WO2021212811A1 - 一种超表面成像装置 - Google Patents

一种超表面成像装置 Download PDF

Info

Publication number
WO2021212811A1
WO2021212811A1 PCT/CN2020/127653 CN2020127653W WO2021212811A1 WO 2021212811 A1 WO2021212811 A1 WO 2021212811A1 CN 2020127653 W CN2020127653 W CN 2020127653W WO 2021212811 A1 WO2021212811 A1 WO 2021212811A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
phase compensation
metasurface
lens
ultra
Prior art date
Application number
PCT/CN2020/127653
Other languages
English (en)
French (fr)
Inventor
杨萌
戴付建
赵烈烽
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2021212811A1 publication Critical patent/WO2021212811A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • This application relates to the field of optical devices, and more specifically, to a super-surface imaging device.
  • the lenses used for imaging, transmission, etc. in the existing imaging field are all made of transparent materials such as resin, plastic, and glass. Since this type of lens needs to introduce the optical path difference through the gradual change of the thickness, so that the light has the effect of focusing or diverging, it generally needs to have a larger size.
  • Capasso et al. published a paper on metasurface in Science Journal, Volume 347, Issue 6228, and this led to the study of metasurface lenses around the world.
  • the difference between the metasurface lens and the traditional lens is that the metasurface lens adopts the shape-related Pancharatnam-Berry phase difference introduced by the micro-nano-scale structure, so that the phase of the scattered incident light can be arbitrarily modulated to replace the traditional The optical path difference that the lens depends on. Therefore, the metasurface lens can form a substantially planar optical device that is easier to integrate, and the size can be greatly reduced compared to the traditional lens. Since the metasurface lens relies on diffractive optics instead of geometric optics in principle, it can avoid the inherent aberrations of traditional lenses such as spherical aberration in design, but on the contrary, it will produce new types of aberrations specific to diffractive optics .
  • metasurface imaging in the prior art is limited to the case of paraxial imaging, that is, the use of a microscope lens to study the imaging of thin rays parallel to the optical axis in the central field of view.
  • the lens In actual application scenarios, the lens must image all incident light within a certain field of view on the sensor at the image plane, and cannot be limited to paraxial conditions. This requires that the design of the application-oriented metasurface lens must be considered. So that multiple angles of view can be normal imaging.
  • the metasurface imaging device may include a diaphragm, at least one metasurface lens and an imaging sensor, wherein the diaphragm is used to limit the incident light beam; at least one metasurface lens is aligned with the diaphragm and has multiple phase compensations
  • the structure is configured to perform deflection processing on the light beam limited by the diaphragm to compensate for its phase.
  • the imaging sensor converts the light after the phase compensation into an electrical signal proportional to the signal of the light. Wherein, the phase compensation generated by each of the plurality of phase compensation structures changes with the change of the distance from the center of the diaphragm.
  • the center of the diaphragm and the center of the metasurface lens are aligned in the optical axis direction.
  • the phase compensation changes periodically from the center of the metasurface lens along the radial direction of the metasurface lens.
  • the rotation angle formed by each of the plurality of phase compensation structures on the metasurface lens relative to any radial direction of the metasurface lens increases with the distance from the metasurface lens The distance from the center changes.
  • the rotation angle of each of the plurality of phase compensation structures changes periodically from the center of the metasurface lens along the radial direction of the metasurface lens.
  • the metasurface lens further includes a transparent substrate, wherein the phase compensation structure is formed on the transparent substrate by a dielectric material.
  • the dielectric material forming the phase compensation structure is an inorganic dielectric material, and the refractive index of the inorganic dielectric material is different from the refractive index of the material forming the substrate.
  • the refractive index of the inorganic dielectric material is greater than the refractive index of the material forming the transparent substrate.
  • the inorganic dielectric material includes zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide. At least one of.
  • the material forming the transparent substrate is an inorganic material
  • the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.
  • the material forming the transparent substrate is a resin-based organic transparent material.
  • the distance between the metasurface lens and the imaging sensor is smaller than the distance between the metasurface lens and the diaphragm.
  • the phase compensation structure is formed as a rectangular parallelepiped fin.
  • the phase compensation structure is a rectangular parallelepiped fin with a height of 200-800 nm and a length and width of 30-500 nm.
  • the phase compensation structure is formed as a solid micro-nano structure of rectangular parallelepiped, column or hemisphere.
  • the solid micro-nano structure is further formed with a hollow structure of rectangular parallelepiped, column or hemisphere.
  • a metasurface imaging device which includes: a diaphragm for limiting the incident light beam; at least one metasurface lens aligned with the diaphragm and having a plurality of phase compensations
  • the structure is configured to perform deflection processing on the light beam limited by the diaphragm to perform phase compensation; and an imaging sensor to convert the light after the phase compensation into an electrical signal proportional to the signal of the light.
  • each of the metasurface lenses includes: a first part, the first part is located in the center of the metasurface lens, and includes a first plurality of phase compensation structures; and a second part, the second part surrounds the first part
  • One part includes a second plurality of phase compensation structures, wherein the light beams subjected to the phase compensation by the first plurality of phase compensation structures and the second plurality of phase compensation structures are incident on the imaging sensor, The non-overlapping first interference constructive position and the second interference constructive position.
  • the center of the diaphragm and the center of the metasurface lens are aligned in the optical axis direction.
  • the phase shift changes introduced by the first plurality of phase compensation structures in directions approaching and away from the center of the metasurface lens are symmetrical.
  • the phase shift changes introduced by the second plurality of phase compensation structures in directions approaching and away from the center of the metasurface lens are asymmetric.
  • the metasurface lens further includes a transparent substrate, wherein the phase compensation structure is formed on the transparent substrate by a dielectric material.
  • the dielectric material forming the phase compensation structure is an inorganic dielectric material, and the refractive index of the inorganic dielectric material is different from the refractive index of the material forming the transparent substrate.
  • the refractive index of the inorganic dielectric material is greater than the refractive index of the material forming the transparent substrate.
  • the inorganic dielectric material includes zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide. At least one of.
  • the material forming the transparent substrate is an inorganic material
  • the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.
  • the material forming the transparent substrate is a resin-based organic transparent material.
  • the distance between the metasurface lens and the imaging sensor is smaller than the distance between the metasurface lens and the diaphragm.
  • the phase compensation structure is formed as a rectangular parallelepiped fin.
  • the phase compensation structure is formed as a solid micro-nano structure of rectangular parallelepiped, column or hemisphere.
  • the solid micro-nano structure is further formed with a hollow structure of rectangular parallelepiped, column or hemisphere.
  • a metasurface imaging device which includes: a diaphragm for limiting the incident light beam; at least one metasurface lens aligned with the diaphragm and having a plurality of phase compensations Structure to perform deflection processing on the light beam restricted by the diaphragm to perform phase compensation; and an imaging sensor to convert the light after the phase compensation into an electrical signal proportional to the signal of the light;
  • the metasurface lens has a plurality of phase compensation structures, and the equivalent focal length of the phase compensation structure gradually increases in a direction away from the center of the metasurface lens.
  • the center of the diaphragm and the center of the metasurface lens are aligned in the optical axis direction.
  • the phase compensation changes periodically from the center of the metasurface lens along the radial direction of the metasurface lens.
  • the rotation angle formed by each of the plurality of phase compensation structures on the metasurface lens relative to any radial direction of the metasurface lens increases with the distance from the metasurface lens The distance from the center changes.
  • the rotation angle of each of the plurality of phase compensation structures changes periodically from the center of the metasurface lens along the radial direction of the metasurface lens.
  • the metasurface lens further includes a transparent substrate, wherein the phase compensation structure is formed on the transparent substrate by a dielectric material.
  • the dielectric material forming the phase compensation structure is an inorganic dielectric material, and the refractive index of the inorganic dielectric material is different from the refractive index of the material forming the substrate.
  • the refractive index of the inorganic dielectric material is greater than the refractive index of the material forming the transparent substrate.
  • the inorganic dielectric material includes zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide. At least one of.
  • the material forming the transparent substrate is an inorganic material
  • the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.
  • the material forming the transparent substrate is a resin-based organic transparent material.
  • the distance between the metasurface lens and the imaging sensor is smaller than the distance between the metasurface lens and the diaphragm.
  • the phase compensation structure is formed as a rectangular parallelepiped fin.
  • the phase compensation structure is formed as a solid micro-nano structure of rectangular parallelepiped, column or hemisphere.
  • the solid micro-nano structure is further formed with a hollow structure of rectangular parallelepiped, column or hemisphere.
  • a metasurface imaging device which includes: a diaphragm for limiting the incident light beam; at least one metasurface lens aligned with the diaphragm and having a plurality of phase compensations Structure to perform deflection processing on the light beam restricted by the diaphragm to perform phase compensation; and an imaging sensor to convert the light after the phase compensation into an electrical signal proportional to the signal of the light;
  • the metasurface lens has a plurality of phase compensation areas, each phase compensation area includes a plurality of phase compensation structures, and the phase compensation structure of at least one of the plurality of phase compensation areas is close to and away from the metasurface
  • the phase shift introduced in the direction of the lens center is asymmetrical.
  • the center of the diaphragm and the center of the metasurface lens are aligned in the optical axis direction.
  • the metasurface lens further includes a transparent substrate, wherein the phase compensation structure is formed on the transparent substrate by a dielectric material.
  • the dielectric material forming the phase compensation structure is an inorganic dielectric material, and the refractive index of the inorganic dielectric material is different from the refractive index of the material forming the substrate.
  • the refractive index of the inorganic dielectric material is greater than the refractive index of the material forming the transparent substrate.
  • the inorganic dielectric material includes zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, gallium arsenide. At least one of.
  • the material forming the transparent substrate is an inorganic material
  • the inorganic material includes one of conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, and silicon dioxide.
  • the material forming the transparent substrate is a resin-based organic transparent material.
  • the distance between the metasurface lens and the imaging sensor is smaller than the distance between the metasurface lens and the diaphragm.
  • the phase compensation structure is formed as a rectangular parallelepiped fin.
  • the phase compensation structure is a rectangular parallelepiped fin with a height of 200-800 nm and a length and width of 30-500 nm.
  • the phase compensation structure is formed as a solid micro-nano structure of rectangular parallelepiped, column or hemisphere.
  • the solid micro-nano structure is further formed with a hollow structure of rectangular parallelepiped, column or hemisphere.
  • phase compensation of the phase compensation structure in the prior art only changes according to the distance r from the center of the lens.
  • the phase compensation of the phase compensation structure can be changed according to the change of the chief ray angle, instead of not compensating the incident angle of the chief ray but only meeting the requirements of paraxial imaging, so that the super lens can have a certain field of view Angle, so as to be able to match with the CMOS sensor that contains more than one pixel on the image surface in actual use.
  • the present application has the advantage of being able to save space and integrate with CMOS closer.
  • Fig. 1 shows a metasurface imaging device according to an embodiment of the present application
  • Fig. 2 shows a phase compensation structure according to an embodiment of the present application
  • Fig. 3 shows a phase compensation principle diagram of a phase compensation structure according to an embodiment of the present application
  • Fig. 4 shows that the lens according to an embodiment of the present application images a beam with zero CRA
  • FIG. 5 shows that the lens according to an embodiment of the present application images a beam with a non-zero CRA
  • Fig. 6 shows that the lens according to an embodiment of the present application is divided into a plurality of concentric regions
  • FIG. 7 shows a graph of the rotation angle ⁇ of the phase compensation structure fin at a distance ⁇ r from the reference position in each area according to an embodiment of the present application
  • FIG. 8 shows a graph of the change of the rotation angle ⁇ of the rectangular parallelepiped fin with the distance r from the center to the edge of the metasurface according to the embodiment of the present application;
  • Fig. 10 shows a graph showing the variation of the rotation angle ⁇ of the rectangular parallelepiped fin with the distance r from the center to the edge of the metasurface according to another embodiment of the present application;
  • FIG. 11 shows a graph of the rotation angle ⁇ of the phase compensation structure fin at the distance ⁇ r from the reference position in each area according to another embodiment of the present application;
  • Fig. 12 is a graph showing the variation of the rotation angle ⁇ of the rectangular parallelepiped fin with the distance r from the center to the edge of the metasurface according to another embodiment of the present application.
  • FIG. 13 shows a graph of the rotation angle ⁇ of the phase compensation structure fin at a distance ⁇ r from the reference position in each area according to still another embodiment of the present application;
  • FIG. 14 shows a graph of the change of the rotation angle ⁇ of the rectangular parallelepiped fin with the distance r from the center to the edge of the metasurface according to another embodiment of the present application.
  • first, second, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first dielectric material discussed below may also be referred to as the second dielectric material.
