WO2021214878A1 - Electric motor control device and air conditioning device having same - Google Patents

Electric motor control device and air conditioning device having same Download PDF

Info

Publication number
WO2021214878A1
WO2021214878A1 PCT/JP2020/017223 JP2020017223W WO2021214878A1 WO 2021214878 A1 WO2021214878 A1 WO 2021214878A1 JP 2020017223 W JP2020017223 W JP 2020017223W WO 2021214878 A1 WO2021214878 A1 WO 2021214878A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation amount
current
value
control device
motor
Prior art date
Application number
PCT/JP2020/017223
Other languages
French (fr)
Japanese (ja)
Inventor
俊紀 浅井
和憲 坂廼邉
晃弘 津村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022516523A priority Critical patent/JP7378594B2/en
Priority to PCT/JP2020/017223 priority patent/WO2021214878A1/en
Publication of WO2021214878A1 publication Critical patent/WO2021214878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Definitions

  • the present disclosure relates to an electric motor control device that controls the rotation of a motor using a power conversion device and an air conditioner provided with the electric motor control device.
  • Motors such as brushless DC motors are used for various purposes such as driving fans of air conditioners.
  • a power conversion device that supplies electric power to an electric motor for example, there is an inverter.
  • the inverter has a configuration in which three sets of two switching elements connected in series between the high voltage line and the low voltage line of the DC power supply are provided. Of the two switching elements in each set, the switching element connected to the high voltage line is referred to as the upper switching element, and the switching element connected to the low voltage line side is referred to as the lower switching element.
  • Each switching element requires a time of several hundred ns to several ⁇ s for the switching operation. Therefore, in one set of switching elements, while the upper switching element switches from the on state to the off state and the lower switching element switches from the off state to the on state, the upper and lower switching elements temporarily simultaneously move at the same time. It may be turned on. If the upper and lower switching elements are turned on at the same time, the primary side of the inverter is short-circuited and the switching element is destroyed. In order to prevent this short circuit, a period is provided in which the upper and lower switching elements are simultaneously turned off. This period is called dead time. However, due to the dead time, a voltage error may occur between the output voltage of the inverter and the voltage command value, and the control accuracy may decrease.
  • Patent Document 1 As a method of compensating for the voltage error caused by the dead time, a control method is known in which the magnitude of the voltage error caused by the dead time is estimated in advance and the voltage error amount is added to the voltage command value (for example, Patent Document 1). reference).
  • current control is performed so that a constant DC current flows through the motor for each frequency of the two types of switching frequencies, and the difference in output voltage corresponding to the two types of switching frequencies is used to determine the voltage error.
  • a method of estimating the size is disclosed.
  • the present disclosure has been made to solve the above-mentioned problems, and is an electric motor control device for calculating a compensation amount for compensating for a voltage error due to a dead time while driving an electric motor, and an air conditioner equipped with the electric motor control device. Is to provide.
  • the electric motor control device includes a power conversion device that supplies an AC voltage corresponding to a voltage command value, which is a command value of a voltage applied to the electric motor, to the electric motor, and a current detection device that detects a current flowing through the electric motor.
  • a control device that calculates the voltage command value corresponding to the speed command value, which is the command value of the rotation speed of the electric motor, and the current information detected by the current detection device, and outputs the voltage command value to the power conversion device.
  • the control device includes a rotation speed estimation means for calculating an estimated rotation speed, which is an estimated value of the rotation speed of the electric motor, using a current detection value, which is a current detected by the current detection device, and the voltage.
  • a current estimation means for estimating the current flowing through the electric motor using a command value, the estimated rotation speed, and a parameter of the electric motor stored in advance, and a current estimation value which is a current estimated by the current estimation means.
  • a compensation amount calculation means for calculating a compensation amount for compensating for a voltage error which is an error between the output voltage of the power converter and the voltage command value based on the current difference which is a value obtained by subtracting the current detection value from the current detection value. It has.
  • the air conditioner according to the present disclosure is connected to the motor control device, a heat exchanger for heat exchange between the refrigerant and air, a fan provided corresponding to the heat exchanger, and the fan. It has an electric motor to be controlled by the electric motor control device.
  • the output of the power converter is based on the current difference obtained by subtracting the current value detected by the current detector from the current estimated value estimated using the voltage command value, the estimated rotation speed and the parameters of the electric motor.
  • the compensation amount for compensating for the voltage error between the voltage and the voltage command value is calculated. Therefore, the voltage error due to the dead time can be appropriately compensated even while the motor is being driven.
  • FIG. 2 It is a refrigerant circuit diagram which shows an example of the air conditioner including the motor control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows one configuration example of the motor control device shown in FIG. It is a figure which shows one configuration example when the power conversion apparatus shown in FIG. 2 is an inverter. It is a functional block diagram which shows one configuration example of the control device shown in FIG. It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG. It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG. It is a flowchart which shows an example of the operation procedure of the control device in the motor control device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows an example of the procedure which the compensation amount calculation means updates a compensation amount in the motor control device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows a part of the processing after activation of the current estimation means in the electric motor control device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 2.
  • FIG. It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 3.
  • FIG. It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 3.
  • FIG. It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 3.
  • FIG. 1 It is a graph which shows an example of the update result of the compensation amount in the motor control device which concerns on Embodiment 3.
  • FIG. 2 It is a graph which shows another example of the update result of the compensation amount in the motor control device which concerns on Embodiment 3.
  • FIG. It is a figure which shows an example of the command value which changes the compensation amount in the electric motor control device which concerns on Embodiment 4.
  • FIG. It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the electric motor control device which concerns on Embodiment 4.
  • FIG. 1 is a refrigerant circuit diagram showing an example of an air conditioner including the motor control device according to the first embodiment. As shown in FIG. 1, the air conditioner 1 has a heat source side unit 2 and a load side unit 3.
  • the heat source side unit 2 includes a compressor 4 that compresses and discharges the refrigerant, a four-way valve 5 that switches the flow direction of the refrigerant, a heat source side heat exchanger 6 that exchanges heat with the outside air, and expands by reducing the pressure of the refrigerant. It has an electromagnetic valve 7 for causing the refrigerant to operate, and a host control device 9. Further, the heat source side unit 2 includes a fan 10 that supplies outside air to the heat source side heat exchanger 6, an electric motor 11 that drives the fan 10, and an electric motor control device 12 that supplies a three-phase voltage to the electric motor 11.
  • the load-side unit 3 includes a load-side heat exchanger 13 that exchanges heat with the air in the space to be air-conditioned, and an electromagnetic valve 8 that depressurizes and expands the refrigerant.
  • the upper control device 9 is connected to the four-way valve 5, the compressor 4, the solenoid valves 7 and 8, and the motor control device 12 via a signal line.
  • the compressor 4, the heat source side heat exchanger 6, the solenoid valves 7 and 8, and the load side heat exchanger 13 are connected by a refrigerant pipe 14, and a refrigerant circuit 15 through which the refrigerant circulates is configured.
  • the upper control device 9 is a control device that controls the air conditioner 1.
  • the upper control device 9 controls the refrigeration cycle of the refrigerant circulating in the refrigerant circuit 15.
  • the heat source side heat exchanger 6 functions as a condenser
  • the load side heat exchanger 13 functions as an evaporator.
  • the heat source side heat exchanger 6 functions as an evaporator
  • the load side heat exchanger 13 functions as a condenser.
  • the air conditioner 1 is provided with the solenoid valves 7 and 8, but one of the solenoid valves 7 and 8 may be provided. Further, in the configuration example shown in FIG. 1, the configuration when the fan 10, the motor 11 and the motor control device 12 are provided in the heat source side unit 2 is shown, but the configuration is not limited to this case. The fan 10, the motor 11, and the motor control device 12 may be provided on either one or both of the heat source side unit 2 and the load side unit 3.
  • FIG. 2 is a block diagram showing a configuration example of the motor control device shown in FIG.
  • FIG. 3 is a diagram showing a configuration example when the power conversion device shown in FIG. 2 is an inverter.
  • the electric motor control device 12 includes a power conversion device 17 connected to the power supply 16, a control device 18 for controlling the operation of the power conversion device 17, and a current detection device 19.
  • the power supply 16 is a DC voltage power supply that supplies electric power to the electric motor 11 via the power conversion device 17. In the first embodiment, the case where the power supply 16 is a DC voltage power supply will be described, but the power supply may be an AC voltage power supply.
  • an AC voltage is supplied to the electric motor control device 12 from an external single-phase power supply (not shown) or a three-phase power supply (not shown), the AC voltage is converted into a DC voltage to the power converter 17.
  • An output rectifying circuit (not shown) is provided in the electric motor control device 12.
  • the motor 11 is, for example, a brushless DC motor.
  • the motor 11 has a rotor and a stator not shown in the figure.
  • the stator has a U-phase, V-phase and W-phase three-phase winding.
  • a permanent magnet is provided on the rotor.
  • a current flows through the windings in response to the three-phase voltage applied from the power converter 17 to the motor 11, so that the stator generates a rotating magnetic field around the rotor.
  • the brushless DC motor applies a three-phase AC voltage of appropriate phase and frequency to the stator according to the position of the rotor, generates a rotating magnetic field around the rotor, and attracts and repels the rotating magnetic field and the rotor. Is used to rotate the rotor at a desired rotation speed. At that time, it is necessary to detect the position of the rotor.
  • a method of detecting the position of the rotor for example, there are a method of detecting by a hall sensor installed in the motor and a method of calculating by calculation from the three-phase current flowing in the motor.
  • the motor control device 12 estimates the position of the rotor by calculation from the three-phase current flowing through the motor.
  • the current detection device 19 detects the three-phase current Iuvw flowing through the motor 11.
  • the current detection device 19 includes a current detector 19a that detects currents flowing in the U phase and the W phase.
  • the current detector 19a is, for example, a current transformer.
  • the current flowing in the V phase is calculated by the control device 18 from the current values flowing in the U phase and the W phase.
  • the position where the current is detected is not limited to the position shown in FIG.
  • a current detection unit using a shunt resistor may be provided in the inverter 20.
  • the phase detected by the current detection device 19 is not limited to the phase shown in FIG.
  • the current detector 19a may detect the U-phase and V-phase currents.
  • the upper control device 9 is, for example, a microcomputer.
  • the host control device 9 has a memory 72 for storing a program and a CPU (Central Processing Unit) 62 for executing processing according to the program.
  • the upper control device 9 is located on the upstream side of the control device 18 in the signal system.
  • the upper control device 9 is a control device that issues a command to the control device 18.
  • the commands include, for example, a speed command value ⁇ _ref, which is a command value for the rotation speed of the motor 11, and a stop command for instructing the stop of rotation of the motor 11.
  • a remote controller for the user to input an instruction to the air conditioner 1 may be connected to the host controller 9.
  • the inverter 20 has a switching element 21 connected to the positive electrode side of the power supply 16 and a switching element 22 connected to the negative electrode side of the power supply 16 with respect to the U phase.
  • the backflow prevention element 31 is connected in parallel to the switching element 21, and the backflow prevention element 32 is connected in parallel to the switching element 22.
  • the inverter 20 has a switching element 23 connected to the positive electrode side of the power supply 16 and a switching element 24 connected to the negative electrode side of the power supply 16 with respect to the V phase.
  • the backflow prevention element 33 is connected in parallel to the switching element 23, and the backflow prevention element 34 is connected in parallel to the switching element 24.
  • the inverter 20 has a switching element 25 connected to the positive electrode side of the power supply 16 and a switching element 26 connected to the negative electrode side of the power supply 16 with respect to the W phase.
  • the backflow prevention element 35 is connected in parallel to the switching element 25, and the backflow prevention element 36 is connected in parallel to the switching element 26.
  • the switching elements 21 to 26 are, for example, IGBTs (Insulated Gate Bipolar Transistors).
  • the backflow prevention elements 31 to 36 are, for example, diodes.
  • the three-phase voltage command value Vuvw_ref is input to the inverter 20 from the control device 18.
  • the inverter 20 compares the waveform of the three-phase voltage command value Vuvw_ref with the carrier wave, and performs power conversion by PWM (Pulse Width Modulation) control.
  • PWM Pulse Width Modulation
  • the inverter 20 PWM-controls the DC voltage of the power supply 16 in response to the three-phase voltage command value Vuvw_ref received from the control device 18, converts the DC voltage into a three-phase voltage, and supplies the DC voltage to the motor 11.
  • FIG. 4 is a functional block diagram showing a configuration example of the control device shown in FIG.
  • the control device 18 includes a power control means 51, a current estimation means 52, a rotation speed estimation means 53, and a compensation amount calculation means 54.
  • Various functions of the control device 18 are realized by executing software by an arithmetic unit such as a microcomputer. Further, the control device 18 may be composed of hardware such as a circuit device that realizes various functions.
  • the control device 18 When a start command for the electric motor 11 is input from the upper control device 9 to the control device 18, the control device 18 causes the power control means 51, the current estimation means 52, and the rotation speed estimation means 53 at predetermined timings. To start. For example, the control device 18 is activated in the order of the power control means 51, the current estimation means 52, and the rotation speed estimation means 53. In this case, after the electric motor 11 is activated by the activation of the power control means 51, the current estimation means 52 and the rotation speed estimation means 53 are activated.
  • the control device 18 determines that it is necessary to compensate for the voltage error Verr, which is an error between the output voltage of the inverter 20 and the three-phase voltage command value Vuvw_ref, the control device 18 activates the compensation amount calculation means 54.
  • the compensation amount calculation means 54 uses the result of the arithmetic processing by the current estimation means 52, the activation timing of the compensation amount calculation means 54 is later than the activation timing of the current estimation means 52. Therefore, after the current estimation means 52 is started, it may be determined whether or not compensation for the voltage error Verr is necessary, and if it is determined that compensation is necessary, the compensation amount calculation means 54 may be instructed to start.
  • the timing of starting the compensation amount calculation means 54 may be the timing at which the current estimation means 52 calculates the current value by arithmetic processing and outputs the calculated current value to the compensation amount calculation means 54. Further, when a stop command for the electric motor 11 is input from the upper control device 9 to the control device 18, the control device 18 operates the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54. To stop.
  • the power control means 51 performs vector control based on the speed command value ⁇ _ref input from the host control device 9 and the three-phase current Iuvw detected by the current detection device 19, and the command value of the voltage applied to the motor 11.
  • the three-phase voltage command value Vuvw_ref is generated.
  • the power control means 51 outputs the generated three-phase voltage command value Vuvw_ref to the inverter 20 and the current estimation means 52.
  • the compensation amount information is input from the compensation amount calculation means 54, the power control means 51 finely adjusts the three-phase voltage command value Vuvw_ref according to the compensation amount.
  • the rotation speed estimation means 53 calculates the estimated rotation speed R, which is an estimated value of the rotation speed of the electric motor 11, by using the three-phase current Iuvw flowing through the electric motor 11.
  • the current estimating means 52 estimates each of the d-axis current and the q-axis current flowing through the motor 11 when the three-phase voltage command value Vuvw_ref is input to the inverter 20. Specifically, the current estimation means 52 flows through the electric motor 11 using the three-phase voltage command value Vuvw_ref input from the power control means 51, the parameters of the electric motor 11 stored in advance, and the estimated rotation speed R. Calculate the estimated values of the shaft current and the q-axis current.
  • the parameter of the motor 11 is, for example, the winding resistance of the motor 11. In the first embodiment, the case where the current to be subjected to the arithmetic processing is the d-axis current obtained by coordinate-transforming the current flowing through the motor 11 will be described, but it may be the q-axis current.
  • the current estimation means 52 uses the three-phase voltage command value Vuvw_ref, the parameters of the motor 11, and the estimated rotation speed R to calculate the d-axis current estimated value Idp, which is an estimated value of the d-axis current flowing through the motor 11. ..
  • the current estimation means 52 compensates for the calculated d-axis current estimated value Idp when compensation for the voltage error Verr is required. It is output to the calculation means 54. At that time, the current estimation means 52 may output not only the d-axis current estimation value Idp but also the d-axis current detection value Idr to the compensation amount calculation means 54.
  • the waiting time Twa uses the current estimated value calculated by the current estimating means 52 when a predetermined time elapses from the time when the current estimating means 52 is activated to determine whether or not it is necessary to calculate the compensation amount described later. Is set for. This is because the current estimated value calculated immediately after the activation of the current estimating means 52 is not used for determining whether or not the compensation amount calculation, which will be described later, is necessary.
  • the waiting time twa is, for example, 100 times the sampling time, which is the time interval in which the current detection device 19 detects the current of the electric motor 11.
  • the compensation amount calculation means 54 calculates the compensation amount Comk that compensates for the voltage error Verr caused by the dead time. Specifically, the compensation amount calculation means 54 uses the three-phase current Iuvw detected by the current detection device 19 and the estimated current calculated by the current estimation means 52 to compensate the voltage error Verr. Is calculated. k is an arbitrary integer of 0 or more, and indicates the number of times the compensation amount is updated. For example, the initial value of the compensation amount Comk is expressed as Com0.
  • the compensation amount calculation means 54 determines that the compensation amount is overcompensation, and the compensation amount is smaller than the reference compensation amount Clef. Set the amount. For example, the compensation amount calculation means 54 sets the compensation amount Comk as a value obtained by subtracting the adjustment value w from the reference compensation amount Clef. In this way, the compensation amount calculation means 54 calculates the compensation amount Comk so that the voltage error Verr approaches zero. The compensation amount calculation means 54 outputs the calculated compensation amount Comk to the power control means 51.
  • the finally calculated compensation amount Com (k-1) may be the reference compensation amount Cref of the compensation amount Comk first calculated when the motor 11 is started next time.
  • the compensation amount calculation means 54 may calculate the d-axis current detection value Idr by coordinate-converting the three-phase current Iuvw detected by the current detection device 19, and the d-axis current detection value Idr may be calculated from the current estimation means 52. Idr may be acquired. Further, a calculation formula for calculating the compensation amount Comk from the current difference ⁇ Id may be stored in the control device 18 in advance.
  • FIG. 5 is a hardware configuration diagram showing a configuration example of the control device shown in FIG.
  • the control device 18 shown in FIG. 4 is composed of a processing circuit 80 as shown in FIG.
  • Each function of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 shown in FIG. 4 is realized by the processing circuit 80.
  • the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these.
  • the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 may be realized by separate processing circuits 80. Further, the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 may be realized by one processing circuit 80.
  • FIG. 6 is a hardware configuration diagram showing another configuration example of the control device shown in FIG.
  • the control device 18 shown in FIG. 4 is composed of a processor 61 such as a CPU and a memory 71 as shown in FIG.
  • the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 are realized by the processor 61 and the memory 71.
  • FIG. 6 shows that the processor 61 and the memory 71 are communicably connected to each other.
  • the memory 71 stores information such as the parameters of the motor 11 and the waiting time twa.
  • the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 are realized by software, firmware, or a combination of software and firmware. ..
  • the software and firmware are written as a program and stored in the memory 71.
  • the processor 61 realizes the function of each means by reading and executing the program stored in the memory 71.
  • a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EEPROM (Electrically Erasable and Programmable ROM) is used.
  • a volatile semiconductor memory of RAM Random Access Memory
  • a detachable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
  • FIG. 7 is a flowchart showing an example of the operation procedure of the control device in the motor control device according to the first embodiment.
  • the current estimation means 52 coordinates the three-phase current detected by the current detection device 19 to calculate the d-axis current detection value Idr (step S11). Further, the current estimating means 52 calculates the d-axis current estimated value Idp by using the three-phase voltage command value Vuvw_ref, the parameters of the motor 11, and the estimated rotation speed R calculated by the rotation speed estimating means 53 (the d-axis current estimated value Idp). Step S12). Then, the current estimation means 52 outputs the d-axis current estimation value Idp and the d-axis current detection value Idr to the compensation amount calculation means 54.
  • the compensation amount calculating means 54 subtracts the d-axis current detected value Idr from the d-axis current estimated value Idp to obtain a current difference. Calculate ⁇ Id (step S13).
  • the compensation amount calculation means 54 calculates the compensation amount Comk based on the current difference ⁇ Id (step S14). For example, when the current difference ⁇ Id is a positive value, the compensation amount calculation means 54 sets the value obtained by adding the adjustment value w to the reference compensation amount Clef as the compensation amount Comk.
  • the compensation amount Comk is an initial value Com0.
  • the compensation amount calculation means 54 outputs the calculated compensation amount Comk to the power control means 51.
  • FIG. 8 is a flowchart showing an example of a procedure in which the compensation amount calculation means updates the compensation amount in the motor control device according to the first embodiment.
  • the last calculated compensation amount Com (k-1) is stored in the memory 71 as the current compensation amount will be described.
  • the compensation amount calculating means 54 subtracts the d-axis current detected value Idr from the d-axis current estimated value Idp to obtain a current difference. Calculate ⁇ Id (step S101).
