm or less, more preferably 200 nm or less.
  • the specific surface area of the carbon dioxide absorbent made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention is preferably 100 m 2 / g or more, and more preferably 180 m 2 / g or more.
  • the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention includes bis [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, and bis (3-triethoxysilyl) propyl. It can be produced by selecting at least one from the group of propyl) amine and bis [3- (triethoxysilyl) propyl] ethylenediamine as a raw material and dehydrating and condensing it.
  • the raw material is obtained by mixing with water to form a hydrated sol and dehydrating and condensing the hydrated sol by heating at 80 ° C. to 150 ° C. for 2 to 20 hours. More preferably, heating at 80 to 100 ° C. for 10 to 20 hours is preferable.
  • the aminosilane coupling agent is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino). At least one may be selected from the group of (ethyl) -3-aminopropylmethyldimethoxysilane, (3-trimethoxysilylpropyl) diethylenetriamine.
  • a secondary amine-containing organopolysiloxane having a three-dimensional structure is stirred and dispersed in water, an appropriate amount of the aminosilane coupling agent is added thereto, filtered, and heated and dried at 80 ° C to 130 ° C.
  • a carbon dioxide absorber having a siloxane bond is obtained by dehydrating and condensing the hydroxide residue of the secondary amine-containing organopolysiloxane having a dimensional structure and the aminosilane coupling agent.
  • the aminosilane coupling agent is replaced with the alkoxysilane coupling agent, and in the same manner as described above, the carbon dioxide absorber made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention has a hydroxyl group that cannot be dehydrated and condensed at the terminal.
  • the residue consisting of the above may be treated by subjecting a siloxane bond with an alkoxysilane coupling agent.
  • the alkoxysilane coupling agent is methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldi.
  • At least one may be selected from the group of ethoxysilane, phenyltriethoxysilane, diethoxydiphenylsilane, n-propyltriethoxysilane, hexyltriethoxysilane and decyltriethoxysilane.
  • a secondary amine-containing organopolysiloxane having a three-dimensional structure is stirred and dispersed in water, an appropriate amount of the alkoxysilane coupling agent is added thereto, filtered, and heated and dried at 80 ° C to 130 ° C.
  • a carbon dioxide absorber having a siloxane bond is obtained by dehydrating and condensing the hydroxide residue of the secondary amine-containing organopolysiloxane having a three-dimensional structure and the aminosilane coupling agent.
  • the sol of the present invention may be molded into a separation membrane and a separator made of a secondary amine-containing organopolysiloxane having a three-dimensional structure.
  • a diesel particulate filter (hereinafter referred to as DPF) that collects soot and burns and purifies it, which is used for aftertreatment of diesel exhaust gas in automobiles, may be used.
  • the DPF is generally a wall-circulating ceramic honeycomb structure, and the porosity of the wall is preferably 50 to 65%, more preferably 60 to 65%, from the viewpoint of increasing the effective volume of the carbon dioxide absorbent.
  • the average hole diameter of the wall is preferably 7 to 20 ⁇ m, preferably 13 to 20 ⁇ m.
  • the number of honeycomb cells is preferably 200 to 400, more preferably 300 to 400.
  • the wall thickness is preferably 0.3 to 0.46 mm, more preferably 0.3 to 0.4 mm.
  • the hydrated sol of the present invention is impregnated in the wall of the DPF to form a secondary amine-containing organopolysiloxane having a three-dimensional structure, and a isolate can be obtained.
  • a conceptual diagram of the separated body is shown in FIG.
  • the hydrated sol of the present invention may be molded into the shape of sleeves, pellets and beads by a known method such as a pelletizer, heat-dehydrated and condensed, and filled in the absorption ridge for use. Since the shape can be processed without using a binder during the molding process, there is an advantage that the carbon dioxide absorption performance can be maintained.
  • Carbon dioxide separation and recovery device In the carbon dioxide separation and recovery apparatus of the present invention, a secondary amine-containing organopolysiloxane having a porous three-dimensional structure without using a support is supported on a sleeve, an absorber formed into pellets, a DPF, or the like.
  • a plate-shaped or sleeve-shaped work piece in which a film is formed on an aggregate having a separate body or a mesh or a mesh is filled in the adsorption column shown in FIG. Absorb (for example, 5 minutes).
  • Table 1 shows the names of the symbols appearing in FIG.
  • carbon dioxide can be desorbed (separated) using a vacuum pump at reduced pressure of -80 to -101 kPaG (gauge pressure) and normal temperature (for example, 5 minutes). Carbon dioxide is absorbed and desorbed alternately in a cycle, and if necessary for carbon dioxide recycling, it is held in a buffer tank and / or collected and stored in a compression cylinder with a pressure pump.
  • Table 2 shows an example of the operation method of the carbon dioxide separation and recovery device of the present invention.
  • the cleaning steps shown in Table 2 may be performed according to the recycling application in which it is necessary to increase the purity of carbon dioxide. For example, in the case of growing a plant that uses carbon dioxide on the spot, a washing step is not required.
  • Example 1 comprises a secondary amine-containing organopolysiloxane having a three-dimensional network structure by dehydrating and condensing hydrolyzed silanol using bis [3- (trimethoxysilyl) propyl] amine as a raw material. A carbon dioxide absorber was obtained.
  • Example 2 is the same as in Example 1 except that bis [3- (trimethoxysilyl) propyl] amine is replaced with bis [3- (trimethoxysilyl) propyl] ethylenediamine. A carbon absorber was obtained.
  • Example 3 the terminal hydroxyl group of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was used as N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. It was dehydrated and condensed and treated. First, while stirring 30 g of ion-exchanged water, 1 g of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dispersed therein, and N- (2-aminoethyl) -3-amino was dispersed therein. 0.1 g of propyltrimethoxysilane was added, and stirring was continued for 30 minutes.
  • the obtained carbon dioxide absorbent had an average particle size of 274 nm and a specific surface area of 174 m 2 / g.
  • Example 4 the terminal hydroxyl group of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dehydrated and condensed with n-propyltriethoxysilane. First, while stirring 30 g of ion-exchanged water, 1 g of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dispersed, and 0.1 g of n-propyltriethoxysilane was added thereto to 30. Stirring for minutes was continued. Then, after washing with filtered water, it was dried at 80 ° C.
  • the treated powder was pulverized in a mortar to obtain a carbon dioxide absorbent.
  • the obtained carbon dioxide absorbent had an average particle size of 258 nm and a specific surface area of 176 m 2 / g.
  • Comparative Example 1 a powder of a carbon dioxide solid absorbent treated with (3-trimethoxysilylpropyl) diethylenetriamine using mesoporous silica SBA-15 as a support was used.
  • TEOS tetraethoxysilane
  • Kishida tetraethoxysilane
  • 110 g manufactured by Chemical Co., Ltd. was added, and the mixture was stirred for 5 minutes.
  • the solid matter recovered by suction filtration of the cooled mixture was washed with dehydrated toluene 200 cm 3 (manufactured by Wako Pure Chemical Industries, Ltd.) and then dried overnight in a constant temperature bath maintained at 60 ° C. (3-trimethoxy).
  • a support powder treated with silylpropyl) diethylenetriamine was obtained. This powder had an average particle size of 10 ⁇ m and a specific surface area of 355 m 2 / g.
  • the obtained powder was used as a carbon dioxide solid absorber in the carbon dioxide separation / recovery performance evaluation test described later.
  • Comparative Example 2 is a gel obtained by dehydration condensation of 3-aminopropyltriethoxysilane without using a support.
  • 3-aminopropyltriethoxysilane manufactured by Aldrich, USA
  • Teflon registered trademark
  • This powder had an average particle size of 3 ⁇ m and a specific surface area of 0.1 m 2 / g.
  • the obtained powder was used as a carbon dioxide solid absorber in the carbon dioxide separation / recovery performance evaluation test described later.
  • Comparative Example 3 is a carbon dioxide absorbent obtained by treating beads of polymethylmethacrylate PMMA with 2-isopropylaminoethanol (IPAE). First, 2-isopropylaminoethanol (IPAE) was weighed in a predetermined amount (6.67 g in total) so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade).
  • IPAE 2-isopropylaminoethanol
  • polymethylmethacrylate PMMA beads (Diaion HP2MG manufactured by Mitsubishi Chemical Corporation; effective diameter 0.3 mm or more; specific surface area 570 m 2 / g; pores; A volume of 1.3 mL / g) was added, and the mixture was stirred at room temperature for 2 hours, and then heated to 50 ° C. with a rotary evaporator (N-1000 manufactured by EYELA), and the pressure in the system became 0.03 MPa. The methanol solvent was removed by reducing the pressure to the maximum, and a solid absorbent material in which the amine was uniformly supported on the support was prepared.
  • the total weight of the flask and the reagents was weighed in advance, and the preparation was completed when a weight loss of 20 g corresponding to the methanol solvent was confirmed.
  • the PMMA beads had a specific surface area of 173 m 2 / g. The obtained beads were used as a carbon dioxide absorbent in the carbon dioxide absorption performance evaluation test described later.
  • Comparative Example 4 is a carbon dioxide absorbent obtained by treating mesoporous silica MSU-F with diisopropylated tetraethylenepentamine.
  • IP-TEPA diisopropylated tetraethylenepentamine
  • IP-TEPA (40) / MeOH-F) the obtained IP-TEPA was quantitatively weighed so as to be 40% by weight of the carbon dioxide separating material, and this was weighed in an eggplant flask having a capacity of 300 cc. It was dissolved in 20 g of the obtained methanol (manufactured by Wako Pure Chemical Industries, Ltd .; special grade). Then, this was added to 10 g of a separately weighed support MeOH-F (manufactured by Aldrich; mesoporous silica; specific surface area 550 m 2 / g, pore diameter 20 nm, pore volume 2.0 mL / g), and stirred at room temperature for 2 hours.
  • MeOH-F manufactured by Aldrich; mesoporous silica; specific surface area 550 m 2 / g, pore diameter 20 nm, pore volume 2.0 mL / g
  • Comparative Example 5 beads of a carbon dioxide solid absorbent were obtained in the same manner as in Comparative Example 4, except that the support MSU-F was replaced with beads of polymethylmethacrylate PMMA (HP2MG).
  • IP-TEPA (40) / PPMA) IP-TEPA (40) / PPMA
  • the obtained IP-TEPA was quantitatively weighed so as to be 40% by weight of the carbon dioxide separator, and polymethylmethacrylate PMMA was used as a support.
  • PMMA polymethylmethacrylate
  • the PMMA beads containing IP-TEPA (40) had an average particle size of 0.34 mm and a specific surface area of 99 m 2 / g.
  • the beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later.
  • Comparative Example 6 beads of polymethylmethacrylate PPMA (HP2MG) were treated in the same manner as in Comparative Example 5 except that IP-TEPA was synthesized in place of IP-Spermine to obtain beads of a solid carbon dioxide absorber. Obtained.
  • IP-Spermine Synthetic spermine diisopropylated
  • IP-Spermine (40) / PPMA) the obtained IP-Spermine was quantitatively weighed so as to be 40% by weight of the carbon dioxide separator, and polymethylmethacrylate beads (Mitsubishi Chemical Corporation) as a support.
  • Comparative Example 7 Polymethylmethacrylate PMM beads were treated with N, N, N', N'-tetramethyl-1,6-diaminohexane and [2- (2-benzoxazolyl) phenolate] zinc. , Carbon dioxide solid absorber beads.
  • TMDAH N, N, N', N'-tetramethyl-1,6-diaminohexane
  • BOPZ [2- (2-benzoxazolyl) phenolate] zinc
  • a predetermined amount (6.67 g in total) of the absorbent TMDAH containing the BOPZ was weighed so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade).
  • 10 g of polymethylmethacrylate methanol beads (HP2MG) was added in the same manner as in Comparative Example 3, and after stirring at room temperature for 2 hours, this was used as a rotary evaporator (manufactured by EYELA). While heating to 50 ° C.
  • the pressure in the system was reduced to 0.03 MPa to remove the methanol solvent, and the amine was uniformly treated on the support beads to absorb the carbon dioxide solid.
  • Wood beads were prepared.
  • the treated beads had an average particle size of 0.35 mm and a specific surface area of 168 m 2 / g.
  • the beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later.
  • Comparative Example 7 absorbs solid carbon dioxide in the same manner as in Comparative Example 7 except that [2- (2-benzoxazolyl) phenolate] zinc was replaced with bis (2,4-pentanionate) magnesium.
  • the material was prepared.
  • TMDAH which is a tertiary alkylamine, was added to water and mixed to make TMDAH: 30% by weight and water: 70% by weight.
  • the amount of bis (2,4-pentanionate) magnesium (PDM) added as a catalyst was 2.5% by weight of the amine compound TMDAH. Since the PDM has no solubility in the absorbent TMDAH, it was suspended non-uniformly in the absorbent.
  • a predetermined amount (6.67 g in total) of the absorbent TMDAH containing the PDM was weighed so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade).
  • 10 g of polymethylmethacrylate PMMA beads (HP2MG) was added in the same manner as in Comparative Example 3, and after stirring at room temperature for 2 hours, this was used as a rotary evaporator (manufactured by EYELA). While heating to 50 ° C.
  • the pressure in the system was reduced to 0.03 MPa to remove the methanol solvent, and the amine was uniformly treated on the support beads to absorb the carbon dioxide solid.
  • the material was prepared.
  • the treated beads had an average particle size of 0.34 mm and a specific surface area of 155 m 2 / g.
  • the beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later.
  • Carbon dioxide separation / recovery performance evaluation test 1.0 g of the carbon dioxide absorbers of Examples 1 to 3 and Comparative Examples 1 to 8 thus obtained were filled in a glass U-shaped tube (inner diameter 10 mm, height 150 mm), and both ends were made of glass. Fixed with wool. A glass U-shaped tube filled with the solid absorbent was immersed in a constant temperature water tank, and the temperature was set to 25 ° C. to prepare a reaction tube. A mixed gas of 20% by volume of carbon dioxide and 80% by volume of nitrogen gas was circulated at 0.5 L / min at atmospheric pressure from one side of the reaction tube filled with the solid absorbent.
  • the carbon dioxide concentration in the gas at the inlet and outlet of the reaction tube is continuously measured with a carbon dioxide meter (Gas analyzer VA-3001 manufactured by Horiba Seisakusho), and the difference in carbon dioxide flow rate between the inlet and outlet of the reaction tube is used.
  • the amount of carbon dioxide absorbed (A) for 5 minutes was measured.
  • the inlet of the reaction tube was closed with a valve, and the outlet side was depressurized and exhausted by a vacuum pump, and the carbon dioxide flow rate was continuously measured to measure the amount of carbon dioxide desorption (recovery) (B) for 5 minutes.
  • the vacuum pressure reached -100 kPaG 1 minute after the start of depressurization and was retained thereafter.
  • Table 3 The obtained results are shown in Table 3 as the amount of carbon dioxide (g) per 1 kg of carbon dioxide absorbent.
  • the carbon dioxide absorption amount (A) for 5 minutes at 25 ° C. and 5 at a reduced pressure of -100 kPaG were obtained in the same manner as above, except that water vapor was added to the mixed gas using a humidifier to obtain a relative humidity of 80% RH.
  • the amount of carbon dioxide desorbed (recovered) per minute (B) was measured.
  • the obtained results are shown in Table 4 as the amount of carbon dioxide (g) per 1 kg of carbon dioxide absorbent.
  • Examples 1 to 4 absorb a large amount of carbon dioxide in a short time of 5 minutes at normal temperature and pressure as compared with Comparative Examples 1 to 8, and similarly reduce the pressure for 5 minutes. Desorption (separation) was 90% or more, demonstrating that it can be recovered efficiently.

