WO2021213335A1 - 传输确认方法、终端设备及传输节点 - Google Patents

传输确认方法、终端设备及传输节点 Download PDF

Info

Publication number
WO2021213335A1
WO2021213335A1 PCT/CN2021/088170 CN2021088170W WO2021213335A1 WO 2021213335 A1 WO2021213335 A1 WO 2021213335A1 CN 2021088170 W CN2021088170 W CN 2021088170W WO 2021213335 A1 WO2021213335 A1 WO 2021213335A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
control channel
physical control
rts
terminal device
Prior art date
Application number
PCT/CN2021/088170
Other languages
English (en)
French (fr)
Inventor
姜蕾
李�根
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21793469.4A priority Critical patent/EP4142415A4/en
Publication of WO2021213335A1 publication Critical patent/WO2021213335A1/zh
Priority to US17/970,550 priority patent/US20230040527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention requires the priority of a Chinese patent application filed with the Chinese Patent Office on April 21, 2020, the application number is 202010318706.8, and the invention title is "transmission confirmation method, terminal equipment and transmission node". The entire content of the application is incorporated by reference In the present invention.
  • the present invention relates to the field of communications, in particular to a transmission confirmation method, terminal equipment and transmission node.
  • unlicensed frequency bands can work in 5GHz, 37GHz and 60GHz frequency bands.
  • RATs such as WIFI (Wireless Fidelity), radar, and Long Term Evolution Licensed-Assisted Access (LTE-LAA), etc. Therefore, in some countries or regions, the use of unlicensed frequency bands must comply with regulations to ensure that all devices can use the resources fairly. For example, rules such as listen before talk (LBT) and Maximum Channel Occupancy Time (MCOT).
  • the transmission node When the transmission node needs to send information, it needs to perform LBT and perform energy detection (ED) on the surrounding nodes. When the detected power is below a threshold, the channel is considered to be idle and the transmission node can send . Otherwise, the channel is considered to be busy and the transmitting node cannot send.
  • the transmission node may be a base station, a user terminal (User Equipment, UE), and a WiFi access point (Access Point, AP), etc. After the transmission node starts transmission, the occupied channel time (Channel Occupancy Time, COT) cannot exceed MCOT.
  • LBT can solve part of the channel interference problem, but because LBT is executed by the originating node, it cannot solve the hidden node problem of the receiving node.
  • the base station gNB1 performs LBT before sending data and detects that the channel is empty. Therefore, gNB1 sends data to UE1, and UE1 receives data. At this time, UE2 has data to send and performs LBT. Since gNB1 is far away and UE1 is in the receiving state, UE2 detects that the channel is empty and starts to send data. However, because UE2 and UE1 are very close, UE1 can receive the information sent by UE2. At this time, UE2 is a hidden node of UE1, and UE1 will be interfered by the hidden node (UE2) when receiving data from gNB1.
  • UE2 is a hidden node of UE1, and UE1 will be interfered by the hidden node (UE2) when receiving data from gNB1.
  • the purpose of the embodiments of the present invention is to provide a transmission confirmation method, terminal equipment and transmission node to solve the interference problem of hidden nodes in the shared spectrum scenario.
  • a transmission confirmation method which is applied to a first terminal, and the method includes: monitoring the first physical control channel according to the monitoring configuration information of the first physical control channel; First control information transmitted on a physical control channel, where the first control information includes Request To Send (RTS) information for multiple target terminal devices, and the multiple target terminal devices include the first A terminal; according to the RTS information, send transmission confirmation (Confirm To Send, CTS) information on the second physical control channel.
  • RTS Request To Send
  • CTS Confirm To Send
  • an information transmission method which is applied to a transmission node, and the method includes: transmitting first control information at a monitoring position of a first physical control channel, wherein the first control information includes The RTS information of the target terminal device; receiving the CTS information returned by at least one target terminal device among the multiple target terminal devices on the second physical control channel; in the search space corresponding to at least one target terminal device among the multiple target terminal devices, scheduling the first Three physical control channels to transmit data to the at least one target terminal device.
  • a terminal device including: a monitoring module, configured to monitor the first physical control channel according to the monitoring configuration information of the first physical control channel; The first control information transmitted on a physical control channel, where the first control information includes transmission request RTS information for multiple target terminal devices, and the multiple target terminal devices include the terminal device; the sending module uses According to the RTS information, the transmission confirmation CTS information is sent on the second physical control channel.
  • a transmission node including: a transmission module, configured to transmit first control information at a monitoring position of a first physical control channel, wherein the first control information includes information for multiple target terminal devices RTS information; receiving module, used to receive CTS information returned by at least one target terminal device in the second physical control channel among multiple target terminal devices; scheduling module, used to correspond to at least one target terminal device among multiple target terminal devices In the search space, the third physical control channel is scheduled to transmit data to the at least one target terminal device.
  • a terminal device including: a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, the following The steps of the method described in one aspect.
  • a transmission node including: a memory, a processor, and a computer program stored on the memory and capable of being run on the processor.
  • the computer program When the computer program is executed by the processor, the following The steps of the method described in the second aspect.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the method according to the first aspect or the second aspect are implemented .
  • the first terminal monitors the first physical control channel, and obtains the first control information transmitted by the transmission node on the first physical control channel.
  • the first control information includes RTS information for multiple target terminal devices.
  • the device sends CTS information on the second physical control channel to complete the RTS/CTS handshake.
  • Other devices that have not completed the RTS/CTS handshake will not try to transmit, thus avoiding hidden nodes around the first terminal.
  • the interference to improve the effectiveness of shared spectrum use in the NR system.
  • Figure 1 is a schematic diagram of a hidden node scene in related technologies
  • FIG. 2 is a schematic flowchart of a transmission confirmation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of an information transmission method provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another flow chart of an information transmission method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a transmission node provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • Fig. 8 is a schematic structural diagram of a transmission node provided by an embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • the user equipment can be connected to one or more cores via a radio access network (for example, RAN, Radio Access Network)
  • the user equipment can be a mobile terminal, such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or “cellular” phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device. , They exchange language and/or data with the wireless access network.
  • the transmission node can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE And 5G base station (gNB), it can also be a terminal that transmits data to other terminals, WiFi access node, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB or e-NodeB, evolutional Node B evolutional Node B
  • LTE And 5G base station gNB
  • the present invention is not limited, but for the convenience of description, the following embodiments take gNB as an example for description.
  • FIG. 2 is a schematic flowchart of a transmission confirmation method provided in an embodiment of the present invention.
  • the method 200 may be executed by a first terminal.
  • the method can be executed by software or hardware installed on the first terminal.
  • the method may include the following steps.
  • S210 Monitor the first physical control channel according to the monitoring configuration information of the first physical control channel.
  • the monitoring configuration information of the first physical control channel may be pre-configured, for example, may be configured by the network side through signaling, or may also be pre-arranged with the network side.
  • the first control information may include RTS information of the transmission node for multiple target terminal devices, and the RTS information may indicate the channel occupation time length of the shared frequency and identification information of the multiple target terminal devices.
  • S214 Send CTS information on the second physical control channel according to the RTS information.
  • the CTS information is sent on the second physical control, where the CTS information Can indicate the length of time the channel is occupied.
  • the first terminal monitors the first physical control channel and obtains the first control information transmitted by the transmission node on the first physical control channel.
  • the first control information includes information for multiple target terminal devices.
  • RTS information the terminal device sends CTS information on the second physical control channel according to the RTS information, completes the RTS/CTS handshake, and can perform information transmission.
  • devices that have not completed the RTS/CTS handshake after receiving the CTS information, they can learn that the shared spectrum has been occupied during the channel occupation time according to the channel occupation time carried in the CTS information, so they will not try to initiate information Transmission avoids the interference caused by the nodes around the first terminal.
  • the first physical control channel may adopt a format similar to the physical downlink control channel (PDCCH). Therefore, in the embodiment of the present invention, the first physical control channel includes but is not limited to: RTS group public physical downlink Control channel (RTS Group Common PDCCH, RTS-GC-PDCCH), RTS common physical downlink control channel (RTS Common PDCCH, RTS-C-PDCCH) dedicated to the transmission of RTS, and RTS user-specific physical downlink control channel (RTS-UE) -Specific PDCCH).
  • RTS Group Common PDCCH RTS Group Common PDCCH, RTS-GC-PDCCH
  • RTS Common PDCCH RTS common physical downlink control channel dedicated to the transmission of RTS
  • RTS-UE RTS user-specific physical downlink control channel
  • RTS can be carried on RTS-GC-PDCCH, or RTS-C-PDCCH dedicated to RTS transmission, or partly carried on RTS-GC-PDCCH or RTS-C-PDCCH, partly carried on RTS-UE-specific PDCCH sent to multiple Target UEs.
  • the second physical control channel may adopt a format similar to PUCCH or PDCCH, and the CTS may be carried in CTS PUCCH dedicated to transmitting CTS, or existing PUCCH, or CTS PDCCH of a channel similar to PDCCH.
  • the first control information may be in a predetermined format, and may include at least one of the following: a public indication domain and a user indication domain. There may be one or more user indication domains. That is, in this implementation manner, the RTS information for multiple target terminal devices is indicated by the common indication field and/or the user indication field in the first control information.
  • the public indication field may include at least one of the following:
  • the first indication information is used to indicate the length of time that the channel is occupied, that is, the length of time that the shared frequency band channel is occupied by this data transmission;
  • the second indication information is used to indicate quasi-co-location (Quasi Co-Location, QCL), where the QCL is the QCL used when the transmission node acquires the channel on the shared spectrum;
  • the third indication information is used to indicate the target terminal device that has the transmission request, that is, to indicate to which target terminal device the data needs to be transmitted.
  • the third indication information may include one of the following: (1) The identification information list of the target terminal device, wherein the identification information of the target terminal device includes: the wireless network temporary identification of the target terminal device (Radio Network Temporary Identifier, RNTI), or the identifier configured in the terminal device group of the target terminal device.
  • (2) Bitmap wherein each bit in the bitmap is used to indicate whether one or a group of terminal devices is the target terminal device.
  • each bit in the bitmap is used to indicate whether one or a group of terminal devices in the terminal device group is the target terminal device. For example, if a terminal device group includes 10 terminal devices, a 10-bit bitmap can be used to indicate whether each terminal device is the target terminal device.
  • Each bit corresponds to a terminal device, for example, if the corresponding bit The value of the bit is 1, indicating that the terminal device is the target terminal device.
  • each target terminal device may correspond to a user indication domain, and indicate certain related information to the corresponding target terminal device through a user indication domain.
  • the user indication domain may include at least one of the following:
  • the resource indication information of the second physical control channel includes but is not limited to one of the following: time information of the second physical control channel, and PUCCH resource indicator (PUCCH Resource Indicator, PRI), etc.
  • monitoring indication information of the third physical control channel wherein the third physical control channel is used to schedule data from the transmission node to the terminal device; wherein the monitoring indication information includes but is not limited to Time domain information and search space identification of the third physical control channel.
  • the sending instruction information includes, but is not limited to, the format of the second physical control channel and spatial information (Spatial info).
  • the common indicator field is carried in RTS-GC-PDCCH or RTS-C-PDCCH
  • the user indicator field is carried in the RTS-UE-specific PDCCH; or, Both the common indication field and the user indication field are carried in the RTS-GC-PDCCH or RTS-C-PDCCH.
  • the network side may also configure the starting position of at least one domain for each target terminal device.
  • the method may also obtain the RTS information corresponding to the first terminal from the first control information according to the first starting position, where the first starting position is the first The starting position of the RTS information corresponding to the terminal in the first control information.
  • the first starting position may be the starting position of at least one of the following RTS information:
  • the first indication information is used to indicate the length of time the channel is occupied
  • the second indication information is used to indicate QCL, where the QCL is the QCL used when the transmission node acquires the channel on the shared spectrum;
  • the fourth indication information is used to indicate whether the first terminal needs to feed back the CTS
  • the resource indication information of the second physical control channel includes at least one of the following: monitoring time, PRI, and time-frequency resources.
  • the monitoring indication information of the third physical control channel includes at least one of the following: PDCCH monitoring time, search space ID, etc.
  • the CTS-PUCCH or CTS-PDCCHR sending indication information includes at least one of the following: the format of the second physical control channel, and spatial information (Spatial info).
  • the first terminal sends the CTS information corresponding to the RTS information on the second physical control channel:
  • the first terminal determines that it is one of the target terminal devices indicated by the RTS.
  • confirming that there is no interference includes at least one of the following:
  • the first control information is successfully decoded; that is, the CRC check of the first control information passes.
  • the first terminal may perform energy detection-based channel awareness (ED based CCA) one or more times, and if the channel is idle, confirm that there is no interference.
  • ED based CCA energy detection-based channel awareness
  • the method may further include: monitoring data scheduled by the third physical control channel, where the third physical control channel is used to schedule data from the transmission node to the The data of the first terminal.
  • the method may further include: stopping monitoring of the first physical control channel in a first time interval, where the first time interval is a predefined, Configured by the transmission node or indicated by the first control information. That is, after receiving the RTS and sending the CTS on the second physical control channel, the first terminal stops monitoring the first physical control channel in the first time interval, where the first time interval can be compared with the first control channel.
  • the length of the channel occupation time indicated by the information is the same or can be different, and can be specifically set according to actual applications.
  • the monitoring of the third physical control channel is stopped outside the length of the channel occupation time indicated by the first control information. That is, in this possible implementation manner, the first terminal only monitors the third physical control channel within the channel occupation time length indicated by the first control information.
  • the time domain monitoring position of the third physical control channel may be determined by at least one of the following:
  • other configurations of the third physical control channel can refer to the search space configuration where the RTS-PDCCH is located, or RTS-GC-PDCCH, RTS-C-PDCCH or UE- The search space configuration indicated by the specific PDCCH.
  • the third physical control channel may adopt a format similar to the PDCCH. Therefore, in a possible implementation manner, the third physical control channel may include a PDCCH (Scheduling PDCCH, S-PDCCH) for scheduling data.
  • PDCCH Packet Control Channel
  • the monitoring configuration information of the first physical control channel and/or the configuration information of the second physical control channel may be dynamically configured by the network side. Therefore, in this possible implementation manner, before S210, the method may further include at least one of the following:
  • the monitoring configuration information of the first physical control channel includes but is not limited to at least one of the following:
  • RNTI dedicated to RTS that is, RNTI dedicated to RTS (RTS-RNTI);
  • the size of the first control information that is, the size of the first control information transmitted by RTS-GC-PDCCH or C-PDCCH or UE-specific PDCCH;
  • the target search space where the target search space corresponds to the format of the first control information; the UE can determine the format adopted by the first control information through the target search space.
  • the target search space corresponds to the first control information format.
  • the first control information can reuse the existing downlink control information (DCI) format, for example, DCI 0_0 or 0_1 or 1_0 or 1_1, or it can also be a newly defined format dedicated to RTS transmission.
  • DCI format namely RTS DCI.
  • the network side can indicate the format of the first control information through the target search space.
  • the UE can pre-appoint with the network side that the format of the first control information corresponding to each search space is displayed on the network side.
  • the target search space for transmitting the first control information is indicated.
  • the UE can determine the format of the first control information transmitted by the network side.
  • the fifth indication information is used to indicate whether the target search space is only used for the first physical control channel transmission. That is to say, the target search space can be used only for RTS-PDCCH transmission, or can be reused with other information, which can be specifically indicated by the network side.
  • the configuration information of the second physical control channel may include the foregoing sending instruction information of the second physical control information.
  • the foregoing related description which is not repeated here.
  • the transmission node includes one of the following: a base station, a second terminal (for example, a relay terminal with relay capability), and a WiFi access node.
  • the problem of information exchange during the access of the shared spectrum channel in NR is solved, so that the transmitting node and the UE can complete the RTS/CTS handshake process, and devices that have not completed the RTS/CTS handshake will not try to transmit , Which reduces the interference problem of transmission on the shared spectrum.
  • FIG. 3 is a schematic flowchart of an information transmission method provided by an embodiment of the present invention.
  • the method 300 may be executed by a transmission node.
  • the method can be executed by software or hardware installed on the transmission node.
  • the method may include the following steps.
  • S310 At the monitoring position of the first physical control channel, transmit first control information, where the first control information includes RTS information for multiple target terminal devices.
  • a transmission node e.g., a base station
  • the transmission involves multiple target terminal devices.
  • the RTS information is the first control information.
  • the related information and format included in the first control information can be referred to the description in the method 200, which will not be repeated here.
  • the method may further include: performing LBT to determine whether the channel is idle. In the case where it is determined that the channel is idle, S310 is executed.
  • S312 Receive CTS information returned by at least one target terminal device in the second physical control channel among the multiple target terminal devices.
  • the target terminal device that receives the RTS information may return the CTS information to the transmission node on the second physical control channel.
  • the target terminal device may obtain the first control information transmitted on the first physical control channel in the manner described in method 200, and return the CTS information to the transmitting node according to the RTS information in the first control information
  • the relevant description in the method 200 please refer to the relevant description in the method 200, which will not be repeated here.
  • the second physical control channel includes: CTS PUCCH or CTS PDCCH.
  • the transmission node may determine the monitoring position of the second physical control channel according to the resources of the second physical control channel, so as to monitor the CTS sent by the target terminal device at the monitoring position.
  • the resources of the second physical control channel may be predefined, that is, the communication system pre-designates the resources of the second physical control channel.
  • the resources of the second physical control channel may also be configured by the transmission node.
  • the base station may send the configuration information of the second physical control channel to the target terminal device in advance, and the second physical control channel is indicated by the configuration information. Physical control channel resources.
  • the resource of the second physical control information may also be indicated to the target terminal device through the first control information, so that the target terminal device can send the CTS at the time-frequency position corresponding to the resource.
  • S314 Schedule a third physical control channel on the search space corresponding to at least one target terminal device among the multiple target terminal devices to transmit data to the at least one target terminal device.
  • the third physical control channel may include: PDCCH (ie, S-PDCCH) for scheduling data.
  • PDCCH ie, S-PDCCH
  • the method may further include at least one of the following:
  • the monitoring configuration information of the first physical control channel and the configuration information of the second physical control channel are similar to the method 200.
  • the first physical control channel includes at least one of the following: RTS-GC-PDCCH, RTS-C-PDCCH, and RTS-UE-Specific PDCCH.
  • RTS-GC-PDCCH RTS-GC-PDCCH
  • RTS-C-PDCCH RTS-C-PDCCH
  • RTS-UE-Specific PDCCH RTS-UE-Specific PDCCH
  • the transmitting node can transmit the first control information including the RTS information for multiple target terminal devices at the monitoring position of the first physical control channel, and receive one or more target terminals in the first physical control channel.
  • the CTS information returned by the physical control channel, and then in the search space corresponding to one or more target terminal devices, the third physical control channel is scheduled to transmit data to the target terminal device, thereby completing the shared spectrum through the RTS/CTS handshake mechanism
  • the device that has not completed the RTS/CTS handshake does not try to transmit, reducing the transmission interference on the shared spectrum.
  • FIG. 4 is another schematic flowchart of an information transmission method provided by an embodiment of the present invention.
  • the method 400 may be executed by a base station and a terminal device.
  • the method can be executed by software or hardware installed on the base station and terminal equipment.
  • the method may include the following steps.
  • the base station sends first control information including RTS information to multiple target UEs through the first physical control channel.
  • the gNB can send RTS to multiple UEs through RTS-GC-PDCCH or RTC-C-PDCCH or UE-specific PDCCH.
  • the RTS can be all carried in RTS-GC-PDCCH or RTC-C-PDCCH, or partly carried in RTS-GC-PDCCH or RTC-C-PDCCH, and partly carried in RTS-UE-specific PDCCH.
  • S412 The target UE monitors the first physical control channel, and obtains the first control information transmitted on the first physical control channel.
  • This step is the same as S212 in method 200.
  • S212 This step is the same as S212 in method 200.
  • S414 The target UE sends CTS information on the second physical control channel according to the RTS information in the first control information.
  • the target UE may transmit CTS in PUCCH.
  • This step is the same as S214 in method 200.
  • S214 in method 200 For details, please refer to the description of S214 in method 200.
  • the CTS sent by the UE may carry the channel occupation time.
  • the channel occupancy time is the channel occupancy time sent by the gNB minus the time of signal transmission and demodulation, that is, the end position of the channel occupancy time in the RTS and CTS is the same.
  • the CTS may also carry UE information, so that the gNB can learn the UE that sent the CTS, so that it can perform data scheduling for the UE that sent the CTS according to the received CTS.
  • the base station After receiving the CTS information sent by the target UE, the base station schedules data to be transmitted to the target UE on the S-PDCCH.
  • This step is the same as S314 in the method 300.
  • S314 in the method 300 For details, please refer to the description of S314 in the method 300.
  • the RTS sent by the base station may include at least the channel occupancy time, that is, NAV or COT, and the surrounding nodes can be notified of the time that the channel needs to be occupied through this information.
  • UE information can be carried in the RTS-PDCCH, and the UE information indicates which UEs need to feed back the CTS.
  • the UE receiving the RTS-PDCCH decides whether to send the CTS according to the UE information carried in the RTS-PDCCH, that is, if the UE information in the RTS-PDCCH contains the information of a certain UE, such as the UE ID, or includes the C-RNTI Or the ID in the group where the UE is located, etc., then the UE transmits the CTS to the gNB.
  • the UE information can be a UE ID list that contains all the UE IDs that need to send CTS, or it can be a bitmap, and each bit corresponds to each UE in the group.
  • the UE in order to transmit the CTS on the PUCCH, the UE needs to know the resource information of the PUCCH. Therefore, the format information of the PUCCH, the time domain position information, and the PUCCH resource indicator (PRI) can be carried in the RTS, that is, the RTS-PDCCH. ). Each UE corresponds to a set of PUCCH resource information.
  • the RTS-PDCCH can carry multiple sets of PUCCH resource information.
  • the RTS may also carry time-frequency resource information of the PDCCH allocated to the UE.
  • the RTS may also carry spatial relation information (SpatialRelationinfo) for the UE to transmit the CTS, for example, a reference resource ID (reference resource id) (which may correspond to the index of a reference resource (reference resource)).
