JP5920613B2 - Secondary battery - Google Patents
Secondary battery Download PDFInfo
- Publication number
- JP5920613B2 JP5920613B2 JP2010241349A JP2010241349A JP5920613B2 JP 5920613 B2 JP5920613 B2 JP 5920613B2 JP 2010241349 A JP2010241349 A JP 2010241349A JP 2010241349 A JP2010241349 A JP 2010241349A JP 5920613 B2 JP5920613 B2 JP 5920613B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- charge
- discharge
- voltage
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、充電状態の検知が容易な二次電池に関する。 The present invention relates to a secondary battery whose charge state can be easily detected.
高エネルギー密度を特徴とするリチウム二次電池が、携帯電話、ノートパソコン等の小型民生機器に従来から使用されてきた。近年では、定置型蓄電システム、ハイブリッド自動車、電気自動車などの大型機器への適用が検討されており、リチウム二次電池に要求される基本特性が多様化している。 Lithium secondary batteries characterized by high energy density have been used in small consumer devices such as mobile phones and notebook computers. In recent years, application to large devices such as stationary power storage systems, hybrid vehicles, and electric vehicles has been studied, and basic characteristics required for lithium secondary batteries are diversifying.
その中でもLiFePO4などの2相共存型の充放電反応が進行する正極活物質を採用したリチウム二次電池は、充電状態の変化に伴う入力密度や出力密度の変化が少なくなり、入出力特性が安定した二次電池を提供することが可能になる。 Among them, a lithium secondary battery that employs a positive electrode active material in which a two-phase coexistence type charge / discharge reaction proceeds, such as LiFePO 4, has less changes in input density and output density due to changes in charge state, and has input / output characteristics. It becomes possible to provide a stable secondary battery.
ここで、LiFePO4に限らず充電状態の変化に伴う電位変化が小さい二次電池においては電位変化から充電状態を検出するという観点からの改善が求められる場合がある。つまり、充放電時に充電状態の変化に伴う電位変化が小さくなって、検出した電池電位から充放電状態や異常発生などを判定することが困難になる。 Here, not only LiFePO 4 but also a secondary battery having a small potential change accompanying a change in the charged state may require improvement from the viewpoint of detecting the charged state from the potential change. That is, the potential change accompanying the change in the charging state during charging / discharging becomes small, and it becomes difficult to determine the charging / discharging state, abnormality occurrence, etc. from the detected battery potential.
充電状態の変化に伴う電位変化を検出できるようにするための従来技術としては、ソフトカーボンを負極活物質とする負極と、LiFe0.8Mn0.2PO4で表されるオリビン型リチウム化合物を正極活物質とする正極とを非水電解液を介して配置したことを特徴とする二次電池が開示されている(特許文献1)。 Conventional techniques for enabling detection of potential changes accompanying changes in the state of charge include a negative electrode using soft carbon as a negative electrode active material, and an olivine-type lithium compound represented by LiFe 0.8 Mn 0.2 PO 4 A secondary battery is disclosed in which a positive electrode having a positive electrode active material is disposed via a non-aqueous electrolyte (Patent Document 1).
また、安定した出力特性を発揮することができると共に、充電状態などが検知しやすい二次電池を実現するために、リチウムイオンの拡散係数が異なる正極活物質を二種類以上混在させることで充放電時の電圧変化に段差を付けることができる電池が開示されている(特許文献2)。 In addition, in order to realize a secondary battery that can exhibit stable output characteristics and easily detect the state of charge, charging and discharging is performed by mixing two or more types of positive electrode active materials having different lithium ion diffusion coefficients. A battery capable of adding a step to the voltage change at the time is disclosed (Patent Document 2).
更に、正極活物質にオリビン結晶構造を有するリチウム含有遷移金属複合酸化物と、層状結晶構造を有するリチウム含有遷移金属複合酸化物及びスピネル結晶構造を有するリチウム含有遷移金属複合酸化物の少なくとも一方と含む非水電解液二次電池が開示されている(特許文献3)。 Furthermore, the positive electrode active material includes at least one of a lithium-containing transition metal composite oxide having an olivine crystal structure, a lithium-containing transition metal composite oxide having a layered crystal structure, and a lithium-containing transition metal composite oxide having a spinel crystal structure. A non-aqueous electrolyte secondary battery is disclosed (Patent Document 3).
しかしながら、特許文献1に開示の電池は特許文献1の図1〜4から明らかなように充電深度が深い領域で充電電位が高くなるものの、その後はまた充電電位が平坦になるためそれ以降の充電深度の推定には利用できない。また、特許文献2に開示の電池ではリチウムイオンの拡散係数を変化させて充電電位や放電電位を変動させているが、拡散係数を望む大きさに制御することは困難であると共に、拡散係数の小さな活物質は高速充電時に充電し難く容量が無駄になることがあった。そして、特許文献3に開示の電池では、スピネル結晶構造及び層状結晶構造をもつリチウム含有遷移金属複合酸化物の少なくとも一方を採用するため、特許文献3の図2より明らかなようにSOCの変化に伴う電位変化が大きい領域が存在し、出力の安定性が充分でない場合があった。
However, although the battery disclosed in
本発明は上記実情に鑑み完成したものであり、従来とは異なる構造をもち電池の電位から充電状態を検知できる二次電池を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and an object to be solved is to provide a secondary battery having a structure different from that of the prior art and capable of detecting the state of charge from the battery potential.
請求項1に記載の二次電池は、LiFe X Mn (1−X) PO 4 (0≦X≦1)である活物質Aと、Li 2 Fe Y Mn (1−Y) SiO 4 (0≦Y<1)である活物質Bとを含む正極を有し(活物質AがLiFePO4、活物質BがLi2MnO3である活物質A及び活物質Bの組み合わせを除く)、
前記活物質A単独では前記二次電池の使用電位範囲での充放電容量を100%としたとき、その80%を超える容量分の連続した領域における電圧変動が0.2V以内であり、
前記活物質B単独では、前記領域における前記活物質Aの平均電圧を基準として、0.2V以上高い充電電圧と0.2V以上低い放電電圧の両方をもち、充放電深度50%における充電電圧と放電電圧との差が0.5V以上あって、
前記使用電位範囲は、放電終了電圧が1.5〜2.0Vの範囲内、且つ、充電終了電圧が4.0〜4.5Vの範囲内であり、
さらに下記(i)を満たすことを特徴とする二次電池。
(i)前記活物質Bの含有量は前記使用電位範囲内での前記充放電容量を100%として、前記平均電圧よりも高い電圧且つ充電時には前記充放電深度80%から90%においてΔV(前記充放電容量1%当たりの電圧変化。以下同じ)の絶対値が0.0025Vに初めて達することができると共に、前記平均電圧よりも低い電圧且つ放電時には前記充放電深度15%から25%においてΔVの絶対値が0.0025Vに初めて達することができる量である。
The secondary battery according to
In the active material A alone, when the charge / discharge capacity in the use potential range of the secondary battery is 100%, the voltage fluctuation in a continuous region corresponding to the capacity exceeding 80% is within 0.2V,
The active material B alone has both a charging voltage higher by 0.2 V or more and a discharging voltage lower by 0.2 V or more, based on the average voltage of the active material A in the region, and a charging voltage at a charge / discharge depth of 50% The difference from the discharge voltage is 0.5V or more,
The use potential range has a discharge end voltage in a range of 1.5 to 2.0 V and a charge end voltage in a range of 4.0 to 4.5 V,
Furthermore, the secondary battery characterized by satisfying the following (i) .