  • the thickness, size, and shape of each component may have been slightly exaggerated.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • Spatial relative wordings such as “above”, “above”, “below” and “below” can be used in this application for the convenience of description to describe what is shown in the accompanying drawings The relationship of one element to another.
  • these spatial relative terms are intended to also cover different orientations of the device in use or operation. For example, if the device in the drawings is turned over, elements described as “above” or “upper” with respect to another element will be “below” or with respect to the other element. The component is “lower”. Therefore, according to the spatial orientation of the equipment, the wording "above” covers both orientations “above” and “below”.
  • the device can also be oriented in other ways (for example, rotated 90 degrees or in other orientations), and the spatial relative terms used in this application should be interpreted accordingly.
  • the words “approximately”, “approximately” and similar words are used as words expressing approximation, not words expressing degree, and are intended to describe measurement values or values that can be recognized by those of ordinary skill in the art. The inherent deviation in the calculated value.
  • FIG. 1 shows a metasurface imaging device 100 according to an embodiment of the present application.
  • the metasurface imaging device 100 includes a diaphragm 120, at least one metasurface lens 130, and a sensor 140, where the diaphragm 120, at least one metasurface lens 130, and the sensor 140 are sequentially along the optical axis of the metasurface imaging device 100. set up.
  • the diaphragm 120 restricts the light beam, that is, restricts the light incident on the imaging device 100 to restrict the size of the incident light beam.
  • the center O 1 of the diaphragm 120 and the center O 2 of the metasurface lens 130 are substantially aligned in the optical axis direction.
  • At least one metasurface lens 130 is aligned with the diaphragm 120 and has a plurality of phase compensation structures 220 (see FIGS. 2 and 3) to perform deflection processing on the light beam restricted by the diaphragm 120, thereby performing phase compensation on the light beam .
  • the phase compensation produced by each of the plurality of phase compensation structures 220 varies as the distance from the center of the aperture 120 changes.
  • the imaging sensor 140 receives light and converts the light signal into an electric signal proportional to the light signal, that is, converts the phase-compensated light into an electric signal proportional to the signal of the light from the object.
  • each metasurface lens 130 may include: a first portion located in a central area of the metasurface lens, the first portion including a first plurality of phase compensation structures; and a second portion surrounding the first portion (ie, intervening In the part between the central area and the edge of the metasurface lens 130), the second part includes a second plurality of phase compensation structures, wherein the first plurality of phase compensation structures and the second plurality of phase compensation structures perform the The phase-compensated light beams are respectively incident on the imaging sensor at a non-overlapping first interference constructive position and a second interference constructive position.
  • the phases introduced by the first plurality of phase compensation structures in the direction approaching and away from the center of the metasurface lens are symmetrical; the second plurality of phase compensation structures in the second part introduce asymmetric phase shift changes in the directions close to and away from the center of the metasurface lens.
  • the equivalent focal lengths of the above-mentioned multiple phase compensation structures of the metasurface lens 130 gradually increase in a direction away from the center of the metasurface lens 130.
  • the metasurface lens 130 has a plurality of phase compensation areas, each phase compensation area includes a plurality of phase compensation structures, and wherein, in at least one phase compensation area of the plurality of phase compensation areas, the phase compensation structure is close to It is asymmetrical to the phase shift change introduced in the direction away from the center of the metasurface lens.
  • the angle between the ray and the optical axis is defined as the chief ray angle CRA.
  • a series of rays from the object 110 centered on a specific chief ray angle (the rays 121, 122, 123 and the rays 131, 132, 133 as shown in Fig. 1) will be introduced into one through the phase compensation structure on the metasurface lens 130.
  • the Pancharatnam-Berry (PB) phase difference is related to the shape of the phase compensation structure, and generates an interference constructive position at a specific position on the sensor 140 to form the image point of the image 150.
  • the metasurface lens 130 may include a substrate 210 and a plurality of phase compensation structures 220 on the substrate.
  • the phase compensation structure 220 is formed on the transparent substrate 210 by a dielectric material.
  • the material forming the substrate 210 may be an inorganic material such as conductive glass ITO, aluminum oxide, zinc oxide, magnesium fluoride, silicon dioxide, or the like, or a resin-based organic transparent material.
  • the dielectric material forming the phase compensation structure 220 may be an inorganic dielectric material, mainly including zinc sulfide, magnesium fluoride, titanium dioxide, zirconium oxide, silicon hydride, crystalline silicon, silicon nitride, amorphous silicon, gallium nitride, gallium phosphide, At least one of inorganic dielectric materials such as gallium arsenide, but may also include organic materials such as PMMA.
  • the refractive index of the material forming the phase compensation structure 220 is different from the refractive index of the material forming the substrate 210, and it is generally required that the refractive index of the material forming the phase compensation structure 220 be higher.
  • the scale of a single phase compensation structure 220 is similar to or smaller than the wavelength of light, and its maximum length or height may be in the range of 50 nm to 2000 nm, for example, depending on the working wavelength band.
  • the metasurface lens 130 although a plurality of the above-mentioned phase compensation structures 220 are arranged on the transparent substrate 210, since the scale of the phase compensation structure 220 is several orders of magnitude smaller than that of the substrate 210, it can still be regarded as the metasurface lens 130 is a flat optical device, that is, the metasurface lens 130 is approximately flat.
  • the distance between the metasurface lens 130 and the imaging sensor 140 is smaller than the distance between the metasurface lens and the diaphragm 120, so that space can be saved and the CMOS can be integrated closer.
  • the phase compensation structure 220 may be a rectangular parallelepiped fin. As shown in FIG. 2, the length of each rectangular parallelepiped fin can be defined as L, width as W, and height as H. H can be in the range of 200-800nm according to the type of material, L can be in the range of 30-500nm according to the type of material, and W can be in the range of 30-500nm according to the type of material, so that as much as possible on the super surface lens 130
  • the phase compensation structure 220 is arranged.
  • the cuboid fin can adjust the phase of the circularly polarized incident light similar to a half-wave plate, so that the incident left-handed or right-handed circularly polarized light with the rotation angle ⁇ of the rotating fin is emitted as Rotate 2 ⁇ or -2 ⁇ right-handed or left-handed polarized light, as shown in Figure 3. Therefore, the rotation angle of the rectangular parallelepiped fin is different, and different PB phase differences are introduced at different positions, and the light rays at the designed focus point of the PB phase difference are constructed to interfere to achieve the focusing effect.
  • the distance between the sensor 140 and the metasurface lens 130 can be defined as the focal length f.
  • the design of the rotation angle ⁇ of the phase compensation structure should satisfy:
  • is the wavelength
  • r is the distance between each cuboid fin and the center of the metasurface lens 130
  • k is an integer and may preferably be zero.
  • each individual phase compensation structure is not limited to a rectangular parallelepiped fin, but a solid micro-nano structure such as a rectangular parallelepiped, a cylinder, a hemisphere, etc., or further has a rectangular parallelepiped, a cylinder, or a hemisphere on it.
  • the hollow or partially hollow micro-nano structure of the hollow or part of the body can realize further fine-tuning of the phase to achieve further effects such as eliminating chromatic aberration and polarization sensitivity.
  • the phase compensation structure can be composed of multiple solid or hollow micro-nano structures of different sizes to form a single phase compensation unit, and the combination of multiple phase compensation units can be used to eliminate chromatic aberration and polarization sensitivity. And so on further effects.
  • the size, pitch, and rotation angle of the phase compensation structure 220 on the metasurface lens 130 may be different from each other, and are not limited to the situations in FIGS. 2 to 3 that are consistent with each other. If such a complex phase compensation structure is used, it is difficult to calculate the required size, spacing, and rotation angle of the phase compensation structure 220 in an analytical form, and it is necessary to use numerical simulation methods such as FDTD (Finite Difference Time Domain) and finite element FEM. Analysis, just meet The phase compensation is sufficient.
  • FDTD Finite Difference Time Domain
  • FEM finite element FEM
  • phase compensation structures 220 of different wavelengths can be combined with each other in different spatial positions simply, for example, multiple phase compensation structures 220 representing wavelengths can be used as a group to achieve a certain balance of the focusing effect of different wavelengths, or A plurality of phase compensation structures representing wavelengths are formed into different spatial parts of the metasurface lens. It is also possible to add an introduced chromatic aberration compensation structure whose phase shift varies with wavelength based on the phase compensation structure designed according to a certain participating wavelength, such as the resonance mode inside the nanostructure such as the fin structure or the combined resonance between the nanostructures. The mode makes the phase shift provided will vary with the wavelength. Because it is difficult to calculate in an analytical form which nanostructures or combinations can provide such a phase shift with wavelength, the prior art is generally exhausted by computer simulation. After selecting the possible structure, the structure that can provide the most suitable phase shift curve is selected.
  • the pixels in each position on the sensor 140 can be used for imaging, not just a small area near the optical axis for imaging, this requires that different incident rays are simultaneously imaged on the sensor 140.
  • the different positions of the plane should not be limited to the special case of paraxial incidence in the above analysis.
  • the CRA of the light beams 121, 122, and 123 shown by the dashed line is 0, which conforms to the above-mentioned paraxial imaging situation.
  • the CRA of the beams 131, 132, and 133 shown by the solid line is not zero, and the imaging position required for the beam of the CRA is also different from the imaging position of the paraxial beams 121, 122, and 123.
  • f is the distance (ie focal length) between the sensor 140 and the metasurface lens 130
  • f' is the distance traveled by the main ray from the metasurface lens 130 to the sensor 140
  • ⁇ r is the distance between the phase compensation structure and the intersection of the chief ray and the metasurface lens 130
  • the phase compensation is related to both f′ and CRA, that is, it will change according to the distance of the center of the diaphragm 120.
  • the focal point can be located at the position where the extension of the chief ray intersects the image plane where the sensor is located:
  • f/cosCRA can be defined as the equivalent focal length, that is, in the radial direction of the metasurface lens 130, the equivalent focal length should gradually increase.
  • the super-surface lens 130 can be divided into multiple regions, and the multiple regions may not overlap each other, and each is designed according to a certain range of CRA. It is also possible to partially overlap each other so that the response to CRA changes continuously in the radial direction of the lens.
  • the supersurface lens 130 can be divided into a plurality of concentric regions according to the CRA, and each region is designed according to a different CRA in the above formula.
  • the shape of each area is not limited to the above-mentioned ring shape, but can be divided according to the shape of the supersurface lens 130 itself, such as a rectangle, a polygon, an irregular shape, and the like. It is also possible to divide the metasurface lens 130 into a plurality of grids according to regions in the coordinate system, and arrange different phase compensation structures in different grids according to the corresponding CRA and ⁇ r and the above formula.
  • the size or width of each concentric area can be determined according to the actual micromachining capability.
  • the maximum CRA is 30°
  • the wavelength is 500 nanometers
  • a total of 6 concentric annular regions are arranged, and the width of each region (for example, r 1 , r 2 , r 3 , r 4 and r 5 ) and the diaphragm radius are both 20 microns, the distance between the diaphragm and the metasurface lens is 200 microns, f is 50 microns, and the phase compensation structure fin at the distance ⁇ r relative to the corresponding reference position in each area
  • the rotation angle ⁇ of is shown in Table 1 and Figure 7 accordingly.
  • the change of ⁇ is symmetric in the positive and negative directions; for the case of CRA not equal to 0°, when the distance from the reference position of each area is the same distance , The amount of change in ⁇ in the positive direction (that is, in the direction away from the center of the metasurface lens 130) begins to be greater than the amount of change in ⁇ in the negative direction (that is, in the direction close to the center of the metasurface lens 130), and the positive direction and The difference in the amount of change in the negative direction also tends to increase as the CRA increases.
  • the rotation angle of the corresponding rectangular parallelepiped fin can be extracted from the above table and listed together as shown in Table 2 and Figure 8.
  • the wavelength is 700 nanometers
  • a total of 6 concentric annular regions are arranged.
  • the width and aperture radius of each region are both 20 microns
  • the distance between the aperture and the supersurface lens is 200 microns
  • f is 50 microns
  • the rotation angle ⁇ of the phase compensation structure fin at the distance ⁇ r from the corresponding reference position in each area is shown in Table 3 and FIG. 9 accordingly.
  • the reference position is defined similarly to the first embodiment.
  • the rotation angle of the corresponding rectangular parallelepiped fin can be extracted from the above table and listed together as shown in Table 4 and Figure 10.
  • the maximum CRA is 30°
  • the wavelength is 500 nanometers
  • a total of 6 concentric annular regions are arranged.
  • the width of each region and the radius of the aperture are both 20 microns
  • the distance between the aperture and the supersurface lens is 200 microns
  • f is 60 microns
  • the rotation angle ⁇ of the phase compensation structure fin at the distance ⁇ r from the corresponding reference position in each area is shown in Table 5 and FIG. 11 accordingly.
  • the reference position is similarly defined as in the first embodiment.
  • the required rotation angle of the rectangular parallelepiped fin can be extracted from the above table and listed together as shown in Table 6 and Figure 12.
  • the rotation angle ⁇ of the phase compensation structure fin at the distance ⁇ r relative to the corresponding reference position in each area should be as shown in Table 7 and Figure 13.
  • the reference position is defined similarly to the first embodiment.
  • the required rotation angle of the rectangular parallelepiped fin can be extracted from the above table and listed together as shown in Table 8 and Figure 14.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种超表面成像装置(100),包括光阑(120)、至少一个超表面镜片(130)和成像传感器(140),其中,光阑(120)用于对入射的光束进行限制;至少一个超表面镜片(130)与光阑(120)对准并具有多个相位补偿结构(220),以对经光阑(120)限制后的光束进行偏折处理以对其进行相位补偿;成像传感器(140)则将经相位补偿后的光转换为与光的信号成比例的电信号。多个相位补偿结构(220)中的每一个所产生的相位补偿随着距光阑(120)的中心的距离的变化而变化。相位补偿结构(220)的相位补偿能根据主光线角的变化而变化,使得超透镜能具有一定的视场角。