Abstract

The invention provides a carbon dioxide absorbing material in solid form, capable of separating and absorbing carbon dioxide from a gas containing carbon dioxide, and recovering the carbon dioxide efficiently and in an energy-saving manner, at a vacuum pressure that is only near ordinary pressure. The invention also provides a carbon dioxide absorbing material production method, a carbon dioxide separation body using the carbon dioxide absorbing material, and a carbon dioxide separation recovery device. This carbon dioxide absorbing material is characterized by comprising an organopolysiloxane containing secondary amines, which is represented by general formula [I] and has a three-dimensional structure. [Chem 1] [I] (SiO2·SiO·6CH2)n(NH)x(2CH2)x-1 (in the formula, n = an integer of 10 or greater, and X = integer of 1 to 10.)

Description

二酸化炭素吸収材、二酸化炭素吸収材の製造方法、二酸化炭素分離体および二酸化炭素分離回収装置Carbon dioxide absorber, manufacturing method of carbon dioxide absorber, carbon dioxide separator and carbon dioxide separation and recovery device
 本発明は、二酸化炭素を大気中から常温、常圧で吸着分離し、真空圧力による二酸化炭素を回収または供給する、二酸化炭素吸収材および二酸化炭素吸収材の製造方法に関する。さらに、二酸化炭素を省エネルギーで分離し回収または供給する二酸化炭素分離体および二酸化炭素分離回収装置に関する。 The present invention relates to a carbon dioxide absorbent and a method for producing a carbon dioxide absorbent, which adsorbs and separates carbon dioxide from the atmosphere at normal temperature and pressure, and recovers or supplies carbon dioxide under vacuum pressure. Further, the present invention relates to a carbon dioxide separator and a carbon dioxide separation / recovery device that separates, recovers or supplies carbon dioxide with energy saving.
 近年、地球温暖化に起因すると考えられる気象変動や災害の頻発が、農業生産、住環境、エネルギー消費等に多大な影響を及ぼしている。地球温暖化の原因物質としては大気中の二酸化炭素が着目されており、その発生源として、石炭ガス化ガス(IGCC)、石油、天然ガス等を燃料とする火力発電所、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する製鐵所の転炉、各種製造所におけるボイラー、セメント工場におけるキルン等、さらには、ガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器がある。これらのうち、輸送機器を除くものについては固定的な設備であるため、二酸化炭素の放出を削減する対策を施しやすい設備として期待されており、これら設備から排出される排ガス中の二酸化炭素を分離回収する方法の検討が進められている。 In recent years, the frequent occurrence of climate change and disasters, which are thought to be caused by global warming, has had a great impact on agricultural production, living environment, energy consumption, etc. Attention is being paid to carbon dioxide in the atmosphere as a causative substance of global warming, and as its source, iron oxide is used in coke, a thermal power plant that uses coal gasification gas (IGCC), oil, natural gas, etc. as fuel. Blast furnaces at steel mills to reduce, converters at steel mills that burn carbon in iron iron to make steel, boilers at various factories, kilns at cement factories, etc., and gasoline, heavy oil, light oil, etc. are used as fuel. There are transportation equipment such as automobiles, ships, and aircraft. Of these, equipment other than transportation equipment is fixed equipment, so it is expected to be equipment that makes it easy to take measures to reduce carbon dioxide emissions, and separates carbon dioxide in the exhaust gas emitted from these equipment. The method of recovery is under study.
 また、これとは別に、潜水調査船、宇宙ステーション等の密閉空間において、人の呼吸や機器のエネルギー変換等で排出される二酸化炭素を閉空間外に放出するため、二酸化炭素を分離回収する検討もなされている。 In addition to this, in a closed space such as a submersible research vehicle or a space station, in order to release carbon dioxide emitted by human breathing or energy conversion of equipment to the outside of the closed space, consideration is given to separating and recovering carbon dioxide. It is also done.
 さらに、植物は、成長に伴い二酸化炭素を吸収する事により光合成を促進する。そして、光合成を促進することで、植物の成長速度が速くなることが知られている。二酸化炭素が葉の気孔より吸収されることにより、光合成を促進し、野菜、花、果樹類の味に旨みを持ち、収穫後に日持ちが良く、色つやや肥大に大きな効果をもたらし、野菜、花、果樹類をより高品質に作りあげることができる。 Furthermore, plants promote photosynthesis by absorbing carbon dioxide as they grow. It is known that the growth rate of plants is increased by promoting photosynthesis. By absorbing carbon dioxide from the stomata of the leaves, it promotes photosynthesis, has a taste of vegetables, flowers and fruit trees, has a long shelf life after harvesting, has a great effect on color gloss and enlargement, and has a great effect on vegetables, flowers, Fruit trees can be produced with higher quality.
 果樹、花および野菜類をハウス栽培や室内栽培で生産する農園においては、人工気象器やガスボンベ、ドアライアイスおよび二酸化炭素発生剤等を使用して植物に炭酸ガスを与えている。 In farms that produce fruit trees, flowers and vegetables by house cultivation or indoor cultivation, carbon dioxide gas is given to plants using artificial meteorological equipment, gas cylinders, door rai ice and carbon dioxide generators.
 しかしながら、二酸化炭素を必要とする期間は、成長期から開花後期、収穫期と長く、大規模のハウス栽培や室内栽培では、人工気象器、ガスボンベ、ドアライアイスおよび二酸化炭素発生剤等では、交換頻度が多く、コストが多大になることが課題であった。 However, the period requiring carbon dioxide is long, from the growing period to the late flowering period and the harvesting period, and in large-scale house cultivation and indoor cultivation, it is replaced with artificial meteorological equipment, gas cylinders, door rai ice and carbon dioxide generators. The problem was that the frequency was high and the cost was high.
 排ガスおよび大気中の二酸化炭素を回収またはリサイクルする吸収材および方法が、過去から研究され、そして現在も少ないエネルギーおよび低コストで二酸化炭素を回収する課題解決のため、研究が継続している。 Absorbents and methods for recovering or recycling exhaust gas and carbon dioxide in the atmosphere have been studied for a long time, and research is still ongoing to solve the problem of recovering carbon dioxide with less energy and low cost.
 例えば、熱安定性の高いSBA―15などメソポーラスシリカを支持体として、その表面にシランカップリング剤を化学結合させた固体の二酸化炭素吸収材が、特許文献1に開示されている。 For example, Patent Document 1 discloses a solid carbon dioxide absorber in which mesoporous silica such as SBA-15 having high thermal stability is used as a support and a silane coupling agent is chemically bonded to the surface thereof.
 特許文献1は、シランカプリング剤が、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、(3-トリメトキシシリルプロピル)ジエチレントリアミンであって、分子の末端にアルコシドが加水分解で得られたシラノールを形成し、支持体のシリカと脱水縮合して結合される。分子の他方は、一級および/または二級のアミノ基を有する有機アルキル鎖からなる。シランカップリング剤は、メソポーラスシリカ支持体の細孔容積全体を充填することができず、二酸化炭素を吸収するアミノ基の密度が低く、吸収の反応点が十分でない課題であった。また、実施例に、3-アミノプロピルトリエトキシシランAPS(ゲル)単体が開示されているが、比表面積が2m2/gと少なく、水分非共存のCO2吸着量が劣るものであった。 In Patent Document 1, the silane coupling agent is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- ( 2-Aminoethyl) -3-aminopropylmethyldimethoxysilane, (3-trimethoxysilylpropyl) diethylenetriamine, in which alcohol is formed at the end of the molecule to form silanol obtained by hydrolysis, and the support is silica and dehydrated. It is condensed and bonded. The other of the molecules consists of an organic alkyl chain with primary and / or secondary amino groups. The silane coupling agent cannot fill the entire pore volume of the mesoporous silica support, has a low density of amino groups that absorb carbon dioxide, and has a problem that the reaction point for absorption is not sufficient. Further, although 3-aminopropyltriethoxysilane APS (gel) alone is disclosed in Examples, the specific surface area is as small as 2 m 2 / g, and the amount of CO 2 adsorbed in the absence of water is inferior.
 特許文献2には、2-イソプロピルアミノエタノール単独あるいはピペラジン類を混合して支持体に担持した、固体の二酸化炭素吸収材が開示されている。 Patent Document 2 discloses a solid carbon dioxide absorber supported on a support by using 2-isopropylaminoethanol alone or a mixture of piperazines.
 特許文献3には、窒素原子上に少なくとも2つイソプロピル基を有するポリアミンが支持体に担持した、ポリアミン担持体を含有する二酸化炭素分離材が開示されている。 Patent Document 3 discloses a carbon dioxide separating material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on the support.
 特許文献4には、三級アルカノールアミン及び三級アルキルアミンと、触媒としてビス(2,4-ペンタンジオネイト)マグネシウム、ビス(2,4-ペンタンジオネイト)コバルト、ビス(2,4-ペンタンジオネイト)カルシウム、ビス(2,4-ペンタンジオネイト)亜鉛、ビス(2,4-ペンタンジオネイト)銅及びビス[2-(2-ベンズオキサゾリル)フェノレイト]亜鉛とを含む水溶液に溶解又は懸濁されている液状吸着剤、または、支持体に担持されている固形吸着剤が開示されている。 Patent Document 4 describes tertiary alkanolamines and tertiary alkylamines as catalysts such as bis (2,4-pentanenate) magnesium, bis (2,4-pentanezionate) cobalt, and bis (2,4-pentane). Dissolved in an aqueous solution containing (geonate) calcium, bis (2,4-pentanegeonate) zinc, bis (2,4-pentanegeonate) copper and bis [2- (2-benzoxazolyl) phenolate] zinc. Alternatively, a suspended liquid adsorbent or a solid adsorbent carried on a support is disclosed.
 しかしながら、いずれも脱離(回収)速度が十分でなく、未だ実用化のための省エネルギーおよび低コストまで至っていないのが現状である。 However, the desorption (recovery) speed is not sufficient in either case, and the current situation is that energy saving and low cost for practical use have not yet been reached.
特開2004-261670号公報Japanese Unexamined Patent Publication No. 2004-261670 特開2012-139622号公報Japanese Unexamined Patent Publication No. 2012-139622 特許第6300457号公報Japanese Patent No. 6600457 特許第6463186号公報Japanese Patent No. 6463186
 本発明は、二酸化炭素を含むガスの二酸化炭素を分離吸収し、常圧に近い真空圧力のみで省エネルギーで効率よく、二酸化炭素を回収できる固形の二酸化炭素吸収材および二酸化炭素吸収材の製造方法、二酸化炭素吸収材を用いた二酸化炭素分離体および二酸化炭素分離回収装置を提供することを目的とする。 The present invention is a method for producing a solid carbon dioxide absorber and a carbon dioxide absorber that can separate and absorb carbon dioxide in a gas containing carbon dioxide and recover carbon dioxide efficiently with energy saving only at a vacuum pressure close to normal pressure. An object of the present invention is to provide a carbon dioxide separator and a carbon dioxide separation / recovery apparatus using a carbon dioxide absorber.
 本発明の第1の側面によって提供される二酸化炭素吸収材は、大気中、常温および常圧から発生源のガス圧で二酸化炭素を吸収分離することにある。本発明の第2の側面は、前記吸収分離された二酸化炭素を、常温で、-80kPaG~-101kPaG(ゲージ圧)の真空圧力のVSA(Vacuum Swing Adsorption)方式で、分離回収エネルギーを1.0GJ/t-CO2相当および分離コス1000円/t-CO2相当とすることを目的とする。 The carbon dioxide absorbent provided by the first aspect of the present invention is to absorb and separate carbon dioxide from the atmosphere, normal temperature and pressure at the gas pressure of the source. The second aspect of the present invention is that the absorbed and separated carbon dioxide is separated and recovered by a VSA (Vacuum Swing Adsorption) method having a vacuum pressure of -80 kPaG to -101 kPaG (gauge pressure) at room temperature, and the separation and recovery energy is 1.0 GJ. The purpose is to make / t-CO 2 equivalent and separation cost 1000 yen / t-CO 2 equivalent.
 上記特許文献1、2、3および4において、一級、二級および三級のアミン化合物を多孔質の支持体に含侵せしめて固体の二酸化炭素吸収材とし、それらのアミン化合物と二酸化炭素との反応からカルバメートおよび/または炭酸水素イオンを生成することで二酸化炭素を吸収(分離)し、その逆反応を起こすことで二酸化炭素の脱離(回収)を提案している。 In Patent Documents 1, 2, 3 and 4, primary, secondary and tertiary amine compounds are impregnated into a porous support to form a solid carbon dioxide absorber, and these amine compounds and carbon dioxide are used. We propose the desorption (recovery) of carbon dioxide by absorbing (separating) carbon dioxide by generating carbamate and / or bicarbonate ions from the reaction and causing the reverse reaction.
 そこで、一級、二級および三級のアミン化合物と二酸化炭素との反応を以下に示す。 Therefore, the reaction between the primary, secondary and tertiary amine compounds and carbon dioxide is shown below.
 まず、一級アミン(R-NH2)の水溶液を用いた二酸化炭素の吸収過程は、一般的に以下の式(a)~(c)で示される。 First, the carbon dioxide absorption process using an aqueous solution of a primary amine (R-NH 2 ) is generally represented by the following formulas (a) to (c).
[化1]
 (a)2R-NH2 + CO2 → R-NH3 + + R-NH-COO-
 (b)R-NH2 +  CO2 + H2O → R-NH3 + + HCO3 -
 (c)R-NH-COO- + H2O → R-NH2 + HCO3 -
[Chemical 1]
(A) 2R-NH 2 + CO 2 → R-NH 3 + + R-NH-COO -
(B) R-NH 2 + CO 2 + H 2 O → R-NH 3 + + HCO 3 -
(C) R-NH-COO - + H 2 O → R-NH 2 + HCO 3 -
 次に、二級アミン(R12-NH)の水溶液を用いた二酸化炭素の吸収過程は、一般的に以下の式(d)~(f)で示される。 Next, the carbon dioxide absorption process using an aqueous solution of a secondary amine (R 1 R 2- NH) is generally represented by the following formulas (d) to (f).
[化2]
 (d)2R12-NH + CO2 → R12-NH2 + + R12-N-COO-
 (e)R12-NH + CO2 + 2O → R12-NH2 + + HCO3 -
 (f)R12-N-COO- + H2O → R12-NH + HCO3 -
[Chemical 2]
(D) 2R 1 R 2 -NH + CO 2 → R 1 R 2 -NH 2 + + R 1 R 2 -N-COO -
(E) R 1 R 2- NH + CO 2 +  H 2 O → R 1 R 2 -NH 2 + + HCO 3 -
(F) R 1 R 2 -N -COO - + H 2 O → R 1 R 2 -NH + HCO 3 -
 さらに、三級アミン(R123-N)の水溶液を用いた二酸化炭素の吸収過程は、一般的に以下の式(g)で示される。 Further, the carbon dioxide absorption process using an aqueous solution of a tertiary amine (R 1 R 2 R 3- N) is generally represented by the following formula (g).
[化3]
(g)R123-N + CO2 + H2O → R123-NH+ + HCO3 -
[Chemical 3]
(G) R 1 R 2 R 3 -N + CO 2 + H 2 O → R 1 R 2 R 3 -NH + + HCO 3 -
 一級アミンと二級アミンとは、2モルのアミンとCO2から式(a)と式(d)のように反応してカルバメート生成してCO2を吸収する。CO2ガスに水分が含まれると、式(b)、式(c)、式(e)、式(f)のように反応して、炭酸水素イオンを生成してCO2を吸収する。 The primary amine and the secondary amine react with 2 mol of amine and CO 2 as in formulas (a) and (d) to produce carbamate and absorb CO 2. When the CO 2 gas contains water, it reacts as in the formulas (b), (c), formula (e), and formula (f) to generate hydrogen carbonate ions and absorb CO 2.
 一方、三級アミンは、CO2と水とが、式(g)のように反応して炭酸水素イオンを生成してCO2を吸収する。 On the other hand, in the tertiary amine, CO 2 and water react as shown in the formula (g) to generate hydrogen carbonate ion and absorb CO 2.
 そのCO2の吸収は、生成熱の総和が発熱反応であって、一級アミン>二級アミン>三級アミンの順に大きく、CO2吸収速度が速い傾向がある。逆に、CO2の脱離(再生)は、吸熱反応であって、吸収と脱離との速度がトレードオフの関係にある。 Absorption of CO 2 is the sum of the heat of formation is an exothermic reaction, primary amines> secondary amine> larger in the order of tertiary amines, CO 2 absorption rate is faster trend. On the contrary, the desorption (regeneration) of CO 2 is an endothermic reaction, and the speeds of absorption and desorption are in a trade-off relationship.
 そこで、三級アミンは、一級および二級アミンと比較して、反応熱が小さいため、吸収速度が遅く、脱離(再生)速度が速くなることになるが、実際には、共存する水分に熱を奪われて脱離速度は速くない。 Therefore, since the reaction heat of the tertiary amine is smaller than that of the primary and secondary amines, the absorption rate is slow and the desorption (regeneration) rate is high. Deprived of heat, the desorption speed is not fast.
 本発明の固体二酸化炭素吸収材は、多孔質支持体に内包することなく、それ自身が三次元構造を有する二級アミン含有オルガノポリシロキサンからなる比表面積100m2/g以上の多孔質構造であって、単位重量当たりのアミン官能基の有効密度が高く、多くの二酸化炭素を吸収せしめることができる。さらに、オルガノポリシロキサンからなることから疎水性が高く、ガス中の水分が多くとも影響を受けずカルバメート生成する式(d)反応のみが支配的で、官能基が二級アミンであることから反応熱が中程度で吸収速度および脱離速度がバランスよく、効率的な二酸化炭素の分離回収が可能である。 The solid carbon dioxide absorbent of the present invention has a porous structure having a specific surface area of 100 m 2 / g or more, which is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure itself without being encapsulated in a porous support. Therefore, the effective density of amine functional groups per unit weight is high, and a large amount of carbon dioxide can be absorbed. Furthermore, since it is composed of organopolysiloxane, it is highly hydrophobic, and it is not affected by the water content in the gas at most, and only the reaction of formula (d) that produces carbamate is dominant, and the reaction is because the functional group is a secondary amine. The heat is moderate and the absorption rate and desorption rate are well-balanced, enabling efficient separation and recovery of carbon dioxide.
 本発明のCO2吸収材は、CO2の吸着速度と脱離速度、および脱離に要する省エネルギーのバランスについて、鋭意、研究した結果、二級アミン含有オルガノポリシロキサンに至った。 As a result of diligent research on the balance between the adsorption rate and desorption rate of CO 2 and the energy saving required for desorption, the CO 2 absorber of the present invention has reached a secondary amine-containing organopolysiloxane.
 本発明者等は、鋭意検討した結果、大気中、常温および常圧下で、大気中、常温および常圧で二酸化炭素を吸収し、かつ、真空圧力にて脱離して二酸化炭素を回収できる省エネルギーおよび低コストの二酸化炭素吸収材と回収方法を提供することができる。即ち、本発明は、以下の項1から項13の構成を成すものである。 As a result of diligent studies, the present inventors have been able to absorb carbon dioxide in the air, at room temperature and under normal pressure, and desorb it under vacuum pressure to recover carbon dioxide. A low cost carbon dioxide absorber and recovery method can be provided. That is, the present invention constitutes the following items 1 to 13.
 項1.二酸化炭素を分離回収する二酸化炭素吸収材であって、下記の一般式[I]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、二酸化炭素吸収材。 Item 1. A carbon dioxide absorbent that separates and recovers carbon dioxide and is characterized by being composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following general formula [I]. ..
[化4]
(SiO2・SiO・6CH2n(NH)x(2CH2x-1    [I]
(式中、n=10以上の整数、X=1~10の整数である。)
[Chemical 4]
(SiO 2 , SiO, 6CH 2 ) n (NH) x (2CH 2 ) x-1 [I]
(In the formula, n = 10 or more, X = 1 to 10 integers.)
 項2. 二級アミン含有オルガノポリシロキサンが、下記の式[II]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、項1に記載の二酸化炭素吸収材。 Item 2. Item 2. The carbon dioxide absorber according to Item 1, wherein the secondary amine-containing organopolysiloxane is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [II].
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 項3.二級アミン含有オルガノポリシロキサンが、下記の式[III]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、項1に記載の二酸化炭素吸収材。 Item 3. Item 2. The carbon dioxide absorber according to Item 1, wherein the secondary amine-containing organopolysiloxane is composed of a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [III].
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 項4.前記3次元構造を有する二級アミン含有オルガノポリシロキサンが、多孔質支持体に含侵、複合されないことを特徴とする、項1~3のいずれかに記載の二酸化炭素吸収材。 Item 4. Item 2. The carbon dioxide absorber according to any one of Items 1 to 3, wherein the secondary amine-containing organopolysiloxane having a three-dimensional structure does not invade or composite with the porous support.
 項5.前記3次元構造を有する二級アミン含有オルガノポリシロキサンの一次平均粒子径が、500nm以下であることを特徴とする、項1~4のいずれかに記載の二酸化炭素吸収材。 Item 5. Item 2. The carbon dioxide absorber according to any one of Items 1 to 4, wherein the primary average particle size of the secondary amine-containing organopolysiloxane having a three-dimensional structure is 500 nm or less.
 項6.前記3次元構造を有する二級アミン含有オルガノポリシロキサンの比表面積が、100m2/g以上であることを特徴とする、項1~5のいずれかに記載の二酸化炭素吸収材。 Item 6. Item 2. The carbon dioxide absorber according to any one of Items 1 to 5, wherein the specific surface area of the secondary amine-containing organopolysiloxane having a three-dimensional structure is 100 m 2 / g or more.
 項7.前記3次元構造を有する二級アミン含有オルガノポリシロキサンの末端水酸基と、アミノシランとが、シロキサン結合をしてなることを特徴とする、項1~6のいずれかに記載の二酸化炭素吸収材。 Item 7. Item 2. The carbon dioxide absorber according to any one of Items 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having a three-dimensional structure and aminosilane form a siloxane bond.
 項8.前記3次元構造を有する二級アミン含有オルガノポリシロキサンの末端水酸基と、アルコキシシランとが、シロキサン結合をしてなることを特徴とする、項1~6のいずれかに記載の二酸化炭素吸収材。 Item 8. Item 2. The carbon dioxide absorber according to any one of Items 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having a three-dimensional structure and an alkoxysilane form a siloxane bond.
 項9.前記3次元構造を有する二級アミン含有オルガノポリシロキサンが、ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-トリエトキシシリルプロピル)アミン、ビス[3-(トリエトキシシリル)プロピル]エチレンジアミンの群から、少なくとも一つを選んで、脱水縮合してなることを特徴とする、項1~6のいずれかに記載の二酸化炭素吸収材の製造方法。 Item 9. The secondary amine-containing organopolysiloxane having the three-dimensional structure includes bis [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, and bis (3-triethoxysilylpropyl). Item 2. The carbon dioxide absorber according to any one of Items 1 to 6, wherein at least one is selected from the group of amine and bis [3- (triethoxysilyl) propyl] ethylenediamine and dehydrated and condensed. Manufacturing method.
 項10.前記アミノシランが、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、(3-トリメトキシシリルプロピル)ジエチレントリアミンの群から選ばれる一つ以上である、項7に記載の二酸化炭素吸収材の製造方法。 Item 10. The aminosilane is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl)-. Item 7. The method for producing a carbon dioxide absorbent, which is one or more selected from the group of 3-aminopropylmethyldimethoxysilane and (3-trimethoxysilylpropyl) diethylenetriamine.
 項11.アルコキシシランが、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジエトキシジフェニルシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシランから選ばれる一つ以上である、項8に記載の二酸化炭素吸収材の製造方法。 Item 11. The alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyl. Item 8. The method for producing a carbon dioxide absorbent according to Item 8, wherein the method for producing a carbon dioxide absorbent is one or more selected from triethoxysilane, diethoxydiphenylsilane, n-propyltriethoxysilane, hexyltriethoxysilane, and decyltriethoxysilane.
 項12.壁流通セラミックハニカムと、項1~8のいずれかに記載の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材を、備え、前記二酸化炭素吸収材は、前記壁流通セラミックハニカムの壁通気孔に担持する、二酸化炭素分離体。 Item 12. A wall-flowing ceramic honeycomb and a carbon dioxide absorbent composed of a secondary amine-containing organopolysiloxane having the three-dimensional structure according to any one of Items 1 to 8 are provided, and the carbon dioxide absorbent is the wall-flowing ceramic honeycomb. A carbon dioxide separator that is carried in the wall vents of the honeycomb.
 項13.二酸化炭素を常温、常圧下で吸着分離し、常温で、-80kPaG~-101kPaG(ゲージ圧力)の真空圧力にて、二酸化炭素を供給する二酸化炭素分離回収装置であって、項12に記載の二酸化炭素分離体を備える、二酸化炭素分離回収装置。 Item 13. Item 2. The carbon dioxide separation and recovery device according to Item 12, wherein carbon dioxide is adsorbed and separated under normal temperature and pressure, and carbon dioxide is supplied at room temperature at a vacuum pressure of −80 kPaG to −101 kPaG (gauge pressure). A carbon dioxide separation and recovery device including a carbon separator.
 本発明の二酸化炭素吸収材は、二酸化炭素の吸収量が増加すると共に、短時間の減圧で多くの二酸化炭素を分離回収できるため、より効率的かつ実用的であり、二酸化炭素の再利用に適している。 The carbon dioxide absorber of the present invention is more efficient and practical because it can increase the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide with a short time decompression, and is suitable for carbon dioxide reuse. ing.
 加えて、本発明の二酸化炭素吸収材は、水蒸気が共存する場合においても、吸収、脱離及び再吸収の性能が低下せず、除湿工程を必要としないため、省エネルギーのシステム構築及び装置の小型化によるコスト削減が可能である。 In addition, the carbon dioxide absorber of the present invention does not deteriorate the performance of absorption, desorption and reabsorption even when water vapor coexists, and does not require a dehumidification step. It is possible to reduce costs by using the system.
3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材が、二酸化炭素を吸収した分子構造の概念図。A conceptual diagram of a molecular structure in which a carbon dioxide absorbent material made of a secondary amine-containing organopolysiloxane having a three-dimensional structure has absorbed carbon dioxide. 3次元構造を有する二級アミン含有オルガノポリシロキサンの末端を、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランで修飾された二酸化炭素吸収材が、二酸化炭素を吸収した分子構造の概念図。A carbon dioxide absorber in which the end of a secondary amine-containing organopolysiloxane having a three-dimensional structure is modified with N- (2-aminoethyl) -3-aminopropyltrimethoxysilane has a molecular structure in which carbon dioxide is absorbed. Conceptual diagram. 3次元構造を有する二級アミン含有オルガノポリシロキサンの末端を、n-プロピルトリメトキシシランで修飾された二酸化炭素吸収材が、二酸化炭素を吸収した分子構造の概念図。FIG. 6 is a conceptual diagram of a molecular structure in which a carbon dioxide absorbent material in which the end of a secondary amine-containing organopolysiloxane having a three-dimensional structure is modified with n-propyltrimethoxysilane absorbs carbon dioxide. 壁流通セラミックハニカムの多孔質な壁内部に、3次元構造を有する二級アミン含有オルガノポリシロキサンの末端を、ジメチルジエトキシシランで修飾された二酸化炭素分離体の二酸化炭素を吸収した分子構造の概念図。Wall circulation Concept of molecular structure in which the end of a secondary amine-containing organopolysiloxane having a three-dimensional structure is absorbed by carbon dioxide in a carbon dioxide separator modified with dimethyldiethoxysilane inside the porous wall of a ceramic honeycomb. figure. 二酸化炭素分離回収装置の概念図。Conceptual diagram of carbon dioxide separation and recovery device.
 以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments.
 本発明の二酸化炭素吸収材は、多孔質支持体に担持することなく、3次元構造を有する二級アミン含有オルガノポリシロキサンのみからなる。前記3次元構造を有する二級アミン含有オルガノポリシロキサンは、下記一般式[I]で表される。下記一般式[I]中、n=10以上の整数、X=1~10の整数である。 The carbon dioxide absorber of the present invention is composed only of a secondary amine-containing organopolysiloxane having a three-dimensional structure without being supported on a porous support. The secondary amine-containing organopolysiloxane having the three-dimensional structure is represented by the following general formula [I]. In the following general formula [I], n = 10 or more, and X = 1 to 10.
[化7]
(SiO2・SiO・6CH2n(NH)x(2CH2x-1    [I]
[Chemical 7]
(SiO 2 , SiO, 6CH 2 ) n (NH) x (2CH 2 ) x-1 [I]
 前記nは、より好ましくは100以上の整数である。また、前記Xは、より好ましくは、1~3の整数である。 The n is more preferably an integer of 100 or more. Further, X is more preferably an integer of 1 to 3.
 本発明において、3次元構造を有する二級アミン含有オルガノポリシロキサンの具体的な例としては、2つのシロキサン結合の間に、1つの二級アミンを有する、下記式[II]で表されるアミノ化合物が挙げられる。下記式[II]中、n=10以上の整数である。 In the present invention, as a specific example of the secondary amine-containing organopolysiloxane having a three-dimensional structure, an amino represented by the following formula [II] having one secondary amine between two siloxane bonds. Examples include compounds. In the following formula [II], it is an integer of n = 10 or more.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 さらに、2つのシロキサン結合の間に、2つの二級アミンを有する、下記式[III]で表されるアミノ化合物が挙げられる。式[III]中、n=10以上の整数である。 Further, an amino compound represented by the following formula [III] having two secondary amines between two siloxane bonds can be mentioned. In the formula [III], it is an integer of n = 10 or more.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材は、一次平均粒子径が、500nm以下であることが好ましく、200nm以下であることがより好ましい。 The carbon dioxide absorbent made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention preferably has a primary average particle size of 500 nm or less, more preferably 200 nm or less.
 本発明の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材の比表面積が、100m2/g以上であることが好ましく、180m2/g以上であることがより好ましい。 The specific surface area of the carbon dioxide absorbent made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention is preferably 100 m 2 / g or more, and more preferably 180 m 2 / g or more.
 本発明の3次元構造を有する二級アミン含有オルガノポリシロキサンは、ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-トリエトキシシリルプロピル)アミン、ビス[3-(トリエトキシシリル)プロピル]エチレンジアミンの群から少なくとも一つを選んで原材料とし、脱水縮合して製造することができる。 The secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention includes bis [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, and bis (3-triethoxysilyl) propyl. It can be produced by selecting at least one from the group of propyl) amine and bis [3- (triethoxysilyl) propyl] ethylenediamine as a raw material and dehydrating and condensing it.
 前記原材料は、水と混合して水和ゾルを生成し、その水和ゾルを80℃~150℃の加熱で2~20時間、脱水縮合させて得られる。より好ましくは、80~100℃、10~20時間の加熱が好ましい。 The raw material is obtained by mixing with water to form a hydrated sol and dehydrating and condensing the hydrated sol by heating at 80 ° C. to 150 ° C. for 2 to 20 hours. More preferably, heating at 80 to 100 ° C. for 10 to 20 hours is preferable.
[3次元構造を有する二級アミン含有オルガノポリシロキサン末端水酸基の処理]
 (アミノシランカップリング剤による処理)
 本発明の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材は、末端に脱水縮合できない水酸基からなる残基を、アミノシランカップリング剤とでシロキサン結合を施し処理してもよい。
[Treatment of secondary amine-containing organopolysiloxane-terminated hydroxyl groups with a three-dimensional structure]
(Treatment with aminosilane coupling agent)
In the carbon dioxide absorber made of a secondary amine-containing organopolysiloxane having a three-dimensional structure of the present invention, a residue made of a hydroxyl group that cannot be dehydrated and condensed at the terminal may be treated by subjecting a siloxane bond with an aminosilane coupling agent. ..
(アミノシランカップリング剤の種類)
 前記アミノシランカップリング剤が、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、(3-トリメトキシシリルプロピル)ジエチレントリアミンの群から少なくとも一つを選んでよい。
(Type of aminosilane coupling agent)
The aminosilane coupling agent is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-amino). At least one may be selected from the group of (ethyl) -3-aminopropylmethyldimethoxysilane, (3-trimethoxysilylpropyl) diethylenetriamine.
(処理方法)
 3次元構造を有する二級アミン含有オルガノポリシロキサンを、水に攪拌分散させ、そこへ適量の前記アミノシランカップリング剤を加えて、濾過して、80℃~130℃で加熱乾燥することで、3次元構造を有する二級アミン含有オルガノポリシロキサンの水酸残基とアミノシランカップリング剤とが、脱水縮合してシロキサン結合を有する、二酸化炭素吸収材が得られる。
(Processing method)
A secondary amine-containing organopolysiloxane having a three-dimensional structure is stirred and dispersed in water, an appropriate amount of the aminosilane coupling agent is added thereto, filtered, and heated and dried at 80 ° C to 130 ° C. A carbon dioxide absorber having a siloxane bond is obtained by dehydrating and condensing the hydroxide residue of the secondary amine-containing organopolysiloxane having a dimensional structure and the aminosilane coupling agent.
(アルコキシシランカップリング剤による処理)
 前記アミノシランカップリング剤をアルコキシシランカップリング剤に代えて、前記と同様にして、本発明の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材は、末端に脱水縮合できない水酸基からなる残基を、アルコキシシランカップリング剤とでシロキサン結合を施し処理してもよい。
(Treatment with alkoxysilane coupling agent)
The aminosilane coupling agent is replaced with the alkoxysilane coupling agent, and in the same manner as described above, the carbon dioxide absorber made of the secondary amine-containing organopolysiloxane having the three-dimensional structure of the present invention has a hydroxyl group that cannot be dehydrated and condensed at the terminal. The residue consisting of the above may be treated by subjecting a siloxane bond with an alkoxysilane coupling agent.
(アルコキシシランカップリング剤の種類)
 前記アルコキシシランカップリング剤が、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジエトキシジフェニルシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシランの群から少なくとも一つを選んでよい。
(Type of alkoxysilane coupling agent)
The alkoxysilane coupling agent is methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldi. At least one may be selected from the group of ethoxysilane, phenyltriethoxysilane, diethoxydiphenylsilane, n-propyltriethoxysilane, hexyltriethoxysilane and decyltriethoxysilane.
(処理方法)
 3次元構造を有する二級アミン含有オルガノポリシロキサンを、水に攪拌分散させ、そこへ適量の前記アルコキシシランカップリング剤を加えて、濾過して、80℃~130℃で加熱乾燥することで、3次元構造を有する二級アミン含有オルガノポリシロキサンの水酸残基とアミノシランカップリング剤とが、脱水縮合してシロキサン結合を有する、二酸化炭素吸収材が得られる。
(Processing method)
A secondary amine-containing organopolysiloxane having a three-dimensional structure is stirred and dispersed in water, an appropriate amount of the alkoxysilane coupling agent is added thereto, filtered, and heated and dried at 80 ° C to 130 ° C. A carbon dioxide absorber having a siloxane bond is obtained by dehydrating and condensing the hydroxide residue of the secondary amine-containing organopolysiloxane having a three-dimensional structure and the aminosilane coupling agent.
(二酸化炭素分離体)
 本発明の前記ゾルは、3次元構造を有する二級アミン含有オルガノポリシロキサンからなる分離膜および分離体に成型加工して用いてもよい。
(Carbon dioxide separator)
The sol of the present invention may be molded into a separation membrane and a separator made of a secondary amine-containing organopolysiloxane having a three-dimensional structure.
(二酸化炭素分離体の製法)
 例えば、分離体の一例として、自動車のディーゼル排ガス後処理に用いられている、煤を捕集し燃焼浄化するディーゼル微粒子捕集フィルター(以下、DPFという)を用いてもよい。DPFは、一般的に壁流通セラミックハニカムの構造であり、二酸化炭素吸収材の有効容積を増やす観点で、壁の気孔率が50~65%が好ましく、60~65%より好ましい。壁の平均孔径が7~20μmが好ましく、13~20μmが好ましい。ハニカムセル数は200~400とすることが好ましく、300~400とすることがより好ましい。セル数の増加にともない、壁厚みを0.3~0.46mmとすることが好ましく、0.3~0.4mmとすることがより好ましい。前記DPFの壁に中に、本発明の前記水和ゾルを含侵し、3次元構造を有する二級アミン含有オルガノポリシロキサンを形成し、分離体を得ることができる。分離体の概念図を図4に示す。
(Manufacturing method of carbon dioxide separator)
For example, as an example of the separator, a diesel particulate filter (hereinafter referred to as DPF) that collects soot and burns and purifies it, which is used for aftertreatment of diesel exhaust gas in automobiles, may be used. The DPF is generally a wall-circulating ceramic honeycomb structure, and the porosity of the wall is preferably 50 to 65%, more preferably 60 to 65%, from the viewpoint of increasing the effective volume of the carbon dioxide absorbent. The average hole diameter of the wall is preferably 7 to 20 μm, preferably 13 to 20 μm. The number of honeycomb cells is preferably 200 to 400, more preferably 300 to 400. As the number of cells increases, the wall thickness is preferably 0.3 to 0.46 mm, more preferably 0.3 to 0.4 mm. The hydrated sol of the present invention is impregnated in the wall of the DPF to form a secondary amine-containing organopolysiloxane having a three-dimensional structure, and a isolate can be obtained. A conceptual diagram of the separated body is shown in FIG.
(吸収体)
 さらに、本発明の前記水和ゾルは、スリーブ、ペレットおよびビーズの形状にペレタイザー等の公知方法で成型加工し、加熱脱水縮合して、吸収棟に充填し用いてもよい。前記成型加工時に、バインダーを用いずとも形状加工が可能であることから、二酸化炭素吸収性能を保持できる利点がある。
(Absorber)
Further, the hydrated sol of the present invention may be molded into the shape of sleeves, pellets and beads by a known method such as a pelletizer, heat-dehydrated and condensed, and filled in the absorption ridge for use. Since the shape can be processed without using a binder during the molding process, there is an advantage that the carbon dioxide absorption performance can be maintained.
(二酸化炭素分離回収装置)
 本発明の二酸化炭素分離回収装置は、支持体を用いず多孔質である3次元構造を有する二級アミン含有オルガノポリシロキサンを、スリーブ、ペレットに成型してなる吸収体、またはDPF等に担持した分離体、またはメッシュまたは網目を有する骨材に膜を形成した板状またはスリーブ状にした加工物を、図5に示す吸着カラムに充填して、常圧、常温下で二酸化炭素を短時間(例えば、5分間)吸収する。表1に、図5で登場する記号の名称を示す。
(Carbon dioxide separation and recovery device)
In the carbon dioxide separation and recovery apparatus of the present invention, a secondary amine-containing organopolysiloxane having a porous three-dimensional structure without using a support is supported on a sleeve, an absorber formed into pellets, a DPF, or the like. A plate-shaped or sleeve-shaped work piece in which a film is formed on an aggregate having a separate body or a mesh or a mesh is filled in the adsorption column shown in FIG. Absorb (for example, 5 minutes). Table 1 shows the names of the symbols appearing in FIG.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 一方、二酸化炭素の脱離(分離)は、真空ポンプを用いて減圧-80~-101kPaG(ゲージ圧)、常温(例えば、5分間)で行うことができる。二酸化炭素の吸収と脱離を交互にサイクルで行い、二酸化炭素のリサイクル用途に必要に応じて、バッファータンクに保持および/または加圧ポンプにて圧縮ボンベに回収保存する。 On the other hand, carbon dioxide can be desorbed (separated) using a vacuum pump at reduced pressure of -80 to -101 kPaG (gauge pressure) and normal temperature (for example, 5 minutes). Carbon dioxide is absorbed and desorbed alternately in a cycle, and if necessary for carbon dioxide recycling, it is held in a buffer tank and / or collected and stored in a compression cylinder with a pressure pump.
 本発明の二酸化炭素分離回収装置の運転方法の一例を、表2に示す。表2に記載の洗浄工程は、二酸化炭素の純度を高めることが必要なリサイクル用途に応じて、行えば良い。例えば、その場で二酸化炭素を使用する植物の生育の場合は、洗浄工程は必要としない。 Table 2 shows an example of the operation method of the carbon dioxide separation and recovery device of the present invention. The cleaning steps shown in Table 2 may be performed according to the recycling application in which it is necessary to increase the purity of carbon dioxide. For example, in the case of growing a plant that uses carbon dioxide on the spot, a washing step is not required.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以下、実施例によって本発明を更に詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(実施例1)
 実施例1は、ビス[3-(トリメトキシシリル)プロピル]アミンを原料として、加水分解したシラノールを、加熱にて脱水縮合して三次元の網目構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材を得た。
(Example 1)
Example 1 comprises a secondary amine-containing organopolysiloxane having a three-dimensional network structure by dehydrating and condensing hydrolyzed silanol using bis [3- (trimethoxysilyl) propyl] amine as a raw material. A carbon dioxide absorber was obtained.
 まず、イオン交換水30gを攪拌しながら、ビス[3-(トリメトキシシリル)プロピル]アミン(東京化成工業製)を加えゾルを得た。その後、濾過水洗後、80℃で16時間乾燥して、三次元構造を有する二級アミン含有オルガノポリシロキサンの粉末を乳鉢で粉砕して、二酸化炭素吸収材とした。得られた二酸化炭素吸収材は、平均粒径が213nm、比表面積が186m2/gであった。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。 First, while stirring 30 g of ion-exchanged water, bis [3- (trimethoxysilyl) propyl] amine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to obtain a sol. Then, after washing with filtered water, it was dried at 80 ° C. for 16 hours, and the powder of the secondary amine-containing organopolysiloxane having a three-dimensional structure was pulverized in a mortar to obtain a carbon dioxide absorbent. The obtained carbon dioxide absorbent had an average particle size of 213 nm and a specific surface area of 186 m 2 / g. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(実施例2)
 実施例2は、実施例1のビス[3-(トリメトキシシリル)プロピル]アミンに代えて、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミンとした以外は、実施例1と同様にして二酸化炭素吸収材を得た。
(Example 2)
Example 2 is the same as in Example 1 except that bis [3- (trimethoxysilyl) propyl] amine is replaced with bis [3- (trimethoxysilyl) propyl] ethylenediamine. A carbon absorber was obtained.
 イオン交換水30gを攪拌しながら、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン(Merck KGaA製)を加えゾルを得た。その後、濾過水洗後、80℃で16時間乾燥して、三次元構造を有する二級アミン含有オルガノポリシロキサンの粉末を乳鉢で粉砕して、二酸化炭素吸収材とした。得られた二酸化炭素吸収材は、平均粒径が385nm、比表面積が233m2/gであった。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。 While stirring 30 g of ion-exchanged water, bis [3- (trimethoxysilyl) propyl] ethylenediamine (manufactured by Merck KGaA) was added to obtain a sol. Then, after washing with filtered water, it was dried at 80 ° C. for 16 hours, and the powder of the secondary amine-containing organopolysiloxane having a three-dimensional structure was pulverized in a mortar to obtain a carbon dioxide absorbent. The obtained carbon dioxide absorbent had an average particle size of 385 nm and a specific surface area of 233 m 2 / g. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(実施例3)
 実施例3は、実施例1で得られた三次元構造を有する二級アミン含有オルガノポリシロキサン粉末の末端水酸基を、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランを用いて、脱水縮合し処理した。まず、イオン交換水30gを攪拌しながら、実施例1で得られた3次元構造を有する二級アミン含有オルガノポリシロキサン粉末1gを分散させ、そこへN-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン0.1g加え、30分攪拌を継続した。その後、濾過水洗後、80℃で16時間乾燥して、処理された粉末を乳鉢で粉砕して、二酸化炭素吸収材とした。得られた二酸化炭素吸収材は、平均粒径が274nm、比表面積が174m2/gであった。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
(Example 3)
In Example 3, the terminal hydroxyl group of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was used as N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. It was dehydrated and condensed and treated. First, while stirring 30 g of ion-exchanged water, 1 g of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dispersed therein, and N- (2-aminoethyl) -3-amino was dispersed therein. 0.1 g of propyltrimethoxysilane was added, and stirring was continued for 30 minutes. Then, after washing with filtered water, it was dried at 80 ° C. for 16 hours, and the treated powder was pulverized in a mortar to obtain a carbon dioxide absorbent. The obtained carbon dioxide absorbent had an average particle size of 274 nm and a specific surface area of 174 m 2 / g. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(実施例4)
 実施例4は、実施例1で得られた三次元構造を有する二級アミン含有オルガノポリシロキサン粉末の末端水酸基を、n-プロピルトリエトキシシランを用いて、脱水縮合し処理した。まず、イオン交換水30gを攪拌しながら、実施例1で得られた3次元構造を有する二級アミン含有オルガノポリシロキサン粉末1gを分散させ、そこへn-プロピルトリエトキシシラン0.1g加え、30分攪拌継続した。その後、濾過水洗後、80℃で16時間乾燥して、処理された粉末を乳鉢で粉砕して、二酸化炭素吸収材とした。得られた二酸化炭素吸収材は、平均粒径が258nm、比表面積が176m2/gであった。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
(Example 4)
In Example 4, the terminal hydroxyl group of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dehydrated and condensed with n-propyltriethoxysilane. First, while stirring 30 g of ion-exchanged water, 1 g of the secondary amine-containing organopolysiloxane powder having the three-dimensional structure obtained in Example 1 was dispersed, and 0.1 g of n-propyltriethoxysilane was added thereto to 30. Stirring for minutes was continued. Then, after washing with filtered water, it was dried at 80 ° C. for 16 hours, and the treated powder was pulverized in a mortar to obtain a carbon dioxide absorbent. The obtained carbon dioxide absorbent had an average particle size of 258 nm and a specific surface area of 176 m 2 / g. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例1)
 比較例1では、メソポーラスシリカSBA-15を支持体として、(3-トリメトキシシリルプロピル)ジエチレントリアミンで処理した二酸化炭素固体吸収材の粉末を用いた。
(Comparative Example 1)
In Comparative Example 1, a powder of a carbon dioxide solid absorbent treated with (3-trimethoxysilylpropyl) diethylenetriamine using mesoporous silica SBA-15 as a support was used.
(メソポーラスシリカSBA-15の調整方法)
まず、蒸留水1.3dm3に、ポリエチレンオキサイド鎖-ポリプロピレンオキサイド鎖-ポリエチレンオキサイド鎖を有するトリブロックコポリマー(略名:EO20PO70EO20、)50gを溶解させた溶液にテトラエトキシシラン(略名:TEOS、キシダ化学株式会社製)110gを添加し、5分間撹拌した。この溶液に36容量%塩酸(和光純薬株式会社製)175cm3を30分かけて添加した後、35℃、20時間加熱撹拌し、さらに95℃、24時間加熱撹拌した。生成した固形物を吸引濾過により回収し、蒸留水4dm3で洗浄した後、この固形物を70℃に保持した恒温槽中にて1夜乾燥して、メソポーラスシリカSBA-15の粉末を得た。
(Adjustment method of mesoporous silica SBA-15)
First, tetraethoxysilane (abbreviation: TEOS, Kishida) was dissolved in a solution prepared by dissolving 50 g of a triblock copolymer (abbreviation: EO20PO70EO20,) having a polyethylene oxide chain-polypropylene oxide chain-polyethylene oxide chain in 1.3 dm 3 of distilled water. 110 g (manufactured by Chemical Co., Ltd.) was added, and the mixture was stirred for 5 minutes. This solution in 36 volume percent hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd.) 175cm 3 was added over 30 min, 35 ° C., and stirred under heating for 20 hours, further 95 ° C., the mixture was heated and stirred 24 hours. The produced solid was collected by suction filtration , washed with distilled water 4 dm 3 , and then dried overnight in a constant temperature bath kept at 70 ° C. to obtain a powder of mesoporous silica SBA-15. ..
(3-トリメトキシシリルプロピル)ジエチレントリアミン処理
次に、125℃に保持した恒温槽中にて6時間乾燥した支持体SBA-15 5.0gを脱水トルエン250cm3(和光純薬株式会社製)に添加し、5分間撹拌した後、これに(3-トリメトキシシリルプロピル)ジエチレントリアミン(アルドリッチ社製)、50cm3を添加した。この混合物をアルゴンガス気流中にて110℃、24時間還流撹拌した後、室温まで冷却した。冷却した混合物を吸引濾過により回収した固形物を脱水トルエン200cm3(和光純薬株式会社製)で洗浄した後、60℃に保持した恒温槽中にて1夜乾燥することによって(3-トリメトキシシリルプロピル)ジエチレントリアミンで処理した支持体の粉末を得た。この粉末は、平均粒子径が、10μmであって、比表面積が355m2/gであった。得られた粉末を二酸化炭素固体吸収材として、後述の二酸化炭素分離・回収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
Treatment with (3-Trimethoxysilylpropyl) Diethylenetriamine Next, 5.0 g of the support SBA-15 dried for 6 hours in a constant temperature bath kept at 125 ° C. was added to 250 cm 3 of dehydrated toluene (manufactured by Wako Pure Chemical Industries, Ltd.). After stirring for 5 minutes, (3-trimethoxysilylpropyl) diethylenetriamine (manufactured by Aldrich), 50 cm 3 was added thereto. The mixture was refluxed and stirred at 110 ° C. for 24 hours in an argon gas stream and then cooled to room temperature. The solid matter recovered by suction filtration of the cooled mixture was washed with dehydrated toluene 200 cm 3 (manufactured by Wako Pure Chemical Industries, Ltd.) and then dried overnight in a constant temperature bath maintained at 60 ° C. (3-trimethoxy). A support powder treated with silylpropyl) diethylenetriamine was obtained. This powder had an average particle size of 10 μm and a specific surface area of 355 m 2 / g. The obtained powder was used as a carbon dioxide solid absorber in the carbon dioxide separation / recovery performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例2)
 比較例2は、支持体を用いず、3-アミノプロピルトリエトキシシランを脱水縮合させて得られたゲルである。まず、3-アミノプロピルトリエトキシシラン(米国、アルドリッチ(Aldrich)社製)をテフロン(登録商標)製シャーレに採取し、水蒸気を飽和させた25℃のデシケーター中にて、24時間放置し、さらに水蒸気を飽和させた約60℃のデシケーター中にて、24時間放置し、その後、60℃の恒温槽中にて一夜乾燥してシランカップリング剤を加水分解・縮合して粉末を得た。この粉末は、平均粒子径が、3μmであって、比表面積が0.1m2/gであった。得られた粉末を二酸化炭素固体吸収材として、後述の二酸化炭素分離・回収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
(Comparative Example 2)
Comparative Example 2 is a gel obtained by dehydration condensation of 3-aminopropyltriethoxysilane without using a support. First, 3-aminopropyltriethoxysilane (manufactured by Aldrich, USA) was collected in a petri dish manufactured by Teflon (registered trademark), left in a desiccator at 25 ° C. saturated with water vapor for 24 hours, and further. It was left in a desiccator at about 60 ° C. saturated with water vapor for 24 hours, and then dried overnight in a constant temperature bath at 60 ° C. to hydrolyze and condense the silane coupling agent to obtain a powder. This powder had an average particle size of 3 μm and a specific surface area of 0.1 m 2 / g. The obtained powder was used as a carbon dioxide solid absorber in the carbon dioxide separation / recovery performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例3)
 比較例3は、ポリメチルメタクリレートPMMAのビーズを2-イソプロピルアミノエタノール(IPAE)で処理した、二酸化炭素吸収材である。まず、2-イソプロピルアミノエタノール(IPAE)を固体吸収材の40重量%となるように所定量(合計6.67g)秤量し、容量300ccのなすフラスコに計りとったメタノール(和光純薬工業特級)20gに溶解させた後、そこへ、アミンを担持する支持体としてはポリメチルメタクリレートPMMAのビーズ(三菱化学株式会社製ダイヤイオンHP2MG;有効径0.3mm以上;比表面積570m2/g;細孔容積1.3mL/g)を10g加え、室温で、2時間撹拌した後に、これをロータリーエバポレーター(EYELA社製N-1000)で50℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、アミンを支持体に均一に担持した固体吸収材を調製した。メタノール溶媒の除去は、フラスコと試薬類の合計の重さをあらかじめ計り取り、メタノール溶媒に相当する20gの重量減少が確認できた時点で調製完了とした。このPMMAビーズは、比表面積が173m2/gであった。得られたビーズは、二酸化炭素吸収材として、後述の二酸化炭素吸収性能評価試験に用いた。
(Comparative Example 3)
Comparative Example 3 is a carbon dioxide absorbent obtained by treating beads of polymethylmethacrylate PMMA with 2-isopropylaminoethanol (IPAE). First, 2-isopropylaminoethanol (IPAE) was weighed in a predetermined amount (6.67 g in total) so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade). After being dissolved in 20 g, polymethylmethacrylate PMMA beads (Diaion HP2MG manufactured by Mitsubishi Chemical Corporation; effective diameter 0.3 mm or more; specific surface area 570 m 2 / g; pores; A volume of 1.3 mL / g) was added, and the mixture was stirred at room temperature for 2 hours, and then heated to 50 ° C. with a rotary evaporator (N-1000 manufactured by EYELA), and the pressure in the system became 0.03 MPa. The methanol solvent was removed by reducing the pressure to the maximum, and a solid absorbent material in which the amine was uniformly supported on the support was prepared. For the removal of the methanol solvent, the total weight of the flask and the reagents was weighed in advance, and the preparation was completed when a weight loss of 20 g corresponding to the methanol solvent was confirmed. The PMMA beads had a specific surface area of 173 m 2 / g. The obtained beads were used as a carbon dioxide absorbent in the carbon dioxide absorption performance evaluation test described later.
(比較例4)
 比較例4は、メソポーラスシリカMSU-Fをジイソプロピル化テトラエチレンペンタミンで処理した、二酸化炭素吸収材である。
(Comparative Example 4)
Comparative Example 4 is a carbon dioxide absorbent obtained by treating mesoporous silica MSU-F with diisopropylated tetraethylenepentamine.
(ジイソプロピル化テトラエチレンペンタミン(以下、「IP-TEPA」)の合成)
 まず、テトラエチレンペンタミン(TEPA) 1mol及び撹拌子を、還流管を取り付けた2Lフラスコに入れ、これにごく少量の水に溶解した炭酸カリウム 2.0molをフラスコに加えた。このフラスコを氷冷しながら混合物を撹拌しているところに、これに2-ブロモプロパン 2.0molを溶解したエタノール 400mLをゆっくり滴下した。エタノール溶液の滴下が終了した後、フラスコを室温に戻し、室温で36時間反応溶液を撹拌した。反応の終了を液体クロマトグラフ質量分析計(LC-MS)で確認した後、水とエタノールを40℃で減圧除去し、残渣を得た。得られた残渣にメタノールを加え、不溶物を濾過した。メタノールを減圧除去し、淡黄色透明液体であるIP-TEPAを259.79g(収率95%)で得た。
(Synthesis of diisopropylated tetraethylenepentamine (hereinafter, "IP-TEPA"))
First, 1 mol of tetraethylenepentamine (TEPA) and a stir bar were placed in a 2 L flask equipped with a reflux tube, and 2.0 mol of potassium carbonate dissolved in a very small amount of water was added to the flask. While stirring the mixture while cooling the flask with ice, 400 mL of ethanol in which 2.0 mol of 2-bromopropane was dissolved was slowly added dropwise thereto. After the addition of the ethanol solution was completed, the flask was returned to room temperature and the reaction solution was stirred at room temperature for 36 hours. After confirming the completion of the reaction with a liquid chromatograph mass spectrometer (LC-MS), water and ethanol were removed under reduced pressure at 40 ° C. to obtain a residue. Methanol was added to the obtained residue, and the insoluble material was filtered. Methanol was removed under reduced pressure to obtain 259.79 g (yield 95%) of IP-TEPA, which is a pale yellow transparent liquid.
(IP-TEPA(40)/MSU-F)の作製
 次に、得られたIP-TEPAを二酸化炭素分離材の40重量%となるように、定量秤量し、これを容量300ccのナスフラスコに量りとったメタノール(和光純薬工業社製;特級) 20gに溶解させた。その後、別途秤量した支持体MSU-F(アルドリッチ社製;メソポーラスシリカ;比表面積550m2/g、細孔径20nm、細孔容積2.0mL/g) 10gにこれを加え、室温で2時間攪拌した後、これをロータリーエバポレーター(EYELA社製;N-1000)で60℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、アミンを支持体に均一に担持した二酸化炭素固体吸収材を調製した。メタノール溶媒の除去は、フラスコと試薬類の合計の重さを予め量り取り、メタノール溶媒に相当する20gの重量減少が確認できた時点で調製完了とした。この二酸化炭素固体吸収材の平均粒子径が、13μmであって、比表面積が84m2/gであった。得られた二酸化炭素固体吸収材の粉末は、後述の二酸化炭素吸収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
Preparation of (IP-TEPA (40) / MeOH-F) Next, the obtained IP-TEPA was quantitatively weighed so as to be 40% by weight of the carbon dioxide separating material, and this was weighed in an eggplant flask having a capacity of 300 cc. It was dissolved in 20 g of the obtained methanol (manufactured by Wako Pure Chemical Industries, Ltd .; special grade). Then, this was added to 10 g of a separately weighed support MeOH-F (manufactured by Aldrich; mesoporous silica; specific surface area 550 m 2 / g, pore diameter 20 nm, pore volume 2.0 mL / g), and stirred at room temperature for 2 hours. After that, while heating this to 60 ° C. with a rotary evaporator (manufactured by EYELA; N-1000), the pressure in the system is reduced to 0.03 MPa to remove the methanol solvent and use amine as a support. A uniformly supported carbon dioxide solid absorber was prepared. For the removal of the methanol solvent, the total weight of the flask and the reagents was weighed in advance, and the preparation was completed when a weight loss of 20 g corresponding to the methanol solvent was confirmed. The average particle size of this carbon dioxide solid absorbent material was 13 μm, and the specific surface area was 84 m 2 / g. The obtained carbon dioxide solid absorbent powder was used in the carbon dioxide absorption performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例5)
 比較例5は、支持体MSU-FをポリメチルメタクリレートPMMAのビーズ(HP2MG)に代えた以外は、比較例4と同様にして、二酸化炭素固体吸収材のビーズを得た。
(Comparative Example 5)
In Comparative Example 5, beads of a carbon dioxide solid absorbent were obtained in the same manner as in Comparative Example 4, except that the support MSU-F was replaced with beads of polymethylmethacrylate PMMA (HP2MG).
(IP-TEPA(40)/PPMA)の作製
 比較例4と同様にして、得られたIP-TEPAを二酸化炭素分離材の40重量%となるように定量秤量し、支持体としてポリメチルメタクリレートPMMAのビーズ(三菱化学株式会社製;ダイヤイオン(登録商標)HP2MG;有効径0.3mm以上、比表面積570m2/g、細孔径19nm、細孔容積1.3mL/g) 10gを用いた。
Preparation of (IP-TEPA (40) / PPMA) In the same manner as in Comparative Example 4, the obtained IP-TEPA was quantitatively weighed so as to be 40% by weight of the carbon dioxide separator, and polymethylmethacrylate PMMA was used as a support. (Made by Mitsubishi Chemical Corporation; Diaion (registered trademark) HP2MG; effective diameter 0.3 mm or more, specific surface area 570 m 2 / g, pore diameter 19 nm, pore volume 1.3 mL / g) 10 g was used.
 IP-TEPA(40)を内包したPMMAビーズは、平均粒子径が、0.34mmであって、比表面積が99m2/gであった。得られた二酸化炭素固体吸収材のビーズは、後述の二酸化炭素吸収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。 The PMMA beads containing IP-TEPA (40) had an average particle size of 0.34 mm and a specific surface area of 99 m 2 / g. The beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例6)
 比較例6は、IP-TEPAをIP―Spermineに代えて合成した以外は、比較例5と同様にして、ポリメチルメタクリレートPPMAのビーズ(HP2MG)に処理して、二酸化炭素固体吸収材のビーズを得た。
(Comparative Example 6)
In Comparative Example 6, beads of polymethylmethacrylate PPMA (HP2MG) were treated in the same manner as in Comparative Example 5 except that IP-TEPA was synthesized in place of IP-Spermine to obtain beads of a solid carbon dioxide absorber. Obtained.
ジイソプロピル化スペルミン(以下、「IP-Spermine」という)合成
 スペルミン25g(0.12mol)及び撹拌子を、還流管を取り付けた500mLフラスコに入れ、これにごく少量の水に溶解した炭酸カリウム0.49molをフラスコに加えた。このフラスコを氷冷しながら混合物を撹拌しているところに、2-ブロモプロパン60.78g(0.49mol)を溶解したエタノール150mLをゆっくり滴下した。エタノール溶液の滴下が終了した後、フラスコを室温に戻し、室温で36時間反応溶液を撹拌した。反応終了後、水とエタノールを40℃で減圧除去し、残渣を得た。得られた残渣にメタノールを加え、不溶物を濾過した。メタノールを減圧除去し、無色液体であるIP-Spermineを29.42g(収率83%)で得た。
Synthetic spermine diisopropylated (hereinafter referred to as "IP-Spermine") 25 g (0.12 mol) of spermine and a stir bar were placed in a 500 mL flask equipped with a reflux tube, and 0.49 mol of potassium carbonate dissolved in a very small amount of water. Was added to the flask. While stirring the mixture while cooling the flask with ice, 150 mL of ethanol in which 60.78 g (0.49 mol) of 2-bromopropane was dissolved was slowly added dropwise. After the addition of the ethanol solution was completed, the flask was returned to room temperature and the reaction solution was stirred at room temperature for 36 hours. After completion of the reaction, water and ethanol were removed under reduced pressure at 40 ° C. to obtain a residue. Methanol was added to the obtained residue, and the insoluble material was filtered. Methanol was removed under reduced pressure to obtain 29.42 g (yield 83%) of IP-Spermine, which is a colorless liquid.
(IP-Spermine(40)/PPMA)の作製
 次に、得られたIP-Spermineを二酸化炭素分離材の40重量%となるように定量秤量し、支持体としてポリメチルメタクリレートビーズ(三菱化学株式会社製;ダイヤイオン(登録商標)HP2MG;有効径0.3mm以上、比表面積570m2/g、細孔径19nm、細孔容積1.3mL/g) 10gを用いた。得られた二酸化炭素固体吸収材のビーズは、平均粒径が0.33mm、比表面積が97m2/gであって、後述の二酸化炭素吸収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。
Preparation of (IP-Spermine (40) / PPMA) Next, the obtained IP-Spermine was quantitatively weighed so as to be 40% by weight of the carbon dioxide separator, and polymethylmethacrylate beads (Mitsubishi Chemical Corporation) as a support. Manufactured by: Diaion (registered trademark) HP2MG; effective diameter 0.3 mm or more, specific surface area 570 m 2 / g, pore diameter 19 nm, pore volume 1.3 mL / g) 10 g was used. The obtained carbon dioxide solid absorbent beads had an average particle size of 0.33 mm and a specific surface area of 97 m 2 / g, and were used in the carbon dioxide absorption performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例7)
 比較例7は、ポリメチルメタクリレートPMMビーズに、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサンと[2-(2-ベンズオキサゾリル)フェノレイト]亜鉛とで処理した、二酸化炭素固体吸収材のビーズである。
(Comparative Example 7)
In Comparative Example 7, polymethylmethacrylate PMM beads were treated with N, N, N', N'-tetramethyl-1,6-diaminohexane and [2- (2-benzoxazolyl) phenolate] zinc. , Carbon dioxide solid absorber beads.
 三級アルキルアミンであるN,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン(TMDAH)を水に加えて混和し、TMDAH:30重量%、水:70重量%とした。触媒として[2-(2-ベンズオキサゾリル)フェノレイト]亜鉛(BOPZ)の添加量は、アミン化合物TMDAHの1.0重量%とした。前記BOPZは、吸収剤TMDAHに対し溶解性を持たないため、該吸収剤中で不均一に懸濁させた。 N, N, N', N'-tetramethyl-1,6-diaminohexane (TMDAH), which is a tertiary alkylamine, was added to water and mixed to make TMDAH: 30% by weight and water: 70% by weight. The amount of [2- (2-benzoxazolyl) phenolate] zinc (BOPZ) added as a catalyst was 1.0% by weight of the amine compound TMDAH. Since the BOPZ has no solubility in the absorbent TMDAH, it was suspended non-uniformly in the absorbent.
 次に、前記BOPZを含む吸収剤TMDAHが固体吸収材の40重量%となるように所定量(合計6.67g)秤量し、容量300ccのなすフラスコに計りとったメタノール(和光純薬工業特級)20gに溶解させた後、担持する支持体としては、比較例3と同様にしてポリメチルメタクリレートPMMビーズ(HP2MG)を10g加え、室温で、2時間撹拌した後に、これをロータリーエバポレーター(EYELA社製N-1000)で50℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、アミンを支持体ビーズに均一に処理して、二酸化炭素固体吸収材のビーズを調製した。この処理されたビーズは、平均粒径が0.35mmで、比表面積が168m2/gであった。得られた二酸化炭素固体吸収材のビーズは、後述の二酸化炭素吸収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。 Next, a predetermined amount (6.67 g in total) of the absorbent TMDAH containing the BOPZ was weighed so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade). After dissolving in 20 g, as a support to be supported, 10 g of polymethylmethacrylate methanol beads (HP2MG) was added in the same manner as in Comparative Example 3, and after stirring at room temperature for 2 hours, this was used as a rotary evaporator (manufactured by EYELA). While heating to 50 ° C. with N-1000), the pressure in the system was reduced to 0.03 MPa to remove the methanol solvent, and the amine was uniformly treated on the support beads to absorb the carbon dioxide solid. Wood beads were prepared. The treated beads had an average particle size of 0.35 mm and a specific surface area of 168 m 2 / g. The beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(比較例8)
 比較例7は、[2-(2-ベンズオキサゾリル)フェノレイト]亜鉛を、ビス(2,4-ペンタンジオネイト)マグネシウムに代えた以外は、比較例7と同様にして、二酸化炭素固体吸収材を作製した。三級アルキルアミンであるTMDAHを水に加えて混和し、TMDAH:30重量%、水:70重量%とした。触媒として、ビス(2,4-ペンタンジオネイト)マグネシウム(PDM)の添加量は、アミン化合物TMDAHの2.5重量%とした。前記PDMは、吸収剤TMDAHに対し溶解性を持たないため、該吸収剤中で不均一に懸濁させた。
(Comparative Example 8)
Comparative Example 7 absorbs solid carbon dioxide in the same manner as in Comparative Example 7 except that [2- (2-benzoxazolyl) phenolate] zinc was replaced with bis (2,4-pentanionate) magnesium. The material was prepared. TMDAH, which is a tertiary alkylamine, was added to water and mixed to make TMDAH: 30% by weight and water: 70% by weight. The amount of bis (2,4-pentanionate) magnesium (PDM) added as a catalyst was 2.5% by weight of the amine compound TMDAH. Since the PDM has no solubility in the absorbent TMDAH, it was suspended non-uniformly in the absorbent.
 次に、前記PDMを含む吸収剤TMDAHが固体吸収材の40重量%となるように所定量(合計6.67g)秤量し、容量300ccのなすフラスコに計りとったメタノール(和光純薬工業特級)20gに溶解させた後、担持する支持体としては、比較例3と同様にしてポリメチルメタクリレートPMMAビーズ(HP2MG)を10g加え、室温で、2時間撹拌した後に、これをロータリーエバポレーター(EYELA社製N-1000)で50℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、アミンを支持体ビーズに均一に処理して、二酸化炭素固体吸収材を調製した。この処理されたビーズは、平均粒子径が0.34mmで、比表面積が155m2/gであった。得られた二酸化炭素固体吸収材のビーズは、後述の二酸化炭素吸収性能評価試験に用いた。なお、平均粒径は、電子顕微鏡の像から、n=100個を測定し、測定値を算術平均して求めた。 Next, a predetermined amount (6.67 g in total) of the absorbent TMDAH containing the PDM was weighed so as to be 40% by weight of the solid absorbent, and methanol was measured in a flask having a capacity of 300 cc (Wako Pure Chemical Industries, Ltd. special grade). After dissolving in 20 g, as a support to be supported, 10 g of polymethylmethacrylate PMMA beads (HP2MG) was added in the same manner as in Comparative Example 3, and after stirring at room temperature for 2 hours, this was used as a rotary evaporator (manufactured by EYELA). While heating to 50 ° C. with N-1000), the pressure in the system was reduced to 0.03 MPa to remove the methanol solvent, and the amine was uniformly treated on the support beads to absorb the carbon dioxide solid. The material was prepared. The treated beads had an average particle size of 0.34 mm and a specific surface area of 155 m 2 / g. The beads of the obtained carbon dioxide solid absorbent material were used in the carbon dioxide absorption performance evaluation test described later. The average particle size was determined by measuring n = 100 particles from an electron microscope image and arithmetically averaging the measured values.
(二酸化炭素分離・回収性能評価試験)
 この様にして得られた、実施例1~3および比較例1~8の二酸化炭素吸収材1.0gを、ガラス製のU字管(内径10mm、高さ150mm)に充填し、両端をガラスウールで固定した。恒温水槽を用いて、前記固体吸収材を充填したガラス製のU字管を浸漬し、温度が25℃になるように設定し反応管とした。この固体吸収材を充填した反応管の片側から、大気圧で、0.5L/分で二酸化炭素20体積%及び窒素ガス80体積%の混合ガスを流通した。
(Carbon dioxide separation / recovery performance evaluation test)
1.0 g of the carbon dioxide absorbers of Examples 1 to 3 and Comparative Examples 1 to 8 thus obtained were filled in a glass U-shaped tube (inner diameter 10 mm, height 150 mm), and both ends were made of glass. Fixed with wool. A glass U-shaped tube filled with the solid absorbent was immersed in a constant temperature water tank, and the temperature was set to 25 ° C. to prepare a reaction tube. A mixed gas of 20% by volume of carbon dioxide and 80% by volume of nitrogen gas was circulated at 0.5 L / min at atmospheric pressure from one side of the reaction tube filled with the solid absorbent.
 反応管の入口および出口のガス中の二酸化炭素濃度を、二酸化炭素計(堀場製作所製ガス分析計VA-3001)で連続的に測定して、反応管の入口および出口の二酸化炭素流量の差から5分間の二酸化炭素吸収量(A)を測定した。次に、反応管の入口を弁で閉じ、出口側を真空ポンプにより減圧排気しながら、二酸化炭素流量を連続的して5分間の二酸化炭素の脱離(回収)量(B)を測定した。真空圧力は、減圧開始後、1分で-100kPaGに到達し、その後保持した。得られた結果は、二酸化炭素吸収材1kg当たりの二酸化炭素量(g)として表3に示す。 The carbon dioxide concentration in the gas at the inlet and outlet of the reaction tube is continuously measured with a carbon dioxide meter (Gas analyzer VA-3001 manufactured by Horiba Seisakusho), and the difference in carbon dioxide flow rate between the inlet and outlet of the reaction tube is used. The amount of carbon dioxide absorbed (A) for 5 minutes was measured. Next, the inlet of the reaction tube was closed with a valve, and the outlet side was depressurized and exhausted by a vacuum pump, and the carbon dioxide flow rate was continuously measured to measure the amount of carbon dioxide desorption (recovery) (B) for 5 minutes. The vacuum pressure reached -100 kPaG 1 minute after the start of depressurization and was retained thereafter. The obtained results are shown in Table 3 as the amount of carbon dioxide (g) per 1 kg of carbon dioxide absorbent.
 次に、混合ガスに加湿器を用いて水蒸気を加え相対湿度80%RHとした以外は、前記と同様にして、25℃における5分間の二酸化炭素吸収量(A)と、減圧-100kPaGにおける5分間の二酸化炭素の脱離(回収)量(B)とを測定した。得られた結果は、二酸化炭素吸収材1kg当たりの二酸化炭素量(g)として表4に示す。 Next, the carbon dioxide absorption amount (A) for 5 minutes at 25 ° C. and 5 at a reduced pressure of -100 kPaG were obtained in the same manner as above, except that water vapor was added to the mixed gas using a humidifier to obtain a relative humidity of 80% RH. The amount of carbon dioxide desorbed (recovered) per minute (B) was measured. The obtained results are shown in Table 4 as the amount of carbon dioxide (g) per 1 kg of carbon dioxide absorbent.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記の表3および表4が示す通り、実施例1~4は、比較例1~8に比べ、常温常圧、5分の短時間で二酸化炭素を多く吸収し、同様にして5分間の減圧で脱離(分離)も90%以上と、効率的に回収できること実証された。 As shown in Tables 3 and 4 above, Examples 1 to 4 absorb a large amount of carbon dioxide in a short time of 5 minutes at normal temperature and pressure as compared with Comparative Examples 1 to 8, and similarly reduce the pressure for 5 minutes. Desorption (separation) was 90% or more, demonstrating that it can be recovered efficiently.
 1  3次元構造を有する二級アミン含有オルガノポリシロキサン
10  二酸化炭素のカルバメート化による吸収
11  N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランでの修飾
12  n-プロピルトリメトキシシランで修飾
13  ジメチルジエトキシシランでの修飾
14  壁流通型セラミックハニカム
15  壁流通内部
1 Secondary amine-containing organopolysiloxane having a three-dimensional structure 10 Absorption by carbamate of carbon dioxide 11 Modification with N- (2-aminoethyl) -3-aminopropyltrimethoxysilane 12 Modification with n-propyltrimethoxysilane 13 Modification with dimethyldiethoxysilane 14 Wall-flowing ceramic honeycomb 15 Inside wall-flowing

Claims (13)

  1.  二酸化炭素を分離回収する二酸化炭素吸収材であって、
     下記の一般式[I]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、二酸化炭素吸収材。
    [化1]
    (SiO2・SiO・6CH2n(NH)x(2CH2x-1    [I]
     (式中、n=10以上の整数、X=1~10の整数である。)
    A carbon dioxide absorbent that separates and recovers carbon dioxide.
    A carbon dioxide absorbent comprising a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following general formula [I].
    [Chemical 1]
    (SiO 2 , SiO, 6CH 2 ) n (NH) x (2CH 2 ) x-1 [I]
    (In the formula, n = 10 or more, X = 1 to 10 integers.)
  2.  前記二級アミン含有オルガノポリシロキサンが、下記の式[II]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、請求項1に記載の二酸化炭素吸収材。
    Figure JPOXMLDOC01-appb-C000001
    The carbon dioxide absorption according to claim 1, wherein the secondary amine-containing organopolysiloxane comprises a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [II]. Material.
    Figure JPOXMLDOC01-appb-C000001
  3.  前記二級アミン含有オルガノポリシロキサンが、下記の式[III]で表される、3次元構造を有する二級アミン含有オルガノポリシロキサンからなることを特徴とする、請求項1に記載の二酸化炭素吸収材。
    Figure JPOXMLDOC01-appb-C000002
    The carbon dioxide absorption according to claim 1, wherein the secondary amine-containing organopolysiloxane comprises a secondary amine-containing organopolysiloxane having a three-dimensional structure represented by the following formula [III]. Material.
    Figure JPOXMLDOC01-appb-C000002
  4.  前記3次元構造を有する二級アミン含有オルガノポリシロキサンが、多孔質支持体に含侵、複合されないことを特徴とする、請求項1~3のいずれかに記載の二酸化炭素吸収材。 The carbon dioxide absorber according to any one of claims 1 to 3, wherein the secondary amine-containing organopolysiloxane having the three-dimensional structure is not impregnated or composited with the porous support.
  5.  前記3次元構造を有する二級アミン含有オルガノポリシロキサンの一次平均粒子径が、500nm以下であることを特徴とする、請求項1~4のいずれかに記載の二酸化炭素吸収材。 The carbon dioxide absorber according to any one of claims 1 to 4, wherein the primary average particle size of the secondary amine-containing organopolysiloxane having the three-dimensional structure is 500 nm or less.
  6.  前記3次元構造を有する二級アミン含有オルガノポリシロキサンの比表面積が、100m2/g以上であることを特徴とする、請求項1~5のいずれかに記載の二酸化炭素吸収材。 The carbon dioxide absorber according to any one of claims 1 to 5, wherein the specific surface area of the secondary amine-containing organopolysiloxane having a three-dimensional structure is 100 m 2 / g or more.
  7.  前記3次元構造を有する二級アミン含有オルガノポリシロキサンの末端水酸基と、アミノシランとが、シロキサン結合をしてなることを特徴とする、請求項1~6のいずれかに記載の二酸化炭素吸収材。 The carbon dioxide absorber according to any one of claims 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having the three-dimensional structure and aminosilane form a siloxane bond.
  8.  前記3次元構造を有する二級アミン含有オルガノポリシロキサンの末端水酸基と、アルコキシシランとが、シロキサン結合をしてなることを特徴とする、請求項1~6のいずれかに記載の二酸化炭素吸収材。 The carbon dioxide absorber according to any one of claims 1 to 6, wherein the terminal hydroxyl group of the secondary amine-containing organopolysiloxane having a three-dimensional structure and an alkoxysilane form a siloxane bond. ..
  9.  ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-トリエトキシシリルプロピル)アミン、ビス[3-(トリエトキシシリル)プロピル]エチレンジアミンから、少なくとも一つを選んで脱水縮合してなることを特徴とする、請求項1~6のいずれかに記載の二酸化炭素吸収材の製造方法。 From bis [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, bis (3-triethoxysilylpropyl) amine, bis [3- (triethoxysilyl) propyl] ethylenediamine The method for producing a carbon dioxide absorbent according to any one of claims 1 to 6, wherein at least one is selected and dehydrated and condensed.
  10.  前記アミノシランが、3-アミノプロピルトリエトキシシラン、N-メチル-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、(3-トリメトキシシリルプロピル)ジエチレントリアミンの群から選ばれる一つ以上である、請求項7に記載の二酸化炭素吸収材の製造方法。 The aminosilane is 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl)-. The method for producing a carbon dioxide absorbent according to claim 7, wherein the carbon dioxide absorber is one or more selected from the group of 3-aminopropylmethyldimethoxysilane and (3-trimethoxysilylpropyl) diethylenetriamine.
  11.  アルコキシシランが、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジエトキシジフェニルシラン、n-プロピルトリエトキシシラン、ヘキシルトリエトキシシラン、デシルトリエトキシシランから選ばれる一つ以上である、請求項8に記載の二酸化炭素吸収材の製造方法。 The alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyl. The method for producing a carbon dioxide absorbent according to claim 8, wherein the method for producing a carbon dioxide absorbent is one or more selected from triethoxysilane, diethoxydiphenylsilane, n-propyltriethoxysilane, hexyltriethoxysilane, and decyltriethoxysilane.
  12.  壁流通セラミックハニカムと、
     請求項1~8のいずれかに記載の3次元構造を有する二級アミン含有オルガノポリシロキサンからなる二酸化炭素吸収材を、備え、
     前記二酸化炭素吸収材は、前記壁流通セラミックハニカムの壁通気孔に担持する、二酸化炭素分離体。
    Wall distribution ceramic honeycomb and
    A carbon dioxide absorbent made of a secondary amine-containing organopolysiloxane having the three-dimensional structure according to any one of claims 1 to 8 is provided.
    The carbon dioxide absorbent is a carbon dioxide separator supported on the wall vents of the wall-flowing ceramic honeycomb.
  13.  二酸化炭素を常温、常圧下で吸着分離し、常温で、-80kPaG~-101kPaG(ゲージ圧)の真空圧力にて、二酸化炭素を供給する二酸化炭素分離回収装置であって、
     請求項12に記載の二酸化炭素分離体を備える、二酸化炭素分離回収装置。
    A carbon dioxide separation and recovery device that adsorbs and separates carbon dioxide under normal temperature and pressure, and supplies carbon dioxide at room temperature at a vacuum pressure of -80 kPaG to -101 kPaG (gauge pressure).
    A carbon dioxide separation and recovery device comprising the carbon dioxide separator according to claim 12.
PCT/JP2021/014974 2020-04-24 2021-04-09 Carbon dioxide absorbing material, carbon dioxide absorbing material production method, carbon dioxide separation body and carbon dioxide separation and recovery device WO2021215265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022516957A JP7333674B2 (en) 2020-04-24 2021-04-09 Carbon dioxide absorbent, method for producing carbon dioxide absorbent, carbon dioxide separator and carbon dioxide separation and recovery device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077543 2020-04-24
JP2020-077543 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215265A1 true WO2021215265A1 (en) 2021-10-28

Family

ID=78269116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014974 WO2021215265A1 (en) 2020-04-24 2021-04-09 Carbon dioxide absorbing material, carbon dioxide absorbing material production method, carbon dioxide separation body and carbon dioxide separation and recovery device

Country Status (2)

Country Link
JP (1) JP7333674B2 (en)
WO (1) WO2021215265A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530209A (en) * 2005-02-15 2008-08-07 ダイオネックス コーポレイション Novel organosilane, substrate covalently bonded to the organosilane, and methods of synthesis and use
US20130029843A1 (en) * 2005-09-30 2013-01-31 Abs Materials, Inc. Sol-gel derived compositions
US20140186246A1 (en) * 2012-12-26 2014-07-03 Exxonmobil Research And Engineering Company Reversible co2 fixation via self-assembled siloxanes
JP2018502704A (en) * 2014-12-12 2018-02-01 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Coating method using organosilica material and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7226708B2 (en) 2018-01-30 2023-02-21 日東電工株式会社 Composite semipermeable membrane and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530209A (en) * 2005-02-15 2008-08-07 ダイオネックス コーポレイション Novel organosilane, substrate covalently bonded to the organosilane, and methods of synthesis and use
US20130029843A1 (en) * 2005-09-30 2013-01-31 Abs Materials, Inc. Sol-gel derived compositions
US20140186246A1 (en) * 2012-12-26 2014-07-03 Exxonmobil Research And Engineering Company Reversible co2 fixation via self-assembled siloxanes
JP2018502704A (en) * 2014-12-12 2018-02-01 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Coating method using organosilica material and use thereof

Also Published As

Publication number Publication date
JPWO2021215265A1 (en) 2021-10-28
JP7333674B2 (en) 2023-08-25

Similar Documents

Publication Publication Date Title
US10010861B2 (en) Polymeric amine based carbon dioxide adsorbents
EP2926896B1 (en) Method for preparing solid amine gas adsorption material
JP6273015B2 (en) Renewable adsorbent of modified amines on nanostructured supports
JP2018509280A (en) Renewable adsorbent of modified amine on solid support
KR102194141B1 (en) Carbon dioxide adsorbent comprising mesoporous chabazite zeolite and methods for preparing the same
EP2054151A1 (en) Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
CN107353412B (en) Preparation method and application of metal organic framework material
CN106944018A (en) A kind of polyethyleneimine-modified meerschaum adsorbent and its preparation method and application
CN107500307B (en) A kind of preparation method and applications of zeolite molecular sieve
WO2014208712A1 (en) Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
CN110841606A (en) Composite material for capturing carbon dioxide and preparation method and application thereof
KR20170053041A (en) Polyethyleneimine partially modified with Hydroxy Ethyl group and Method of Preparing Same
Park et al. A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture
JP6014576B2 (en) Amino compound-supported porous material and method for producing the same
CN113277520B (en) Silicon dioxide mesoporous material and preparation method and application thereof
KR101596120B1 (en) Porous organic-inorganic composite and fabricating method thereof
WO2021215265A1 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material production method, carbon dioxide separation body and carbon dioxide separation and recovery device
CN103230783B (en) Compound type carbon dioxide adsorbent
CN106799210A (en) A kind of preparation method and application of sepiolite base adsorbent
CN110833819B (en) Organic silicon nano material CO with double-brush structure2Adsorbent and preparation method thereof
JP2004261670A (en) Method for treating exhaust gas
US9808784B2 (en) Mesoporous cellular foam impregnated with iron-substituted heteropolyacid, preparation method therefor, and carbon dioxide separation method using same
Borcănescu et al. AMINO-FUNCTIONALIZED MESOPOROUS MATERIALS USED FOR CO 2 ADSORPTION.
CN114539307B (en) CO (carbon monoxide) 2 Trapping material, synthesis method thereof and carbon trapping process
CN114570340B (en) Application of graphene oxide/metal organic framework composite material in light-controlled desorption of volatile organic compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792099

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21792099

Country of ref document: EP

Kind code of ref document: A1