  • spatialRelationinfo spatial relation information for the UE to transmit the CTS, for example, a reference resource ID (reference resource id) (which may correspond to the index of a reference resource (reference resource)).
  • the RTS-PDCCH may also carry S-PDCCH detection information to notify the UE of the corresponding monitoring location, search space ID, etc.
  • the time domain position of the PDCCH for sending the RTS may be pre-configured or predefined.
  • the UE performs detection on the pre-configured PDCCH monitoring position. After the UE detects the RTS, it sends the CTS according to the information carried by the RTS.
  • the time-domain position of the PUCCH for sending the CTS may be carried by the RTS as described in the method 200, or may also be associated with the position of the PDCCH for sending the RTS, and determined by an offset configured by high-level information.
  • the transmission of CTS may also depend on the channel state.
  • the UE can perform CCA before sending the CTS, and send the CTS when it detects that the channel is empty, otherwise, it does not send the CTS.
  • the UE starts to detect the PDCCH scheduling PDSCH or PUSCH after receiving the RTS and/or sending the CTS.
  • the detection position of the scheduled PDCCH can be configured by high-level signaling, or indicated by RTS, or determined by a high-level signaling configuration relative to the position offset of the PDCCH for sending the RTS or the PUCCH for sending the CTS.
  • the technical solution provided by the embodiments of the present invention can solve the problem of information exchange during the access of the shared spectrum channel in the NR, so that the base station and the UE can complete the handshake process, and reduce the transmission interference on the shared spectrum.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present invention.
  • the terminal device 500 includes: a monitoring module 510, configured to monitor the second physical control channel according to the monitoring configuration information of the first physical control channel.
  • a physical control channel ; an acquisition module 520, configured to acquire first control information transmitted by a transmission node on the first physical control channel, where the first control information includes transmission request RTS information for multiple target terminal devices
  • the multiple target terminal devices include the terminal device;
  • the sending module 530 is configured to send transmission confirmation CTS information on the second physical control channel according to the RTS information.
  • the first control information includes at least one of the following: a public indication domain and a user indication domain.
  • the common indication field includes at least one of the following: first indication information, used to indicate the length of time the channel is occupied; second indication information, used to indicate a quasi-co-located QCL, wherein the QCL It is the QCL used when the transmission node obtains the channel on the shared spectrum; the third indication information is used to indicate the target terminal device that has the transmission request.
  • the third indication information includes one of the following: an identification information list of the target terminal device, wherein the identification information of the target terminal device includes: the wireless network temporary identification RNTI of the target terminal device, or The identification of the target terminal device configured in the terminal device group; a bitmap, wherein each bit in the bitmap is used to indicate whether one or a group of terminal devices is the target terminal device.
  • the user indication field includes at least one of the following: resource indication information of the second physical control channel; monitoring indication information of the third physical control channel, wherein the third physical control channel Used for scheduling data from the transmission node to the terminal device; sending indication information of the second physical control channel.
  • the first physical control channel includes at least one of the following: RTS group common physical downlink control channel RTS-GC-PDCCH; RTS common physical downlink control channel RTS-C-PDCCH; and RTS user specific Physical downlink control channel RTS-UE-Specific PDCCH.
  • the common indicator field is carried in RTS-GC-PDCCH or RTS-C-PDCCH, and/or, the user indicator field is carried in the RTS-UE-specific PDCCH.
  • the common indication field and the user indication field are both carried in the RTS-GC-PDCCH or RTS-C-PDCCH.
  • the obtaining module 520 is further configured to obtain the first control information from the first control information according to the first starting position after obtaining the first control information transmitted on the first physical control channel.
  • the RTS information includes at least one of the following: first indication information, used to indicate the length of time the channel is occupied; second indication information, used to indicate a quasi-co-located QCL, where the QCL is QCL used when the transmission node acquires the channel on the shared spectrum; fourth indication information, used to indicate whether the first terminal needs to feed back the CTS; resource indication information of the second physical control channel; third physical control channel The monitoring instruction information of the second physical control channel, wherein the third physical control channel is used to schedule data from the transmission node to the terminal device; and the sending instruction information of the second physical control channel.
  • sending the transmission confirmation CTS information on the second physical control channel according to the RTS information includes: sending on the second physical control channel when it is determined that at least one of the following is satisfied
  • the CTS information corresponding to the RTS information according to the first control information, it is determined that there is a transmission request; it is confirmed that there is no interference.
  • confirming that there is no interference includes at least one of the following: the first control information is successfully decoded; channel sensing based on energy detection is performed one or more times, and the channel sensing result indicates that the channel is idle; based on the first control information
  • the control information performs interference estimation and determines that the signal quality meets the predetermined requirements.
  • the monitoring module 510 is further configured to monitor the data scheduled by the third physical control channel after sending the CTS information on the second physical control channel, where the third physical control channel is used for scheduling Data from the transmission node to the first terminal.
  • the monitoring module 510 is further configured to stop monitoring of the first physical control channel within a first time interval after sending the CTS information on the second physical control channel, wherein the first physical control channel A time interval is predefined, configured by the transmission node, or indicated by the first control information.
  • the monitoring module 510 is further configured to stop the monitoring of the third physical control channel outside the channel occupation time length indicated by the first control information.
  • the time-domain monitoring position of the third physical control channel is determined by at least one of the following: the absolute time-domain monitoring position of the configured target search space, where the target search space is the first 3. The search space where the physical control channel is located; the relative time domain monitoring position of the configured target search space with respect to the first physical control channel or the second physical control channel; the target indicated by the first physical control channel The relative time domain monitoring position of the search space with respect to the first physical control channel or the second physical control channel.
  • the third physical control channel includes: a PDCCH for scheduling data.
  • the second physical control channel includes: a CTS physical uplink control channel PUCCH or a CTS PDCCH.
  • a receiving module configured to receive at least one of the following before monitoring the first physical control channel: receiving monitoring configuration information of the first physical control channel; receiving the first physical control channel; 2. Configuration information of the physical control channel.
  • the monitoring configuration information includes at least one of the following: RTS dedicated RNTI; the starting position of the RTS information of each target terminal device in the first control information; the first control information The size of the target search space, where the target search space corresponds to the format of the first control information; fifth indication information, where the fifth indication information is used to indicate whether the target search space is only used for the The first physical control channel transmission.
  • the transmission node includes one of the following: a base station, a second terminal, and a WiFi access node.
  • the network device provided by the embodiment of the present invention can implement each process implemented by the terminal device or the first terminal in each method embodiment of FIG. 1 to FIG. 4, and achieve the same effect. To avoid repetition, details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a transmission node provided by an embodiment of the present invention.
  • the transmission node 600 includes: a transmission module 610, configured to transmit first control information at the monitoring position of the first physical control channel , Wherein the first control information includes RTS information for multiple target terminal devices; the receiving module 620 is configured to receive CTS information returned by at least one target terminal device of the multiple target terminal devices on the second physical control channel; scheduling The module 630 is configured to schedule a third physical control channel in the search space corresponding to at least one target terminal device among multiple target terminal devices, and transmit data to the at least one target terminal device.
  • a determining module configured to perform a listen-before-speak LBT before transmitting the first control information to determine whether the channel is idle.
  • the resource of the second physical control channel is predefined, or configured or instructed by the transmission node.
  • the transmission module 610 is further configured to send at least one of the following before transmitting the first control information: send the monitoring configuration information of the first physical control channel to the target terminal device; The target terminal device sends the configuration information of the second physical control channel.
  • the first physical control channel includes at least one of the following: RTS group common physical downlink control channel RTS-GC-PDCCH; RTC common physical downlink control channel RTS-C-PDCCH; and RTC user specific Physical downlink control channel RTS-UE-Specific PDCCH.
  • the second physical control channel includes at least one of the following: CTS physical uplink control channel PUCCH, or CTS PDCCH.
  • the transmission node provided by the embodiment of the present invention can implement each process implemented by each transmission node or base station in the foregoing method embodiments in FIG. 1 to FIG. 4, and achieve the same effect. To avoid repetition, details are not described herein again.
  • Fig. 7 is a block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device 700 shown in FIG. 7 includes: at least one processor 701, a memory 702, at least one network interface 704, and a user interface 703.
  • the various components in the terminal device 700 are coupled together through the bus system 705.
  • the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 705 in FIG. 7.
  • the user interface 703 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 702 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synch Link DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 702 of the system and method described in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 7021 and an application program 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 7022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 7022.
  • the terminal device 700 further includes: a computer program that is stored in the memory 702 and can run on the processor 701. When the computer program is executed by the processor 701, the following steps are implemented:
  • first control information transmitted by the transmission node on the first physical control channel where the first control information includes: transmission request RTS information for multiple target terminal devices, and the multiple target terminal devices include all The first terminal;
  • the transmission confirmation CTS information is sent on the second physical control channel.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 701, each step in the above method 300 is implemented.
  • the embodiments described in the embodiments of the present invention may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in the present invention Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present invention can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present invention.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 700 can implement the various processes implemented by the terminal device or the first terminal in FIGS.
  • FIG. 8 is a structural diagram of a transmission node applied in an embodiment of the present invention, which can be used as a transmission node or a base station to implement the details in FIGS. 1 to 4 and achieve the same effect.
  • the transmission node 800 includes: a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface, where:
  • the transmission node 800 further includes: a computer program that is stored in the memory 803 and can be run on the processor 801, and the computer program is executed by the processor 801 to implement the following steps:
  • first control information is transmitted, where the first control information includes RTS information for multiple target terminal devices;
  • the third physical control channel is scheduled to transmit data to the at least one target terminal device.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • the transmission node 800 can implement the various processes implemented by the transmission node or the base station in FIG. 1 to FIG. 4 and achieve the same effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the base station or The terminal device executes each process and can achieve the same technical effect. In order to avoid repetition, the details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输确认方法、终端设备和传输节点。其中,一种传输确认方法,应用于第一终端,所述方法包括:根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息,多个所述目标终端设备包括所述第一终端;根据所述RTS信息,在第二物理控制信道上发送CTS信息。

Description

传输确认方法、终端设备及传输节点
交叉引用
本发明要求在2020年04月21日提交中国专利局、申请号为202010318706.8、发明名称为“传输确认方法、终端设备及传输节点”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及通信领域,尤其涉及一种传输确认方法、终端设备及传输节点。
背景技术
在未来通信系统中,共享频谱,例如非授权频段(unlicensed band),可以作为授权频段(licensed band)的补充,以帮助运营商对服务进行扩容。为了与NR部署保持一致并尽可能的最大化基于新无线(New Radio,NR)的非授权接入,非授权频段可以工作在5GHz,37GHz和60GHz频段。由于非授权频段由多种技术(RATs)共用,例如WIFI(Wireless Fidelity)、雷达以及长期演进辅助授权接入(Long Term Evolution Licensed-Assisted Access,LTE-LAA)等。因此,在某些国家或者区域,非授权频段在使用时必须符合规则(regulation)以保证所有设备可以公平的使用该资源。例如先听后说(listen before talk,LBT)以及最大信道占用时间(Maximum Channel Occupancy Time,MCOT)等规则。当传输节点需要发送信息时,需要进行LBT,对周围的节点进行功率检测(energy detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则 认为信道为忙,传输节点不能进行发送。传输节点可以是基站、用户终端(User Equipment,UE)、以及WiFi接入点(Access Point,AP)等。传输节点开始传输后,占用的信道时间(Channel Occupancy Time,COT)不能超过MCOT。
LBT可以解决一部分信道干扰问题,但是由于LBT是由发端节点执行的,因此不能解决收端节点的隐藏节点问题。如图1所示,基站gNB1在发送数据前执行LBT,侦听到信道为空,因此,gNB1向UE1发送数据,UE1接收数据。此时,UE2有数据需要发送,执行LBT,由于gNB1离得比较远,UE1处于接收状态,因此,UE2侦听到信道为空,开始发送数据。但是由于UE2和UE1离得很近,UE1可以接收到UE2发送的信息,此时UE2是UE1的隐藏节点,UE1在接收gNB1的数据时会受到隐藏节点(UE2)的干扰。
发明内容
本发明实施例的目的是提供一种传输确认方法、终端设备和传输节点,以解决共享频谱场景中隐藏节点的干扰问题。
第一方面,提供了一种传输确认方法,应用于第一终端,所述方法包括:根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的传输请求(Request To Send,RTS)信息,多个所述目标终端设备包括所述第一终端;根据所述RTS信息,在第二物理控制信道上发送传输确认(Confirm To Send,CTS)信息。
第二方面,提供了一种信息传输方法,应用于传输节点,所述方法包括:在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;接收多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;在多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
第三方面,提供了一种终端设备,包括:监测模块,用于根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;获取模块,用于获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的传输请求RTS信息,多个所述目标终端设备包括所述终端设备;发送模块,用于根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息。
第四方面,提供了一种传输节点,包括:传输模块,用于在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;接收模块,用于接收多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;调度模块,用于在多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
第五方面,提供一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供一种传输节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
在本发明实施例中,第一终端监测第一物理控制信道,获取传输节点在第一物理控制信道上传输的第一控制信息,第一控制信息包括针对多个目标终端设备的RTS信息,终端设备根据该RTS信息,在第二物理控制信道上发送CTS信息,完成RTS/CTS握手,其他未完成RTS/CTS握手的设备不会尝试进行传输,从而避免了第一终端周围的隐藏节点带来的干扰,提高NR系 统中共享频谱使用的有效性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中一种隐藏节点的场景示意图;
图2是本发明实施例提供的传输确认方法的一种流程示意图;
图3是本发明实施例提供的信息传输方法的一种流程示意图;
图4是本发明实施例提供的信息传输方法的另一种流程示意图;
图5是本发明实施例提供的一种终端设备的结构示意图;
图6是本发明实施例提供的一种传输节点的结构示意图;
图7是本发明实施例提供的一种终端设备的结构示意图;
图8是本发明实施例提供的一种传输节点的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)/增强长期演进(LTE-A, Long Term Evolution Advanced),NR(New Radio)等。
用户设备(UE,User Equipment),也可称之为终端设备、移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
传输节点,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B)及5G基站(gNB),还可以是向其它终端传输数据的终端以及WiFi接入节点等,本发明并不限定,但为描述方便,下述实施例以gNB为例进行说明。
以下结合附图,详细说明本发明各实施例提供的技术方案。
图2为本发明实施例中提供的传输确认方法的一种流程示意图,该方法200可以由第一终端执行。换言之,所述方法可以由安装在第一终端上的软件或硬件来执行。如图2所示,该方法可以包括以下步骤。
S210,根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道。
在本发明实施例中,第一物理控制信道的监测配置信息可以是预先配置,例如,可以是网络侧通过信令配置的,或者,也可以是预先与网络侧约定的。
S212,获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息,多个所述目标终端设备包括所述第一终端。
在本发明实施例中,第一控制信息中可以包括传输节点针对多个目标终端设备的RTS信息,该RTS信息中可以指示共享频率的信道占用时间长度以及多个目标终端设备的标识信息。
S214,根据所述RTS信息,在第二物理控制信道上发送CTS信息。
在本发明实施例中,第一终端在获取第一控制信息后,根据第一控制信息中的RTS信息,确定为目标终端设备,因此,在第二物理控制上发送CTS信息,其中,CTS信息中可以指示信道占用时长。
通过本发明实施例提供的上述技术方案,第一终端监测第一物理控制信道,获取传输节点在第一物理控制信道上传输的第一控制信息,第一控制信息包括针对多个目标终端设备的RTS信息,终端设备根据该RTS信息,在第二物理控制信道上发送CTS信息,完成RTS/CTS握手,可以进行信息传输。而未完成RTS/CTS握手的设备,在接收到该CTS信息后,可根据该CTS信息中携带的信道占用时长,可以获知在该信道占用时长内共享频谱已被占用,从而不会尝试发起信息传输,避免了第一终端周围的节点所带来的干扰。
在本发明实施例中,第一物理控制信道可以采用类似物理下行控制信道(PDCCH)的格式的,因此,在本发明实施例中,第一物理控制信道包括但不限于:RTS群公共物理下行控制信道(RTS Group Common PDCCH,RTS-GC-PDCCH)、专用于传输RTS的RTS公共物理下行控制信道(RTS Common PDCCH,RTS-C-PDCCH)、以及RTS用户特定物理下行控制信道(RTS-UE-Specific PDCCH)。RTS可以承载于RTS-GC-PDCCH,或者专门传输RTS的RTS-C-PDCCH,或者部分承载于RTS-GC-PDCCH或RTS-C-PDCCH,部分承载于RTS-UE-specific PDCCH中发给多个目标UE。
而第二物理控制信道可以采用类似于PUCCH或PDCCH的格式,CTS可以承载于专门传输CTS的CTS PUCCH,或者现有的PUCCH,或者类似于PDCCH的信道的CTS PDCCH中。
在一个可能的实现方式中,第一控制信息可以为预定格式,可以包括以下至少一项:公共指示域、以及用户指示域。其中,用户指示域可以是一个或多个。即在该实现方式中,针对多个目标终端设备的RTS信息通过第一控制信息中的公共指示域和/或用户指示域来指示。
在上述可能的实现方式中,可选地,所述公共指示域可以包括以下至少一项:
(1)第一指示信息,用于指示信道占用时间长度,即本次数据传输占用共享频段信道的占用时长;
(2)第二指示信息,用于指示准共位(Quasi Co-Location,QCL),其中,该QCL为所述传输节点在共享频谱上获取信道时使用的QCL;
(3)第三指示信息,用于指示具有传输请求的目标终端设备,即指示需要向哪些目标终端设备传输数据。
在上述可选的实现方式中,第三指示信息可以包括以下之一:(1)目标终端设备的标识信息列表,其中,所述目标终端设备的标识信息包括:目标终端设备的无线网络临时标识(Radio Network Temporary Identifier,RNTI),或者所述目标终端设备配置在终端设备组内的标识。(2)位图,其中,所述位图中的每一比特用于指示一个或一组终端设备是否为所述目标终端设备。可选地,所述位图中的每一比特用于指示终端设备组内的一个或一组终端设备是否为所述目标终端设备。例如,一个终端设备组内包括10个终端设备,则可以通过10比特的位图,分别指示每个终端设备是否为所述目标终端设备,每个比特位对应一个终端设备,例如,如果对应比特位的值为1,则指示该终端设备为目标终端设备。
在上述可能的实现方式中,每个目标终端设备可以对应一个用户指示域,通过一个用户指示域向对应的目标终端设备指示某些相关信息。
可选地,用户指示域可以包括以下至少一项:
(1)所述第二物理控制信道的资源指示信息;该资源指示信息包括但不限于以下之一:第二物理控制信道的时间信息、以及PUCCH资源指示(PUCCH Resource Indicator,PRI)等。
(2)所述第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;其中,该监测指示信 息包括但不限于第三物理控制信道的时域信息以及搜索空间标识等。
(3)所述第二物理控制信道的发送指示信息。其中,该发送指示信息包括但不限于第二物理控制信道的格式以及空间信息(Spatial info)等。
在一个可能的实现方式中,所述公共指示域承载于RTS-GC-PDCCH或RTS-C-PDCCH中,和/或,所述用户指示域承载于所述RTS-UE-specific PDCCH;或者,所述公共指示域和所述用户指示域均承载于所述RTS-GC-PDCCH或RTS-C-PDCCH中。
在另一个可能的实现方式中,网络侧也可以配置针对每个目标终端设备的至少一个域的起始位置。在该可能的实现方式中,在S110之后,该方法还可以根据第一起始位置,从所述第一控制信息中获取第一终端对应的RTS信息,其中,所述第一起始位置为第一终端对应的RTS信息在所述第一控制信息中的起始位置。
在上述可能的实现方式中,第一起始位置可以为以下至少一项的RTS信息的起始位置:
(1)第一指示信息,用于指示信道占用时间长度;
(2)第二指示信息,用于指示QCL,其中,所述QCL为所述传输节点在共享频谱上获取的信道时使用的QCL;
(3)第四指示信息,用于指示所述第一终端是否需要反馈CTS;
(3)所述第二物理控制信道的资源指示信息;例如,CTS-PUCCH或CTS-PDCCH的资源指示信息,包括以下至少之一:监测时间、PRI以及时频资源等。
(4)所述第三物理控制信道的监测指示信息;例如,PDCCH监测指示信息,包括以下至少之一:PDCCH的监测时间、以及搜索空间ID等。
(5)所述第二物理控制信道的发送指示信息。例如,CTS-PUCCH或CTS-PDCCHR发送指示信息,包括以下至少之一:第二物理控制信道的格式、以及空间信息(Spatial info)等。
在一个可能的实现方式中,在S214中,在确定满足以下至少一项的情况下,所述第一终端在第二物理控制信道上发送与所述RTS信息对应的CTS信息:
(1)根据所述第一控制信息,确定有传输请求;也就是说,第一终端确定其为RTS所指示的目标终端设备之一。
(2)确认无干扰。
在上述可能的实现方式,确认无干扰包括以下至少一项:
(1)所述第一控制信息解码成功;即第一控制信息的CRC校验通过。
(2)进行一次或者多次基于能量检测的信道感知,信道感知结果指示信道空闲。即第一终端在确定其为多个目标终端设备中的一个时,第一终端可以进行一次或者多次基于能量检测的信道感知(ED based CCA),若信道空闲,则确认无干扰。
(3)基于所述第一控制信息进行干扰估计,确定信号质量满足预定要求。例如,干扰功率或者信号干扰加噪声比(SINR)满足一定条件。
在一个可能的实现方式中,在S214之后,该方法还可以包括:监测所述第三物理控制信道调度的数据,其中,所述第三物理控制信道用于调度从所述传输节点到所述第一终端的数据。
在上述可能的实现方式中,在S214之后,该方法还可以包括:在第一时间区间内停止所述第一物理控制信道的监测,其中,所述第一时间区间为预定义的、所述传输节点配置的、或者所述第一控制信息指示的。也就是说,第一终端在接收到RTS之后,且在第二物理控制信道上发送CTS之后,在第一时间区间内停止监测第一物理控制信道,其中,第一时间区间可以与第一控制信息指示的信道占用时间长度相同,也可以不同,具体可以根据实际应用设置。
在一个可能的实现方式中,在对第三物理控制信道进行监测时,在所述第一控制信息指示的信道占用时间长度外,停止所述第三物理控制信道的监 测。也就是说,在该可能的实现方式中,第一终端只在第一控制信息指示的信道占用时间长度内监测第三物理控制信道。
在上述可能的实现方式中,第三物理控制信道的时域监测位置可以通过以下至少一项确定:
(1)配置的目标搜索空间的绝对时域监测位置,其中,所述目标搜索空间为所述第三物理控制信道所在的搜索空间;
(2)配置的目标搜索空间相对于所述第一物理控制信道或者第二物理控制信道的相对时域监测位置,其中,所述目标搜索空间为所述第三物理控制信道所在的搜索空间;
(3)所述第一物理控制信道指示的目标搜索空间相对于所述第一物理控制信道或者第二物理控制信道的相对时域监测位置,其中,所述目标搜索空间为所述第三物理控制信道所在的搜索空间。也就是说,在该可能的实现方式中,网络侧可以在第一物理控制信道上指示第三物理控制信道的目标搜索空间的位置,该位置是相对于第一物理控制信道或第二物理控制信道的相对时域监测位置。在该可能的实现方式中,第三物理控制信道除了时域上的配置以外,其它配置可以参照RTS-PDCCH所在的搜索空间配置,或者,RTS-GC-PDCCH、RTS-C-PDCCH或者UE-specific PDCCH指示的搜索空间配置。
在本发明实施例中,第三物理控制信道可以采用类似PDCCH的格式,因此,在一个可能的实现方式中,第三物理控制信道可以包括调度数据的PDCCH(Scheduling PDCCH,S-PDCCH)。
在一个可能的实现方式中,在第一物理控制信道的监测配置信息和/或第二物理控制信道的配置信息可以由网络侧动态配置。因此,在该可能的实现方式中,在S210之前,该方法还可以包括以下至少一项:
(1)接收所述第一物理控制信道的监测配置信息;
(2)接收所述第二物理控制信道的配置信息。
在上述可能的实现方式中,第一物理控制信道的监测配置信息包括但不限于以下至少一项:
(1)RTS专用的RNTI,即专用于RTS的RNTI(RTS-RNTI);
(2)各个目标终端设备的RTS信息在所述第一控制信息中的起始位置;
(3)所述第一控制信息的大小,即RTS-GC-PDCCH或C-PDCCH或UE-specific PDCCH传输的第一控制信息的大小(size);
(4)目标搜索空间,所述目标搜索空间与所述第一控制信息的格式对应;UE可以通过目标搜索空间确定第一控制信息采用的格式,可选地,目标搜索空间与传输RTS的第一控制信息的格式对应。在一个可能的实现方式中,第一控制信息可以重用现有的下行控制信息(DCI)的格式,例如,DCI 0_0或0_1或1_0或1_1,或者,也可以为新定义的专用于RTS传输的DCI格式,即RTS DCI。在该可能的实现方式中,网络侧通过所述目标搜索空间,可以指示第一控制信息的格式,例如,UE可以预先与网络侧约定,各个搜索空间对应的第一控制信息格式,网络侧在配置第一物理控制信道的监测配置信息时,指示传输第一控制信息的目标搜索空间,通过该目标搜索空间,UE可以确定网络侧传输的第一控制信息的格式。
(5)第五指示信息,其中,所述第五指示信息用于指示所述目标搜索空间是否仅用于所述第一物理控制信道传输。也就是说,目标搜索空间可以仅用于RTS-PDCCH传输,也可以与其它信息重用,具体可以通过网络侧指示。
在上述可能的实现方式中,第二物理控制信道的配置信息可以包括上述的第二物理控制信息的发送指示信息,具体参见上述相关的描述,在此不再赘述。
在本发明实施例中,所述传输节点包括以下之一:基站、第二终端(例如,具有中继能力的中继终端)、以及WiFi接入节点。
通过本发明实施例提供的上述技术方案,解决NR中共享频谱信道接入时的信息交互问题,使得传输节点和UE可以完成RTS/CTS握手过程,未完 成RTS/CTS握手的设备不会尝试传输,这样减少了在共享频谱上传输的干扰问题。
图3为本发明实施例提供的信息传输方法的一种流程示意图,该方法300可以由传输节点执行。换言之,所述方法可以由安装在传输节点上的软件或硬件来执行。如图3所示,该方法可以包括以下步骤。
S310,在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息。
在本发明实施例中,传输节点(例如,基站)在有调度一个或多个目标终端的数据需求时,在这些目标终端的第一物理控制信道的监测位置,传输包含针对多个目标终端设备的RTS信息的第一控制信息。
在本发明实施例中,第一控制信息中包含的相关信息以及格式等,可以参见方法200中的描述,在此不再赘述。
在一个可能的实现方式中,为了确保当前共享频谱空闲,在S310之前,该方法还可以包括:执行LBT,确定信道是否空闲。在确定信道空闲的情况下,执行S310。
S312,接收多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息。
在本发明实施例中,接收到所述RTS信息的目标终端设备,可以在第二物理控制信道上向传输节点返回CTS信息。在一个可能的实现方式中,目标终端设备可以采用与方法200中描述的方式获取第一物理控制信道上传输的第一控制信息,以及根据第一控制信息中的RTS信息向传输节点返回CTS信息,具体可以参见方法200中的相关描述,在此不再赘述。
在本发明实施例中,所述第二物理控制信道包括:CTS PUCCH、或者CTS PDCCH。
在S312中,传输节点可以根据第二物理控制信道的资源,确定第二物理控制信道的监测位置,从而在该监测位置上监测目标终端设备发送的CTS。
在一个可能的实现方式中,第二物理控制信道的资源可以为预定义的,即通信系统预先指定第二物理控制信道的资源。
在另一个可能的实现方式中,第二物理控制信道的资源也可以是传输节点配置的,例如,基站可以预先向目标终端设备发送第二物理控制信道的配置信息,通过该配置信息指示第二物理控制信道的资源。
在又一个可能的实现方式中,第二物理控制信息的资源也可以是通过第一控制信息指示给目标终端设备,从而使得目标终端设备可以在该资源对应的时频位置,发送CTS。
S314,在多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
在本发明实施例中,所述第三物理控制信道可以包括:调度数据的PDCCH(即S-PDCCH)。
在一个可能的实现方式中,在S310之前,该方法还可以包括以下至少一项:
(1)向所述目标终端设备发送所述第一物理控制信道的监测配置信息;
(2)向所述目标终端设备发送所述第二物理控制信道的配置信息。
其中,上述第一物理控制信道的监测配置信息和第二物理控制信道的配置信息与方法200相似,具体可以参见方法200中的描述,在此不再赘述。
在本发明实施例中,如方法200中所述,所述第一物理控制信道包括以下至少一项:RTS-GC-PDCCH、RTS-C-PDCCH、以及RTS-UE-Specific PDCCH。具体可以参见方法200中的相关描述,在此不再赘述。
通过本发明实施例提供的技术方案,传输节点可以在第一物理控制信道的监测位置,传输包括针对多个目标终端设备的RTS信息的第一控制信息,并接收一个或多个目标终端在第二物理控制信道返回的CTS信息,然后在一个或多个目标终端设备对应的搜索空间上,调度第三物理控制信道,向目标终端设备传输数据,从而通过RTS/CTS的握手机制,完成共享频谱上的数据 传输,而未完成RTS/CTS握手的设备不尝试传输,减少了在共享频谱上的传输干扰。
图4是本发明实施例提供的信息传输方法的另一种流程示意图,该方法400可以由基站和终端设备执行。换言之,所述方法可以由安装在基站和终端设备上的软件或硬件来执行。如图4所示,该方法可以包括以下步骤。
S410,基站通过第一物理控制信道向多个目标UE发送包含RTS信息的第一控制信息。
例如,gNB可以通过RTS-GC-PDCCH或RTC-C-PDCCH或UE-specific PDCCH,向多个UE发送RTS。其中,RTS可以全部承载于RTS-GC-PDCCH或RTC-C-PDCCH中,或者部分承载于RTS-GC-PDCCH或RTC-C-PDCCH中,部分承载于RTS-UE-specific PDCCH中。
S412,目标UE监测第一物理控制信道,获取第一物理控制信道上传输的所述第一控制信息。
该步骤与方法200中的S212相同,具体可以参见方法212的描述。
S414,目标UE根据所述第一控制信息中的RTS信息,在第二物理控制信道上发送CTS信息。
例如,目标UE可以在PUCCH中传输CTS。
该步骤与方法200中的S214相同,具体可以参见方法200中的S214的描述。
在一个可能的实现方式中,UE发送的CTS中,可以携带信道占用时间。该信道占用时间为gNB发送的信道占用时间减去信号传输解调等时间,也就是RTS和CTS中信道占用时间的结束位置相同。
在另一个可能的实现方式,CTS中还可以携带UE信息,使得gNB可以获知发送CTS的UE,从而可以根据收到CTS,针对发送了CTS的UE进行数据调度。
S416,基站接收到目标UE发送的CTS信息后,在S-PDCCH上调度传 输给目标UE的数据。
该步骤与方法300中的S314相同,具体可以参见方法300中的S314的描述。
在本发明实施例中,基站发送的RTS中至少可以包含信道占用时间,即NAV或者COT,通过该信息可以通知周围节点信道需要被占用的时间。
当基站通过RTS-PDCCH向多个UE发送RTS时,所有收到RTS-PDCCH的UE可以向gNB发送CTS作为响应。然而,所有这些收到RTS-PDCCH的UE并非每次都会被调度,因此,这些没有被调度的UE并不需要发送CTS。为了避免这些不必要的CTS传输,在一个可能的实现方式中,可以在RTS-PDCCH中携带UE信息,该UE信息指示哪些UE需要反馈CTS。接收到RTS-PDCCH的UE根据RTS-PDCCH中携带UE信息,决定是否发送CTS,也就是说,如果RTS-PDCCH中的UE信息包含了某个UE的信息,例如UE ID,或者包括C-RNTI或者UE所在的group内的ID等,则该UE向gNB传输CTS。当发送RTS给多个UE时,UE信息可以是一个UE ID list,包含了所有需要发送CTS的UE ID,也可以是一个bitmap,每一个比特对应group内的每一个UE。
在一个可能的实现方式中,为了在PUCCH中传输CTS,UE需要获知PUCCH的资源信息,因此,可以在RTS也就是RTS-PDCCH中携带PUCCH的format信息、时域位置信息以及PUCCH resource indicator(PRI)。每个UE对应一组PUCCH的资源信息。当gNB向多个UE发送RTS时,RTS-PDCCH中可以携带多组PUCCH的资源信息。
在另一个可能的实现方式,如果UE在类似PDCCH的信道上传输CTS,则RTS中也可以携带分配给UE的PDCCH的时频资源信息。
在一个可能的实现方式中,RTS中还可以携带UE传输CTS的空间关系信息(SpatialRelationinfo),例如,携带参考资源ID(reference resource id)(可以对应于一个参考资源(reference resource)的index)。
在一个可能的实现方式中,RTS-PDCCH中还可以携带S-PDCCH的检测信息,通知UE对应的监测位置,搜索空间ID等。
在一个可能的实现方式中,发送RTS的PDCCH的时域位置可以是预配置或预定义的。UE在预配置的PDCCH的监测位置上进行检测。当UE检测到RTS后,根据RTS携带的信息,发送CTS。发送CTS的PUCCH的时域位置可以如方法200中所述,由RTS携带,或者,也可以与发送RTS的PDCCH的位置相关联,通过一个高层信息配置的偏移来确定。此外,CTS的发送也可以取决于信道状态。UE在发送CTS之前可以执行CCA,当检测到信道为空时发送CTS,反之则不发送CTS。
在一个可能的实现方式中,UE在接收到RTS和/或发送CTS后,开始检测调度PDSCH或PUSCH的PDCCH。该调度PDCCH检测位置的可以由高层信令配置,也可以通过RTS指示,也可以通过一个高层信令配置的相对于发送RTS的PDCCH或者发送CTS的PUCCH的位置偏移来确定。
通过本发明实施例提供的技术方案,可以解决NR中共享频谱信道接入时的信息交互问题,使得基站和UE可以完成握手过程,减少了在共享频谱上的传输干扰。
图5是本发明实施例提供的一种终端设备的结构示意图,如图5所示,该终端设备500包括:监测模块510,用于根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;获取模块520,用于获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的传输请求RTS信息,多个所述目标终端设备包括所述终端设备;发送模块530,用于根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息。
在一个可能的实现方式中,所述第一控制信息包括以下至少一项:公共指示域、以及用户指示域。
在一个可能的实现方式中,所述公共指示域包括以下至少一项:第一指 示信息,用于指示信道占用时间长度;第二指示信息,用于指示准共位QCL,其中,所述QCL为所述传输节点在共享频谱上获取的信道时使用的QCL;第三指示信息,用于指示具有传输请求的所述目标终端设备。
在一个可能的实现方式中,所述第三指示信息包括以下之一:目标终端设备的标识信息列表,其中,所述目标终端设备的标识信息包括:目标终端设备的无线网络临时标识RNTI,或者所述目标终端设备配置在终端设备组内的标识;位图,其中,所述位图中的每一比特用于指示一个或一组终端设备是否为所述目标终端设备。
在一个可能的实现方式中,所述用户指示域包括以下至少一项:所述第二物理控制信道的资源指示信息;第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;所述第二物理控制信道的发送指示信息。
在一个可能的实现方式中,所述第一物理控制信道包括以下至少一项:RTS群公共物理下行控制信道RTS-GC-PDCCH;RTS公共物理下行控制信道RTS-C-PDCCH;以及RTS用户特定物理下行控制信道RTS-UE-Specific PDCCH。
在一个可能的实现方式中,所述公共指示域承载于RTS-GC-PDCCH或RTS-C-PDCCH中,和/或,所述用户指示域承载于所述RTS-UE-specific PDCCH。
在一个可能的实现方式中,所述公共指示域和所述用户指示域均承载于所述RTS-GC-PDCCH或RTS-C-PDCCH中。
在一个可能的实现方式中,获取模块520还用于在获取所述第一物理控制信道上传输的第一控制信息之后,根据第一起始位置,从所述第一控制信息中获取所述第一终端对应的RTS信息,其中,所述第一起始位置为所述第一终端对应的RTS信息在所述第一控制信息中的起始位置。
在一个可能的实现方式中,所述RTS信息包括以下至少一项:第一指示 信息,用于指示信道占用时间长度;第二指示信息,用于指示准共位QCL,其中,所述QCL为所述传输节点在共享频谱上获取信道时使用的QCL;第四指示信息,用于指示所述第一终端是否需要反馈CTS;所述第二物理控制信道的资源指示信息;第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;所述第二物理控制信道的发送指示信息。
在一个可能的实现方式中,根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息,包括:在确定满足以下至少一项的情况下,在所述第二物理控制信道上发送与所述RTS信息对应的CTS信息:根据所述第一控制信息,确定有传输请求;确认无干扰。
在一个可能的实现方式中,确认无干扰包括以下至少一项:所述第一控制信息解码成功;进行一次或者多次基于能量检测的信道感知,信道感知结果指示信道空闲;基于所述第一控制信息进行干扰估计,确定信号质量满足预定要求。
在一个可能的实现方式中,监测模块510还用于在第二物理控制信道上发送所述CTS信息之后,监测第三物理控制信道调度的数据,其中,所述第三物理控制信道用于调度从所述传输节点到所述第一终端的数据。
在一个可能的实现方式中,监测模块510还用于在第二物理控制信道上发送所述CTS信息之后,在第一时间区间内停止所述第一物理控制信道的监测,其中,所述第一时间区间为预定义的、所述传输节点配置的、或者所述第一控制信息指示的。
在一个可能的实现方式中,监测模块510还用于在所述第一控制信息指示的信道占用时间长度外,停止所述第三物理控制信道的监测。
在一个可能的实现方式中,所述第三物理控制信道的时域监测位置通过以下至少一项确定:配置的目标搜索空间的绝对时域监测位置,其中,所述目标搜索空间为所述第三物理控制信道所在的搜索空间;配置的所述目标搜 索空间相对于所述第一物理控制信道或者第二物理控制信道的相对时域监测位置;所述第一物理控制信道指示的所述目标搜索空间相对于所述第一物理控制信道或者第二物理控制信道的相对时域监测位置。
在一个可能的实现方式中,所述第三物理控制信道包括:调度数据的PDCCH。
在一个可能的实现方式中,所述第二物理控制信道包括:CTS物理上行控制信道PUCCH、或者CTS PDCCH。
在一个可能的实现方式中,还包括:接收模块,用于在监测所述第一物理控制信道之前,接收以下至少一项:接收所述第一物理控制信道的监测配置信息;接收所述第二物理控制信道的配置信息。
在一个可能的实现方式中,所述监测配置信息包括以下至少一项:RTS专用的RNTI;各个目标终端设备的RTS信息在所述第一控制信息中的起始位置;所述第一控制信息的大小;目标搜索空间,所述目标搜索空间与所述第一控制信息的格式对应;第五指示信息,其中,所述第五指示信息用于指示所述目标搜索空间是否仅用于所述第一物理控制信道传输。
在一个可能的实现方式中,所述传输节点包括以下之一:基站、第二终端、以及WiFi接入节点。
本发明实施例提供的网络设备够实现图1至图4的各个方法实施例中终端设备或第一终端实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
图6是本发明实施例提供的一种传输节点的结构示意图,如图6所示,该传输节点600包括:传输模块610,用于在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;接收模块620,用于接收多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;调度模块630,用于在多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信 道,向所述至少一个目标终端设备传输数据。
在一个可能的实现方式中,还包括:确定模块,用于在传输第一控制信息之前,执行先听后说LBT,确定信道是否空闲。
在一个可能的实现方式中,所述第二物理控制信道的资源为预定义的、或者所述传输节点配置或指示的。
在一个可能的实现方式中,传输模块610还用于在传输第一控制信息之前,发送以下至少一项:向所述目标终端设备发送所述第一物理控制信道的监测配置信息;向所述目标终端设备发送所述第二物理控制信道的配置信息。
在一个可能的实现方式中,所述第一物理控制信道包括以下至少一项:RTS群公共物理下行控制信道RTS-GC-PDCCH;RTC公共物理下行控制信道RTS-C-PDCCH;以及RTC用户特定物理下行控制信道RTS-UE-Specific PDCCH。
在一个可能的实现方式中,所述第二物理控制信道包括以下至少一项:CTS物理上行控制信道PUCCH、或者CTS PDCCH。
本发明实施例提供的传输节点能够实现上述图1至图4中各个方法实施例中各个传输节点或基站实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
图7是是本发明另一个实施例的终端设备的框图。图7所示的终端设备700包括:至少一个处理器701、存储器702、至少一个网络接口704和用户接口703。终端设备700中的各个组件通过总线系统705耦合在一起。可理解,总线系统705用于实现这些组件之间的连接通信。总线系统705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统705。
其中,用户接口703可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本发明实施例中的存储器702可以是易失性存储器或非易失性 存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的系统和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统7021和应用程序7022。
其中,操作系统7021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序7022中。
在本发明实施例中,终端设备700还包括:存储在存储器上702并可在处理器701上运行的计算机程序,计算机程序被处理器701执行时实现如下 步骤:
根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;
获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括:针对多个目标终端设备的传输请求RTS信息,多个所述目标终端设备包括所述第一终端;
根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息。
上述本发明实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器701执行时实现如上述方法300中的各步骤。
可以理解的是,本发明实施例描述的这些实施例可以用硬件、软件、固件、 中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本发明所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本发明实施例所述功能的模块(例如过程、函数等)来实现本发明实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备700能够实现前述图1至图4中终端设备或第一终端实现的各个过程,为避免重复,这里不再赘述。
请参阅图8,图8是本发明实施例应用的传输节点的结构图,能够作为传输节点或基站实现图1至图4中的各细节,并达到相同的效果。如图8所示,传输节点800包括:处理器801、收发机802、存储器803、用户接口804和总线接口,其中:
在本发明实施例中,传输节点800还包括:存储在存储器上803并可在处理器801上运行的计算机程序,计算机程序被处理器801、执行时实现如下步骤:
在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;
接收多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;
在多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
传输节点800能够实现前述图1至图4中传输节点或基站实现的各个过程,并达到相同的效果为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述图1至图5中所示的各个实施例的基站或终端设备执行各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (40)

  1. 一种传输确认方法,应用于第一终端,所述方法包括:
    根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;
    获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括:针对多个目标终端设备的传输请求RTS信息,多个所述目标终端设备包括所述第一终端;
    根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息。
  2. 如权利要求1所述的方法,其中,所述第一控制信息包括以下至少一项:公共指示域以及用户指示域。
  3. 如权利要求2所述的方法,其中,所述公共指示域包括以下至少一项:
    第一指示信息,用于指示信道占用时间长度;
    第二指示信息,用于指示准共位QCL,其中,所述QCL为所述传输节点在共享频谱上获取信道时使用的QCL;
    第三指示信息,用于指示具有传输请求的所述目标终端设备。
  4. 如权利要求3所述的方法,其中,所述第三指示信息包括以下之一:
    目标终端设备的标识信息列表,其中,所述目标终端设备的标识信息包括:目标终端设备的无线网络临时标识RNTI,或者所述目标终端设备配置在终端设备组内的标识;
    位图,其中,所述位图中的每一比特用于指示一个或一组终端设备是否为所述目标终端设备。
  5. 如权利要求2所述的方法,其中,所述用户指示域包括以下至少一项:
    所述第二物理控制信道的资源指示信息;
    第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;
    所述第二物理控制信道的发送指示信息。
  6. 如权利要求2至5任一项所述的方法,其中,所述第一物理控制信道 包括以下至少一项:
    RTS群公共物理下行控制信道RTS-GC-PDCCH;
    RTS公共物理下行控制信道RTS-C-PDCCH;以及
    RTS用户特定物理下行控制信道RTS-UE-Specific PDCCH。
  7. 如权利要求6所述的方法,其中,所述公共指示域承载于RTS-GC-PDCCH或RTS-C-PDCCH中,和/或,所述用户指示域承载于所述RTS-UE-specific PDCCH中。
  8. 如权利要求6所述的方法,其中,所述公共指示域和所述用户指示域均承载于所述RTS-GC-PDCCH或RTS-C-PDCCH中。
  9. 如权利要求1所述的方法,其中,在获取所述第一物理控制信道上传输的第一控制信息之后,所述方法还包括:
    根据第一起始位置,从所述第一控制信息中获取所述第一终端对应的RTS信息,其中,所述第一起始位置为所述第一终端对应的RTS信息在所述第一控制信息中的起始位置。
  10. 如权利要求9所述的方法,其中,所述RTS信息包括以下至少一项:
    第一指示信息,用于指示信道占用时间长度;
    第二指示信息,用于指示准共位QCL,其中,所述QCL为所述传输节点在共享频谱上获取信道时使用的QCL;
    第四指示信息,用于指示所述第一终端是否需要反馈CTS;
    所述第二物理控制信道的资源指示信息;
    第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;
    所述第二物理控制信道的发送指示信息。
  11. 如权利要求1所述的方法,其中,根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息,包括:
    在确定满足以下至少一项的情况下,在所述第二物理控制信道上发送与 所述RTS信息对应的CTS信息:
    根据所述第一控制信息,确定有传输请求;
    确认无干扰。
  12. 如权利要求11所述的方法,其中,确认无干扰包括以下至少一项:
    所述第一控制信息解码成功;
    进行一次或者多次基于能量检测的信道感知,信道感知结果指示信道空闲;
    基于所述第一控制信息进行干扰估计,确定信号质量满足预定要求。
  13. 如权利要求1所述的方法,其中,在第二物理控制信道上发送所述CTS信息之后,所述方法还包括:
    监测第三物理控制信道调度的数据,其中,所述第三物理控制信道用于调度从所述传输节点到所述第一终端的数据。
  14. 如权利要求13所述的方法,其中,在第二物理控制信道上发送所述CTS信息之后,所述方法还包括:
    在第一时间区间内停止所述第一物理控制信道的监测,其中,所述第一时间区间为预定义的、所述传输节点配置的、或者所述第一控制信息指示的。
  15. 如权利要求13所述的方法,其中,还包括:
    在所述第一控制信息指示的信道占用时间长度外,停止所述第三物理控制信道的监测。
  16. 如权利要求13所述的方法,其中,所述第三物理控制信道的时域监测位置通过以下至少一项确定:
    配置的目标搜索空间的绝对时域监测位置,其中,所述目标搜索空间为所述第三物理控制信道所在的搜索空间;
    配置的所述目标搜索空间相对于所述第一物理控制信道或者第二物理控制信道的相对时域监测位置;
    所述第一物理控制信道指示的所述目标搜索空间相对于所述第一物理控 制信道或者第二物理控制信道的相对时域监测位置。
  17. 如权利要求13所述的方法,其中,所述第三物理控制信道包括:调度数据的PDCCH。
  18. 如权利要求1所述的方法,其中,所述第二物理控制信道包括:CTS物理上行控制信道PUCCH、或者CTS PDCCH。
  19. 如权利要求1至5、7至18任一项所述的方法,其中,在监测所述第一物理控制信道之前,所述方法还包括以下至少一项:
    接收所述第一物理控制信道的监测配置信息;
    接收所述第二物理控制信道的配置信息。
  20. 如权利要求19所述的方法,其中,所述监测配置信息包括以下至少一项:
    RTS专用的RNTI;
    各个目标终端设备的RTS信息在所述第一控制信息中的起始位置;
    所述第一控制信息的大小;
    目标搜索空间,所述目标搜索空间与所述第一控制信息的格式对应;
    第五指示信息,其中,所述第五指示信息用于指示所述目标搜索空间是否仅用于所述第一物理控制信道传输。
  21. 如权利要求1至5、7至18任一项所述的方法,其中,所述传输节点包括以下之一:基站、第二终端、以及WiFi接入节点。
  22. 一种信息传输方法,应用于传输节点,所述方法包括:
    在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;
    接收所述多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;
    在所述多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
  23. 如权利要求22所述的方法,其中,在传输第一控制信息之前,所述方法还包括:
    执行先听后说LBT,确定信道是否空闲。
  24. 如权利要求22所述的方法,其中,所述第二物理控制信道的资源为预定义的、或者所述传输节点配置或指示的。
  25. 如权利要求22至24任一项所述的方法,其中,在传输第一控制信息之前,所述方法还包括以下至少一项:
    向所述目标终端设备发送所述第一物理控制信道的监测配置信息;
    向所述目标终端设备发送所述第二物理控制信道的配置信息。
  26. 如权利要求22至24任一项所述的方法,其中,所述第一物理控制信道包括以下至少一项:
    RTS群公共物理下行控制信道RTS-GC-PDCCH;
    RTC公共物理下行控制信道RTS-C-PDCCH;以及
    RTC用户特定物理下行控制信道RTS-UE-Specific PDCCH。
  27. 如权利要求22至24任一项所述的方法,其中,所述第二物理控制信道包括以下至少一项:
    CTS物理上行控制信道PUCCH、或者CTS PDCCH。
  28. 一种终端设备,包括:
    监测模块,用于根据第一物理控制信道的监测配置信息,监测所述第一物理控制信道;
    获取模块,用于获取传输节点在所述第一物理控制信道上传输的第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的传输请求RTS信息,多个所述目标终端设备包括所述终端设备;
    发送模块,用于根据所述RTS信息,在第二物理控制信道上发送传输确认CTS信息。
  29. 如权利要求28所述的终端设备,其中,所述第一控制信息包括以下 至少一项:公共指示域以及用户指示域。
  30. 如权利要求29所述的终端设备,其中,所述公共指示域包括以下至少一项:
    第一指示信息,用于指示信道占用时间长度;
    第二指示信息,用于指示准共位QCL,其中,所述QCL为所述传输节点在共享频谱上获取信道时使用的QCL;
    第三指示信息,用于指示具有传输请求的所述目标终端设备。
  31. 如权利要求29所述的终端设备,其中,所述用户指示域包括以下至少一项:
    所述第二物理控制信道的资源指示信息;
    第三物理控制信道的监测指示信息,其中,所述第三物理控制信道用于调度从所述传输节点到所述终端设备的数据;
    所述第二物理控制信道的发送指示信息。
  32. 如权利要求28所述的终端设备,其中,所述获取模块,还用于在获取所述第一物理控制信道上传输的第一控制信息之后,根据第一起始位置,从所述第一控制信息中获取所述第一终端对应的RTS信息,其中,所述第一起始位置为所述第一终端对应的RTS信息在所述第一控制信息中的起始位置。
  33. 如权利要求28所述的终端设备,其中,所述监测模块,还用于监测第三物理控制信道调度的数据,其中,所述第三物理控制信道用于调度从所述传输节点到所述第一终端的数据。
  34. 如权利要求33所述的终端设备,其中,所述监测模块,还用于在第二物理控制信道上发送所述CTS信息之后,在第一时间区间内停止所述第一物理控制信道的监测,其中,所述第一时间区间为预定义的、所述传输节点配置的、或者所述第一控制信息指示的。
  35. 如权利要求33所述的终端设备,其中,所述监测模块,还用于在所述第一控制信息指示的信道占用时间长度外,停止所述第三物理控制信道的 监测。
  36. 一种传输节点,包括:
    传输模块,用于在第一物理控制信道的监测位置,传输第一控制信息,其中,所述第一控制信息包括针对多个目标终端设备的RTS信息;
    接收模块,用于接收所述多个目标终端设备中至少一个目标终端设备在第二物理控制信道返回的CTS信息;
    调度模块,用于在所述多个目标终端设备中至少一个目标终端设备对应的搜索空间上,调度第三物理控制信道,向所述至少一个目标终端设备传输数据。
  37. 如权利要求36所述的传输节点,其中,还包括:
    确定模块,用于在所述第一传输模块传输第一控制信息之前,执行先听后说LBT,确定信道是否空闲。
  38. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至21中任一项所述的方法的步骤。
  39. 一种传输节点,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求22至27中任一项所述的方法的步骤。
  40. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现:
    如权利要求1至21中任一项所述的方法的步骤;或者
    如权利要求22至27中任一项所述的方法的步骤。
PCT/CN2021/088170 2020-04-21 2021-04-19 传输确认方法、终端设备及传输节点 WO2021213335A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21793469.4A EP4142415A4 (en) 2020-04-21 2021-04-19 TRANSMISSION CONFIRMATION METHOD, TERMINAL DEVICE AND TRANSMISSION NODE
US17/970,550 US20230040527A1 (en) 2020-04-21 2022-10-20 Transmission acknowledgment method, terminal device, and transmission node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010318706.8 2020-04-21
CN202010318706.8A CN113543141B (zh) 2020-04-21 2020-04-21 传输确认方法、终端设备及传输节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/970,550 Continuation US20230040527A1 (en) 2020-04-21 2022-10-20 Transmission acknowledgment method, terminal device, and transmission node

Publications (1)

Publication Number Publication Date
WO2021213335A1 true WO2021213335A1 (zh) 2021-10-28

Family

ID=78093984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088170 WO2021213335A1 (zh) 2020-04-21 2021-04-19 传输确认方法、终端设备及传输节点

Country Status (4)

Country Link
US (1) US20230040527A1 (zh)
EP (1) EP4142415A4 (zh)
CN (1) CN113543141B (zh)
WO (1) WO2021213335A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113973270B (zh) * 2020-07-23 2023-05-02 维沃移动通信有限公司 消息发送、消息接收方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113884A (zh) * 2015-01-28 2017-08-29 英特尔Ip公司 Laa(授权辅助接入)突发控制信息
WO2019079500A1 (en) * 2017-10-19 2019-04-25 Idac Holdings, Inc. CHANNEL ACCESS PROCEDURES FOR DIRECTIONAL SYSTEMS IN BANDS WITHOUT LICENSE
CN110932829A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 非授权频段的传输时间指示方法、网络设备和终端

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197826B (zh) * 2007-11-30 2010-09-01 华南理工大学 一种解决多跳无线自组网隐藏终端和暴露终端问题的方法
CN102316518A (zh) * 2010-07-08 2012-01-11 北京邮电大学 一种改进的rts/cts通信控制方法
CN103916972B (zh) * 2013-01-04 2017-06-20 中国移动通信集团公司 一种启动rts/cts机制的方法和装置
CN105230102B (zh) * 2014-04-30 2019-05-28 华为技术有限公司 非授权频谱的调度方法、设备及用户设备ue
WO2016006867A1 (ko) * 2014-07-09 2016-01-14 엘지전자 주식회사 이동 통신 시스템에서 비-면허 대역을 통한 데이터 수신 방법 및 단말
CN105338646B (zh) * 2014-08-01 2019-01-04 展讯通信(上海)有限公司 Rts/cts机制的启动控制方法及装置
CN105657849B (zh) * 2014-09-24 2020-06-12 阿尔卡特朗讯 在通信网络中调度允许发送信令的方法和装置
US9986586B2 (en) * 2015-01-29 2018-05-29 Intel IP Corporation Reservation of unlicensed spectrum in a wireless communications network
WO2016119268A1 (zh) * 2015-01-31 2016-08-04 华为技术有限公司 一种信号处理方法、用户设备及节点设备
CN106341901A (zh) * 2015-07-08 2017-01-18 韦彩勇 一种rts/cts通信控制方法
US10098140B2 (en) * 2016-01-27 2018-10-09 Qualcomm Incorporated Channel reservation techniques for unlicensed spectrum
BR112019024141A2 (pt) * 2017-05-19 2020-06-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Método para uma transmissão de informações de controle de enlace ascendente, e dispositivo para transmissão de informações de controle de enlace ascendente
CN109286988B (zh) * 2017-07-19 2021-01-08 维沃移动通信有限公司 非授权频段下的传输方法、设备及计算机可读存储介质
CN111713152B (zh) * 2018-02-13 2023-10-20 华为技术有限公司 一种通信方法及装置
US10925092B2 (en) * 2018-03-01 2021-02-16 Apple Inc. Request to send (RTS)/clear to send (CTS) using a self-contained slot
WO2019186904A1 (ja) * 2018-03-29 2019-10-03 株式会社Nttドコモ 送信装置及び受信装置
CN110830187B (zh) * 2018-08-07 2021-08-17 维沃移动通信有限公司 信息的传输指示方法、网络设备及终端
GB2577867B (en) * 2018-09-28 2022-10-26 Tcl Communication Ltd Conflict avoidance in a cellular network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113884A (zh) * 2015-01-28 2017-08-29 英特尔Ip公司 Laa(授权辅助接入)突发控制信息
WO2019079500A1 (en) * 2017-10-19 2019-04-25 Idac Holdings, Inc. CHANNEL ACCESS PROCEDURES FOR DIRECTIONAL SYSTEMS IN BANDS WITHOUT LICENSE
CN110932829A (zh) * 2018-09-20 2020-03-27 维沃移动通信有限公司 非授权频段的传输时间指示方法、网络设备和终端

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Multiple-Gigabit/s radio equipment operating in the 60 GHz band; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU", EUROPEAN STANDARD, EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI), vol. BRAN, no. V2.1.1, 21 July 2017 (2017-07-21), pages 1 - 40, XP014290849 *
ERICSSON: "Channel access mechanisms for NR-U", 3GPP TSG RAN WG1 MEETING#94 R1-1809204, 11 August 2018 (2018-08-11), XP051516574 *
HUAWEI ET AL.: "Coexistence and Channel Access for NR Unlicensed Band Operations", 3GPP TSG RAN WG1 MEETING#93 R1-1805919, 11 May 2018 (2018-05-11), XP051461629 *
NTT DOCOMO, INC.: "Channel access procedures for NR-U", 3GPP TSG RAN WG1 MEETING#97 R1-1906197, 3 May 2019 (2019-05-03), XP051708236 *
See also references of EP4142415A4 *
TCL COMMUNICATION: "On Receiver-assisted LBT for NR-U", 3GPP TSG RAN WG1 MEETING#94BIS R1-1811081, 28 September 2018 (2018-09-28), XP051518482 *

Also Published As

Publication number Publication date
EP4142415A1 (en) 2023-03-01
CN113543141A (zh) 2021-10-22
CN113543141B (zh) 2024-06-04
EP4142415A4 (en) 2023-10-04
US20230040527A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US11284336B2 (en) Base station apparatus, a method in a base station apparatus, a user equipment and a method in a user equipment
JP7500501B2 (ja) アップリンク伝送リソースのスケジューリング及びアップリンク伝送のための方法、装置
US20220070918A1 (en) Communication Method And Device
CN113518470B (zh) 信道接入方案的确定方法及装置、终端设备、网络设备
WO2020192213A1 (zh) 共享信道占用时间的方法和设备
EP3500041B1 (en) Method for transmitting service data, access point and station
WO2017176405A2 (en) Dynamic sounding reference signal scheduling
EP3618533B1 (en) Method for selecting carrier set for device-to-device multi-carrier aggregation and related devices
JP7377863B2 (ja) チャネルアクセス指示方法及び装置
JP2019519977A (ja) 制御情報処理方法、基地局、および端末
US20220124562A1 (en) Method and apparatus for pre-emption of a sidelink resource
WO2021007759A1 (zh) 控制信道的传输方法、装置及存储介质
WO2021159491A1 (en) Method and apparatus of group-based resource allocation
CN116095865A (zh) 一种资源选择方法、终端设备及存储介质
US20210378013A1 (en) Data transmission method and apparatus and communication system
KR20230030650A (ko) 업링크 신호 송수신 방법 및 장치
WO2020029872A1 (zh) 用于信道占用指示的方法和装置
US20210345346A1 (en) Resource allocation method and device
WO2020143064A1 (zh) 数据传输方法及装置
WO2021213335A1 (zh) 传输确认方法、终端设备及传输节点
CN114246011A (zh) 基于信道接入优先级类别的信道接入过程
US20230179391A1 (en) Half Duplex Frequency Division Duplex for New Radio
CN110891311A (zh) 反馈信息传输的方法和通信装置
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2021213334A1 (zh) 信息传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21793469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021793469

Country of ref document: EP

Effective date: 20221121