Description

一种超表面成像装置
相关申请的交叉引用
本申请要求于2020年4月24日提交于中国国家知识产权局(CNIPA)的专利申请号为202010331976.2的中国专利申请的优先权和权益,上述中国专利申请通过引用整体并入本文。
技术领域
本申请涉及光学器件的领域,更具体地,涉及一种超表面成像装置。
背景技术
现有摄像领域中用于成像、透射等的镜头均是采用由树脂、塑料、玻璃等透明体材料制成镜片。由于此类镜片需通过透过厚度的渐变来引入光程差,从而使得光线产生聚焦或发散的效果,因此一般需要具有较大的尺寸。2015年3月Capasso等人在Science杂志347卷期号6228上发表了超表面的论文,并由此引发了全世界对于超表面透镜的研究。
超表面透镜与传统透镜的不同之处在于,超表面透镜采用由微纳米尺度结构引入的、与形状相关的Pancharatnam-Berry相位差,以使得被散射的入射光的相位可以被任意调制从而代替传统透镜所依赖的光程差。因此,超表面透镜可以形成更易于集成的实质上平面的光学器件,并且尺寸相对于传统透镜可以大大降低。由于超表面透镜在原理上所依赖的是衍射光学而非几何光学,因而可以从设计上避免球差等传统镜头的固有像差,但是相反地,会产生特定于衍射光学的新类型的像差。
目前的现有技术中使用超表面成像均限于傍轴成像的情况,即采用显微镜头研究平行于光轴的细光线在中心视场成像。而在实际应用场景中,镜头必须将一定视场角范围内所有的入射光线成像在像面处的传感器上,而不能限于傍轴情况,这就必须要求面向应用的超表面透镜的设计必须考虑到使多个视场角都能得到正常成像。
发明内容
本申请的一方面提供了一种超表面成像装置。该超表面成像装置可包括光阑、至少一个超表面镜片和成像传感器,其中,光阑用于对入射的光束进行限制;至少一个超表面镜片与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿。成像传感器则将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号。其中,所述多个相位补偿结构中的每一个所产生的相位补偿随着距所述光阑的中心的距离的变化而变化。
在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
在一个实施方式中,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
在一个实施方式中,位于所述超表面镜片上的所述多个相位补偿结构中的每一个相对于所述超表面镜片的任一径向方向形成的旋转角度随着距所述超表面镜片的中心的距离的变化而改变。
在一个实施方式中,所述多个相位补偿结构中的每一个的所述旋转角度从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。
在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。
在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。
在一个实施方式中,所述相位补偿结构被形成为长方体翅片。
在一个实施方式中,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。
在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号。其中,每个所述超表面镜片包括:第一部分,所述第一部分位于所述超表面镜片的中央,包含第一多个相位补偿结构;以及第二部分,所述第二部分包围所述第一部分,包含第二多个相位补偿结构,其中,经所述第一多个相位补偿结构和所述第二多个相位补偿结构进行所述相位补偿的光束分别入射在所述成像传感器上的、不相重叠的第一干涉相长位置和第二干涉相长位置处。
在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
在一个实施方式中,在所述第一部分中,所述第一多个相位补偿结构在靠近和远离 所述超表面镜片的中心的方向上所引入的相移变化对称。
在一个实施方式中,在所述第二部分中,所述第二多个相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移变化不对称。
在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述透明衬底的材料的折射率不同。
在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。
在一个实施方式中,所述超表面镜片与所述成像传感器之间的距离小于所述超表面镜片与所述光阑之间的距离。
在一个实施方式中,所述相位补偿结构被形成为长方体翅片。
在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号;其中所述超表面镜片具有多个相位补偿结构,所述相位补偿结构的等效焦距在远离所述超表面镜片中心的方向上逐渐增大。
在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
在一个实施方式中,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
在一个实施方式中,位于所述超表面镜片上的所述多个相位补偿结构中的每一个相对于所述超表面镜片的任一径向方向形成的旋转角度随着距所述超表面镜片的中心的距离的变化而改变。
在一个实施方式中,所述多个相位补偿结构中的每一个的所述旋转角度从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在 所述透明衬底上通过电介质材料形成。
在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。
在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。
在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。
在一个实施方式中,所述相位补偿结构被形成为长方体翅片。
在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
本申请的另一方面提供了这样一种超表面成像装置,其包括:光阑,用于对入射的光束进行限制;至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对所述光阑限制后的光束进行偏折处理以对其进行相位补偿;以及成像传感器,将经过所述相位补偿后的光转换为与所述光的信号成比例的电信号;其中,所述超表面镜片具有多个相位补偿区域,每个相位补偿区域包括多个相位补偿结构,以及所述多个相位补偿区域中的至少一个的相位补偿结构在靠近和远离所述超表面镜片中心的方向上所引入的相移变化不对称。在一个实施方式中,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
在一个实施方式中,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
在一个实施方式中,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。
在一个实施方式中,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
在一个实施方式中,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
在一个实施方式中,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
在一个实施方式中,形成所述透明衬底的材料是树脂类有机透明材料。
在一个实施方式中,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。
在一个实施方式中,所述相位补偿结构被形成为长方体翅片。
在一个实施方式中,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。
在一个实施方式中,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
在一个实施方式中,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
现有技术中相位补偿结构的相位补偿仅根据距镜片中心的距离r变化。根据本申请,相位补偿结构的相位补偿能根据主光线角的变化而变化,而非对于主光线的入射角不做补偿而仅满足傍轴成像的要求,这样使得超透镜能具有一定的视场角,从而能够在实际使用时与像面上包含不止一个像素的CMOS传感器进行匹配。另外,本申请的优势还在于能够节省空间与CMOS更靠近地进行集成。
附图说明
通过阅读参照以下附图所作的对非限制性实施方式所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出了根据本申请实施方式的超表面成像装置;
图2示出了根据本申请实施方式的相位补偿结构;
图3示出了根据本申请实施方式的相位补偿结构的相位补偿原理图;
图4示出了根据本申请实施方式的镜片对CRA为零的光束成像;
图5示出了根据本申请实施方式的镜片对CRA不为零的光束成像;
图6示出了根据本申请实施方式的镜片被分为多个同心区域;
图7示出了根据本申请实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;
图8示出了根据本申请实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图;
图9示出了根据本申请另一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;
图10示出了根据本申请另一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图;
图11示出了根据本申请又一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;
图12示出了根据本申请又一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图。
图13示出了根据本申请再一实施方式的在每个区域中相对于基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ的曲线图;
图14示出了根据本申请再一实施方式的长方体翅片的旋转角度φ随超表面的中心到边缘的距离r的变化的曲线图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一介电材料也可被称作第二介电材料。
在附图中,为了便于说明,可能已稍微夸大了各部件的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在整个说明书中,当诸如层、区域或基板的元件被描述为位于另一元件“上”、“连接到”或“联接到”另一元件时,该元件可直接位于该另一元件“上”、直接“连接到”或直接“联接到”该另一元件,或者可存在介于该元件与该另一元件之间的一个或多个其它元件。相反地,当元件被描述为“直接位于”另一元件“上”、“直接连接到”或“直接联接到”另一元件时,则可不存在介于该元件与该另一元件之间的其它元件。
诸如“在……之上”、“较上”、“在……之下”和“较下”的空间相对措辞可以在本申请中为了描述便利而使用,以描述如附图中所示的一个元件相对于另一个元件的关系。除了涵盖附图中所描绘的定向之外,这些空间相对措辞旨在还涵盖设备在使用或操作中的不同的定向。例如,如果附图中的设备翻转,则描述为在另一元件“之上”或相对于该另一元件“较上”的元件将在该另一元件“之下”或相对于该另一元件“较下”。因此,根据设备的空间定向,措辞“在……之上”涵盖“在……之上”和“在……之下”两种定向。该设备还可以以其它方式定向(例如,旋转90度或在其它定向上),并且本申请中使用的空间相对措辞应被相应地解释。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除还存在一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰列表中的全部特征,而不是仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。另外,词语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,词语“大致”、“大约”以及类似的词语用作表近似的词语,而不用作表程度的词语,并且旨在说明本领域普通技术人员能够认识到的测量值或计算值 中的固有偏差。
除非另外限定,否则本文中使用的所有术语(包括技术术语和科学术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,术语(例如在常用词典中定义的术语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义进行解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施方式及实施方式中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。
下面将参考附图并结合实施方式来详细说明本申请。
图1示出了根据本申请的实施方式的超表面成像装置100。参考图1,其中示出了对光轴上的物体110成像的简图,图中距离和比例仅为示意。如图所示,超表面成像装置100包括光阑120、至少一个超表面镜片130和传感器140,其中,光阑120、至少一个超表面镜片130和传感器140沿超表面成像装置100的光轴依次设置。
光阑120对光束起限制作用,即,对入射到成像装置100的光进行限制,以约束入射光束的大小。光阑120的中心O 1与超表面镜片130的中心O 2在光轴方向上大致对齐。至少一个超表面镜片130与光阑120对准并具有多个相位补偿结构220(参见图2和图3),以对经光阑120限制后的光束进行偏折处理,从而对光束进行相位补偿。多个相位补偿结构220中的每个所产生的相位补偿随着其距光阑120中心的距离的变化而变化。成像传感器140接收光线,并将光信号转换为与光信号成相应比例关系的电信号,即,将经过相位补偿后的光转换为与来自物体的光的信号成比例的电信号。
在示例性实施方式中,每个超表面镜片130可包括:位于超表面镜片中央区域的第一部分,该第一部分包含第一多个相位补偿结构;以及包围第一部分的第二部分(即,介于超表面镜片130的中央区域与边缘之间的部分),该第二部分包含第二多个相位补偿结构,其中,经第一多个相位补偿结构和第二多个相位补偿结构进行所述相位补偿的光束分别入射在成像传感器上的、不相重叠的第一干涉相长位置和第二干涉相长位置处。
在将超表面镜片的表面划分成位于中央区域的第一部分和第二部分的情况下,第一部分中的第一多个相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化对称;第二部分的第二多个相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化不对称。
可替代地,超表面镜片130具有的上述多个相位补偿结构的等效焦距在远离超表面镜片130中心的方向上逐渐增大。
可替代地,超表面镜片130具有多个相位补偿区域,每个相位补偿区域包括多个相位补偿结构,以及其中,在多个相位补偿区域中的至少一个相位补偿区域中,相位补偿结构在靠近和远离超表面镜片的中心的方向上所引入的相移变化不对称。
由于物体110上不同位置所发射的光线通过光阑120时与O 1-O 2所限定的光轴所成的角度各不相同,为便于说明,在本文中将通过光阑120中心O 1的光线与光轴所成的角度定义为主光线角CRA。来自物体110的以特定主光线角为中心的一系列光线(如图1中所示的光线121、122、123和光线131、132、133)将通过超表面镜片130上的相位补偿结构引入一个与相位补偿结构的形状相关的Pancharatnam-Berry(PB)相位差,并在传感器140上的特定位置产生一个干涉相长的位置以形成图像150的像点。
图2和图3分别示出了根据本申请实施方式的相位补偿结构220的示意性结构。如图所示,超表面镜片130可包括衬底210和衬底上的多个相位补偿结构220。相位补偿结构220在透明衬底210上通过电介质材料形成。形成衬底210的材料可以是导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅等无机材料,也可以是树脂类的有机透明材料。形成相位补偿结构220的电介质材料可以是无机电介质材料,主要包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓等无机介电材料中的至少一种材料,但也可以包括PMMA等有机物材料。形成相位补偿结构220的材料的折射率与形成衬底210的材料的折射率不同,一般要求形成相位补偿结构220的材料的折射率较高。单个相位补偿结构220的尺度与光的波长相似或更小,视工作波段的不同,其最大长度或高度可例如在50nm至2000nm的范围内。在超表面镜片130中,虽然将多个上述相位补偿结构220布置在透明衬底210上,由于相位补偿结构220的尺度相比于衬底210要小多个数量级,因此仍然可以认为超表面镜片130是平面的光学器件,即,超表面镜片130是近似平坦的。
根据本申请的实施方式,超表面镜片130与成像传感器140之间的距离小于超表面镜片与光阑120之间的距离,从而能够节省空间与CMOS更靠近地进行集成。。
相位补偿结构220可为长方体翅片,如图2所示,可以定义每个长方体翅片的长为L、宽为W以及高为H。H可以根据材料种类在200-800nm范围内,L可以根据材料种类在30-500nm的范围内以及W可以根据材料种类在30-500nm的范围内,从而以尽可能多地在超表面镜片130上布置相位补偿结构220。本领域技术人员应该理解,这种长方体翅片对于圆偏振的入射光可以近似于半波片起到调整相位的效果,使得旋转翅片旋转角度α的入射左旋或者右旋圆偏振光分别出射为旋转2α或者-2α的右旋或左旋偏振光,如图3所示。由此,使得长方体翅片的旋转角度各不相同而在不同的位置引入不同的PB相位差,并使得上述PB相位差在设计的聚焦点处的光线为相长干涉即可实现聚焦效果。例如,传感器140与超表面镜片130之间的距离可以定义为焦距f,则在傍轴成像的限定条件下,相位补偿结构的旋转角度α的设计应满足:
Figure PCTCN2020127653-appb-000001
其中,λ为波长,r为每个长方体翅片距离超表面镜片130中心的距离,k为整数且优选可以是0。
本领域技术人员还将知晓每个单个的相位补偿结构并不限于长方体翅片,而是可以 采用长方体、柱体、半球体等实心微纳结构,或者进一步在其上具有长方体、柱体、半球体的凹陷或者孔洞的空心或者部分空心微纳结构来实现相位的进一步微调,以达成消除色差、偏振敏感度等进一步的效果。尤其应当注意的是,相位补偿结构可以由多个不同尺寸的上述实心或者空心微纳结构的组合来组成一个单独的相位补偿单元,并利用多个相位补偿单元的组合达成消除色差、偏振敏感度等进一步的效果。也就是说,超表面镜片130上的相位补偿结构220的大小、间距和旋转角度可以各不相同,而不限于彼此一致的图2至图3中的情况。如果使用此类复杂相位补偿结构,则难以以解析形式计算所需的相位补偿结构220的大小、间距和旋转角度等,而需要使用FDTD(时域有限差分)、有限元FEM等数值模拟方法进行分析,只需满足
Figure PCTCN2020127653-appb-000002
的相位补偿即可。
对于宽波段(或者多波长)的成像情形,则上式中λ的会变化。此时可以简单地将多个不同波长的相位补偿结构220在不同的空间位置中互相组合,例如将多个代表波长的相位补偿结构220作为一组使得不同波长的聚焦效果产生一定的均衡,或者将多个代表波长的相位补偿结构形成为超表面镜头的不同空间部分。也可以在根据某一参加波长设计的相位补偿结构基础上进一步加入引入的相移随着波长变化的色差补偿结构,如根据翅片结构等纳米结构内部的谐振模式或者纳米结构之间的组合谐振模式使得所提供的相移会随着波长变化,由于难以以解析形式计算何种纳米结构或者组合可以提供这样的随波长变化的相移,现有技术中一般通过计算机模拟的方式在穷举多种可能的结构之后选取可提供最符合的相移曲线的结构。
在实际情况下,由于传感器140上的各个位置的像素均可用于成像,而不仅仅是用光轴附近的一小块区域进行成像,这就要求对于不同的入射光线都同时成像在传感器140所在平面的不同位置上,而不能限于以上分析中傍轴入射的特殊情况。如图1所示,虚线所示出的光束121、122、123的CRA为0,符合上述傍轴成像的情况。但实线示出的光束131、132和133的CRA不为零,对该CRA的光束所需要的成像位置也同样要与傍轴光束121、122和123的成像位置不同,在此情况下,需要满足的相位补偿也将产生变化。如图5所示,由于透镜在多数情况下要对距离远大于焦距的外界场景成像,可以将入射的细光束等效看作平行光,此时所需的相位补偿变为:
Figure PCTCN2020127653-appb-000003
其中,
Figure PCTCN2020127653-appb-000004
其中,λ为波长,
f为传感器140与超表面镜片130之间的距离(即焦距),
f’为主光线从超表面镜片130到达传感器140所经过的距离,
Δr是相位补偿结构距离主光线与超表面镜片130交点的距离,
θ=arccos(f/f’)。
可以看出相位补偿与f’和CRA均相关,也就是将根据光阑120的中心的距离的变化而变化。通过f’的选取可以使得超表面成像装置适应于不同尺寸的传感器。如果使用翅片形状的相位补偿结构,则翅片旋转的角度应为上式中
Figure PCTCN2020127653-appb-000005
的1/2,其中,对于左旋入射光,则旋转的角度为
Figure PCTCN2020127653-appb-000006
的正1/2,对于右旋偏振光,则旋转的角度为
Figure PCTCN2020127653-appb-000007
的负1/2。对于不同圆偏振,旋转方向是相反的。仅在CRA=0的情况下上式等价于傍轴情形,而对在0-90°之间的CRA则与傍轴情况下所需的相位补偿的差别将不断增大。
在一个简化的实施方式中,可以使聚焦点位于主光线延长线与传感器所在的像面相交的位置:
Figure PCTCN2020127653-appb-000008
其中f/cosCRA可以定义为等效焦距,也就是在超表面镜片130径向方向上,等效焦距应逐渐增大。
为了满足上式要求,超表面镜片130可分为多个区域,多个区域可以彼此之间互不重叠,各自按照一定范围内的CRA进行设计。也可以互相部分地重叠使得对于CRA的响应在镜片的径向方向上连续改变。
如图6所示,可以将超表面镜片130按照CRA分为多个同心区域,每个区域根据上述公式中不同的CRA进行设计。每个区域的形状不限于上述的环形,而是可以根据超表面镜片130自身的形状进行划分,如矩形、多边形、不规则形状等。还可以将超表面镜片130在坐标系中按照区域划分为多个的网格,并在不同的网格内根据相应的CRA和Δr以及上述公式进行不同的相位补偿结构的布置。每个同心区域的大小或者是宽度可以根据实际微加工能力进行确定。
实施例1
在一个示例中,设CRA最大为30°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度(例如,图6中的r 1、r 2、r 3、r 4和r 5)以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表1和图7所示。
具体地,在本示例中,对于CRA=0°的区域,基准位置为超表面镜片130的中心O 2;对于CRA=5°的区域,基准位置为CRA=5°的区域与CRA=0°的区域的交界处;对于CRA=10°的区域,基准位置为CRA=10°的区域与CRA=5°的区域的交界处;对于CRA=15°的区域,基准位置为CRA=15°的区域与CRA=10°的区域的交界处;对于CRA=20°的区域,基准位置为CRA=20°的区域与CRA=15°的区域的交界处;对于CRA=25°的区域,基准位置为CRA=25°的区域与CRA=20°的区域的交界处;对于CRA=30°的区域,基准位置为CRA=30°的区域与CRA=25°的区域的交界处。
表1 在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φ
示例1 CRA=0° CRA=5° CRA=10° CRA=15° CRA=20° CRA=25° CRA=30°
Δr(μm) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°)
10 -356.47 -358.575 -352.497 -338.283 -316.444 -287.969 -254.294
9 -289.276 -290.489 -285.063 -273.084 -255.016 -231.7 -204.321
8 -228.944 -229.51 -224.827 -215.001 -200.437 -181.829 -160.126
7 -175.544 -175.675 -171.787 -163.994 -152.631 -138.251 -121.591
6 -129.137 -129.01 -125.933 -120.012 -111.514 -100.858 -88.5922
5 -89.7761 -89.532 -87.2438 -83.0001 -76.9992 -69.541 -61.0089
4 -57.5081 -57.2519 -55.6915 -52.8931 -48.9917 -44.1842 -38.7174
3 -32.3709 -32.1705 -31.2395 -29.6203 -27.3932 -24.6714 -21.5942
2 -14.3942 -14.2802 -13.8431 -13.104 -12.1004 -10.8836 -9.51571
1 -3.59964 -3.5649 -3.44988 -3.26041 -3.00626 -2.70047 -2.35856
0 0 0 0 0 0 0 0
-1 -3.59964 -3.55254 -3.42636 -3.22798 -2.96786 -2.65942 -2.31806
-2 -14.3942 -14.1814 -13.6551 -12.8447 -11.7934 -10.5554 -9.19183
-3 -32.3709 -31.8376 -30.606 -28.7462 -26.3581 -23.5642 -20.5017
-4 -57.5081 -56.4645 -54.1927 -50.8245 -46.5415 -41.5625 -36.1293
-5 -89.7761 -87.9982 -84.3236 -78.9684 -72.2219 -64.427 -55.9583
-6 -129.137 -126.368 -120.902 -113.063 -103.277 -92.0354 -79.8738
-7 -175.544 -171.495 -163.825 -152.993 -139.582 -124.266 -107.763
-8 -228.944 -223.298 -212.989 -198.637 -181.015 -160.999 -139.515
-9 -289.276 -281.686 -268.283 -249.876 -227.452 -202.114 -175.021
-10 -356.47 -346.564 -329.596 -306.588 -278.77 -247.495 -214.175
其中的一个显著区别在于,针对CRA=0°的情况,φ的变化在正负方向上是对称的;而针对CRA不等于0°的情况,在距离每个区域的基准位置同样距离的情况下,正方向(也就是远离超表面镜片130的中心的方向上)的φ的变化量开始大于负方向(也就是靠近超表面镜片130的中心的方向上)的φ的变化量,且正方向和负方向上的变化量的差随着CRA增大也出现增大的趋势。
如果按照从超表面的中心到边缘的距离r为准,则对应的长方体翅片的旋转角度可从上述表中提取并列在一起如表2和图8所示。
表2 长方体翅片的旋转角度φ随r的变化
r(μm) φ(°) r(μm) φ(°) r(μm) φ(°) r(μm) φ(°)
0 0 35 -163.825 70 -163.994 105 0
1 -3.59964 36 -120.902 71 -215.001 106 -2.70047
2 -14.3942 37 -84.3236 72 -273.084 107 -10.8836
3 -32.3709 38 -54.1927 73 -338.283 108 -24.6714
4 -57.5081 39 -30.606 74 -278.77 109 -44.1842
5 -89.7761 40 -13.6551 75 -227.452 110 -69.541
6 -129.137 41 -3.42636 76 -181.015 111 -100.858
7 -175.544 42 0 77 -139.582 112 -138.251
8 -228.944 43 -3.44988 78 -103.277 113 -181.829
9 -289.276 44 -13.8431 79 -72.2219 114 -231.7
10 -356.47 45 -31.2395 80 -46.5415 115 -287.969
11 -346.564 46 -55.6915 81 -26.3581 116 -214.175
12 -281.686 47 -87.2438 82 -11.7934 117 -175.021
13 -223.298 48 -125.933 83 -2.96786 118 -139.515
14 -171.495 49 -171.787 84 0 119 -107.763
15 -126.368 50 -224.827 85 -3.00626 120 -79.8738
16 -87.9982 51 -285.063 86 -12.1004 121 -55.9583
17 -56.4645 52 -352.497 87 -27.3932 122 -36.1293
18 -31.8376 53 -306.588 88 -48.9917 123 -20.5017
19 -14.1814 54 -249.876 89 -76.9992 124 -9.19183
20 -3.55254 55 -198.637 90 -111.514 125 -2.31806
21 0 56 -152.993 91 -152.631 126 0
22 -3.5649 57 -113.063 92 -200.437 127 -2.35856
23 -14.2802 58 -78.9684 93 -255.016 128 -9.51571
24 -32.1705 59 -50.8245 94 -316.444 129 -21.5942
25 -57.2519 60 -28.7462 95 -247.495 130 -38.7174
26 -89.532 61 -12.8447 96 -202.114 131 -61.0089
27 -129.01 62 -3.22798 97 -160.999 132 -88.5922
28 -175.675 63 0 98 -124.266 133 -121.591
29 -229.51 64 -3.26041 99 -92.0354 134 -160.126
30 -290.489 65 -13.104 100 -64.427 135 -204.321
31 -358.575 66 -29.6203 101 -41.5625 136 -254.294
32 -329.596 67 -52.8931 102 -23.5642    
33 -268.283 68 -83.0001 103 -10.5554    
34 -212.989 69 -120.012 104 -2.65942    
实施例2
在另一个示例中,设CRA最大为30°,波长为700纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表3和图9所示。在本实施例中,基准位置与实施例1类似定义。
表3 在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φ
示例1 CRA=0° CRA=5° CRA=10° CRA=15° CRA=20° CRA=25° CRA=30°
Δr(μm) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°)
10 -254.622 -256.125 -251.784 -241.631 -226.031 -205.692 -181.638
9 -206.625 -207.492 -203.616 -195.06 -182.154 -165.5 -145.943
8 -163.531 -163.936 -160.591 -153.572 -143.17 -129.878 -114.376
7 -125.389 -125.482 -122.705 -117.138 -109.022 -98.7505 -86.8504
6 -92.2405 -92.1498 -89.9521 -85.723 -79.6531 -72.0418 -63.2802
5 -64.1258 -63.9514 -62.317 -59.2858 -54.9994 -49.6722 -43.5778
4 -41.0772 -40.8942 -39.7797 -37.7808 -34.9941 -31.5602 -27.6553
3 -23.1221 -22.9789 -22.3139 -21.1574 -19.5666 -17.6224 -15.4245
2 -10.2816 -10.2001 -9.8879 -9.36001 -8.64316 -7.77403 -6.79694
1 -2.57117 -2.54636 -2.4642 -2.32887 -2.14733 -1.92891 -1.68469
0 0 0 0 0 0 0 0
-1 -2.57117 -2.53753 -2.4474 -2.3057 -2.1199 -1.89958 -1.65576
-2 -10.2816 -10.1296 -9.75365 -9.17479 -8.42388 -7.53954 -6.5656
-3 -23.1221 -22.7412 -21.8614 -20.533 -18.8272 -16.8316 -14.644
-4 -41.0772 -40.3318 -38.7091 -36.3032 -33.2439 -29.6875 -25.8067
-5 -64.1258 -62.8558 -60.2311 -56.406 -51.5871 -46.0193 -39.9702
-6 -92.2405 -90.2626 -86.3583 -80.7595 -73.769 -65.7396 -57.0527
-7 -125.389 -122.497 -117.018 -109.28 -99.7016 -88.7615 -76.9736
-8 -163.531 -159.499 -152.135 -141.884 -129.297 -114.999 -99.6536
-9 -206.625 -201.204 -191.631 -178.483 -162.466 -144.367 -125.015
-10 -254.622 -247.546 -235.426 -218.992 -199.121 -176.782 -152.982
如果按照从超表面的中心到边缘的距离r为准,则对应的长方体翅片的旋转角度可从上述表中提取并列在一起如表4和图10所示。
表4 长方体翅片的旋转角度φ随r的变化
r(μm) φ(°) r(μm) φ(°) r(μm) φ(°) r(μm) φ(°)
0 0 35 -117.018 70 -117.138 105 0
1 -2.57117 36 -86.3583 71 -153.572 106 -1.92891
2 -10.2816 37 -60.2311 72 -195.06 107 -7.77403
3 -23.1221 38 -38.7091 73 -241.631 108 -17.6224
4 -41.0772 39 -21.8614 74 -199.121 109 -31.5602
5 -64.1258 40 -9.75365 75 -162.466 110 -49.6722
6 -92.2405 41 -2.4474 76 -129.297 111 -72.0418
7 -125.389 42 0 77 -99.7016 112 -98.7505
8 -163.531 43 -2.4642 78 -73.769 113 -129.878
9 -206.625 44 -9.8879 79 -51.5871 114 -165.5
10 -254.622 45 -22.3139 80 -33.2439 115 -205.692
11 -247.546 46 -39.7797 81 -18.8272 116 -152.982
12 -201.204 47 -62.317 82 -8.42388 117 -125.015
13 -159.499 48 -89.9521 83 -2.1199 118 -99.6536
14 -122.497 49 -122.705 84 0 119 -76.9736
15 -90.2626 50 -160.591 85 -2.14733 120 -57.0527
16 -62.8558 51 -203.616 86 -8.64316 121 -39.9702
17 -40.3318 52 -251.784 87 -19.5666 122 -25.8067
18 -22.7412 53 -218.992 88 -34.9941 123 -14.644
19 -10.1296 54 -178.483 89 -54.9994 124 -6.5656
20 -2.53753 55 -141.884 90 -79.6531 125 -1.65576
21 0 56 -109.28 91 -109.022 126 0
22 -2.54636 57 -80.7595 92 -143.17 127 -1.68469
23 -10.2001 58 -56.406 93 -182.154 128 -6.79694
24 -22.9789 59 -36.3032 94 -226.031 129 -15.4245
25 -40.8942 60 -20.533 95 -176.782 130 -27.6553
26 -63.9514 61 -9.17479 96 -144.367 131 -43.5778
27 -92.1498 62 -2.3057 97 -114.999 132 -63.2802
28 -125.482 63 0 98 -88.7615 133 -86.8504
29 -163.936 64 -2.32887 99 -65.7396 134 -114.376
30 -207.492 65 -9.36001 100 -46.0193 135 -145.943
31 -256.125 66 -21.1574 101 -29.6875 136 -181.638
32 -235.426 67 -37.7808 102 -16.8316    
33 -191.631 68 -59.2858 103 -7.53954    
34 -152.135 69 -85.723 104 -1.89958    
实施例3
在又一个示例中,设CRA最大为30°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为60微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应地如表5和图11所示。在本实施例中,基准位置与实施例1类似 定义。
表5 在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φ
示例1 CRA=0° CRA=5° CRA=10° CRA=15° CRA=20° CRA=25° CRA=30°
Δr(μm) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°)
10 -297.945 -298.853 -292.926 -280.288 -261.449 -237.298 -209.068
9 -241.648 -242.038 -236.89 -226.339 -210.831 -191.112 -168.19
8 -191.154 -191.187 -186.846 -178.266 -165.824 -150.126 -131.978
7 -146.503 -146.317 -142.785 -136.033 -126.367 -114.264 -100.347
6 -107.731 -107.438 -104.693 -99.6001 -92.399 -83.4492 -73.2107
5 -74.8702 -74.5583 -72.5473 -68.9212 -63.8542 -57.6016 -50.4845
4 -47.9468 -47.6777 -46.3246 -43.9479 -40.6643 -36.6403 -32.0824
3 -26.9831 -26.7927 -25.9949 -24.6273 -22.7582 -20.4832 -17.9185
2 -11.9967 -11.8947 -11.524 -10.9029 -10.0628 -9.04702 -7.9071
1 -2.99979 -2.96998 -2.87334 -2.71481 -2.50258 -2.24755 -1.96264
0 0 0 0 0 0 0 0
-1 -2.99979 -2.96139 -2.85701 -2.69228 -2.47591 -2.21904 -1.93452
-2 -11.9967 -11.8261 -11.3934 -10.7227 -9.8496 -8.819 -7.68216
-3 -26.9831 -26.5614 -25.5546 -24.0198 -22.0391 -19.7141 -17.1596
-4 -47.9468 -47.1301 -45.2824 -42.5097 -38.9611 -34.8184 -30.2843
-5 -74.8702 -73.4908 -70.5152 -66.1164 -60.5318 -54.0463 -46.9746
-6 -107.731 -105.598 -101.188 -94.762 -86.6663 -77.3124 -67.15
-7 -146.503 -143.401 -137.234 -128.367 -117.279 -104.532 -90.7307
-8 -191.154 -186.848 -178.583 -166.85 -152.285 -135.62 -117.638
-9 -241.648 -235.881 -225.161 -210.13 -191.599 -170.493 -147.796
-10 -297.945 -290.44 -276.894 -258.122 -235.133 -209.067 -181.126
如果按照从超表面的中心到边缘的距离r为准,则所需的长方体翅片的旋转角度可从上述表中提取并列在一起如表6和图12所示。
表6 长方体翅片的旋转角度φ随r的变化
r(μm) φ(°) r(μm) φ(°) r(μm) φ(°) r(μm) φ(°)
0 0 35 -137.234 70 -136.033 105 0
1 -2.99979 36 -101.188 71 -178.266 106 -2.24755
2 -11.9967 37 -70.5152 72 -226.339 107 -9.04702
3 -26.9831 38 -45.2824 73 -280.288 108 -20.4832
4 -47.9468 39 -25.5546 74 -235.133 109 -36.6403
5 -74.8702 40 -11.3934 75 -191.599 110 -57.6016
6 -107.731 41 -2.85701 76 -152.285 111 -83.4492
7 -146.503 42 0 77 -117.279 112 -114.264
8 -191.154 43 -2.87334 78 -86.6663 113 -150.126
9 -241.648 44 -11.524 79 -60.5318 114 -191.112
10 -297.945 45 -25.9949 80 -38.9611 115 -237.298
11 -290.44 46 -46.3246 81 -22.0391 116 -181.126
12 -235.881 47 -72.5473 82 -9.8496 117 -147.796
13 -186.848 48 -104.693 83 -2.47591 118 -117.638
14 -143.401 49 -142.785 84 0 119 -90.7307
15 -105.598 50 -186.846 85 -2.50258 120 -67.15
16 -73.4908 51 -236.89 86 -10.0628 121 -46.9746
17 -47.1301 52 -292.926 87 -22.7582 122 -30.2843
18 -26.5614 53 -258.122 88 -40.6643 123 -17.1596
19 -11.8261 54 -210.13 89 -63.8542 124 -7.68216
20 -2.96139 55 -166.85 90 -92.399 125 -1.93452
21 0 56 -128.367 91 -126.367 126 0
22 -2.96998 57 -94.762 92 -165.824 127 -1.96264
23 -11.8947 58 -66.1164 93 -210.831 128 -7.9071
24 -26.7927 59 -42.5097 94 -261.449 129 -17.9185
25 -47.6777 60 -24.0198 95 -209.067 130 -32.0824
26 -74.5583 61 -10.7227 96 -170.493 131 -50.4845
27 -107.438 62 -2.69228 97 -135.62 132 -73.2107
28 -146.317 63 0 98 -104.532 133 -100.347
29 -191.187 64 -2.71481 99 -77.3124 134 -131.978
30 -242.038 65 -10.9029 100 -54.0463 135 -168.19
31 -298.853 66 -24.6273 101 -34.8184 136 -209.068
32 -276.894 67 -43.9479 102 -19.7141    
33 -225.161 68 -68.9212 103 -8.819    
34 -178.583 69 -99.6001 104 -2.21904    
实施例4
在再一个示例中,设CRA最大为36°,波长为500纳米,共布置6个同心的环形区域,每个区域的宽度以及光阑半径均为20微米,光阑与超表面镜片的距离为200微米,f为50微米,则在每个区域中相对于对应基准位置的距离Δr处的相位补偿结构翅片的旋转角度φ相应应如表7和图13所示。在本实施例中,基准位置与实施例1类似定义。
表7 在每个区域中相对于中心距离Δr处的相位补偿结构翅片的旋转角度φ
示例1 CRA=0° CRA=6° CRA=12° CRA=18° CRA=24° CRA=30° CRA=36°
Δr(μm) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°) φ(°)
10 -356.47 -358.019 -347.77 -326.042 -294.132 -254.294 -209.567
9 -289.276 -289.937 -281.04 -262.928 -236.731 -204.321 -168.163
8 -228.944 -228.994 -221.498 -206.793 -185.832 -160.126 -131.624
7 -175.544 -175.219 -169.125 -157.574 -141.335 -121.591 -99.8272
6 -129.137 -128.629 -123.895 -115.199 -103.138 -88.5923 -72.6514
5 -89.7761 -89.2367 -85.7723 -79.5933 -71.1319 -61.0089 -49.9761
4 -57.5081 -57.0431 -54.7147 -50.6733 -45.207 -38.7174 -31.6824
3 -32.3709 -32.0419 -30.6707 -28.3504 -25.2489 -21.5942 -17.6527
2 -14.3942 -14.2182 -13.5819 -12.5306 -11.1412 -9.51571 -7.77139
1 -3.59964 -3.54819 -3.38256 -3.11491 -2.76504 -2.35856 -1.92445
0 0 0 0 0 0 0 0
-1 -3.59964 -3.53347 -3.35516 -3.07851 -2.72425 -2.31806 -1.88819
-2 -14.3942 -14.1005 -13.3629 -12.2396 -10.815 -9.19183 -7.48136
-3 -32.3709 -31.6454 -29.9324 -27.3693 -24.149 -20.5017 -16.6741
-4 -57.5081 -56.105 -52.9678 -48.3512 -42.6026 -36.1293 -29.3633
-5 -89.7761 -87.4093 -82.3684 -75.0665 -66.0522 -55.9583 -45.4482
-6 -129.137 -125.481 -118.029 -107.395 -94.3747 -79.8738 -64.8304
-7 -175.544 -170.239 -159.841 -145.214 -127.448 -107.763 -87.4141
-8 -228.944 -221.592 -207.693 -188.402 -165.15 -139.515 -113.106
-9 -289.276 -279.448 -261.469 -236.835 -207.36 -175.021 -141.814
-10 -356.47 -343.706 -321.052 -290.39 -253.959 -214.175 -173.451
如果按照从超表面的中心到边缘的距离r为准,则所需的长方体翅片的旋转角度可从上述表中提取并列在一起如表8和图14所示。
表8 长方体翅片的旋转角度φ随r的变化
r(μm) φ(°) r(μm) φ(°) r(μm) φ(°) r(μm) φ(°)
0 0 35 -159.841 70 -157.574 105 0
1 -3.59964 36 -118.029 71 -206.793 106 -2.35856
2 -14.3942 37 -82.3684 72 -262.928 107 -9.51571
3 -32.3709 38 -52.9678 73 -326.042 108 -21.5942
4 -57.5081 39 -29.9324 74 -253.959 109 -38.7174
5 -89.7761 40 -13.3629 75 -207.36 110 -61.0089
6 -129.137 41 -3.35516 76 -165.15 111 -88.5923
7 -175.544 42 0 77 -127.448 112 -121.591
8 -228.944 43 -3.38256 78 -94.3747 113 -160.126
9 -289.276 44 -13.5819 79 -66.0522 114 -204.321
10 -356.47 45 -30.6707 80 -42.6026 115 -254.294
11 -343.706 46 -54.7147 81 -24.149 116 -173.451
12 -279.448 47 -85.7723 82 -10.815 117 -141.814
13 -221.592 48 -123.895 83 -2.72425 118 -113.106
14 -170.239 49 -169.125 84 0 119 -87.4141
15 -125.481 50 -221.498 85 -2.76504 120 -64.8304
16 -87.4093 51 -281.04 86 -11.1412 121 -45.4482
17 -56.105 52 -347.77 87 -25.2489 122 -29.3633
18 -31.6454 53 -290.39 88 -45.207 123 -16.6741
19 -14.1005 54 -236.835 89 -71.1319 124 -7.48136
20 -3.53347 55 -188.402 90 -103.138 125 -1.88819
21 0 56 -145.214 91 -141.335 126 0
22 -3.54819 57 -107.395 92 -185.832 127 -1.92445
23 -14.2182 58 -75.0665 93 -236.731 128 -7.77139
24 -32.0419 59 -48.3512 94 -294.132 129 -17.6527
25 -57.0431 60 -27.3693 95 -214.175 130 -31.6824
26 -89.2367 61 -12.2396 96 -175.021 131 -49.9761
27 -128.629 62 -3.07851 97 -139.515 132 -72.6514
28 -175.219 63 0 98 -107.763 133 -99.8272
29 -228.994 64 -3.11491 99 -79.8738 134 -131.624
30 -289.937 65 -12.5306 100 -55.9583 135 -168.163
31 -358.019 66 -28.3504 101 -36.1293 136 -209.567
32 -321.052 67 -50.6733 102 -20.5017    
33 -261.469 68 -79.5933 103 -9.19183    
34 -207.693 69 -115.199 104 -2.31806    
本申请的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本申请限于所公开的形式。很多修改和变化对于本领域技术人员而言是显然的。例如,本领域技术人员能够在本公开的教导下使用其它半导体工艺来制备超透镜。选择和描述实施方式是为了更好说明本申请的原理和实际应用,并且使本领域技术人员能够理解本申请从而设计适于特定用途的带有各种修改的各种实施方式。

Claims (54)

  1. 一种超表面成像装置,其特征在于,所述超表面成像装置包括:
    光阑,用于对入射的光束进行限制;
    至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿;以及
    成像传感器,将经所述相位补偿后的光转换为与所述光的信号成比例的电信号;
    其中,所述多个相位补偿结构中的每一个所产生的相位补偿随着距所述光阑的中心的距离的变化而变化。
  2. 根据权利要求1所述的超表面成像装置,其特征在于,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
  3. 根据权利要求2所述的超表面成像装置,其特征在于,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
  4. 根据权利要求1至3中任一项所述的超表面成像装置,其特征在于,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
  5. 根据权利要求4所述的超表面成像装置,其特征在于,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述透明衬底的材料的折射率不同。
  6. 根据权利要求5所述的超表面成像装置,其特征在于,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
  7. 根据权利要求5所述的超表面成像装置,其特征在于,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
  8. 根据权利要求5所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
  9. 根据权利要求5所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是树脂类有机透明材料。
  10. 根据权利要求5所述的超表面成像装置,其特征在于,所述超表面镜片与所述成像传感器之间的距离小于所述超表面镜片与所述光阑之间的距离。
  11. 根据权利要求10所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体翅片。
  12. 根据权利要求11所述的超表面成像装置,其特征在于,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。
  13. 根据权利要求10所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
  14. 根据权利要求13所述的超表面成像装置,其特征在于,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
  15. 一种超表面成像装置,其特征在于,所述超表面成像装置包括:
    光阑,用于对入射的光束进行限制;
    至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿;以及
    成像传感器,将经所述相位补偿后的光转换为与所述光的信号成比例的电信号;
    其中,每个所述超表面镜片包括:
    第一部分,所述第一部分位于所述超表面镜片的中央,包含第一多个相位补偿结构;以及
    第二部分,所述第二部分包围所述第一部分,包含第二多个相位补偿结构,其中,经所述第一多个相位补偿结构和所述第二多个相位补偿结构进行所述相位补偿的光束分别入射在所述成像传感器上的、不相重叠的第一干涉相长位置和第二干涉相长位置处。
  16. 根据权利要求15所述的超表面成像装置,其特征在于,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
  17. 根据权利要求16所述的超表面成像装置,其特征在于,在所述第一部分中,所述第一多个相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移变化对称。
  18. 根据权利要求16所述的超表面成像装置,其特征在于,在所述第二部分中,所述第二多个相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移 变化不对称。
  19. 根据权利要求15至18中任一项所述的超表面成像装置,其特征在于,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
  20. 根据权利要求19所述的超表面成像装置,其特征在于,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述透明衬底的材料的折射率不同。
  21. 根据权利要求20所述的超表面成像装置,其特征在于,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
  22. 根据权利要求20所述的超表面成像装置,其特征在于,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
  23. 根据权利要求20所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
  24. 根据权利要求20所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是树脂类有机透明材料。
  25. 根据权利要求20所述的超表面成像装置,其特征在于,所述超表面镜片与所述成像传感器之间的距离小于所述超表面镜片与所述光阑之间的距离。
  26. 根据权利要求25所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体翅片。
  27. 根据权利要求26所述的超表面成像装置,其特征在于,所述相位补偿结构是高200-800nm、长和宽均在30-500nm的长方体翅片。
  28. 根据权利要求26所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
  29. 根据权利要求28所述的超表面成像装置,其特征在于,所述实心微纳结构上进 一步形成有长方体、柱体或半球体的空心结构。
  30. 一种超表面成像装置,其特征在于,所述超表面成像装置包括:
    光阑,用于对入射的光束进行限制;
    至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿;以及
    成像传感器,将经所述相位补偿后的光转换为与所述光的信号成比例的电信号;
    其中,所述超表面镜片具有多个相位补偿结构,所述相位补偿结构的等效焦距在远离所述超表面镜片的中心的方向上逐渐增大。
  31. 根据权利要求30所述的超表面成像装置,其特征在于,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
  32. 根据权利要求31所述的超表面成像装置,其特征在于,所述相位补偿从所述超表面镜片的中心沿所述超表面镜片的径向方向呈衰减周期性的变化。
  33. 根据权利要求30至32中任一项所述的超表面成像装置,其特征在于,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
  34. 根据权利要求33所述的超表面成像装置,其特征在于,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述透明衬底的材料的折射率不同。
  35. 根据权利要求34所述的超表面成像装置,其特征在于,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
  36. 根据权利要求34所述的超表面成像装置,其特征在于,所述无机电介质材料包括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
  37. 根据权利要求34所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
  38. 根据权利要求34所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是树脂类有机透明材料。
  39. 根据权利要求34所述的超表面成像装置,其特征在于,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。
  40. 根据权利要求39所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体翅片。
  41. 根据权利要求40所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
  42. 根据权利要求41所述的超表面成像装置,其特征在于,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
  43. 一种超表面成像装置,其特征在于,所述超表面成像装置包括:
    光阑,用于对入射的光束进行限制;
    至少一个超表面镜片,与所述光阑对准并具有多个相位补偿结构,以对经所述光阑限制的光束进行偏折处理以对其进行相位补偿;以及
    成像传感器,将经所述相位补偿后的光转换为与所述光的信号成比例的电信号;
    其中,所述超表面镜片具有多个相位补偿区域,每个相位补偿区域包括多个相位补偿结构,以及
    其中,在所述多个相位补偿区域中的至少一个中,所述相位补偿结构在靠近和远离所述超表面镜片的中心的方向上所引入的相移变化不对称。
  44. 根据权利要求43所述的超表面成像装置,其特征在于,所述光阑的中心与所述超表面镜片的中心在光轴方向上对准。
  45. 根据权利要求44所述的超表面成像装置,其特征在于,所述超表面镜片还包括透明衬底,其中,所述相位补偿结构在所述透明衬底上通过电介质材料形成。
  46. 根据权利要求45所述的超表面成像装置,其特征在于,形成所述相位补偿结构的所述电介质材料为无机电介质材料,所述无机电介质材料的折射率与形成所述衬底的材料的折射率不同。
  47. 根据权利要求46所述的超表面成像装置,其特征在于,所述无机电介质材料的折射率大于形成所述透明衬底的材料的折射率。
  48. 根据权利要求46所述的超表面成像装置,其特征在于,所述无机电介质材料包 括硫化锌、氟化镁、二氧化钛、氧化锆、氢化硅、晶体硅、氮化硅、非晶硅、氮化镓、磷化镓、砷化镓中的至少一种。
  49. 根据权利要求46所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是无机材料,所述无机材料包括导电玻璃ITO、氧化铝、氧化锌、氟化镁、二氧化硅中的一种。
  50. 根据权利要求46所述的超表面成像装置,其特征在于,形成所述透明衬底的材料是树脂类有机透明材料。
  51. 根据权利要求46所述的超表面成像装置,其特征在于,所述超表面镜片与所述成像传感器的距离小于所述超表面镜片与所述光阑的距离。
  52. 根据权利要求46所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体翅片。
  53. 根据权利要求46所述的超表面成像装置,其特征在于,所述相位补偿结构被形成为长方体、柱体或半球体的实心微纳结构。
  54. 根据权利要求53所述的超表面成像装置,其特征在于,所述实心微纳结构上进一步形成有长方体、柱体或半球体的空心结构。
PCT/CN2020/127653 2020-04-24 2020-11-10 一种超表面成像装置 WO2021212811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010331976.2 2020-04-24
CN202010331976.2A CN111352237A (zh) 2020-04-24 2020-04-24 一种超表面成像装置

Publications (1)

Publication Number Publication Date
WO2021212811A1 true WO2021212811A1 (zh) 2021-10-28

Family

ID=71197778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127653 WO2021212811A1 (zh) 2020-04-24 2020-11-10 一种超表面成像装置

Country Status (2)

Country Link
CN (4) CN113485008B (zh)
WO (1) WO2021212811A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485008B (zh) * 2020-04-24 2023-08-29 浙江舜宇光学有限公司 一种超表面成像装置
CN111897036A (zh) * 2020-08-05 2020-11-06 南开大学 消色差微透镜阵列超表面
CN112135028A (zh) * 2020-09-25 2020-12-25 Oppo(重庆)智能科技有限公司 图像传感器、成像模组和电子装置
CN114488525B (zh) * 2022-04-15 2022-08-23 中国科学院光电技术研究所 一种超构表面成像系统、设计方法和探测器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法
CN108445555A (zh) * 2018-05-09 2018-08-24 华南师范大学 超表面透镜
CN109716177A (zh) * 2016-09-15 2019-05-03 麦格纳国际公司 用于色度分离的超表面透镜组件
CN109802242A (zh) * 2019-03-05 2019-05-24 南京理工大学 超表面透镜
CN110099201A (zh) * 2019-04-24 2019-08-06 浙江大学 一种基于超表面透镜的屏下摄像头装置及其集成方法
WO2019164849A1 (en) * 2018-02-20 2019-08-29 President And Fellows Of Harvard College Aberration correctors based on dispersion-engineered metasurfaces
CN110515215A (zh) * 2019-09-27 2019-11-29 深圳惠牛科技有限公司 一种超薄光学模组及超薄显示装置
US20200064523A1 (en) * 2019-10-31 2020-02-27 Intel Corporation Metasurface optical systems and methods
CN111352237A (zh) * 2020-04-24 2020-06-30 浙江舜宇光学有限公司 一种超表面成像装置
CN211979329U (zh) * 2020-04-24 2020-11-20 浙江舜宇光学有限公司 一种超表面成像装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748197B2 (ja) * 2015-09-23 2020-08-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH コリメート・メタレンズ及びこれを組み込む技術
US20170129402A1 (en) * 2015-11-05 2017-05-11 Delphi Technologies, Inc. Camera With Light-Guide Array For Automated Vehicles
CN109196387A (zh) * 2016-04-05 2019-01-11 哈佛学院院长及董事 用于亚波长分辨率成像的超透镜
CN107453050A (zh) * 2017-06-20 2017-12-08 南京航空航天大学 基于相位梯度超表面的宽带透镜
CA3074566A1 (en) * 2017-08-31 2019-03-07 Metalenz, Inc. Transmissive metasurface lens integration
CN108306111B (zh) * 2017-12-15 2020-11-10 西安电子科技大学 基于超表面的格里高利天线
TWI696297B (zh) * 2017-12-26 2020-06-11 中央研究院 可見光寬頻消色差的超穎透鏡
CN108241208A (zh) * 2018-02-08 2018-07-03 南京大学 基于超构透镜利用波长调控的光学变焦方法
CN108419070B (zh) * 2018-04-04 2020-06-09 东南大学 一种基于pb相位调制的光场成像方法
CN108873121B (zh) * 2018-08-09 2020-07-28 上海理工大学 一种超级复消色差超表面复合微透镜
CN109301417A (zh) * 2018-08-28 2019-02-01 北京邮电大学 宽带消色差微波超表面透镜及其生成方法
CN109061780B (zh) * 2018-09-11 2020-07-21 鲁东大学 一种双波长同轴独立聚焦的超表面透镜
CN109346492B (zh) * 2018-10-11 2020-07-28 长春长光辰芯光电技术有限公司 线阵图像传感器像素阵列及物体表面缺陷检测方法
CN109343217A (zh) * 2018-11-13 2019-02-15 南京大学 一种基于超构透镜阵列的消色差光场相机系统及消色差方法
CN109683310A (zh) * 2019-01-10 2019-04-26 上海理工大学 一种太赫兹波超宽带消色差聚焦的级联超表面设计方法
CN110297287B (zh) * 2019-07-08 2021-06-11 苏州大学 一种圆偏振二向色性超透镜和包括该超透镜的光路系统
CN110333560B (zh) * 2019-07-09 2020-11-10 合肥工业大学 一种基于介质超表面的宽带消色差器件
CN110927965B (zh) * 2019-12-20 2021-08-17 易思维(杭州)科技有限公司 用于补偿因光线偏折产生误差的补偿透镜的设计方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109716177A (zh) * 2016-09-15 2019-05-03 麦格纳国际公司 用于色度分离的超表面透镜组件
CN107315206A (zh) * 2017-06-23 2017-11-03 南京大学 基于全介质超表面结构的高效红外光学透镜及其制备方法
WO2019164849A1 (en) * 2018-02-20 2019-08-29 President And Fellows Of Harvard College Aberration correctors based on dispersion-engineered metasurfaces
CN108445555A (zh) * 2018-05-09 2018-08-24 华南师范大学 超表面透镜
CN109802242A (zh) * 2019-03-05 2019-05-24 南京理工大学 超表面透镜
CN110099201A (zh) * 2019-04-24 2019-08-06 浙江大学 一种基于超表面透镜的屏下摄像头装置及其集成方法
CN110515215A (zh) * 2019-09-27 2019-11-29 深圳惠牛科技有限公司 一种超薄光学模组及超薄显示装置
US20200064523A1 (en) * 2019-10-31 2020-02-27 Intel Corporation Metasurface optical systems and methods
CN111352237A (zh) * 2020-04-24 2020-06-30 浙江舜宇光学有限公司 一种超表面成像装置
CN211979329U (zh) * 2020-04-24 2020-11-20 浙江舜宇光学有限公司 一种超表面成像装置

Also Published As

Publication number Publication date
CN113485008A (zh) 2021-10-08
CN113485007A (zh) 2021-10-08
CN113485009A (zh) 2021-10-08
CN113485007B (zh) 2023-06-13
CN111352237A (zh) 2020-06-30
CN113485009B (zh) 2023-07-18
CN113485008B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
WO2021212811A1 (zh) 一种超表面成像装置
US11815703B2 (en) Meta-lens and optical apparatus including the same
US11747524B2 (en) Meta lens and optical apparatus including the same
US11567240B2 (en) Multilayered meta lens and optical apparatus including the same
TWI649259B (zh) 寬頻超穎光學裝置
US11711600B2 (en) Meta-optical device and optical apparatus including the same
US20210247549A1 (en) Meta-lens, image capturing lens including the meta-lens, image capturing device including the image capturing lens, and electronic apparatus including the image capturing device
CN113917578A (zh) 一种大口径色差校正超透镜、超透镜系统和光学系统
CN211979329U (zh) 一种超表面成像装置
TW202001324A (zh) 光學成像鏡頭
KR20200067074A (ko) 메타 렌즈 및 이를 포함하는 광학 장치
WO2023045415A1 (zh) 光谱测量装置和方法
CN113325502A (zh) 超颖光学器件和包括该超颖光学器件的电子装置
WO2011004443A1 (ja) 結像光学系
US20170176730A1 (en) Total internal reflection aperture stop imaging
US20230221489A1 (en) Metasurface optical device and optical apparatus
KR20210042005A (ko) 메타 렌즈 및 이를 포함하는 광학 장치
CN111897137A (zh) 超表面透镜成像装置及方法
JP4798529B2 (ja) 結像光学系
Cao et al. Design of artificial spherical superposition compound eye
TW202411721A (zh) 光學成像系統
CN111474611A (zh) 超透镜组、超成像装置
JP2001324674A (ja) 光学系及び光学機器
US20230095994A1 (en) Meta optical device, optical system, and method for aberration correction
JPH1152233A (ja) アタッチメントレンズ及びそれを装着した光学系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932072

Country of ref document: EP

Kind code of ref document: A1