  • the compensation amount calculating means 54 determines whether or not the current difference ⁇ Id is larger than 0 (step S102). When the current difference ⁇ Id is larger than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is insufficient compensation. Then, the compensation amount calculation means 54 updates the value obtained by adding the adjustment value w to the current compensation amount Com (k-1) to a new compensation amount Comk (step S103).
  • the compensation amount calculation means 54 determines whether or not the current difference ⁇ Id is smaller than 0 (step S104). When the current difference ⁇ Id is smaller than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is overcompensation. Then, the compensation amount calculation means 54 updates the value obtained by subtracting the adjustment value w from the current compensation amount Com (k-1) to a new compensation amount Comk (step S105).
  • the compensation amount calculation means 54 determines that the voltage error Verr is appropriately compensated by the current compensation amount Com (k-1). The compensation amount is not changed (step S106).
  • the adjustment value w added to the compensation amount Com (k-1) in step S103 of FIG. 8 and the adjustment value w subtracted from the compensation amount Com (k-1) in step S105 are fixed values.
  • the adjustment value w is, for example, 10% of the theoretical value of the voltage error Verr under the rated condition represented by the product of the switching frequency, the rated output voltage of the DC voltage power supply, and the dead time set value.
  • the memory 71 stores a positive threshold value + Is and a negative threshold value-Ith as a criterion for determining whether or not to update the compensation amount.
  • a positive threshold value + Is is used instead of 0 as the determination criterion in step S102
  • a negative threshold value -Ith is used instead of 0 as the determination criterion in step S104.
  • FIG. 9 is a flowchart showing a part of the processing after the activation of the current estimation means in the motor control device according to the first embodiment.
  • the current estimation means 52 determines whether or not the measurement time t from the start of activation has reached the waiting time twa (step S111). When the measurement time t reaches the waiting time twa, the current estimation means 52 determines whether or not the update end condition, which is the condition for ending the update of the compensation amount, is satisfied (step S112). When the update end condition is satisfied, the current estimation means 52 does not activate the compensation amount calculation means 54 (step S113). On the other hand, if the update end condition is not satisfied as a result of the determination in step S112, the current estimation means 52 activates the compensation amount calculation means 54 (step S114).
  • the current estimation means 52 After the compensation amount calculation means 54 is activated, the current estimation means 52 outputs the d-axis current estimation value Idp and the d-axis current detection value Idr to the compensation amount calculation means 54. Since the subsequent processing executed by the compensation amount calculating means 54 is the same as the processing described with reference to FIG. 7 or FIG. 8, detailed description thereof will be omitted.
  • the update end condition is, for example, that the absolute value of the current difference ⁇ Id when the measurement time t from the start of the current estimation means 52 reaches the waiting time twa is equal to or less than a predetermined threshold value Is.
  • the timing for determining whether or not the update end condition is satisfied is not limited to the position shown in FIG. Before starting the current estimation means 52, it may be determined whether or not the control device 18 satisfies the update end condition.
  • the motor control device 12 of the first embodiment includes a power conversion device 17 that supplies an AC voltage corresponding to a voltage command value to the motor 11, a current detection device 19 that detects a current flowing through the motor 11, and a control device 18.
  • the control device 18 calculates a voltage command value corresponding to the speed command value and the current information detected by the current detection device 19, and outputs the voltage command value to the power conversion device 17.
  • the control device 18 includes a rotation speed estimation means 53, a current estimation means 52, and a compensation amount calculation means 54.
  • the rotation speed estimation means 53 calculates the estimated rotation speed, which is an estimated value of the rotation speed of the electric motor 11, using the current detection value detected by the current detection device 19.
  • the current estimation means 52 estimates the current flowing through the motor 11 by using the voltage command value, the estimated rotation speed, and the parameters of the motor 11 stored in advance.
  • the compensation amount calculating means 54 sets the output voltage and the voltage command value of the power conversion device 17 based on the current difference ⁇ Id which is a value obtained by subtracting the current detection value from the current estimated value which is the current estimated by the current estimating means 52.
  • the compensation amount for compensating for the voltage error Verr which is the error of the above, is calculated.
  • the operation and effect of the first embodiment will be described.
  • the compensation amount for compensating for the voltage error Verr is calculated. Therefore, even while the motor 11 is being driven, the voltage error Verr due to the dead time can be appropriately compensated. As a result, the control stability of the motor 11 can be improved.
  • the electric motor 11 that drives the fan 10 can be stably driven. Therefore, it is possible to prevent the electric motor 11 from abnormally stopping and prevent the heat exchange capacity of the heat source side heat exchanger 6 from being lowered.
  • the current difference ⁇ Id calculated immediately after the activation of the current estimation means 52 becomes larger than 0. Further, when the current compensation amount is overcompensation, the current difference ⁇ Id calculated immediately after the activation of the current estimation means 52 becomes smaller than 0. This principle can be used to determine the validity of the current amount of compensation.
  • the compensation amount is updated so as to increase the compensation amount. If the current compensation amount is overcompensated, the compensation amount is updated to reduce the compensation amount.
  • the motor control device 12 can bring the compensation amount closer to the value required for the compensation of the voltage error Verr by repeating the update of the compensation amount until the update end condition is satisfied. As a result, the control accuracy of the electric motor 11 is improved, and the electric motor 11 can be stably driven without being abnormally stopped.
  • the motor control device 12 of the first embodiment there is a blower device (not shown) mounted on the air conditioner 1.
  • the blower has a plurality of motors and a fan attached to each motor.
  • the blower selectively rotates some fans or all fans at the same time according to the required air volume.
  • Embodiment 2 The motor control device of the second embodiment is different from the first embodiment in the method of setting the adjustment value to be added to or subtracted from the compensation amount.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the compensation amount calculation means 54 changes the adjustment value w according to the absolute value of the current difference ⁇ Id, which is the value obtained by subtracting the d-axis current detection value Idr from the d-axis current estimated value Idp.
  • the compensation amount calculating means 54 sets the adjustment value w to a larger value as the absolute value of the current difference ⁇ Id is larger.
  • the compensation amount calculating means 54 sets the adjustment value w to a smaller value as the absolute value of the current difference ⁇ Id becomes smaller.
  • the method of obtaining the adjustment value w from the absolute value of the current difference ⁇ Id is not limited to the case where the compensation amount calculating means 54 calculates using the absolute value of the current difference ⁇ Id.
  • an adjustment value table in which the absolute values of the plurality of current differences ⁇ Id and the plurality of adjustment values w are associated with each other is created in advance, and the adjustment value table is stored in the memory 71.
  • the compensation amount calculating means 54 After calculating the absolute value of the current difference ⁇ Id, the compensation amount calculating means 54 refers to the adjustment value table and reads out the adjustment value w corresponding to the calculated absolute value of the current difference ⁇ Id from the adjustment value table.
  • FIG. 10 is a flowchart showing an example of an operation procedure of the compensation amount calculation means in the motor control device according to the second embodiment.
  • Steps S201 and S203 to S207 shown in FIG. 10 are the same processes as steps S101 to S106 shown in FIG. 8, and in the second embodiment, the process of step S202 is added. Therefore, here, the detailed description of steps S201 and S203 to S207 will be omitted, and the process of step S202 will be described.
  • step S201 the compensation amount calculating means 54 calculates the current difference ⁇ Id by subtracting the d-axis current detection value Idr from the d-axis current estimated value Idp. Then, the compensation amount calculation means 54 calculates the adjustment value w corresponding to the absolute value of the current difference ⁇ Id (step S202).
  • the compensation amount calculating means 54 sets the adjustment value w large when the absolute value of the current difference ⁇ Id is large, and sets the adjustment value w small when the absolute value of the current difference ⁇ Id is small. do. Therefore, the compensation amount can be increased when the voltage error Verr is large, and the compensation amount can be decreased when the voltage error Verr is small. Since the compensation amount is set according to the magnitude of the voltage error Verr, the number of times the compensation amount is updated can be reduced.
  • Embodiment 3 The motor control device of the third embodiment is different from the first embodiment in the method of updating the compensation amount and the condition for ending the update.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the motor control device 12 of the third embodiment will be described. In the third embodiment, the differences from the first embodiment will be described, and detailed description of the same configuration as that of the first embodiment will be omitted.
  • the compensation amount calculation means 54 stores the initial value Com0 of the compensation amount and the compensation amount Com (k-1) finally calculated in the memory 71.
  • the compensation amount calculation means 54 compares the sign of the current difference ⁇ Id (k-1) when the compensation amount Com (k-1) is calculated with the sign of the latest current difference ⁇ Idk which is the newly calculated current difference ⁇ Id. do. When the sign of the current difference ⁇ Id (k-1) and the sign of the latest current difference ⁇ Idk are different, the compensation amount calculation means 54 updates the value obtained by adding or subtracting the adjustment value w to the initial value Com to the compensation amount Comk. Specifically, the compensation amount calculating means 54 adjusts to the initial value Com0 when the sign of the current difference ⁇ Id (k-1) and the sign of the latest current difference ⁇ Idk are different and the sign of the latest current difference ⁇ Idk is positive.
  • the value obtained by adding the value w is updated to a new compensation amount Comk. Further, when the sign of the current difference ⁇ Id (k-1) and the sign of the latest current difference ⁇ Idk are different from each other and the sign of the latest current difference ⁇ Idk is negative, the compensation amount calculating means 54 sets the adjustment value w from the initial value Com. The subtracted value is updated to a new compensation amount Comk.
  • 11 and 12 are flowcharts showing an example of the operation procedure of the compensation amount calculation means in the motor control device according to the third embodiment.
  • the last calculated compensation amount is the current compensation amount Com (k-1)
  • the newly calculated compensation amount is Comk
  • the initial value of the compensation amount is Com0.
  • the compensation amount calculating means 54 calculates the current difference ⁇ Idk between the d-axis current estimated value Idp and the d-axis current detected value Idr. Calculate (step S301).
  • the compensation amount calculating means 54 determines whether or not the current difference ⁇ Idk is larger than 0 (step S302). When the current difference ⁇ Idk is larger than 0, the compensation amount calculating means 54 determines whether or not the previously calculated current difference ⁇ Id (k-1) is larger than 0 (step S303).
  • step S303 when the current difference ⁇ Id (k-1) is larger than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is insufficient compensation, and the current compensation amount Com. The value obtained by adding the adjustment value w to (k-1) is updated to the compensation amount Comk (step S304). As a result of the determination in step S303, when the current difference ⁇ Id (k-1) is 0 or less, the compensation amount calculation means 54 updates the value obtained by adding the adjustment value w to the initial value Com0 to the compensation amount Comk (step S305). ).
  • the compensation amount calculation means 54 determines whether or not the current difference ⁇ Idk is smaller than 0 (step S306). When the current difference ⁇ Idk is smaller than 0, the compensation amount calculating means 54 determines whether or not the previously calculated current difference ⁇ Id (k-1) is smaller than 0 (step S307). When the current difference ⁇ Id (k-1) is smaller than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is overcompensation and adjusts from the current compensation amount Com (k-1). The value obtained by subtracting the value w is updated to the compensation amount Comk (step S308).
  • step S307 when the current difference ⁇ Id (k-1) is 0 or more, the compensation amount calculation means 54 updates the value obtained by subtracting the adjustment value w from the initial value Com0 to the compensation amount Comk (step S309). ).
  • the compensation amount calculation means 54 can appropriately compensate the voltage error Verr due to the dead time by the current compensation amount Com (k-1). It is determined that the compensation amount is not changed (step S310).
  • the compensation amount calculating means 54 stores the current difference ⁇ Idk in the memory 71 as the final value of the current difference ⁇ Id (step S311). Further, after steps S304, S305, S308 and S309, the compensation amount calculation means 54 outputs the calculated compensation amount to the power control means 51.
  • the update end condition is that the control stability of the motor 11 is ensured.
  • the update end condition is, for example, that the motor 11 does not stop abnormally.
  • a positive threshold value + Is and a negative threshold value-Ith may be used instead of 0 as the criterion for updating the compensation amount.
  • FIG. 13 is a graph showing an example of the update result of the compensation amount in the motor control device according to the third embodiment. Specifically, FIG. 13 shows an example of the update result of the compensation amount when the current difference ⁇ Id calculated after the activation of the current estimation means 52 is smaller than 0, although the compensation is insufficient with the current compensation amount. show.
  • the vertical axis of FIG. 13 is the compensation amount, and the horizontal axis is the number of updates of the compensation amount.
  • step S308 shown in FIG. 12 since the current difference ⁇ Id is smaller than 0 when the number of updates is 0 to 2, the processing of step S308 shown in FIG. 12 is repeated, so that the compensation amount is stepped each time it is updated. Becomes smaller. The compensation amount becomes smaller for each update, and when the number of updates reaches the third time, the current difference ⁇ Id becomes larger than 0.
  • the value obtained by adding the adjustment value w to the initial value Com0 of the compensation amount becomes the compensation amount Comk (see step S305 in FIG. 11). Therefore, as shown in FIG. 13, the compensation amount Comk falls within the range of the compensation amount that satisfies the update end condition.
  • the compensation amount indicated by the alternate long and short dash line is the compensation amount when the current difference ⁇ Id becomes 0.
  • FIG. 14 is a graph showing another example of the update result of the compensation amount in the motor control device according to the third embodiment. Specifically, FIG. 14 shows an example of the update result of the compensation amount when the current difference ⁇ Id calculated after the activation of the current estimation means 52 becomes larger than 0, although the current compensation amount is overcompensation. show.
  • the vertical axis of FIG. 14 is the compensation amount, and the horizontal axis is the number of updates of the compensation amount.
  • step S304 shown in FIG. 11 since the current difference ⁇ Id is larger than 0 when the number of updates is 0 to 2, the processing of step S304 shown in FIG. 11 is repeated, so that the compensation amount is stepped each time it is updated. Becomes larger. As the compensation amount increases with each update, the current difference ⁇ Id becomes smaller than 0 at some point. In the example shown in FIG. 14, the current difference ⁇ Id becomes smaller than 0 when the number of updates reaches the third time. In the fourth update, the value obtained by subtracting the adjustment value w from the initial value Com0 of the compensation amount becomes the compensation amount Comk (see step S309 in FIG. 12). Therefore, as shown in FIG.
  • the compensation amount Comk falls within the range of the compensation amount that satisfies the update end condition. By updating the compensation amount in this way, it is possible to prevent the compensation amount from converging on the compensation amount when the current difference ⁇ Id becomes 0.
  • the compensation amount indicated by the alternate long and short dash line is the compensation amount when the current difference ⁇ Id becomes 0.
  • the compensation amount satisfying the update end condition can be obtained, and the motor 11 can be stably driven without abnormally stopping.
  • the operation and effect of the third embodiment will be described.
  • Various influences can be considered as the reason why the compensation amount does not correspond to the voltage error Verr.
  • One of the effects is the effect of variation due to hardware.
  • the variation caused by the hardware is, for example, a variation in the detection accuracy of the current detection device 19 and a variation in the winding resistance of the motor 11. Further, as one of the influences, when the electric motor 11 is a motor for driving the fan 10, there is an influence of disturbance such as an outside wind.
  • the blower device including the fan 10 and the electric motor 11 is also installed outdoors.
  • the fan 10 may be in a free-run state due to the outside wind.
  • the load of the motor 11 fluctuates, so that the accuracy of calculating the compensation amount for the voltage error Vref may deteriorate.
  • the current difference ⁇ Id calculated immediately after the activation of the current estimation means 52 may be smaller than 0 even though the compensation is insufficient with the current compensation amount. Further, due to the above-mentioned influence, the current difference ⁇ Id calculated immediately after the activation of the current estimation means 52 may be larger than 0 even though the current compensation amount is overcompensated. In the third embodiment, even in such a case, as described with reference to FIGS. 13 and 14, a compensation amount satisfying the update end condition can be obtained.
  • Embodiment 4 The motor control device of the fourth embodiment is different in the method of obtaining the compensation amount as compared with the first embodiment.
  • the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the compensation amount calculation means 54 changes the compensation amount according to a predetermined command value for a predetermined fixed time tset during the normal driving of the electric motor 11. Since these compensation amounts are provisional compensation amounts, they are referred to as candidate compensation amounts Comc. Specifically, the compensation amount calculation means 54 sequentially applies a plurality of candidate compensation amounts Comc as compensation amounts to tset for a certain period of time. The compensation amount calculation means 54 outputs each candidate compensation amount Comc to the power control means 51.
  • the compensation amount calculation means 54 calculates the effective value ⁇ Ideff of the current difference ⁇ Id corresponding to the candidate compensation amount Comc in tset for a certain period of time.
  • the compensation amount calculation means 54 stores the compensation amount Comm0 in the memory 71 in association with the effective value ⁇ Ideff in order to record the correspondence between the effective value ⁇ Ideff and the candidate compensation amount Comc.
  • the compensation amount calculation means 54 reads from the memory 71 a candidate compensation amount Comc corresponding to the minimum effective value ⁇ Ideff among the plurality of effective values ⁇ Ideff collected in the memory 71 for a certain period of time.
  • the compensation amount calculation means 54 updates the read candidate compensation amount Com to the compensation amount Comk.
  • FIG. 15 is a diagram showing an example of a command value for changing the compensation amount in the motor control device according to the fourth embodiment.
  • the vertical axis of FIG. 15 is the candidate compensation amount, and the horizontal axis is time.
  • the fixed time tset is, for example, 2 seconds.
  • the command value shown in FIG. 15 starts from the initial value Com0, linearly increases the candidate compensation amount Comc to Comc1, then linearly decreases the candidate compensation amount Comc to Comc2, and then linearly decreases to Com0, which is the end point. It is to increase to.
  • the relationship between the candidate compensation amount Comc and the time is represented by a straight line, but the candidate compensation amount Comc may change stepwise with respect to the time.
  • the command value changes the candidate compensation amount Comc in a fixed time unit.
  • the command value shown in FIG. 15 is an example, and the command value is not limited to the case shown in FIG.
  • FIG. 16 is a flowchart showing an example of an operation procedure of the compensation amount calculation means in the motor control device according to the fourth embodiment.
  • the compensation amount calculating means 54 executes the procedure shown in FIG. 16 when a start instruction is input from the current estimating means 52.
  • the compensation amount is Com0, which is the initial value.
  • the compensation amount calculation means 54 calculates the effective value ⁇ Ideff of the current difference ⁇ Id in a state where the compensation amount is set to the initial value Com0 (step S401).
  • the compensation amount calculation means 54 stores the initial value Com0 in the memory 71 in association with the effective value ⁇ Ideff in order to record the correspondence between the calculated effective value ⁇ Ideff and the initial value Com0 of the compensation amount (step S402).
  • the compensation amount calculation means 54 changes the candidate compensation amount Comc according to a predetermined command value (step S403).
  • the compensation amount calculation means 54 outputs the changed candidate compensation amount Comc to the power control means 51.
  • the compensation amount calculation means 54 repeats steps S401 to S403 until the measurement time t after the start instruction is input from the current estimation means 52 elapses for a certain period of time tset.
  • step S404 the compensation amount calculating means 54 determines whether or not the measurement time t after the start instruction is input from the current estimating means 52 has passed the test for a certain period of time (step S404). If tset has not elapsed for a certain period of time, the compensation amount calculation means 54 returns to step S401. As a result of the determination in step S404, when tset has elapsed for a certain period of time, the compensation amount calculating means 54 obtains the minimum effective value ⁇ Ideff among the plurality of effective values ⁇ Ideff stored in the memory 71 (step S405). ).
  • the compensation amount calculation means 54 refers to the information stored in the memory 71, and reads out the candidate compensation amount Comc corresponding to the minimum value of the effective value ⁇ Ideff from the memory 71 (step S406).
  • the compensation amount calculation means 54 updates the candidate compensation amount Comc obtained in the process of step S406 to the compensation amount Comk (step S407).
  • the update end condition is that the control stability of the motor 11 is ensured.
  • the update end condition is, for example, that the motor 11 does not stop abnormally.
  • the compensation amount calculation means 54 may not be activated thereafter, and the update of the compensation amount may be completed.
  • the fourth embodiment Comparing the case where the voltage error Verr is properly compensated and the case where the compensation is insufficient or overcompensated during the normal driving of the motor 11, the current difference is higher when the voltage error Verr is properly compensated.
  • the effective value ⁇ Ideff of ⁇ Id becomes smaller.
  • the compensation amount is intentionally changed, the relationship between the compensation amount and the effective value ⁇ Ideff of the current difference ⁇ Id is confirmed, and the compensation amount when the effective value ⁇ Ideff of the current difference ⁇ Id is minimized is determined. I'm looking for. Thereby, the compensation amount required for the compensation of the voltage error Verr can be obtained.
  • the compensation amount calculation means 54 if the compensation amount calculation means 54 is activated once, the compensation amount that minimizes the effective value ⁇ Ideff of the current difference ⁇ Id is obtained. Therefore, it is not necessary to repeatedly update the compensation amount to converge the compensation amount to a value required for compensation of the voltage error Verr. As a result, the number of times the compensation amount is updated can be reduced.
  • control device 18 and the upper control device 9 have been described with separate configurations, but the control device 18 and the upper control device 9 may be integrated.
  • the load of the motor 11 is described in the case of the fan for the air conditioner, but the load is not limited to the fan for the air conditioner.
  • the compensation amount calculation and compensation amount update described in the first to fourth embodiments can be applied to various loads regardless of the type of load of the motor 11.

Abstract

This electric motor control device includes: an electric power conversion device that supplies alternating current voltage corresponding to a voltage instruction value to an electric motor; an electric current detecting device that detects an electric current flowing at the electric motor; and a control device that outputs, to the electric power conversion device, the voltage instruction value calculated in accordance with a speed instruction value and information of the electric current detected by the electric current detecting device. The control device includes: rotations estimating means that calculate estimated rotations of the electric motor using an electric current detection value that is the electric current detected by the electric current detecting device; electric current estimating means that estimate the electric current flowing at the electric motor using the voltage instruction value, the estimated rotations, and a parameter of the electric motor; and compensation amount calculating means that calculate a compensation amount for compensating for voltage error that is an error between output voltage of the electric power conversion device and the voltage instruction value, on the basis of an electric current difference that is a value obtained by subtracting the electric current detection value from an electric current estimation value that is an electric current estimated by the electric current estimating means.

Description

電動機制御装置およびこれを備えた空気調和装置Motor control device and air conditioner equipped with it
 本開示は、電力変換装置を用いて電動機の回転を制御する電動機制御装置およびこれを備えた空気調和装置に関する。 The present disclosure relates to an electric motor control device that controls the rotation of a motor using a power conversion device and an air conditioner provided with the electric motor control device.
 ブラシレスDCモータなどの電動機は、例えば、空気調和装置のファンの駆動など、様々な用途に用いられている。電動機に電力を供給する電力変換装置として、例えば、インバータがある。インバータは、直流電源の高電圧線と低電圧線との間に直列に接続される2つのスイッチング素子が3組設けられた構成を有する。各組の2つのスイッチング素子のうち、高電圧線に接続されるスイッチング素子は上側のスイッチング素子と称され、低電圧線側に接続されるスイッチング素子は下側のスイッチング素子と称される。 Motors such as brushless DC motors are used for various purposes such as driving fans of air conditioners. As a power conversion device that supplies electric power to an electric motor, for example, there is an inverter. The inverter has a configuration in which three sets of two switching elements connected in series between the high voltage line and the low voltage line of the DC power supply are provided. Of the two switching elements in each set, the switching element connected to the high voltage line is referred to as the upper switching element, and the switching element connected to the low voltage line side is referred to as the lower switching element.
 各スイッチング素子は、スイッチング動作に数百ns~数μsの時間を要する。そのため、1組のスイッチング素子において、上側のスイッチング素子がオン状態からオフ状態に切り替わり、下側のスイッチング素子がオフ状態からオン状態に切り替わる間に、一時的に上側および下側のスイッチング素子が同時にオン状態になる場合がある。上側および下側のスイッチング素子が同時にオン状態になると、インバータの一次側が短絡し、スイッチング素子が破壊されてしまう。この短絡を防止するために、上側および下側のスイッチング素子が同時にオフ状態となる期間が設けられている。この期間はデッドタイムと称される。しかし、デッドタイムによりインバータの出力電圧と電圧指令値とに電圧誤差が生じ、制御精度が低下しまうことがあった。 Each switching element requires a time of several hundred ns to several μs for the switching operation. Therefore, in one set of switching elements, while the upper switching element switches from the on state to the off state and the lower switching element switches from the off state to the on state, the upper and lower switching elements temporarily simultaneously move at the same time. It may be turned on. If the upper and lower switching elements are turned on at the same time, the primary side of the inverter is short-circuited and the switching element is destroyed. In order to prevent this short circuit, a period is provided in which the upper and lower switching elements are simultaneously turned off. This period is called dead time. However, due to the dead time, a voltage error may occur between the output voltage of the inverter and the voltage command value, and the control accuracy may decrease.
 デッドタイムに起因する電圧誤差を補償する方法として、予めデッドタイムに起因する電圧誤差の大きさを見積もり、電圧誤差分を電圧指令値に加算する制御方法が知られている(例えば、特許文献1参照)。特許文献1には、2種類のスイッチング周波数の各周波数について電動機に一定の直流電流が流れるように電流制御を行い、2種類のスイッチング周波数に対応する出力電圧の差を利用して、電圧誤差の大きさを見積もる方法が開示されている。 As a method of compensating for the voltage error caused by the dead time, a control method is known in which the magnitude of the voltage error caused by the dead time is estimated in advance and the voltage error amount is added to the voltage command value (for example, Patent Document 1). reference). In Patent Document 1, current control is performed so that a constant DC current flows through the motor for each frequency of the two types of switching frequencies, and the difference in output voltage corresponding to the two types of switching frequencies is used to determine the voltage error. A method of estimating the size is disclosed.
国際公開第98/042067号International Publication No. 98/042067
 特許文献1に開示された制御方法では、2種類のスイッチング周波数毎に電動機に一定の直流電流を流す必要がある。制御対象の電動機が送風ファンを回転させる電動機である場合、制御装置は電動機に交流電流を流して駆動させるため、送風ファンの駆動中に特許文献1に開示された方法を適用できない。 In the control method disclosed in Patent Document 1, it is necessary to pass a constant direct current through the motor for each of the two types of switching frequencies. When the motor to be controlled is an electric motor that rotates the blower fan, the control device drives the electric motor by passing an alternating current, so that the method disclosed in Patent Document 1 cannot be applied while the blower fan is being driven.
 本開示は、上記のような課題を解決するためになされたもので、電動機の駆動中にデッドタイムに起因する電圧誤差を補償する補償量を算出する電動機制御装置およびこれを備えた空気調和装置を提供するものである。 The present disclosure has been made to solve the above-mentioned problems, and is an electric motor control device for calculating a compensation amount for compensating for a voltage error due to a dead time while driving an electric motor, and an air conditioner equipped with the electric motor control device. Is to provide.
 本開示に係る電動機制御装置は、電動機に印加する電圧の指令値である電圧指令値に対応する交流電圧を前記電動機に供給する電力変換装置と、前記電動機に流れる電流を検出する電流検出装置と、前記電動機の回転速度の指令値である速度指令値と前記電流検出装置によって検出される電流の情報とに対応して前記電圧指令値を算出して前記電力変換装置に出力する制御装置と、を有し、前記制御装置は、前記電流検出装置によって検出される電流である電流検出値を用いて前記電動機の回転数の推定値である推定回転数を算出する回転数推定手段と、前記電圧指令値と、前記推定回転数と、予め記憶される前記電動機のパラメータとを用いて、前記電動機に流れる電流を推定する電流推定手段と、前記電流推定手段によって推定される電流である電流推定値から前記電流検出値を減算した値である電流差に基づいて、前記電力変換装置の出力電圧と前記電圧指令値との誤差である電圧誤差を補償する補償量を算出する補償量算出手段と、を有するものである。 The electric motor control device according to the present disclosure includes a power conversion device that supplies an AC voltage corresponding to a voltage command value, which is a command value of a voltage applied to the electric motor, to the electric motor, and a current detection device that detects a current flowing through the electric motor. A control device that calculates the voltage command value corresponding to the speed command value, which is the command value of the rotation speed of the electric motor, and the current information detected by the current detection device, and outputs the voltage command value to the power conversion device. The control device includes a rotation speed estimation means for calculating an estimated rotation speed, which is an estimated value of the rotation speed of the electric motor, using a current detection value, which is a current detected by the current detection device, and the voltage. A current estimation means for estimating the current flowing through the electric motor using a command value, the estimated rotation speed, and a parameter of the electric motor stored in advance, and a current estimation value which is a current estimated by the current estimation means. A compensation amount calculation means for calculating a compensation amount for compensating for a voltage error which is an error between the output voltage of the power converter and the voltage command value based on the current difference which is a value obtained by subtracting the current detection value from the current detection value. It has.
 本開示に係る空気調和装置は、上記の電動機制御装置と、冷媒と空気とを熱交換させる熱交換器と、前記熱交換器に対応して設けられたファンと、前記ファンに接続され、前記電動機制御装置の制御対象となる電動機と、を有するものである。 The air conditioner according to the present disclosure is connected to the motor control device, a heat exchanger for heat exchange between the refrigerant and air, a fan provided corresponding to the heat exchanger, and the fan. It has an electric motor to be controlled by the electric motor control device.
 本開示によれば、電圧指令値、推定回転数および電動機のパラメータを用いて推測される電流推定値から電流検出装置によって検出される電流値を減算した電流差に基づいて、電力変換装置の出力電圧と電圧指令値との電圧誤差を補償する補償量が算出される。そのため、電動機の駆動中でも、デッドタイムに起因する電圧誤差を適切に補償することができる。 According to the present disclosure, the output of the power converter is based on the current difference obtained by subtracting the current value detected by the current detector from the current estimated value estimated using the voltage command value, the estimated rotation speed and the parameters of the electric motor. The compensation amount for compensating for the voltage error between the voltage and the voltage command value is calculated. Therefore, the voltage error due to the dead time can be appropriately compensated even while the motor is being driven.
実施の形態1に係る電動機制御装置を含む空気調和装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the air conditioner including the motor control device which concerns on Embodiment 1. FIG. 図1に示した電動機制御装置の一構成例を示すブロック図である。It is a block diagram which shows one configuration example of the motor control device shown in FIG. 図2に示す電力変換装置がインバータである場合の一構成例を示す図である。It is a figure which shows one configuration example when the power conversion apparatus shown in FIG. 2 is an inverter. 図2に示した制御装置の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control device shown in FIG. 図4に示した制御装置の一構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG. 図4に示した制御装置の別の構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG. 実施の形態1に係る電動機制御装置において、制御装置の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the control device in the motor control device which concerns on Embodiment 1. FIG. 実施の形態1に係る電動機制御装置において、補償量算出手段が補償量を更新する手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure which the compensation amount calculation means updates a compensation amount in the motor control device which concerns on Embodiment 1. FIG. 実施の形態1に係る電動機制御装置において、電流推定手段の起動後の処理の一部を示すフローチャートである。It is a flowchart which shows a part of the processing after activation of the current estimation means in the electric motor control device which concerns on Embodiment 1. FIG. 実施の形態2に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 2. FIG. 実施の形態3に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 3. FIG. 実施の形態3に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the motor control device which concerns on Embodiment 3. FIG. 実施の形態3に係る電動機制御装置において、補償量の更新結果の一例を示すグラフである。It is a graph which shows an example of the update result of the compensation amount in the motor control device which concerns on Embodiment 3. FIG. 実施の形態3に係る電動機制御装置において、補償量の更新結果の別の例を示すグラフである。It is a graph which shows another example of the update result of the compensation amount in the motor control device which concerns on Embodiment 3. FIG. 実施の形態4に係る電動機制御装置において、補償量を変化させる指令値の一例を示す図である。It is a figure which shows an example of the command value which changes the compensation amount in the electric motor control device which concerns on Embodiment 4. FIG. 実施の形態4に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation procedure of the compensation amount calculation means in the electric motor control device which concerns on Embodiment 4. FIG.
実施の形態1.
 本実施の形態1の電動機制御装置を含む空気調和装置の構成を説明する。図1は、実施の形態1に係る電動機制御装置を含む空気調和装置の一例を示す冷媒回路図である。図1に示すように、空気調和装置1は、熱源側ユニット2および負荷側ユニット3を有する。
Embodiment 1.
The configuration of the air conditioner including the motor control device of the first embodiment will be described. FIG. 1 is a refrigerant circuit diagram showing an example of an air conditioner including the motor control device according to the first embodiment. As shown in FIG. 1, the air conditioner 1 has a heat source side unit 2 and a load side unit 3.
 熱源側ユニット2は、冷媒を圧縮して吐出する圧縮機4と、冷媒の流通方向を切り替える四方弁5と、冷媒を外気と熱交換させる熱源側熱交換器6と、冷媒を減圧して膨張させる電磁弁7と、上位制御装置9とを有する。また、熱源側ユニット2は、熱源側熱交換器6に外気を供給するファン10と、ファン10を駆動する電動機11と、電動機11に三相電圧を供給する電動機制御装置12とを有する。負荷側ユニット3は、冷媒を空調対象空間の空気と熱交換させる負荷側熱交換器13と、冷媒を減圧して膨張させる電磁弁8とを有する。 The heat source side unit 2 includes a compressor 4 that compresses and discharges the refrigerant, a four-way valve 5 that switches the flow direction of the refrigerant, a heat source side heat exchanger 6 that exchanges heat with the outside air, and expands by reducing the pressure of the refrigerant. It has an electromagnetic valve 7 for causing the refrigerant to operate, and a host control device 9. Further, the heat source side unit 2 includes a fan 10 that supplies outside air to the heat source side heat exchanger 6, an electric motor 11 that drives the fan 10, and an electric motor control device 12 that supplies a three-phase voltage to the electric motor 11. The load-side unit 3 includes a load-side heat exchanger 13 that exchanges heat with the air in the space to be air-conditioned, and an electromagnetic valve 8 that depressurizes and expands the refrigerant.
 図1に示すことを省略しているが、上位制御装置9は、四方弁5と、圧縮機4と、電磁弁7および8と、電動機制御装置12と信号線を介して接続されている。圧縮機4、熱源側熱交換器6、電磁弁7および8、ならびに負荷側熱交換器13が冷媒配管14で接続され、冷媒が循環する冷媒回路15が構成される。上位制御装置9は、空気調和装置1を制御する制御装置である。上位制御装置9は、冷媒回路15を循環する冷媒の冷凍サイクルを制御する。空気調和装置1が冷房運転を行う場合、熱源側熱交換器6が凝縮器として機能し、負荷側熱交換器13が蒸発器として機能する。空気調和装置1が暖房運転を行う場合、熱源側熱交換器6が蒸発器として機能し、負荷側熱交換器13が凝縮器として機能する。 Although not shown in FIG. 1, the upper control device 9 is connected to the four-way valve 5, the compressor 4, the solenoid valves 7 and 8, and the motor control device 12 via a signal line. The compressor 4, the heat source side heat exchanger 6, the solenoid valves 7 and 8, and the load side heat exchanger 13 are connected by a refrigerant pipe 14, and a refrigerant circuit 15 through which the refrigerant circulates is configured. The upper control device 9 is a control device that controls the air conditioner 1. The upper control device 9 controls the refrigeration cycle of the refrigerant circulating in the refrigerant circuit 15. When the air conditioner 1 performs the cooling operation, the heat source side heat exchanger 6 functions as a condenser, and the load side heat exchanger 13 functions as an evaporator. When the air conditioner 1 performs the heating operation, the heat source side heat exchanger 6 functions as an evaporator, and the load side heat exchanger 13 functions as a condenser.
 なお、図1に示す構成例では、空気調和装置1に電磁弁7および8が設けられているが、電磁弁7および8のうち、いずれか一方が設けられていてもよい。また、図1に示す構成例では、ファン10、電動機11および電動機制御装置12が熱源側ユニット2に設けられた場合の構成を示しているが、この場合に限らない。ファン10、電動機11および電動機制御装置12が、熱源側ユニット2および負荷側ユニット3のうち、いずれか一方または両方に設けられていてもよい。 In the configuration example shown in FIG. 1, the air conditioner 1 is provided with the solenoid valves 7 and 8, but one of the solenoid valves 7 and 8 may be provided. Further, in the configuration example shown in FIG. 1, the configuration when the fan 10, the motor 11 and the motor control device 12 are provided in the heat source side unit 2 is shown, but the configuration is not limited to this case. The fan 10, the motor 11, and the motor control device 12 may be provided on either one or both of the heat source side unit 2 and the load side unit 3.
 図2は、図1に示した電動機制御装置の一構成例を示すブロック図である。図3は、図2に示す電力変換装置がインバータである場合の一構成例を示す図である。電動機制御装置12は、電源16に接続される電力変換装置17と、電力変換装置17の動作を制御する制御装置18と、電流検出装置19とを有する。電源16は、電力変換装置17を介して、電動機11に電力を供給する直流電圧電源である。本実施の形態1においては、電源16が直流電圧電源の場合で説明するが、電源は交流電圧電源であってもよい。外部に設けられた単相電源(図示せず)または三相電源(図示せず)から交流電圧が電動機制御装置12に供給される場合、交流電圧を直流電圧に変換して電力変換装置17に出力する整流回路(図示せず)が電動機制御装置12に設けられる。 FIG. 2 is a block diagram showing a configuration example of the motor control device shown in FIG. FIG. 3 is a diagram showing a configuration example when the power conversion device shown in FIG. 2 is an inverter. The electric motor control device 12 includes a power conversion device 17 connected to the power supply 16, a control device 18 for controlling the operation of the power conversion device 17, and a current detection device 19. The power supply 16 is a DC voltage power supply that supplies electric power to the electric motor 11 via the power conversion device 17. In the first embodiment, the case where the power supply 16 is a DC voltage power supply will be described, but the power supply may be an AC voltage power supply. When an AC voltage is supplied to the electric motor control device 12 from an external single-phase power supply (not shown) or a three-phase power supply (not shown), the AC voltage is converted into a DC voltage to the power converter 17. An output rectifying circuit (not shown) is provided in the electric motor control device 12.
 電動機11は、例えば、ブラシレスDCモータである。電動機11は、図に示さない回転子および固定子を有する。固定子は、U相、V相およびW相の三相の巻線を有する。回転子には永久磁石が設けられている。電力変換装置17から電動機11に印加される三相電圧に対応して巻線に電流が流れることで、固定子は、回転子の周囲に回転磁界を発生させる。 The motor 11 is, for example, a brushless DC motor. The motor 11 has a rotor and a stator not shown in the figure. The stator has a U-phase, V-phase and W-phase three-phase winding. A permanent magnet is provided on the rotor. A current flows through the windings in response to the three-phase voltage applied from the power converter 17 to the motor 11, so that the stator generates a rotating magnetic field around the rotor.
 ブラシレスDCモータは、回転子の位置に応じて適切な位相および周波数の三相交流電圧を固定子に印加し、回転子の周囲に回転磁界を発生させ、回転磁界と回転子との吸引および反発を利用して回転子を所望の回転数で回転させる。その際、回転子の位置を検出する必要がある。回転子の位置を検出する方法として、例えば、電動機に設置されたホールセンサによって検出する方法、および電動機に流れる三相電流から演算によって算出する方法がある。本実施の形態1では、電動機制御装置12は、電動機に流れる三相電流から演算によって回転子の位置を推定している。 The brushless DC motor applies a three-phase AC voltage of appropriate phase and frequency to the stator according to the position of the rotor, generates a rotating magnetic field around the rotor, and attracts and repels the rotating magnetic field and the rotor. Is used to rotate the rotor at a desired rotation speed. At that time, it is necessary to detect the position of the rotor. As a method of detecting the position of the rotor, for example, there are a method of detecting by a hall sensor installed in the motor and a method of calculating by calculation from the three-phase current flowing in the motor. In the first embodiment, the motor control device 12 estimates the position of the rotor by calculation from the three-phase current flowing through the motor.
 電流検出装置19は、電動機11に流れる三相電流Iuvwを検出する。図2に示す構成では、電流検出装置19は、U相およびW相に流れる電流を検出する電流検出器19aを有する。電流検出器19aは、例えば、カレントトランスである。V相に流れる電流については、制御装置18が、U相およびW相に流れる電流値から演算によって算出する。 The current detection device 19 detects the three-phase current Iuvw flowing through the motor 11. In the configuration shown in FIG. 2, the current detection device 19 includes a current detector 19a that detects currents flowing in the U phase and the W phase. The current detector 19a is, for example, a current transformer. The current flowing in the V phase is calculated by the control device 18 from the current values flowing in the U phase and the W phase.
 なお、電流を検出する位置は図2に示す位置の場合に限らない。電流検出装置19を設ける代わりに、シャント抵抗を用いた電流検出部をインバータ20に設けてもよい。電流検出装置19が検出する相も図2に示す相の場合に限らない。例えば、U相およびV相の電流を電流検出器19aが検出してもよい。 The position where the current is detected is not limited to the position shown in FIG. Instead of providing the current detection device 19, a current detection unit using a shunt resistor may be provided in the inverter 20. The phase detected by the current detection device 19 is not limited to the phase shown in FIG. For example, the current detector 19a may detect the U-phase and V-phase currents.
 上位制御装置9は、例えば、マイクロコンピュータである。上位制御装置9は、プログラムを記憶するメモリ72と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)62とを有する。上位制御装置9は、信号系統において、制御装置18の上流側に位置する。上位制御装置9は、制御装置18に指令を出す制御装置である。指令は、例えば、電動機11の回転速度の指令値である速度指令値ω_ref、および電動機11の回転の停止を指示する停止指令などである。図に示していないが、ユーザが空気調和装置1に指示を入力するためのリモートコントローラが上位制御装置9に接続されていてもよい。 The upper control device 9 is, for example, a microcomputer. The host control device 9 has a memory 72 for storing a program and a CPU (Central Processing Unit) 62 for executing processing according to the program. The upper control device 9 is located on the upstream side of the control device 18 in the signal system. The upper control device 9 is a control device that issues a command to the control device 18. The commands include, for example, a speed command value ω_ref, which is a command value for the rotation speed of the motor 11, and a stop command for instructing the stop of rotation of the motor 11. Although not shown in the figure, a remote controller for the user to input an instruction to the air conditioner 1 may be connected to the host controller 9.
 次に、図3を参照して、インバータ20の構成を説明する。インバータ20は、U相に関して、電源16の正極側に接続されるスイッチング素子21と、電源16の負極側に接続されるスイッチング素子22とを有する。スイッチング素子21には逆流防止素子31が並列に接続され、スイッチング素子22には逆流防止素子32が並列に接続されている。また、インバータ20は、V相に関して、電源16の正極側に接続されるスイッチング素子23と、電源16の負極側に接続されるスイッチング素子24とを有する。スイッチング素子23に逆流防止素子33が並列に接続され、スイッチング素子24に逆流防止素子34が並列に接続されている。インバータ20は、W相に関して、電源16の正極側に接続されるスイッチング素子25と、電源16の負極側に接続されるスイッチング素子26とを有する。スイッチング素子25に逆流防止素子35が並列に接続され、スイッチング素子26に逆流防止素子36が並列に接続されている。 Next, the configuration of the inverter 20 will be described with reference to FIG. The inverter 20 has a switching element 21 connected to the positive electrode side of the power supply 16 and a switching element 22 connected to the negative electrode side of the power supply 16 with respect to the U phase. The backflow prevention element 31 is connected in parallel to the switching element 21, and the backflow prevention element 32 is connected in parallel to the switching element 22. Further, the inverter 20 has a switching element 23 connected to the positive electrode side of the power supply 16 and a switching element 24 connected to the negative electrode side of the power supply 16 with respect to the V phase. The backflow prevention element 33 is connected in parallel to the switching element 23, and the backflow prevention element 34 is connected in parallel to the switching element 24. The inverter 20 has a switching element 25 connected to the positive electrode side of the power supply 16 and a switching element 26 connected to the negative electrode side of the power supply 16 with respect to the W phase. The backflow prevention element 35 is connected in parallel to the switching element 25, and the backflow prevention element 36 is connected in parallel to the switching element 26.
 スイッチング素子21~26は、例えば、IGBT(Insulated Gate Bipolar Transistor)である。逆流防止素子31~36は、例えば、ダイオードである。 The switching elements 21 to 26 are, for example, IGBTs (Insulated Gate Bipolar Transistors). The backflow prevention elements 31 to 36 are, for example, diodes.
 インバータ20には、制御装置18から三相電圧指令値Vuvw_refが入力される。インバータ20は、三相電圧指令値Vuvw_refの波形とキャリア波とを比較し、PWM(Pulse Width Modulation)制御による電力変換を行う。インバータ20は、制御装置18から受け取る三相電圧指令値Vuvw_refに対応して電源16の直流電圧をPWM制御し、直流電圧を三相電圧に変換して電動機11に供給する。 The three-phase voltage command value Vuvw_ref is input to the inverter 20 from the control device 18. The inverter 20 compares the waveform of the three-phase voltage command value Vuvw_ref with the carrier wave, and performs power conversion by PWM (Pulse Width Modulation) control. The inverter 20 PWM-controls the DC voltage of the power supply 16 in response to the three-phase voltage command value Vuvw_ref received from the control device 18, converts the DC voltage into a three-phase voltage, and supplies the DC voltage to the motor 11.
 図4は、図2に示した制御装置の一構成例を示す機能ブロック図である。図4に示すように、制御装置18は、電力制御手段51と、電流推定手段52と、回転数推定手段53と、補償量算出手段54とを有する。制御装置18は、マイクロコンピュータなどの演算装置がソフトウェアを実行することにより各種機能が実現される。また、制御装置18は、各種機能を実現する回路デバイスなどのハードウェアで構成されてもよい。 FIG. 4 is a functional block diagram showing a configuration example of the control device shown in FIG. As shown in FIG. 4, the control device 18 includes a power control means 51, a current estimation means 52, a rotation speed estimation means 53, and a compensation amount calculation means 54. Various functions of the control device 18 are realized by executing software by an arithmetic unit such as a microcomputer. Further, the control device 18 may be composed of hardware such as a circuit device that realizes various functions.
 上位制御装置9から制御装置18に電動機11の起動指令が入力されると、制御装置18は、予め決められたタイミングで、電力制御手段51、電流推定手段52および回転数推定手段53の各手段を起動する。例えば、制御装置18は、電力制御手段51、電流推定手段52および回転数推定手段53の順で起動する。この場合、電力制御手段51の起動によって電動機11が起動した後、電流推定手段52および回転数推定手段53が起動する。 When a start command for the electric motor 11 is input from the upper control device 9 to the control device 18, the control device 18 causes the power control means 51, the current estimation means 52, and the rotation speed estimation means 53 at predetermined timings. To start. For example, the control device 18 is activated in the order of the power control means 51, the current estimation means 52, and the rotation speed estimation means 53. In this case, after the electric motor 11 is activated by the activation of the power control means 51, the current estimation means 52 and the rotation speed estimation means 53 are activated.
 また、制御装置18は、インバータ20の出力電圧と三相電圧指令値Vuvw_refとの誤差である電圧誤差Verrの補償が必要と判断した場合、補償量算出手段54を起動する。ただし、補償量算出手段54は電流推定手段52による演算処理の結果を利用するため、補償量算出手段54の起動のタイミングは、電流推定手段52の起動のタイミングよりも後になる。そのため、電流推定手段52が、起動した後、電圧誤差Verrの補償が必要か否かを判断し、補償が必要と判断した場合、補償量算出手段54に対して起動を指示してもよい。補償量算出手段54の起動のタイミングは、電流推定手段52が演算処理により電流値を算出し、算出した電流値を補償量算出手段54に出力するタイミングでもよい。また、上位制御装置9から制御装置18に電動機11の停止指令が入力されると、制御装置18は、電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の動作を停止する。 Further, when the control device 18 determines that it is necessary to compensate for the voltage error Verr, which is an error between the output voltage of the inverter 20 and the three-phase voltage command value Vuvw_ref, the control device 18 activates the compensation amount calculation means 54. However, since the compensation amount calculation means 54 uses the result of the arithmetic processing by the current estimation means 52, the activation timing of the compensation amount calculation means 54 is later than the activation timing of the current estimation means 52. Therefore, after the current estimation means 52 is started, it may be determined whether or not compensation for the voltage error Verr is necessary, and if it is determined that compensation is necessary, the compensation amount calculation means 54 may be instructed to start. The timing of starting the compensation amount calculation means 54 may be the timing at which the current estimation means 52 calculates the current value by arithmetic processing and outputs the calculated current value to the compensation amount calculation means 54. Further, when a stop command for the electric motor 11 is input from the upper control device 9 to the control device 18, the control device 18 operates the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54. To stop.
 電力制御手段51は、上位制御装置9から入力される速度指令値ω_refと、電流検出装置19によって検出される三相電流Iuvwとに基づいてベクトル制御を行い、電動機11に印加する電圧の指令値である三相電圧指令値Vuvw_refを生成する。電力制御手段51は、生成した三相電圧指令値Vuvw_refをインバータ20および電流推定手段52に出力する。電力制御手段51は、補償量算出手段54から補償量の情報が入力されると、補償量に対応して三相電圧指令値Vuvw_refを微調整する。回転数推定手段53は、電動機11に流れる三相電流Iuvwを用いて、電動機11の回転数の推定値である推定回転数Rを算出する。 The power control means 51 performs vector control based on the speed command value ω_ref input from the host control device 9 and the three-phase current Iuvw detected by the current detection device 19, and the command value of the voltage applied to the motor 11. The three-phase voltage command value Vuvw_ref is generated. The power control means 51 outputs the generated three-phase voltage command value Vuvw_ref to the inverter 20 and the current estimation means 52. When the compensation amount information is input from the compensation amount calculation means 54, the power control means 51 finely adjusts the three-phase voltage command value Vuvw_ref according to the compensation amount. The rotation speed estimation means 53 calculates the estimated rotation speed R, which is an estimated value of the rotation speed of the electric motor 11, by using the three-phase current Iuvw flowing through the electric motor 11.
 電流推定手段52は、インバータ20に三相電圧指令値Vuvw_refが入力された場合に電動機11に流れるd軸電流およびq軸電流の各電流を推定する。具体的には、電流推定手段52は、電力制御手段51から入力される三相電圧指令値Vuvw_refと、予め記憶した電動機11のパラメータと、推定回転数Rとを用いて、電動機11に流れるd軸電流およびq軸電流の各電流の推定値を算出する。電動機11のパラメータは、例えば、電動機11の巻き線抵抗である。本実施の形態1においては、演算処理の対象となる電流が、電動機11に流れる電流を座標変換したd軸電流の場合で説明するが、q軸電流であってもよい。 The current estimating means 52 estimates each of the d-axis current and the q-axis current flowing through the motor 11 when the three-phase voltage command value Vuvw_ref is input to the inverter 20. Specifically, the current estimation means 52 flows through the electric motor 11 using the three-phase voltage command value Vuvw_ref input from the power control means 51, the parameters of the electric motor 11 stored in advance, and the estimated rotation speed R. Calculate the estimated values of the shaft current and the q-axis current. The parameter of the motor 11 is, for example, the winding resistance of the motor 11. In the first embodiment, the case where the current to be subjected to the arithmetic processing is the d-axis current obtained by coordinate-transforming the current flowing through the motor 11 will be described, but it may be the q-axis current.
 さらに、電流推定手段52の構成を詳しく説明する。電流推定手段52は、自分自身が起動すると、電流検出装置19によって検出される三相電流Iuvwを座標変換することで、d軸電流を算出する。このd軸電流をd軸電流検出値Idrと称する。電流推定手段52は、三相電圧指令値Vuvw_refと、電動機11のパラメータと、推定回転数Rとを用いて、電動機11に流れるd軸電流の推定値であるd軸電流推定値Idpを算出する。電流推定手段52は、自分自身の起動開始から計測される時間が予め決められた待ち時間twaに到達したとき、電圧誤差Verrの補償が必要な場合、算出したd軸電流推定値Idpを補償量算出手段54に出力する。その際、電流推定手段52は、d軸電流推定値Idpだけでなく、d軸電流検出値Idrを補償量算出手段54に出力してもよい。 Further, the configuration of the current estimation means 52 will be described in detail. When the current estimation means 52 is activated by itself, the d-axis current is calculated by converting the coordinates of the three-phase current Iuvw detected by the current detection device 19. This d-axis current is referred to as a d-axis current detection value Idr. The current estimation means 52 uses the three-phase voltage command value Vuvw_ref, the parameters of the motor 11, and the estimated rotation speed R to calculate the d-axis current estimated value Idp, which is an estimated value of the d-axis current flowing through the motor 11. .. When the time measured from the start of its own startup reaches a predetermined waiting time twa, the current estimation means 52 compensates for the calculated d-axis current estimated value Idp when compensation for the voltage error Verr is required. It is output to the calculation means 54. At that time, the current estimation means 52 may output not only the d-axis current estimation value Idp but also the d-axis current detection value Idr to the compensation amount calculation means 54.
 待ち時間Twaは、電流推定手段52が起動したときから決められた時間が経過したときに電流推定手段52が算出した電流推定値を、後述の補償量算出の必要性の有無の判定に使用するために設定されている。これは、電流推定手段52の起動直後に算出される電流推定値を、後述の補償量算出の必要性の有無の判定に使用しないためである。待ち時間twaは、例えば、電流検出装置19が電動機11の電流を検出する時間間隔であるサンプリング時間の100倍である。 The waiting time Twa uses the current estimated value calculated by the current estimating means 52 when a predetermined time elapses from the time when the current estimating means 52 is activated to determine whether or not it is necessary to calculate the compensation amount described later. Is set for. This is because the current estimated value calculated immediately after the activation of the current estimating means 52 is not used for determining whether or not the compensation amount calculation, which will be described later, is necessary. The waiting time twa is, for example, 100 times the sampling time, which is the time interval in which the current detection device 19 detects the current of the electric motor 11.
 補償量算出手段54は、デッドタイムに起因する電圧誤差Verrを補償する補償量Comkを算出する。具体的には、補償量算出手段54は、電流検出装置19によって検出される三相電流Iuvwと、電流推定手段52によって算出される推定電流とを用いて、電圧誤差Verrを補償する補償量Comkを算出する。kは、0以上の任意の整数であり、補償量の更新回数を示す。例えば、補償量Comkの初期値はCom0と表される。 The compensation amount calculation means 54 calculates the compensation amount Comk that compensates for the voltage error Verr caused by the dead time. Specifically, the compensation amount calculation means 54 uses the three-phase current Iuvw detected by the current detection device 19 and the estimated current calculated by the current estimation means 52 to compensate the voltage error Verr. Is calculated. k is an arbitrary integer of 0 or more, and indicates the number of times the compensation amount is updated. For example, the initial value of the compensation amount Comk is expressed as Com0.
 さらに、補償量算出手段54の構成を詳しく説明する。補償量算出手段54は、d軸電流推定値Idpおよびd軸電流検出値Idrを用いて、d軸電流推定値Idpからd軸電流検出値Idrを減算した値を電流差ΔIdとして算出する。つまり、補償量算出手段54は、(Idp-Idr)=ΔIdの式にしたがって、電流差ΔIdを算出する。電流差ΔIdが正の値の場合、推測される電流値よりも検出される電流値が小さいので、補償量算出手段54は、補償が不足していると判断し、予め決められた基準補償量Crefよりも大きい補償量を設定する。例えば、補償量算出手段54は、基準補償量Crefに予め決められた調整値wを加算した値を補償量Comkに設定する。 Further, the configuration of the compensation amount calculation means 54 will be described in detail. The compensation amount calculation means 54 uses the d-axis current estimated value Idp and the d-axis current detected value Idr to calculate the value obtained by subtracting the d-axis current detected value Idr from the d-axis current estimated value Idp as the current difference ΔId. That is, the compensation amount calculation means 54 calculates the current difference ΔId according to the equation (Idp-Idr) = ΔId. When the current difference ΔId is a positive value, the detected current value is smaller than the estimated current value. Therefore, the compensation amount calculation means 54 determines that the compensation is insufficient, and determines a predetermined reference compensation amount. Set a compensation amount larger than Clef. For example, the compensation amount calculation means 54 sets the compensation amount Comk as a value obtained by adding a predetermined adjustment value w to the reference compensation amount Clef.
 一方、電流差ΔIdが負の値である場合、推測される電流値よりも検出される電流値が大きいので、補償量算出手段54は、過補償と判断し、基準補償量Crefよりも小さい補償量を設定する。例えば、補償量算出手段54は、基準補償量Crefから調整値wを減算した値を補償量Comkに設定する。このようにして、補償量算出手段54は、電圧誤差Verrが0に近づくように補償量Comkを算出する。補償量算出手段54は、算出した補償量Comkを電力制御手段51に出力する。 On the other hand, when the current difference ΔId is a negative value, the detected current value is larger than the estimated current value. Therefore, the compensation amount calculation means 54 determines that the compensation amount is overcompensation, and the compensation amount is smaller than the reference compensation amount Clef. Set the amount. For example, the compensation amount calculation means 54 sets the compensation amount Comk as a value obtained by subtracting the adjustment value w from the reference compensation amount Clef. In this way, the compensation amount calculation means 54 calculates the compensation amount Comk so that the voltage error Verr approaches zero. The compensation amount calculation means 54 outputs the calculated compensation amount Comk to the power control means 51.
 なお、基準補償量Crefは、予め決められた値の場合に限らない。最後に算出された補償量Com(k-1)が、次に電動機11が起動されるときに最初に算出される補償量Comkの基準補償量Crefであってもよい。また、補償量算出手段54は、電流検出装置19によって検出される三相電流Iuvwを座標変換することでd軸電流検出値Idrを算出してもよく、電流推定手段52からd軸電流検出値Idrを取得してもよい。さらに、電流差ΔIdから補償量Comkを算出する計算式が制御装置18に予め格納されていてもよい。 Note that the standard compensation amount Clef is not limited to a predetermined value. The finally calculated compensation amount Com (k-1) may be the reference compensation amount Cref of the compensation amount Comk first calculated when the motor 11 is started next time. Further, the compensation amount calculation means 54 may calculate the d-axis current detection value Idr by coordinate-converting the three-phase current Iuvw detected by the current detection device 19, and the d-axis current detection value Idr may be calculated from the current estimation means 52. Idr may be acquired. Further, a calculation formula for calculating the compensation amount Comk from the current difference ΔId may be stored in the control device 18 in advance.
 ここで、図4に示した制御装置18のハードウェアの一例を説明する。図5は、図4に示した制御装置の一構成例を示すハードウェア構成図である。制御装置18の各種機能がハードウェアで実行される場合、図4に示した制御装置18は、図5に示すように、処理回路80で構成される。図4に示した、電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の各機能は、処理回路80により実現される。 Here, an example of the hardware of the control device 18 shown in FIG. 4 will be described. FIG. 5 is a hardware configuration diagram showing a configuration example of the control device shown in FIG. When various functions of the control device 18 are executed by hardware, the control device 18 shown in FIG. 4 is composed of a processing circuit 80 as shown in FIG. Each function of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 shown in FIG. 4 is realized by the processing circuit 80.
 各機能がハードウェアで実行される場合、処理回路80は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の各手段の機能のそれぞれを別々の処理回路80で実現してもよい。また、電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の各手段の機能を1つの処理回路80で実現してもよい。 When each function is executed by hardware, the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). It corresponds to Array) or a combination of these. The functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 may be realized by separate processing circuits 80. Further, the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 may be realized by one processing circuit 80.
 また、図4に示した制御装置18の別のハードウェアの一例を説明する。図6は、図4に示した制御装置の別の構成例を示すハードウェア構成図である。制御装置18の各種機能がソフトウェアで実行される場合、図4に示した制御装置18は、図6に示すように、CPU等のプロセッサ61と、メモリ71とによって構成される。電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の各機能は、プロセッサ61およびメモリ71により実現される。図6は、プロセッサ61およびメモリ71が互いに通信可能に接続されることを示している。以下では、制御装置18のハードウェア構成が図6に示す構成の場合で説明する。メモリ71は、電動機11のパラメータおよび待ち時間twa等の情報を記憶している。 Further, an example of another hardware of the control device 18 shown in FIG. 4 will be described. FIG. 6 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. When various functions of the control device 18 are executed by software, the control device 18 shown in FIG. 4 is composed of a processor 61 such as a CPU and a memory 71 as shown in FIG. The functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 are realized by the processor 61 and the memory 71. FIG. 6 shows that the processor 61 and the memory 71 are communicably connected to each other. Hereinafter, the case where the hardware configuration of the control device 18 is the configuration shown in FIG. 6 will be described. The memory 71 stores information such as the parameters of the motor 11 and the waiting time twa.
 各機能がソフトウェアで実行される場合、電力制御手段51、電流推定手段52、回転数推定手段53および補償量算出手段54の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ71に格納される。プロセッサ61は、メモリ71に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the power control means 51, the current estimation means 52, the rotation speed estimation means 53, and the compensation amount calculation means 54 are realized by software, firmware, or a combination of software and firmware. .. The software and firmware are written as a program and stored in the memory 71. The processor 61 realizes the function of each means by reading and executing the program stored in the memory 71.
 メモリ71として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ71として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ71として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 71, for example, a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM) and an EEPROM (Electrically Erasable and Programmable ROM) is used. Further, as the memory 71, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Further, as the memory 71, a detachable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
 次に、本実施の形態1に係る電動機制御装置12の動作を説明する。図7は、実施の形態1に係る電動機制御装置において、制御装置の動作手順の一例を示すフローチャートである。 Next, the operation of the motor control device 12 according to the first embodiment will be described. FIG. 7 is a flowchart showing an example of the operation procedure of the control device in the motor control device according to the first embodiment.
 電流推定手段52は、電動機11が起動した後、電流検出装置19によって検出される三相電流を座標変換してd軸電流検出値Idrを算出する(ステップS11)。また、電流推定手段52は、三相電圧指令値Vuvw_refと、電動機11のパラメータと、回転数推定手段53によって算出される推定回転数Rとを用いて、d軸電流推定値Idpを算出する(ステップS12)。そして、電流推定手段52は、d軸電流推定値Idpおよびd軸電流検出値Idrを補償量算出手段54に出力する。 After the electric motor 11 is started, the current estimation means 52 coordinates the three-phase current detected by the current detection device 19 to calculate the d-axis current detection value Idr (step S11). Further, the current estimating means 52 calculates the d-axis current estimated value Idp by using the three-phase voltage command value Vuvw_ref, the parameters of the motor 11, and the estimated rotation speed R calculated by the rotation speed estimating means 53 (the d-axis current estimated value Idp). Step S12). Then, the current estimation means 52 outputs the d-axis current estimation value Idp and the d-axis current detection value Idr to the compensation amount calculation means 54.
 補償量算出手段54は、電流推定手段52からd軸電流推定値Idpおよびd軸電流検出値Idrが入力されると、d軸電流推定値Idpからd軸電流検出値Idrを減算して電流差ΔIdを算出する(ステップS13)。補償量算出手段54は、電流差ΔIdに基づいて補償量Comkを算出する(ステップS14)。例えば、電流差ΔIdが正の値である場合、補償量算出手段54は、基準補償量Crefに調整値wを加算した値を補償量Comkとする。ここでは、補償量Comkは初期値Com0である。補償量算出手段54は、算出した補償量Comkを電力制御手段51に出力する。 When the d-axis current estimated value Idp and the d-axis current detected value Idr are input from the current estimating means 52, the compensation amount calculating means 54 subtracts the d-axis current detected value Idr from the d-axis current estimated value Idp to obtain a current difference. Calculate ΔId (step S13). The compensation amount calculation means 54 calculates the compensation amount Comk based on the current difference ΔId (step S14). For example, when the current difference ΔId is a positive value, the compensation amount calculation means 54 sets the value obtained by adding the adjustment value w to the reference compensation amount Clef as the compensation amount Comk. Here, the compensation amount Comk is an initial value Com0. The compensation amount calculation means 54 outputs the calculated compensation amount Comk to the power control means 51.
 次に、本実施の形態1に係る電動機制御装置12の動作を説明する。図8は、実施の形態1に係る電動機制御装置において、補償量算出手段が補償量を更新する手順の一例を示すフローチャートである。初期状態として、最後に算出された補償量Com(k-1)が現在の補償量としてメモリ71に記憶されている場合で説明する。 Next, the operation of the motor control device 12 according to the first embodiment will be described. FIG. 8 is a flowchart showing an example of a procedure in which the compensation amount calculation means updates the compensation amount in the motor control device according to the first embodiment. As an initial state, the case where the last calculated compensation amount Com (k-1) is stored in the memory 71 as the current compensation amount will be described.
 補償量算出手段54は、電流推定手段52からd軸電流推定値Idpおよびd軸電流検出値Idrが入力されると、d軸電流推定値Idpからd軸電流検出値Idrを減算して電流差ΔIdを算出する(ステップS101)。補償量算出手段54は、電流差ΔIdが0より大きいか否かを判定する(ステップS102)。補償量算出手段54は、電流差ΔIdが0より大きい場合、現在の補償量Com(k-1)は補償不足と判断する。そして、補償量算出手段54は、現在の補償量Com(k-1)に調整値wを加算した値を新たな補償量Comkに更新する(ステップS103)。 When the d-axis current estimated value Idp and the d-axis current detected value Idr are input from the current estimating means 52, the compensation amount calculating means 54 subtracts the d-axis current detected value Idr from the d-axis current estimated value Idp to obtain a current difference. Calculate ΔId (step S101). The compensation amount calculating means 54 determines whether or not the current difference ΔId is larger than 0 (step S102). When the current difference ΔId is larger than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is insufficient compensation. Then, the compensation amount calculation means 54 updates the value obtained by adding the adjustment value w to the current compensation amount Com (k-1) to a new compensation amount Comk (step S103).
 ステップS102の判定の結果、電流差ΔIdが0以下である場合、補償量算出手段54は、電流差ΔIdが0より小さいか否かを判定する(ステップS104)。補償量算出手段54は、電流差ΔIdが0より小さい場合、現在の補償量Com(k-1)は過補償と判断する。そして、補償量算出手段54は、現在の補償量Com(k-1)から調整値wを減算した値を新たな補償量Comkに更新する(ステップS105)。 If the current difference ΔId is 0 or less as a result of the determination in step S102, the compensation amount calculation means 54 determines whether or not the current difference ΔId is smaller than 0 (step S104). When the current difference ΔId is smaller than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is overcompensation. Then, the compensation amount calculation means 54 updates the value obtained by subtracting the adjustment value w from the current compensation amount Com (k-1) to a new compensation amount Comk (step S105).
 一方、ステップS104の判定の結果、電流差ΔIdが0である場合、補償量算出手段54は、現在の補償量Com(k-1)によって電圧誤差Verrが適切に補償されていると判断し、補償量を変更しない(ステップS106)。 On the other hand, when the current difference ΔId is 0 as a result of the determination in step S104, the compensation amount calculation means 54 determines that the voltage error Verr is appropriately compensated by the current compensation amount Com (k-1). The compensation amount is not changed (step S106).
 なお、図8のステップS103において補償量Com(k-1)に加算される調整値w、およびステップS105において補償量Com(k-1)から減算される調整値wは、固定値である。調整値wは、例えば、スイッチング周波数と、直流電圧電源の定格出力電圧と、デッドタイム設定値との積で表される定格条件における電圧誤差Verrの理論値の10%である。ステップS103における調整値wとステップS105における調整値wとが同等の値の場合で説明したが、これらの値が異なる値であってもよい。 The adjustment value w added to the compensation amount Com (k-1) in step S103 of FIG. 8 and the adjustment value w subtracted from the compensation amount Com (k-1) in step S105 are fixed values. The adjustment value w is, for example, 10% of the theoretical value of the voltage error Verr under the rated condition represented by the product of the switching frequency, the rated output voltage of the DC voltage power supply, and the dead time set value. Although the case where the adjustment value w in step S103 and the adjustment value w in step S105 are equivalent values has been described, these values may be different values.
 また、図8を参照して、電流差ΔIdが0になるように補償量を更新する場合を説明したが、補償量の更新が必要か否かの判断基準となる値は0に限らない。例えば、補償量を更新するか否かの判定基準として、メモリ71は、正の閾値+Ithと負の閾値-Ithを記憶している。この場合、ステップS102の判定基準として、0の代わりに正の閾値+Ithを用い、ステップS104の判定基準として、0の代わりに負の閾値-Ithを用いる。電流差ΔIdが正の閾値+Ithと負の閾値-Ithとの間の範囲に属する場合、ステップS106において、補償量算出手段54は補償量を変更しない。 Further, with reference to FIG. 8, the case where the compensation amount is updated so that the current difference ΔId becomes 0 has been described, but the value that serves as a criterion for determining whether or not the compensation amount needs to be updated is not limited to 0. For example, the memory 71 stores a positive threshold value + Is and a negative threshold value-Ith as a criterion for determining whether or not to update the compensation amount. In this case, a positive threshold value + Is is used instead of 0 as the determination criterion in step S102, and a negative threshold value -Ith is used instead of 0 as the determination criterion in step S104. When the current difference ΔId belongs to the range between the positive threshold value + Is and the negative threshold value-Ith, the compensation amount calculation means 54 does not change the compensation amount in step S106.
 次に、本実施の形態1に係る電動機制御装置12の別の動作を説明する。図9は、実施の形態1に係る電動機制御装置において、電流推定手段の起動後の処理の一部を示すフローチャートである。 Next, another operation of the motor control device 12 according to the first embodiment will be described. FIG. 9 is a flowchart showing a part of the processing after the activation of the current estimation means in the motor control device according to the first embodiment.
 電流推定手段52は、起動開始からの計測時間tが待ち時間twaに到達したか否かを判定する(ステップS111)。計測時間tが待ち時間twaに到達すると、電流推定手段52は、補償量の更新を終了する条件である更新終了条件を満たすか否かを判定する(ステップS112)。更新終了条件が満たされる場合、電流推定手段52は、補償量算出手段54を起動しない(ステップS113)。一方、ステップS112の判定の結果、更新終了条件が満たされない場合、電流推定手段52は、補償量算出手段54を起動する(ステップS114)。補償量算出手段54が起動した後、電流推定手段52は、d軸電流推定値Idpおよびd軸電流検出値Idrを補償量算出手段54に出力する。その後の補償量算出手段54が実行する処理は、図7または図8を参照して説明した処理と同様になるため、その詳細な説明を省略する。 The current estimation means 52 determines whether or not the measurement time t from the start of activation has reached the waiting time twa (step S111). When the measurement time t reaches the waiting time twa, the current estimation means 52 determines whether or not the update end condition, which is the condition for ending the update of the compensation amount, is satisfied (step S112). When the update end condition is satisfied, the current estimation means 52 does not activate the compensation amount calculation means 54 (step S113). On the other hand, if the update end condition is not satisfied as a result of the determination in step S112, the current estimation means 52 activates the compensation amount calculation means 54 (step S114). After the compensation amount calculation means 54 is activated, the current estimation means 52 outputs the d-axis current estimation value Idp and the d-axis current detection value Idr to the compensation amount calculation means 54. Since the subsequent processing executed by the compensation amount calculating means 54 is the same as the processing described with reference to FIG. 7 or FIG. 8, detailed description thereof will be omitted.
 更新終了条件は、例えば、電流推定手段52の起動開始からの計測時間tが待ち時間twaに到達したときの電流差ΔIdの絶対値が予め決められた閾値Ith以下になることである。 The update end condition is, for example, that the absolute value of the current difference ΔId when the measurement time t from the start of the current estimation means 52 reaches the waiting time twa is equal to or less than a predetermined threshold value Is.
 なお、更新終了条件を満たすか否かの判定を行うタイミングは、図9に示す位置の場合に限らない。電流推定手段52の起動前に、制御装置18が更新終了条件を満たすか否かを判定してもよい。 The timing for determining whether or not the update end condition is satisfied is not limited to the position shown in FIG. Before starting the current estimation means 52, it may be determined whether or not the control device 18 satisfies the update end condition.
 本実施の形態1の電動機制御装置12は、電圧指令値に対応する交流電圧を電動機11に供給する電力変換装置17と、電動機11に流れる電流を検出する電流検出装置19と、制御装置18とを有する。制御装置18は、速度指令値と電流検出装置19によって検出される電流の情報とに対応して電圧指令値を算出して電力変換装置17に出力する。制御装置18は、回転数推定手段53と、電流推定手段52と、補償量算出手段54とを有する。回転数推定手段53は、電流検出装置19によって検出される電流検出値を用いて電動機11の回転数の推定値である推定回転数を算出する。電流推定手段52は、電圧指令値と、推定回転数と、予め記憶される電動機11のパラメータとを用いて、電動機11に流れる電流を推定する。補償量算出手段54は、電流推定手段52によって推定される電流である電流推定値から電流検出値を減算した値である電流差ΔIdに基づいて、電力変換装置17の出力電圧と電圧指令値との誤差である電圧誤差Verrを補償する補償量を算出する。 The motor control device 12 of the first embodiment includes a power conversion device 17 that supplies an AC voltage corresponding to a voltage command value to the motor 11, a current detection device 19 that detects a current flowing through the motor 11, and a control device 18. Has. The control device 18 calculates a voltage command value corresponding to the speed command value and the current information detected by the current detection device 19, and outputs the voltage command value to the power conversion device 17. The control device 18 includes a rotation speed estimation means 53, a current estimation means 52, and a compensation amount calculation means 54. The rotation speed estimation means 53 calculates the estimated rotation speed, which is an estimated value of the rotation speed of the electric motor 11, using the current detection value detected by the current detection device 19. The current estimation means 52 estimates the current flowing through the motor 11 by using the voltage command value, the estimated rotation speed, and the parameters of the motor 11 stored in advance. The compensation amount calculating means 54 sets the output voltage and the voltage command value of the power conversion device 17 based on the current difference ΔId which is a value obtained by subtracting the current detection value from the current estimated value which is the current estimated by the current estimating means 52. The compensation amount for compensating for the voltage error Verr, which is the error of the above, is calculated.
 本実施の形態1の作用および効果を説明する。本実施の形態1によれば、電圧指令値、推定回転数Rおよび電動機11のパラメータを用いて推測される電流推定値から電流検出装置19によって検出される電流値を減算した電流差に基づいて、電圧誤差Verrを補償する補償量が算出される。そのため、電動機11の駆動中でも、デッドタイムに起因する電圧誤差Verrを適切に補償することができる。その結果、電動機11の制御安定性を向上させることができる。 The operation and effect of the first embodiment will be described. According to the first embodiment, based on the current difference obtained by subtracting the current value detected by the current detection device 19 from the current estimated value estimated using the voltage command value, the estimated rotation speed R, and the parameters of the motor 11. , The compensation amount for compensating for the voltage error Verr is calculated. Therefore, even while the motor 11 is being driven, the voltage error Verr due to the dead time can be appropriately compensated. As a result, the control stability of the motor 11 can be improved.
 本実施の形態1の空気調和装置1において、ファン10を駆動する電動機11を安定して駆動させることができる。そのため、電動機11が異常停止することが抑制され、熱源側熱交換器6の熱交換能力が低下することを防止できる。 In the air conditioner 1 of the first embodiment, the electric motor 11 that drives the fan 10 can be stably driven. Therefore, it is possible to prevent the electric motor 11 from abnormally stopping and prevent the heat exchange capacity of the heat source side heat exchanger 6 from being lowered.
 本実施の形態1において、現在の補償量では補償が不足している場合、電流推定手段52の起動直後に算出される電流差ΔIdが0より大きくなる。また、現在の補償量では過補償となっている場合、電流推定手段52の起動直後に算出される電流差ΔIdが0より小さくなる。この原理を利用して、現在の補償量の妥当性を判断することができる。 In the first embodiment, when the compensation is insufficient with the current compensation amount, the current difference ΔId calculated immediately after the activation of the current estimation means 52 becomes larger than 0. Further, when the current compensation amount is overcompensation, the current difference ΔId calculated immediately after the activation of the current estimation means 52 becomes smaller than 0. This principle can be used to determine the validity of the current amount of compensation.
 また、本実施の形態1において、現在の補償量で補償が不足している場合、補償量を増加させるように補償量が更新される。現在の補償量で過補償となっている場合、補償量を減少させるように補償量が更新される。電動機制御装置12は、更新終了条件を満足するまで補償量の更新を繰り返すことにより、補償量を電圧誤差Verrの補償に必要な値に近づけることができる。これにより、電動機11の制御精度が向上し、電動機11を異常停止させることなく安定に駆動させることができる。 Further, in the first embodiment, if the current compensation amount is insufficient, the compensation amount is updated so as to increase the compensation amount. If the current compensation amount is overcompensated, the compensation amount is updated to reduce the compensation amount. The motor control device 12 can bring the compensation amount closer to the value required for the compensation of the voltage error Verr by repeating the update of the compensation amount until the update end condition is satisfied. As a result, the control accuracy of the electric motor 11 is improved, and the electric motor 11 can be stably driven without being abnormally stopped.
 ファン10の起動前に特許文献1に開示された方法を実行すると、直流電流を流して電圧誤差を見積もる処理が必要になるため、ファン10を起動するまでの時間が長くなってしまう。これに対して、電動機制御装置12を備えた空気調和装置1は、ファン10の駆動中に補償量算出手段54が動作するため、ファン10の駆動処理と並行して補償量を算出することができる。これにより、ファン10の駆動シーケンスに影響を与えることなく補償量を算出することができ、ファン10の起動時間、および停止時間が長くなることを防止できる。 If the method disclosed in Patent Document 1 is executed before starting the fan 10, a process of passing a direct current to estimate the voltage error is required, so that it takes a long time to start the fan 10. On the other hand, in the air conditioner 1 provided with the motor control device 12, since the compensation amount calculating means 54 operates while the fan 10 is being driven, the compensation amount can be calculated in parallel with the driving process of the fan 10. can. As a result, the compensation amount can be calculated without affecting the drive sequence of the fan 10, and it is possible to prevent the start time and stop time of the fan 10 from becoming long.
 本実施の形態1の電動機制御装置12の適用例として、空気調和装置1に搭載される送風装置(図示せず)がある。送風装置は、複数の電動機と各電動機に取付けられたファンとを有する。送風装置は、必要な風量に応じて、一部のファンを選択的に回転させたり、全てのファンを同時に回転させたりする。このような送風装置に電動機制御装置12を適用することで、各ファンに取り付けられた電動機を安定して駆動させることができる。 As an application example of the motor control device 12 of the first embodiment, there is a blower device (not shown) mounted on the air conditioner 1. The blower has a plurality of motors and a fan attached to each motor. The blower selectively rotates some fans or all fans at the same time according to the required air volume. By applying the motor control device 12 to such a blower, the motor attached to each fan can be stably driven.
実施の形態2.
 本実施の形態2の電動機制御装置は、実施の形態1と比較すると、補償量に加算または補償量から減算する調整値の設定方法が異なる。本実施の形態2においては、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
The motor control device of the second embodiment is different from the first embodiment in the method of setting the adjustment value to be added to or subtracted from the compensation amount. In the second embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態2の電動機制御装置12の構成を説明する。本実施の形態2では、実施の形態1と異なる点を説明し、実施の形態1と同様な構成についての詳細な説明を省略する。補償量算出手段54は、d軸電流推定値Idpからd軸電流検出値Idrを減算した値である電流差ΔIdの絶対値に対応して調整値wを変更する。補償量算出手段54は、電流差ΔIdの絶対値が大きいほど、調整値wを大きい値に設定する。補償量算出手段54は、電流差ΔIdの絶対値が小さいほど、調整値wを小さい値に設定する。 The configuration of the motor control device 12 of the second embodiment will be described. In the second embodiment, the differences from the first embodiment will be described, and detailed description of the same configuration as that of the first embodiment will be omitted. The compensation amount calculation means 54 changes the adjustment value w according to the absolute value of the current difference ΔId, which is the value obtained by subtracting the d-axis current detection value Idr from the d-axis current estimated value Idp. The compensation amount calculating means 54 sets the adjustment value w to a larger value as the absolute value of the current difference ΔId is larger. The compensation amount calculating means 54 sets the adjustment value w to a smaller value as the absolute value of the current difference ΔId becomes smaller.
 なお、電流差ΔIdの絶対値から調整値wを求める方法は、補償量算出手段54が電流差ΔIdの絶対値を用いて算出する場合に限らない。例えば、複数の電流差ΔIdの絶対値と複数の調整値wとを対応付けた調整値テーブルを予め作成し、この調整値テーブルをメモリ71に記憶させる。補償量算出手段54は、電流差ΔIdの絶対値を算出した後、調整値テーブルを参照し、算出した電流差ΔIdの絶対値に対応する調整値wを調整値テーブルから読み出す。 The method of obtaining the adjustment value w from the absolute value of the current difference ΔId is not limited to the case where the compensation amount calculating means 54 calculates using the absolute value of the current difference ΔId. For example, an adjustment value table in which the absolute values of the plurality of current differences ΔId and the plurality of adjustment values w are associated with each other is created in advance, and the adjustment value table is stored in the memory 71. After calculating the absolute value of the current difference ΔId, the compensation amount calculating means 54 refers to the adjustment value table and reads out the adjustment value w corresponding to the calculated absolute value of the current difference ΔId from the adjustment value table.
 次に、本実施の形態2に係る電動機制御装置12の動作を説明する。図10は、実施の形態2に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。図10に示すステップS201およびS203~S207は、図8に示したステップS101~S106と同様な処理であり、本実施の形態2では、ステップS202の処理が追加されている。そのため、ここでは、ステップS201およびS203~S207の詳細な説明を省略し、ステップS202の処理について説明する。 Next, the operation of the motor control device 12 according to the second embodiment will be described. FIG. 10 is a flowchart showing an example of an operation procedure of the compensation amount calculation means in the motor control device according to the second embodiment. Steps S201 and S203 to S207 shown in FIG. 10 are the same processes as steps S101 to S106 shown in FIG. 8, and in the second embodiment, the process of step S202 is added. Therefore, here, the detailed description of steps S201 and S203 to S207 will be omitted, and the process of step S202 will be described.
 ステップS201において、補償量算出手段54は、d軸電流推定値Idpからd軸電流検出値Idrを減算して電流差ΔIdを算出する。そして、補償量算出手段54は、電流差ΔIdの絶対値に対応する調整値wを算出する(ステップS202)。 In step S201, the compensation amount calculating means 54 calculates the current difference ΔId by subtracting the d-axis current detection value Idr from the d-axis current estimated value Idp. Then, the compensation amount calculation means 54 calculates the adjustment value w corresponding to the absolute value of the current difference ΔId (step S202).
 本実施の形態2の作用および効果について説明する。d軸電流推定値Idpからd軸電流検出値Idrを減算した値である電流差ΔIdの絶対値が大きいほど、電圧誤差Verrも大きくなる。電流差ΔIdの絶対値が小さいほど、電圧誤差Verrも小さくなる。そのため、本実施の形態2では、補償量算出手段54は、電流差ΔIdの絶対値が大きい場合、調整値wを大きく設定し、電流差ΔIdの絶対値が小さい場合、調整値wを小さく設定する。そのため、電圧誤差Verrが大きい場合に補償量を大きくし、電圧誤差Verrが小さい場合に補償量を小さくすることができる。電圧誤差Verrの大きさに対応して補償量が設定されるため、補償量の更新回数を少なくすることができる。 The operation and effect of the second embodiment will be described. The larger the absolute value of the current difference ΔId, which is the value obtained by subtracting the d-axis current detection value Idr from the d-axis current estimated value Idp, the larger the voltage error Verr. The smaller the absolute value of the current difference ΔId, the smaller the voltage error Verr. Therefore, in the second embodiment, the compensation amount calculating means 54 sets the adjustment value w large when the absolute value of the current difference ΔId is large, and sets the adjustment value w small when the absolute value of the current difference ΔId is small. do. Therefore, the compensation amount can be increased when the voltage error Verr is large, and the compensation amount can be decreased when the voltage error Verr is small. Since the compensation amount is set according to the magnitude of the voltage error Verr, the number of times the compensation amount is updated can be reduced.
実施の形態3.
 本実施の形態3の電動機制御装置は、実施の形態1と比較すると、補償量の更新方法および更新終了条件が異なる。本実施の形態3では、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 3.
The motor control device of the third embodiment is different from the first embodiment in the method of updating the compensation amount and the condition for ending the update. In the third embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態3の電動機制御装置12の構成を説明する。本実施の形態3では、実施の形態1と異なる点を説明し、実施の形態1と同様な構成についての詳細な説明を省略する。補償量算出手段54は、補償量の初期値Com0と、最後に算出した補償量Com(k-1)をメモリ71に記憶させる。 The configuration of the motor control device 12 of the third embodiment will be described. In the third embodiment, the differences from the first embodiment will be described, and detailed description of the same configuration as that of the first embodiment will be omitted. The compensation amount calculation means 54 stores the initial value Com0 of the compensation amount and the compensation amount Com (k-1) finally calculated in the memory 71.
 補償量算出手段54は、補償量Com(k-1)を算出したときの電流差ΔId(k-1)の符号と、新たに算出した電流差ΔIdである最新電流差ΔIdkの符号とを比較する。電流差ΔId(k-1)の符号と最新電流差ΔIdkの符号とが異なる場合、補償量算出手段54は、初期値Comに調整値wを加算または減算した値を補償量Comkに更新する。具体的には、補償量算出手段54は、電流差ΔId(k-1)の符号と最新電流差ΔIdkの符号とが異なり、最新電流差ΔIdkの符号が正であるとき、初期値Com0に調整値wを加算した値を新たな補償量Comkに更新する。また、補償量算出手段54は、電流差ΔId(k-1)の符号と最新電流差ΔIdkの符号とが異なり、最新電流差ΔIdkの符号が負であるとき、初期値Comから調整値wを減算した値を新たな補償量Comkに更新する。 The compensation amount calculation means 54 compares the sign of the current difference ΔId (k-1) when the compensation amount Com (k-1) is calculated with the sign of the latest current difference ΔIdk which is the newly calculated current difference ΔId. do. When the sign of the current difference ΔId (k-1) and the sign of the latest current difference ΔIdk are different, the compensation amount calculation means 54 updates the value obtained by adding or subtracting the adjustment value w to the initial value Com to the compensation amount Comk. Specifically, the compensation amount calculating means 54 adjusts to the initial value Com0 when the sign of the current difference ΔId (k-1) and the sign of the latest current difference ΔIdk are different and the sign of the latest current difference ΔIdk is positive. The value obtained by adding the value w is updated to a new compensation amount Comk. Further, when the sign of the current difference ΔId (k-1) and the sign of the latest current difference ΔIdk are different from each other and the sign of the latest current difference ΔIdk is negative, the compensation amount calculating means 54 sets the adjustment value w from the initial value Com. The subtracted value is updated to a new compensation amount Comk.
 次に、本実施の形態3に係る電動機制御装置12の動作を説明する。図11および図12は、実施の形態3に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。ここでは、最後に算出された補償量を現在の補償量Com(k-1)とし、新たに算出される補償量をComkとし、補償量の初期値をCom0とする。 Next, the operation of the motor control device 12 according to the third embodiment will be described. 11 and 12 are flowcharts showing an example of the operation procedure of the compensation amount calculation means in the motor control device according to the third embodiment. Here, the last calculated compensation amount is the current compensation amount Com (k-1), the newly calculated compensation amount is Comk, and the initial value of the compensation amount is Com0.
 補償量算出手段54は、電流推定手段52からd軸電流推定値Idpおよびd軸電流検出値Idrが入力されると、d軸電流推定値Idpとd軸電流検出値Idrとの電流差ΔIdkを算出する(ステップS301)。補償量算出手段54は、電流差ΔIdkが0より大きいか否かを判定する(ステップS302)。補償量算出手段54は、電流差ΔIdkが0より大きい場合、前回、算出した電流差ΔId(k-1)が0より大きいか否かを判定する(ステップS303)。 When the d-axis current estimated value Idp and the d-axis current detected value Idr are input from the current estimating means 52, the compensation amount calculating means 54 calculates the current difference ΔIdk between the d-axis current estimated value Idp and the d-axis current detected value Idr. Calculate (step S301). The compensation amount calculating means 54 determines whether or not the current difference ΔIdk is larger than 0 (step S302). When the current difference ΔIdk is larger than 0, the compensation amount calculating means 54 determines whether or not the previously calculated current difference ΔId (k-1) is larger than 0 (step S303).
 ステップS303の判定の結果、電流差ΔId(k-1)が0より大きい場合、補償量算出手段54は、現在の補償量Com(k-1)は補償不足と判断し、現在の補償量Com(k-1)に調整値wを加算した値を補償量Comkに更新する(ステップS304)。ステップS303の判定の結果、電流差ΔId(k-1)が0以下である場合、補償量算出手段54は、初期値Com0に調整値wを加算した値を補償量Comkに更新する(ステップS305)。 As a result of the determination in step S303, when the current difference ΔId (k-1) is larger than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is insufficient compensation, and the current compensation amount Com. The value obtained by adding the adjustment value w to (k-1) is updated to the compensation amount Comk (step S304). As a result of the determination in step S303, when the current difference ΔId (k-1) is 0 or less, the compensation amount calculation means 54 updates the value obtained by adding the adjustment value w to the initial value Com0 to the compensation amount Comk (step S305). ).
