WO2021214875A1 - Secondary cell control system, battery pack, and control method for secondary cell - Google Patents

Secondary cell control system, battery pack, and control method for secondary cell Download PDF

Info

Publication number
WO2021214875A1
WO2021214875A1 PCT/JP2020/017216 JP2020017216W WO2021214875A1 WO 2021214875 A1 WO2021214875 A1 WO 2021214875A1 JP 2020017216 W JP2020017216 W JP 2020017216W WO 2021214875 A1 WO2021214875 A1 WO 2021214875A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
inflection point
charge amount
soc
value
Prior art date
Application number
PCT/JP2020/017216
Other languages
French (fr)
Japanese (ja)
Inventor
拳 中村
靖博 ▲高▼木
佑輔 久米
英司 遠藤
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2020/017216 priority Critical patent/WO2021214875A1/en
Publication of WO2021214875A1 publication Critical patent/WO2021214875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery control system, a battery pack, and a secondary battery control method.
  • SOC State of Charge
  • SOH State of Health
  • SOC is an index showing the charge amount (remaining capacity) of the secondary battery
  • SOH is an index showing the deterioration state of the battery.
  • SOC is the ratio of the amount of charge to the full charge capacity.
  • SOH is the ratio of the fully charged capacity at the time of deterioration to the initial fully charged capacity.
  • Patent Document 1 discloses a method of estimating the charge state by integrating the charge / discharge currents of a secondary battery.
  • Patent Document 2 discloses a method of detecting an open circuit voltage of a secondary battery and estimating a charge state based on the open circuit voltage.
  • the estimation error still occurs in the charging state estimation method based on the charge / discharge current integration and the open circuit voltage as described above. This is because the error of the current sensor and the voltage sensor is large, and this error cannot be reset until it is fully charged and fully discharged. Therefore, the error cannot be reset when estimating between the fully charged state and the fully discharged state. .. Further, since the open circuit voltage depends on the deteriorated state of the secondary battery, there is a concern that the estimation accuracy will be further lowered.
  • the SOC estimated value may vary depending on the individual difference of the secondary battery, the deterioration state, the environmental temperature, and the like.
  • the characteristic points of the charge curve change depending on the deterioration state, and the mode of change due to high temperature deterioration and the mode of change due to low temperature deterioration are different. Therefore, it is difficult to estimate the charge state of the secondary battery with high accuracy even by using the feature points of the charge curve.
  • the present invention has been made in view of the above problems, and provides a control system for a secondary battery, a battery pack, and a control method for the secondary battery, which can correct the charge state of the secondary battery with high accuracy. With the goal.
  • the control system for the secondary battery according to the first aspect is charging the secondary battery while charging the secondary battery.
  • the relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown.
  • the first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
  • the first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
  • the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and Corrected that the SOC of the secondary battery has reached a predetermined reference SOC when the insufficient charge amount or the amount of electricity mathematically equivalent to the insufficient charge amount is supplied to the secondary battery. do.
  • the reference charge amount at the second inflection point is a value measured using a reference secondary battery having the same configuration as the secondary battery. It may be configured to be.
  • the insufficient charge amount of the secondary battery may be calculated by the following formula (I).
  • Insufficient charge A + B ⁇ C (I)
  • a and B are dQ / dV values at the first inflection point and dQ / dQ / at the second inflection point measured using a reference secondary battery having the same configuration as the secondary battery. It was obtained by the minimum square method using the difference between the dV value and the charge amount at the initial second inflection point of the reference secondary battery and the measured charge amount at the second inflection point. Represents a constant, and C represents the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery.
  • the battery pack according to the second aspect may be configured to include a secondary battery, the above-mentioned control system for the secondary battery, and a charging means for supplying a current to the secondary battery. ..
  • the secondary battery has a voltage of 3.65 V or more and 3.75 V in the Q-dQ / dV curve when charged from a fully discharged state. It may be configured to show a maximum peak within a range of less than.
  • the secondary battery has a voltage of 3.80 V or more and 3.90 V in the Q-dQ / dV curve when charged from a fully discharged state. It may be configured to show a minimum peak within a range of less than.
  • the secondary battery has a positive electrode and a negative electrode.
  • the positive electrode contains an oxide represented by the general formula LiMO 2 (where M is at least one transition metal element selected from the group consisting of Co, Ni, Al, Mn and Fe).
  • the negative electrode may be configured to contain graphite.
  • the positive electrode of the secondary battery may be configured to contain a lithium nickel cobalt manganese composite oxide or a lithium manganese oxide.
  • the method for controlling the secondary battery according to the third aspect is to charge the secondary battery while charging the secondary battery.
  • the relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown.
  • the first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
  • the first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
  • the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and Corrected that the SOC of the secondary battery has reached a predetermined reference SOC when the insufficient charge amount or the amount of electricity mathematically equivalent to the insufficient charge amount is supplied to the secondary battery. do.
  • the secondary battery can be efficiently charged based on the highly accurate estimation of the SOC. Further, according to the present invention, it is possible to enhance the safety of the secondary battery, contribute to the stable supply of energy, and contribute to the sustainable development goal.
  • This is an example of a QV curve and a QdQ / dV curve when a secondary battery is charged using the battery pack according to the embodiment of the present invention.
  • It is a graph which shows the change of the 1st inflection point and the 2nd inflection point of the QdQ / dV curve by the number of charge / discharge cycles of a secondary battery.
  • FIG. 1 is a block diagram of the battery pack 100 according to the first embodiment.
  • the battery pack 100 includes a secondary battery 10, a charging means 20, and a control system 30. Signal communication is performed between the secondary battery 10 and the control system 30 and between the charging means 20 and the control system 30. The signal communication may be wired or wireless.
  • the secondary battery 10 is, for example, a lithium ion secondary battery. The specific configuration of the secondary battery 10 will be described later.
  • the number of secondary batteries 10 may be one or two or more.
  • the two or more secondary batteries 10 may be connected in series or in parallel.
  • the charging means 20 supplies a current to the secondary battery 10 to charge the secondary battery 10.
  • a constant current charging device can be used.
  • the charging means 20 is provided inside the battery pack 100, but may be provided outside the battery pack 100, for example, in an electric device to which the battery pack 100 is mounted.
  • the control system 30 is a control device (controller) that controls the state of charge of the secondary battery 10.
  • the control system 30 is, for example, a microcomputer.
  • the control system 30 includes a detection means 31, a dQ / dV calculation means 32, an insufficient charge amount calculation means 33, a correction means 34, and a storage means 35.
  • the detecting means 31 detects the amount of electricity supplied to the secondary battery 10, that is, the charge amount Q of the secondary battery 10 and the voltage V of the secondary battery 10.
  • the charge amount Q is a value (I ⁇ t) obtained by multiplying the current value I supplied from the charging means 20 to the secondary battery 10 and the current supply time t.
  • the detection interval between the charge amount Q and the voltage V varies depending on conditions such as the current value I supplied from the charging means 20 to the secondary battery 10, but is usually 1 second or more and 10 minutes or less.
  • the dQ / dV calculation means 32 calculates dQ / dV by differentiating the charge amount Q detected by the detection means 31 with the voltage V.
  • dQ / dV is the ratio of the amount of change in the charge amount of the secondary battery 10 to the amount of change in the voltage V of the secondary battery 10.
  • the insufficient charge amount calculation means 33 detects the first inflection point and the second inflection point. Then, based on the difference between the detected dQ / dV value at the first inflection point and the detected dQ / dV value at the second inflection point, the secondary battery with respect to the reference charge amount at the second inflection point. Calculate the insufficient charge amount of 10.
  • the insufficient charge amount is the difference between the charge amount at the second inflection point of the secondary battery 10 being charged and the reference charge amount at the second inflection point of the secondary battery 10 in the initial state. The first inflection point and the second inflection point will be described with reference to FIG.
  • FIG. 2 is an example of the QV curve and the QdQ / dV curve of the secondary battery when the secondary battery is charged using the battery pack according to the embodiment of the present invention.
  • the horizontal axis represents the charge amount Q of the secondary battery 10
  • the vertical axis represents the voltage V and dQ / dV of the secondary battery 10.
  • the QV curve is shown by a broken line and the QdQ / dV curve is shown by a solid line.
  • the QV curve and the QdQ / dV curve are data when the secondary battery 10 is charged with a constant current from a fully discharged state.
  • the Q-dQ / dV curve has a plurality of peaks.
  • the plurality of peaks are the peak top (the inflection point where the Q-dQ / dV curve changes from rising to falling) indicated by the maximum points P1, P2, P3, and P4 in the figure, and the minimum points B1, B2, B3, and B4.
  • the Q-dQ / dV curve shows a maximum peak in the range where the voltage V of the secondary battery is 3.65 V or more and less than 3.75 V, and shows a minimum peak in the range of 3.80 V or more and less than 3.90 V. ..
  • the maximum points P1 to P4 and the minimum points B1 to B4 indicate that the stages of the positive electrode active material or the negative electrode active material that contribute to the charging reaction of the secondary battery 10 are switched. Therefore, the shape and position of the peak differ depending on the material of the positive electrode active material and the negative electrode active material of the secondary battery 10.
  • the first inflection point is the first inflection point at which the voltage of the secondary battery 10 is 3.65 V or higher and the QdQ / dV curve changes from rising to falling, or a point mathematically equivalent to this. ..
  • the point at which the Q-dQ / dV curve changes from rising to falling is the point at which the continuously rising Q-dQ / dV curve changes so as to continuously fall. It should be noted that continuous is, for example, 1 minute or more, although it depends on the charging rate.
  • the first inflection point is the maximum point P2.
  • the point mathematically equivalent to the first inflection point is, for example, a point in the QV curve where the amount of change dV of the voltage V of the secondary battery with respect to the amount of change dQ of the amount of electricity changes from an increase to a decrease.
  • a V-dQ / dV curve is used instead of the Q-dQ / dV curve, and the V-dQ / dV curve changes from rising to falling.
  • the second inflection point is the first inflection point at which the voltage of the secondary battery 10 is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this. ..
  • the point at which Q / dV changes from falling to rising is a point at which dQ / dV, which has been continuously falling, changes so as to continuously rise. It should be noted that continuous is, for example, 1 minute or more, although it depends on the charging rate.
  • the second inflection point is the minimum point B2.
  • the point mathematically equivalent to the second inflection point is, for example, that in the QV curve, the amount of change dV of the voltage V of the secondary battery with respect to the amount of change dQ of the amount of electricity changes from decreasing to increasing.
  • a V-dQ / dV curve is used instead of the Q-dQ / dV curve, and the V-dQ / dV curve changes from falling to rising.
  • the secondary battery 10 deteriorates by repeating the charge / discharge cycle, and the position and height of the peak of the QdQ / dV curve change. Due to this change, the charge amount when the charging secondary battery 10 reaches the second inflection point and the charge amount when the initial secondary battery 10 reaches the second inflection point are significantly different. There is. Therefore, the difference between the charge amount at the second inflection point of the secondary battery 10 being charged and the reference charge amount at the second inflection point of the initial secondary battery 10 is calculated as the insufficient charge amount.
  • the reference charge amount may be, for example, a value measured using a reference secondary battery having the same configuration as the secondary battery 10.
  • the reference secondary battery is a battery in which each material constituting the battery is the same as that of the secondary battery 10, and the QV curve and the QdQ / dV curve when the battery is charged are the same as those of the secondary battery 10. ..
  • the insufficient charge amount is calculated based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery 10.
  • the insufficient charge amount can be calculated by, for example, the insufficient charge amount calculation formula represented by the following formula (I).
  • Insufficient charge A + B ⁇ C (I)
  • a and B are the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point measured using a reference secondary battery having the same configuration as the secondary battery.
  • FIG. 3 is a graph showing changes in the first inflection point and the second inflection point of the QdQ / dV curve by the deterioration test.
  • SOH the second inflection point
  • the dQ / dV value of the first inflection point decreases
  • the first inflection point Position shifts to the low charge side.
  • the position of the second inflection point (minimum point B2) shifts to the low charge amount side and becomes far from the second inflection point (minimum point B2 i) of the initial secondary battery 10.
  • the slope of the QdQ / dV curve after the second inflection point becomes smaller. Therefore, it may be difficult for the secondary battery 10 to accurately detect the charge amount at the second inflection point by repeating the charge / discharge cycle.
  • FIG. 4 is a graph showing the relationship between the difference between dQ / dV at the first inflection point and dQ / dV at the second inflection point of the secondary battery and the insufficient charge amount.
  • the horizontal axis is the difference [(P2-B2) dQ / dV] between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery 10.
  • the vertical axis is the insufficient charge amount, that is, the difference between the charge amount Q at the initial second inflection point (B2 i ) of the secondary battery 10 and the charge amount Q at the second inflection point (B2) at the time of measurement [( B2 i- B2) Q].
  • (P2-B2) dQ / dV and (B2 i- B2) Q have a linear correlation. Therefore, from the relationship between (P2-B2) dQ / dV and (B2 i- B2) Q, a linear function formula with (P2-B2) dQ / dV as a variable is calculated using the least squares method.
  • the insufficient charge amount at the time of measurement that is, (B2 i- B2) Q can be calculated accurately.
  • the formula for calculating the insufficient charge amount in the above formula (I) is a linear function calculated by the least squares method using (P2-B2) dQ / dV and (B2 i-B2) Q of the reference secondary battery. It is an expression.
  • FIG. 5 is a conceptual diagram illustrating a method of calculating the insufficient charge amount of the secondary battery based on the insufficient charge amount calculation formula.
  • the curve shown in FIG. 5 is a QdQ / dV curve of the secondary battery 10 being charged.
  • the insufficient charge amount of the secondary battery 10 is calculated as follows. First, the first inflection point (maximum point P2) and the second inflection point (minimum point B2) are detected, and the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point The difference [(P2-B2) dQ / dV] (X in FIG. 5) is calculated.
  • the obtained (P2-B2) dQ / dV is substituted into C of the undercharge amount calculation formula of the above formula (I) to calculate the undercharge amount.
  • the obtained insufficient charge amount (Y in FIG. 5) is the difference between the charge amount at the second inflection point B2 and the charge amount at the initial second inflection point B2 i of the reference secondary battery [(B2 i-). B2) Corresponds to Q].
  • the SOC charge rate of the secondary battery 10 is set in advance. Correct as if the specified standard SOC has been reached.
  • the charge amount of the secondary battery 10 when the amount of electricity corresponding to the insufficient charge amount is supplied corresponds to the charge amount at the initial second inflection point (minimum point B2 i ) of the reference secondary battery. Therefore, the reference SOC is the charge rate (SOC) at the second inflection point (minimum point B2 i ) of the initial Q-dQ / dV curve of the reference secondary battery.
  • This reference SOC uses the charge amount when the reference secondary battery in the fully discharged state is fully charged by constant current constant voltage charging as the denominator, and the QdQ / dV curve obtained by the constant current constant voltage charging. It is a value calculated as a molecule of the charge amount at the second inflection point of.
  • the storage means 35 stores the insufficient charge amount calculation formula of the above formula (1) calculated using the reference secondary battery and the reference SOC.
  • the storage means 35 may further store the reference charge amount.
  • the control method of the secondary battery 10 shown in FIG. 6 includes the following steps S1 to S8.
  • step S1 the voltage value V of the secondary battery 10 is measured.
  • the secondary battery 10 is discharged. The discharge may be performed until the voltage value V of the secondary battery 10 is in a fully discharged state.
  • the fully discharged state is, for example, a state in which the voltage V of the secondary battery 10 is 3.0 V or less.
  • the secondary battery 10 is charged (step S2).
  • step S2 it is preferable to charge the secondary battery 10 by constant current charging.
  • the charging rate is preferably in the range of 0.1C or more and 2C or less, where 1C is the charging rate when the secondary battery 10 is charged from the fully discharged state to the fully charged state in 1 hour.
  • step S2 while charging the secondary battery 10, the voltage V of the secondary battery 10 and the charge amount Q (the amount of electricity supplied to the secondary battery 10) are measured, and dQ / dV is calculated. A Q-dQ / dV curve is created accordingly. Then, in step S2, the following steps S3 and S4 are performed.
  • step S3 the voltage V of the secondary battery 10 is 3.65 V or more, and the first inflection point at which the Q-dQ / dV curve changes from rising to falling is detected. Then, this inflection point is recognized as the first inflection point (maximum point P2).
  • step S4 an inflection point at which the voltage of the secondary battery is 3.75 V or higher and the Q-dQ / dV curve changes from rising to falling is detected. Then, this inflection point is recognized as the second inflection point (minimum point B2).
  • step S5 the difference (P2-B2) dQ / dV between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point is calculated.
  • step S6 the (P2-B2) dQ / dV calculated in step S5 is substituted into C in the undercharge amount calculation formula (A + B ⁇ C) of the above formula (I) to calculate the undercharge amount.
  • step S7 the amount of electricity corresponding to the insufficient charge amount calculated in step S6 is supplied to the secondary battery 10.
  • step S8 when the amount of electricity corresponding to the insufficient charge amount is supplied to the secondary battery 10, it is corrected that the charge rate (SOC) of the secondary battery 10 has reached the reference SOC.
  • FIG. 7 is a cross-sectional view of the secondary battery 10 that can be used in the battery pack 100 according to the first embodiment.
  • the secondary battery 10 includes, for example, a power generation element 4, an exterior body 5, and an electrolytic solution (not shown).
  • the exterior body 5 covers the periphery of the power generation element 4.
  • the exterior body 5 is, for example, a metal laminate film in which a metal foil 5A is coated from both sides with a polymer film (resin layer 5B).
  • the power generation element 4 is connected to the outside by a pair of connected terminals 6.
  • the electrolytic solution is housed in the exterior body 5 and impregnated in the power generation element 4.
  • the power generation element 4 includes a positive electrode 2, a negative electrode 3, and a separator 1.
  • the separator 1 is sandwiched between the positive electrode 2 and the negative electrode 3.
  • the separator 1 is, for example, a film having an electrically insulating porous structure. A known separator 1 can be used.
  • the positive electrode 2 has a positive electrode current collector 2A and a positive electrode active material layer 2B.
  • the positive electrode active material layer 2B is formed on at least one surface of the positive electrode current collector 2A.
  • the positive electrode active material layer 2B may be formed on both surfaces of the positive electrode current collector 2A.
  • the positive electrode current collector 2A is, for example, a conductive plate material.
  • the positive electrode active material layer 2B has, for example, a positive electrode active material, a conductive auxiliary material, and a binder.
  • the positive electrode active material reversibly proceeds with the occlusion and release of lithium ions, the desorption and insertion (intercalation) of lithium ions, or the doping and dedoping of lithium ions and counter anions.
  • the positive electrode active material preferably contains an oxide represented by the general formula LiMO 2 (where M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe). Further, the positive electrode active material may contain a phosphate. Specific examples of the positive electrode active material include lithium cobalt oxide (LCO), lithium nickel cobalt manganese composite oxide (NCM), lithium nickel cobalt aluminum composite oxide (NCA), lithium manganese oxide (LMO), and phosphoric acid. Lithium iron phosphate (LFP) can be mentioned.
  • the positive electrode active material layer 2B may contain a plurality of these positive electrode active materials.
  • the positive electrode active material is not limited to these, and known materials can be used. Known conductive auxiliary materials and binders can be used.
  • the negative electrode 3 has a negative electrode current collector 3A and a negative electrode active material layer 3B.
  • the negative electrode active material layer 3B is formed on at least one surface of the negative electrode current collector 3A.
  • the negative electrode active material layer 3B may be formed on both surfaces of the negative electrode current collector 3A.
  • the negative electrode current collector 3A is, for example, a conductive plate material.
  • the negative electrode active material layer 3B has, for example, a positive electrode active material, a conductive auxiliary material, and a binder.
  • the negative electrode active material may be any compound that can occlude and release ions, and a known negative electrode active material used in a lithium ion secondary battery can be used.
  • the negative electrode active material is, for example, graphite.
  • the negative electrode active material may be metallic lithium, a silicon compound or the like.
  • the electrolytic solution is sealed in the exterior body 5 and impregnated in the power generation element 4.
  • the electrolytic solution one in a public land can be used.
  • the secondary battery 10 is configured so that the voltage of the secondary battery 10 shows a maximum peak within a range of 3.65 V or more and less than 3.75 V in the QdQ / dV curve when charged from a fully discharged state. It is preferable to have. Further, the secondary battery 10 is preferably configured so that the voltage of the secondary battery 10 shows a minimum peak within a range of 3.80 V or more and less than 3.90 V.
  • the first inflection point (maximum point P2) and the second inflection point (minimum point) in the control system 30 while charging the secondary battery 10 by the charging means 20. B2) is detected, and the insufficient charge amount with respect to the reference charge amount at the second inflection point is calculated based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point. Then, when this insufficient charge amount is supplied to the secondary battery, the SOC of the secondary battery 10 is corrected to the reference SOC.
  • the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point has a high correlation with the insufficient charge amount. Therefore, according to the control system 30, even if the positions of the first inflection point and the second inflection point and the dQ / dV value of the secondary battery 10 greatly fluctuate due to the charge / discharge cycle, the secondary battery is being charged. 10 SOCs can be corrected with high accuracy.
  • the battery pack 100 when the reference charge amount at the second inflection point is a value measured using the reference secondary battery having the same configuration as the secondary battery 10, the battery is being charged.
  • the SOC of the secondary battery 10 can be corrected with higher accuracy.
  • the reference SOC when the reference SOC is a value measured using a reference secondary battery having the same configuration as the secondary battery 10, the SOC of the secondary battery 10 being charged Can be corrected with higher accuracy.
  • the insufficient charge amount of the secondary battery 10 is calculated from the insufficient charge amount of the above formula (I), the insufficient charge amount can be measured more accurately. Therefore, the SOC of the secondary battery 10 being charged can be corrected with higher accuracy.
  • the reference charge amount, the reference SOC, and the insufficient charge amount calculation formula of the above formula (1) are obtained by using the reference secondary battery, but the present invention is not limited to this.
  • the reference charge amount, the reference SOC, and the insufficient charge amount calculation formula may be obtained in the initial state of the secondary battery 10 incorporated in the battery pack 100, and the obtained values may be stored in the storage means 35.
  • the initial state of the secondary battery 10 is a state in which the number of charge / discharge cycles is 10 or less.
  • Example 1 (1) Preparation of Lithium Ion Secondary Battery A lithium ion secondary battery was manufactured as a secondary battery. First, a positive electrode was prepared. NCM (composition formula: Li 1.0 Ni 1/3 Co 1/3 Mn 1/3 O 2 ) was prepared as the positive electrode active material, carbon black was prepared as the conductive auxiliary material, and polyvinylidene fluoride (PVDF) was prepared as the binder. These were mixed in a solvent to prepare a paint, which was applied onto a positive electrode current collector made of aluminum foil. The mass ratio of the positive electrode active material, the conductive auxiliary material, and the binder was 95: 2: 3. After coating, the solvent was removed. A positive electrode sheet having a basis weight of the positive electrode active material layer of 10.0 mg / cm 3 was prepared.
  • NCM composition formula: Li 1.0 Ni 1/3 Co 1/3 Mn 1/3 O 2
  • PVDF polyvinylidene fluoride
  • the negative electrode was prepared.
  • Graphite was prepared as the negative electrode active material
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the positive electrode and the negative electrode prepared above were laminated via a separator.
  • a laminate of polyethylene and polypropylene was used as the separator.
  • the obtained power generation unit was impregnated with the prepared electrolytic solution, sealed in the exterior body, and then vacuum-sealed to prepare a lithium secondary battery for evaluation.
  • the electrolytic solution was prepared by dissolving 1.5 mol / L of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which equal amounts of ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
  • LiPF 6 lithium hexafluorophosphate
  • the secondary battery (reference secondary battery) produced in (1) above is charged to a final voltage of 4.2 V with a constant current value of 0.2 C in a temperature environment of 25 ° C., and then 3 at 0.2 C. It was discharged to 0.0V. After that, the reference secondary battery was charged to a final voltage of 4.2 V by constant current and constant voltage charging to bring it into a fully charged state. The current supply amount at this time was set as the fully charged amount of the secondary battery, and the SOC of the secondary battery in the fully charged state was set as 100%, which was used as the reference for the subsequent evaluation.
  • the QV curve and the QdQ / dV curve obtained by this charging were the same as those shown in FIG.
  • the reference SOC is set to 50%.
  • the reference secondary battery used to set the reference SOC is charged to a final voltage of 4.2 V with a constant current value of 0.5 C under a temperature environment of 25 ° C, and terminates at a constant current value of 0.5 C.
  • the charge / discharge cycle of discharging to a voltage of 3.0 V was set as one cycle, and 3000 cycles were performed. Every 50 cycles, the reference secondary battery was charged to a final voltage of 4.2 V by constant current and constant voltage charging to bring it into a fully charged state.
  • the insufficient charge amount calculation formula (approximate formula of the linear function) was obtained by the least squares method. As a result, the obtained insufficient charge amount calculation formula was A + B ⁇ C (however, A is 100 and B is 0.005).
  • a battery pack was produced by connecting the lithium ion secondary battery produced in (1) above, a constant current charging / discharging device, and a control system, respectively.
  • the control system includes a detection means having a coulomb counter and a voltage measuring instrument, a dQ / dV calculation means, a shortage charge amount calculation means, a correction means, a storage means, and an SOC display means.
  • the reference SOC and the insufficient charge amount calculation formula obtained in (2) above were stored in the storage means.
  • the lithium ion secondary battery after the end of discharge in (a) above is terminated at a constant current value of 0.5 C in an environment of 45 ° C.
  • a charge / discharge cycle of discharging to a final voltage of 3.0 V at a constant current value of 0.5 C was set as one cycle, and 100 cycles were performed.
  • the lithium ion secondary battery is charged to a final voltage of 4.2 V at a constant current value of 0.5 C under a temperature environment of 25 ° C., and then discharged to a final voltage of 3.0 V at a constant current value of 0.5 C.
  • the charge / discharge cycle was set as one cycle, and 400 cycles were performed.
  • the control SOC at the time of discharge and the measured SOC were measured, and the difference was calculated.
  • the charge / discharge cycle process was performed three times, and the difference between the control SOC of the battery pack and the measured SOC after each charge / discharge cycle process was calculated.
  • the battery packs produced in Example 1 had a smaller difference between the controlled SOC and the actually measured SOC of the lithium ion secondary battery after deterioration due to the charge / discharge cycle. ..
  • the height and position of the first inflection point (P2) and the second inflection point (B3) of the secondary battery change as the lithium ion secondary battery deteriorates due to the charge / discharge cycle process. Therefore, in Comparative Example 3 in which the correction is made based only on the first inflection point, the difference between the control SOC and the actually measured SOC becomes large due to the influence of the change of the first inflection point.
  • the insufficient charge amount can be obtained with high accuracy. Then, since the SOC is corrected after charging this insufficient charge amount, the SOC of the lithium ion secondary battery of the deteriorated SOC can be corrected with high accuracy, and the difference between the controlled SOC and the actually measured SOC becomes small.
  • a battery pack in which the SOC correction function according to the present embodiment is incorporated in the control unit (control system) is prepared.
  • the battery pack mainly consisted of a battery management system including a control unit and a safety mechanism, and 10 lithium-ion secondary batteries. Ten lithium-ion secondary batteries were connected in parallel.
  • a so-called NCM ternary active material of nickel-cobalt-manganese was used as the positive electrode active material, and carbon was used as the negative electrode active material.
  • the prepared battery pack was fully discharged at a rate of 0.2 C at room temperature and then fully charged at a rate of 0.2 C at room temperature to bring the lithium ion secondary battery into the initial state of actual use.
  • the dQ / dV value at each voltage was obtained to calculate Q, and the Q ⁇ dQ / dV curve in the initial state was acquired and recorded in the storage means of the control unit.
  • the 1000-cycle charge / discharge process refers to an evaluation process including the following elements. 1) In a temperature environment of 45 ° C., after full discharge at a rate of 0.5 C, charge / discharge is performed 1000 times at a rate of 0.2 C so that the cell voltage is always 4.0 V or higher. After that, it is fully discharged at a rate of 0.5C. 2) After the final full discharge (that is, the 1000th cycle full discharge), the battery is fully charged again at room temperature at a rate of 0.2 C.
  • the SOC value (this SOC value is referred to as "internal SOC value") and the capacity are continuously read from the control unit inside the battery pack.
  • a Q-dQ / dV curve is obtained from the dQ / dV value at each voltage during charging.
  • the capacity Y1 of the lithium ion secondary battery when the fluctuation is confirmed is read from the value of the continuous capacity change.
  • the Q-dQ / dV curve obtained after the 1000-cycle charge / discharge step and the Q-dQ / dV curve in the above initial state are all in the range of 3.65-3.90V.
  • this 1000-cycle charge / discharge process (work 1) to 5-2) is performed by three Q-dQ / dV curves that are different from the initial state and three additional charge capacities Y. Repeated until obtained.
  • the Q-dQ / dV curves and capacities of the three deteriorated states of the lithium ion secondary battery (hereinafter referred to as the first deteriorated state, the second deteriorated state, and the third deteriorated state) are obtained.
  • DQ / dV intensity difference X and insufficient charge amount Y were calculated.

