WO2021214867A1 - Emergency stop device and elevator - Google Patents

Emergency stop device and elevator Download PDF

Info

Publication number
WO2021214867A1
WO2021214867A1 PCT/JP2020/017182 JP2020017182W WO2021214867A1 WO 2021214867 A1 WO2021214867 A1 WO 2021214867A1 JP 2020017182 W JP2020017182 W JP 2020017182W WO 2021214867 A1 WO2021214867 A1 WO 2021214867A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
emergency stop
stop device
drive
movable iron
Prior art date
Application number
PCT/JP2020/017182
Other languages
French (fr)
Japanese (ja)
Inventor
広基 遠藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2022516513A priority Critical patent/JP7360546B2/en
Priority to CN202080099726.9A priority patent/CN115397760B/en
Priority to PCT/JP2020/017182 priority patent/WO2021214867A1/en
Publication of WO2021214867A1 publication Critical patent/WO2021214867A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well

Definitions

  • the present invention relates to an emergency stop device for stopping a car in an emergency and an elevator equipped with this emergency stop device.
  • rope-type elevators are long objects such as main ropes and compensating ropes that connect a riding car and a balancing weight, and a governor rope used to detect the speed of a riding car or a balancing weight.
  • a safety device it is stipulated that the elevator be provided with an emergency stop device that automatically stops the operation of the car when the speed of the car that goes up and down along the guide rail exceeds the specified value. Has been done.
  • Patent Document 1 describes a technique including a brake link, a connecting portion, an elastic body portion, a locking portion, and a control portion.
  • the lock portion in Patent Document 1 is connected to the connection portion and locks the position of the brake link to the first position where the brake is not applied or releases the position to the second position where the brake is applied.
  • the control unit sets the position of the brake link on the lock portion to the second position to release the energy stored in the elastic body portion and control the elevating body to brake. Is described.
  • the purpose of this purpose is to provide an emergency stop device and an elevator that can prevent malfunctions and improve reliability in consideration of the above problems.
  • the emergency stop device includes a braking mechanism, a driving mechanism, and an operating mechanism.
  • the braking mechanism is provided on the elevating body and holds a guide rail on which the elevating body slides to stop the movement of the elevating body.
  • the drive mechanism is connected to the braking mechanism to operate the drive mechanism.
  • the braking mechanism is connected to the drive mechanism to operate the drive mechanism.
  • the operating mechanism includes a connecting member that is connected to the driving mechanism and moves together with the driving mechanism, a movable iron core fixed to the connecting member, an electromagnetic core that separately adsorbs the movable iron core, a moving mechanism, and a locking mechanism. It has.
  • the moving mechanism movably supports the electromagnetic core in the direction of approaching and separating from the movable iron core.
  • the locking mechanism contacts the moving mechanism and regulates the movement of the electromagnetic core so that it can be released.
  • the lock mechanism has a load receiving portion that receives a load from a drive spring provided in the drive mechanism.
  • the elevator is an elevator equipped with an elevator that moves up and down in the hoistway. It is provided with a guide rail that is erected in the hoistway and slidably supports the elevating body, and an emergency stop device that stops the movement of the elevating body based on the state of the elevating movement of the elevating body. Further, as the emergency stop device, the above-mentioned emergency stop device is used.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. 3, showing only the locking mechanism and the core plate.
  • FIG. 3 is a cross-sectional view taken along the line BB shown in FIG. 3, showing only the locking mechanism and the core plate.
  • FIG. 3 is a front view which shows the state which the actuating mechanism of the emergency stop device which concerns on embodiment is actuated.
  • FIG. 1 is a schematic configuration diagram showing a configuration example of the elevator of this example.
  • the elevator 1 of this example moves up and down in a hoistway 110 formed in a building structure.
  • the elevator 1 includes a car 120 showing an example of an elevating body on which a person or luggage is placed, a main rope 130, and a counterweight 140 showing another example of the elevating body. Further, the elevator 1 includes a hoisting machine 100 and an emergency stop device 5.
  • the elevator 1 is provided with a control unit 170 and a warp vehicle 150.
  • the hoistway 110 is formed in a building structure, and a machine room 160 is provided at the top of the hoistway 110.
  • a hoisting machine 100 and a warp wheel 150 are arranged in the machine room 160.
  • a main rope 130 is wound around the sheave shown in the attached drawing of the hoisting machine 100. Further, in the vicinity of the hoisting machine 100, a warp wheel 150 on which the main rope 130 is mounted is provided.
  • the upper part of the car 120 is connected to one end of the main rope 130, and the upper part of the balance weight 140 is connected to the other end of the main rope 130.
  • the car 120 and the balance weight 140 move up and down the hoistway 110.
  • the direction in which the car 120 and the balance weight 140 move up and down is referred to as the elevating direction Z.
  • the car 120 is slidably supported by two guide rails 201A and 201B via a guide device (not shown).
  • the balance weight 140 is slidably supported by the weight side guide rail 201C via a guide device (not shown).
  • the two guide rails 201A and 201B and the weight side guide rail 201C extend along the elevating direction Z in the hoistway 110.
  • the car 120 is provided with an emergency stop device 5 for emergency stopping the ascending / descending movement of the car 120.
  • the detailed configuration of the emergency stop device 5 will be described later.
  • a control unit 170 is installed in the machine room 160.
  • the control unit 170 is connected to the car 120 via a connection wiring (not shown). Then, the control unit 170 outputs a control signal to the car 120. Further, the control unit 170 is installed in the hoistway 110 and is connected to a state detection sensor (not shown) that detects the state of the car 120.
  • the information detected by the state detection sensor includes position information of the car 120 moving up and down in the hoistway 110, speed information of the car 120, acceleration information of the car 120, and the like.
  • position information of the car 120 for example, in a multicar elevator in which a plurality of car 120s move up and down in the same hoistway 110, the distance between the two vertically adjacent car 120s is closer than a predetermined distance. This is the abnormal approach information that is detected when the elevator is used.
  • the speed information of the car 120 is, for example, abnormal descent speed information detected when the descent speed of the car 120 exceeds the rated speed and reaches a predetermined speed.
  • the acceleration information of the car 120 is, for example, abnormal acceleration information detected when the acceleration of the car 120 deviates from a preset pattern.
  • the state detection sensor outputs the detected information to the control device.
  • the control unit 170 determines whether the state of the car 120 is abnormal or normal based on the information detected by the state detection sensor. Then, when the control unit 170 determines that the state of the car 120 is abnormal, the control unit 170 outputs an operation command signal to the emergency stop device 5. As a result, the emergency stop device 5 operates based on the operation command signal from the control unit 170 to stop the car 120.
  • position information, velocity information, and acceleration information may be detected by different sensors.
  • control unit 170 may select and acquire the position information, the speed information, and the acceleration information individually, or may acquire a plurality of information in combination.
  • control unit 170 and the car 120 are not limited to the example of being connected by wire, and may be connected so that signals can be transmitted and received wirelessly.
  • the direction in which the car 120 moves up and down is referred to as the elevating direction Z
  • the direction orthogonal to the elevating direction Z and facing the car 120 and the guide rail 201A is referred to as the first direction X
  • the direction orthogonal to the first direction X and also orthogonal to the elevating direction Z is defined as the second direction Y.
  • FIG. 2 is a front view showing the emergency stop device 5.
  • the emergency stop device 5 includes two braking mechanisms 10A and 10B, an operating mechanism 11, a driving mechanism 12 for operating the braking mechanisms 10A and 10B, a first pulling rod 13, and a second pulling rod. It has a rod 14.
  • the operating mechanism 11 is arranged on a crosshead 121 provided on the upper part of the car 120.
  • the drive mechanism 12 includes a drive shaft 15, a first link member 16, a second link member 17, a first operating shaft 18, a second operating shaft 19, and a drive spring 20.
  • the first operating shaft 18 and the second operating shaft 19 are provided on the crosshead 121 installed on the upper part of the car 120.
  • the first operating shaft 18 is provided at one end of the crosshead 121 in the first direction X
  • the second operating shaft 19 is provided at the other end of the crosshead 121 in the first direction X.
  • the first link member 16 is rotatably supported on the first operating shaft 18, and the second link member 17 is rotatably supported on the second operating shaft 19.
  • the first link member 16 and the second link member 17 are formed in a substantially T shape.
  • the first link member 16 has an operating piece 16a and a connecting piece 16b.
  • the working piece 16a projects substantially vertically from the connecting piece 16b. Further, the operating piece 16a is connected to one end side of the connecting piece 16b with respect to the intermediate portion in the longitudinal direction.
  • the actuating piece 16a is on the minus side of the first direction X of the car 120 (referred to as the left side in the drawing; hereinafter, the left side of the paper surface and the lower side of the paper surface in the XYZ axis in the drawing are the minus side, and the XYZ axis is defined as the minus side.
  • the right side of the paper surface and the upper side of the paper surface are the plus side), and the guide rails 201A project toward the guide rails 201A.
  • the first pulling rod 13 is connected to the end of the operating piece 16a on the side opposite to the connecting piece 16b via the connecting portion 26.
  • the first link member 16 is rotatably supported by the first operating shaft 18 at a position where the operating piece 16a and the connecting piece 16b are connected.
  • a drive shaft 15 is connected to one end of the connecting piece 16b in the longitudinal direction via a connecting portion 25.
  • a connecting member 41 of the operating mechanism 11, which will be described later, is connected to the end of the connecting piece 16b opposite to the end connected to the drive shaft 15, that is, the other end in the longitudinal direction (see FIG. 3). ).
  • the first link member 16 is arranged so that one end in the longitudinal direction of the connecting piece 16b faces upward in the elevating direction Z and the other end of the connecting piece 16b in the longitudinal direction faces downward in the elevating direction Z.
  • the second link member 17 has an operating piece 17a and a connecting piece 17b.
  • the working piece 17a projects substantially vertically from the connecting piece 17b. Further, the operating piece 17a is connected to an intermediate portion in the longitudinal direction of the connecting piece 17b. Then, the operating piece 17a projects toward the guide rail 201B arranged on the positive side of the first direction X of the car 120.
  • a second pull-up rod 14 is connected to the end of the operating piece 17a on the opposite side of the connecting piece 17b via the connecting portion 28.
  • the drive shaft 15 is connected to the other end of the connection piece 17b in the longitudinal direction via the connection portion 27.
  • the second link member 17 is rotatably supported by the second operating shaft 19 at the connection point between the operating piece 17a and the connecting piece 17b.
  • the second link member 17 is arranged so that one end in the longitudinal direction of the connecting piece 17b faces upward in the elevating direction Z and the other end of the connecting piece 17b in the longitudinal direction faces downward in the elevating direction Z.
  • One end of the first direction X on the drive shaft 15 is connected to the connecting piece 16b of the first link member 16, and the other end of the first direction X on the drive shaft 15 is the second link member 17. It is connected to the connection piece 17b. Further, a drive spring 20 is provided at an intermediate portion of the drive shaft 15 in the axial direction.
  • the drive spring 20 is composed of, for example, a compression coil spring. One end of the drive spring 20 is fixed to the crosshead 121 via a fixing portion 21, and the other end of the drive spring 20 is fixed to the drive shaft 15 via a pressing member 22. Then, the drive spring 20 urges the drive shaft 15 toward the plus side in the first direction X via the pressing member 22.
  • the drive shaft 15 is urged by the drive spring 20 and moves toward the plus side in the first direction X.
  • the first link member 16 rotates about the first operating shaft 18 so that the end of the operating piece 16a to which the first pulling rod 13 is connected faces upward in the elevating direction Z.
  • the second link member 17 rotates about the second operating shaft 19 so that the end of the operating piece 17a to which the second pulling rod 14 is connected faces upward in the ascending / descending direction Z.
  • the first pulling rod 13 and the second pulling rod 14 are interlocked and pulled upward in the elevating direction Z.
  • first braking mechanism 10A is connected to the end of the first pulling rod 13 opposite to the end to which the operating piece 16a is connected.
  • the second braking mechanism 10B is connected to the end of the second pull-up rod 14 opposite to the end to which the actuating piece 17a is connected. Then, the first pulling rod 13 pulls up the pair of brakes of the first braking mechanism 10A, which will be described later, toward the upper side in the elevating direction Z. Further, the second pulling rod 14 pulls up a pair of brakes of the second braking mechanism 10B, which will be described later, toward the upper side in the elevating direction Z.
  • the first braking mechanism 10A and the second braking mechanism 10B are arranged at the lower end of the car 120 in the ascending / descending direction Z.
  • the first braking mechanism 10A is arranged at one end of the first direction X of the car 120 so as to face the guide rail 201A.
  • the second braking mechanism 10B is arranged at the other end of the first direction X of the car 120 so as to face the guide rail 201B.
  • the first braking mechanism 10A and the second braking mechanism 10B each have the same configuration.
  • the first braking mechanism 10A and the second braking mechanism 10B have brakes capable of sandwiching the guide rails 201A and 201B.
  • the first braking mechanism 10A and the second braking mechanism 10B sandwich the guide rails 201A and 201B by using a brake element. As a result, the ascending / descending movement of the car 120 is braked.
  • FIG. 3 is a plan view of the operating mechanism 11 as viewed from above
  • FIG. 4 is a front view showing the operating mechanism 11, and
  • FIGS. 3 and 4 show a standby state of the operating mechanism 11.
  • the operating mechanism 11 includes a connecting member 41, an electromagnetic core 43, a movable iron core 44, a base plate 45, and a drive motor 46. Further, the operating mechanism 11 includes a feed screw shaft 47, a core plate 49, a guide member 51, and a locking mechanism 60. Then, the operating mechanism 11 operates the driving mechanism 12.
  • the base plate 45 is formed of a flat plate-shaped member.
  • the base plate 45 is fixed to the crosshead 121.
  • the location where the base plate 45 is fixed is not limited to the crosshead 121, and is not particularly limited to the car 120 which is an elevating body.
  • a support bracket 52, a fixing bracket 53, a first shaft support portion 54, and a second shaft support portion 55 are fixed to the upper surface portion of the base plate 45 in the elevating direction Z.
  • the support bracket 52 is arranged at one end of the base plate 45 in the second direction Y, and the fixed bracket 53, the first shaft support 54, and the second shaft support 55 are the other ends of the base plate 45 in the second direction Y. It is arranged in the department.
  • a guide member 51 is fixed to the support bracket 52.
  • the guide member 51 is arranged parallel to the first direction X in the base plate 45. Therefore, the guide direction of the guide member 51 is parallel to the first direction X.
  • the guide member 51 movably supports the core plate 49, which will be described later, along the first direction X.
  • the fixing bracket 53 is arranged at one end of the base plate 45 in the first direction X. Further, the first axis support portion 54 is arranged at one end of the first direction X in the base plate 45, and the second axis support portion 55 is arranged at the other end of the first direction X in the base plate 45. .. The first shaft support portion 54 is arranged at the other end of the first direction X with respect to the fixing bracket 53.
  • a drive motor 46 showing an example of a moving mechanism is fixed to the fixed bracket 53.
  • the rotation shaft 46a of the drive motor 46 projects from the fixing bracket 53 toward the other end in the first direction X.
  • a feed screw shaft 47 is attached to the rotating shaft of the drive motor 46.
  • the feed screw shaft 47 projects from the drive motor 46 toward the other end in the first direction X.
  • One end of the feed screw shaft 47 in the axial direction is rotatably supported by the first shaft support portion 54, and the other end of the feed screw shaft 47 in the axial direction is rotatably supported by the second shaft support portion 55.
  • the feed screw shaft 47 is arranged so that its axial direction is parallel to the first direction X. Further, as the feed screw shaft 47, for example, a trapezoidal screw or a ball screw is applied.
  • a screw hole 49b provided in the core plate 49, which will be described later, is screwed into the lead screw shaft 47.
  • the drive of the drive motor 46 is controlled by the control unit 170.
  • the core plate 49 which will be described later, moves to one end of the first direction X, that is, to the minus side of the first direction X.
  • the drive motor 46 reverses (reverses) the core plate 49 moves to the other end of the first direction X, that is, to the plus side of the first direction X.
  • the connecting member 41 is swingably connected to the connecting piece 16b via the connecting pin 42.
  • a movable iron core 44 is fixed to the end of the connecting member 41 on the side opposite to the end connected to the connecting piece 16b.
  • the electromagnetic core 43 faces the facing surface 44a of the movable iron core 44. Then, in the standby state shown in FIGS. 3 and 4, the movable iron core 44 is attracted to the electromagnetic core 43.
  • the electromagnetic core 43 is arranged between the guide member 51 and the feed screw shaft 47.
  • the electromagnetic core 43 is provided with a coil. When the coil is energized, the electromagnetic core 43 and the coil form an electromagnet. Then, the surface of the electromagnetic core 43 facing the facing surface 44a of the movable iron core 44 becomes the suction surface 43a that attracts the movable iron core 44.
  • the core plate 49 is fixed to the end of the electromagnetic core 43 on the side opposite to the suction surface 43a.
  • the core plate 49 is formed with a slide hole 49a and a screw hole 49b indicating a screwed portion.
  • the slide hole 49a and the screw hole 49b penetrate the core plate 49 along the first direction X.
  • the slide hole 49a is formed at one end of the core plate 49 in the second direction Y.
  • the slide hole 49a is slidably supported by the guide member 51. Therefore, the core plate 49 and the electromagnetic core 43 fixed to the core plate 49 are movably supported by the guide member 51 along the first direction X.
  • the screw hole 49b is provided at the other end of the core plate 49 in the second direction Y.
  • a female screw is formed on the inner wall surface of the screw hole 49b.
  • a feed screw shaft 47 is inserted through the screw hole 49b. Then, the female screw formed on the inner wall surface of the screw hole 49b and the feed screw shaft 47 are screwed together.
  • the core plate 49 is restricted from moving in directions other than the first direction X by the guide member 51 and the feed screw shaft 47.
  • the example in which the screw hole 49b is provided in the core plate 49 as the screw portion is not limited to this.
  • a feed nut screwing with the feed screw shaft 47 may be provided on the core plate 49.
  • the rotational force of the feed screw shaft 47 is converted into a force along the first direction X by the screw hole 49b. Then, the core plate moves along the first direction X. Further, the electromagnetic core 43 fixed to the core plate 49 also moves along the first direction X.
  • the drive motor 46 and the feed screw shaft 47 constitute a moving mechanism that moves the electromagnetic core 43 in the direction of approaching and separating from the movable iron core 44 (in this example, the first direction X).
  • a plurality of rollers 49c are provided at the other end of the core plate 49 in the second direction Y.
  • the rollers 49c are provided at one end of the core plate 49 in the first direction X and at the upper end of the core plate 49 in the elevating direction Z.
  • the rollers 49c provided at one end of the first direction X are arranged on both sides of the screw hole 49b in the second direction Y.
  • FIGS. 3, 5, and 6 are cross-sectional views taken along the line AA shown in FIG. 3, and FIG. 6 is a cross-sectional view taken along the line BB shown in FIG. Note that FIGS. 5 and 6 show only a part of the lock mechanism 60 and the core plate 49.
  • the lock mechanism 60 is arranged on the side of the base plate 45 where the feed screw shaft 47 is arranged, that is, at the other end of the second direction Y.
  • the lock mechanism 60 is arranged at the other end of the first direction X, which is near the second shaft support portion 55 on the base plate 45.
  • the lock mechanism 60 regulates the movement of one end of the core plate 49 in the first direction X, that is, toward the minus side of the first direction X in the standby state.
  • the lock mechanism 60 includes a holding solenoid 61, a lever 62, a pair of stoppers 63 and 63, a plurality of guide columns 64, and an urging member 67.
  • the holding solenoid 61 is installed on the base plate 45. Further, a plurality of guide columns 64 are arranged so as to surround the holding solenoid 61. The plurality of guide columns 64 indicating the load receiving portions are erected from the upper surface portion of the base plate 45 toward the upper side in the elevating direction Z.
  • the plunger 61a of the holding solenoid 61 projects upward in the elevating direction Z, similarly to the guide support column 64.
  • a lever 62 is arranged at the tip of the plunger 61a.
  • the lever 62 is supported by a guide column 64 so as to be movable along the elevating direction Z. Further, one end of the lever 62 in the second direction Y is inserted between two guide columns 64, 64 arranged at one end of the second direction Y among the plurality of guide columns 64. The lever 62 is restricted from moving in the first direction X by a plurality of guide columns 64. One end of the lever 62 in the second direction Y projects toward the feed screw shaft 47.
  • An urging member 67 is interposed between the lever 62 and the holding solenoid 61.
  • the urging member 67 is attached to the plunger 61a of the holding solenoid 61. Then, the urging member 67 urges the lever 62 upward in the ascending / descending direction Z.
  • a coil spring is applied as the urging member 67 of this example.
  • a member having various elasticity such as rubber or a leaf spring may be used in addition to the coil spring.
  • a pair of stoppers 63, 63 are provided at an end of the lever 62 protruding from the plurality of guide columns 64, that is, at one end in the second direction Y.
  • the pair of stoppers 63, 63 are connected via the connecting piece 65, and are arranged at intervals along the second direction Y.
  • the connection piece 65 is provided at the lower end of the stopper 63 in the ascending / descending direction Z.
  • the connection piece 65 is arranged on the lower end side in the elevating direction Z with respect to the feed screw shaft 47.
  • the pair of stoppers 63, 63 face the other end of the core plate 49 in the second direction Y. Then, the other end of the pair of stoppers 63, 63 in the first direction X comes into contact with the roller 49c provided on the core plate 49. Further, the pair of stoppers 63, 63 are arranged on both sides of the feed screw shaft 47 in the second direction Y.
  • stoppers 63 Although an example in which two stoppers 63 are provided has been described, the present invention is not limited to this, and the number of stoppers 63 may be only one or three or more.
  • a tapered surface 63a is formed at an end of the stopper 63 opposite to the end facing the core plate 49, that is, at one end in the first direction X.
  • the tapered surface 63a is inclined so that the height in the ascending / descending direction Z continuously decreases from the other end of the first direction X toward one end.
  • the roller 49c provided on the core plate 49 comes into contact with the tapered surface 63a.
  • the connecting member 41, the electromagnetic core 43, the movable iron core 44, the base plate 45, the drive motor 46, the feed screw shaft 47, and the core plate 49 constituting the operating mechanism 11 described above are housed in a housing (not shown). NS.
  • the emergency stopping device 5 is increased in size. Can be suppressed. Further, by consolidating the functions of the operating mechanism 11 into one place, maintenance work can be easily performed.
  • the drive spring 20 is arranged at a position different from that of the actuating mechanism 11, and the drive spring 20 and the actuating mechanism 11 are connected via the first link member 16 which is a link mechanism. As a result, the operating mechanism 11 can be downsized.
  • the position where the drive motor 46 and the feed screw shaft 47 are arranged is not limited to the above-mentioned example.
  • the drive motor 46 may be arranged on the other end side of the base plate 45 in the first direction X.
  • a screw hole 49b may be provided in the middle portion of the core plate 49 in the second direction Y, and the drive motor 46 and the feed screw shaft 47 may be arranged in the middle portion of the core plate 49 in the second direction Y.
  • the lock mechanism 60 is arranged on the guide member 51 side.
  • the standby state of the emergency stop device 5 will be described with reference to FIGS. 3 to 6.
  • the core plate 49 and the electromagnetic core 43 are arranged on the other end side of the feed screw shaft 47 in the first direction X. Further, the coil of the electromagnetic core 43 is energized, and the electromagnetic core 43 is excited. As a result, an electromagnet composed of an electromagnetic core 43 and a coil is configured.
  • the movable iron core 44 is attracted to the suction surface 43a of the electromagnetic core 43. Therefore, one end of the connecting piece 16b of the first link member 16 is held toward the plus side in the first direction X via the connecting member 41 to which the movable iron core 44 is fixed. As a result, the drive shaft 15 connected to the other end of the connection piece 16b is urged to the minus side in the first direction X against the urging force of the drive spring 20.
  • the urging force of the drive spring 20 acts on the electromagnetic core 43 via the first link member 16, the connecting member 41, and the movable iron core 44. Therefore, the electromagnetic core 43 and the core plate 49 are urged toward one end side, that is, the minus side in the first direction X. Due to this urging force, the electromagnetic core 43 may move to the negative side in the first direction X.
  • the movement of the core plate 49 in the first direction X is restricted by the stopper 63 of the lock mechanism 60.
  • the electromagnetic core 43 is prevented from moving to the negative side in the first direction X due to the urging force of the drive spring 20.
  • the braking mechanisms 10A and 10B of the emergency stop device 5 from malfunctioning, and it is possible to improve the reliability of the emergency stop device 5.
  • the stopper 63 and the lever 62 receive a load toward the minus side in the first direction X via the core plate 49. Then, the load applied to the lever 62 and the stopper 63 is received by the guide support column 64. Therefore, the urging force of the drive spring 20 is not applied to the holding solenoid 61 and the urging member 67. As a result, the holding solenoid 61 and the urging member 67 can be miniaturized.
  • the present invention is not limited to this, and the load from the drive spring 20 is received.
  • the load receiving portion may be provided separately from the guide support column 64.
  • the expansion / contraction direction of the plunger 61a and the urging member 67 of the holding solenoid 61 is in the elevating direction Z, and the electromagnetic core 43 and the core plate 49 are in the direction of receiving the urging force of the drive spring 20 in the first direction X.
  • the trapezoidal thread to the threaded portion of the lead screw shaft 47, the threaded portion of the lead screw shaft 47 and the screw hole 49b of the core plate 49 come into surface contact with each other. Therefore, the frictional force between the feed screw shaft 47 and the screw hole 49b and the holding force of the core plate 49 can be increased as compared with a ball screw in which a ball is provided between the screw portion and the screw hole. Therefore, by applying the trapezoidal thread, it is possible to prevent the feed screw shaft 47 and the screw hole 49b from converting linear motion into rotary motion, that is, so-called reverse operation.
  • the core plate 49 can be moved more smoothly in the return operation described later than in the case where the trapezoidal screw is applied.
  • FIG. 7 is a front view showing a state in which the operating mechanism 11 is operated
  • FIG. 8 is a plan view showing a state in which the operating mechanism 11 is operated.
  • control unit 170 determines that the descent speed of the car 120 exceeds a predetermined speed when the car 120 (see FIGS. 1 and 2) is moving downward, the control unit 170 operates the emergency stop device 5. Output a command signal. As a result, the energization of the electromagnetic core 43 is cut off.
  • the magnetism of the electromagnetic core 43 is erased by cutting off the energization of the electromagnetic core 43.
  • the drive shaft 15 moves to the plus side in the first direction X by the urging force of the drive spring 20, and one end of the first link member 16 is also the first together with the drive shaft 15.
  • the first link member 16 rotates around the first operating shaft 18, and the second link member 17 rotates around the second operating shaft 19.
  • the drive mechanism 12 is operated by the actuating mechanism 11.
  • the movable iron core 44 is separated from the electromagnetic core 43 by rotating the first link member 16.
  • the connecting member 41 moves to the minus side in the first direction X.
  • the connecting member 41 swings around the connecting pin 42 when moving to the minus side in the first direction X.
  • the first pulling rod 13 and the second pulling rod 14 are interlocked and pulled upward in the elevating direction Z.
  • the first braking mechanism 10A connected to the first pulling rod 13 and the second braking mechanism 10B connected to the second pulling rod 14 (see FIG. 2) operate.
  • the pair of brakes of the first braking mechanism 10A and the second braking mechanism 10B move upward in the elevating direction Z
  • the pair of brakes of the second braking mechanism 10B connected to the second pulling rod 14 move to the guide rail.
  • sandwiching 201A and 201B the ascending / descending movement of the car 120 is mechanically stopped.
  • the movable iron core 44 connected to the drive mechanism 12 via the first link member 16 is separated from the electromagnetic core 43.
  • the connecting member 41 can be moved and the drive mechanism 12 can be reliably operated without being affected by the frictional force between the feed screw shaft 47 and the screw hole 49b, which is a moving mechanism, or the lock mechanism 60. ..
  • the reliability of the emergency stop device 5 can be improved.
  • the emergency stop device 5 of this example is provided with a holding portion for holding the movable iron core 44 and a returning portion for returning the movable iron core 44 from the braking state to the standby position in the operating mechanism 11. Therefore, when the movable iron core 44 and the connecting member 41 move, they may interfere with other members of the operating mechanism 11.
  • the drive motor 46 and the feed screw shaft 47 are arranged on the other end side in the second direction Y from the electromagnetic core 43 and the movable iron core 44. That is, the drive motor 46 and the feed screw shaft 47 are arranged at positions away from the moving track of the movable iron core 44 and the connecting member 41. In this way, the movable iron core 44 and the connecting member 41 connected to the first link member 16 are connected to other members constituting the operating mechanism 11 such as the feed screw shaft 47 during the transition operation from the standby state to the braking state. Does not interfere.
  • the first link member 16 can be smoothly rotated, and the drive mechanism 12 can be smoothly operated.
  • the braking mechanisms 10A and 10B can be operated quickly, and the reliability of the emergency stop device 5 can be improved.
  • FIGS. 9 to 11 are diagrams showing the initial state of the return operation of the lock mechanism 60
  • FIG. 11 is a diagram showing the return operation of the operating mechanism 11.
  • control unit 170 controls the power supply and energizes the coil of the electromagnetic core 43. As a result, the coil is energized, and the electromagnetic core 43 is excited.
  • control unit 170 drives the holding solenoid 61 of the lock mechanism 60. As a result, as shown in FIGS. 9 and 10, the holding solenoid 61 sucks the plunger 61a. Then, the lever 62 moves in a direction approaching the holding solenoid 61, that is, downward in the elevating direction Z, against the urging force of the urging member 67.
  • rollers 49c are provided at locations on the core plate 49 that come into contact with the pair of stoppers 63.
  • the roller 49c can reduce the frictional resistance when the stopper 63 moves.
  • the holding solenoid 61 for moving the lever 62 and the stopper 63 can be miniaturized.
  • the roller 49c may not be provided. Further, before driving the holding solenoid 61, the drive motor 46 may be driven in the reverse rotation to move the core plate 49 to the plus side in the first direction X. Since the core plate 49 is separated from the stopper 63, the frictional force on the stopper 63 can be eliminated by the core plate 49, and the lever 62 and the stopper 63 can be moved more smoothly.
  • the control unit 170 drives the drive motor 46 in the forward rotation to rotate the feed screw shaft 47.
  • the rotational force of the feed screw shaft 47 is converted into a force along the first direction X by the feed screw shaft 47 and the screw holes 49b of the core plate 49. Therefore, as shown in FIG. 11, the core plate 49 is guided by the guide member 51 and moves to the minus side in the first direction X. Further, the electromagnetic core 43 fixed to the core plate 49 also moves in the direction approaching the movable iron core 44, that is, in the minus side of the first direction X.
  • the control unit 170 releases the drive of the holding solenoid 61.
  • the lever 62 and the stopper 63 move upward in the ascending / descending direction Z due to the urging force of the urging member 67.
  • the control unit 170 drives the drive motor 46 in the reverse rotation to rotate the feed screw shaft 47.
  • the core plate 49 screwed into the feed screw shaft 47 moves toward the positive side in the first direction X. Therefore, the core plate 49, the electromagnetic core 43, the movable iron core 44 adsorbed on the electromagnetic core 43, and the connecting member 41 move toward the plus side in the first direction X.
  • the connecting member 41 moves to the plus side in the first direction X
  • the first link member 16 rotates against the urging force of the drive spring 20.
  • the roller 49c of the core plate 49 comes into contact with the tapered surface 63a of the stopper 63.
  • the stopper 63 and the lever 62 are pressed by the core plate 49 downward in the ascending / descending direction Z. Therefore, the stopper 63 and the lever 62 move downward in the ascending / descending direction Z against the urging force of the urging member 67.
  • the stopper 63 By providing the stopper 63 with the tapered surface 63a in this way, when the core plate 49 is returned to the standby position, the stopper 63 and the lever 62 can be pushed down without driving the holding solenoid 61. Therefore, the holding solenoid 61 needs to be driven only once when the core plate 49 moves to the minus side in the first direction X.
  • the solenoid will generate heat. Therefore, a large solenoid with high heat resistance is required.
  • the number of times and the driving time of the holding solenoid 61 can be shortened, and the heat generation of the holding solenoid 61 can be suppressed. As a result, a small holding solenoid 61 can be used. Further, since the number of times the holding solenoid 61 is driven can be shortened, it is possible to easily control the holding solenoid 61 for the return operation. Further, the roller 49c can reduce the frictional resistance between the core plate 49 and the stopper 63, so that the core plate 49 can be moved smoothly.
  • the present invention is not limited to this, and the locking mechanism 60 is guided by the core plate 49. It may be arranged on the member 51 side.
  • the lock mechanism 60 When the lock mechanism 60 is arranged on the guide member 51 side, the distance between the portion where the core plate 49 contacts the stopper 63 and the screw hole 49b becomes longer when the core plate 49 returns. As a result, the moment required to push down the stopper 63 and the lever 62 increases. Therefore, in order to reduce the moment applied to the core plate 49, the lock mechanism 60 is arranged near the screw hole 49b side in which the force from the drive motor 46 is transmitted in the core plate 49, that is, on the feed screw shaft 47 side. Is preferable.
  • the positions of the electromagnetic core 43 and the core plate 49 may be detected by using a mechanical switch, an optical switch, or the like. Further, the detection of the suction operation of the movable iron core 44 and the electromagnetic core 43 may be determined from the value of the current flowing through the coil of the electromagnetic core 43.
  • the moving direction of the electromagnetic core of the operating mechanism 11 may be set substantially parallel to the elevating direction Z and the second direction Y, or is inclined with respect to the first direction X, the second direction Y, and the elevating direction Z. It may be in the same direction.
  • the first link member 16 and the second link member 17 may be arranged at both ends of the car 120 in the second direction Y, and the drive shaft 15 may be arranged along the second direction Y.
  • the elevating body is not limited to the car 120, and the balance weight 140 may be applied.
  • an emergency stop device may be provided on the balance weight 140 to make an emergency stop of the ascending / descending movement of the balance weight 140.
  • the operating mechanism, the driving mechanism, and the like constituting the emergency stop device are arranged on the balance weight 140.
  • control unit 170 that controls the entire elevator 1 is applied as the control unit that controls the emergency stop device
  • the present invention is not limited to this.
  • control unit various other control units such as a control unit provided in the car 120 that controls only the car 120 and a control unit that controls only the emergency stop device can be applied.

Abstract

An emergency stop device comprises a braking mechanism, a driving mechanism, and an operating mechanism. The operating mechanism is provided with a connection member which is connected to the driving mechanism and which can move together with the driving mechanism, a movable iron core which is fixed to the connection member, an electromagnetic core which separably attracts the movable iron core, a moving mechanism and a locking mechanism. The locking mechanism contacts the moving mechanism and releasably restricts movement of the electromagnetic core. Further, the locking mechanism has a load receiving part which receives a load from a driving spring.

Description

非常止め装置及びエレベーターEmergency stop device and elevator
 本発明は、非常時に乗りかごを停止させる非常止め装置及びこの非常止め装置を備えたエレベーターに関するものである。 The present invention relates to an emergency stop device for stopping a car in an emergency and an elevator equipped with this emergency stop device.
 一般的に、ロープ式のエレベーターは、乗りかごと釣合おもりを連結する主ロープ及びコンペンロープや、乗りかご又は釣合おもりの速度を検出するために用いられる調速機ロープ等の長尺物を有している。また、エレベーターには、安全装置として、ガイドレールに沿って昇降する乗りかごの速度が規定された値を超えたときに、乗りかごの運転を自動的に停止する非常止め装置を設けることが規定されている。 In general, rope-type elevators are long objects such as main ropes and compensating ropes that connect a riding car and a balancing weight, and a governor rope used to detect the speed of a riding car or a balancing weight. have. In addition, as a safety device, it is stipulated that the elevator be provided with an emergency stop device that automatically stops the operation of the car when the speed of the car that goes up and down along the guide rail exceeds the specified value. Has been done.
 近年では、調速機を用いずに電気的に非常止め装置の制動機構を作動させる非常止め装置が提案されている。従来の、この種の非常止め装置としては、例えば、特許文献1に記載されている技術がある。この特許文献1には、ブレーキリンクと、接続部と、弾性体部と、ロック部と、制御部と、を備えた技術が記載されている。特許文献1におけるロック部は、接続部に接続しブレーキリンクの位置を、ブレーキがかからない第1位置にロックしたりブレーキがかかる第2位置に解放する。そして、特許文献1には、制御部が、ロック部にブレーキリンクの位置を第2位置にすることにより、弾性体部に蓄えたエネルギーを解放して昇降体にブレーキをかけるように制御することが記載されている。 In recent years, an emergency stop device that electrically operates the braking mechanism of the emergency stop device without using a speed governor has been proposed. As a conventional emergency stop device of this type, for example, there is a technique described in Patent Document 1. This Patent Document 1 describes a technique including a brake link, a connecting portion, an elastic body portion, a locking portion, and a control portion. The lock portion in Patent Document 1 is connected to the connection portion and locks the position of the brake link to the first position where the brake is not applied or releases the position to the second position where the brake is applied. Then, in Patent Document 1, the control unit sets the position of the brake link on the lock portion to the second position to release the energy stored in the elastic body portion and control the elevating body to brake. Is described.
特開2013-189283号公報Japanese Unexamined Patent Publication No. 2013-189283
 しかしながら、特許文献1に記載された技術では、弾性体部に付勢力により、ブレーキリングを第1位置に保持するロック部が意図に反して解除されるおそれがあり、非常止め装置が誤作動するおそれがあった。 However, in the technique described in Patent Document 1, the locking portion that holds the brake ring in the first position may be unintentionally released due to the urging force on the elastic body portion, and the emergency stop device malfunctions. There was a risk.
 本目的は、上記の問題点を考慮し、誤作動を防止し、信頼性の向上を図ることができる非常止め装置及びエレベーターを提供することにある。 The purpose of this purpose is to provide an emergency stop device and an elevator that can prevent malfunctions and improve reliability in consideration of the above problems.
 上記課題を解決し、目的を達成するため、非常止め装置は、制動機構と、駆動機構と、作動機構と、を備えている。制動機構は、昇降体に設けられ、かつ昇降体が摺動するガイドレールを挟持して昇降体の移動を停止させる。駆動機構は、制動機構に接続し、駆動機構を動作させる。制動機構は、駆動機構に接続され、駆動機構を作動させる。作動機構は、駆動機構に接続されて、駆動機構と共に可動する接続部材と、接続部材に固定された可動鉄心と、可動鉄心を分離可能に吸着する電磁コアと、移動機構と、ロック機構と、を備えている。移動機構は、電磁コアを可動鉄心に対して接近及び離間する方向に移動可能に支持する。ロック機構は、移動機構に接触し、電磁コアの移動を解除可能に規制する。また、ロック機構は、駆動機構に設けた駆動ばねからの荷重を受ける荷重受け部を有する。 In order to solve the above problems and achieve the purpose, the emergency stop device includes a braking mechanism, a driving mechanism, and an operating mechanism. The braking mechanism is provided on the elevating body and holds a guide rail on which the elevating body slides to stop the movement of the elevating body. The drive mechanism is connected to the braking mechanism to operate the drive mechanism. The braking mechanism is connected to the drive mechanism to operate the drive mechanism. The operating mechanism includes a connecting member that is connected to the driving mechanism and moves together with the driving mechanism, a movable iron core fixed to the connecting member, an electromagnetic core that separately adsorbs the movable iron core, a moving mechanism, and a locking mechanism. It has. The moving mechanism movably supports the electromagnetic core in the direction of approaching and separating from the movable iron core. The locking mechanism contacts the moving mechanism and regulates the movement of the electromagnetic core so that it can be released. Further, the lock mechanism has a load receiving portion that receives a load from a drive spring provided in the drive mechanism.
 また、エレベーターは、昇降路内を昇降移動する昇降体を備えたエレベーターにおいて、
 昇降路内に立設されて昇降体を摺動可能に支持するガイドレールと、昇降体の昇降移動の状態に基づいて昇降体の移動を停止させる非常止め装置と、を備えている。また、非常止め装置としては、上述した非常止め装置が用いられる。
In addition, the elevator is an elevator equipped with an elevator that moves up and down in the hoistway.
It is provided with a guide rail that is erected in the hoistway and slidably supports the elevating body, and an emergency stop device that stops the movement of the elevating body based on the state of the elevating movement of the elevating body. Further, as the emergency stop device, the above-mentioned emergency stop device is used.
 上記構成の非常止め装置及びエレベーターによれば、誤作動を防止し、信頼性の向上を図ることができる。 According to the emergency stop device and elevator having the above configuration, malfunction can be prevented and reliability can be improved.
実施の形態例にかかるエレベーターを示す概略構成図である。It is a schematic block diagram which shows the elevator which concerns on the Example of Embodiment. 実施の形態例にかかる非常止め装置を示す正面図である。It is a front view which shows the emergency stop device which concerns on the Example of Embodiment. 実施の形態例にかかる非常止め装置の作動機構を上方から見た平面図である。It is a top view of the operating mechanism of the emergency stop device which concerns on the Example of Embodiment. 実施の形態例にかかる非常止め装置の作動機構を示す正面図である。It is a front view which shows the operating mechanism of the emergency stop device which concerns on the Example of Embodiment. 図3に示すA-A線断面図であり、ロック機構及びコアプレートのみを示す。FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. 3, showing only the locking mechanism and the core plate. 図3に示すB-B線断面図であり、ロック機構及びコアプレートのみを示す。FIG. 3 is a cross-sectional view taken along the line BB shown in FIG. 3, showing only the locking mechanism and the core plate. 実施の形態例にかかる非常止め装置の作動機構が作動した状態を示す正面図である。It is a front view which shows the state which the actuating mechanism of the emergency stop device which concerns on embodiment is actuated. 実施の形態例にかかる非常止め装置の作動機構が作動した状態を上方から見た平面図である。It is a top view which looked at the state which the actuating mechanism of the emergency stop device which concerns on embodiment is actuated. 実施の形態例にかかる非常止め装置のロック機構における復帰動作の初期状態を示す説明図である。It is explanatory drawing which shows the initial state of the return operation in the lock mechanism of the emergency stop device which concerns on Example of Embodiment. 実施の形態例にかかる非常止め装置のロック機構における復帰動作の初期状態を示す説明図である。It is explanatory drawing which shows the initial state of the return operation in the lock mechanism of the emergency stop device which concerns on Example of Embodiment. 実施の形態例にかかる非常止め装置の作動機構の復帰動作を上方から見た平面図である。It is a top view of the return operation of the operation mechanism of the emergency stop device which concerns on the Example of Embodiment.
 以下、実施の形態例にかかる非常止め装置及びエレベーターについて、図1~図11を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。 Hereinafter, the emergency stop device and the elevator according to the embodiment will be described with reference to FIGS. 1 to 11. The common members in each figure are designated by the same reference numerals.
1.実施の形態例
1-1.エレベーターの構成例
 まず、第1の実施の形態例(以下、「本例」という。)にかかるエレベーターの構成について、図1を参照して説明する。
 図1は、本例のエレベーターの構成例を示す概略構成図である。
1. 1. Embodiment 1-1. Elevator Configuration Example First, the configuration of the elevator according to the first embodiment (hereinafter referred to as “this example”) will be described with reference to FIG.
FIG. 1 is a schematic configuration diagram showing a configuration example of the elevator of this example.
 図1に示すように、本例のエレベーター1は、建築構造物内に形成された昇降路110内を昇降動作する。エレベーター1は、人や荷物を載せる昇降体の一例を示す乗りかご120と、主ロープ130と、昇降体の他の例を示す釣合おもり140と、を備えている。また、エレベーター1は、巻上機100と、非常止め装置5とを備えている。 As shown in FIG. 1, the elevator 1 of this example moves up and down in a hoistway 110 formed in a building structure. The elevator 1 includes a car 120 showing an example of an elevating body on which a person or luggage is placed, a main rope 130, and a counterweight 140 showing another example of the elevating body. Further, the elevator 1 includes a hoisting machine 100 and an emergency stop device 5.
 また、エレベーター1は、制御部170と、反らせ車150と、を備えている。なお、昇降路110は、建築構造物内に形成され、その頂部には機械室160が設けられている。 Further, the elevator 1 is provided with a control unit 170 and a warp vehicle 150. The hoistway 110 is formed in a building structure, and a machine room 160 is provided at the top of the hoistway 110.
 機械室160には、巻上機100と、反らせ車150が配置されている。巻上機100における付図の綱車には、主ロープ130が巻き掛けられている。また、巻上機100の近傍には、主ロープ130が装架される反らせ車150が設けられている。 In the machine room 160, a hoisting machine 100 and a warp wheel 150 are arranged. A main rope 130 is wound around the sheave shown in the attached drawing of the hoisting machine 100. Further, in the vicinity of the hoisting machine 100, a warp wheel 150 on which the main rope 130 is mounted is provided.
 主ロープ130の一端には、乗りかご120の上部が接続され、主ロープ130の他端には、釣合おもり140の上部が接続されている。巻上機100が駆動することで、乗りかご120及び釣合おもり140が昇降路110を昇降する。以下、乗りかご120及び釣合おもり140が昇降移動する方向を昇降方向Zとする。 The upper part of the car 120 is connected to one end of the main rope 130, and the upper part of the balance weight 140 is connected to the other end of the main rope 130. When the hoisting machine 100 is driven, the car 120 and the balance weight 140 move up and down the hoistway 110. Hereinafter, the direction in which the car 120 and the balance weight 140 move up and down is referred to as the elevating direction Z.
 乗りかご120は、不図示のガイド装置を介して2つのガイドレール201A、201Bに摺動可能に支持されている。同様に、釣合おもり140は、おもり側ガイドレール201Cに不図示のガイド装置を介して摺動可能に支持されている。2つのガイドレール201A、201Bと、おもり側ガイドレール201Cは、昇降路110内において昇降方向Zに沿って延在する。 The car 120 is slidably supported by two guide rails 201A and 201B via a guide device (not shown). Similarly, the balance weight 140 is slidably supported by the weight side guide rail 201C via a guide device (not shown). The two guide rails 201A and 201B and the weight side guide rail 201C extend along the elevating direction Z in the hoistway 110.
 また、乗りかご120には、乗りかご120の昇降移動を非常停止させる非常止め装置5が設けられている。非常止め装置5の詳細な構成については、後述する。 Further, the car 120 is provided with an emergency stop device 5 for emergency stopping the ascending / descending movement of the car 120. The detailed configuration of the emergency stop device 5 will be described later.
 さらに、機械室160には、制御部170が設置されている。制御部170は、不図示の接続配線を介して乗りかご120に接続されている。そして、制御部170は、乗りかご120に制御信号を出力する。また、制御部170は、昇降路110内に設置されて、乗りかご120の状態を検出する不図示の状態検出センサが接続されている。 Further, a control unit 170 is installed in the machine room 160. The control unit 170 is connected to the car 120 via a connection wiring (not shown). Then, the control unit 170 outputs a control signal to the car 120. Further, the control unit 170 is installed in the hoistway 110 and is connected to a state detection sensor (not shown) that detects the state of the car 120.
 状態検出センサが検出する情報としては、昇降路110内を昇降移動する乗りかご120の位置情報、乗りかご120の速度情報や、乗りかご120の加速度情報等である。乗りかご120の位置情報としては、例えば、同一の昇降路110内に複数の乗りかご120が昇降移動するマルチカーエレベーターにおいて、上下に隣接する2つの乗りかご120の間隔が所定の間隔よりも接近した際に検出される異常接近情報である。 The information detected by the state detection sensor includes position information of the car 120 moving up and down in the hoistway 110, speed information of the car 120, acceleration information of the car 120, and the like. As the position information of the car 120, for example, in a multicar elevator in which a plurality of car 120s move up and down in the same hoistway 110, the distance between the two vertically adjacent car 120s is closer than a predetermined distance. This is the abnormal approach information that is detected when the elevator is used.
 また、乗りかご120の速度情報としては、例えば、乗りかご120の下降速度が定格速度を超えて所定の速度に達した際に検出される異常下降速度情報である。そして、乗りかご120の加速度情報としては、例えば、乗りかご120の加速度が予め設定されたパターンから逸脱した際に検出される異常加速度情報である。状態検出センサは、検出した情報を制御装置に出力する。 Further, the speed information of the car 120 is, for example, abnormal descent speed information detected when the descent speed of the car 120 exceeds the rated speed and reaches a predetermined speed. The acceleration information of the car 120 is, for example, abnormal acceleration information detected when the acceleration of the car 120 deviates from a preset pattern. The state detection sensor outputs the detected information to the control device.
 制御部170は、状態検出センサで検出された情報に基づいて乗りかご120の状態が異常か正常であるかを判断する。そして、制御部170は、乗りかご120の状態が異常であると判断した場合、非常止め装置5に動作指令信号を出力する。これにより、非常止め装置5は、制御部170からの動作指令信号に基づいて、作動して、乗りかご120を停止させる。 The control unit 170 determines whether the state of the car 120 is abnormal or normal based on the information detected by the state detection sensor. Then, when the control unit 170 determines that the state of the car 120 is abnormal, the control unit 170 outputs an operation command signal to the emergency stop device 5. As a result, the emergency stop device 5 operates based on the operation command signal from the control unit 170 to stop the car 120.
 なお、本例では、状態検出センサが、位置情報、速度情報及び加速度情報を検出する例を説明したが、これに限定されるものではない。例えば、位置情報、速度情報及び加速度情報をそれぞれ異なるセンサで検出してもよい。さらに、制御部170は、位置情報、速度情報、加速度情報を選択して単独で取得してもよく、あるいは複数の情報を組み合わせて取得してもよい。 In this example, an example in which the state detection sensor detects position information, velocity information, and acceleration information has been described, but the present invention is not limited to this. For example, position information, velocity information, and acceleration information may be detected by different sensors. Further, the control unit 170 may select and acquire the position information, the speed information, and the acceleration information individually, or may acquire a plurality of information in combination.
 なお、制御部170と乗りかご120は、有線により接続される例に限定されるものではなく、無線により信号が送受信可能に接続されていてもよい。 Note that the control unit 170 and the car 120 are not limited to the example of being connected by wire, and may be connected so that signals can be transmitted and received wirelessly.
 以下、乗りかご120が昇降移動する方向を昇降方向Zとし、昇降方向Zと直交し、乗りかご120とガイドレール201Aと対向する方向を第1の方向Xとする。そして、第1の方向Xと直交し、かつ昇降方向Zとも直交する方向を第2の方向Yとする。 Hereinafter, the direction in which the car 120 moves up and down is referred to as the elevating direction Z, and the direction orthogonal to the elevating direction Z and facing the car 120 and the guide rail 201A is referred to as the first direction X. Then, the direction orthogonal to the first direction X and also orthogonal to the elevating direction Z is defined as the second direction Y.
1-2.非常止め装置の構成
 次に、非常止め装置5の詳細な構成について図2~図6を参照して説明する。
 図2は、非常止め装置5を示す正面図である。
1-2. Configuration of Emergency Stop Device Next, a detailed configuration of the emergency stop device 5 will be described with reference to FIGS. 2 to 6.
FIG. 2 is a front view showing the emergency stop device 5.
 図2に示すように、非常止め装置5は、2つの制動機構10A、10Bと、作動機構11と、制動機構10A、10Bを動作させる駆動機構12と、第1引き上げ棒13と、第2引き上げ棒14と、を有している。作動機構11は、乗りかご120の上部に設けられたクロスヘッド121に配置されている。 As shown in FIG. 2, the emergency stop device 5 includes two braking mechanisms 10A and 10B, an operating mechanism 11, a driving mechanism 12 for operating the braking mechanisms 10A and 10B, a first pulling rod 13, and a second pulling rod. It has a rod 14. The operating mechanism 11 is arranged on a crosshead 121 provided on the upper part of the car 120.
[駆動機構]
 駆動機構12は、駆動軸15と、第1リンク部材16と、第2リンク部材17と、第1作動軸18と、第2作動軸19と、駆動ばね20とを有している。
[Drive mechanism]
The drive mechanism 12 includes a drive shaft 15, a first link member 16, a second link member 17, a first operating shaft 18, a second operating shaft 19, and a drive spring 20.
 第1作動軸18及び第2作動軸19は、乗りかご120の上部に設置されたクロスヘッド121に設けられている。第1作動軸18は、クロスヘッド121における第1の方向Xの一端部に設けられ、第2作動軸19は、クロスヘッド121における第1の方向Xの他端部に設けられている。第1作動軸18には、第1リンク部材16が回動可能に支持されており、第2作動軸19には、第2リンク部材17が回動可能に支持されている。 The first operating shaft 18 and the second operating shaft 19 are provided on the crosshead 121 installed on the upper part of the car 120. The first operating shaft 18 is provided at one end of the crosshead 121 in the first direction X, and the second operating shaft 19 is provided at the other end of the crosshead 121 in the first direction X. The first link member 16 is rotatably supported on the first operating shaft 18, and the second link member 17 is rotatably supported on the second operating shaft 19.
 第1リンク部材16及び第2リンク部材17は、略T字状に形成されている。第1リンク部材16は、作動片16aと、接続片16bとを有している。作動片16aは、接続片16bから略垂直に突出している。また、作動片16aは、接続片16bの長手方向における中間部よりも一端部側に接続されている。そして、作動片16aは、乗りかご120の第1の方向Xのマイナス側(図中の左側をいう。以下、図中のXYZ軸における紙面の左側及び紙面の下側をマイナス側とし、XYZ軸にける紙面の右側及び紙面の上側をプラス側とする。)に配置されたガイドレール201Aに向けて突出している。作動片16aにおける接続片16bとは反対側の端部には、接続部26を介して第1引き上げ棒13が接続されている。 The first link member 16 and the second link member 17 are formed in a substantially T shape. The first link member 16 has an operating piece 16a and a connecting piece 16b. The working piece 16a projects substantially vertically from the connecting piece 16b. Further, the operating piece 16a is connected to one end side of the connecting piece 16b with respect to the intermediate portion in the longitudinal direction. The actuating piece 16a is on the minus side of the first direction X of the car 120 (referred to as the left side in the drawing; hereinafter, the left side of the paper surface and the lower side of the paper surface in the XYZ axis in the drawing are the minus side, and the XYZ axis is defined as the minus side. The right side of the paper surface and the upper side of the paper surface are the plus side), and the guide rails 201A project toward the guide rails 201A. The first pulling rod 13 is connected to the end of the operating piece 16a on the side opposite to the connecting piece 16b via the connecting portion 26.
 第1リンク部材16は、作動片16aと接続片16bが接続する箇所において第1作動軸18に回動可能に支持される。接続片16bにおける長手方向の一端部には、接続部25を介して駆動軸15が接続されている。また、接続片16bにおける駆動軸15と接続する端部とは反対側の端部、すなわち長手方向の他端部には、後述する作動機構11の接続部材41が接続されている(図3参照)。 The first link member 16 is rotatably supported by the first operating shaft 18 at a position where the operating piece 16a and the connecting piece 16b are connected. A drive shaft 15 is connected to one end of the connecting piece 16b in the longitudinal direction via a connecting portion 25. Further, a connecting member 41 of the operating mechanism 11, which will be described later, is connected to the end of the connecting piece 16b opposite to the end connected to the drive shaft 15, that is, the other end in the longitudinal direction (see FIG. 3). ).
 第1リンク部材16は、接続片16bにおける長手方向の一端部を昇降方向Zの上方に向け、接続片16bにおける長手方向の他端部を昇降方向Zの下方に向けて配置される。 The first link member 16 is arranged so that one end in the longitudinal direction of the connecting piece 16b faces upward in the elevating direction Z and the other end of the connecting piece 16b in the longitudinal direction faces downward in the elevating direction Z.
 第2リンク部材17は、作動片17aと、接続片17bとを有している。作動片17aは、接続片17bから略垂直に突出している。また、作動片17aは、接続片17bにおける長手方向の中間部に接続されている。そして、作動片17aは、乗りかご120の第1の方向Xのプラス側に配置されたガイドレール201Bに向けて突出している。作動片17aにおける接続片17bとは反対側の端部には、接続部28を介して第2引き上げ棒14が接続されている。 The second link member 17 has an operating piece 17a and a connecting piece 17b. The working piece 17a projects substantially vertically from the connecting piece 17b. Further, the operating piece 17a is connected to an intermediate portion in the longitudinal direction of the connecting piece 17b. Then, the operating piece 17a projects toward the guide rail 201B arranged on the positive side of the first direction X of the car 120. A second pull-up rod 14 is connected to the end of the operating piece 17a on the opposite side of the connecting piece 17b via the connecting portion 28.
 接続片17bにおける長手方向の他端部には、接続部27を介して駆動軸15が接続されている。そして、第2リンク部材17は、作動片17aと接続片17bの接続箇所において第2作動軸19に回動可能に支持される。また、第2リンク部材17は、接続片17bにおける長手方向の一端部を昇降方向Zの上方に向け、接続片17bにおける長手方向の他端部を昇降方向Zの下方に向けて配置される。 The drive shaft 15 is connected to the other end of the connection piece 17b in the longitudinal direction via the connection portion 27. Then, the second link member 17 is rotatably supported by the second operating shaft 19 at the connection point between the operating piece 17a and the connecting piece 17b. Further, the second link member 17 is arranged so that one end in the longitudinal direction of the connecting piece 17b faces upward in the elevating direction Z and the other end of the connecting piece 17b in the longitudinal direction faces downward in the elevating direction Z.
 駆動軸15における第1の方向Xの一端部は、第1リンク部材16の接続片16bに接続されており、駆動軸15における第1の方向Xの他端部は、第2リンク部材17の接続片17bに接続されている。また、駆動軸15の軸方向の中間部には、駆動ばね20が設けられている。 One end of the first direction X on the drive shaft 15 is connected to the connecting piece 16b of the first link member 16, and the other end of the first direction X on the drive shaft 15 is the second link member 17. It is connected to the connection piece 17b. Further, a drive spring 20 is provided at an intermediate portion of the drive shaft 15 in the axial direction.
 駆動ばね20は、例えば、圧縮コイルばねにより構成されている。駆動ばね20の一端部は、固定部21を介してクロスヘッド121に固定されており、駆動ばね20の他端部は、押圧部材22を介して駆動軸15に固定されている。そして、駆動ばね20は、押圧部材22を介して駆動軸15を第1の方向Xのプラス側に向けて付勢している。 The drive spring 20 is composed of, for example, a compression coil spring. One end of the drive spring 20 is fixed to the crosshead 121 via a fixing portion 21, and the other end of the drive spring 20 is fixed to the drive shaft 15 via a pressing member 22. Then, the drive spring 20 urges the drive shaft 15 toward the plus side in the first direction X via the pressing member 22.
 作動機構11が作動すると、駆動軸15は、駆動ばね20によって付勢されて、第1の方向Xのプラス側に向けて移動する。これにより、第1リンク部材16は、作動片16aにおける第1引き上げ棒13が接続された端部が昇降方向Zの上方を向くように第1作動軸18を中心に回動する。また、第2リンク部材17は、作動片17aにおける第2引き上げ棒14が接続された端部が昇降方向Zの上方を向くように第2作動軸19を中心に回動する。その結果、第1引き上げ棒13と第2引き上げ棒14が連動して、昇降方向Zの上方に向けて引き上げられる。 When the operating mechanism 11 is activated, the drive shaft 15 is urged by the drive spring 20 and moves toward the plus side in the first direction X. As a result, the first link member 16 rotates about the first operating shaft 18 so that the end of the operating piece 16a to which the first pulling rod 13 is connected faces upward in the elevating direction Z. Further, the second link member 17 rotates about the second operating shaft 19 so that the end of the operating piece 17a to which the second pulling rod 14 is connected faces upward in the ascending / descending direction Z. As a result, the first pulling rod 13 and the second pulling rod 14 are interlocked and pulled upward in the elevating direction Z.
 また、第1引き上げ棒13における作動片16aが接続された端部とは反対側の端部には、第1制動機構10Aが接続されている。第2引き上げ棒14における作動片17aが接続された端部とは反対側の端部には、第2制動機構10Bが接続されている。そして、第1引き上げ棒13は、後述する第1制動機構10Aの一対の制動子を昇降方向Zの上方に向けて引き上げる。また、第2引き上げ棒14は、後述する第2制動機構10Bの一対の制動子を昇降方向Zの上方に向けて引き上げる。 Further, the first braking mechanism 10A is connected to the end of the first pulling rod 13 opposite to the end to which the operating piece 16a is connected. The second braking mechanism 10B is connected to the end of the second pull-up rod 14 opposite to the end to which the actuating piece 17a is connected. Then, the first pulling rod 13 pulls up the pair of brakes of the first braking mechanism 10A, which will be described later, toward the upper side in the elevating direction Z. Further, the second pulling rod 14 pulls up a pair of brakes of the second braking mechanism 10B, which will be described later, toward the upper side in the elevating direction Z.
[制動機構]
 第1制動機構10A及び第2制動機構10Bは、乗りかご120の昇降方向Zの下端部に配置されている。第1制動機構10Aは、乗りかご120の第1の方向Xの一端部において、ガイドレール201Aと対向して配置されている。また、第2制動機構10Bは、乗りかご120の第1の方向Xの他端部においてガイドレール201Bと対向して配置されている。
[Brake mechanism]
The first braking mechanism 10A and the second braking mechanism 10B are arranged at the lower end of the car 120 in the ascending / descending direction Z. The first braking mechanism 10A is arranged at one end of the first direction X of the car 120 so as to face the guide rail 201A. Further, the second braking mechanism 10B is arranged at the other end of the first direction X of the car 120 so as to face the guide rail 201B.
 第1制動機構10Aと第2制動機構10Bは、それぞれ同一の構成を有している。第1制動機構10Aと第2制動機構10Bは、ガイドレール201A、201Bを挟持可能な制動子を有している。駆動機構12が駆動することで、第1制動機構10A及び第2制動機構10Bは、制動子を用いてガイドレール201A、201Bを挟持する。これにより、乗りかご120の昇降移動が制動される。 The first braking mechanism 10A and the second braking mechanism 10B each have the same configuration. The first braking mechanism 10A and the second braking mechanism 10B have brakes capable of sandwiching the guide rails 201A and 201B. When the drive mechanism 12 is driven, the first braking mechanism 10A and the second braking mechanism 10B sandwich the guide rails 201A and 201B by using a brake element. As a result, the ascending / descending movement of the car 120 is braked.
[作動機構]
 次に、図3から図6を参照して作動機構11について説明する。
 図3は、作動機構11を上方から見た平面図、図4は、作動機構11を示す正面図、なお、図3及び図4は、作動機構11の待機状態を示している。
[Operating mechanism]
Next, the operating mechanism 11 will be described with reference to FIGS. 3 to 6.
FIG. 3 is a plan view of the operating mechanism 11 as viewed from above, FIG. 4 is a front view showing the operating mechanism 11, and FIGS. 3 and 4 show a standby state of the operating mechanism 11.
 図3及び図4に示すように、作動機構11は、接続部材41と、電磁コア43と、可動鉄心44と、ベースプレート45と、駆動モータ46と、を備えている。また、作動機構11は、送りねじ軸47と、コアプレート49と、ガイド部材51と、ロック機構60を備えている。そして、作動機構11は、駆動機構12を作動させる。 As shown in FIGS. 3 and 4, the operating mechanism 11 includes a connecting member 41, an electromagnetic core 43, a movable iron core 44, a base plate 45, and a drive motor 46. Further, the operating mechanism 11 includes a feed screw shaft 47, a core plate 49, a guide member 51, and a locking mechanism 60. Then, the operating mechanism 11 operates the driving mechanism 12.
 ベースプレート45は、平板状の部材により形成されている。ベースプレート45は、クロスヘッド121に固定されている。なお、ベースプレート45を固定する箇所は、クロスヘッド121に限定されるものではなく、昇降体である乗りかご120であれば特に限定されるものではない。ベースプレート45における昇降方向Zの上面部には、支持ブラケット52と、固定ブラケット53と、第1軸支持部54と、第2軸支持部55が固定されている。 The base plate 45 is formed of a flat plate-shaped member. The base plate 45 is fixed to the crosshead 121. The location where the base plate 45 is fixed is not limited to the crosshead 121, and is not particularly limited to the car 120 which is an elevating body. A support bracket 52, a fixing bracket 53, a first shaft support portion 54, and a second shaft support portion 55 are fixed to the upper surface portion of the base plate 45 in the elevating direction Z.
 支持ブラケット52は、ベースプレート45における第2の方向Yの一端部に配置され、固定ブラケット53、第1軸支持部54及び第2軸支持部55は、ベースプレート45における第2の方向Yの他端部に配置されている。支持ブラケット52には、ガイド部材51が固定されている。ガイド部材51は、ベースプレート45における第1の方向Xと平行に配置されている。そのため、ガイド部材51のガイド方向は、第1の方向Xと平行である。このガイド部材51は、後述するコアプレート49を第1の方向Xに沿って移動可能に支持する。 The support bracket 52 is arranged at one end of the base plate 45 in the second direction Y, and the fixed bracket 53, the first shaft support 54, and the second shaft support 55 are the other ends of the base plate 45 in the second direction Y. It is arranged in the department. A guide member 51 is fixed to the support bracket 52. The guide member 51 is arranged parallel to the first direction X in the base plate 45. Therefore, the guide direction of the guide member 51 is parallel to the first direction X. The guide member 51 movably supports the core plate 49, which will be described later, along the first direction X.
 固定ブラケット53は、ベースプレート45における第1の方向Xの一端部に配置されている。また、第1軸支持部54は、ベースプレート45における第1の方向Xの一端部に配置され、第2軸支持部55は、ベースプレート45における第1の方向Xの他端部に配置されている。第1軸支持部54は、固定ブラケット53よりも第1の方向Xの他端部に配置される。 The fixing bracket 53 is arranged at one end of the base plate 45 in the first direction X. Further, the first axis support portion 54 is arranged at one end of the first direction X in the base plate 45, and the second axis support portion 55 is arranged at the other end of the first direction X in the base plate 45. .. The first shaft support portion 54 is arranged at the other end of the first direction X with respect to the fixing bracket 53.
 固定ブラケット53には、移動機構の一例を示す駆動モータ46が固定されている。駆動モータ46の回転軸46aは、固定ブラケット53から第1の方向Xの他端部に向けて突出している。駆動モータ46の回転軸には、送りねじ軸47が取り付けられている。 A drive motor 46 showing an example of a moving mechanism is fixed to the fixed bracket 53. The rotation shaft 46a of the drive motor 46 projects from the fixing bracket 53 toward the other end in the first direction X. A feed screw shaft 47 is attached to the rotating shaft of the drive motor 46.
 送りねじ軸47は、駆動モータ46から第1の方向Xの他端部に向けて突出する。送りねじ軸47の軸方向の一端部は、第1軸支持部54に回転可能に支持され、送りねじ行く47の軸方向の他端部は、第2軸支持部55に回転可能に支持されている。そして、送りねじ軸47は、その軸方向が第1の方向Xと平行に配置される。また、送りねじ軸47としては、例えば、台形ねじやボールねじが適用される。送りねじ軸47には、後述するコアプレート49に設けたねじ孔49bが螺合する。 The feed screw shaft 47 projects from the drive motor 46 toward the other end in the first direction X. One end of the feed screw shaft 47 in the axial direction is rotatably supported by the first shaft support portion 54, and the other end of the feed screw shaft 47 in the axial direction is rotatably supported by the second shaft support portion 55. ing. The feed screw shaft 47 is arranged so that its axial direction is parallel to the first direction X. Further, as the feed screw shaft 47, for example, a trapezoidal screw or a ball screw is applied. A screw hole 49b provided in the core plate 49, which will be described later, is screwed into the lead screw shaft 47.
 駆動モータ46は、制御部170により駆動が制御されている。駆動モータ46が正回転(正転)すると、後述するコアプレート49は第1の方向Xの一端部、すなわち第1の方向Xのマイナス側へ移動する。そして、駆動モータ46が逆回転(逆転)すると、コアプレート49は第1の方向Xの他端部、すなわち第1の方向Xのプラス側へ移動する。 The drive of the drive motor 46 is controlled by the control unit 170. When the drive motor 46 rotates in the forward direction (forward rotation), the core plate 49, which will be described later, moves to one end of the first direction X, that is, to the minus side of the first direction X. Then, when the drive motor 46 reverses (reverses), the core plate 49 moves to the other end of the first direction X, that is, to the plus side of the first direction X.
 次に、接続部材41について説明する。
 接続部材41は、接続ピン42を介して接続片16bに揺動可能に接続されている。接続部材41における接続片16bと接続する側の端部とは反対側の端部には可動鉄心44が固定されている。可動鉄心44の対向面44aには、電磁コア43が対向する。そして、図3及び図4に示す待機状態において、可動鉄心44は、電磁コア43に吸着される。
Next, the connecting member 41 will be described.
The connecting member 41 is swingably connected to the connecting piece 16b via the connecting pin 42. A movable iron core 44 is fixed to the end of the connecting member 41 on the side opposite to the end connected to the connecting piece 16b. The electromagnetic core 43 faces the facing surface 44a of the movable iron core 44. Then, in the standby state shown in FIGS. 3 and 4, the movable iron core 44 is attracted to the electromagnetic core 43.
 電磁コア43は、ガイド部材51と送りねじ軸47の間に配置される。電磁コア43には、コイルが設けられている。コイルが通電されると、電磁コア43とコイルにより電磁石が構成される。そして、電磁コア43における可動鉄心44の対向面44aと対向する面が、可動鉄心44を吸着する吸着面43aとなる。 The electromagnetic core 43 is arranged between the guide member 51 and the feed screw shaft 47. The electromagnetic core 43 is provided with a coil. When the coil is energized, the electromagnetic core 43 and the coil form an electromagnet. Then, the surface of the electromagnetic core 43 facing the facing surface 44a of the movable iron core 44 becomes the suction surface 43a that attracts the movable iron core 44.
 電磁コア43における吸着面43aとは反対側の端部には、コアプレート49が固定されている。コアプレート49には、スライド孔49aと、螺合部を示すねじ孔49bが形成されている。スライド孔49a及びねじ孔49bは、コアプレート49を第1の方向Xに沿って貫通する。 The core plate 49 is fixed to the end of the electromagnetic core 43 on the side opposite to the suction surface 43a. The core plate 49 is formed with a slide hole 49a and a screw hole 49b indicating a screwed portion. The slide hole 49a and the screw hole 49b penetrate the core plate 49 along the first direction X.
 スライド孔49aは、コアプレート49における第2の方向Yの一端部に形成されている。スライド孔49aは、ガイド部材51に摺動可能に支持されている。そのため、コアプレート49及びこのコアプレート49に固定された電磁コア43は、ガイド部材51により第1の方向Xに沿って移動可能に支持される。 The slide hole 49a is formed at one end of the core plate 49 in the second direction Y. The slide hole 49a is slidably supported by the guide member 51. Therefore, the core plate 49 and the electromagnetic core 43 fixed to the core plate 49 are movably supported by the guide member 51 along the first direction X.
 また、ねじ孔49bは、コアプレート49における第2の方向Yの他端部に設けられている。ねじ孔49bの内壁面には、雌ねじが形成されている。このねじ孔49bには、送りねじ軸47が挿通する。そして、ねじ孔49bの内壁面に形成された雌ねじと送りねじ軸47が螺合する。そして、コアプレート49は、ガイド部材51と送りねじ軸47により第1の方向X以外への移動が規制されている。 Further, the screw hole 49b is provided at the other end of the core plate 49 in the second direction Y. A female screw is formed on the inner wall surface of the screw hole 49b. A feed screw shaft 47 is inserted through the screw hole 49b. Then, the female screw formed on the inner wall surface of the screw hole 49b and the feed screw shaft 47 are screwed together. The core plate 49 is restricted from moving in directions other than the first direction X by the guide member 51 and the feed screw shaft 47.
 なお、本例では、螺合部としてコアプレート49にねじ孔49bを設ける例をこれに限定されるものではない。螺合部として、例えば、コアプレート49に送りねじ軸47と螺合する送りナットを設けてもよい。 In this example, the example in which the screw hole 49b is provided in the core plate 49 as the screw portion is not limited to this. As the screwing portion, for example, a feed nut screwing with the feed screw shaft 47 may be provided on the core plate 49.
 送りねじ軸47が回転すると、ねじ孔49bにより送りねじ軸47の回転力が第1の方向Xに沿った力に変換される。そして、コアプレートは、第1の方向Xに沿って移動する。また、コアプレート49に固定された電磁コア43も第1の方向Xに沿って移動する。 When the feed screw shaft 47 rotates, the rotational force of the feed screw shaft 47 is converted into a force along the first direction X by the screw hole 49b. Then, the core plate moves along the first direction X. Further, the electromagnetic core 43 fixed to the core plate 49 also moves along the first direction X.
 駆動モータ46及び送りねじ軸47により、電磁コア43を可動鉄心44に対して接近及び離間する方向(本例では、第1の方向X)に移動させる移動機構が構成される。 The drive motor 46 and the feed screw shaft 47 constitute a moving mechanism that moves the electromagnetic core 43 in the direction of approaching and separating from the movable iron core 44 (in this example, the first direction X).
 また、コアプレート49における第2の方向Yの他端部には、複数のローラ49cが設けられている。ローラ49cは、コアプレート49における第1の方向Xの一端部と、コアプレート49における昇降方向Zの上端部に設けられている。第1の方向Xの一端部に設けられたローラ49cは、ねじ孔49bにおける第2の方向Yの両側に配置されている。 Further, a plurality of rollers 49c are provided at the other end of the core plate 49 in the second direction Y. The rollers 49c are provided at one end of the core plate 49 in the first direction X and at the upper end of the core plate 49 in the elevating direction Z. The rollers 49c provided at one end of the first direction X are arranged on both sides of the screw hole 49b in the second direction Y.
 次に、ロック機構60について図3、図5及び図6を参照して説明する。図5は、図3に示すA-A線断面図、図6は、図3に示すB-B線断面図である。なお、図5及び図6では、ロック機構60とコアプレート49の一部のみを示す。 Next, the lock mechanism 60 will be described with reference to FIGS. 3, 5, and 6. 5 is a cross-sectional view taken along the line AA shown in FIG. 3, and FIG. 6 is a cross-sectional view taken along the line BB shown in FIG. Note that FIGS. 5 and 6 show only a part of the lock mechanism 60 and the core plate 49.
 図3に示すように、ロック機構60は、ベースプレート45における送りねじ軸47が配置された側、すなわち第2の方向Yの他端部に配置されている。ロック機構60は、ベースプレート45における第2軸支持部55の近傍である第1の方向Xの他端部に配置されている。ロック機構60は、待機状態においてコアプレート49における第1の方向Xの一端部、すなわち第1の方向Xのマイナス側に向かう移動を規制する。 As shown in FIG. 3, the lock mechanism 60 is arranged on the side of the base plate 45 where the feed screw shaft 47 is arranged, that is, at the other end of the second direction Y. The lock mechanism 60 is arranged at the other end of the first direction X, which is near the second shaft support portion 55 on the base plate 45. The lock mechanism 60 regulates the movement of one end of the core plate 49 in the first direction X, that is, toward the minus side of the first direction X in the standby state.
 図5及び図6に示すように、ロック機構60は、保持ソレノイド61と、レバー62と、一対のストッパー63、63と、複数のガイド支柱64と、付勢部材67とを有している。保持ソレノイド61は、ベースプレート45に設置されている。また、保持ソレノイド61の周囲を囲むようにして複数のガイド支柱64が配置されている。荷重受け部を示す複数のガイド支柱64は、ベースプレート45の上面部から昇降方向Zの上方に向けて立設している。 As shown in FIGS. 5 and 6, the lock mechanism 60 includes a holding solenoid 61, a lever 62, a pair of stoppers 63 and 63, a plurality of guide columns 64, and an urging member 67. The holding solenoid 61 is installed on the base plate 45. Further, a plurality of guide columns 64 are arranged so as to surround the holding solenoid 61. The plurality of guide columns 64 indicating the load receiving portions are erected from the upper surface portion of the base plate 45 toward the upper side in the elevating direction Z.
 また、保持ソレノイド61のプランジャ61aは、ガイド支柱64と同様に、昇降方向Zの上方に向けて突出している。プランジャ61aの先端部には、レバー62が配置されている。 Further, the plunger 61a of the holding solenoid 61 projects upward in the elevating direction Z, similarly to the guide support column 64. A lever 62 is arranged at the tip of the plunger 61a.
 レバー62は、ガイド支柱64によって昇降方向Zに沿って移動可能に支持されている。また、レバー62における第2の方向Yの一端部は、複数のガイド支柱64のうち第2の方向Yの一端部に配置された2つのガイド支柱64、64の間に挿入されている。そして、レバー62は、複数にガイド支柱64によって第1の方向Xへの移動が規制されている。なお、レバー62の第2の方向Yの一端部は、送りねじ軸47に向けて突出している。 The lever 62 is supported by a guide column 64 so as to be movable along the elevating direction Z. Further, one end of the lever 62 in the second direction Y is inserted between two guide columns 64, 64 arranged at one end of the second direction Y among the plurality of guide columns 64. The lever 62 is restricted from moving in the first direction X by a plurality of guide columns 64. One end of the lever 62 in the second direction Y projects toward the feed screw shaft 47.
 レバー62と保持ソレノイド61との間には、付勢部材67が介在されている。付勢部材67は、保持ソレノイド61のプランジャ61aに取り付けられている。そして、付勢部材67は、レバー62を昇降方向Zの上方に向けて付勢している。本例の付勢部材67としては、コイルばねが適用されている。なお、付勢部材67としては、コイルばね以外にゴムや板ばね等その他各種の弾性を有する部材を用いてもよい。 An urging member 67 is interposed between the lever 62 and the holding solenoid 61. The urging member 67 is attached to the plunger 61a of the holding solenoid 61. Then, the urging member 67 urges the lever 62 upward in the ascending / descending direction Z. A coil spring is applied as the urging member 67 of this example. As the urging member 67, a member having various elasticity such as rubber or a leaf spring may be used in addition to the coil spring.
 レバー62における複数のガイド支柱64から突出する端部、すなわち第2の方向Yの一端部には、一対のストッパー63、63が設けられている。一対のストッパー63、63は、接続片65を介して接続されており、第2の方向Yに沿って間隔を空けて配置されている。接続片65は、ストッパー63における昇降方向Zの下端部に設けられている。そして、接続片65は、送りねじ軸47よりも昇降方向Zの下端部側に配置される。 A pair of stoppers 63, 63 are provided at an end of the lever 62 protruding from the plurality of guide columns 64, that is, at one end in the second direction Y. The pair of stoppers 63, 63 are connected via the connecting piece 65, and are arranged at intervals along the second direction Y. The connection piece 65 is provided at the lower end of the stopper 63 in the ascending / descending direction Z. The connection piece 65 is arranged on the lower end side in the elevating direction Z with respect to the feed screw shaft 47.
 また、待機状態において、一対のストッパー63、63は、コアプレート49の第2の方向Yの他端部と対向する。そして、一対のストッパー63、63における第1の方向Xの他端部は、コアプレート49に設けたローラ49cに接触する。また、一対のストッパー63、63は、送りねじ軸47の第2の方向Yの両側に配置される。 Further, in the standby state, the pair of stoppers 63, 63 face the other end of the core plate 49 in the second direction Y. Then, the other end of the pair of stoppers 63, 63 in the first direction X comes into contact with the roller 49c provided on the core plate 49. Further, the pair of stoppers 63, 63 are arranged on both sides of the feed screw shaft 47 in the second direction Y.
 なお、ストッパー63を2つ設けた例を説明したが、これに限定されるものではなく、ストッパー63の数は、1つだけでもよく、あるいは3つ以上設けてもよい。 Although an example in which two stoppers 63 are provided has been described, the present invention is not limited to this, and the number of stoppers 63 may be only one or three or more.
 ストッパー63におけるコアプレート49と対向する端部とは反対側の端部、すなわち第1の方向Xの一端部には、テーパー面63aが形成されている。テーパー面63aは、第1の方向Xの他端部から一端部に向かうにつれて昇降方向Zの高さが連続して小さくなるように傾斜している。復帰動作時において、テーパー面63aには、コアプレート49に設けたローラ49cが接触する。 A tapered surface 63a is formed at an end of the stopper 63 opposite to the end facing the core plate 49, that is, at one end in the first direction X. The tapered surface 63a is inclined so that the height in the ascending / descending direction Z continuously decreases from the other end of the first direction X toward one end. At the time of the return operation, the roller 49c provided on the core plate 49 comes into contact with the tapered surface 63a.
 また、上述した作動機構11を構成する接続部材41、電磁コア43、可動鉄心44と、ベースプレート45、駆動モータ46、送りねじ軸47及びコアプレート49は、不図示の筐体の中に収容される。このように、接続部材41や、保持部を構成する電磁コア43移動機構を構成する送りねじ軸47や駆動モータ46を一つの筐体に収容することで、非常止め装置5が大型化することを抑制することができる。また、作動機構11の機能を一箇所に集約することで、メンテナンス作業も容易に行うことができる。 Further, the connecting member 41, the electromagnetic core 43, the movable iron core 44, the base plate 45, the drive motor 46, the feed screw shaft 47, and the core plate 49 constituting the operating mechanism 11 described above are housed in a housing (not shown). NS. In this way, by accommodating the connecting member 41, the feed screw shaft 47 constituting the electromagnetic core 43 moving mechanism constituting the holding portion, and the drive motor 46 in one housing, the emergency stopping device 5 is increased in size. Can be suppressed. Further, by consolidating the functions of the operating mechanism 11 into one place, maintenance work can be easily performed.
 なお、上述した実施の形態例では、電磁コアと可動鉄心を1つずつ設けた例を説明したが、これに限定されるものではなく、電磁コアと可動鉄心の数を2つ以上設けてもよい。 In the above-described embodiment, an example in which one electromagnetic core and one movable iron core are provided has been described, but the present invention is not limited to this, and two or more electromagnetic cores and two or more movable iron cores may be provided. good.
 また、上述したように、駆動ばね20を作動機構11とは別の位置に配置し、リンク機構である第1リンク部材16を介して駆動ばね20と作動機構11とを接続している。これにより、作動機構11の小型化を図ることができる。 Further, as described above, the drive spring 20 is arranged at a position different from that of the actuating mechanism 11, and the drive spring 20 and the actuating mechanism 11 are connected via the first link member 16 which is a link mechanism. As a result, the operating mechanism 11 can be downsized.
 なお、駆動モータ46及び送りねじ軸47を配置する位置は、上述した例に限定されない。例えば、駆動モータ46をベースプレート45の第1の方向Xの他端部側に配置してもよい。あるいは、コアプレート49の第2の方向Yの中間部にねじ孔49bを設け、駆動モータ46及び送りねじ軸47をコアプレート49における第2の方向Yの中間部に配置してもよい。この場合、ロック機構60は、ガイド部材51側に配置される。 The position where the drive motor 46 and the feed screw shaft 47 are arranged is not limited to the above-mentioned example. For example, the drive motor 46 may be arranged on the other end side of the base plate 45 in the first direction X. Alternatively, a screw hole 49b may be provided in the middle portion of the core plate 49 in the second direction Y, and the drive motor 46 and the feed screw shaft 47 may be arranged in the middle portion of the core plate 49 in the second direction Y. In this case, the lock mechanism 60 is arranged on the guide member 51 side.
2.非常止め装置の動作例
 次に、上述した構成を有する非常止め装置5の動作例について図3~図11を参照して説明する。なお、ここでは、非常止め装置5における作動機構11の動作について説明する。
2. Operation Example of Emergency Stop Device Next, an operation example of the emergency stop device 5 having the above-described configuration will be described with reference to FIGS. 3 to 11. Here, the operation of the operating mechanism 11 in the emergency stop device 5 will be described.
[待機状態での動作]
 まず、図3から図6を参照して非常止め装置5の待機状態について説明する。
 図3から図6に示すように、非常止め装置5の待機状態では、コアプレート49及び電磁コア43は、送りねじ軸47における第1の方向Xの他端部側に配置される。また、電磁コア43のコイルが通電されており、電磁コア43が励磁されている。これにより、電磁コア43とコイルによる電磁石が構成される。
[Operation in standby state]
First, the standby state of the emergency stop device 5 will be described with reference to FIGS. 3 to 6.
As shown in FIGS. 3 to 6, in the standby state of the emergency stop device 5, the core plate 49 and the electromagnetic core 43 are arranged on the other end side of the feed screw shaft 47 in the first direction X. Further, the coil of the electromagnetic core 43 is energized, and the electromagnetic core 43 is excited. As a result, an electromagnet composed of an electromagnetic core 43 and a coil is configured.
 電磁コア43の吸着面43aに可動鉄心44が吸着される。そのため、可動鉄心44が固定された接続部材41を介して、第1リンク部材16の接続片16bの一端部を第1の方向Xのプラス側に向けて保持する。その結果、接続片16bの他端部に接続された駆動軸15は、駆動ばね20の付勢力に抗して、第1の方向Xのマイナス側に付勢される。 The movable iron core 44 is attracted to the suction surface 43a of the electromagnetic core 43. Therefore, one end of the connecting piece 16b of the first link member 16 is held toward the plus side in the first direction X via the connecting member 41 to which the movable iron core 44 is fixed. As a result, the drive shaft 15 connected to the other end of the connection piece 16b is urged to the minus side in the first direction X against the urging force of the drive spring 20.
 なお、待機状態では、駆動ばね20の付勢力が、第1リンク部材16、接続部材41及び可動鉄心44を介して電磁コア43に作用する。そのため、電磁コア43及びコアプレート49は、第1の方向Xの一端部側、すなわちマイナス側に向けて付勢される。この付勢力により、電磁コア43が第1の方向Xのマイナス側に移動するおそれがある。 In the standby state, the urging force of the drive spring 20 acts on the electromagnetic core 43 via the first link member 16, the connecting member 41, and the movable iron core 44. Therefore, the electromagnetic core 43 and the core plate 49 are urged toward one end side, that is, the minus side in the first direction X. Due to this urging force, the electromagnetic core 43 may move to the negative side in the first direction X.
 しかしながら、本例の非常止め装置5では、上述したように、コアプレート49がロック機構60のストッパー63により第1の方向Xへの移動が規制されている。これにより、駆動ばね20の付勢力により電磁コア43が第1の方向Xのマイナス側に移動することを防止することができる。その結果、非常止め装置5の制動機構10A、10Bが誤作動することを防止することができ、非常止め装置5の信頼性を高めることができる。 However, in the emergency stop device 5 of this example, as described above, the movement of the core plate 49 in the first direction X is restricted by the stopper 63 of the lock mechanism 60. As a result, it is possible to prevent the electromagnetic core 43 from moving to the negative side in the first direction X due to the urging force of the drive spring 20. As a result, it is possible to prevent the braking mechanisms 10A and 10B of the emergency stop device 5 from malfunctioning, and it is possible to improve the reliability of the emergency stop device 5.
 また、ストッパー63及びレバー62には、コアプレート49を介して第1の方向Xのマイナス側に向かう荷重を受ける。そして、レバー62及びストッパー63にかかる荷重は、ガイド支柱64が受ける。そのため、保持ソレノイド61や付勢部材67には、駆動ばね20の付勢力がかからない。これにより、保持ソレノイド61や付勢部材67の小型化を図ることができる。 Further, the stopper 63 and the lever 62 receive a load toward the minus side in the first direction X via the core plate 49. Then, the load applied to the lever 62 and the stopper 63 is received by the guide support column 64. Therefore, the urging force of the drive spring 20 is not applied to the holding solenoid 61 and the urging member 67. As a result, the holding solenoid 61 and the urging member 67 can be miniaturized.
 なお、本例では、荷重受け部としてレバー62及びストッパー63を移動可能に支持するガイド支柱64を用いた例を説明したが、これに限定されるものではなく、駆動ばね20からの荷重を受ける荷重受け部を、ガイド支柱64とは別に設けてもよい。 In this example, an example in which a guide column 64 that movably supports the lever 62 and the stopper 63 is used as the load receiving portion has been described, but the present invention is not limited to this, and the load from the drive spring 20 is received. The load receiving portion may be provided separately from the guide support column 64.
 さらに、保持ソレノイド61のプランジャ61a及び付勢部材67の伸縮方向は、昇降方向Zを向いており、電磁コア43やコアプレート49が駆動ばね20の付勢力を受ける方向である第1の方向Xと直交している。すなわち、力のベクトルの向きが直交するため、保持ソレノイド61や付勢部材67は、駆動ばね20の付勢力により伸縮することがない。これにより、ロック機構60が駆動ばね20の付勢力により解除されることを防止することができ、非常止め装置5の信頼性を高めることができる。 Further, the expansion / contraction direction of the plunger 61a and the urging member 67 of the holding solenoid 61 is in the elevating direction Z, and the electromagnetic core 43 and the core plate 49 are in the direction of receiving the urging force of the drive spring 20 in the first direction X. Is orthogonal to. That is, since the directions of the force vectors are orthogonal to each other, the holding solenoid 61 and the urging member 67 do not expand or contract due to the urging force of the drive spring 20. As a result, it is possible to prevent the lock mechanism 60 from being released by the urging force of the drive spring 20, and it is possible to improve the reliability of the emergency stop device 5.
 また、送りねじ軸47のねじ部に台形ねじを適用することで、送りねじ軸47のねじ部とコアプレート49のねじ孔49bは、面接触する。そのため、ねじ部とねじ孔との間にボールを設けたボールねじよりも送りねじ軸47とねじ孔49bとの摩擦力及びコアプレート49の保持力を高めることができる。そのため、台形ねじを適用することで、送りねじ軸47とねじ孔49bが直線運動を回転運動に変換する、いわゆる逆作動することを防止することができる。 Further, by applying the trapezoidal thread to the threaded portion of the lead screw shaft 47, the threaded portion of the lead screw shaft 47 and the screw hole 49b of the core plate 49 come into surface contact with each other. Therefore, the frictional force between the feed screw shaft 47 and the screw hole 49b and the holding force of the core plate 49 can be increased as compared with a ball screw in which a ball is provided between the screw portion and the screw hole. Therefore, by applying the trapezoidal thread, it is possible to prevent the feed screw shaft 47 and the screw hole 49b from converting linear motion into rotary motion, that is, so-called reverse operation.
 これにより、駆動ばね20の付勢力により、意図に反して送りねじ軸47が回転し、電磁コア43及び可動鉄心44が第1の方向Xのマイナス側に移動することを防ぐことができる。その結果、制動機構10A、10Bが誤作動することを防ぐことができる。 As a result, it is possible to prevent the feed screw shaft 47 from rotating unintentionally due to the urging force of the drive spring 20 and the electromagnetic core 43 and the movable iron core 44 from moving to the negative side in the first direction X. As a result, it is possible to prevent the braking mechanisms 10A and 10B from malfunctioning.
 なお、送りねじ軸47としてボールねじを適用することで、後述する復帰動作において、台形ねじを適用した場合よりも、コアプレート49の移動をスムーズに行うことができる。 By applying the ball screw as the feed screw shaft 47, the core plate 49 can be moved more smoothly in the return operation described later than in the case where the trapezoidal screw is applied.
[制動状態への動作]
 次に、図7及び図8を参照して待機状態から制動状態への動作について説明する。
 図7は、作動機構11が作動した状態を示す正面図、図8は、作動機構11が作動した状態を示す平面図である。
[Operation to braking state]
Next, the operation from the standby state to the braking state will be described with reference to FIGS. 7 and 8.
FIG. 7 is a front view showing a state in which the operating mechanism 11 is operated, and FIG. 8 is a plan view showing a state in which the operating mechanism 11 is operated.
 乗りかご120(図1及び図2参照)が下降移動時において、乗りかご120の下降速度が所定の速度を超過したことを制御部170が判断すると、制御部170は、非常止め装置5に動作指令信号を出力する。これにより、電磁コア43への通電が遮断される。 When the control unit 170 determines that the descent speed of the car 120 exceeds a predetermined speed when the car 120 (see FIGS. 1 and 2) is moving downward, the control unit 170 operates the emergency stop device 5. Output a command signal. As a result, the energization of the electromagnetic core 43 is cut off.
 電磁コア43への通電が遮断されることで、電磁コア43の磁性が消去される。これにより、図7に示すように、駆動軸15は、駆動ばね20の付勢力により第1の方向Xのプラス側へ移動し、第1リンク部材16の一端部も駆動軸15と共に第1の方向Xのプラス側へ移動する。その結果、第1リンク部材16が第1作動軸18を中心に回動し、第2リンク部材17が第2作動軸19を中心に回動する。このように、作動機構11により駆動機構12が作動する。 The magnetism of the electromagnetic core 43 is erased by cutting off the energization of the electromagnetic core 43. As a result, as shown in FIG. 7, the drive shaft 15 moves to the plus side in the first direction X by the urging force of the drive spring 20, and one end of the first link member 16 is also the first together with the drive shaft 15. Move to the plus side of direction X. As a result, the first link member 16 rotates around the first operating shaft 18, and the second link member 17 rotates around the second operating shaft 19. In this way, the drive mechanism 12 is operated by the actuating mechanism 11.
 また、図7及び図8に示すように、第1リンク部材16が回動することで、可動鉄心44が電磁コア43から分離する。第1リンク部材16の回動に伴って、接続部材41は、第1の方向Xのマイナス側に移動する。さらに、接続部材41は、第1の方向Xのマイナス側に移動する際に、接続ピン42を中心に揺動する。 Further, as shown in FIGS. 7 and 8, the movable iron core 44 is separated from the electromagnetic core 43 by rotating the first link member 16. As the first link member 16 rotates, the connecting member 41 moves to the minus side in the first direction X. Further, the connecting member 41 swings around the connecting pin 42 when moving to the minus side in the first direction X.
 第1リンク部材16及び第2リンク部材17が回動することで、第1引き上げ棒13と第2引き上げ棒14が連動して、昇降方向Zの上方に向けて引き上げられる。そして、第1引き上げ棒13に接続された第1制動機構10Aと、第2引き上げ棒14に接続された第2制動機構10B(図2参照)が作動する。その結果、第1制動機構10A及び第2制動機構10Bの一対の制動子が昇降方向Zの上方に移動し、第2引き上げ棒14に連結する第2制動機構10Bの一対の制動子がガイドレール201A、201Bを挟持することで、乗りかご120の昇降移動が機械的に停止される。 By rotating the first link member 16 and the second link member 17, the first pulling rod 13 and the second pulling rod 14 are interlocked and pulled upward in the elevating direction Z. Then, the first braking mechanism 10A connected to the first pulling rod 13 and the second braking mechanism 10B connected to the second pulling rod 14 (see FIG. 2) operate. As a result, the pair of brakes of the first braking mechanism 10A and the second braking mechanism 10B move upward in the elevating direction Z, and the pair of brakes of the second braking mechanism 10B connected to the second pulling rod 14 move to the guide rail. By sandwiching 201A and 201B, the ascending / descending movement of the car 120 is mechanically stopped.
 また、第1リンク部材16を介して駆動機構12に接続された可動鉄心44は、電磁コア43から分離する。これにより、移動機構である送りねじ軸47とねじ孔49bとの摩擦力や、ロック機構60の影響を受けることなく、接続部材41を移動させて、駆動機構12を確実に作動させることができる。その結果、非常止め装置5の信頼性を高めることができる。 Further, the movable iron core 44 connected to the drive mechanism 12 via the first link member 16 is separated from the electromagnetic core 43. As a result, the connecting member 41 can be moved and the drive mechanism 12 can be reliably operated without being affected by the frictional force between the feed screw shaft 47 and the screw hole 49b, which is a moving mechanism, or the lock mechanism 60. .. As a result, the reliability of the emergency stop device 5 can be improved.
 なお、本例の非常止め装置5では、作動機構11内に可動鉄心44を保持する保持部と、可動鉄心44を制動状態から待機位置に復帰させる復帰部を設けている。そのため、可動鉄心44及び接続部材41が移動する際に、作動機構11の他の部材と干渉するおそれがある。 The emergency stop device 5 of this example is provided with a holding portion for holding the movable iron core 44 and a returning portion for returning the movable iron core 44 from the braking state to the standby position in the operating mechanism 11. Therefore, when the movable iron core 44 and the connecting member 41 move, they may interfere with other members of the operating mechanism 11.
 これに対して、本例の作動機構11では、駆動モータ46や送りねじ軸47を、電磁コア43や可動鉄心44よりも第2の方向Yの他端部側に配置している。すなわち、駆動モータ46や送りねじ軸47は、可動鉄心44や接続部材41の移動する軌道から離れた位置に配置されている。このように、待機状態から制動状態へ移行動作する際に、第1リンク部材16に接続された可動鉄心44や接続部材41は、送りねじ軸47等の作動機構11を構成する他の部材と干渉することがない。 On the other hand, in the operating mechanism 11 of this example, the drive motor 46 and the feed screw shaft 47 are arranged on the other end side in the second direction Y from the electromagnetic core 43 and the movable iron core 44. That is, the drive motor 46 and the feed screw shaft 47 are arranged at positions away from the moving track of the movable iron core 44 and the connecting member 41. In this way, the movable iron core 44 and the connecting member 41 connected to the first link member 16 are connected to other members constituting the operating mechanism 11 such as the feed screw shaft 47 during the transition operation from the standby state to the braking state. Does not interfere.
 これにより、第1リンク部材16をスムーズに回動させることができ、駆動機構12をスムーズに作動させることができる。その結果、制動機構10A、10Bを素早く作動させることができ、非常止め装置5の信頼性を高めることができる。 As a result, the first link member 16 can be smoothly rotated, and the drive mechanism 12 can be smoothly operated. As a result, the braking mechanisms 10A and 10B can be operated quickly, and the reliability of the emergency stop device 5 can be improved.
[復帰動作]
 次に、図9~図11を参照して作動機構11における制動状態から待機状態に復帰する復帰動作について説明する。
 図9及び図10は、ロック機構60における復帰動作の初期状態を示す図、図11は、作動機構11の復帰動作を示す図である。
[Return operation]
Next, a return operation for returning from the braking state to the standby state in the operating mechanism 11 will be described with reference to FIGS. 9 to 11.
9 and 10 are diagrams showing the initial state of the return operation of the lock mechanism 60, and FIG. 11 is a diagram showing the return operation of the operating mechanism 11.
 まず、制御部170は、電源を制御し、電磁コア43のコイルに通電する。これにより、コイルが通電されることで、電磁コア43は、励磁する。次に、制御部170は、ロック機構60の保持ソレノイド61を駆動させる。これにより、図9及び図10に示すように、保持ソレノイド61は、プランジャ61aを吸引する。そして、レバー62は、付勢部材67の付勢力に抗して、保持ソレノイド61に接近する方向、すなわち昇降方向Zの下方に向けて移動する。 First, the control unit 170 controls the power supply and energizes the coil of the electromagnetic core 43. As a result, the coil is energized, and the electromagnetic core 43 is excited. Next, the control unit 170 drives the holding solenoid 61 of the lock mechanism 60. As a result, as shown in FIGS. 9 and 10, the holding solenoid 61 sucks the plunger 61a. Then, the lever 62 moves in a direction approaching the holding solenoid 61, that is, downward in the elevating direction Z, against the urging force of the urging member 67.
 レバー62が昇降方向Zの下方に移動することで、レバー62に接続された一対のストッパー63は、コアプレート49よりも昇降方向Zの下方に移動し、コアプレート49から離間する。これにより、コアプレート49における第1の方向Xのマイナス側が開放される。 When the lever 62 moves below the elevating direction Z, the pair of stoppers 63 connected to the lever 62 move below the elevating direction Z with respect to the core plate 49 and are separated from the core plate 49. As a result, the negative side of the first direction X in the core plate 49 is opened.
 ここで、コアプレート49における一対のストッパー63と接触する箇所には、ローラ49cが設けられている。ローラ49cにより、ストッパー63が移動する際の摩擦抵抗を低減することができる。その結果、レバー62及びストッパー63を移動させる保持ソレノイド61の小型化を図ることができる。 Here, rollers 49c are provided at locations on the core plate 49 that come into contact with the pair of stoppers 63. The roller 49c can reduce the frictional resistance when the stopper 63 moves. As a result, the holding solenoid 61 for moving the lever 62 and the stopper 63 can be miniaturized.
 なお、ストッパー63とコアプレート49との摩擦力が小さい場合は、ローラ49cを設けなくてもよい。また、保持ソレノイド61を駆動させる前に、駆動モータ46を逆回転で駆動し、コアプレート49を第1の方向Xのプラス側に移動させてもよい。これにおり、コアプレート49がストッパー63から離れるため、コアプレート49によりストッパー63への摩擦力をなくすことができ、レバー62及びストッパー63をよりスムーズに移動させることができる。 If the frictional force between the stopper 63 and the core plate 49 is small, the roller 49c may not be provided. Further, before driving the holding solenoid 61, the drive motor 46 may be driven in the reverse rotation to move the core plate 49 to the plus side in the first direction X. Since the core plate 49 is separated from the stopper 63, the frictional force on the stopper 63 can be eliminated by the core plate 49, and the lever 62 and the stopper 63 can be moved more smoothly.
 レバー62及びストッパー63が昇降方向Zの下方に移動すると、制御部170は、駆動モータ46を正回転で駆動し、送りねじ軸47を回転させる。送りねじ軸47が回転することで、送りねじ軸47とコアプレート49のねじ孔49bにより送りねじ軸47の回転力が第1の方向Xに沿った力に変換される。そのため、図11に示すように、コアプレート49は、ガイド部材51にガイドされて、第1の方向Xのマイナス側に移動する。さらに、コアプレート49に固定された電磁コア43も可動鉄心44に接近する向き、すなわち第1の方向Xのマイナス側に移動する。 When the lever 62 and the stopper 63 move downward in the ascending / descending direction Z, the control unit 170 drives the drive motor 46 in the forward rotation to rotate the feed screw shaft 47. When the feed screw shaft 47 rotates, the rotational force of the feed screw shaft 47 is converted into a force along the first direction X by the feed screw shaft 47 and the screw holes 49b of the core plate 49. Therefore, as shown in FIG. 11, the core plate 49 is guided by the guide member 51 and moves to the minus side in the first direction X. Further, the electromagnetic core 43 fixed to the core plate 49 also moves in the direction approaching the movable iron core 44, that is, in the minus side of the first direction X.
 コアプレート49がストッパー63よりも第1の方向Xのマイナス側に移動すると、制御部170は、保持ソレノイド61の駆動を解除する。これにより、レバー62及びストッパー63は、付勢部材67の付勢力により昇降方向Zの上方に向けて移動する。 When the core plate 49 moves to the minus side of the first direction X from the stopper 63, the control unit 170 releases the drive of the holding solenoid 61. As a result, the lever 62 and the stopper 63 move upward in the ascending / descending direction Z due to the urging force of the urging member 67.
 次に、電磁コア43の吸着面43aが可動鉄心44の対向面44aに接触すると、可動鉄心44が電磁コア43の吸着面43aに吸着される。このとき、接続部材41は、接続ピン42を中心に回動する。 Next, when the suction surface 43a of the electromagnetic core 43 comes into contact with the facing surface 44a of the movable iron core 44, the movable iron core 44 is attracted to the suction surface 43a of the electromagnetic core 43. At this time, the connecting member 41 rotates about the connecting pin 42.
 可動鉄心44が電磁コア43に吸着されると、制御部170は、駆動モータ46を逆回転で駆動し、送りねじ軸47を回転させる。これにより、送りねじ軸47に螺合するコアプレート49が第1の方向Xのプラス側に向けて移動する。そのため、コアプレート49、電磁コア43、電磁コア43に吸着された可動鉄心44及び接続部材41が第1の方向Xのプラス側に向けて移動する。 When the movable iron core 44 is attracted to the electromagnetic core 43, the control unit 170 drives the drive motor 46 in the reverse rotation to rotate the feed screw shaft 47. As a result, the core plate 49 screwed into the feed screw shaft 47 moves toward the positive side in the first direction X. Therefore, the core plate 49, the electromagnetic core 43, the movable iron core 44 adsorbed on the electromagnetic core 43, and the connecting member 41 move toward the plus side in the first direction X.
 接続部材41が第1の方向Xのプラス側に移動することで、第1リンク部材16は、駆動ばね20の付勢力に抗して、回動する。コアプレート49が第1の方向Xのプラス側に移動すると、コアプレート49のローラ49cがストッパー63のテーパー面63aに接触する。そして、コアプレート49がさらに第1の方向Xのプラス側に移動すると、ストッパー63及びレバー62は、コアプレート49により昇降方向Zの下方に向けて押圧される。そのため、ストッパー63及びレバー62は、付勢部材67の付勢力に抗して昇降方向Zの下方に向けて移動する。 When the connecting member 41 moves to the plus side in the first direction X, the first link member 16 rotates against the urging force of the drive spring 20. When the core plate 49 moves to the positive side in the first direction X, the roller 49c of the core plate 49 comes into contact with the tapered surface 63a of the stopper 63. Then, when the core plate 49 further moves to the plus side in the first direction X, the stopper 63 and the lever 62 are pressed by the core plate 49 downward in the ascending / descending direction Z. Therefore, the stopper 63 and the lever 62 move downward in the ascending / descending direction Z against the urging force of the urging member 67.
 このように、ストッパー63にテーパー面63aを設けたことで、コアプレート49を待機位置に戻す際に、保持ソレノイド61を駆動させることなく、ストッパー63及びレバー62を押し下げることができる。そのため、保持ソレノイド61が駆動する回数は、コアプレート49が第1の方向Xのマイナス側に移動するときの1回だけでよい。 By providing the stopper 63 with the tapered surface 63a in this way, when the core plate 49 is returned to the standby position, the stopper 63 and the lever 62 can be pushed down without driving the holding solenoid 61. Therefore, the holding solenoid 61 needs to be driven only once when the core plate 49 moves to the minus side in the first direction X.
 ここで、比較的小型のソレノイドで比較的長い時間駆動させると、ソレノイドが発熱する。そのため、耐熱性能の大きい大型のソレノイドが必要となる。これに対して、本例の作動機構11では、保持ソレノイド61の駆動回数及び駆動時間を短縮することができ、保持ソレノイド61の発熱を抑制することができる。その結果、小型の保持ソレノイド61を用いることができる。さらに、保持ソレノイド61の駆動回数の短縮を図ることができるため、復帰作業にかかる保持ソレノイド61の制御を容易にすることができる。さらに、ローラ49cによりコアプレート49とストッパー63との摩擦抵抗を低減することができ、コアプレート49をスムーズに移動させることができる。 Here, if a relatively small solenoid is driven for a relatively long time, the solenoid will generate heat. Therefore, a large solenoid with high heat resistance is required. On the other hand, in the operating mechanism 11 of this example, the number of times and the driving time of the holding solenoid 61 can be shortened, and the heat generation of the holding solenoid 61 can be suppressed. As a result, a small holding solenoid 61 can be used. Further, since the number of times the holding solenoid 61 is driven can be shortened, it is possible to easily control the holding solenoid 61 for the return operation. Further, the roller 49c can reduce the frictional resistance between the core plate 49 and the stopper 63, so that the core plate 49 can be moved smoothly.
 また、コアプレート49がストッパー63よりも第1の方向Xのプラス側に移動すると、ストッパー63及びレバー62は、付勢部材67の付勢力により昇降方向Zの上方に向けて移動する。そして、可動鉄心44及び電磁コア43が図3及び図4に示す待機位置まで移動すると、制御部170は、駆動モータ46の駆動を停止する。これにより、作動機構11の復帰動作が完了する。 Further, when the core plate 49 moves to the plus side in the first direction X from the stopper 63, the stopper 63 and the lever 62 move upward in the ascending / descending direction Z by the urging force of the urging member 67. Then, when the movable iron core 44 and the electromagnetic core 43 move to the standby positions shown in FIGS. 3 and 4, the control unit 170 stops driving the drive motor 46. As a result, the return operation of the operating mechanism 11 is completed.
 また、本例の作動機構11では、ロック機構60をコアプレート49における送りねじ軸47側に配置した例を説明したが、これに限定されるものではなく、ロック機構60をコアプレート49におけるガイド部材51側に配置してもよい。 Further, in the operating mechanism 11 of this example, an example in which the locking mechanism 60 is arranged on the feed screw shaft 47 side of the core plate 49 has been described, but the present invention is not limited to this, and the locking mechanism 60 is guided by the core plate 49. It may be arranged on the member 51 side.
 なお、ロック機構60をガイド部材51側に配置した場合、コアプレート49の戻り時においてコアプレート49がストッパー63に接触する箇所とねじ孔49bとの間隔が長くなる。その結果、ストッパー63及びレバー62を押し下げるために必要なモーメントが大きくなる。したがって、コアプレート49にかかるモーメントを小さくするために、ロック機構60は、コアプレート49における駆動モータ46からの力が伝達されるねじ孔49b側の近傍、すなわち送りねじ軸47側に配置することが好ましい。 When the lock mechanism 60 is arranged on the guide member 51 side, the distance between the portion where the core plate 49 contacts the stopper 63 and the screw hole 49b becomes longer when the core plate 49 returns. As a result, the moment required to push down the stopper 63 and the lever 62 increases. Therefore, in order to reduce the moment applied to the core plate 49, the lock mechanism 60 is arranged near the screw hole 49b side in which the force from the drive motor 46 is transmitted in the core plate 49, that is, on the feed screw shaft 47 side. Is preferable.
 なお、電磁コア43やコアプレート49の位置の検出は、機械式のスイッチや光学式のスイッチ等を用いて行ってもよい。さらに、可動鉄心44と電磁コア43の吸着動作の検出は、電磁コア43のコイルに流れる電流値から判断してもよい。 The positions of the electromagnetic core 43 and the core plate 49 may be detected by using a mechanical switch, an optical switch, or the like. Further, the detection of the suction operation of the movable iron core 44 and the electromagnetic core 43 may be determined from the value of the current flowing through the coil of the electromagnetic core 43.
 なお、上述しかつ図面に示した実施の形態に限定されるものではなく、請求の範囲に記載した発明の要旨を逸脱しない範囲内で種々の変形実施が可能である。 It should be noted that the present invention is not limited to the embodiment described above and shown in the drawings, and various modifications can be carried out within a range that does not deviate from the gist of the invention described in the claims.
 上述した実施の形態例では、作動機構11の電磁コアが移動する方向を第1の方向Xと略平行に設定した例を説明したが、これに限定されるものではない。作動機構11の電磁コアの移動方向は、昇降方向Zや第2の方向Yと略平行に設定してもよく、あるいは第1の方向X、第2の方向Yや昇降方向Zに対して傾斜した方向であってもよい。また、第1リンク部材16及び第2リンク部材17を乗りかご120における第2の方向Yの両端部に配置し、駆動軸15を第2の方向Yに沿って配置してもよい。 In the above-described embodiment, an example in which the direction in which the electromagnetic core of the operating mechanism 11 moves is set to be substantially parallel to the first direction X has been described, but the present invention is not limited to this. The moving direction of the electromagnetic core of the operating mechanism 11 may be set substantially parallel to the elevating direction Z and the second direction Y, or is inclined with respect to the first direction X, the second direction Y, and the elevating direction Z. It may be in the same direction. Further, the first link member 16 and the second link member 17 may be arranged at both ends of the car 120 in the second direction Y, and the drive shaft 15 may be arranged along the second direction Y.
 また、昇降体としては乗りかご120に限定されるものではなく、釣合おもり140を適用してもよい。そして、非常止め装置を釣合おもり140に設け、釣合おもり140の昇降移動を非常停止させてもよい。この場合、非常止め装置を構成する作動機構や駆動機構等は、釣合おもり140に配置される。 Further, the elevating body is not limited to the car 120, and the balance weight 140 may be applied. Then, an emergency stop device may be provided on the balance weight 140 to make an emergency stop of the ascending / descending movement of the balance weight 140. In this case, the operating mechanism, the driving mechanism, and the like constituting the emergency stop device are arranged on the balance weight 140.
 また、上述した実施の形態例では、非常止め装置の制御する制御部として、エレベーター1全体を制御する制御部170を適用した例を説明したが、これに限定されるものではない。制御部としては、乗りかご120に設けられて乗りかご120のみを制御する制御部や非常止め装置のみを制御する制御部等その他各種の制御部を適用できるものである。 Further, in the above-described embodiment, an example in which the control unit 170 that controls the entire elevator 1 is applied as the control unit that controls the emergency stop device has been described, but the present invention is not limited to this. As the control unit, various other control units such as a control unit provided in the car 120 that controls only the car 120 and a control unit that controls only the emergency stop device can be applied.
 さらに、エレベーターとして一つ昇降路内を複数の乗りかごが昇降移動するマルチカーエレベーターにも適用できるものである。 Furthermore, it can be applied to a multi-car elevator in which multiple cars move up and down in one hoistway as an elevator.
 なお、本明細書において、「平行」及び「直交」等の単語を使用したが、これらは厳密な「平行」及び「直交」のみを意味するものではなく、「平行」及び「直交」を含み、さらにその機能を発揮し得る範囲にある、「略平行」や「略直交」の状態であってもよい。 Although words such as "parallel" and "orthogonal" have been used in the present specification, these do not mean only strict "parallel" and "orthogonal", but include "parallel" and "orthogonal". Further, it may be in a "substantially parallel" or "substantially orthogonal" state within a range in which the function can be exhibited.
 1…エレベーター、 5…非常止め装置、 10A、10B…第1制動機構、 11、11B…作動機構、 12…駆動機構、 13、14…引き上げ棒、 15…駆動軸、 16…第1リンク部材、 17…第2リンク部材、 16a、17b…作動片、 16b、17b…接続片、 18…第1作動軸、 19…第2作動軸、 20…駆動ばね、 41…接続部材、 43…電磁コア、 43a…吸着面、 44…可動鉄心、 44a…対向面、 45…ベースプレート、 46…駆動モータ、 46a…回転軸、 47…送りねじ軸、 49…コアプレート、 49a…スライド孔、 49b…ねじ孔、 49c…ローラ、 53…固定ブラケット、 54…第1軸支持部、 55…第2軸支持部、 60…ロック機構、 61…保持ソレノイド、 61a…プランジャ、 62…レバー、 63…ガイド部、 63a…テーパー面、 64…ガイド支柱(荷重受け部)、 65…接続片、 67…付勢部材、 100…巻上機、 110…昇降路、 120…乗りかご(昇降体)、 121…クロスヘッド、 130…主ロープ、 140…釣合おもり(昇降体) 150…反らせ車、 160…機械室、 170…制御部、 201A、201B…ガイドレール 1 ... Elevator, 5 ... Emergency stop device, 10A, 10B ... 1st braking mechanism, 11, 11B ... Acting mechanism, 12 ... Drive mechanism, 13, 14 ... Pulling rod, 15 ... Drive shaft, 16 ... 1st link member, 17 ... 2nd link member, 16a, 17b ... Working piece, 16b, 17b ... Connecting piece, 18 ... 1st working shaft, 19 ... 2nd working shaft, 20 ... Drive spring, 41 ... Connecting member, 43 ... Electromagnetic core, 43a ... suction surface, 44 ... movable iron core, 44a ... facing surface, 45 ... base plate, 46 ... drive motor, 46a ... rotating shaft, 47 ... feed screw shaft, 49 ... core plate, 49a ... slide hole, 49b ... screw hole, 49c ... Roller, 53 ... Fixed bracket, 54 ... 1st axis support, 55 ... 2nd axis support, 60 ... Lock mechanism, 61 ... Holding solenoid, 61a ... Plunger, 62 ... Lever, 63 ... Guide, 63a ... Tapered surface, 64 ... guide support (load receiving part), 65 ... connection piece, 67 ... urging member, 100 ... hoisting machine, 110 ... hoistway, 120 ... car (elevator), 121 ... cross head, 130 ... Main rope, 140 ... Balanced weight (elevating body) 150 ... Warp wheel, 160 ... Machine room, 170 ... Control unit, 201A, 201B ... Guide rail

Claims (7)

  1.  昇降体に設けられ、かつ前記昇降体が摺動するガイドレールを挟持して前記昇降体の移動を停止させる制動機構と、
     前記制動機構に接続し、前記制動機構を動作させる駆動機構と、
     前記駆動機構に接続され、前記駆動機構を作動させる作動機構と、を備え、
     前記作動機構は、
     前記駆動機構に接続されて、前記駆動機構と共に可動する接続部材と、
     前記接続部材に固定された可動鉄心と、
     前記可動鉄心を分離可能に吸着する電磁コアと、
     前記電磁コアを前記可動鉄心に対して接近及び離間する方向に移動可能に支持する移動機構と、
     前記移動機構に接触し、前記電磁コアの移動を解除可能に規制するロック機構と、を備え、
     前記ロック機構は、前記駆動機構に設けた駆動ばねからの荷重を受ける荷重受け部を有する
     非常止め装置。
    A braking mechanism provided on the elevating body and sandwiching a guide rail on which the elevating body slides to stop the movement of the elevating body.
    A drive mechanism that connects to the braking mechanism and operates the braking mechanism,
    An actuating mechanism that is connected to the drive mechanism and operates the drive mechanism.
    The operating mechanism is
    A connecting member that is connected to the drive mechanism and moves together with the drive mechanism,
    A movable iron core fixed to the connecting member,
    An electromagnetic core that adsorbs the movable iron core in a separable manner,
    A moving mechanism that movably supports the electromagnetic core in directions that approach and separate from the movable iron core, and
    A lock mechanism that contacts the moving mechanism and regulates the movement of the electromagnetic core so that it can be released is provided.
    The lock mechanism is an emergency stop device having a load receiving portion that receives a load from a drive spring provided in the drive mechanism.
  2.  前記ロック機構は、
     前記移動機構に接触するストッパーが設けられたレバーと、
     前記レバーを移動させることで、前記ストッパーを前記移動機構に接触及び離間させる保持ソレノイドと、
     前記レバーを移動可能に支持するガイド支柱と、を有し、
     前記荷重受け部は、前記ガイド支柱である
     請求項1に記載の非常止め装置。
    The lock mechanism is
    A lever provided with a stopper that comes into contact with the moving mechanism, and
    A holding solenoid that brings the stopper into contact with and separates from the moving mechanism by moving the lever.
    It has a guide strut that movably supports the lever, and has.
    The emergency stop device according to claim 1, wherein the load receiving portion is the guide column.
  3.  前記保持ソレノイドにおける前記レバーを移動させる方向は、前記駆動ばねからの荷重を受ける方向と直交する
     請求項2に記載の非常止め装置。
    The emergency stop device according to claim 2, wherein the direction of moving the lever in the holding solenoid is orthogonal to the direction of receiving the load from the drive spring.
  4.  前記移動機構は、
     駆動モータと、
     前記駆動モータにより回転駆動する送りねじ軸と、
     前記電磁コアに固定され、前記送りねじ軸と螺合する螺合部を有するコアプレートと、を有し、
     前記ストッパーは、前記コアプレートに接触及び離間する
     請求項2に記載の非常止め装置。
    The moving mechanism
    With the drive motor
    A feed screw shaft that is rotationally driven by the drive motor,
    It has a core plate that is fixed to the electromagnetic core and has a screw portion that is screwed with the feed screw shaft.
    The emergency stop device according to claim 2, wherein the stopper contacts and separates from the core plate.
  5.  前記コアプレートにおける前記ストッパーと接触する箇所には、ローラが設けられる
     請求項4に記載の非常止め装置。
    The emergency stop device according to claim 4, wherein a roller is provided at a position of the core plate in contact with the stopper.
  6.  前記ストッパーは、前記コアプレートにおける前記螺合部が設けられた端部に接触する
     請求項4に記載の非常止め装置。
    The emergency stop device according to claim 4, wherein the stopper contacts an end portion of the core plate provided with the screwed portion.
  7.  昇降路内を昇降移動する昇降体を備えたエレベーターにおいて、
     前記昇降路内に立設されて前記昇降体を摺動可能に支持するガイドレールと、
     前記昇降体の昇降移動の状態に基づいて前記昇降体の移動を停止させる非常止め装置と、を備え、
     前記非常止め装置は、
     前記昇降体に設けられ、かつ前記ガイドレールを挟持して前記昇降体の移動を停止させる制動機構と、
     前記制動機構に接続し、前記制動機構を動作させる駆動機構と、
     前記駆動機構に接続され、前記駆動機構を作動させる作動機構と、を備え、
     前記作動機構は、
     前記駆動機構に接続されて、前記駆動機構と共に可動する接続部材と、
     前記接続部材に固定された可動鉄心と、
     前記可動鉄心を分離可能に吸着する電磁コアと、
     前記電磁コアを前記可動鉄心に対して接近及び離間する方向に移動可能に支持する移動機構と、
     前記移動機構に接触し、前記電磁コアの移動を解除可能に規制するロック機構と、を備え、
     前記ロック機構は、前記駆動機構に設けた駆動ばねからの荷重を受ける荷重受け部を有する
     エレベーター。
    In an elevator equipped with an elevator that moves up and down in the hoistway
    A guide rail that is erected in the hoistway and slidably supports the elevating body,
    An emergency stop device for stopping the movement of the elevating body based on the state of the elevating movement of the elevating body is provided.
    The emergency stop device
    A braking mechanism provided on the elevating body and sandwiching the guide rail to stop the movement of the elevating body.
    A drive mechanism that connects to the braking mechanism and operates the braking mechanism,
    An actuating mechanism that is connected to the drive mechanism and operates the drive mechanism.
    The operating mechanism is
    A connecting member that is connected to the drive mechanism and moves together with the drive mechanism,
    A movable iron core fixed to the connecting member,
    An electromagnetic core that adsorbs the movable iron core in a separable manner,
    A moving mechanism that movably supports the electromagnetic core in directions that approach and separate from the movable iron core, and
    A lock mechanism that contacts the moving mechanism and regulates the movement of the electromagnetic core so that it can be released is provided.
    The lock mechanism is an elevator having a load receiving portion that receives a load from a drive spring provided in the drive mechanism.
PCT/JP2020/017182 2020-04-21 2020-04-21 Emergency stop device and elevator WO2021214867A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022516513A JP7360546B2 (en) 2020-04-21 2020-04-21 Emergency stop device and elevator
CN202080099726.9A CN115397760B (en) 2020-04-21 2020-04-21 Emergency braking device and elevator
PCT/JP2020/017182 WO2021214867A1 (en) 2020-04-21 2020-04-21 Emergency stop device and elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017182 WO2021214867A1 (en) 2020-04-21 2020-04-21 Emergency stop device and elevator

Publications (1)

Publication Number Publication Date
WO2021214867A1 true WO2021214867A1 (en) 2021-10-28

Family

ID=78270431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017182 WO2021214867A1 (en) 2020-04-21 2020-04-21 Emergency stop device and elevator

Country Status (3)

Country Link
JP (1) JP7360546B2 (en)
CN (1) CN115397760B (en)
WO (1) WO2021214867A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115904A1 (en) * 2004-05-25 2005-12-08 Mitsubishi Denki Kabushiki Kaisha Emergency stop device of elevator
JP2013189283A (en) * 2012-03-13 2013-09-26 Toshiba Corp Stop device and elevator with the same
JP2019156567A (en) * 2018-03-13 2019-09-19 株式会社日立製作所 Emergency stop device and elevator
JP2020083579A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Emergency stop device and elevator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593117B (en) * 2000-12-07 2004-06-21 Inventio Ag Safety brake and method for unlocking a safety brake
JPWO2006046284A1 (en) * 2004-10-27 2008-05-22 三菱電機株式会社 Elevator emergency stop device
KR100745908B1 (en) * 2006-01-11 2007-08-02 미쓰비시덴키 가부시키가이샤 Emergency stop device of elevator
JP5468128B2 (en) * 2009-03-16 2014-04-09 オーチス エレベータ カンパニー Starter and elevator configured to start a safety device of an elevator system part
JP5973316B2 (en) * 2012-10-23 2016-08-23 株式会社日立製作所 Elevator emergency stop device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115904A1 (en) * 2004-05-25 2005-12-08 Mitsubishi Denki Kabushiki Kaisha Emergency stop device of elevator
JP2013189283A (en) * 2012-03-13 2013-09-26 Toshiba Corp Stop device and elevator with the same
JP2019156567A (en) * 2018-03-13 2019-09-19 株式会社日立製作所 Emergency stop device and elevator
JP2020083579A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Emergency stop device and elevator

Also Published As

Publication number Publication date
CN115397760B (en) 2023-04-28
JP7360546B2 (en) 2023-10-12
JPWO2021214867A1 (en) 2021-10-28
CN115397760A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2021166318A1 (en) Emergency stop device and elevator
JP7204448B2 (en) Emergency stop device and elevator
JP5026743B2 (en) Progressive safety device
US9169104B2 (en) Activating a safety gear
US6360847B1 (en) Elevator system and speed governing apparatus
KR101033378B1 (en) Safety device of elevator
WO2021044662A1 (en) Emergency stop device and elevator
WO2019176160A1 (en) Emergency stop device, and elevator
EP3643666B1 (en) Elevator system
EP3147248B1 (en) Braking system for a hoisted structure and method of controlling braking a hoisted strucuture
CN102596783A (en) Emergency stop device for elevators
JP2010514645A (en) Elevating system having an elevator box with a brake device for holding and braking the elevator box in the area of the elevator box and a method for holding and braking an elevator box of this type
US7607518B2 (en) Emergency brake of elevator
JP4292202B2 (en) Actuator operation inspection method and actuator operation inspection apparatus
WO2021214867A1 (en) Emergency stop device and elevator
WO2003089354A1 (en) Emergency brake device for elevator
EP1724225B1 (en) Emergency brake device of elevator
JP2022072312A (en) Emergency stop device and elevator
WO2022249793A1 (en) Emergency stop device, elevator, and method of restoring emergency stop device
WO2022038665A1 (en) Elevator device
WO2023047561A1 (en) Elevator device
KR100816172B1 (en) Elevator apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932122

Country of ref document: EP

Kind code of ref document: A1