 一方、ステップS302の判定の結果、電流差ΔIdkが0以下である場合、補償量算出手段54は、電流差ΔIdkが0より小さいか否かを判定する(ステップS306)。補償量算出手段54は、電流差ΔIdkが0より小さい場合、前回、算出した電流差ΔId(k-1)が0より小さいか否かを判定する(ステップS307)。電流差ΔId(k-1)が0より小さい場合、補償量算出手段54は、現在の補償量Com(k-1)は過補償と判断し、現在の補償量Com(k-1)から調整値wを減算した値を補償量Comkに更新する(ステップS308)。 On the other hand, if the current difference ΔIdk is 0 or less as a result of the determination in step S302, the compensation amount calculation means 54 determines whether or not the current difference ΔIdk is smaller than 0 (step S306). When the current difference ΔIdk is smaller than 0, the compensation amount calculating means 54 determines whether or not the previously calculated current difference ΔId (k-1) is smaller than 0 (step S307). When the current difference ΔId (k-1) is smaller than 0, the compensation amount calculation means 54 determines that the current compensation amount Com (k-1) is overcompensation and adjusts from the current compensation amount Com (k-1). The value obtained by subtracting the value w is updated to the compensation amount Comk (step S308).
 ステップS307の判定の結果、電流差ΔId(k-1)が0以上である場合、補償量算出手段54は、初期値Com0から調整値wを減算した値を補償量Comkに更新する(ステップS309)。一方、ステップS306の判定の結果、電流差ΔIdkが0である場合、補償量算出手段54は、現在の補償量Com(k-1)によって、デッドタイムに起因する電圧誤差Verrを適切に補償できていると判断し、補償量を変更しない(ステップS310)。ステップS304、S305およびS308~S310の後、補償量算出手段54は、電流差ΔIdkを電流差ΔIdの最終値としてメモリ71に記憶させる(ステップS311)。また、ステップS304、S305、S308およびS309の後、補償量算出手段54は、算出した補償量を電力制御手段51に出力する。 As a result of the determination in step S307, when the current difference ΔId (k-1) is 0 or more, the compensation amount calculation means 54 updates the value obtained by subtracting the adjustment value w from the initial value Com0 to the compensation amount Comk (step S309). ). On the other hand, when the current difference ΔIdk is 0 as a result of the determination in step S306, the compensation amount calculation means 54 can appropriately compensate the voltage error Verr due to the dead time by the current compensation amount Com (k-1). It is determined that the compensation amount is not changed (step S310). After steps S304, S305 and S308 to S310, the compensation amount calculating means 54 stores the current difference ΔIdk in the memory 71 as the final value of the current difference ΔId (step S311). Further, after steps S304, S305, S308 and S309, the compensation amount calculation means 54 outputs the calculated compensation amount to the power control means 51.
 本実施の形態3において、更新終了条件は、電動機11の制御安定性が確保されていることである。更新終了条件は、例えば、電動機11が異常停止しないことである。なお、本実施の形態3においても、実施の形態1と同様に、補償量更新の判定基準として、0の代わりに、正の閾値+Ithおよび負の閾値-Ithを用いてもよい。 In the third embodiment, the update end condition is that the control stability of the motor 11 is ensured. The update end condition is, for example, that the motor 11 does not stop abnormally. In the third embodiment as well, as in the first embodiment, a positive threshold value + Is and a negative threshold value-Ith may be used instead of 0 as the criterion for updating the compensation amount.
 次に、本実施の形態3において、補償量算出手段54が図11および図12に示した手順を繰り返した場合の補償量の更新の変化を説明する。図13は、実施の形態3に係る電動機制御装置において、補償量の更新結果の一例を示すグラフである。具体的には、図13は、現在の補償量では補償が不足しているが、電流推定手段52の起動後に算出された電流差ΔIdが0より小さくなる場合の補償量の更新結果の一例を示す。図13の縦軸は補償量であり、横軸は補償量の更新回数である。 Next, in the third embodiment, the change in the update of the compensation amount when the compensation amount calculation means 54 repeats the procedures shown in FIGS. 11 and 12 will be described. FIG. 13 is a graph showing an example of the update result of the compensation amount in the motor control device according to the third embodiment. Specifically, FIG. 13 shows an example of the update result of the compensation amount when the current difference ΔId calculated after the activation of the current estimation means 52 is smaller than 0, although the compensation is insufficient with the current compensation amount. show. The vertical axis of FIG. 13 is the compensation amount, and the horizontal axis is the number of updates of the compensation amount.
 図13を参照すると、更新回数が0回~2回において、電流差ΔIdが0より小さいため、図12に示したステップS308の処理が繰り返されることで、補償量は、更新される度に段階的に小さくなる。補償量が更新毎に小さくなり、更新回数が3回目になると、電流差ΔIdが0より大きくなる。4回目の更新において、補償量の初期値Com0に調整値wが加算された値が補償量Comkとなる(図11のステップS305参照)。そのため、図13に示すように、補償量Comkが更新終了条件を満たす補償量の範囲に入る。このようにして、補償量を更新することにより、補償量が、電流差ΔIdが0となるときの補償量に収束することを防ぐことができる。図13に示す例では、一点鎖線が示す補償量が、電流差ΔIdが0になるときの補償量である。 Referring to FIG. 13, since the current difference ΔId is smaller than 0 when the number of updates is 0 to 2, the processing of step S308 shown in FIG. 12 is repeated, so that the compensation amount is stepped each time it is updated. Becomes smaller. The compensation amount becomes smaller for each update, and when the number of updates reaches the third time, the current difference ΔId becomes larger than 0. In the fourth update, the value obtained by adding the adjustment value w to the initial value Com0 of the compensation amount becomes the compensation amount Comk (see step S305 in FIG. 11). Therefore, as shown in FIG. 13, the compensation amount Comk falls within the range of the compensation amount that satisfies the update end condition. By updating the compensation amount in this way, it is possible to prevent the compensation amount from converging on the compensation amount when the current difference ΔId becomes 0. In the example shown in FIG. 13, the compensation amount indicated by the alternate long and short dash line is the compensation amount when the current difference ΔId becomes 0.
 図14は、実施の形態3に係る電動機制御装置において、補償量の更新結果の別の例を示すグラフである。具体的には、図14は、現在の補償量では過補償となっているが、電流推定手段52の起動後に算出された電流差ΔIdが0より大きくなる場合の補償量の更新結果の一例を示す。図14の縦軸は補償量であり、横軸は補償量の更新回数である。 FIG. 14 is a graph showing another example of the update result of the compensation amount in the motor control device according to the third embodiment. Specifically, FIG. 14 shows an example of the update result of the compensation amount when the current difference ΔId calculated after the activation of the current estimation means 52 becomes larger than 0, although the current compensation amount is overcompensation. show. The vertical axis of FIG. 14 is the compensation amount, and the horizontal axis is the number of updates of the compensation amount.
 図14を参照すると、更新回数が0回~2回において、電流差ΔIdが0より大きいため、図11に示したステップS304の処理が繰り返されることで、補償量は、更新される度に段階的に大きくなる。更新毎に補償量が大きくなっていくと、いつかは電流差ΔIdが0より小さくなる。図14に示す例においては、更新回数が3回目になると、電流差ΔIdが0より小さくなっている。4回目の更新において、補償量の初期値Com0から調整値wが減算された値が補償量Comkとなる(図12のステップS309参照)。そのため、図14に示すように、補償量Comkが更新終了条件を満たす補償量の範囲に入る。このようにして、補償量を更新することにより、補償量が、電流差ΔIdが0となるときの補償量に収束することを防ぐことができる。図14に示す例では、一点鎖線が示す補償量が、電流差ΔIdが0になるときの補償量である。 Referring to FIG. 14, since the current difference ΔId is larger than 0 when the number of updates is 0 to 2, the processing of step S304 shown in FIG. 11 is repeated, so that the compensation amount is stepped each time it is updated. Becomes larger. As the compensation amount increases with each update, the current difference ΔId becomes smaller than 0 at some point. In the example shown in FIG. 14, the current difference ΔId becomes smaller than 0 when the number of updates reaches the third time. In the fourth update, the value obtained by subtracting the adjustment value w from the initial value Com0 of the compensation amount becomes the compensation amount Comk (see step S309 in FIG. 12). Therefore, as shown in FIG. 14, the compensation amount Comk falls within the range of the compensation amount that satisfies the update end condition. By updating the compensation amount in this way, it is possible to prevent the compensation amount from converging on the compensation amount when the current difference ΔId becomes 0. In the example shown in FIG. 14, the compensation amount indicated by the alternate long and short dash line is the compensation amount when the current difference ΔId becomes 0.
 上述したように、更新終了条件を満たす補償量を得ることができ、電動機11を異常停止させることなく安定に駆動させることができる。 As described above, the compensation amount satisfying the update end condition can be obtained, and the motor 11 can be stably driven without abnormally stopping.
 本実施の形態3の作用および効果について説明する。補償量が電圧誤差Verrに対応しない原因として、種々の影響が考えられる。影響の1つとして、ハードウェアに起因するばらつきの影響がある。ハードウェアに起因するばらつきとは、例えば、電流検出装置19の検出精度のばらつき、および電動機11の巻き線抵抗のばらつきである。また、影響の1つとして、電動機11がファン10を駆動するモータである場合、外風などの外乱の影響がある。 The operation and effect of the third embodiment will be described. Various influences can be considered as the reason why the compensation amount does not correspond to the voltage error Verr. One of the effects is the effect of variation due to hardware. The variation caused by the hardware is, for example, a variation in the detection accuracy of the current detection device 19 and a variation in the winding resistance of the motor 11. Further, as one of the influences, when the electric motor 11 is a motor for driving the fan 10, there is an influence of disturbance such as an outside wind.
 ここで、外風が補償量に与える影響について説明する。図1に示した熱源側ユニット2が屋外に設置される場合、ファン10および電動機11を含む送風装置も屋外に設置される。この場合、外風によりファン10がフリーラン状態となることがある。外風によりファン10がフリーラン状態になると、電動機11の負荷が変動するため、電圧誤差Vreffに対する補償量の算出精度が劣化するおそれがある。 Here, the effect of the outside wind on the compensation amount will be explained. When the heat source side unit 2 shown in FIG. 1 is installed outdoors, the blower device including the fan 10 and the electric motor 11 is also installed outdoors. In this case, the fan 10 may be in a free-run state due to the outside wind. When the fan 10 is in a free-run state due to the outside wind, the load of the motor 11 fluctuates, so that the accuracy of calculating the compensation amount for the voltage error Vref may deteriorate.
 上述した影響により、現在の補償量で補償が不足しているにもかかわらず、電流推定手段52の起動直後に算出された電流差ΔIdが0より小さくなる場合がある。また、上述した影響により、現在の補償量で過補償となっているにもかかわらず、電流推定手段52の起動直後に算出された電流差ΔIdが0より大きくなる場合がある。本実施の形態3においては、このような場合でも、図13および図14を参照して説明したように、更新終了条件を満たす補償量を得ることができる。 Due to the above-mentioned influence, the current difference ΔId calculated immediately after the activation of the current estimation means 52 may be smaller than 0 even though the compensation is insufficient with the current compensation amount. Further, due to the above-mentioned influence, the current difference ΔId calculated immediately after the activation of the current estimation means 52 may be larger than 0 even though the current compensation amount is overcompensated. In the third embodiment, even in such a case, as described with reference to FIGS. 13 and 14, a compensation amount satisfying the update end condition can be obtained.
実施の形態4.
 本実施の形態4の電動機制御装置は、実施の形態1と比較すると、補償量の求め方が異なる。本実施の形態4では、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 4.
The motor control device of the fourth embodiment is different in the method of obtaining the compensation amount as compared with the first embodiment. In the fourth embodiment, the same components as those described in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態4の電動機制御装置12の構成を説明する。本実施の形態4では、実施の形態1と異なる点を説明し、実施の形態1と同様な構成についての詳細な説明を省略する。補償量算出手段54は、電動機11の正常駆動中に、予め決められた一定時間tsetに、予め決められた指令値にしたがって補償量を変化させる。これらの補償量は仮の補償量であるため、候補補償量Comcと称する。具体的には、補償量算出手段54は、一定時間tsetに、補償量として複数の候補補償量Comcを順次、適用する。補償量算出手段54は、各候補補償量Comcを電力制御手段51に出力する。 The configuration of the motor control device 12 of the fourth embodiment will be described. In the fourth embodiment, the differences from the first embodiment will be described, and detailed description of the same configuration as that of the first embodiment will be omitted. The compensation amount calculation means 54 changes the compensation amount according to a predetermined command value for a predetermined fixed time tset during the normal driving of the electric motor 11. Since these compensation amounts are provisional compensation amounts, they are referred to as candidate compensation amounts Comc. Specifically, the compensation amount calculation means 54 sequentially applies a plurality of candidate compensation amounts Comc as compensation amounts to tset for a certain period of time. The compensation amount calculation means 54 outputs each candidate compensation amount Comc to the power control means 51.
 補償量算出手段54は、一定時間tsetに、候補補償量Comcに対応する電流差ΔIdの実効値ΔIdeffを算出する。補償量算出手段54は、実効値ΔIdeffと候補補償量Comcとの対応関係を記録するために、実効値ΔIdeffと対応付けて補償量Comm0をメモリ71に記憶させる。補償量算出手段54は、一定時間tsetにメモリ71に収集された複数の実効値ΔIdeffのうち、最小となる実効値ΔIdeffに対応する候補補償量Comcをメモリ71から読み出す。補償量算出手段54は、読み出した候補補償量Comを補償量Comkに更新する。 The compensation amount calculation means 54 calculates the effective value ΔIdeff of the current difference ΔId corresponding to the candidate compensation amount Comc in tset for a certain period of time. The compensation amount calculation means 54 stores the compensation amount Comm0 in the memory 71 in association with the effective value ΔIdeff in order to record the correspondence between the effective value ΔIdeff and the candidate compensation amount Comc. The compensation amount calculation means 54 reads from the memory 71 a candidate compensation amount Comc corresponding to the minimum effective value ΔIdeff among the plurality of effective values ΔIdeff collected in the memory 71 for a certain period of time. The compensation amount calculation means 54 updates the read candidate compensation amount Com to the compensation amount Comk.
 図15は、実施の形態4に係る電動機制御装置において、補償量を変化させる指令値の一例を示す図である。図15の縦軸は候補補償量であり、横軸は時間である。図15において、一定時間tsetは、例えば、2秒である。図15に示す指令値は、初期値Com0を起点として、候補補償量ComcをリニアにComc1まで増加させ、続いて、候補補償量ComcをリニアにComc2まで低下させ、その後、終点となるCom0までリニアに増加させるものである。図15に示す指令値では、候補補償量Comcと時間との関係が直線で表されているが、候補補償量Comcが時間に対して階段状に変化してもよい。例えば、指令値は、一定の時間単位で候補補償量Comcを変化させるものである。なお、図15に示す指令値は一例であり、指令値は図15に示す場合に限らない。 FIG. 15 is a diagram showing an example of a command value for changing the compensation amount in the motor control device according to the fourth embodiment. The vertical axis of FIG. 15 is the candidate compensation amount, and the horizontal axis is time. In FIG. 15, the fixed time tset is, for example, 2 seconds. The command value shown in FIG. 15 starts from the initial value Com0, linearly increases the candidate compensation amount Comc to Comc1, then linearly decreases the candidate compensation amount Comc to Comc2, and then linearly decreases to Com0, which is the end point. It is to increase to. In the command value shown in FIG. 15, the relationship between the candidate compensation amount Comc and the time is represented by a straight line, but the candidate compensation amount Comc may change stepwise with respect to the time. For example, the command value changes the candidate compensation amount Comc in a fixed time unit. The command value shown in FIG. 15 is an example, and the command value is not limited to the case shown in FIG.
 次に、本実施の形態4に係る電動機制御装置12の動作を説明する。図16は、実施の形態4に係る電動機制御装置において、補償量算出手段の動作手順の一例を示すフローチャートである。例えば、電動機11が起動した後、補償量算出手段54は、電流推定手段52から起動の指示が入力されると、図16に示す手順を実行する。初期状態として、補償量が初期値のCom0であるものとする。 Next, the operation of the motor control device 12 according to the fourth embodiment will be described. FIG. 16 is a flowchart showing an example of an operation procedure of the compensation amount calculation means in the motor control device according to the fourth embodiment. For example, after the motor 11 is started, the compensation amount calculating means 54 executes the procedure shown in FIG. 16 when a start instruction is input from the current estimating means 52. As an initial state, it is assumed that the compensation amount is Com0, which is the initial value.
 補償量算出手段54は、補償量が初期値Com0に設定された状態で、電流差ΔIdの実効値ΔIdeffを算出する(ステップS401)。補償量算出手段54は、算出した実効値ΔIdeffと補償量の初期値Com0との対応関係を記録するために、実効値ΔIdeffと対応付けて初期値Com0をメモリ71に記憶させる(ステップS402)。補償量算出手段54は、予め決められた指令値にしたがって、候補補償量Comcを変更する(ステップS403)。補償量算出手段54は、変更した候補補償量Comcを電力制御手段51に出力する。電流推定手段52から起動の指示が入力されてからの計測時間tが一定時間tsetを経過するまで、補償量算出手段54は、ステップS401からステップS403を繰り返す。 The compensation amount calculation means 54 calculates the effective value ΔIdeff of the current difference ΔId in a state where the compensation amount is set to the initial value Com0 (step S401). The compensation amount calculation means 54 stores the initial value Com0 in the memory 71 in association with the effective value ΔIdeff in order to record the correspondence between the calculated effective value ΔIdeff and the initial value Com0 of the compensation amount (step S402). The compensation amount calculation means 54 changes the candidate compensation amount Comc according to a predetermined command value (step S403). The compensation amount calculation means 54 outputs the changed candidate compensation amount Comc to the power control means 51. The compensation amount calculation means 54 repeats steps S401 to S403 until the measurement time t after the start instruction is input from the current estimation means 52 elapses for a certain period of time tset.
 ステップS404において、補償量算出手段54は、電流推定手段52から起動の指示が入力されてからの計測時間tが一定時間testを経過したか否かを判定する(ステップS404)。一定時間tsetが経過していない場合、補償量算出手段54は、ステップS401に戻る。ステップS404の判定の結果、一定時間tsetが経過している場合、補償量算出手段54は、メモリ71に記憶された複数の実効値ΔIdeffのうち、最小値となる実効値ΔIdeffを求める(ステップS405)。そして、補償量算出手段54は、メモリ71が記憶する情報を参照し、実効値ΔIdeffの最小値に対応する候補補償量Comcをメモリ71から読み出す(ステップS406)。補償量算出手段54は、ステップS406の処理で求めた候補補償量Comcを補償量Comkに更新する(ステップS407)。 In step S404, the compensation amount calculating means 54 determines whether or not the measurement time t after the start instruction is input from the current estimating means 52 has passed the test for a certain period of time (step S404). If tset has not elapsed for a certain period of time, the compensation amount calculation means 54 returns to step S401. As a result of the determination in step S404, when tset has elapsed for a certain period of time, the compensation amount calculating means 54 obtains the minimum effective value ΔIdeff among the plurality of effective values ΔIdeff stored in the memory 71 (step S405). ). Then, the compensation amount calculation means 54 refers to the information stored in the memory 71, and reads out the candidate compensation amount Comc corresponding to the minimum value of the effective value ΔIdeff from the memory 71 (step S406). The compensation amount calculation means 54 updates the candidate compensation amount Comc obtained in the process of step S406 to the compensation amount Comk (step S407).
 本実施の形態4では、更新終了条件を、電動機11の制御安定性が確保されていることとする。更新終了条件は、例えば、電動機11が異常停止しないことである。 In the fourth embodiment, the update end condition is that the control stability of the motor 11 is ensured. The update end condition is, for example, that the motor 11 does not stop abnormally.
 なお、実施の形態1では、補償量を繰り返し更新することで補償量を収束させる方法を説明したが、本実施の形態4は、図16を参照して説明したように、実施の形態1の方法とは異なる。そのため、補償量を1回更新すると、それ以降、補償量算出手段54を起動しないようにして、補償量の更新を終了してもよい。 In the first embodiment, a method of converging the compensation amount by repeatedly updating the compensation amount has been described, but in the fourth embodiment, as described with reference to FIG. 16, the first embodiment has been described. Different from the method. Therefore, once the compensation amount is updated, the compensation amount calculation means 54 may not be activated thereafter, and the update of the compensation amount may be completed.
 本実施の形態4の作用および効果について説明する。電動機11の正常駆動中において、電圧誤差Verrが適切に補償されている場合と、補償不足または過補償の場合とを比較すると、電圧誤差Verrが適切に補償されている場合の方が、電流差ΔIdの実効値ΔIdeffは小さくなる。本実施の形態4は、補償量を意図的に変化させて、補償量と電流差ΔIdの実効値ΔIdeffとの関係を確認し、電流差ΔIdの実効値ΔIdeffが最小となるときの補償量を求めている。これにより、電圧誤差Verrの補償に必要な補償量を得ることができる。 The operation and effect of the fourth embodiment will be described. Comparing the case where the voltage error Verr is properly compensated and the case where the compensation is insufficient or overcompensated during the normal driving of the motor 11, the current difference is higher when the voltage error Verr is properly compensated. The effective value ΔIdeff of ΔId becomes smaller. In the fourth embodiment, the compensation amount is intentionally changed, the relationship between the compensation amount and the effective value ΔIdeff of the current difference ΔId is confirmed, and the compensation amount when the effective value ΔIdeff of the current difference ΔId is minimized is determined. I'm looking for. Thereby, the compensation amount required for the compensation of the voltage error Verr can be obtained.
 また、本実施の形態4によれば、補償量算出手段54が1回起動すれば、電流差ΔIdの実効値ΔIdeffが最小になる補償量が求められる。そのため、補償量の更新を繰り返して補償量を電圧誤差Verrの補償に必要な値に収束させる処理が不要となる。その結果、補償量の更新回数を少なくすることができる。 Further, according to the fourth embodiment, if the compensation amount calculation means 54 is activated once, the compensation amount that minimizes the effective value ΔIdeff of the current difference ΔId is obtained. Therefore, it is not necessary to repeatedly update the compensation amount to converge the compensation amount to a value required for compensation of the voltage error Verr. As a result, the number of times the compensation amount is updated can be reduced.
 なお、上述した実施の形態1~4のうち、いずれか2つ以上を組み合わせても、上述した効果を得ることができる。実施の形態1~4では、制御装置18および上位制御装置9を別々の構成で説明したが、制御装置18と上位制御装置9が一体となった構成であってもよい。 The above-mentioned effect can be obtained by combining any two or more of the above-described embodiments 1 to 4. In the first to fourth embodiments, the control device 18 and the upper control device 9 have been described with separate configurations, but the control device 18 and the upper control device 9 may be integrated.
 また、実施の形態1~4では電動機11の負荷が空気調和装置用のファンの場合で説明したが、負荷は空気調和装置用のファンに限らない。実施の形態1~4で説明した補償量算出および補償量更新は、電動機11の負荷の種類によらず、様々な負荷に適用できる。 Further, in the first to fourth embodiments, the load of the motor 11 is described in the case of the fan for the air conditioner, but the load is not limited to the fan for the air conditioner. The compensation amount calculation and compensation amount update described in the first to fourth embodiments can be applied to various loads regardless of the type of load of the motor 11.
 1 空気調和装置、2 熱源側ユニット、3 負荷側ユニット、4 圧縮機、5 四方弁、6 熱源側熱交換器、7、8 電磁弁、9 上位制御装置、10 ファン、11 電動機、12 電動機制御装置、13 負荷側熱交換器、14 冷媒配管、15 冷媒回路、16 電源、17 電力変換装置、18 制御装置、19 電流検出装置、19a 電流検出器、20 インバータ、21~26 スイッチング素子、31~36 逆流防止素子、51 電力制御手段、52 電流推定手段、53 回転数推定手段、54 補償量算出手段、61 プロセッサ、62 CPU、71、72 メモリ、80 処理回路。 1 air conditioner, 2 heat source side unit, 3 load side unit, 4 compressor, 5 four-way valve, 6 heat source side heat exchanger, 7, 8 electromagnetic valve, 9 upper control device, 10 fan, 11 electric power, 12 electric power control Equipment, 13 load side heat exchanger, 14 refrigerant piping, 15 refrigerant circuit, 16 power supply, 17 power conversion device, 18 control device, 19 current detector, 19a current detector, 20 inverter, 21-26 switching element, 31- 36 Backflow prevention element, 51 power control means, 52 current estimation means, 53 rotation speed estimation means, 54 compensation amount calculation means, 61 processor, 62 CPU, 71, 72 memory, 80 processing circuit.

Claims (8)

  1.  電動機に印加する電圧の指令値である電圧指令値に対応する交流電圧を前記電動機に供給する電力変換装置と、
     前記電動機に流れる電流を検出する電流検出装置と、
     前記電動機の回転速度の指令値である速度指令値と前記電流検出装置によって検出される電流の情報とに対応して前記電圧指令値を算出して前記電力変換装置に出力する制御装置と、
    を有し、
     前記制御装置は、
     前記電流検出装置によって検出される電流である電流検出値を用いて前記電動機の回転数の推定値である推定回転数を算出する回転数推定手段と、
     前記電圧指令値と、前記推定回転数と、予め記憶される前記電動機のパラメータとを用いて、前記電動機に流れる電流を推定する電流推定手段と、
     前記電流推定手段によって推定される電流である電流推定値から前記電流検出値を減算した値である電流差に基づいて、前記電力変換装置の出力電圧と前記電圧指令値との誤差である電圧誤差を補償する補償量を算出する補償量算出手段と、を有する
     電動機制御装置。
    A power converter that supplies an AC voltage corresponding to the voltage command value, which is the command value of the voltage applied to the motor, to the motor, and
    A current detection device that detects the current flowing through the motor, and
    A control device that calculates the voltage command value corresponding to the speed command value, which is the command value of the rotation speed of the motor, and the current information detected by the current detection device, and outputs the voltage command value to the power conversion device.
    Have,
    The control device is
    A rotation speed estimation means for calculating an estimated rotation speed, which is an estimated value of the rotation speed of the motor, using a current detection value which is a current detected by the current detection device.
    A current estimation means for estimating the current flowing through the motor using the voltage command value, the estimated rotation speed, and the parameters of the motor stored in advance.
    A voltage error, which is an error between the output voltage of the power converter and the voltage command value, based on the current difference, which is the value obtained by subtracting the current detection value from the current estimated value, which is the current estimated by the current estimation means. An electric motor control device having a compensation amount calculation means for calculating a compensation amount for compensating for the electric current.
  2.  前記補償量算出手段は、
     前記補償量の更新を終了する条件である更新終了条件が満たされるまで、前記電流差に基づいて前記補償量を更新する処理を繰り返す、
     請求項1に記載の電動機制御装置。
    The compensation amount calculation means is
    The process of updating the compensation amount based on the current difference is repeated until the update end condition, which is the condition for ending the update of the compensation amount, is satisfied.
    The motor control device according to claim 1.
  3.  前記更新終了条件は、前記電流差の絶対値が予め決められた閾値以下になることである、
     請求項2に記載の電動機制御装置。
    The update end condition is that the absolute value of the current difference is equal to or less than a predetermined threshold value.
    The motor control device according to claim 2.
  4.  前記補償量算出手段は、
     前記電動機の起動後に前記補償量を算出し、前記電流差が予め決められた正の閾値より大きい場合、前記補償量に予め決められた調整値を加算した値を新たな補償量に更新し、前記電流差が予め決められた負の閾値より小さい場合、前記補償量から前記調整値を減算した値を新たな補償量に更新する、
     請求項1または2に記載の電動機制御装置。
    The compensation amount calculation means is
    The compensation amount is calculated after the motor is started, and when the current difference is larger than a predetermined positive threshold value, the value obtained by adding the predetermined adjustment value to the compensation amount is updated to a new compensation amount. When the current difference is smaller than a predetermined negative threshold value, the value obtained by subtracting the adjustment value from the compensation amount is updated with a new compensation amount.
    The motor control device according to claim 1 or 2.
  5.  前記補償量算出手段は、
     前記補償量を更新する際、前記電流差の絶対値の大きさに対応して、前記調整値を変更する、
     請求項4に記載の電動機制御装置。
    The compensation amount calculation means is
    When updating the compensation amount, the adjustment value is changed according to the magnitude of the absolute value of the current difference.
    The motor control device according to claim 4.
  6.  前記補償量算出手段は、
     前記補償量の初期値を予め記憶し、最後に前記補償量を算出したときの前記電流差の符号と、新たに算出した前記電流差である最新電流差の符号とが異なる場合であって、前記最新電流差の符号が正であるとき、前記初期値に予め決められた調整値を加算した値を新たな補償量に更新し、前記最新電流差の符号が負であるとき、前記初期値から前記調整値を減算した値を新たな補償量に更新する、
     請求項1または2に記載の電動機制御装置。
    The compensation amount calculation means is
    When the sign of the current difference when the initial value of the compensation amount is stored in advance and the compensation amount is finally calculated is different from the sign of the latest current difference which is the newly calculated current difference. When the sign of the latest current difference is positive, the value obtained by adding a predetermined adjustment value to the initial value is updated to a new compensation amount, and when the sign of the latest current difference is negative, the initial value is used. The value obtained by subtracting the adjustment value from the above is updated to a new compensation amount.
    The motor control device according to claim 1 or 2.
  7.  前記補償量算出手段は、
     前記電動機の駆動中の一定時間に前記補償量として複数の候補補償量を順次、適用し、前記各候補補償量に対応して前記電流差の実効値を記憶し、複数の前記電流差の実効値のうち、前記電流差の実効値が最小となる前記候補補償量を前記補償量に更新する、
     請求項1または2に記載の電動機制御装置。
    The compensation amount calculation means is
    A plurality of candidate compensation amounts are sequentially applied as the compensation amount during a certain period of time while the motor is being driven, the effective value of the current difference is stored corresponding to each candidate compensation amount, and the effect of the plurality of current differences is obtained. Of the values, the candidate compensation amount that minimizes the effective value of the current difference is updated to the compensation amount.
    The motor control device according to claim 1 or 2.
  8.  請求項1~7のいずれか1項に記載の電動機制御装置と、
     冷媒と空気とを熱交換させる熱交換器と、
     前記熱交換器に対応して設けられたファンと、
     前記ファンに接続され、前記電動機制御装置の制御対象となる電動機と、
    を有する空気調和装置。
    The motor control device according to any one of claims 1 to 7.
    A heat exchanger that exchanges heat between the refrigerant and air,
    With the fan provided corresponding to the heat exchanger,
    An electric motor connected to the fan and controlled by the electric motor control device, and
    Air conditioner with.
PCT/JP2020/017223 2020-04-21 2020-04-21 Electric motor control device and air conditioning device having same WO2021214878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022516523A JP7378594B2 (en) 2020-04-21 2020-04-21 Electric motor control device and air conditioner equipped with the same
PCT/JP2020/017223 WO2021214878A1 (en) 2020-04-21 2020-04-21 Electric motor control device and air conditioning device having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017223 WO2021214878A1 (en) 2020-04-21 2020-04-21 Electric motor control device and air conditioning device having same

Publications (1)

Publication Number Publication Date
WO2021214878A1 true WO2021214878A1 (en) 2021-10-28

Family

ID=78270524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017223 WO2021214878A1 (en) 2020-04-21 2020-04-21 Electric motor control device and air conditioning device having same

Country Status (2)

Country Link
JP (1) JP7378594B2 (en)
WO (1) WO2021214878A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288879A (en) * 2006-04-14 2007-11-01 Yaskawa Electric Corp Speed sensorless controller for ac motor
JP2012228083A (en) * 2011-04-20 2012-11-15 Yaskawa Electric Corp Controller for ac motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288879A (en) * 2006-04-14 2007-11-01 Yaskawa Electric Corp Speed sensorless controller for ac motor
JP2012228083A (en) * 2011-04-20 2012-11-15 Yaskawa Electric Corp Controller for ac motor

Also Published As

Publication number Publication date
JPWO2021214878A1 (en) 2021-10-28
JP7378594B2 (en) 2023-11-13

Similar Documents

Publication Publication Date Title
AU2013294419B2 (en) Motor drive control device
US20100148710A1 (en) Apparatus and method for controlling a bldc motor
JP5222640B2 (en) Refrigeration equipment
JP5539928B2 (en) Motor drive device, fan control device and heat pump device using the same
AU2015205234B2 (en) Motor control device
CN110138310A (en) Control device of electric motor, pile defection device and method for detecting open phase
TW420895B (en) Method for controlling a DC brushless motor
CN113273077B (en) Motor control device and air conditioner
EP3917000A1 (en) Rotary machine control device, refrigerant compression apparatus, and air-conditioner
JP2013146162A (en) Drive unit for synchronous motor, freezer, air conditioner and refrigerator using the same, and drive method for synchronous motor
JP2003111469A (en) Control method and controller of motor
JP2013081320A (en) Motor drive unit
KR20110092055A (en) Apparatus for dirving compressor of an air conditioner and method for driving the same
WO2021214878A1 (en) Electric motor control device and air conditioning device having same
JP2014192905A (en) Motor drive device
JP4197974B2 (en) Motor control device and motor control method
JP6710156B2 (en) Air conditioner control method and air conditioner
KR20090049856A (en) Motor controller of air conditioner
US11632068B2 (en) Motor driving device and air conditioner
WO2005039037A1 (en) Fan controller, refrigeration cycle system and method for estimating rotation speed of fan
KR100926162B1 (en) Motor controller of air conditionerand method of controlling motor
JP2006014388A (en) Inverter controller
JPWO2021038817A1 (en) Motor drive device, motor drive system and refrigeration cycle device
JP2006136167A (en) Power converter, control method of power converter, and air conditioner
JP7345688B2 (en) ventilation blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932421

Country of ref document: EP

Kind code of ref document: A1