Abstract

This secondary cell control system is configured such that, while a secondary cell is being charged: where the second cell has a voltage of 3.65 V, a first inflection point is either the first inflection point at which a Q-dQ/dV curve turns from ascending to descending, or a point mathematically equivalent thereto, the q-dQ/dV curve indicating the relationship between an amount Q of charging of the secondary cell and dQ/dV, which is the proportion of an amount of change in the amount Q of charging with respect to an amount of change in a voltage V; where the secondary cell has a voltage of 3.75 V, a second inflection point is either the first inflection point at which the Q-dQ/dV curve turns from descending to ascending, or a point mathematically equivalent thereto; the control system calculates an insufficient amount of charging with respect to a reference amount of charging at the second inflection point on the basis of the difference between the value dQ/dV at the first inflection point and the value dQ/dV at the second inflection point; and the system corrects the SOC of the secondary cell to a reference SOC when this insufficient amount of charging has been supplied to the secondary cell. A battery pack using this secondary cell control system is highly stable, contributes to stable supply of energy, and contributes to sustainable development goals.

Description

二次電池の制御システム、電池パック及び二次電池の制御方法Secondary battery control system, battery pack and secondary battery control method
 本発明は、二次電池の制御システム、電池パック及び二次電池の制御方法に関する。 The present invention relates to a secondary battery control system, a battery pack, and a secondary battery control method.
 二次電池の状態の指標としてSOC(State of Charge)やSOH(State of Health)が知られている。SOCは、二次電池の充電量(残容量)を示す指標であり、SOHは電池の劣化状態を示す指標である。SOCは、満充電容量に対する充電量の割合である。SOHは、初期の満充電容量に対する劣化時の満充電容量の割合である。従来、二次電池のSOCを推定する様々な方法が提案されている。 SOC (State of Charge) and SOH (State of Health) are known as indicators of the state of the secondary battery. SOC is an index showing the charge amount (remaining capacity) of the secondary battery, and SOH is an index showing the deterioration state of the battery. SOC is the ratio of the amount of charge to the full charge capacity. SOH is the ratio of the fully charged capacity at the time of deterioration to the initial fully charged capacity. Conventionally, various methods for estimating the SOC of a secondary battery have been proposed.
 例えば、特許文献1には、二次電池の充放電電流を積算して充電状態を推定する方法が開示されている。また、特許文献2には、二次電池の開放電圧を検出し、当該開放電圧に基づいて充電状態を推定する方法が開示されている。 For example, Patent Document 1 discloses a method of estimating the charge state by integrating the charge / discharge currents of a secondary battery. Further, Patent Document 2 discloses a method of detecting an open circuit voltage of a secondary battery and estimating a charge state based on the open circuit voltage.
 一方、充放電電流の積算や開放電圧を用いない推定方法も提案されている。例えば、特許文献3には、電池電圧Vの変化量dVに対する、二次電池の充電量Qの変化量dQの割合であるdQ/dVの特徴点を利用して二次電池の充電状態を推定する方法が開示されている。 On the other hand, an estimation method that does not use charge / discharge current integration or open circuit voltage has also been proposed. For example, in Patent Document 3, the charge state of the secondary battery is estimated by using the feature point of dQ / dV, which is the ratio of the change amount dQ of the charge amount Q of the secondary battery to the change amount dV of the battery voltage V. The method of doing so is disclosed.
特許第5989320号公報Japanese Patent No. 5989320 特許第3669202号公報Japanese Patent No. 3669202 特許第6295858号公報Japanese Patent No. 6295858
 しかしながら、上記のような充放電電流の積算や開放電圧に基づく充電状態の推定方法では、依然として推定誤差が発生する。これは、電流センサや電圧センサの誤差が大きく、この誤差は満充電、満放電にならないとリセットできないため、満充電状態と満放電状態の間で推定を行なう際に誤差をリセットすることができない。また、開放電圧は二次電池の劣化状態にも依存するため、推定精度の更なる低下が懸念される。 However, the estimation error still occurs in the charging state estimation method based on the charge / discharge current integration and the open circuit voltage as described above. This is because the error of the current sensor and the voltage sensor is large, and this error cannot be reset until it is fully charged and fully discharged. Therefore, the error cannot be reset when estimating between the fully charged state and the fully discharged state. .. Further, since the open circuit voltage depends on the deteriorated state of the secondary battery, there is a concern that the estimation accuracy will be further lowered.
 また、上記dQ/dVの特徴点を利用した充電状態の推定方法では、二次電池の個体差、劣化状態、環境温度等によってSOCの推定値にばらつきが生じるおそれがある。例えば、充電曲線の特徴点は劣化状態によって変化し、また、高温劣化に因る変化の態様と低温劣化に因る変化の態様とは異なる。よって、充電曲線の特徴点を用いても二次電池の充電状態を高精度で推定することは難しい。 In addition, in the charging state estimation method using the above dQ / dV feature points, the SOC estimated value may vary depending on the individual difference of the secondary battery, the deterioration state, the environmental temperature, and the like. For example, the characteristic points of the charge curve change depending on the deterioration state, and the mode of change due to high temperature deterioration and the mode of change due to low temperature deterioration are different. Therefore, it is difficult to estimate the charge state of the secondary battery with high accuracy even by using the feature points of the charge curve.
 本発明は、上記問題に鑑みてなされたものであり、二次電池の充電状態を高精度で補正することができる二次電池の制御システム、電池パック及び二次電池の制御方法を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a control system for a secondary battery, a battery pack, and a control method for the secondary battery, which can correct the charge state of the secondary battery with high accuracy. With the goal.
 上記課題を解決するため、以下の手段を提供する。 To solve the above problems, the following means will be provided.
(1)第1の態様に係る二次電池の制御システムは、二次電池を充電しながら、
 前記二次電池の電圧が3.65V以上にあって、前記二次電池の充電量Qと、電圧Vの変化量に対する前記充電量Qの変化量の割合であるdQ/dVとの関係を示すQ-dQ/dV曲線が上昇から下降に転じる最初の変曲点もしくはこれと数学的に等価な点を第1変曲点とし、
 前記二次電池の電圧が3.75V以上にあって、前記Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点もしくはこれと数学的に等価な点を第2変曲点として、
 前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分に基づいて、前記第2変曲点における基準充電量に対する前記二次電池の不足充電量を算出し、
 前記不足充電量または前記不足充電量と数学的に等価な電気量が、前記二次電池に対して供給されたときに、前記二次電池のSOCが予め定められた基準SOCに到達したと補正する。
(1) The control system for the secondary battery according to the first aspect is charging the secondary battery while charging the secondary battery.
The relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown. The first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
The first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
Based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point, the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and
Corrected that the SOC of the secondary battery has reached a predetermined reference SOC when the insufficient charge amount or the amount of electricity mathematically equivalent to the insufficient charge amount is supplied to the secondary battery. do.
(2)上記第1の態様に係る二次電池の制御システムにおいて、前記第2変曲点における前記基準充電量は、前記二次電池と同一構成の基準二次電池を用いて測定された値である構成とされていてもよい。 (2) In the secondary battery control system according to the first aspect, the reference charge amount at the second inflection point is a value measured using a reference secondary battery having the same configuration as the secondary battery. It may be configured to be.
(3)上記第1の態様に係る二次電池の制御システムにおいて、前記基準SOCは、前記二次電池と同一構成の基準二次電池を用いて測定された値である構成とされていてもよい。 (3) In the secondary battery control system according to the first aspect, even if the reference SOC is a value measured using a reference secondary battery having the same configuration as the secondary battery. good.
(4)上記第1の態様に係る二次電池の制御システムにおいて、前記二次電池の前記不足充電量を、下記の式(I)により算出する構成とされていてもよい。
 不足充電量=A+B×C (I)
 式(I)中、A及びBは、前記二次電池と同一構成の基準二次電池を用いて測定された前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分と、前記基準二次電池の初期の前記第2変曲点における充電量と測定された前記第2変曲点における充電量との差分を用いた最小二乗法によって求められた定数を表し、Cは、前記二次電池の前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分を表す。
(4) In the secondary battery control system according to the first aspect, the insufficient charge amount of the secondary battery may be calculated by the following formula (I).
Insufficient charge = A + B × C (I)
In formula (I), A and B are dQ / dV values at the first inflection point and dQ / dQ / at the second inflection point measured using a reference secondary battery having the same configuration as the secondary battery. It was obtained by the minimum square method using the difference between the dV value and the charge amount at the initial second inflection point of the reference secondary battery and the measured charge amount at the second inflection point. Represents a constant, and C represents the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery.
(5)第2の態様に係る電池パックは、二次電池と、前述の二次電池の制御システムと、前記二次電池に電流を供給する充電手段と、を備える構成とされていてもよい。 (5) The battery pack according to the second aspect may be configured to include a secondary battery, the above-mentioned control system for the secondary battery, and a charging means for supplying a current to the secondary battery. ..
(6)上記第2の態様に係る電池パックにおいて、前記二次電池は、満放電状態から充電した際のQ-dQ/dV曲線において、前記二次電池の電圧が3.65V以上3.75V未満の範囲内に極大ピークを示す構成とされていてもよい。 (6) In the battery pack according to the second aspect, the secondary battery has a voltage of 3.65 V or more and 3.75 V in the Q-dQ / dV curve when charged from a fully discharged state. It may be configured to show a maximum peak within a range of less than.
(7)上記第2の態様に係る電池パックにおいて、前記二次電池は、満放電状態から充電した際のQ-dQ/dV曲線において、前記二次電池の電圧が3.80V以上3.90V未満の範囲内に極小ピークを示す構成とされていてもよい。 (7) In the battery pack according to the second aspect, the secondary battery has a voltage of 3.80 V or more and 3.90 V in the Q-dQ / dV curve when charged from a fully discharged state. It may be configured to show a minimum peak within a range of less than.
(8)上記第2の態様に係る電池パックにおいて、前記二次電池は、正極及び負極を有し、
 正極は、一般式がLiMO(但し、Mは、Co、Ni、Al、Mn及びFeからなる群から選択される少なくとも1つの遷移金属元素)で表される酸化物を含み、
 負極は、黒鉛を含む構成とされていてもよい。
(8) In the battery pack according to the second aspect, the secondary battery has a positive electrode and a negative electrode.
The positive electrode contains an oxide represented by the general formula LiMO 2 (where M is at least one transition metal element selected from the group consisting of Co, Ni, Al, Mn and Fe).
The negative electrode may be configured to contain graphite.
(9)上記第2の態様に係る電池パックにおいて、前記二次電池の前記正極は、リチウムニッケルコバルトマンガン複合酸化物又はリチウムマンガン酸化物を含む構成とされていてもよい。 (9) In the battery pack according to the second aspect, the positive electrode of the secondary battery may be configured to contain a lithium nickel cobalt manganese composite oxide or a lithium manganese oxide.
(10)第3の態様に係る二次電池の制御方法は、二次電池を充電しながら、
 前記二次電池の電圧が3.65V以上にあって、前記二次電池の充電量Qと、電圧Vの変化量に対する前記充電量Qの変化量の割合であるdQ/dVとの関係を示すQ-dQ/dV曲線が上昇から下降に転じる最初の変曲点もしくはこれと数学的に等価な点を第1変曲点とし、
 前記二次電池の電圧が3.75V以上にあって、前記Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点もしくはこれと数学的に等価な点を第2変曲点として、
 前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分に基づいて、前記第2変曲点における基準充電量に対する前記二次電池の不足充電量を算出し、
 前記不足充電量または前記不足充電量と数学的に等価な電気量が、前記二次電池に対して供給されたときに、前記二次電池のSOCが予め定められた基準SOCに到達したと補正する。
(10) The method for controlling the secondary battery according to the third aspect is to charge the secondary battery while charging the secondary battery.
The relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown. The first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
The first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
Based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point, the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and
Corrected that the SOC of the secondary battery has reached a predetermined reference SOC when the insufficient charge amount or the amount of electricity mathematically equivalent to the insufficient charge amount is supplied to the secondary battery. do.
 上記態様に係る二次電池の制御システム、電池パックおよび二次電池の制御方法によれば、SOCの高精度な推定に基づき、二次電池を効率よく充電させることができる。
 更に、本発明によれば、二次電池の安全性を高め、エネルギーの安定供給に寄与し、持続可能な開発目標に貢献することができる。
According to the secondary battery control system, the battery pack, and the secondary battery control method according to the above aspect, the secondary battery can be efficiently charged based on the highly accurate estimation of the SOC.
Further, according to the present invention, it is possible to enhance the safety of the secondary battery, contribute to the stable supply of energy, and contribute to the sustainable development goal.
第1実施形態に係る電池パックのブロック図である。It is a block diagram of the battery pack which concerns on 1st Embodiment. 本発明の一実施形態にかかる電池パックを用いて二次電池を充電したときのQ-V曲線及びQ-dQ/dV曲線の一例である。This is an example of a QV curve and a QdQ / dV curve when a secondary battery is charged using the battery pack according to the embodiment of the present invention. 二次電池の充放電サイクルの回数によるQ-dQ/dV曲線の第1変曲点及び第2変曲点の変化を示すグラフである。It is a graph which shows the change of the 1st inflection point and the 2nd inflection point of the QdQ / dV curve by the number of charge / discharge cycles of a secondary battery. 二次電池の第1変曲点におけるdQ/dVと第2変曲点におけるdQ/dVとの差分と、不足充電量との関係を示すグラフである。It is a graph which shows the relationship between the difference between dQ / dV at the 1st inflection point and dQ / dV at the 2nd inflection point of a secondary battery, and the insufficient charge amount. 二次電池の不足充電量を補正式に基づいて算出する方法を説明する概念図である。It is a conceptual diagram explaining the method of calculating the insufficient charge amount of a secondary battery based on a correction formula. 第1実施形態に係る電池パックを用いた二次電池の制御方法のフロー図である。It is a flow chart of the control method of the secondary battery using the battery pack which concerns on 1st Embodiment. 第1実施形態に係る電池パックにおいて用いることができる二次電池の断面図である。It is sectional drawing of the secondary battery which can be used in the battery pack which concerns on 1st Embodiment.
 以下、実施形態について、図面を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following description, the featured portion may be enlarged for convenience in order to make the feature easy to understand, and the dimensional ratio of each component may be different from the actual one. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited thereto, and the present invention can be appropriately modified without changing the gist thereof.
「電池パック」
 図1は、第1実施形態に係る電池パック100のブロック図である。電池パック100は、二次電池10と充電手段20と制御システム30とを備える。二次電池10と制御システム30との間および充電手段20と制御システム30との間では信号の通信が行われる。信号の通信は、有線でも無線でもよい。
"Battery pack"
FIG. 1 is a block diagram of the battery pack 100 according to the first embodiment. The battery pack 100 includes a secondary battery 10, a charging means 20, and a control system 30. Signal communication is performed between the secondary battery 10 and the control system 30 and between the charging means 20 and the control system 30. The signal communication may be wired or wireless.
 二次電池10は、例えば、リチウムイオン二次電池である。二次電池10の具体的な構成は後述する。二次電池10は、1個であっても2個以上であってもよい。2個以上の二次電池10は、直列に接続されていてもよいし、並列に接続されていてもよい。 The secondary battery 10 is, for example, a lithium ion secondary battery. The specific configuration of the secondary battery 10 will be described later. The number of secondary batteries 10 may be one or two or more. The two or more secondary batteries 10 may be connected in series or in parallel.
 充電手段20は、二次電池10に電流を供給して、二次電池10を充電する。充電手段20としては、例えば、定電流充電装置を用いることができる。なお、本実施形態では、充電手段20は、電池パック100の内部に備えられているが、電池パック100の外部、例えば、電池パック100が装着される電気機器に備えられていてもよい。 The charging means 20 supplies a current to the secondary battery 10 to charge the secondary battery 10. As the charging means 20, for example, a constant current charging device can be used. In the present embodiment, the charging means 20 is provided inside the battery pack 100, but may be provided outside the battery pack 100, for example, in an electric device to which the battery pack 100 is mounted.
 制御システム30は、二次電池10の充電状態を制御する制御装置(コントローラー)である。制御システム30は、例えば、マイコンである。制御システム30は、検出手段31、dQ/dV算出手段32、不足充電量算出手段33、補正手段34、記憶手段35を有する。 The control system 30 is a control device (controller) that controls the state of charge of the secondary battery 10. The control system 30 is, for example, a microcomputer. The control system 30 includes a detection means 31, a dQ / dV calculation means 32, an insufficient charge amount calculation means 33, a correction means 34, and a storage means 35.
 検出手段31は、二次電池10に供給した電気量、すなわち二次電池10の充電量Qと二次電池10の電圧Vとを検出する。充電量Qは、充電手段20から二次電池10に供給した電流値Iと電流の供給時間tとを乗じた値(I×t)である。充電量Qと電圧Vの検出間隔は、充電手段20から二次電池10に供給した電流値Iなどの条件によって変動するが、通常は1秒以上10分以下である。 The detecting means 31 detects the amount of electricity supplied to the secondary battery 10, that is, the charge amount Q of the secondary battery 10 and the voltage V of the secondary battery 10. The charge amount Q is a value (I × t) obtained by multiplying the current value I supplied from the charging means 20 to the secondary battery 10 and the current supply time t. The detection interval between the charge amount Q and the voltage V varies depending on conditions such as the current value I supplied from the charging means 20 to the secondary battery 10, but is usually 1 second or more and 10 minutes or less.
 dQ/dV算出手段32は、検出手段31によって検出された充電量Qを電圧Vで微分して、dQ/dVを算出する。dQ/dVは、二次電池10の電圧Vの変化量に対する二次電池10の充電量の変化量の割合である。 The dQ / dV calculation means 32 calculates dQ / dV by differentiating the charge amount Q detected by the detection means 31 with the voltage V. dQ / dV is the ratio of the amount of change in the charge amount of the secondary battery 10 to the amount of change in the voltage V of the secondary battery 10.
 不足充電量算出手段33は、第1変曲点と第2変曲点とを検出する。そして、検出された第1変曲点におけるdQ/dV値と、検出された第2変曲点におけるdQ/dV値との差分に基づいて、第2変曲点における基準充電量に対する二次電池10の不足充電量を算出する。不足充電量は、充電中の二次電池10の第2変曲点における充電量と初期状態の二次電池10の第2変曲点における基準充電量との差分である。第1変曲点と第2変曲点を、図2を参照しながら説明する。 The insufficient charge amount calculation means 33 detects the first inflection point and the second inflection point. Then, based on the difference between the detected dQ / dV value at the first inflection point and the detected dQ / dV value at the second inflection point, the secondary battery with respect to the reference charge amount at the second inflection point. Calculate the insufficient charge amount of 10. The insufficient charge amount is the difference between the charge amount at the second inflection point of the secondary battery 10 being charged and the reference charge amount at the second inflection point of the secondary battery 10 in the initial state. The first inflection point and the second inflection point will be described with reference to FIG.
 図2は、本発明の一実施形態にかかる電池パックを用いて二次電池を充電したときの二次電池のQ-V曲線及びQ-dQ/dV曲線の一例である。図2において、横軸は二次電池10の充電量Qであり、縦軸は二次電池10の電圧V及びdQ/dVである。図2において、Q-V曲線は破線で、Q-dQ/dV曲線は実線で示されている。Q-V曲線及びQ-dQ/dV曲線は、二次電池10を満放電状態から定電流で充電したときデータである。 FIG. 2 is an example of the QV curve and the QdQ / dV curve of the secondary battery when the secondary battery is charged using the battery pack according to the embodiment of the present invention. In FIG. 2, the horizontal axis represents the charge amount Q of the secondary battery 10, and the vertical axis represents the voltage V and dQ / dV of the secondary battery 10. In FIG. 2, the QV curve is shown by a broken line and the QdQ / dV curve is shown by a solid line. The QV curve and the QdQ / dV curve are data when the secondary battery 10 is charged with a constant current from a fully discharged state.
 図2に示すように、Q-dQ/dV曲線は複数のピークを有する。複数のピークは、図中の極大点P1,P2,P3,P4で示されるピークトップ(Q-dQ/dV曲線が上昇から下降に転じる変曲点)と、極小点B1,B2,B3,B4で示されるピークボトム(Q-dQ/dV曲線が下降から上昇に転じる変曲点)を含む。Q-dQ/dV曲線は、二次電池の電圧Vが3.65V以上3.75V未満の範囲内において極大ピークを示し、3.80V以上3.90V未満の範囲内に極小ピークを示している。極大点P1~P4および極小点B1~B4は、二次電池10の充電反応に寄与する正極活物質もしくは負極活物質のステージが切り替わることを示す。したがって、ピークの形状および位置は、二次電池10の正極活物質および負極活物質の材料によって異なる。 As shown in FIG. 2, the Q-dQ / dV curve has a plurality of peaks. The plurality of peaks are the peak top (the inflection point where the Q-dQ / dV curve changes from rising to falling) indicated by the maximum points P1, P2, P3, and P4 in the figure, and the minimum points B1, B2, B3, and B4. Includes the peak bottom indicated by (the inflection point at which the Q-dQ / dV curve changes from falling to rising). The Q-dQ / dV curve shows a maximum peak in the range where the voltage V of the secondary battery is 3.65 V or more and less than 3.75 V, and shows a minimum peak in the range of 3.80 V or more and less than 3.90 V. .. The maximum points P1 to P4 and the minimum points B1 to B4 indicate that the stages of the positive electrode active material or the negative electrode active material that contribute to the charging reaction of the secondary battery 10 are switched. Therefore, the shape and position of the peak differ depending on the material of the positive electrode active material and the negative electrode active material of the secondary battery 10.
 第1変曲点は、二次電池10の電圧が3.65V以上にあって、Q-dQ/dV曲線が上昇から下降に転じる最初の変曲点もしくはこれと数学的に等価な点である。Q-dQ/dV曲線が上昇から下降に転じる点とは、連続的に上昇していたQ-dQ/dV曲線が連続的に下降するように変化する点である。なお、連続的とは充電レートによって異なるが、例えば1分間以上である。 The first inflection point is the first inflection point at which the voltage of the secondary battery 10 is 3.65 V or higher and the QdQ / dV curve changes from rising to falling, or a point mathematically equivalent to this. .. The point at which the Q-dQ / dV curve changes from rising to falling is the point at which the continuously rising Q-dQ / dV curve changes so as to continuously fall. It should be noted that continuous is, for example, 1 minute or more, although it depends on the charging rate.
 図2に示すQ-dQ/dV曲線において、第1変曲点は極大点P2である。第1変曲点と数学的に等価な点とは、例えば、Q-V曲線において、電気量の変化量dQに対する二次電池の電圧Vの変化量dVが増加から減少に転じる点である。また、Q-dQ/dV曲線の代わりにV-dQ/dV曲線を用いて、V-dQ/dV曲線が上昇から下降に転じる点である。 In the QdQ / dV curve shown in FIG. 2, the first inflection point is the maximum point P2. The point mathematically equivalent to the first inflection point is, for example, a point in the QV curve where the amount of change dV of the voltage V of the secondary battery with respect to the amount of change dQ of the amount of electricity changes from an increase to a decrease. Further, a V-dQ / dV curve is used instead of the Q-dQ / dV curve, and the V-dQ / dV curve changes from rising to falling.
 第2変曲点は、二次電池10の電圧が3.75V以上にあって、Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点もしくはこれと数学的に等価な点である。Q/dVが下降から上昇に転じる点とは、連続的に下降していたdQ/dVが連続的に上昇するように変化する点である。なお、連続的とは、充電レートによって異なるが、例えば、1分間以上である。 The second inflection point is the first inflection point at which the voltage of the secondary battery 10 is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this. .. The point at which Q / dV changes from falling to rising is a point at which dQ / dV, which has been continuously falling, changes so as to continuously rise. It should be noted that continuous is, for example, 1 minute or more, although it depends on the charging rate.
 図2に示すQ-dQ/dV曲線において、第2変曲点は極小点B2である。第2変曲点と数学的に等価な点とは、例えば、Q-V曲線において、電気量の変化量dQに対する二次電池の電圧Vの変化量dVが減少から増加に転じる点である。また、Q-dQ/dV曲線の代わりにV-dQ/dV曲線を用いて、V-dQ/dV曲線が下降から上昇に転じる点である。 In the QdQ / dV curve shown in FIG. 2, the second inflection point is the minimum point B2. The point mathematically equivalent to the second inflection point is, for example, that in the QV curve, the amount of change dV of the voltage V of the secondary battery with respect to the amount of change dQ of the amount of electricity changes from decreasing to increasing. Further, a V-dQ / dV curve is used instead of the Q-dQ / dV curve, and the V-dQ / dV curve changes from falling to rising.
 次に、二次電池10の不足充電量の算出方法について説明する。二次電池10は、充放電サイクルを繰り返すことによって劣化して、Q-dQ/dV曲線のピークの位置や高さが変化する。この変化によって、充電中の二次電池10の第2変曲点に到達したときの充電量と、初期の二次電池10が第2変曲点に到達したときの充電量とが大きく異なることがある。このため、充電中の二次電池10の第2変曲点における充電量と初期の二次電池10の第2変曲点における基準充電量との差分を不足充電量として算出する。基準充電量は、例えば、二次電池10と同一構成の基準二次電池を用いて測定された値としてもよい。基準二次電池は、電池を構成する各材料が二次電池10と同一で、電池を充電したときのQ-V曲線及びQ-dQ/dV曲線が二次電池10と同一となる電池である。 Next, a method of calculating the insufficient charge amount of the secondary battery 10 will be described. The secondary battery 10 deteriorates by repeating the charge / discharge cycle, and the position and height of the peak of the QdQ / dV curve change. Due to this change, the charge amount when the charging secondary battery 10 reaches the second inflection point and the charge amount when the initial secondary battery 10 reaches the second inflection point are significantly different. There is. Therefore, the difference between the charge amount at the second inflection point of the secondary battery 10 being charged and the reference charge amount at the second inflection point of the initial secondary battery 10 is calculated as the insufficient charge amount. The reference charge amount may be, for example, a value measured using a reference secondary battery having the same configuration as the secondary battery 10. The reference secondary battery is a battery in which each material constituting the battery is the same as that of the secondary battery 10, and the QV curve and the QdQ / dV curve when the battery is charged are the same as those of the secondary battery 10. ..
 不足充電量は、二次電池10の第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分に基づいて算出する。不足充電量は、例えば、下記の式(I)で表される不足充電量算出式により算出することができる。
 不足充電量=A+B×C (I)
 式(I)中、A及びBは、二次電池と同一構成の基準二次電池を用いて測定された第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分と、基準二次電池の初期の第2変曲点における充電量と測定された第2変曲点における充電量との差分を用いた最小二乗法によって求められた定数を表し、Cは、二次電池の第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分を表す。上記の式(I)の不足充電量算出式を、図3~図5を参照しながら説明する。
The insufficient charge amount is calculated based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery 10. The insufficient charge amount can be calculated by, for example, the insufficient charge amount calculation formula represented by the following formula (I).
Insufficient charge = A + B × C (I)
In formula (I), A and B are the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point measured using a reference secondary battery having the same configuration as the secondary battery. Represents a constant obtained by the minimum square method using the difference between the difference between , Represents the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery. The formula for calculating the insufficient charge amount of the above formula (I) will be described with reference to FIGS. 3 to 5.
 図3は、劣化試験によるQ-dQ/dV曲線の第1変曲点及び第2変曲点の変化を示すグラフである。図3において、極大点P2はSOH=100%(初期)の二次電池10における第1変曲点であり、極大点P2はSOH=93%の二次電池10における第1変曲点であり、極大点P2はSOH=87%の二次電池10における第1変曲点である。また、極小点B2はSOH=100%(初期)の二次電池10における第2変曲点であり、極小点B2はSOH=93%の二次電池10における第2変曲点であり、極小点B2はSOH=87%の二次電池10における第2変曲点である。
 図3に示すように、二次電池10のSOHが低くなる(すなわち劣化が進む)に伴って、第1変曲点(極大点P2)のdQ/dV値は低くなり、第1変曲点の位置は低充電量側にシフトする。また、これに伴って、第2変曲点(極小点B2)の位置は低充電量側にシフトし、初期の二次電池10の第2変曲点(極小点B2)から遠くなる。また、第2変曲点の後のQ-dQ/dV曲線の傾きが小さくなる。このため、二次電池10は充放電サイクルを繰り返すことにより、第2変曲点での充電量を正確に検出するのが難しくなることがある。
FIG. 3 is a graph showing changes in the first inflection point and the second inflection point of the QdQ / dV curve by the deterioration test. In FIG. 3, the maximum point P2 i is the first inflection point in the secondary battery 10 with SOH = 100% (initial), and the maximum point P2 m is the first inflection point in the secondary battery 10 with SOH = 93%. The maximum point P2 f is the first inflection point in the secondary battery 10 with SOH = 87%. The minimum point B2 i is the second inflection point in the secondary battery 10 with SOH = 100% (initial), and the minimum point B2 m is the second inflection point in the secondary battery 10 with SOH = 93%. , The minimum point B2 f is the second inflection point in the secondary battery 10 with SOH = 87%.