(I) The content of the active material B is ΔV (at the charging / discharging depth of 80% to 90% at the time of charging at a voltage higher than the average voltage and charging when the charging / discharging capacity within the working potential range is 100%. The absolute value of the voltage change per 1% charge / discharge capacity (the same applies hereinafter) can reach 0.0025V for the first time, and at a voltage lower than the average voltage and at the discharge depth of 15% to 25% during the discharge , ΔV This is the amount that the absolute value can reach 0.0025V for the first time.
本発明の二次電池は、充放電に伴う電位変化が小さい領域をもつ活物質Aと、大きい領域をもつ活物質Bとを組み合わせることで出力特性に優れ、電位による充電状態(SOC:SOC以外にも二次電池の状態を表す語として充電深度、放電深度などの厳密には相違する用語があるが本明細書中においては二次電池への充放電時の状態を示す同様な語の代表としてSOCとの語を用いる。つまり、充電又は放電を行っている際にどの程度の充放電を行っており、後どの程度充放電を行うことができるかを判別するための指標としてSOCとの語を用いるものである。)検出を可能にし、更に容量の損失を低減した二次電池が提供できる。つまり、広い充電状態で安定した充放電電位を示すことができると共に、過充電や過放電になる直前ではなく余裕を持った状態において、充放電電位が大きく変化する二次電池を提供することができる。また、充放電電位の変化が生起するSOCは制御することもできる。 The secondary battery of the present invention is superior in output characteristics by combining an active material A having a region with a small potential change due to charge / discharge and an active material B having a large region, and is charged by a potential (SOC: other than SOC) Although there are terms that are strictly different from each other in terms of the state of charge of the secondary battery, such as the depth of charge, the depth of discharge, etc., in this specification, representatives of similar words that indicate the state of the secondary battery during charging and discharging In other words, the term SOC is used as an index for determining how much charge / discharge is performed during charging or discharging and how much charge / discharge can be performed later. A secondary battery that enables detection and further reduces capacity loss can be provided. In other words, it is possible to provide a secondary battery that can exhibit a stable charge / discharge potential in a wide charge state and has a large change in charge / discharge potential in a state with a margin rather than immediately before overcharge or overdischarge. it can. In addition, the SOC at which a change in charge / discharge potential occurs can be controlled.
請求項1に記載の二次電池は、前記活物質AがLiFeXMn(1−X)PO4(0≦X≦1)である。LiFeXMn(1−X)PO4は広い範囲のSOCでの電位変化が小さく、安定した出力特性を示す。
In the secondary battery according to
請求項1に記載の二次電池は、前記活物質BがLi2FeYMn(1−Y)SiO4(0≦Y≦1)である。Li2FeYMn(1−Y)SiO4は充放電電位のヒステリシスが大きいため満充電になる前に充放電電位が大きく変化する。従って、充放電電位の変化を検知することにより、過充電状態に近づいたことや過放電状態に近づいたことが検知しやすくなるが、過充電状態(又は過放電状態)に近くても放電時(又は充電時)の電圧は通常時の放電電圧(又は充電電位)と大きく変わらないため、充放電における入出力特性を安定させることができる。
In the secondary battery according to
請求項2に記載の二次電池は、請求項1に記載の二次電池であって、さらに前記活物質A及び前記活物質Bの質量の和を基準として前記活物質Bの含有量は5質量%以上35質量%以下である。
The secondary battery according to claim 2 is the secondary battery according to
これらの活物質A及び活物質Bを採用し、その存在比としてこの範囲を採用することで、
SOCの広い範囲で安定した充放電電位を示すことができると共に、過充電や過放電になる直前にはそれまでよりも充放電電位が大きく変化する二次電池を提供することができる。
By adopting these active materials A and B and adopting this range as their abundance ratio,
It is possible to provide a secondary battery that can exhibit a stable charge / discharge potential in a wide range of SOC and that has a charge / discharge potential that changes more than before just before overcharge or overdischarge.
本発明の二次電池について実施形態に基づき以下詳細に説明を行う。本発明の二次電池の正極は活物質Aと活物質Bとを含む。また、正極はその他の要素を必要に応じて含む。負極の構成は特に限定されない。以下の説明ではリチウム二次電池に基づいている。リチウム二次電池は正極と負極とそれら正負極間に介在する電解質とその他必要な部材とを有する。 The secondary battery of the present invention will be described in detail below based on the embodiment. The positive electrode of the secondary battery of the present invention includes an active material A and an active material B. Moreover, a positive electrode contains another element as needed. The configuration of the negative electrode is not particularly limited. The following description is based on a lithium secondary battery. The lithium secondary battery includes a positive electrode, a negative electrode, an electrolyte interposed between the positive and negative electrodes, and other necessary members.
(正極)
活物質Aは単独で特性を評価したときに二次電池の使用電位範囲内での充放電容量の80%超の領域における電位変動が0.2V以内である。活物質Aとしてはオリビン型リチウム化合物が例示できる。LiFePO4などの2相共存型の充放電反応が進行する正極活物質を採用することで、充電状態の変化に伴う入力密度や出力密度の変化が少なくなり、入出力特性が安定した二次電池を提供することが可能になる。特にLiFeXMn(1−X)PO4(0≦X≦1)で表される材料を採用することが望ましい。
(Positive electrode)
When the characteristics of the active material A are evaluated singly, the potential fluctuation in the region exceeding 80% of the charge / discharge capacity within the usable potential range of the secondary battery is within 0.2V. Examples of the active material A include olivine type lithium compounds. By adopting a positive electrode active material such as LiFePO 4 in which a charge / discharge reaction of a two-phase coexistence proceeds, a change in input density and output density due to a change in charge state is reduced, and a secondary battery with stable input / output characteristics It becomes possible to provide. In particular, it is desirable to employ a material represented by LiFe X Mn (1-X) PO 4 (0 ≦ X ≦ 1).
活物質A及び活物質Bは二次電池全体の充放電容量のうちの少なくとも80%の領域である充放電領域における電圧変動が0.2V以下になる割合で用いられる。その割合については後に詳述する。二次電池全体の充放電容量は二次電池の使用電位範囲を設定することで決定できる。 The active material A and the active material B are used in such a ratio that the voltage fluctuation in the charge / discharge region, which is at least 80% of the charge / discharge capacity of the entire secondary battery, is 0.2 V or less. The ratio will be described in detail later. The charge / discharge capacity of the entire secondary battery can be determined by setting the use potential range of the secondary battery.
活物質Bは単独で特性を評価したときに前述の充放電領域における平均電位を基準として、0.2V以上高い充電電位と0.2V以上低い放電電位とをもつ。活物質Bとしては充放電時における電位のヒステリシスが大きいことが望ましい。ヒステリシスが大きいことで充電時にSOCが100%に至らなくてもその前で大きな電位変化が生じることになり、また、反対に放電時にSOCが0%に至らなくてもその前に大きな電位変化が生じることになる。つまり、二次電池に悪い影響を与える前の段階のSOCにおいて大きな電位変化を生じることから、二次電池のSOC制御をより良く行うことができる。ここで、充放電時の電位にヒステリシスを有するとは、活物質Bについて単独でSOC−充放電電位曲線を測定したときに、SOC50%における充電電位と放電電位との差が0.5V以上であるものをいう。望ましい活物質Bとしてはケイ酸塩が例示でき、特にLi2FeYMn(1−Y)SiO4(0≦Y≦1)であることが望ましい。Yとしては特に限定されるものでないが、0以上1未満であることが望ましく、0.25以上0.75以下であることが更に望ましく、0.25以上0.5以下であることがより望ましい。 The active material B has a charge potential higher by 0.2 V or more and a discharge potential lower by 0.2 V or more with reference to the average potential in the above-described charge / discharge region when the characteristics are evaluated independently. The active material B desirably has a large potential hysteresis during charging and discharging. Due to the large hysteresis, even if the SOC does not reach 100% during charging, a large potential change occurs before that. On the other hand, even if the SOC does not reach 0% during discharging, a large potential change occurs before that. Will occur. That is, since a large potential change occurs in the SOC at the previous stage that adversely affects the secondary battery, the SOC control of the secondary battery can be performed better. Here, having a hysteresis in the potential during charging / discharging means that when the SOC-charging / discharging potential curve is measured for the active material B alone, the difference between the charging potential and the discharging potential at 50% SOC is 0.5 V or more. Say something. Desirable active material B can be exemplified by silicate, and particularly Li 2 Fe Y Mn (1-Y) SiO 4 (0 ≦ Y ≦ 1). Y is not particularly limited, but is preferably 0 or more and less than 1, more preferably 0.25 or more and 0.75 or less, and more preferably 0.25 or more and 0.5 or less. .
活物質A及び活物質Bの形態、並びに、存在状態は特に限定しない。形態としては通常は粉末状を採用する。存在状態は両者を粉末状とした上で混合したり、別々に配設(重ねて層状に配設したり、異なる部位に配設したりできる。)することもできる。活物質A及び活物質Bを重ねて配設する場合には、活物質A及び活物質Bの混合比が全体として設定した値になればどのように重ねても良い。例えば、重ねる順番はどちらでも構わないし、同一の活物質について複数回重ねても良いし、両者の混合物(混合比は問わない)を重ねても良い。層状に形成した場合、その層の厚さ方向における活物質A及び活物質Bの存在比を変化させても良い。 The form of active material A and active material B, and the state of existence are not particularly limited. As the form, a powder form is usually adopted. The presence state can be mixed after powdering both, or can be arranged separately (overlapping in layers, or in different parts). In the case where the active material A and the active material B are disposed in an overlapping manner, the active material A and the active material B may be stacked in any manner as long as the mixing ratio of the active material A and the active material B becomes a set value as a whole. For example, the order of stacking may be either, the same active material may be stacked a plurality of times, or a mixture of both may be stacked (the mixing ratio does not matter). When formed in a layer form, the abundance ratio of the active material A and the active material B in the thickness direction of the layer may be changed.
活物質Aと活物質Bとの存在比としては先に説明した充放電領域における電位変動が0.2V以下になるように決定されるが、望ましい存在比としては活物質A及び活物質Bの質量の和を基準として、活物質Bが5〜35質量%程度存在することが好ましく、15〜30質量%程度存在することが更に望ましい。 The abundance ratio between the active material A and the active material B is determined so that the potential fluctuation in the charge / discharge region described above is 0.2 V or less, but the desirable abundance ratio is that of the active material A and the active material B. The active material B is preferably present in an amount of about 5 to 35% by mass, more preferably about 15 to 30% by mass, based on the sum of masses.
また、活物質Aと活物質Bとの存在比を変化させることで、充放電領域の範囲を調節することができる。以下に活物質A及び活物質Bの存在比と、活物質A及び活物質Bの特性値との関係について説明する。 In addition, the range of the charge / discharge region can be adjusted by changing the abundance ratio between the active material A and the active material B. Hereinafter, the relationship between the abundance ratio of the active material A and the active material B and the characteristic values of the active material A and the active material B will be described.
特性値としては以下の値を採用する。活物質Aについては、電気容量をCx(mAh/g:充電時に後述するt1を算出する場合には充放電領域及びそれ以上の電位を示す領域の電気容量、放電時に後述するt2を算出する場合には充放電領域及びそれ以下の電位を示す領域の電気容量)、存在比rx(質量基準:0<rx<1)とする。活物質Bについては、電気容量をCy(mAh/g::充電時に後述するt1を算出する場合には充放電領域及びそれ以上の電位を示す領域の電気容量、放電時に後述するt2を算出する場合には充放電領域及びそれ以下の電位を示す領域の電気容量)、充放電領域における平均電位よりも高い(又は低い)電位範囲における活物質Bの電気容量をCz(mAh/g)、存在比ry(質量基準:0<ry<1、ry+rx=1)とする。 The following values are adopted as characteristic values. For the active material A, when calculating the electric capacity Cx (mAh / g: t1 to be described later at the time of charging, the electric capacity of the charge / discharge region and the region showing a higher potential, and t2 to be described later at the time of discharging Is the charge / discharge region and the electric capacity of the region showing a potential lower than that), and the existence ratio rx (mass standard: 0 <rx <1). For the active material B, when calculating the electric capacity Cy (mAh / g :: t1 described later at the time of charging, the electric capacity of the charging / discharging region and the region showing a potential higher than that, and t2 described later at the time of discharging are calculated. In this case, the electric capacity of the active material B in the electric potential range higher (or lower) than the average electric potential in the charging / discharging area is Cz (mAh / g). The ratio is ry (mass standard: 0 <ry <1, ry + rx = 1).
Czとして充放電領域における平均電位よりも高い電位範囲における活物質Bの電気容量を設定する場合、充電時のSOC変化を電位変化により検知できる範囲t1(0<t1<1の範囲で設定する:例えばt1が0.1であればSOCが90%(100%−100%×t1)以上になると大きな電位変化が生じるため検知できる。)とその他の特性値との関係は、式(1):rx=(Cz−t1・Cy)/(Cz−t1・Cy+t1・Cx)、式(2):ry=(t1・Cx)/(Cz−t1・Cy+t1・Cx)からなる連立方程式を解くことで計算することができる。 When the capacitance of the active material B in a potential range higher than the average potential in the charge / discharge region is set as Cz, a range t1 (0 <t1 <1 is set in a range where the SOC change during charge can be detected by the potential change: For example, if t1 is 0.1, a large potential change occurs when the SOC is 90% (100% -100% × t1) or more, and the relationship between the other characteristic values can be expressed by equation (1): By solving simultaneous equations of rx = (Cz−t1 · Cy) / (Cz−t1 · Cy + t1 · Cx), Equation (2): ry = (t1 · Cx) / (Cz−t1 · Cy + t1 · Cx) Can be calculated.
そして、Czとして充放電領域における平均電位よりも低い電位範囲における活物質Bの電気容量を設定する場合、放電時のSOC変化を電位変化により検知できる範囲t2(0<t2<1の範囲で設定する:例えばt2が0.1であればSOCが10%(100%×t2)以下になると大きな電位変化が生じるため検知できる。)とその他の特性値との関係は、式(3):rx=(Cz−t2・Cy)/(Cz−t2・Cy+t2・Cx)、式(4):ry=(t2・Cx)/(Cz−t2・Cy+t2・Cx)からなる連立方程式を解くことで計算することができる。 When the electric capacity of the active material B in a potential range lower than the average potential in the charge / discharge region is set as Cz, a range t2 in which the SOC change during discharge can be detected by the potential change (set in a range of 0 <t2 <1). For example, if t2 is 0.1, a large potential change occurs when the SOC becomes 10% (100% × t2) or less, and the relationship between the other characteristic values is expressed by equation (3): rx = (Cz−t2 · Cy) / (Cz−t2 · Cy + t2 · Cx), Formula (4): Calculated by solving simultaneous equations of ry = (t2 · Cx) / (Cz−t2 · Cy + t2 · Cx) can do.
例えば、Cx=160、Cy=200、Cz=140、t1(又はt2)=0.1として計算すると、rx=(140-0.1×200)/(140-0.1×200+0.1×160)=120/136=0.88、ry=(0.1×160)/(140-0.1×200+0.1×160)=16/136=0.12又はry=1−rx=0.12として混合させる存在比(活物質Aと活物質Bとを存在させる量)を算出することができる。 For example, when Cx = 160, Cy = 200, Cz = 140, and t1 (or t2) = 0.1, rx = (140−0.1 × 200) / (140−0.1 × 200 + 0.1 ×) 160) = 120/136 = 0.88, ry = (0.1 × 160) / (140−0.1 × 200 + 0.1 × 160) = 16/136 = 0.12 or ry = 1−rx = 0 .12 can be calculated as an abundance ratio (amount of active material A and active material B present).
なお、二次電池における充放電領域としてどのような電位範囲を設定するかによってある程度は増減するものの、活物質Bにおける平均電位よりも高い(又は低い)電位範囲の電気容量(Cz)は活物質Aと活物質Bとが決まれば、ほぼ一義的に決定される値である。そのため、t1とt2との組み合わせは任意に設定できないことが通常であると考えられる。従って、t1とt2との値は双方を考慮して適正に設定することが望ましい。 In addition, although it increases or decreases to some extent depending on what potential range is set as the charge / discharge region in the secondary battery, the capacitance (Cz) in the potential range higher (or lower) than the average potential in the active material B is the active material. If A and the active material B are determined, the values are determined almost uniquely. For this reason, it is considered that it is normal that the combination of t1 and t2 cannot be arbitrarily set. Therefore, it is desirable to set the values of t1 and t2 appropriately in consideration of both.
活物質A及び活物質Bとして採用されうる材料としてはリチウム含有遷移金属酸化物(遷移金属はCo、Mn、Ni、Feなど)を採用することもできる。 As materials that can be used as the active material A and the active material B, lithium-containing transition metal oxides (transition metals such as Co, Mn, Ni, and Fe) can also be used.
その他に有することができる要素としては導電材、結着材、集電体などが挙げられる。活物質A及びBは、導電材、結着材などと混合した状態で集電体の表面に層状に形成された活物質層を形成することができる。例えば、正極活物質と結着材と導電材等とを水、NMP等の溶媒中で混合した後、集電体上に塗布して形成することができる。 Other elements that can be included include a conductive material, a binder, and a current collector. The active materials A and B can form an active material layer formed in layers on the surface of the current collector in a state of being mixed with a conductive material, a binder, and the like. For example, the positive electrode active material, the binder, the conductive material, and the like can be formed by mixing on a current collector after mixing them in a solvent such as water or NMP.
導電材は、活物質Aや活物質Bから生成される電子の授受を行う材料であり、導電性を有するものであればよい。例えば炭素材料や導電性高分子材料が挙げられる。炭素材料としてはケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等が例示できる。また、導電性高分子材料としてはポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンが例示できる。 The conductive material is a material that exchanges electrons generated from the active material A and the active material B, and may be any material that has conductivity. Examples thereof include a carbon material and a conductive polymer material. Examples of the carbon material include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon. Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene.
結着材は活物質Aや活物質Bなどの構成要素を結合させて電極を形作る材料である。種々の高分子材料を採用することができ、化学的・物理的安定性が高いものが望ましい。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、フッ素ゴム等が挙げられる。また、導電材として導電性高分子材料を採用すると、導電材の作用に加え結着材の作用を発現させることができる。集電体はアルミニウムなどの金属から形成される金属箔などを採用することができる。 The binder is a material that forms an electrode by combining components such as the active material A and the active material B. Various polymer materials can be adopted, and those having high chemical and physical stability are desirable. Examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), nitrile rubber (NBR), and fluorine rubber. Further, when a conductive polymer material is employed as the conductive material, the action of the binder can be expressed in addition to the action of the conductive material. The current collector may be a metal foil formed from a metal such as aluminum.
(負極)
負極の構成は特に限定されないが、適正な負極活物質を有することができる。負極活物質の種類によっては結着材や集電体などを用いる場合もある。結着材は正極にて説明したものと同様のものが採用できる。集電体は銅などの金属から形成される金属箔などを採用することができる。
(Negative electrode)
Although the structure of a negative electrode is not specifically limited, It can have a suitable negative electrode active material. Depending on the type of the negative electrode active material, a binder or a current collector may be used. The binder can be the same as that described for the positive electrode. The current collector may be a metal foil formed from a metal such as copper.
リチウム二次電池を構成する場合には、負極の活物質としては、リチウムイオンを吸蔵及び放出できる化合物を単独乃至は組み合わせて用いることができる。リチウムイオンを吸蔵及び放出できる化合物の一例としてはリチウム等の金属材料、ケイ素、スズ等を含有する合金材料、グラファイト、チタン酸化物、コークス、有機高分子化合物焼成体又は非晶質炭素等の炭素材料が挙げられる。これらの活物質は単独で用いるだけでなく、これらを複数種類混合して用いることもできる。 In the case of constituting a lithium secondary battery, a compound capable of inserting and extracting lithium ions can be used alone or in combination as the negative electrode active material. Examples of compounds that can occlude and release lithium ions include metal materials such as lithium, alloy materials containing silicon, tin, etc., graphite, titanium oxide, coke, organic polymer compound fired bodies, or carbon such as amorphous carbon. Materials. These active materials can be used not only alone but also as a mixture of two or more thereof.
例えば、負極活物質としてリチウム金属箔を用いる場合、銅等の金属からなる集電体の表面にリチウム箔を圧着することで形成できる。また負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着材等とを水、NMP等の溶媒中で混合した後、銅等の金属からなる集電体上に塗布して形成することができる。 For example, when a lithium metal foil is used as the negative electrode active material, it can be formed by pressure bonding the lithium foil to the surface of a current collector made of a metal such as copper. When an alloy material or a carbon material is used as the negative electrode active material, the negative electrode active material and a binder are mixed in a solvent such as water or NMP, and then applied onto a current collector made of a metal such as copper. Can be formed.
(電解質)
電解質は正極及び負極の間のイオンなどの荷電担体の輸送を行う媒体であり、特に限定しないが、リチウム二次電池が使用される雰囲気下で物理的、化学的、電気的に安定なものが望ましい。
(Electrolytes)
An electrolyte is a medium that transports charge carriers such as ions between a positive electrode and a negative electrode, and is not particularly limited, but is physically, chemically, and electrically stable in an atmosphere in which a lithium secondary battery is used. desirable.
例えば、電解質としては、LiBF4、LiPF6、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)の中から選ばれた1種以上を支持電解質とし、これを有機溶媒に溶解させた電解液が好ましい。有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等及びこれらの混合物が例示できる。中でもカーボネート系溶媒を含む電解液は、高温での安定性が高いことから好ましい。また、ポリエチレンオキサイドなどの固体高分子に上記の電解質を含んだ固体高分子電解質やリチウムイオン伝導性を有する高分子材料、セラミック、ガラス等の固体電解質も使用可能である。 For example, as the electrolyte, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO An electrolytic solution in which at least one selected from 2 ) is used as a supporting electrolyte and dissolved in an organic solvent is preferable. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like and mixtures thereof. Among them, an electrolytic solution containing a carbonate solvent is preferable because of its high stability at high temperatures. In addition, a solid polymer electrolyte containing the above electrolyte in a solid polymer such as polyethylene oxide, a polymer material having lithium ion conductivity, a solid electrolyte such as ceramic or glass can also be used.
(その他必要な部材)
その他必要な部材としては、セパレータ、ケース、電極端子などが二次電池の構成や使用形態に応じて選択される。
(Other necessary components)
As other necessary members, a separator, a case, an electrode terminal, and the like are selected according to the configuration and usage of the secondary battery.
正極と負極との間には電気的な絶縁作用とイオン伝導作用とを両立する部材であるセパレータを介装することが望ましい。電解質が液状である場合にはセパレータは、液状の電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)やガラス繊維からなる多孔質膜、不織布が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極よりも更に大きい形態を採用することが好ましい。 It is desirable to interpose a separator that is a member that achieves both electrical insulation and ion conduction between the positive electrode and the negative electrode. When the electrolyte is liquid, the separator also serves to hold the liquid electrolyte. Examples of the separator include porous synthetic resin films, particularly porous films made of polyolefin polymers (polyethylene, polypropylene) and glass fibers, and nonwoven fabrics. Furthermore, it is preferable that the separator has a larger size than the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.
正極、負極、電解質、セパレータなどは何らかのケース内に収納することが一般的である。ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。ケースにはケースの内外で電力の授受を行う電極端子が設けられる。 In general, the positive electrode, the negative electrode, the electrolyte, the separator, and the like are housed in some case. The case is not particularly limited and can be made of a known material and form. The case is provided with electrode terminals for transmitting and receiving electric power inside and outside the case.
(充放電状態の検出方法)
本発明の二次電池についてSOCを検出する方法としては充放電時における充放電電位を測定し、その測定値から二次電池のSOCを推定する。SOCの推定は充放電電位−SOC曲線の傾きが一定以上大きくなる点を検知することで、前述したt1やt2に相当する点に対応するSOCに到達したことを検知するものである(図8参照)。どの程度傾きが大きくなればt1やt2に到達したと判断するかは適宜決定できる。例えば、充放電電位−SOC曲線の傾きが一定以上大きくなった点をもってSOCがt1やt2に到達したと判断できる。一定以上大きくなったかどうかの判断基準としては例えばSOC1%当たりの電圧変化ΔVとした場合に、ΔV>0.0025V(0.2V/SOC80%)になる点としたり、ΔV>0.005Vになる点としたり、ΔVが一定のSOCの範囲(例えばSOC1%や2%)で継続して一定以上になる点としたりすることができる。なお、この判定基準は柔軟に決定することが可能である。つまり、判定基準を変えると同じ充放電電位−SOC曲線であっても過充電(又は過放電)に近づいたと判断されるSOCの値は変化するが、本発明の目的はSOCが過充電や過放電に近づいたことを如何に確実に検知できるかという点にある。従って、判定基準を変えることにより検知できるSOCの大きさが変わったとしても、そのSOCの変化に応じて二次電池を制御することで本発明の目的を十分に達成することが可能である。
(Charging / discharging state detection method)
As a method for detecting the SOC of the secondary battery of the present invention, the charge / discharge potential at the time of charge / discharge is measured, and the SOC of the secondary battery is estimated from the measured value. The estimation of the SOC is to detect that the SOC corresponding to the point corresponding to t1 or t2 described above has been reached by detecting the point where the slope of the charge / discharge potential-SOC curve becomes larger than a certain value (FIG. 8). reference). It can be determined as appropriate how much the inclination is to determine that t1 or t2 has been reached. For example, it can be determined that the SOC has reached t1 or t2 at a point where the slope of the charge / discharge potential-SOC curve has become larger than a certain level. For example, when the voltage change ΔV per 1% of SOC is ΔV> 0.0025V (0.2V / SOC80%), or ΔV> 0.005V as a criterion for determining whether or not it has become larger than a certain level. It can be a point or a point where ΔV continuously becomes a certain level or more in a SOC range (for example,
充放電状態を検知するために用いられる装置としては充放電電位を測定する手段と、現在の大まかなSOCを推定する手段と、それらの手段から導出される充放電電位−SOC曲線の傾きが一定以上大きくなる点を求める手段とがあればよい。充放電電位を測定する手段としては電位計が例示され、SOCを推定する手段としては電流積分計や電流計と計時手段との組み合わせなどが例示できる。傾きが大きくなる点を求める手段としてはコンピュータなどを採用することができる。 As a device used to detect the charge / discharge state, a means for measuring the charge / discharge potential, a means for estimating the current rough SOC, and the slope of the charge / discharge potential-SOC curve derived from these means are constant. There should be a means for obtaining a point that becomes larger. Examples of the means for measuring the charge / discharge potential include an electrometer, and examples of the means for estimating the SOC include a current integrator and a combination of an ammeter and a time measuring means. A computer or the like can be employed as a means for obtaining a point at which the inclination increases.
以下、本発明の二次電池について実施例に基づいて詳細に説明を行う。なお、本発明は以下の実施例の範囲のみに限定されるものではないことは言うまでもない。
(試験二次電池の作成)
表1に示す組成をもつ各試験例の正極活物質と導電材としてのアセチレンブラックとを均一に混合し、Nメチル-2-ピロリドンに懸濁させた。更に結着剤としてのポリフッ化ビニリデンを加え、黒色のスラリーを得た。これを集電体(アルミ箔)に塗布し、真空乾燥して正極を作製した。表1における「活物質A」及び「活物質B」の列には、各試験例に含有される活物質A及び活物質Bの質量比(%)を示している。
Hereinafter, the secondary battery of the present invention will be described in detail based on examples. Needless to say, the present invention is not limited to the scope of the following examples.
(Creation of test secondary battery)
The positive electrode active material of each test example having the composition shown in Table 1 and acetylene black as a conductive material were uniformly mixed and suspended in N-methyl-2-pyrrolidone. Further, polyvinylidene fluoride as a binder was added to obtain a black slurry. This was applied to a current collector (aluminum foil) and vacuum dried to produce a positive electrode. In the column of “active material A” and “active material B” in Table 1, the mass ratio (%) of active material A and active material B contained in each test example is shown.
ここで、試験例1〜3については活物質A及び活物質Bを混合して懸濁させた。試験例4については活物質Aと活物質Bとについて別々に懸濁させてスラリーを調製し、まず活物質Aを含むスラリーを集電体上に塗布・乾燥した後、活物質Bを含むスラリーをその上に重ねて塗布・乾燥した。試験例5については活物質A単独で、試験例6については活物質B単独で懸濁させた。 Here, in Test Examples 1 to 3, the active material A and the active material B were mixed and suspended. For Test Example 4, active material A and active material B are separately suspended to prepare a slurry. First, a slurry containing active material A is applied and dried on a current collector, and then a slurry containing active material B. Was applied and dried. For Test Example 5, the active material A alone was suspended, and for Test Example 6, the active material B alone was suspended.
図1に作成したコイン型電池の断面図を示す。正極1として上記方法で作成した正極を用い、負極2にはリチウム金属を用いた。電解質には、エチレンカーボネートとジエチルカーボネートを混合した有機溶媒に、LiPF6を1.0mol/Lの濃度で添加した非水溶媒電解液を用いた。
FIG. 1 shows a cross-sectional view of the coin-type battery created. The positive electrode prepared by the above method was used as the
これらの正負極1,2とをセパレータ7(ポリエチレン製の多孔質膜)を介して 積層した発電要素をステンレス製のケース(正極ケース4と負極ケース5から構成されている)中に収納し、コイン型電池を製造した。正極ケース 4と負極ケース5とは正極端子と負極端子とを兼ねている。正極ケース4と負極ケース5との間にはポリプロピレン製のガスケット6を介装することで密閉性と正極ケース4と負極ケース5との間の絶縁性とを確保した。
A power generating element in which these positive and
以下に活物質A及び活物質Bの合成方法の一例を挙げる。下記の方法の他の一般的な方法、例えば、固相合成法、ゾルゲル法、共沈法また水熱合成法を用いても合成できる。 An example of a method for synthesizing the active material A and the active material B is given below. Other general methods such as the following methods, for example, a solid phase synthesis method, a sol-gel method, a coprecipitation method or a hydrothermal synthesis method can also be used for synthesis.
・活物質Aの合成例
Li源及びPO4源としてリン酸二水素リチウムLiH2PO4を、Fe源としてシュウ酸鉄(II)二水和物FeC2O4・2H2Oを、Mn源として酢酸マンガン(II)Mn(CH3COO)2を用い、Li:Fe:Mn:PO4がモル比で1:0.25:0.75:1になるように精秤した。原料をエタノールと共にボールミルを用いて充分に混合した後に、乾燥させ乳鉢で解砕した粉末をアルゴンガス雰囲気で600℃、12時間焼成した。得られた焼成物をボールミルで再度粉砕した後、ポリビニルアルコール水溶液と混合、乾燥し、アルゴンガス雰囲気で600℃、12時間焼成した。(オリビンと炭素の質量比が97:3となるように調整)。
Synthesis Example of Active Material A Lithium Dihydrogen Phosphate LiH 2 PO 4 as Li Source and PO 4 Source, Iron (II) Oxalate Dihydrate FeC 2 O 4 · 2H 2 O as Fe Source, Mn Source Manganese acetate (II) Mn (CH 3 COO) 2 was used as a sample, and precisely weighed so that the molar ratio of Li: Fe: Mn: PO 4 was 1: 0.25: 0.75: 1. After thoroughly mixing the raw materials with ethanol using a ball mill, the dried and crushed powder in a mortar was baked at 600 ° C. for 12 hours in an argon gas atmosphere. The obtained fired product was pulverized again with a ball mill, mixed with a polyvinyl alcohol aqueous solution, dried, and fired in an argon gas atmosphere at 600 ° C. for 12 hours. (Adjusted so that the mass ratio of olivine to carbon is 97: 3).
・活物質Bの合成例
Li源として水酸化リチウムLiOHを、Fe源としてシュウ酸鉄(II)二水和物FeC2O4・2H2Oを、Mn源として酢酸マンガン(II)Mn(CH3COO)2を、Si源としてSiO2を用い、Li:Fe:Mn:Siがモル比で2:0.25:0.75:1になるように精秤した。原料をエタノールと共にボールミルを用いて充分に混合した後に、乾燥させ乳鉢で解砕した粉末をアルゴンガス雰囲気で650℃、12時間焼成した。得られた焼成物に対し、ボールミル粉砕とアルゴンガス雰囲気で1100℃、12時間焼成する操作を2度行った。得られた粉末とアセチレンブラックを98:2の質量比として、遊星ボールミルを用いて混合した。さらに、混合物をアルゴンガス雰囲気で600℃、12時間焼成した。焼成物は乳鉢で解砕した。
Synthesis Example of Active Material B Lithium hydroxide LiOH as the Li source, iron (II) oxalate dihydrate FeC 2 O 4 .2H 2 O as the Fe source, manganese acetate (II) Mn (CH 3 COO) 2 was precisely weighed so that SiO 2 was used as the Si source and Li: Fe: Mn: Si was in a molar ratio of 2: 0.25: 0.75: 1. After thoroughly mixing the raw materials with ethanol using a ball mill, the dried and crushed powder in a mortar was baked at 650 ° C. for 12 hours in an argon gas atmosphere. The obtained fired product was subjected to ball milling and firing at 1100 ° C. for 12 hours in an argon gas atmosphere twice. The obtained powder and acetylene black were mixed at a mass ratio of 98: 2 using a planetary ball mill. Furthermore, the mixture was baked at 600 ° C. for 12 hours in an argon gas atmosphere. The fired product was crushed in a mortar.
(充放電試験)
表1に示す使用電位範囲について充放電試験を行った。結果を図2(試験例1)〜図7(試験例6)に示す。図2〜7から充放電時の充放電深度−電位曲線の様子を求め、その曲線の傾きが変化する点の充放電深度を求めた。結果を表1に併せて示す。表1における充電時とは充電を継続していった際の充放電深度−電位曲線の傾きが大きくなる点の充電深度を示し、放電時とは放電を継続していった際の充放電深度−電位曲線の傾きが大きくなる点の充電深度(放電深度)を示す。試験例1〜5の試験二次電池ではその充電時と放電時とで示されるSOCの範囲(充放電領域)で安定した出力が得られた。試験例6の試験二次電池については充放電深度の全域にわたり電位変化が大きく、電位変化から充放電深度を推定することは容易であったため特に曲線の傾きが大きくなる点は示していないが、全域において電位変化が大きく安定した出力を得ることができなかった。
(Charge / discharge test)
A charge / discharge test was conducted for the working potential range shown in Table 1. The results are shown in FIG. 2 (Test Example 1) to FIG. 7 (Test Example 6). The state of the charge / discharge depth-potential curve at the time of charging / discharging was calculated | required from FIGS. The results are also shown in Table 1. The charging time in Table 1 indicates the charging depth at the point where the slope of the charging / discharging depth-potential curve when charging continues, and the discharging time indicates the charging / discharging depth when discharging continues. -Indicates the depth of charge (discharge depth) at the point where the slope of the potential curve increases. In the test secondary batteries of Test Examples 1 to 5, stable output was obtained in the SOC range (charge / discharge region) indicated by the charge and discharge. For the test secondary battery of Test Example 6, the potential change is large over the entire charging / discharging depth, and it is easy to estimate the charging / discharging depth from the potential change. A stable output with a large potential change in the entire region could not be obtained.
そして、試験例5の試験二次電池では10%−95%の広い範囲で安定した出力特性を示すが、充電時では95%になるまで明確に電位変化を検出できず5%しか余裕が無いことが分かった。放電時も充電時と同様に10%しか余裕がないことが分かった。 The test secondary battery of Test Example 5 shows stable output characteristics in a wide range of 10% to 95%, but at the time of charging, the potential change cannot be clearly detected until 95%, and there is only 5% margin. I understood that. It was found that there was only a 10% margin at the time of discharging as in the case of charging.
それに対して、試験例1〜4の試験二次電池では充電時及び放電時の双方において15%〜20%(25%)の余裕があり、電池のSOCを検知したい部分(過充電や過放電のおそれがある領域)で検知することを可能にし、過放電や過充電のおそれを少なくすることができる。 On the other hand, the test secondary batteries of Test Examples 1 to 4 have a margin of 15% to 20% (25%) both at the time of charging and at the time of discharging, and the part where the SOC of the battery is to be detected (overcharge or overdischarge) Can be detected, and the risk of overdischarge and overcharge can be reduced.
(充放電深度−電位曲線における傾きが大きくなる位置(充放電領域)の制御)
前述した式(1)〜(4)に基づき充放電領域の位置を算出した結果と、上述の試験により求めた結果とを表2に示す。なお、t1及びt2について実測した値(補正無し)は図から読みとった値であり、図2〜図5における電位−充放電深度曲線から読み取ったものである。
(Control of position (charge / discharge region) where slope in charge / discharge depth-potential curve increases)
Table 2 shows the result of calculating the position of the charge / discharge region based on the above-described equations (1) to (4) and the result obtained by the above test. The values actually measured for t1 and t2 (without correction) are values read from the drawings, and are read from the potential-charge / discharge depth curves in FIGS.
具体的にはt1は充電時における電圧変化が大きくなるところからSOC100%までの部分であり、t2は放電時における電圧変化が大きくなるところからSOC0%までの部分である。電圧変化が大きくなるところはSOC1%当たりの電圧変化をΔVとすると、ΔV>0.0025V(0.2V/SOC80%)になる部分とした。
Specifically, t1 is a portion from the point where the voltage change during charging increases to
そして、補正有りとは活物質Aに由来する電気容量を差し引いて計算した値である。具体的には活物質A単独で含有させた電極について、前述した方法と同じ方法にて充放電深度−電位曲線における傾きが大きくなる位置を特定し(図6に具体例を示す。図6では充電時における傾きが大きくなってからの容量をt1A、放電時における傾きが大きくなってからの容量をt2Aで表した。)、その容量に相当する大きさを実測したt1(補正無し)やt2(補正無し)から引くことで活物質Bに由来するt1(補正有り),t2(補正有り)を算出した。従って、補正により減少する値は活物質Aの種類により変化する。 “With correction” is a value calculated by subtracting the electric capacity derived from the active material A. Specifically, for the electrode containing the active material A alone, the position where the slope in the charge / discharge depth-potential curve becomes large is specified by the same method as described above (a specific example is shown in FIG. 6). The capacity after increasing the slope at the time of charging is represented by t1A, the capacity after the increasing slope at the time of discharging is represented by t2A), and the magnitude corresponding to the capacity is measured by t1 (no correction) or t2 By subtracting from (without correction), t1 (with correction) and t2 (with correction) derived from the active material B were calculated. Therefore, the value decreased by the correction varies depending on the type of the active material A.
表2より明らかなように、補正後の実測値と計算値とは試験例4の充電時の値を除き、1〜2割の変動幅に収まっている。つまり、t1及びt2について狙った値を実現すること可能である。なお、試験例4において充電時の計算値と実測値(補正有り)との差が大きいのは活物質Aと活物質Bとを別々に重ね合わせて活物質層を形成したためであると考えられる。 As is apparent from Table 2, the actually measured value and the calculated value after correction are within the fluctuation range of 10 to 20% except for the value at the time of charging in Test Example 4. That is, it is possible to realize the targeted values for t1 and t2. In Test Example 4, the difference between the calculated value at the time of charging and the actually measured value (with correction) is considered to be because the active material layer was formed by separately superposing the active material A and the active material B. .
つまり、試験例4では、LiMPO4の上にLi2MSiO4を重ねて塗っており、Li2MSiO4が集電体から遠い部分にあるため、充電時に分極が大きくなりやすい状況になっていると考えられる。結果として、生起した分極の大きさだけ理論上よりも早い段階で充電の上限電圧に到達することになる。したがって、理論値のt1よりも実際のt1が小さくなるものと考えられる。 That is, in Test Example 4, and painted on top of Li 2 MSiO 4 on the LiMPO 4, since Li 2 MSiO 4 is in the portion far from the current collector, and is likely to polarization increases during charging situation it is conceivable that. As a result, the upper limit voltage of charging is reached at an earlier stage than theoretically by the magnitude of the generated polarization. Therefore, the actual t1 is considered to be smaller than the theoretical value t1.
1 …正極
1a…正極集電体
2 …負極
2a…負極集電体
3 …電解液
4 …正極ケース
5 …負極ケース
6 …ガスケット
7 …セパレータ
10…コイン型電池
DESCRIPTION OF
Claims (2)
前記活物質A単独では前記二次電池の使用電位範囲での充放電容量を100%としたとき、その80%を超える容量分の連続した領域における電圧変動が0.2V以内であり、
前記活物質B単独では、前記領域における前記活物質Aの平均電圧を基準として、0.2V以上高い充電電圧と0.2V以上低い放電電圧の両方をもち、充放電深度50%における充電電圧と放電電圧との差が0.5V以上あって、
前記使用電位範囲は、放電終了電圧が1.5〜2.0Vの範囲内、且つ、充電終了電圧が4.0〜4.5Vの範囲内であり、
さらに下記(i)を満たすことを特徴とする二次電池。
(i)前記活物質Bの含有量は前記使用電位範囲内での前記充放電容量を100%として、前記平均電圧よりも高い電圧且つ充電時には前記充放電深度80%から90%においてΔV(前記充放電容量1%当たりの電圧変化。以下同じ)の絶対値が0.0025Vに初めて達することができると共に、前記平均電圧よりも低い電圧且つ放電時には前記充放電深度15%から25%においてΔVの絶対値が0.0025Vに初めて達することができる量である。 An active material A that is LiFe X Mn (1-X) PO 4 (0 ≦ X ≦ 1) and an active material B that is Li 2 Fe Y Mn (1-Y) SiO 4 (0 ≦ Y <1) A positive electrode containing (excluding the combination of active material A and active material B in which active material A is LiFePO 4 and active material B is Li 2 MnO 3 ),
In the active material A alone, when the charge / discharge capacity in the use potential range of the secondary battery is 100%, the voltage fluctuation in a continuous region corresponding to the capacity exceeding 80% is within 0.2V,
The active material B alone has both a charging voltage higher by 0.2 V or more and a discharging voltage lower by 0.2 V or more, based on the average voltage of the active material A in the region, and a charging voltage at a charge / discharge depth of 50% The difference from the discharge voltage is 0.5V or more,
The use potential range has a discharge end voltage in a range of 1.5 to 2.0 V and a charge end voltage in a range of 4.0 to 4.5 V,
Furthermore, the secondary battery characterized by satisfying the following (i) .
(I) The content of the active material B is ΔV (at the charging / discharging depth of 80% to 90% at the time of charging at a voltage higher than the average voltage and charging when the charging / discharging capacity within the working potential range is 100%. The absolute value of the voltage change per 1% charge / discharge capacity (the same applies hereinafter) can reach 0.0025V for the first time, and at a voltage lower than the average voltage and at the discharge depth of 15% to 25% during the discharge , ΔV This is the amount that the absolute value can reach 0.0025V for the first time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010241349A JP5920613B2 (en) | 2010-10-27 | 2010-10-27 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010241349A JP5920613B2 (en) | 2010-10-27 | 2010-10-27 | Secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012094395A JP2012094395A (en) | 2012-05-17 |
JP5920613B2 true JP5920613B2 (en) | 2016-05-18 |
Family
ID=46387514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010241349A Expired - Fee Related JP5920613B2 (en) | 2010-10-27 | 2010-10-27 | Secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5920613B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013187582A1 (en) * | 2012-06-13 | 2013-12-19 | 주식회사 엘지화학 | Apparatus and method for estimating state of charge of secondary cell including mixed cathode material |
JP5991551B2 (en) | 2014-01-08 | 2016-09-14 | トヨタ自動車株式会社 | Nonaqueous electrolyte secondary battery |
CN108400022A (en) * | 2018-03-05 | 2018-08-14 | 山东大学 | A kind of preparation method of manganous silicate/carbon supercapacitor electrode material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5558349B2 (en) * | 2007-07-12 | 2014-07-23 | エー123 システムズ, インコーポレイテッド | Multifunctional alloy olivine for lithium-ion battery |
JP5470773B2 (en) * | 2007-12-19 | 2014-04-16 | 株式会社Gsユアサ | Nonaqueous electrolyte secondary battery |
JP5228576B2 (en) * | 2008-03-31 | 2013-07-03 | 株式会社豊田中央研究所 | Lithium ion secondary battery and electric vehicle power supply |
-
2010
- 2010-10-27 JP JP2010241349A patent/JP5920613B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012094395A (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Du Pasquier et al. | Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life | |
CN106663770B (en) | Nonaqueous electrolyte secondary battery | |
JP5315591B2 (en) | Positive electrode active material and battery | |
JP5910627B2 (en) | Secondary battery | |
JP5472237B2 (en) | Battery active material, battery active material manufacturing method, and battery | |
JP5099168B2 (en) | Lithium ion secondary battery | |
CN115799601A (en) | Lithium ion battery | |
WO2011117992A1 (en) | Active material for battery, and battery | |
JP5553798B2 (en) | Positive electrode material for lithium ion secondary battery | |
US10637048B2 (en) | Silicon anode materials | |
US20160056463A1 (en) | Non-aqueous electrolyte secondary battery | |
JP2013065453A (en) | Lithium secondary battery | |
KR20170025874A (en) | Lithium secondary battery and operating method thereof | |
EP3451437B1 (en) | Lithium ion secondary cell charging method, lithium ion secondary cell system, and power storage device | |
JP2009134970A (en) | Nonaqueous electrolytic battery | |
JP5920613B2 (en) | Secondary battery | |
JP2013239375A (en) | Lithium ion secondary battery and method for manufacturing the same | |
JP2013239374A (en) | Lithium ion secondary battery and method for manufacturing the same | |
CN112673503A (en) | Nonaqueous electrolyte electricity storage element and electricity storage device | |
JP5673179B2 (en) | Assembled battery | |
JP6709991B2 (en) | Lithium ion secondary battery | |
JP5333658B2 (en) | Battery active material and battery | |
JP2018133284A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP5725000B2 (en) | Battery active material and battery | |
JP6222389B1 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160330 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5920613 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |