WO2021212665A1 - 超声增材制造装置及方法 - Google Patents

超声增材制造装置及方法 Download PDF

Info

Publication number
WO2021212665A1
WO2021212665A1 PCT/CN2020/100934 CN2020100934W WO2021212665A1 WO 2021212665 A1 WO2021212665 A1 WO 2021212665A1 CN 2020100934 W CN2020100934 W CN 2020100934W WO 2021212665 A1 WO2021212665 A1 WO 2021212665A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
printing
additive manufacturing
liquid
bracket
Prior art date
Application number
PCT/CN2020/100934
Other languages
English (en)
French (fr)
Inventor
王成勇
郭紫莹
张智雷
冯文强
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021212665A1 publication Critical patent/WO2021212665A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to the technical field of additive manufacturing, in particular to an ultrasonic additive manufacturing device and method.
  • Additive manufacturing technology also known as 3D printing, is a kind of rapid prototyping technology. It combines computer-aided design, material processing and molding technology, based on digital model files, and combines special metal materials and non-metal materials through software and numerical control systems. Materials and medical biological materials are stacked layer by layer according to extrusion, sintering, melting, light curing, spraying, etc., to produce physical objects. Because of its fast molding speed, simple molding process and saving raw materials, additive manufacturing technology has been widely studied and applied in various fields.
  • the current additive manufacturing technologies used for resin materials include: SLA, SLS, PolyJet, DLP, FDM, etc. These technologies have some problems:
  • High-precision equipment such as SLA, SLS, PolyJet, etc. has a high cost and requires the use of expensive accessories such as lasers, or requires high processing requirements for the nozzle, and high requirements for the storage and use environment of the equipment;
  • ultrasound is often used as an auxiliary means to detect or adjust the internal structure of the product.
  • the main curing methods are light curing and thermal curing, which can be regarded as adding equipment that generates ultrasonic waves to conventional 3D printing equipment.
  • the patent document "Ultrasonic Curing Tooth Filling Materials” with the patent number CN200580014019.0 mentions the use of ultrasound or chemical initiators to trigger the Martin transformation of the filler composition.
  • the application number is The patent application of CN90105864.5 is an ultrasonic curing dental restoration resin that also uses ultrasonic to cure the resin.
  • the article "Ultrasonic Accelerated Epoxy Curing" was published in the journal “Petroleum Engineering Construction”.
  • the curing method of material manufacturing is feasible, but the current additive manufacturing technology and corresponding equipment are not suitable for ultrasonic additive manufacturing (ie, ultrasonic printing).
  • the present invention proposes a low-cost, safe, environmentally friendly, efficient and accurate ultrasonic additive manufacturing device and method.
  • the present invention provides such an ultrasonic additive manufacturing equipment, including:
  • the bracket is to provide support for the entire equipment and carry various parts
  • the material cylinder is fixed on the bracket, and a printing substrate that moves vertically up and down is arranged in the material cylinder;
  • the ultrasonic printing head is located above the material cylinder and performs horizontal and vertical two-dimensional movement on the horizontal plane.
  • the ultrasonic printing head includes a fixed part, a transducer and an ultrasonic guide device arranged from top to bottom.
  • the bottom end is conical, and the center is provided with a through hole, that is, an ultrasonic conducting hole.
  • the bottom of the through hole is rounded to control the direction and range of the ultrasonic wave.
  • the transducer controls the diameter of the ultrasonic sound velocity cone.
  • the sound velocity cone diameter is ultrasonic. Print the executable single-channel line width, and select the suitable transducer according to the single-channel line width before printing;
  • the ultrasonic generator is located outside the bracket, and is electrically connected to the transducer through the fixed part through a line;
  • the vertical movement module installed on the bracket, drives the printing substrate to move vertically up and down in the material tank;
  • the two-dimensional motion module installed on the bracket, drives the ultrasonic print head to make horizontal and vertical two-dimensional motions above the material cylinder.
  • a two-dimensional motion module is installed on the top layer of the bracket, and the two-dimensional motion module includes a lateral motion module and a longitudinal motion module.
  • the longitudinal motion module can adopt a screw drive structure or a belt drive structure.
  • the lateral movement module can adopt a screw drive structure or a gear drive structure.
  • the longitudinal movement module adopts a transmission belt transmission structure, and includes a left motor, a right motor, a transmission rod and a transmission belt.
  • the left motor and the right motor are respectively arranged on the support On both sides of the edge, the two ends above the transmission rod are slidably connected to the guide rails of the top edge of the bracket.
  • the two ends below the transmission rod are provided with first guide wheels, and the other two sides of the bracket are respectively provided with second guide wheels.
  • the drive belt connects the left motor, the first guide wheel, the second guide wheel and the right motor as a whole.
  • the left motor and the right motor move in opposite directions, and the transmission rod is driven to move longitudinally on the top layer of the bracket through the drive belt.
  • the left motor When the left motor outputs The end of the drive belt rotates counterclockwise, and the right motor rotates clockwise. At this time, the transmission belts on the outer side move toward the left and right motors, and the inner transmission belt moves away from the left and right motors. Since the total length of the transmission belt remains the same, the first guide Under the action of the wheel and the second guide wheel, the transmission rod slides away from the left motor and the right motor along the guide rail of the top edge of the bracket. Similarly, the output end of the left motor rotates clockwise, the right motor rotates counterclockwise, and the transmission rod moves along the bracket The rails of the ribs on the top layer slide close to the left and right motors.
  • the horizontal movement module adopts a screw drive structure, including a base, a horizontal axis motor and a ball screw connected to the horizontal axis motor.
  • the base is connected to the fixed part of the ultrasonic printing head.
  • a guide rail is arranged above the transmission rod and the horizontal axis
  • the output end of the motor is connected with the screw of the screw rod, and the transmission rod of the screw rod is connected with the base through a nut.
  • the rotation of the output end of the horizontal axis motor is converted into a horizontal linear movement of the ultrasonic print head along the transmission rod, a horizontal movement module and a longitudinal movement Under the joint action of the module, the ultrasonic printing head can move to any position in the horizontal direction (X axis) and vertical direction (Y axis).
  • the vertical motion module includes a vertical axis motor, a ball screw, an auxiliary rod, and a slider.
  • the vertical axis motor is installed on an edge of the top layer of the bracket, and one end of the ball screw is connected to the output end of the vertical axis motor, The other end is connected to the base of the bracket.
  • the auxiliary rod is located between the top of the bracket and the base of the bracket on both sides of the screw of the ball screw.
  • the screw of the ball screw is driven by a vertical axis motor.
  • the slider is connected with the nut of the ball screw.
  • One end of the printing substrate is connected with the slider and inserted into the auxiliary rod.
  • the rotary motion of the screw is converted into the linear motion of the slider to drive the linear movement of the printing substrate. Therefore, the vertical axis motor drives the printing substrate to move vertically.
  • the printing substrate has a stepped structure, the upper end of the printing substrate is a connecting part and is connected with the vertical movement module, the lower part of the printing substrate is a working platform, the connecting part and the working platform are connected by connecting rods, and a plurality of Through holes, when the work platform is immersed in the material tank, the liquid printing material can continuously flow into the work platform from the through holes during the ultrasonic printing process, so that the liquid printing material in the work platform is always evenly distributed.
  • the material cylinder is connected to an external liquid storage cylinder through a liquid suction pump, an infrared detector is provided on the edge of the cylinder port of the material cylinder, and the infrared detector is electrically connected to the liquid suction pump through a control module.
  • the direction of the device is perpendicular to the liquid level.
  • the infrared detector will feed back the information of the liquid level drop to the liquid suction pump.
  • the liquid suction pump is activated and the material liquid in the liquid storage tank is pumped into the material tank. .
  • An ultrasonic additive manufacturing method which performs ultrasonic printing in the ultrasonic additive manufacturing device, includes the following steps:
  • the two-dimensional motion module drives the ultrasonic print head to make two-dimensional motions in the horizontal and vertical directions according to the parameters to be printed on each layer of the target model to reach the printing starting point of the layer of the target model.
  • the vertical motion module drives the working platform to move in the vertical direction.
  • the printing substrate is located below the initial liquid level in the material tank;
  • the ultrasonic generator connected to the ultrasonic print head
  • the liquid printing material directly below the transducer is cured and deposited on the printing substrate under the action of ultrasonic waves
  • the two-dimensional motion module drives the ultrasonic print head according to the parameters of the layer printing Ultrasonic printing is performed while moving horizontally.
  • the vertical movement module drives the working platform down to the set height, and then performs ultrasonic printing again;
  • step b the liquid printing material is added to the material tank and the liquid storage tank, and the infrared detector is activated to detect the liquid level of the liquid printing material in the material tank.
  • the infrared detector detects the liquid in the material tank
  • the suction pump is activated to pump the liquid printing material in the liquid storage tank into the material tank to the initial liquid level in the material tank, and the working platform is immersed in the liquid printing material in the material tank.
  • step e during the ultrasonic printing process, the liquid printing material is solidified to reduce the volume of the liquid.
  • the liquid suction pump is activated, The liquid printing material is pumped from the liquid storage tank to the material tank, so that after the liquid level in the material tank reaches the initial liquid level, the liquid suction pump stops pumping liquid.
  • the initial liquid level in the material cylinder is the ultrasonic focal plane of the ultrasonic print head
  • the transducer controls the generated ultrasonic beam
  • the ultrasonic derivation device outputs the ultrasonic beam
  • the plane where the focal point of the ultrasonic beam ie, the ultrasonic focal plane
  • the initial liquid level of the cylinder coincides, and the energy of the ultrasonic beam is concentrated at a point on the plane, so the liquid level under the transducer is solidified at the ultrasonic focus.
  • liquid printing material is a material that can be formed by ultrasonic curing.
  • the liquid printing material is a liquid resin material that can be molded by ultrasonic curing.
  • the invention combines ultrasonic and 3D printing technology through ultrasonic additive manufacturing equipment, and uses ultrasonic as the material curing method.
  • the principle is that the power supply is output to the ultrasonic generator.
  • the function of the ultrasonic generator is to convert the mains electricity to match the ultrasonic transducer.
  • the high-frequency alternating current signal drives the ultrasonic transducer to work.
  • the function of the transducer is to convert high-frequency electrical energy into mechanical energy, which is ultrasonic, and then the ultrasonic derivation device outputs ultrasonic waves.
  • the diameter of the sound velocity cone is controlled by the transducer and the ultrasonic derivation device controls the direction and range of the ultrasonic wave.
  • the ultrasonically solidified material in the material cylinder is solidified at the focal plane of the ultrasonic beam. According to the parameters of the target model, it passes through the two-dimensional motion model.
  • the group controls the movement of the ultrasonic printing head, ensuring that the height of the ultrasonic focal plane of the ultrasonic printing head and the height of the liquid level in the material tank remain the same, so as to perform ultrasonic printing, achieving the effect of additive manufacturing, and the equipment structure is simple , The cost of ultrasonic printing is lower.
  • Fig. 1 is a schematic structural diagram of the ultrasonic additive manufacturing equipment of the present invention from a perspective.
  • Fig. 2 is a schematic view of another structure of the ultrasonic additive manufacturing equipment of the present invention.
  • Fig. 3 is a schematic diagram of the printed substrate of the ultrasonic additive manufacturing equipment of the present invention.
  • Fig. 4 is a schematic diagram of the ultrasonic printing head of the ultrasonic additive manufacturing equipment of the present invention.
  • Fig. 5 is a schematic diagram of the longitudinal motion module of the ultrasonic additive manufacturing equipment of the present invention.
  • Fig. 6 is a schematic diagram of the vertical motion module of the ultrasonic additive manufacturing equipment of the present invention.
  • FIG. 7 is a schematic diagram of the lateral movement module of the ultrasonic additive manufacturing equipment of the present invention.
  • Fig. 8 is a schematic flow chart of the ultrasonic additive manufacturing method of the present invention.
  • the markings in the drawings are: 1-support, 2-transverse movement module, 3-longitudinal movement module, 4-vertical movement module, 5-ultrasonic printing head, 6-material cylinder, 7-printing substrate, 8 -Left motor, 9-Right motor, 10-Auxiliary rod, 11-Liquid tank, 12-Suction pump, 13-Infrared detector, 14-Working platform, 15-Connecting part, 16-Transducer, 17- Ultrasonic derivation device, 18-fixed part, 19-first guide wheel, 20-second guide wheel, 21-transmission rod, 22-transmission belt, 23-vertical axis motor, 24-horizontal axis motor, 25-ultrasonic generator.
  • An ultrasonic additive manufacturing equipment includes a bracket 1 and a printing component installed inside the bracket 1, wherein:
  • Bracket 1 including a base of bracket 1, a side edge arranged on the base of bracket 1, and a top layer arranged above the side edge;
  • the material cylinder 6 is arranged on the base of the support 1;
  • the printing substrate 7 is located in the material cylinder 6. One end of the printing substrate 7 is connected to the vertical movement module 4, and is driven to move up and down by the vertical movement module 4, which is fixed on the support 1 Between the base and the top layer, the printing substrate 7 has a stepped structure, the upper end of the printing substrate 7 is a connecting part 15 and is connected with the lifting movement module, and the working platform 14 is below the printing substrate 7, and the connecting part 15 and the working platform 14 are connected by connecting rods;
  • the ultrasonic print head 5 includes a fixed part 18, a transducer 16 and an ultrasonic guide device connected in sequence from top to bottom.
  • An external ultrasonic generator passes through the fixed part and is electrically connected to the transducer.
  • the fixed part 18 Above the base plate 7, the fixed part 18 is connected with a two-dimensional motion module and the ultrasonic print head 5 is driven by the two-dimensional motion module to move on a horizontal surface.
  • the two-dimensional motion module is connected to the top layer of the support 1, and an ultrasonic generator 25 is used in conjunction with the transducer 16 to generate continuous and stable ultrasonic waves.
  • the ultrasonic deriving device 17 outputs the ultrasonic waves.
  • the transducer 16 controls the diameter of the ultrasonic sound velocity cone, and the ultrasonic deriving device 17 controls the direction and range of the ultrasonic wave.
  • the diameter is the single line width that can be performed by ultrasonic printing, and a suitable transducer 16 is selected according to the single line width before printing.
  • the two-dimensional movement module includes a lateral movement module 2 and a longitudinal movement module 3.
  • the lateral movement module 22 can adopt a screw drive structure or a belt 22 transmission structure
  • the longitudinal movement module 3 can adopt a screw rod. Transmission structure or gear transmission structure.
  • the vertical movement module includes a vertical axis motor 23, a ball screw, an auxiliary rod 10, and a sliding block.
  • the vertical axis motor 23 is installed on an edge of the top layer of the bracket 1, and one end of the ball screw is connected to the output end of the vertical axis motor 23. , The other end is connected to the base of the bracket 1.
  • the auxiliary rod 10 is located between the top layer of the bracket 1 and the base of the bracket 1. It is located on both sides of the screw of the ball screw.
  • the screw nut is connected.
  • One end of the printing substrate 7 is connected with the slider and inserted into the auxiliary rod 10. The rotary motion of the screw is converted into the linear motion of the slider to drive the printing substrate 7 to move linearly. Therefore, the vertical axis motor 23 drives the printing when it is running.
  • the base plate 7 moves up and down in the vertical direction.
  • the longitudinal movement module 3 adopts a belt transmission structure, and the lateral movement module 2 adopts a screw drive structure.
  • the longitudinal motion module 3 includes a left motor 8, a right motor 9, a transmission rod 21, and a transmission belt 22.
  • the left motor 8 and the right motor 9 are respectively arranged on both sides of the support 1, and the upper ends of the transmission rod 21 are connected to the top of the support 1.
  • the two ends of the transmission rod 21 are provided with first guide wheels 19, and the other two sides of the bracket 1 are respectively provided with second guide wheels 20.
  • the transmission belt 22 connects the left motor 8, the first guide wheel 19,
  • the second guide wheel 20 and the right motor 9 are connected as a whole, the left motor 8 and the right motor 9 move in opposite directions, and the transmission rod 21 is driven to move longitudinally on the top layer of the bracket 1 through the transmission belt 22;
  • the transverse movement module 2 includes a transverse axis motor 24, a ball screw and a base.
  • the transverse axis motor 24 and the ball screw are arranged on the transmission rod 21.
  • the output end of the transverse axis motor 24 drives the screw of the ball screw to rotate.
  • the nut of the rod is connected with the base, and the rotary motion of the screw is converted into the linear motion of the slider to drive the ultrasonic printing head 5 to perform linear motion.
  • the longitudinal movement module adopts a screw transmission structure, and the lateral movement module adopts a gear transmission structure. (The drawing is not shown).
  • the longitudinal motion module includes a longitudinal motor, a ball screw and a longitudinal rod.
  • the upper ends of the longitudinal rod are slidably connected with the top edge of the bracket.
  • the output end of the longitudinal motor drives the screw of the ball screw to rotate, and the nut of the ball screw is connected to the One end of the longitudinal rod is connected, and the rotary motion of the screw is converted into the linear motion of the nut to drive the longitudinal rod to perform linear motion.
  • the horizontal movement module includes a base and a horizontal axis motor set on the base.
  • the base is connected with the ultrasonic printing head.
  • a guide rail is arranged above the vertical rod.
  • the output end of the horizontal axis motor is connected to the guide rail.
  • the output end of the horizontal axis motor rotates. It is converted into a horizontal linear movement of the ultrasonic printing head along the transmission.
  • the lateral movement module 2 of the two-dimensional movement module is connected to the fixed portion 18 of the ultrasonic print head 5, so the lateral movement module 22 can drive the ultrasonic print head 5 to move laterally, left and right, and the lateral movement module 2 and the longitudinal movement module
  • the transmission rod 21 of group 3 is connected and moves on the guide rail above the transmission rod 21;
  • the transmission rod 21 can be driven to move forward and backward in the longitudinal direction to drive the transverse direction.
  • the movement module 2 moves back and forth.
  • the ultrasonic print head 5 can move to any point of the horizontal (X axis) and the vertical (Y axis);
  • the two-dimensional motion module drives the ultrasonic print head 5 to make two-dimensional motions in the horizontal and vertical directions according to the image data to be printed on each layer of the target model.
  • the vertical motion module 4 drives the working platform 14 to move up and down along the auxiliary rod 10 to make the working platform 14
  • the height difference between the liquid surface and the liquid surface is the same as the thickness of each layer of the target model in the image data;
  • the ultrasonic generator 25 connected to the ultrasonic printing head 5
  • the liquid printing material directly under the transducer 16 is solidified and deposited on the working platform 14 under the action of ultrasonic waves.
  • the liquid printing material is removed from the working platform 14
  • the through holes continuously infiltrate the working platform 14, and after a layer is deposited, the vertical movement module 4 drives the working platform 14 to lower the image data by one layer thickness, and then performs ultrasonic printing again;
  • the suction pump 12 is activated to pump the liquid printing material from the liquid storage tank 11 to the material tank 6 After the liquid level in the material cylinder 6 reaches the initial liquid level, the suction pump 12 stops liquid suction;
  • the basic components of the liquid printing material may be one or more compounds such as methyl acrylate, methyl methacrylate, 2-hydroxyethyl methacrylate, triethylene glycol dimethacrylate and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种超声增材制造的装置,其包括支架(1)和安装于支架内部的超声打印头(5)、材料缸(6)、二维运动模组(2,3)和竖向运动模组(4)。以及一种超声增材制造方法,其包括分析目标模型并切片、控制液面高度和超声打印等步骤。通过超声增材制造设备的换能器(16)和超声波导出装置(17)控制超声波前进方向与范围及声速锥面直径,材料缸内的可被超声波固化的材料在超声波束的焦点处被固化,从而进行超声打印,达到增材制造效果,同时,设备结构简单,超声打印成本更低。

Description

超声增材制造装置及方法 技术领域
本发明涉及增材制造技术领域,尤其涉及超声增材制造装置及方法。
背景技术
增材制造技术,又称3D打印,是快速成型技术的一种,融合了计算机辅助设计、材料加工与成型技术、以数字模型文件为基础,通过软件与数控系统将专用的金属材料、非金属材料以及医用生物材料,按照挤压、烧结、熔融、光固化、喷射等方式逐层堆积,制造出实体物品。因其成型速度快、成型工艺简单和节约原材料等特点,增材制造技术在各领域被广泛研究及应用。
目前用于树脂材料的增材制造技术包括:SLA、SLS、PolyJet、DLP、FDM等,这些技术存在一些问题:
(1)SLA、SLS、PolyJet等精度较高的设备成本高,需要使用激光器等价格高昂的配件,或者对于喷头的加工要求高,而且设备的存放和使用环境要求高;
(2)FDM的精度低,加热源外露,容易造成安全隐患。
在增材制造中,常使用超声波作为辅助手段来检测或调整产品的内在结构,其主要的固化手段还是光固化和热固化,可看作是在常规的3D打印设备上添加产生超声波的设备。而目前存在着可通过超声波固化的材料,如专利号为CN200580014019.0的专利文件《超声固化牙齿填充材料》中提及通过采用超声或者通过化学引发物来引发填料成分的马丁转变,申请号为CN90105864.5的专利申请一种超声波固化牙体修复树脂也是通过超声波来固化树脂,在期刊《石油工程建设》中曾刊登《超声波加速环氧树脂固化》一文,从上述材料可见将超声波应用于增材制造的固化手段是可行的,但是目前的增材制造技术和相应的设备并不适合超声增材制造(即超声打印)。
为解决上述问题,本发明提出一种成本低、安全环保、高效精准的超声增材制造装置及方法。
发明内容
为了解决目前增材制造领域内存在的加工要求高、成本高的技术问题,本发明提供了这样一种超声增材制造设备,包括:
支架,是给整个设备提供支撑,承载各部分零件;
材料缸,固定在支架上,所述材料缸内部设置有竖向上下运动的打印基板;
超声打印头,位于材料缸上方,且水平面上做横向及纵向的二维运动,所述超声打印头包括自上而下设置的固定部、换能器和超声波导向装置,所述超声波导向装置的底端为圆锥形,中心设有一通孔,即超声波传导孔,通孔底部倒圆角,可控制超声波前进方向与范围,换能器控制超声波的声速锥面直径,该声速锥面直径为超声打印可执行的单道线宽,在打印开始前根据单道线宽来选择适合的换能器;
超声波发生器,位于支架外部,通过线路穿过固定部与换能器电连接;
竖向运动模组,安装在支架上,驱动打印基板在材料缸内竖向上下运动;
二维运动模组,安装在支架上,驱动超声打印头在材料缸上方做横向及纵向的二维运动。
进一步地,二维运动模组安装于支架的顶层,所述二维运动模组包括横向运动模组和纵向运动模组,所述纵向运动模组可采用丝杆传动结构或传动带传动结构,所述横向运动模组可采用丝杆传动结构或齿轮传动结构。
进一步地,竖向运动模组固定在支架的底座和顶层之间,所述纵向运动模组采用传动带传动结构,包括左电机、右电机、传动杆和传动带,左电机和右电机分别设置在支架两侧棱上,传动杆上方的两端与支架顶层的棱的导轨滑动连接,传动杆下方的两端均设置有第一导轮,在支架另外两侧棱上分别设置有第二导轮,传动带将左电机、第一导轮、第二导轮和右电机连接为一个整体,左电机和右电机做相反转向的运动,通过传动带驱使传动杆在支架的顶层做纵向运动,当左电机输出端逆时针转动,右电机顺时针转动,此时位于外侧的传动带均朝向左电机和右电机运动,内侧的传动带均远离左电机和右电机运动,由于传动带总长度不变,因此在第一导轮和第二导轮的作用下,传动杆沿着支架顶层的棱的导轨滑动远离左电机和右电机,同理,左电机输出端顺时针转动,右电机逆时针转动,传动杆沿着支架顶层的棱的导轨滑动靠近左电机和右电机。
横向运动模组采用丝杆传动的结构,包括基座、横轴电机和与横轴电机连接的滚珠丝杆,所述基座与超声打印头的固定部连接,传动杆上方设置导轨,横轴电机的输出端与丝杆的螺杆连接,丝杆的传动杆通过螺母与基座连接,横轴电机输出端的转动转换为超声打印头沿着传动杆做横向线性运动,横向运动模组和纵向运动模组共同作用下,超声打印头可运动至横向(X轴)和纵向(Y轴)的任一位置。
进一步地,所述竖向运动模块包括竖轴电机、滚珠丝杆、辅助杆和滑块,竖轴电机安装于支架顶层的一条棱上,滚珠丝杆的一端与竖轴电机的输出端连接,另一端与支架底座的连接,辅助杆位于支架的顶层和支架底座之间位于滚珠丝杆的螺杆的两侧,滚珠丝杆的螺杆由竖轴电机驱动,滑块与滚珠丝杆的螺母连接,打印基板的一端与滑块连接且套入辅助 杆,螺杆的旋转运动转化为滑块的线性运动从而带动打印基板线性运动,因此竖轴电机运行时驱使打印基板在竖向做上下运动。
进一步地,打印基板为阶梯式结构,打印基板上端为连接部且与竖向运动模块连接,打印基板下方为工作平台,连接部和工作平台通过连接杆连接,所述工作平台内设置有多个通孔,在工作平台浸入材料缸内时,在超声打印过程中,液体打印材料可持续从通孔流入工作平台内,使得工作平台内的液体打印材料始终均匀分布。
进一步地,所述材料缸通过抽液泵与外部的储液缸连通,所述材料缸的缸口边缘设置有红外探测器,所述红外探测器通过控制模块与抽液泵电连接,红外探测器的朝向与液面垂直,当材料缸内的液面下降时,红外探测器将液面下降的信息反馈抽液泵,抽液泵启动并将储液缸内的材料液体抽送至材料缸内。
一种超声增材制造方法,在所述的超声增材制造装置中进行超声打印,包括以下步骤:
a.分析目标模型参数并分层,确定目标模型每层打印的参数;
b.将液体打印材料添加至材料缸中,直至达到材料缸内的初始液面高度,打印基板浸入材料缸的液体打印材料内;
c.二维运动模组根据目标模型每层需要打印的参数带动超声打印头在横向和纵向做二维运动到达目标模型该层的打印起点,竖向运动模组驱使工作平台在竖向运动使得打印基板位于材料缸内初始液面的下方;
d.启动与超声打印头连接的超声波发生器,换能器正下方的液体打印材料在超声波的作用下固化沉积在打印基板上,根据该层打印的参数,二维运动模组驱动超声打印头在水平运动同时进行超声打印,沉积完一层后,竖向运动模组驱使工作平台下降设定的高度,然后再次进行超声打印;
e.在超声打印过程中,始终保持材料缸内的液面在初始液面高度;
f.重复步骤c-e,直至目标模型成型为具有三维实体的成品。
进一步地,步骤b中,将液体打印材料添加至材料缸和储液缸中,并启动红外探测器,检测材料缸内的液体打印材料的液面高度,当红外探测器检测到材料缸内液面较低时,抽液泵启动,将储液缸中的液体打印材料抽送至材料缸内直至材料缸内的初始液面高度,工作平台浸入材料缸的液体打印材料内。
进一步地,步骤e中,在超声打印过程中,液体打印材料被固化导致液体的体积减小,红外探测器检测到材料缸中的液面高度与初始液面不同时,抽液泵启动,从储液缸中将 液体打印材料抽送至材料缸中,使得材料缸中的液面达到初始液面后,抽液泵停止抽液。
进一步地,材料缸中的初始液面为超声打印头的超声波焦平面,换能器控制产生的超声波束,超声导出装置输出超声波束,超声波束的焦点所在的平面(即超声波焦平面)位于材料缸的初始液面重合,超声波束的能量在该平面的一点处集中,因此在换能器下方的液面在超声波焦点处固化。
进一步地,所述液体打印材料为可通过超声固化成型的材料。
进一步地,所述液体打印材料为可通过超声固化成型的液体树脂材料。
有益效果
本发明通过超声增材制造设备将超声与3D打印技术结合,以超声波为材料固化手段,其原理是电源输出到超声波发生器,超声波发生器作用是把市电转换成与超声波换能器相匹配的高频交流电信号,驱动超声波换能器工作。换能器的作用是将高频电能换成机械能,即是超声波,然后超声波导出装置输出超声波。经由换能器控制声速锥面直径及超声波导出装置控制超声波前进方向与范围,材料缸内的可被超声波固化的材料在超声波束的焦点平面处被固化,根据目标模型的参数通过二维运动模组控制超声打印头的移动,在保证超声打印头的超声焦平面的高度和材料缸内液面高度保持一致不变的情况下,从而进行超声打印,达到增材制造效果的同时,设备结构简单,超声打印的成本更低。
附图说明
图1为本发明的超声增材制造设备一种角度的结构示意图。
图2为本发明的超声增材制造设备另一种角度的结构示意图。
图3为本发明的超声增材制造设备的打印基板示意图。
图4为本发明的超声增材制造设备的超声打印头示意图。
图5为本发明的超声增材制造设备的纵向运动模组的示意图。
图6为本发明的超声增材制造设备的竖向运动模组示意图。
图7为本发明的超声增材制造设备的横向运动模组示意图。
图8为本发明的超声增材制造方法流程示意图。
附图中的标记为:1-支架,2-横向运动模组,3-纵向运动模组,4-竖向运动模组,5-超声打印头,6-材料缸,7-打印基板,8-左电机,9-右电机,10-辅助杆,11-储液缸,12-抽液泵,13-红外探测器,14-工作平台,15-连接部,16-换能器,17-超声波导出装置,18-固定部,19-第一导轮,20-第二导轮,21-传动杆,22-传动带,23-竖轴电机,24-横轴电机,25-超声波发生器。
具体实施方式
下面结合附图1-8和实施例对本发明作进一步的说明。
一种超声增材制造设备,包括支架1和安装于支架1内部的打印部件,其中:
支架1,包括支架1底座、设置在支架1底座上的侧棱和设置在侧棱上方的顶层;
材料缸6,设置在所述支架1底座上;
打印基板7,位于材料缸6内,所述打印基板7的一端与竖向运动模组4连接,且由竖向运动模组4驱动上下运动,所述竖向运动模组4固定在支架1底座和顶层之间,打印基板7为阶梯式结构,打印基板7上端为连接部15且与升降运动模块连接,打印基板7下方为工作平台14,连接部15和工作平台14通过连接杆连接;
超声打印头5,包括自上而下依次连接的固定部18、换能器16和超声波导向装置,外部的超声波发生器穿过固定部与换能器电连接,所述超声打印头5位于打印基板7上方,所述固定部18与二维运动模组连接且超声打印头5由二维运动模组驱动在水平面上运动,所述二维运动模组与支架1的顶层连接,超声波发生器25和换能器16配合使用产生持续稳定的超声波,超声波导出装置17将超声波输出,其中换能器16控制超声波的声速锥面直径,超声波导出装置17控制超声波前进方向与范围,该声速锥面直径为超声打印可执行的单道线宽,在打印开始前根据单道线宽来选择适合的换能器16。
所述二维运动模组包括横向运动模组2和纵向运动模组3,所述横向运动模组22可采用丝杆传动结构或传动带22传动结构,所述纵向运动模组3可采用丝杆传动结构或齿轮传动结构。
所述竖向运动模块包括竖轴电机23滚珠丝杆、辅助杆10和滑块,竖轴电机23安装于支架1顶层的一条棱上,滚珠丝杆的一端与竖轴电机23的输出端连接,另一端与支架1底座的连接,辅助杆10位于支架1的顶层和支架1底座之间位于滚珠丝杆的螺杆的两侧,滚珠丝杆的螺杆由竖轴电机23驱动,滑块与滚珠丝杆的螺母连接,打印基板7的一端与滑块连接且套入辅助杆10,螺杆的旋转运动转化为滑块的线性运动从而带动打印基板7线性运动,因此竖轴电机23运行时驱使打印基板7在竖向做上下运动。
实施例1
纵向运动模组3采用传动带传动结构,横向运动模组2采用丝杆传动结构。
纵向运动模组3包括左电机8、右电机9、传动杆21和传动带22,左电机8和右电机9分别设置在支架1两侧棱上,传动杆21上方的两端与支架1顶层的棱滑动连接,传动杆21下方的两端均设置有第一导轮19,在支架1另外两侧棱上分别设置有第二导轮20,传 动带22将左电机8、第一导轮19、第二导轮20和右电机9连接为一个整体,左电机8和右电机9做相反转向的运动,通过传动带22驱使传动杆21在支架1的顶层做纵向运动;
横向运动模组2包括横轴电机24、滚珠丝杆和基座,横轴电机24和滚珠丝杆设置于传动杆21上,横轴电机24的输出端驱动滚珠丝杆的螺杆转动,滚珠丝杆的螺母与基座连接,螺杆的旋转运动转化为滑块的线性运动从而带动超声打印头5做线性运动。
实施例2
纵向运动模组采用丝杠传动结构,横向运动模组采用齿轮传动结构。(附图未显示)。
纵向运动模组包括纵向电机、滚珠丝杆和纵杆,所述纵杆上方的两端与支架顶层的棱滑动连接,纵向电机的输出端驱动滚珠丝杆的螺杆转动,滚珠丝杆的螺母与纵杆的一端连接,螺杆的旋转运动转化为螺母的线性运动从而带动纵杆做线性运动。
横向运动模组包括基座和设置在基座上的横轴电机,所述基座与超声打印头连接,纵杆上方设置导轨,横轴电机的输出端与导轨对接,横轴电机输出端的转动转换为超声打印头沿着传动做横向线性运动。
以实施例1的超声增材制造设备来进行超声打印,其步骤如下:
a.通过Cura、3DPrinterOS等软件分析目标模型并对目标模型切片,得出目标模型每层需要打印的图像数据,将图像数据输入超声增材制造设备的控制模块;
b.将液体打印材料添加至材料缸6和储液缸11中,并启动红外探测器13,检测材料缸6内的液体打印材料的液面高度,当红外探测器13检测到材料缸6内液面较低时,抽液泵12启动,将储液缸11中的液体打印材料抽送至材料缸6内直至材料缸6内的初始液面高度,工作平台14浸入材料缸6的液体打印材料内;
c.二维运动模组的横向运动模组2与超声打印头5的固定部18连接,因此横向运动模组22可带动超声打印头5在横向左右运动,横向运动模组2与纵向运动模组3的传动杆21连接且在传动杆21的上面的导轨运动;
纵向运动模组3的左电机8和右电机9往相反方向转动时,在传动带22在第一导轮19和第二导轮20的作用下,可驱使传动杆21在纵向前后运动从而带动横向运动模组2前后运动,横向运动模组2和纵向运动模组3共同作用下,超声打印头5可运动至横向(X轴)和纵向(Y轴)的任一点;
二维运动模组根据目标模型每层需要打印的图像数据带动超声打印头5在横向和纵向做二维运动,竖向运动模组4驱使工作平台14沿着辅助杆10上下运动,使得工作平台14在液面下与液面的高度差与图像数据中目标模型每层的厚度相同;
d.启动超声打印头5连接的超声波发生器25,换能器16正下方的液体打印材料在超声波的作用下固化沉积在工作平台14上,在沉积过程中,液体打印材料从工作平台14的通孔中不断渗入工作平台14上,沉积完一层后,竖向运动模组4驱使工作平台14下降图像数据一个层厚的高度,然后再次进行超声打印;
e.在超声打印过程中,红外探测器13检测到材料缸6中的液面高度与初始液面不同时,抽液泵12启动,从储液缸11中将液体打印材料抽送至材料缸6中,使得材料缸6中的液面达到初始液面后,抽液泵12停止抽液;
f.重复步骤c-e,直至目标模型成型为具有三维实体的成品。
所述液体打印材料的基础成分可以是丙烯酸甲酯、甲基丙烯酸甲酯、甲基丙烯酸2-羟乙酯、二甲基丙烯酸三甘醇酯等一种或多种化合物。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种超声增材制造设备,其特征在于,包括:
    支架(1);
    材料缸(6),固定在所述支架(1)上,所述材料缸(6)内部设置有竖向升降的打印基板(7);
    超声打印头(5),位于材料缸(6)上方,所述超声打印头(5)包括自上而下设置的固定部(18)、换能器(16)和超声波导向装置(17),超声波导向装置(17)的底端设有超声波传导孔;
    超声波发生器(25),与换能器(16)电连接;
    升降运动模组,安装在支架(1)上,驱动打印基板(7)在材料缸(6)内升降运动;
    二维运动模组,安装在支架(1)上,驱动超声打印头(5)在材料缸(6)上方的平面内做横向及纵向的二维运动。
  2. 根据权利要求1所述的超声增材制造设备,其特征在于:二维运动模组安装于支架(1)的顶层,所述二维运动模组包括横向运动模组(2)和纵向运动模组(3),横向运动模组(2)设置于纵向运动模组(3)上且沿着纵向运动模组(3)横向水平运动,纵向运动模组(3)设置于支架(1)的顶层且沿着顶层两边的棱纵向水平运动。
  3. 根据权利要求2所述的超声增材制造设备,其特征在于:竖向运动模组(4)固定在支架(1)的底座和顶层之间,所述纵向运动模组(3)可采用丝杆传动结构或传动带传动结构,所述横向运动模组(2)可采用丝杆传动结构或齿轮传动结构。
  4. 根据权利要求3所述的超声增材制造设备,其特征在于:所述纵向运动模组(3)采用传动带传动结构,包括左电机(8)、右电机(9)、传动杆(21)和传动带(22),左电机(8)和右电机(9)分别设置在支架(1)两侧棱上,传动杆(21)上方的两端与支架(1)顶层两边的棱滑动连接,传动杆(21)下方的两端均设置有第一导轮(19),在与左电机(8)和右电机(9)相对的支架(1)另外两侧棱上分别设置有第二导轮(20),传动带(22)将左电机(8)、第一导轮(19)、第二导轮(20)和右电机(9)连接为一个整体,左电机(8)和右电机(9)做转向相反的运动,通过传动带(22)驱使传动杆(21)在支架(1)的顶层做纵向运动。
  5. 根据权利要求4所述的超声增材制造设备,其特征在于:横向运动模组(2)采用丝杆传动的结构,包括基座、横轴电机(24)和与横轴电机(24)连接的滚珠丝杆,所述基座与超声打印头(5)的固定部(18)连接,传动杆(21)上方设置导轨,横轴电机(24)的输出端与丝杆的螺杆连接,丝杆的传动杆(21)通过螺母与基座连接,横轴电机(24)输出端的 转动转换为超声打印头(5)沿着传动杆(21)做横向线性运动。
  6. 根据权利要求1-5任一项所述的超声增材制造设备,其特征在于:所述升降运动模块包括竖轴电机(23)、滚柱丝杆、辅助杆(10)和滑块,竖轴电机(23)安装于支架(1)顶层的一条棱上,滚珠丝杆的一端与竖轴电机(23)的输出端连接,另一端与支架(1)底座的连接,辅助杆(10)位于支架(1)的顶层和支架(1)底座之间位于滚珠丝杆的螺杆的两侧,滚珠丝杆的螺杆由竖轴电机(23)驱动,滑块与滚柱丝杆的螺母连接,打印基板(7)的一端与滑块连接且套入辅助杆(10)。
  7. 根据权利要求6所述的超声增材制造设备,其特征在于:打印基板(7)为阶梯式结构,打印基板(7)上端为连接部(15)且与升降运动模块连接,打印基板(7)下方为工作平台(14),连接部(15)和工作平台(14)通过连接杆连接。
  8. 根据权利要求7所述的超声增材制造设备,其特征在于:所述工作平台(14)内设置有多个通孔。
  9. 根据权利要求1-8任一项所述的超声增材制造设备,其特征在于:所述材料缸(6)通过抽液泵(12)与外部的储液缸(11)连通。
  10. 根据权利要求9所述的超声增材制造设备,其特征在于:所述材料缸(6)的缸口边缘设置有红外探测器(13),红外探测器(13)的朝向与液面垂直,
    所述红外探测器(13)与外部的控制器通讯连接,红外探测器(13)将探测数据传递至控制器,控制器根据探测数据控制抽液泵(12)的开启或关闭,从而控制材料缸(6)内的液面高度。
  11. 一种超声增材制造方法,其特征在于:在权利要求1-10任一项所述的超声增材制造装置内进行超声打印,包括以下步骤:
    a.分析目标模型参数并分层,确定目标模型每层打印的参数;
    b.将液体打印材料添加至材料缸(6)中,直至达到材料缸(6)内的初始液面高度,打印基板(7)浸入材料缸(6)的液体打印材料内;
    c.二维运动模组根据目标模型每层需要打印的参数带动超声打印头(5)在横向和纵向做二维运动到达目标模型该层的打印起点,升降运动模组驱使工作平台(14)在升降运动使得打印基板(7)位于材料缸(6)内初始液面的下方;
    d.启动与超声打印头(5)连接的超声波发生器(25),换能器(16)正下方的液体打印材料在超声波的作用下固化沉积在打印基板(7)上,根据该层打印的参数,二维运动模组驱动超声打印头(5)在水平运动同时进行超声打印,沉积完一层后,升降运动模组驱使工作平 台(14)下降设定的高度,然后再次进行超声打印;
    e.在超声打印过程中,始终保持材料缸(6)内的液面在初始液面高度;
    f.重复步骤c-e,直至目标模型成型为具有三维实体的成品。
  12. 根据权利要求11所述的超声增材制造方法,其特征在于:在权利要求10所述的超声增材制造装置内进行超声打印,步骤b中,将液体打印材料添加至材料缸(6)和储液缸(11)中,并启动红外探测器(13),检测材料缸(6)内的液体打印材料的液面高度,当红外探测器(13)检测到材料缸(6)内液面较低时,抽液泵(12)启动,将储液缸(11)中的液体打印材料抽送至材料缸(6)内直至材料缸(6)内的初始液面高度,工作平台(14)浸入材料缸(6)的液体打印材料内。
  13. 根据权利要求12所述的超声增材制造方法,其特征在于:步骤e中,在超声打印过程中,红外探测器(13)检测到材料缸(6)中的液面高度与初始液面不同时,抽液泵(12)启动,从储液缸(11)中将液体打印材料抽送至材料缸(6)中,使得材料缸(6)中的液面达到初始液面后,抽液泵(12)停止抽液。
  14. 根据权利要求11-13任一项所述的超声增材制造方法,其特征在于:材料缸(6)中的初始液面为超声打印头(5)的超声波焦平面。
  15. 根据权利要求11-14任一项所述的超声增材制造方法,其特征在于:步骤c中,工作平台(14)下降的高度与目标模型每层的厚度相同。
  16. 根据权利要求11-15任一项所述的超声增材制造方法,其特征在于:目标模型每层打印的参数至少包括目标模型每层的形状、长度、宽度和高度。
  17. 根据权利要求11-16任一项所述的超声增材制造方法,其特征在于:所述液体打印材料为可通过超声固化成型的材料。
  18. 根据权利要求17所述的超声增材制造方法,其特征在于:所述液体打印材料为可通过超声固化成型的液体树脂材料。
PCT/CN2020/100934 2020-04-23 2020-07-08 超声增材制造装置及方法 WO2021212665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010327115.7 2020-04-23
CN202010327115.7A CN111590886A (zh) 2020-04-23 2020-04-23 超声增材制造装置及方法

Publications (1)

Publication Number Publication Date
WO2021212665A1 true WO2021212665A1 (zh) 2021-10-28

Family

ID=72183447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100934 WO2021212665A1 (zh) 2020-04-23 2020-07-08 超声增材制造装置及方法

Country Status (2)

Country Link
CN (1) CN111590886A (zh)
WO (1) WO2021212665A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248442A (zh) * 2021-12-24 2022-03-29 南京铖联激光科技有限公司 一种具有料位显示功能的3d打印设备用粉料缸
CN114953441A (zh) * 2022-04-20 2022-08-30 广东工业大学 一种超声3d打印方法和3d打印件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255932B (zh) * 2022-07-15 2024-04-19 广东工业大学 一种跨尺度变刚度超声增减材复合制造工艺
CN115647807A (zh) * 2022-07-15 2023-01-31 广东工业大学 一种基于cnc跨尺度变刚度全超声增减材复合制造数控机床
CN115416282A (zh) * 2022-07-18 2022-12-02 广东工业大学 一种超声微结构立体成型方法
CN115416286B (zh) * 2022-07-18 2024-04-19 广东工业大学 一种超声固化微压印成型方法及装置
CN115489114A (zh) * 2022-07-29 2022-12-20 广东工业大学 连续纤维增强复合材料的超声增材制造方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113509A (zh) * 2016-08-22 2016-11-16 吉林大学 多向超声微滴喷射光固化增材制造装置及方法
CN205929443U (zh) * 2016-08-22 2017-02-08 吉林大学 多向超声微滴喷射光固化增材制造装置
CN106985385A (zh) * 2017-04-16 2017-07-28 吉林大学 复合材料超声沉积增材制造装置及方法
CN206653653U (zh) * 2017-04-16 2017-11-21 吉林大学 复合材料超声沉积增材制造装置
CN108327254A (zh) * 2018-04-10 2018-07-27 东莞理工学院 一种基于超声波辅助的陶瓷光固化3d打印机及打印方法
CN108673888A (zh) * 2018-07-18 2018-10-19 北京化工大学 一种超声聚焦聚合物3d打印设备及加工方法
CN208558304U (zh) * 2018-04-10 2019-03-01 东莞理工学院 一种基于超声波辅助的陶瓷光固化3d打印机
KR20190134908A (ko) * 2018-05-10 2019-12-05 민창기 3d프린터 후가공기
US20200061904A1 (en) * 2018-08-23 2020-02-27 Korea Institute Of Science And Technology Method for 3d printing and 3d printer using ultrasound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106113509A (zh) * 2016-08-22 2016-11-16 吉林大学 多向超声微滴喷射光固化增材制造装置及方法
CN205929443U (zh) * 2016-08-22 2017-02-08 吉林大学 多向超声微滴喷射光固化增材制造装置
CN106985385A (zh) * 2017-04-16 2017-07-28 吉林大学 复合材料超声沉积增材制造装置及方法
CN206653653U (zh) * 2017-04-16 2017-11-21 吉林大学 复合材料超声沉积增材制造装置
CN108327254A (zh) * 2018-04-10 2018-07-27 东莞理工学院 一种基于超声波辅助的陶瓷光固化3d打印机及打印方法
CN208558304U (zh) * 2018-04-10 2019-03-01 东莞理工学院 一种基于超声波辅助的陶瓷光固化3d打印机
KR20190134908A (ko) * 2018-05-10 2019-12-05 민창기 3d프린터 후가공기
CN108673888A (zh) * 2018-07-18 2018-10-19 北京化工大学 一种超声聚焦聚合物3d打印设备及加工方法
US20200061904A1 (en) * 2018-08-23 2020-02-27 Korea Institute Of Science And Technology Method for 3d printing and 3d printer using ultrasound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114248442A (zh) * 2021-12-24 2022-03-29 南京铖联激光科技有限公司 一种具有料位显示功能的3d打印设备用粉料缸
CN114248442B (zh) * 2021-12-24 2023-08-08 南京铖联激光科技有限公司 一种具有料位显示功能的3d打印设备用粉料缸
CN114953441A (zh) * 2022-04-20 2022-08-30 广东工业大学 一种超声3d打印方法和3d打印件
CN114953441B (zh) * 2022-04-20 2023-11-28 广东工业大学 一种超声3d打印方法和3d打印件

Also Published As

Publication number Publication date
CN111590886A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
WO2021212665A1 (zh) 超声增材制造装置及方法
AU2019201593B2 (en) 3D printing using spiral buildup
CN108472869B (zh) 增材制造设备、系统和方法
CN103231513B (zh) 3d打印方法及3d打印机
CN108068311B (zh) 立体打印装置
CN109483869B (zh) 一种用于热固性形状记忆聚合物在轨4d打印的装置
JP6968836B2 (ja) スロットダイ添加物製造装置および製造方法
CN103978691A (zh) 一种基于螺杆旋转连续挤出的3d打印机
JP2003245981A (ja) 三次元形状造形物の製造方法及びその製造装置
JP7193548B2 (ja) 付加製造装置、システム、および方法
WO2016029832A1 (zh) 光固化快速成型3d打印机的闭环控制系统及方法
CN103978684A (zh) 一种实现温度控制的高分子材料的3d打印方法
JP2011006719A (ja) 三次元形状造形物の製造方法およびその製造装置
CN106926451A (zh) 一种光固化3d打印机
CN106113509A (zh) 多向超声微滴喷射光固化增材制造装置及方法
CN107627602A (zh) 一种复合材料3d打印机及打印方法
CN212888942U (zh) 超声增材制造装置
CN204674036U (zh) 基于fdm的3d打印设备
CN204431747U (zh) 一种双电机送丝3d打印机
CN112974853A (zh) 一种直接成型金属聚合物复合材料的3d打印设备及方法
CN203888216U (zh) 一种基于螺杆旋转连续挤出的3d打印机
CN206085665U (zh) 3d综合打印装置上的物料调节系统
CN214605914U (zh) 一种选择性激光烧结成型装置中使用的供粉机构
JPH08156105A (ja) 液面高さ制御装置付き光硬化造形装置
CN206983273U (zh) 一种用于光固化3d打印机的刮刀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932552

Country of ref document: EP

Kind code of ref document: A1