As shown in FIG. 3, as the SOH of the secondary battery 10 decreases (that is, deterioration progresses), the dQ / dV value of the first inflection point (maximum point P2) decreases, and the first inflection point Position shifts to the low charge side. Along with this, the position of the second inflection point (minimum point B2) shifts to the low charge amount side and becomes far from the second inflection point (minimum point B2 i) of the initial secondary battery 10. Also, the slope of the QdQ / dV curve after the second inflection point becomes smaller. Therefore, it may be difficult for the secondary battery 10 to accurately detect the charge amount at the second inflection point by repeating the charge / discharge cycle.
 図4は、二次電池の第1変曲点におけるdQ/dVと第2変曲点におけるdQ/dVとの差分と、不足充電量との関係を示すグラフである。図4において、横軸は、二次電池10の第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分[(P2-B2)dQ/dV]であり、縦軸は、不足充電量、すなわち二次電池10の初期の第2変曲点(B2)における充電量Qと測定時の第2変曲点(B2)における充電量Qとの差分[(B2-B2)Q]である。図4に示すグラフから(P2-B2)dQ/dVと(B2-B2)Qとは直線的な相関関係を有することがわかる。よって、(P2-B2)dQ/dVと、(B2-B2)Qとの関係から最小二乗法を用いて、(P2-B2)dQ/dVを変数とした一次関数式を算出し、この一次関数式に測定された(P2-B2)dQ/dVを代入することによって、測定時の不足充電量、すなわち(B2-B2)Qを精度よく算出することができる。上記の式(I)の不足充電量算出式は、基準二次電池の(P2-B2)dQ/dVと、(B2-B2)Qとを用いて、最小二乗法によって算出された一次関数式である。 FIG. 4 is a graph showing the relationship between the difference between dQ / dV at the first inflection point and dQ / dV at the second inflection point of the secondary battery and the insufficient charge amount. In FIG. 4, the horizontal axis is the difference [(P2-B2) dQ / dV] between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery 10. The vertical axis is the insufficient charge amount, that is, the difference between the charge amount Q at the initial second inflection point (B2 i ) of the secondary battery 10 and the charge amount Q at the second inflection point (B2) at the time of measurement [( B2 i- B2) Q]. From the graph shown in FIG. 4, it can be seen that (P2-B2) dQ / dV and (B2 i- B2) Q have a linear correlation. Therefore, from the relationship between (P2-B2) dQ / dV and (B2 i- B2) Q, a linear function formula with (P2-B2) dQ / dV as a variable is calculated using the least squares method. By substituting the measured (P2-B2) dQ / dV into a linear function formula, the insufficient charge amount at the time of measurement, that is, (B2 i- B2) Q can be calculated accurately. The formula for calculating the insufficient charge amount in the above formula (I) is a linear function calculated by the least squares method using (P2-B2) dQ / dV and (B2 i-B2) Q of the reference secondary battery. It is an expression.
 図5は、二次電池の不足充電量を不足充電量算出式に基づいて算出する方法を説明する概念図である。図5に示す曲線は、充電中の二次電池10のQ-dQ/dV曲線である。二次電池10の不足充電量は、次のようにして算出される。まず、第1変曲点(極大点P2)と第2変曲点(極小点B2)とを検出し、第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分[(P2-B2)dQ/dV](図5においてX)を算出する。次いで、得られた(P2-B2)dQ/dVを、上記式(I)の不足充電量算出式のCに代入して、不足充電量を算出する。得られた不足充電量(図5において、Y)は、第2変曲点B2における充電量と基準二次電池の初期の第2変曲点B2における充電量との差[(B2-B2)Q]に相当する。 FIG. 5 is a conceptual diagram illustrating a method of calculating the insufficient charge amount of the secondary battery based on the insufficient charge amount calculation formula. The curve shown in FIG. 5 is a QdQ / dV curve of the secondary battery 10 being charged. The insufficient charge amount of the secondary battery 10 is calculated as follows. First, the first inflection point (maximum point P2) and the second inflection point (minimum point B2) are detected, and the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point The difference [(P2-B2) dQ / dV] (X in FIG. 5) is calculated. Next, the obtained (P2-B2) dQ / dV is substituted into C of the undercharge amount calculation formula of the above formula (I) to calculate the undercharge amount. The obtained insufficient charge amount (Y in FIG. 5) is the difference between the charge amount at the second inflection point B2 and the charge amount at the initial second inflection point B2 i of the reference secondary battery [(B2 i-). B2) Corresponds to Q].
 補正手段34は、不足充電量算出手段33によって算出された不足充電量が、充電手段20によって、二次電池10に対して供給されたときに、二次電池10のSOC(充電率)が予め定められた基準SOCに到達したとして補正する。不足充電量に相当する電気量が供給されたときの二次電池10の充電量は、基準二次電池の初期の第2変曲点(極小点B2)における充電量に相当する。よって、基準SOCは、基準二次電池の初期のQ-dQ/dV曲線の第2変曲点(極小点B2)における充電率(SOC)である。この基準SOCは、満放電状態の基準二次電池を、定電流定電圧充電により満充電状態としたときの充電量を分母とし、その定電流定電圧充電により得られたQ-dQ/dV曲線の第2変曲点における充電量を分子として算出した値である。 In the correction means 34, when the undercharge amount calculated by the undercharge amount calculation means 33 is supplied to the secondary battery 10 by the charging means 20, the SOC (charge rate) of the secondary battery 10 is set in advance. Correct as if the specified standard SOC has been reached. The charge amount of the secondary battery 10 when the amount of electricity corresponding to the insufficient charge amount is supplied corresponds to the charge amount at the initial second inflection point (minimum point B2 i ) of the reference secondary battery. Therefore, the reference SOC is the charge rate (SOC) at the second inflection point (minimum point B2 i ) of the initial Q-dQ / dV curve of the reference secondary battery. This reference SOC uses the charge amount when the reference secondary battery in the fully discharged state is fully charged by constant current constant voltage charging as the denominator, and the QdQ / dV curve obtained by the constant current constant voltage charging. It is a value calculated as a molecule of the charge amount at the second inflection point of.
 記憶手段35は、基準二次電池を用いて算出された上記(1)式の不足充電量算出式と、基準SOCとが記憶されている。記憶手段35は、さらに基準充電量が記憶されていてもよい。 The storage means 35 stores the insufficient charge amount calculation formula of the above formula (1) calculated using the reference secondary battery and the reference SOC. The storage means 35 may further store the reference charge amount.
 次に、第1実施形態に係る電池パック100を用いた二次電池10の制御方法を、図6を参照しながら説明する。図6に示す二次電池10の制御方法は、下記のS1~S8の工程を含む。 Next, a method of controlling the secondary battery 10 using the battery pack 100 according to the first embodiment will be described with reference to FIG. The control method of the secondary battery 10 shown in FIG. 6 includes the following steps S1 to S8.
 工程S1では、二次電池10の電圧値Vを計測する。二次電池10の電圧Vが3.65Vよりも高い(No)場合は、二次電池10を放電する。放電は、二次電池10の電圧値Vが、満放電状態となるまで行ってもよい。満放電状態とは、例えば、二次電池10の電圧Vが3.0V以下となる状態である。二次電池10の電圧Vが、3.65Vよりも低い(Yes)場合は、二次電池10を充電する(工程S2)。 In step S1, the voltage value V of the secondary battery 10 is measured. When the voltage V of the secondary battery 10 is higher than 3.65 V (No), the secondary battery 10 is discharged. The discharge may be performed until the voltage value V of the secondary battery 10 is in a fully discharged state. The fully discharged state is, for example, a state in which the voltage V of the secondary battery 10 is 3.0 V or less. When the voltage V of the secondary battery 10 is lower than 3.65 V (Yes), the secondary battery 10 is charged (step S2).
 工程S2では、二次電池10の充電を定電流充電で行なうことが好ましい。充電レートは、二次電池10を満放電状態から1時間で満充電状態となるように充電するときの充電レートを1Cとして、0.1C以上2C以下の範囲内にあることが好ましい。 In step S2, it is preferable to charge the secondary battery 10 by constant current charging. The charging rate is preferably in the range of 0.1C or more and 2C or less, where 1C is the charging rate when the secondary battery 10 is charged from the fully discharged state to the fully charged state in 1 hour.
 工程S2では、二次電池10を充電しながら、二次電池10の電圧Vと充電量Q(二次電池10に供給した電気量)とを計測し、dQ/dVを算出する。これに合わせてQ-dQ/dV曲線を作成する。そして、工程S2では、下記の工程S3と工程S4を行なう。 In step S2, while charging the secondary battery 10, the voltage V of the secondary battery 10 and the charge amount Q (the amount of electricity supplied to the secondary battery 10) are measured, and dQ / dV is calculated. A Q-dQ / dV curve is created accordingly. Then, in step S2, the following steps S3 and S4 are performed.
 工程S3では、二次電池10の電圧Vが3.65V以上にあって、Q-dQ/dV曲線が上昇から下降に転じる最初の変曲点を検出する。そして、この変曲点を第1変曲点(極大点P2)と認定する。 In step S3, the voltage V of the secondary battery 10 is 3.65 V or more, and the first inflection point at which the Q-dQ / dV curve changes from rising to falling is detected. Then, this inflection point is recognized as the first inflection point (maximum point P2).
 工程S4では、二次電池の電圧が3.75V以上にあって、Q-dQ/dV曲線が上昇から下降に転じる変曲点を検出する。そして、この変曲点を第2変曲点(極小点B2)と認定する。 In step S4, an inflection point at which the voltage of the secondary battery is 3.75 V or higher and the Q-dQ / dV curve changes from rising to falling is detected. Then, this inflection point is recognized as the second inflection point (minimum point B2).
 工程S5では、第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差(P2-B2)dQ/dVを算出する。 In step S5, the difference (P2-B2) dQ / dV between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point is calculated.
 工程S6では、工程S5で算出した(P2-B2)dQ/dVを、上記式(I)の不足充電量算出式(A+B×C)のCに代入して、不足充電量を算出する。 In step S6, the (P2-B2) dQ / dV calculated in step S5 is substituted into C in the undercharge amount calculation formula (A + B × C) of the above formula (I) to calculate the undercharge amount.
 工程S7では、工程S6で算出した不足充電量に相当する電気量を二次電池10に供給する。 In step S7, the amount of electricity corresponding to the insufficient charge amount calculated in step S6 is supplied to the secondary battery 10.
 工程S8では、不足充電量に相当する電気量が二次電池10に対して供給されたときに、二次電池10の充電率(SOC)が基準SOCに到達したと補正する。 In step S8, when the amount of electricity corresponding to the insufficient charge amount is supplied to the secondary battery 10, it is corrected that the charge rate (SOC) of the secondary battery 10 has reached the reference SOC.
 図7は、第1実施形態に係る電池パック100において用いることができる二次電池10の断面図である。二次電池10は、例えば、発電素子4と外装体5と電解液(図示略)とを備える。外装体5は、発電素子4の周囲を被覆する。外装体5は、例えば、金属箔5Aを高分子膜(樹脂層5B)で両側からコーティングした金属ラミネートフィルムである。発電素子4は、接続された一対の端子6によって外部と接続される。電解液は、外装体5内に収容され、発電素子4内に含浸している。 FIG. 7 is a cross-sectional view of the secondary battery 10 that can be used in the battery pack 100 according to the first embodiment. The secondary battery 10 includes, for example, a power generation element 4, an exterior body 5, and an electrolytic solution (not shown). The exterior body 5 covers the periphery of the power generation element 4. The exterior body 5 is, for example, a metal laminate film in which a metal foil 5A is coated from both sides with a polymer film (resin layer 5B). The power generation element 4 is connected to the outside by a pair of connected terminals 6. The electrolytic solution is housed in the exterior body 5 and impregnated in the power generation element 4.
 発電素子4は、正極2と負極3とセパレータ1とを備える。セパレータ1は、正極2と負極3とに挟まれる。セパレータ1は、例えば、電気絶縁性の多孔質構造を有するフィルムである。セパレータ1は、公知のものを用いることができる。 The power generation element 4 includes a positive electrode 2, a negative electrode 3, and a separator 1. The separator 1 is sandwiched between the positive electrode 2 and the negative electrode 3. The separator 1 is, for example, a film having an electrically insulating porous structure. A known separator 1 can be used.
 正極2は、正極集電体2Aと正極活物質層2Bとを有する。正極活物質層2Bは、正極集電体2Aの少なくとも一面に形成されている。正極活物質層2Bは、正極集電体2Aの両面に形成されていてもよい。正極集電体2Aは、例えば、導電性の板材である。正極活物質層2Bは、例えば、正極活物質と導電助材とバインダーとを有する。 The positive electrode 2 has a positive electrode current collector 2A and a positive electrode active material layer 2B. The positive electrode active material layer 2B is formed on at least one surface of the positive electrode current collector 2A. The positive electrode active material layer 2B may be formed on both surfaces of the positive electrode current collector 2A. The positive electrode current collector 2A is, for example, a conductive plate material. The positive electrode active material layer 2B has, for example, a positive electrode active material, a conductive auxiliary material, and a binder.
 正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとカウンターアニオンのドープ及び脱ドープを可逆的に進行させる。正極活物質は、一般式がLiMO(但し、Mは、Co、Ni、Al、Mn、Feのうちの少なくとも1つを含む遷移金属元素)で表される酸化物を含むことが好ましい。また、正極活物質はリン酸塩を含んでいてもよい。正極活物質の具体例としては、例えば、コバルト酸リチウム(LCO)、リチウムニッケルコバルトマンガン複合酸化物(NCM)、リチウムニッケルコバルトアルミニウム複合酸化物(NCA)、リチウムマンガン酸化物(LMO)、リン酸鉄リチウム(LFP)を挙げることができる。正極活物質層2Bは、これらの正極活物質を複数含んでもよい。正極活物質は、これらに限られず公知のものを用いることができる。導電助材及びバインダーは公知のものを用いることができる。 The positive electrode active material reversibly proceeds with the occlusion and release of lithium ions, the desorption and insertion (intercalation) of lithium ions, or the doping and dedoping of lithium ions and counter anions. The positive electrode active material preferably contains an oxide represented by the general formula LiMO 2 (where M is a transition metal element containing at least one of Co, Ni, Al, Mn, and Fe). Further, the positive electrode active material may contain a phosphate. Specific examples of the positive electrode active material include lithium cobalt oxide (LCO), lithium nickel cobalt manganese composite oxide (NCM), lithium nickel cobalt aluminum composite oxide (NCA), lithium manganese oxide (LMO), and phosphoric acid. Lithium iron phosphate (LFP) can be mentioned. The positive electrode active material layer 2B may contain a plurality of these positive electrode active materials. The positive electrode active material is not limited to these, and known materials can be used. Known conductive auxiliary materials and binders can be used.
 負極3は、負極集電体3Aと負極活物質層3Bとを有する。負極活物質層3Bは、負極集電体3Aの少なくとも一面に形成されている。負極活物質層3Bは、負極集電体3Aの両面に形成されていてもよい。負極集電体3Aは、例えば、導電性の板材である。負極活物質層3Bは、例えば、正極活物質と導電助材とバインダーとを有する。 The negative electrode 3 has a negative electrode current collector 3A and a negative electrode active material layer 3B. The negative electrode active material layer 3B is formed on at least one surface of the negative electrode current collector 3A. The negative electrode active material layer 3B may be formed on both surfaces of the negative electrode current collector 3A. The negative electrode current collector 3A is, for example, a conductive plate material. The negative electrode active material layer 3B has, for example, a positive electrode active material, a conductive auxiliary material, and a binder.
 負極活物質は、イオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン二次電池に用いられる負極活物質を使用できる。負極活物質は、例えば、黒鉛(グラファイト)である。負極活物質は、金属リチウム、シリコン化合物等でもよい。 The negative electrode active material may be any compound that can occlude and release ions, and a known negative electrode active material used in a lithium ion secondary battery can be used. The negative electrode active material is, for example, graphite. The negative electrode active material may be metallic lithium, a silicon compound or the like.
 電解液は、外装体5内に封入され、発電素子4に含浸している。電解液は、公地のものを用いることができる。 The electrolytic solution is sealed in the exterior body 5 and impregnated in the power generation element 4. As the electrolytic solution, one in a public land can be used.
 二次電池10は、満放電状態から充電した際のQ-dQ/dV曲線において、二次電池10の電圧が3.65V以上3.75V未満の範囲内に極大ピークを示すように構成されていることが好ましい。また、二次電池10は、二次電池10の電圧が3.80V以上3.90V未満の範囲内に極小ピークを示すように構成されていることが好ましい。 The secondary battery 10 is configured so that the voltage of the secondary battery 10 shows a maximum peak within a range of 3.65 V or more and less than 3.75 V in the QdQ / dV curve when charged from a fully discharged state. It is preferable to have. Further, the secondary battery 10 is preferably configured so that the voltage of the secondary battery 10 shows a minimum peak within a range of 3.80 V or more and less than 3.90 V.
 第1実施形態に係る電池パック100によれば、充電手段20により二次電池10を充電しながら、制御システム30において、第1変曲点(極大点P2)と第2変曲点(極小点B2)とを検出し、第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分に基づいて、第2変曲点における基準充電量に対する不足充電量を算出し、この不足充電量が二次電池に対して供給されたときに、二次電池10のSOCを基準SOCに補正する。第1変曲点におけるdQ/dV値と第2変曲点におけるdQ/dV値との差分と、不足充電量とは高い相関性を有する。このため、制御システム30によれば、充放電サイクルによって二次電池10の第1変曲点および第2変曲点の位置やdQ/dV値が大きく変動しても、充電中の二次電池10のSOCを高精度で補正することができる。 According to the battery pack 100 according to the first embodiment, the first inflection point (maximum point P2) and the second inflection point (minimum point) in the control system 30 while charging the secondary battery 10 by the charging means 20. B2) is detected, and the insufficient charge amount with respect to the reference charge amount at the second inflection point is calculated based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point. Then, when this insufficient charge amount is supplied to the secondary battery, the SOC of the secondary battery 10 is corrected to the reference SOC. The difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point has a high correlation with the insufficient charge amount. Therefore, according to the control system 30, even if the positions of the first inflection point and the second inflection point and the dQ / dV value of the secondary battery 10 greatly fluctuate due to the charge / discharge cycle, the secondary battery is being charged. 10 SOCs can be corrected with high accuracy.
 また、第1実施形態に係る電池パック100において、第2変曲点における基準充電量が、二次電池10と同一構成の基準二次電池を用いて測定された値である場合は、充電中の二次電池10のSOCをより高精度で補正することができる。また、第1実施形態に係る電池パック100において、基準SOCが、二次電池10と同一構成の基準二次電池を用いて測定された値である場合は、充電中の二次電池10のSOCをより高精度で補正することができる。 Further, in the battery pack 100 according to the first embodiment, when the reference charge amount at the second inflection point is a value measured using the reference secondary battery having the same configuration as the secondary battery 10, the battery is being charged. The SOC of the secondary battery 10 can be corrected with higher accuracy. Further, in the battery pack 100 according to the first embodiment, when the reference SOC is a value measured using a reference secondary battery having the same configuration as the secondary battery 10, the SOC of the secondary battery 10 being charged Can be corrected with higher accuracy.
 さらに、二次電池10の不足充電量を、上記式(I)の不足充電量により算出する場合は、不足充電量をより正確に測定することができる。このため、充電中の二次電池10のSOCをより高精度で補正することができる。 Further, when the insufficient charge amount of the secondary battery 10 is calculated from the insufficient charge amount of the above formula (I), the insufficient charge amount can be measured more accurately. Therefore, the SOC of the secondary battery 10 being charged can be corrected with higher accuracy.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
 例えば、本実施形態では、基準充電量、基準SOC、上記式(1)の不足充電量算出式を、基準二次電池を用いて求めているが、これに限定されない。電池パック100に組み込まれた二次電池10の初期の状態で基準充電量、基準SOC、不足充電量算出式を求めて、得られた値を記憶手段35に記憶させてもよい。なお、二次電池10の初期の状態とは、充放電サイクルの回数が10回以下の状態である。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations thereof in the respective embodiments are examples, and the configurations are added or omitted within the range not deviating from the gist of the present invention. , Replacements, and other changes are possible.
For example, in the present embodiment, the reference charge amount, the reference SOC, and the insufficient charge amount calculation formula of the above formula (1) are obtained by using the reference secondary battery, but the present invention is not limited to this. The reference charge amount, the reference SOC, and the insufficient charge amount calculation formula may be obtained in the initial state of the secondary battery 10 incorporated in the battery pack 100, and the obtained values may be stored in the storage means 35. The initial state of the secondary battery 10 is a state in which the number of charge / discharge cycles is 10 or less.
[実施例1]
(1)リチウムイオン二次電池の作製
 二次電池としてリチウムイオン二次電池を作製した。まず、正極を準備した。正極活物質としてNCM(組成式:Li1.0Ni1/3Co1/3Mn1/3)、導電助材としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)を準備した。これらを溶媒中で混合し、塗料を作製し、アルミ箔からなる正極集電体上に塗布した。正極活物質と導電助材とバインダーの質量比は、95:2:3とした。塗布後に、溶媒は除去した。正極活物質層の目付量が10.0mg/cmの正極シートを作製した。
[Example 1]
(1) Preparation of Lithium Ion Secondary Battery A lithium ion secondary battery was manufactured as a secondary battery. First, a positive electrode was prepared. NCM (composition formula: Li 1.0 Ni 1/3 Co 1/3 Mn 1/3 O 2 ) was prepared as the positive electrode active material, carbon black was prepared as the conductive auxiliary material, and polyvinylidene fluoride (PVDF) was prepared as the binder. These were mixed in a solvent to prepare a paint, which was applied onto a positive electrode current collector made of aluminum foil. The mass ratio of the positive electrode active material, the conductive auxiliary material, and the binder was 95: 2: 3. After coating, the solvent was removed. A positive electrode sheet having a basis weight of the positive electrode active material layer of 10.0 mg / cm 3 was prepared.
 次いで負極を準備した。負極活物質としてグラファイト、バインダーとしてスチレン・ブタジエンゴム(SBR)、増粘剤としてカルボキシメチルセルロース(CMC)を準備した。これらを蒸留水に分散させ、塗料を作製し、銅箔からなる負極集電体上に塗布した。負極活物質とバインダーおよび増粘剤は質量比で95:3:2とした。塗布後に乾燥させ、負極活物質層の目付量が6.0mg/cmの負極シートを作製した。 Then the negative electrode was prepared. Graphite was prepared as the negative electrode active material, styrene-butadiene rubber (SBR) was prepared as the binder, and carboxymethyl cellulose (CMC) was prepared as the thickener. These were dispersed in distilled water to prepare a paint, which was applied onto a negative electrode current collector made of copper foil. The mass ratio of the negative electrode active material, the binder and the thickener was 95: 3: 2. After coating, it was dried to prepare a negative electrode sheet having a basis weight of 6.0 mg / cm 3 of the negative electrode active material layer.
 上記で作製した正極および負極と、セパレータを介して積層した。セパレータには、ポリエチレンとポリプロピレンの積層体を用いた。得られた発電部を調製した電解液に含浸させてから外装体内に封入した後、真空シールし、評価用のリチウム二次電池を作製した。電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)が等量混合された溶媒に、六フッ化リン酸リチウム(LiPF)1.5mol/Lを溶解させたものとした。 The positive electrode and the negative electrode prepared above were laminated via a separator. A laminate of polyethylene and polypropylene was used as the separator. The obtained power generation unit was impregnated with the prepared electrolytic solution, sealed in the exterior body, and then vacuum-sealed to prepare a lithium secondary battery for evaluation. The electrolytic solution was prepared by dissolving 1.5 mol / L of lithium hexafluorophosphate (LiPF 6 ) in a solvent in which equal amounts of ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed.
(2)基準SOC及び不足充電量算出式の設定
(基準SOCの設定)
 上記(1)で作製した二次電池(基準二次電池)を、25℃の温度環境下にて、0.2Cの定電流値で終止電圧4.2Vまで充電した後、0.2Cで3.0Vまで放電した。その後、基準二次電池を、定電流定電圧充電にて終止電圧4.2Vまで充電して、満充電状態とした。このときの電流供給量を二次電池の満充電量とし、この満充電状態の二次電池のSOCを100%として、この後の評価の基準とした。この充電で得られたQ-V曲線及びQ-dQ/dV曲線は図2に示したものと同じであった。Q-dQ/dV曲線から第2変曲点(極小点B2)における充電量(基準充電量)を読み取って、満充電量に対する第2変曲点における基準充電量の割合を算出した結果、50%であった。よって、本実施例では、基準SOCを50%と設定した。
(2) Setting of standard SOC and insufficient charge amount calculation formula (setting of standard SOC)
The secondary battery (reference secondary battery) produced in (1) above is charged to a final voltage of 4.2 V with a constant current value of 0.2 C in a temperature environment of 25 ° C., and then 3 at 0.2 C. It was discharged to 0.0V. After that, the reference secondary battery was charged to a final voltage of 4.2 V by constant current and constant voltage charging to bring it into a fully charged state. The current supply amount at this time was set as the fully charged amount of the secondary battery, and the SOC of the secondary battery in the fully charged state was set as 100%, which was used as the reference for the subsequent evaluation. The QV curve and the QdQ / dV curve obtained by this charging were the same as those shown in FIG. As a result of reading the charge amount (reference charge amount) at the second inflection point (minimum point B2) from the Q-dQ / dV curve and calculating the ratio of the reference charge amount at the second inflection point to the full charge amount, 50 %Met. Therefore, in this embodiment, the reference SOC is set to 50%.
(不足充電量算出式の設定)
 基準SOCの設定に使用した基準二次電池に対して、25℃の温度環境下にて、0.5Cの定電流値で終止電圧4.2Vまで充電し、0.5Cの定電流値で終止電圧3.0Vまで放電する充放電サイクルを1サイクルとして、3000サイクル行った。なお、50サイクル毎に、基準二次電池を、定電流定電圧充電にて終止電圧4.2Vまで充電して、満充電状態とした。この充電時のQ-dQ/dV曲線より、第1変曲点におけるdQ/dV値と、第2変曲点におけるdQ/dV値と電気量Qとを読み取った。そして、最小二乗法により、不足充電量算出式(1次関数の近似式)を求めた。その結果、得られた不足充電量算出式は、A+B×C(但し、Aは100であり、Bは0.005である)であった。
(Setting of insufficient charge calculation formula)
The reference secondary battery used to set the reference SOC is charged to a final voltage of 4.2 V with a constant current value of 0.5 C under a temperature environment of 25 ° C, and terminates at a constant current value of 0.5 C. The charge / discharge cycle of discharging to a voltage of 3.0 V was set as one cycle, and 3000 cycles were performed. Every 50 cycles, the reference secondary battery was charged to a final voltage of 4.2 V by constant current and constant voltage charging to bring it into a fully charged state. From the Q-dQ / dV curve at the time of charging, the dQ / dV value at the first inflection point, the dQ / dV value at the second inflection point, and the electric energy Q were read. Then, the insufficient charge amount calculation formula (approximate formula of the linear function) was obtained by the least squares method. As a result, the obtained insufficient charge amount calculation formula was A + B × C (however, A is 100 and B is 0.005).
(3)電池パックの作製
 上記(1)で作製したリチウムイオン二次電池と、定電流充放電装置と、制御システムとをそれぞれ接続して電池パックを作製した。制御システムは、クーロンカウンターおよび電圧計測器を有する検出手段と、dQ/dV算出手段と、不足充電量算出手段と、補正手段と、記憶手段と、SOC表示手段とを有する。記憶手段には、上記(2)で得られた基準SOCと不足充電量算出式を記憶させた。
(3) Preparation of Battery Pack A battery pack was produced by connecting the lithium ion secondary battery produced in (1) above, a constant current charging / discharging device, and a control system, respectively. The control system includes a detection means having a coulomb counter and a voltage measuring instrument, a dQ / dV calculation means, a shortage charge amount calculation means, a correction means, a storage means, and an SOC display means. The reference SOC and the insufficient charge amount calculation formula obtained in (2) above were stored in the storage means.
(4)電池パックの評価
 初期と、充放電サイクル処理後の電池パックについて、制御SOCと実測SOCの差を下記の方法により測定した。その結果を、下記の表1に示す。
(a)初期の電池パックの制御SOCと実測SOCの差
 リチウムイオン二次電池を25℃の温度環境下、0.2Cの定電流値で電圧が4.2Vとなるまで充電した。その後、0.2Cの定電流値で終止電圧3.0Vまで放電した。放電終了後の制御SOCと実測SOCと差を算出した。その結果を、下記の表1の「初期」の欄に示す。なお、制御SOCは、放電終了電圧に到達した時点での内部SOC制御値である。充電中のSOCが正確に補正されていれば0となる。実測SOCは、放電終了電圧に到達した時点でのリチウムイオン二次電池のSOC、すなわち0である。
(4) Evaluation of battery pack The difference between the controlled SOC and the measured SOC was measured by the following method for the battery pack at the initial stage and after the charge / discharge cycle processing. The results are shown in Table 1 below.
(A) Difference between the control SOC of the initial battery pack and the measured SOC The lithium ion secondary battery was charged under a temperature environment of 25 ° C. at a constant current value of 0.2 C until the voltage became 4.2 V. Then, it was discharged to a final voltage of 3.0 V at a constant current value of 0.2 C. The difference between the controlled SOC after the end of discharge and the measured SOC was calculated. The results are shown in the "Initial" column of Table 1 below. The control SOC is an internal SOC control value when the discharge end voltage is reached. If the SOC during charging is correctly corrected, it will be 0. The measured SOC is the SOC of the lithium ion secondary battery when the discharge end voltage is reached, that is, 0.
(b)充放電サイクル処理後の電池パックの制御SOCと実測SOCの差
 上記(a)の放電終了後のリチウムイオン二次電池を、45℃の環境下、0.5Cの定電流値で終止電圧4.2Vまで充電した後、0.5Cの定電流値で終止電圧3.0Vまで放電する充放電サイクルを1サイクルとして、100サイクル行なった。次いで、リチウムイオン二次電池を、25℃の温度環境下、0.5Cの定電流値で終止電圧4.2Vまで充電した後、0.5Cの定電流値で終止電圧3.0Vまで放電する充放電サイクルを1サイクルとして、400サイクル行なった。以上の充放電サイクル処理を行った電池パックについて、放電時の制御SOCと実測SOCを測定して、その差を算出した。
 なお、充放電サイクル処理は3回行なって、各充放電サイクル処理後の電池パックの制御SOCと実測SOCの差を算出した。
(B) Difference between control SOC of battery pack after charge / discharge cycle processing and measured SOC The lithium ion secondary battery after the end of discharge in (a) above is terminated at a constant current value of 0.5 C in an environment of 45 ° C. After charging to a voltage of 4.2 V, a charge / discharge cycle of discharging to a final voltage of 3.0 V at a constant current value of 0.5 C was set as one cycle, and 100 cycles were performed. Next, the lithium ion secondary battery is charged to a final voltage of 4.2 V at a constant current value of 0.5 C under a temperature environment of 25 ° C., and then discharged to a final voltage of 3.0 V at a constant current value of 0.5 C. The charge / discharge cycle was set as one cycle, and 400 cycles were performed. For the battery pack subjected to the above charge / discharge cycle processing, the control SOC at the time of discharge and the measured SOC were measured, and the difference was calculated.
The charge / discharge cycle process was performed three times, and the difference between the control SOC of the battery pack and the measured SOC after each charge / discharge cycle process was calculated.
[比較例1]
 (3)電池パックの作製において、記憶手段に不足充電量計算式を記憶させなかったこと以外は、実施例1と同様にして電池パックを作製して、評価した。その結果を、下記の表1に示す。
[Comparative Example 1]
(3) In the production of the battery pack, the battery pack was produced and evaluated in the same manner as in Example 1 except that the storage means did not store the insufficient charge amount calculation formula. The results are shown in Table 1 below.
[比較例2]
 (3)の電池パックの作成において、記憶手段に初期電池パックのSOC-OCV(開回路電圧)特性を記憶させた。そして、充電の途中で通電をやめ、1時間休止をした後の端子電圧を開回路電圧とし、得られた開回路電圧と記憶されているSOC-OCV特性からSOCを推定して補正した(OCV法)。以上の点以外は、実施例1と同様にして電池パックを作製して、評価した。その結果を、下記の表1に示す。
[Comparative Example 2]
In the preparation of the battery pack of (3), the SOC-OCV (open circuit voltage) characteristics of the initial battery pack were stored in the storage means. Then, the energization was stopped in the middle of charging, the terminal voltage after a one-hour pause was used as the open circuit voltage, and the SOC was estimated and corrected from the obtained open circuit voltage and the stored SOC-OCV characteristics (OCV). Law). Except for the above points, a battery pack was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.
[比較例3]
 上記(2)基準SOC及び不足充電量算出式の設定において、Q-dQ/dV曲線における第1変曲点(極大点P2)における充電量を読み取り、基準SOCを、満充電量に対する第1変曲点における充電量の割合(30%)とした。そして、上記(3)電池パックの作製において、リチウムイオン二次電池電圧Vが3.65V以上にあって、Q-dQ/dV曲線が上昇から下降に転じる最初の変曲点(第1変曲点)に達したときに、リチウムイオン二次電池のSOCが基準SOC(30%)に到達したと補正するように設定したこと以外は、実施例1と同様にして電池パックを作製して、評価した。その結果を、下記の表1に示す。
[Comparative Example 3]
In the setting of the above (2) reference SOC and insufficient charge amount calculation formula, the charge amount at the first inflection point (maximum point P2) in the QdQ / dV curve is read, and the reference SOC is set to the first change with respect to the full charge amount. The ratio of the amount of charge at the inflection point (30%) was used. Then, in the production of the battery pack (3), the first turning point (first changing point) in which the lithium ion secondary battery voltage V is 3.65V or more and the QdQ / dV curve changes from rising to falling. A battery pack was prepared in the same manner as in Example 1 except that the SOC of the lithium ion secondary battery was set to be corrected to reach the reference SOC (30%) when the point) was reached. evaluated. The results are shown in Table 1 below.
[比較例4]
 上記(2)基準SOC及び不足充電量算出式の設定において、Q-dQ/dV曲線における第2変曲点(極小点B2)における充電量を読み取り、基準SOCを、満充電量に対する第2変曲点における充電量の割合(45%)とした。そして、上記(3)電池パックの作製において、リチウムイオン二次電池電圧Vが3.75V以上にあって、Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点(第2変曲点)達したときに、リチウムイオン二次電池のSOCが基準SOC(45%)に到達したと補正するように設定したこと以外は、実施例1と同様にして電池パックを作製して、評価した。その結果を、下記の表1に示す。
[Comparative Example 4]
In the setting of the above (2) reference SOC and insufficient charge amount calculation formula, the charge amount at the second inflection point (minimum point B2) in the QdQ / dV curve is read, and the reference SOC is set to the second variation with respect to the full charge amount. The ratio of the amount of charge at the inflection point (45%) was used. Then, in the production of the battery pack (3), the first turning point (second turning point) in which the lithium ion secondary battery voltage V is 3.75V or more and the QdQ / dV curve changes from falling to rising. A battery pack was prepared and evaluated in the same manner as in Example 1 except that the SOC of the lithium ion secondary battery was set to be corrected to reach the reference SOC (45%) when the point) was reached. bottom. The results are shown in Table 1 below.
[比較例5]
 (3)電池パックの作製において、記憶手段に不足充電量計算式を+50(単位:mAh)と記憶させたこと以外は、実施例1と同様にして電池パックを作製して、評価した。その結果を、下記の表1に示す。
[Comparative Example 5]
(3) In the production of the battery pack, the battery pack was produced and evaluated in the same manner as in Example 1 except that the storage means stored the insufficient charge amount calculation formula as +50 (unit: mAh). The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1で作製した電池パックは、比較例1~5で作製した電池パックと比較して、充放電サイクルによって劣化した後のリチウムイオン二次電池の制御SOCと実測SOCの差が小さくなった。
 リチウムイオン二次電池は、充放電サイクル処理によって劣化が進むことによって、二次電池の第1変曲点(P2)および第二変曲点(B3)の高さや位置が変化する。このため、第1変曲点のみに基づいて補正している比較例3では、第1変曲点の変化による影響を大きく受けて、制御SOCと実測SOCの差が大きくなる。また、同様に、第2変曲点のみに基づいて補正している比較例4では、第2変曲点の変化による影響を大きく受けて、制御SOCと実測SOCの差が大きくなる。これに対して、第1変曲点(P2)と第2変曲点(B2)のdQ/dVの差[(P2-B2)dQ/dV]と、不足充電量、すなわち二次電池の初期の第2変曲点(B2)における充電量Qと劣化後の第2変曲点(B2)における充電量Qとの差分[(B2-B2)Q]は直線的な相関関係を有する。このため、実施例1の電池パックは、不足充電量を高い精度で求めることができる。そして、この不足充電量を充電した後にSOCを補正するので、劣化後のSOCのリチウムイオン二次電池のSOCを精度よく補正でき、制御SOCと実測SOCの差が小さくなる。
Compared with the battery packs produced in Comparative Examples 1 to 5, the battery packs produced in Example 1 had a smaller difference between the controlled SOC and the actually measured SOC of the lithium ion secondary battery after deterioration due to the charge / discharge cycle. ..
The height and position of the first inflection point (P2) and the second inflection point (B3) of the secondary battery change as the lithium ion secondary battery deteriorates due to the charge / discharge cycle process. Therefore, in Comparative Example 3 in which the correction is made based only on the first inflection point, the difference between the control SOC and the actually measured SOC becomes large due to the influence of the change of the first inflection point. Similarly, in Comparative Example 4 in which the correction is made based only on the second inflection point, the difference between the controlled SOC and the actually measured SOC becomes large due to the large influence of the change in the second inflection point. On the other hand, the difference between the dQ / dV of the first inflection point (P2) and the second inflection point (B2) [(P2-B2) dQ / dV] and the insufficient charge amount, that is, the initial stage of the secondary battery. The difference [(B2 i- B2) Q] between the charge amount Q at the second inflection point (B2 i ) and the charge amount Q at the second inflection point (B2) after deterioration has a linear correlation. .. Therefore, in the battery pack of the first embodiment, the insufficient charge amount can be obtained with high accuracy. Then, since the SOC is corrected after charging this insufficient charge amount, the SOC of the lithium ion secondary battery of the deteriorated SOC can be corrected with high accuracy, and the difference between the controlled SOC and the actually measured SOC becomes small.
(実機検証)
 本実施形態に係るSOC補正機能を制御部(制御システム)に組み込んだ電池パックを用意した。電池パックは、制御部と安全機構とを含むバッテリーマネジメントシステムと、10個のリチウムイオン二次電池とを中心に構成した。10個のリチウムイオン二次電池は並列に接続した。リチウムイオン二次電池は、正極活物質としてニッケル-コバルト-マンガンのいわゆるNCM三元系活物質を用い、負極活物質にとして炭素を用いた。用意した電池パックに対し、室温で0.2Cのレートで満放電を行ない、その後、室温で0.2Cのレートで満充電を行ない、リチウムイオン二次電池を実使用の初期状態とした。この充電の際に、各電圧におけるdQ/dV値を得てQを算出し、初期状態のQ-dQ/dV曲線を取得し、制御部の記憶手段に記録した。
(Actual machine verification)
A battery pack in which the SOC correction function according to the present embodiment is incorporated in the control unit (control system) is prepared. The battery pack mainly consisted of a battery management system including a control unit and a safety mechanism, and 10 lithium-ion secondary batteries. Ten lithium-ion secondary batteries were connected in parallel. In the lithium ion secondary battery, a so-called NCM ternary active material of nickel-cobalt-manganese was used as the positive electrode active material, and carbon was used as the negative electrode active material. The prepared battery pack was fully discharged at a rate of 0.2 C at room temperature and then fully charged at a rate of 0.2 C at room temperature to bring the lithium ion secondary battery into the initial state of actual use. At the time of this charging, the dQ / dV value at each voltage was obtained to calculate Q, and the Q−dQ / dV curve in the initial state was acquired and recorded in the storage means of the control unit.
 上記の過程で初期状態となったリチウムイオン二次電池(並列に接続した10個のリチウムイオン二次電池)を意図的に劣化させるため、1000サイクル充放電工程を行なった。ここで、1000サイクル充放電工程とは、以下の要素を含む評価工程をいう。
1)45℃の温度環境下において、0.5Cのレートで満放電とした後に、常にセル電圧4.0V以上となるように0.2Cのレートで充放電を1000回行なう。その後0.5Cのレートで満放電する。
2)最後の満放電(すなわち、1000サイクル目の満放電)の後に、再び室温において0.2Cのレートで満充電とする。この充電操作において、電池パック内部の制御部から、SOC値(このSOC値を「内部SOC値」という。)と、容量と、を継続的に読み取る。満充電後、充電時の各電圧におけるdQ/dV値からQ-dQ/dV曲線を得る。
3)上記2)の充電操作において、内部SOC値が特異な変動を示した際、その変動が確認された際のリチウムイオン二次電池の容量Y1を、継続的な容量変化の値から読み取る。
4)1000サイクル充放電工程の後に得られたQ-dQ/dV曲線と、上記の初期状態におけるQ-dQ/dV曲線との、いずれの曲線も3.65-3.90Vの範囲にQ-dQ/dVの極大値(極大点P2、第1変曲点)と極小値(極小点B2、第2変曲点)とを示すことを確認し、両者の極大値と極小値とに係るピーク形状を比較し、相違の有無を確認する。電圧範囲として3.65-3.90Vを選択したのは、本実機検証で用いたリチウムイオン二次電池の正極活物質がNCM三元系活物質であり、負極活物質が炭素であることにより、二次電池の実用的な使用電圧範囲が自ずと定まるためである。
In order to intentionally deteriorate the lithium ion secondary batteries (10 lithium ion secondary batteries connected in parallel) that were in the initial state in the above process, a 1000 cycle charge / discharge step was performed. Here, the 1000-cycle charge / discharge process refers to an evaluation process including the following elements.
1) In a temperature environment of 45 ° C., after full discharge at a rate of 0.5 C, charge / discharge is performed 1000 times at a rate of 0.2 C so that the cell voltage is always 4.0 V or higher. After that, it is fully discharged at a rate of 0.5C.
2) After the final full discharge (that is, the 1000th cycle full discharge), the battery is fully charged again at room temperature at a rate of 0.2 C. In this charging operation, the SOC value (this SOC value is referred to as "internal SOC value") and the capacity are continuously read from the control unit inside the battery pack. After full charge, a Q-dQ / dV curve is obtained from the dQ / dV value at each voltage during charging.
3) When the internal SOC value shows a peculiar fluctuation in the charging operation of 2) above, the capacity Y1 of the lithium ion secondary battery when the fluctuation is confirmed is read from the value of the continuous capacity change.
4) The Q-dQ / dV curve obtained after the 1000-cycle charge / discharge step and the Q-dQ / dV curve in the above initial state are all in the range of 3.65-3.90V. Confirm that the maximum value (maximum point P2, first inflection point) and the minimum value (minimum point B2, second inflection point) of dQ / dV are shown, and the peaks related to the maximum value and the minimum value of both. Compare the shapes and check for any differences. 3.65-3.90V was selected as the voltage range because the positive electrode active material of the lithium ion secondary battery used in this actual machine verification is the NCM ternary active material and the negative electrode active material is carbon. This is because the practical working voltage range of the secondary battery is naturally determined.
5-1)Q-dQ/dV曲線の極大点、極小点のピーク形状に相違が認められた場合、電池パック内のリチウムイオン二次電池に劣化が生じたものと判断して、以下のデータ処理を行なう。
i)前記の極小点における容量Y2を記録し、極小点からSOC値が特異的な変動を示した点に至るまでに追加された追加充電容量Y=Y1-Y2[(B2-B2)Q]を算出する。
ii)極大点におけるdQdV極大値Xmaxと、極小点におけるdQdV極小値Xminとを読み取る。
iii)dQ/dV強度差X=Xmax-Xmin[(P2-B2)dQ/dV]を算出する。
5-2)ピーク形状の相違が認められなかった場合、再び上記1)~4)の作業を繰り返す。
5-1) If there is a difference in the peak shape of the maximum point and the minimum point of the Q-dQ / dV curve, it is judged that the lithium ion secondary battery in the battery pack has deteriorated, and the following data Perform processing.
i) The capacity Y2 at the minimum point is recorded, and the additional charge capacity Y = Y1-Y2 [(B2 i- B2) Q added from the minimum point to the point where the SOC value shows a specific fluctuation. ] Is calculated.
ii) Read the dQdV maximum value Xmax at the maximum point and the dQdV minimum value Xmin at the minimum point.
iii) Calculate the dQ / dV intensity difference X = Xmax-Xmin [(P2-B2) dQ / dV].
5-2) If no difference in peak shape is observed, the above steps 1) to 4) are repeated again.
 本実機検証では、この1000サイクル充放電工程(上記1)~5-2)の作業)を、初期状態とは異なる三つのQ-dQ/dV曲線と、同じく三つの追加充電容量Yと、が得られるまで繰り返した。これにより、リチウムイオン二次電池の三つの劣化状態(以下、第一の劣化状態、第二の劣化状態、第三の劣化状態、という。)におけるそれぞれのQ-dQ/dV曲線と容量を得、dQ/dV強度差Xおよび不足充電量Yとを算出した。それぞれの劣化状態におけるdQ/dV強度差をX軸に、同じく追加充電容量YをY軸にとり、プロットを行なったところ、Y=AX+Bの式で表される良好な直線関係が得られた。このことから、本実機検証における電池パックは本実施形態に係る方法によるSOCの補正が機能していることが確認できた。 In this actual machine verification, this 1000-cycle charge / discharge process (work 1) to 5-2) is performed by three Q-dQ / dV curves that are different from the initial state and three additional charge capacities Y. Repeated until obtained. As a result, the Q-dQ / dV curves and capacities of the three deteriorated states of the lithium ion secondary battery (hereinafter referred to as the first deteriorated state, the second deteriorated state, and the third deteriorated state) are obtained. , DQ / dV intensity difference X and insufficient charge amount Y were calculated. When the difference in dQ / dV intensity in each deteriorated state was taken on the X-axis and the additional charge capacity Y was taken on the Y-axis and plotted, a good linear relationship represented by the equation Y = AX + B was obtained. From this, it was confirmed that the SOC correction by the method according to the present embodiment is functioning in the battery pack in the verification of the actual machine.
10 二次電池
20 充電手段
30 制御システム
31 検出手段
32 dQ/dV算出手段
33 不足充電量算出手段
34 補正手段
35 記憶手段
100 電池パック
10 Secondary battery 20 Charging means 30 Control system 31 Detecting means 32 dQ / dV calculating means 33 Insufficient charging amount calculating means 34 Correcting means 35 Storage means 100 Battery pack

Claims (10)

  1.  二次電池を充電しながら、
     前記二次電池の電圧が3.65V以上にあって、前記二次電池の充電量Qと、電圧Vの変化量に対する前記充電量Qの変化量の割合であるdQ/dVとの関係を示すQ-dQ/dV曲線が上昇から下降に転じる最初の変曲点もしくはこれと数学的に等価な点を第1変曲点とし、
     前記二次電池の電圧が3.75V以上にあって、前記Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点もしくはこれと数学的に等価な点を第2変曲点として、
     前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分に基づいて、前記第2変曲点における基準充電量に対する前記二次電池の不足充電量を算出し、
     前記不足充電量が前記二次電池に対して供給されたときに、前記二次電池のSOCが予め定められた基準SOCに到達したと補正する、二次電池の制御システム。
    While charging the secondary battery
    The relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown. The first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
    The first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
    Based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point, the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and
    A secondary battery control system that corrects that the SOC of the secondary battery has reached a predetermined reference SOC when the insufficient charge is supplied to the secondary battery.
  2.  前記第2変曲点における前記基準充電量が、前記二次電池と同一構成の基準二次電池を用いて測定された値である、請求項1に記載の二次電池の制御システム。 The secondary battery control system according to claim 1, wherein the reference charge amount at the second inflection point is a value measured using a reference secondary battery having the same configuration as the secondary battery.
  3.  前記基準SOCが、前記二次電池と同一構成の基準二次電池を用いて測定された値である、請求項1または2に記載の二次電池の制御システム。 The secondary battery control system according to claim 1 or 2, wherein the reference SOC is a value measured using a reference secondary battery having the same configuration as the secondary battery.
  4.  前記二次電池の前記不足充電量を、下記の式(I)により算出する、請求項1から3のいずれか1項に記載の二次電池の制御システム。
     不足充電量=A+B×C (I)
     式(I)中、A及びBは、前記二次電池と同一構成の基準二次電池を用いて測定された前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分と、前記基準二次電池の初期の前記第2変曲点における充電量と測定された前記第2変曲点における充電量との差分を用いた最小二乗法によって求められた定数を表し、Cは、前記二次電池の前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分を表す。
    The secondary battery control system according to any one of claims 1 to 3, wherein the insufficient charge amount of the secondary battery is calculated by the following formula (I).
    Insufficient charge = A + B × C (I)
    In formula (I), A and B are dQ / dV values at the first inflection point and dQ / dQ / at the second inflection point measured using a reference secondary battery having the same configuration as the secondary battery. It was obtained by the minimum square method using the difference between the dV value and the charge amount at the initial second inflection point of the reference secondary battery and the measured charge amount at the second inflection point. Represents a constant, and C represents the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point of the secondary battery.
  5.  二次電池と、請求項1から4のいずれか1項に記載の二次電池の制御システムと、前記二次電池に電流を供給する充電手段と、を備える、電池パック。 A battery pack comprising a secondary battery, a control system for the secondary battery according to any one of claims 1 to 4, and a charging means for supplying a current to the secondary battery.
  6.  前記二次電池は、満放電状態から充電した際のQ-dQ/dV曲線において、前記二次電池の電圧が3.65V以上3.75V未満の範囲内に極大ピークを示す、請求項5に記載の電池パック。 According to claim 5, the secondary battery shows a maximum peak in the range of 3.65 V or more and less than 3.75 V in the Q-dQ / dV curve when the secondary battery is charged from a fully discharged state. Described battery pack.
  7.  前記二次電池は、満放電状態から充電した際のQ-dQ/dV曲線において、前記二次電池の電圧が3.80V以上3.90V未満の範囲内に極小ピークを示す、請求項5または6に記載の電池パック。 5. The battery pack according to 6.
  8.  前記二次電池は、正極及び負極を有し、
     正極は、一般式がLiMO(但し、Mは、Co、Ni、Al、Mn及びFeからなる群から選択される少なくとも1つの遷移金属元素)で表される酸化物を含み、
     負極は、黒鉛を含む、請求項5から7のいずれか1項に記載の電池パック。
    The secondary battery has a positive electrode and a negative electrode, and has a positive electrode and a negative electrode.
    The positive electrode contains an oxide represented by the general formula LiMO 2 (where M is at least one transition metal element selected from the group consisting of Co, Ni, Al, Mn and Fe).
    The battery pack according to any one of claims 5 to 7, wherein the negative electrode contains graphite.
  9.  前記正極は、リチウムニッケルコバルトマンガン複合酸化物を含む、請求項7に記載の電池パック。 The battery pack according to claim 7, wherein the positive electrode contains a lithium nickel cobalt manganese composite oxide.
  10.  二次電池を充電しながら、
     前記二次電池の電圧が3.65V以上にあって、前記二次電池の充電量Qと、電圧Vの変化量に対する前記充電量Qの変化量の割合であるdQ/dVとの関係を示すQ-dQ/dV曲線が上昇から下降に転じる最初の変曲点もしくはこれと数学的に等価な点を第1変曲点とし、
     前記二次電池の電圧が3.75V以上にあって、前記Q-dQ/dV曲線が下降から上昇に転じる最初の変曲点もしくはこれと数学的に等価な点を第2変曲点として、
     前記第1変曲点におけるdQ/dV値と前記第2変曲点におけるdQ/dV値との差分に基づいて、前記第2変曲点における基準充電量に対する前記二次電池の不足充電量を算出し、
     前記不足充電量が前記二次電池に対して供給されたときに、前記二次電池のSOCが予め定められた基準SOCに到達したと補正する、二次電池の制御方法。
    While charging the secondary battery
    The relationship between the charge amount Q of the secondary battery and dQ / dV, which is the ratio of the change amount of the charge amount Q to the change amount of the voltage V, when the voltage of the secondary battery is 3.65 V or more is shown. The first inflection point at which the Q-dQ / dV curve changes from rising to falling or a point mathematically equivalent to this is set as the first inflection point.
    The first inflection point at which the voltage of the secondary battery is 3.75 V or higher and the QdQ / dV curve changes from falling to rising, or a point mathematically equivalent to this, is set as the second inflection point.
    Based on the difference between the dQ / dV value at the first inflection point and the dQ / dV value at the second inflection point, the insufficient charge amount of the secondary battery with respect to the reference charge amount at the second inflection point is determined. Calculate and
    A method for controlling a secondary battery, in which when the insufficient charge amount is supplied to the secondary battery, it is corrected that the SOC of the secondary battery has reached a predetermined reference SOC.
PCT/JP2020/017216 2020-04-21 2020-04-21 Secondary cell control system, battery pack, and control method for secondary cell WO2021214875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017216 WO2021214875A1 (en) 2020-04-21 2020-04-21 Secondary cell control system, battery pack, and control method for secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017216 WO2021214875A1 (en) 2020-04-21 2020-04-21 Secondary cell control system, battery pack, and control method for secondary cell

Publications (1)

Publication Number Publication Date
WO2021214875A1 true WO2021214875A1 (en) 2021-10-28

Family

ID=78270520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017216 WO2021214875A1 (en) 2020-04-21 2020-04-21 Secondary cell control system, battery pack, and control method for secondary cell

Country Status (1)

Country Link
WO (1) WO2021214875A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257984A (en) * 2008-04-01 2010-11-11 Toyota Motor Corp Secondary battery system
JP2016053564A (en) * 2014-09-01 2016-04-14 横河電機株式会社 Secondary battery capacity measurement system and secondary battery capacity measurement method
JP2017227539A (en) * 2016-06-22 2017-12-28 横河電機株式会社 System and method for measuring capacity of secondary-battery
JP2018205138A (en) * 2017-06-05 2018-12-27 三菱自動車工業株式会社 Secondary battery system
JP2019070621A (en) * 2017-10-11 2019-05-09 三菱自動車工業株式会社 Secondary battery system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257984A (en) * 2008-04-01 2010-11-11 Toyota Motor Corp Secondary battery system
JP2016053564A (en) * 2014-09-01 2016-04-14 横河電機株式会社 Secondary battery capacity measurement system and secondary battery capacity measurement method
JP2017227539A (en) * 2016-06-22 2017-12-28 横河電機株式会社 System and method for measuring capacity of secondary-battery
JP2018205138A (en) * 2017-06-05 2018-12-27 三菱自動車工業株式会社 Secondary battery system
JP2019070621A (en) * 2017-10-11 2019-05-09 三菱自動車工業株式会社 Secondary battery system

Similar Documents

Publication Publication Date Title
CN102655245B (en) Anomalously charged state detection device and test method for lithium secondary cell
US7985495B2 (en) Assembled battery, power-supply system and production method of assembled battery
JP5866987B2 (en) Secondary battery control device and SOC detection method
US10483779B2 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
US9577457B2 (en) Control device for secondary battery, charging control method, and SOC detection method
WO2011074196A1 (en) Battery pack, discharge system, charge/discharge system, and discharge control method for lithium ion rechargeable battery
CN101542821A (en) Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger
US9190864B2 (en) Charging control method for secondary cell and charging control device for secondary cell
JP2007220658A (en) Packed battery, power supply system, and method of manufacturing packed battery
US20200018798A1 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
WO2021191939A1 (en) Secondary battery control device, battery pack, and secondary battery control method
WO2021186537A1 (en) Secondary battery control device, battery pack, and secondary battery control method
WO2021224990A1 (en) Secondary battery control system, battery pack, and secondary battery control method
WO2021214875A1 (en) Secondary cell control system, battery pack, and control method for secondary cell
WO2021191993A1 (en) Control device for secondary battery, control system for secondary battery, and control method for secondary battery pack and secondary battery
WO2021205642A1 (en) Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method
WO2021220393A1 (en) Secondary battery control device, battery pack, and secondary battery control method
WO2021186550A1 (en) Secondary battery control device, battery pack, and secondary battery control method
WO2021220492A1 (en) Secondary battery control system, battery pack, and secondary battery control method
JP7468327B2 (en) Secondary battery control system, battery pack, and secondary battery control method
WO2021220493A1 (en) Control system for secondary battery, battery pack, and control method for secondary battery
WO2019017183A1 (en) Estimation device, power storage device, estimation method, and computer program
JP5920613B2 (en) Secondary battery
WO2021224997A1 (en) Secondary battery control system, battery pack, and secondary battery control method
WO2021192018A1 (en) Secondary battery control device, secondary battery control system, battery pack, and secondary battery control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP