WO2021212370A1 - 照明装置及光学模块 - Google Patents

照明装置及光学模块 Download PDF

Info

Publication number
WO2021212370A1
WO2021212370A1 PCT/CN2020/086158 CN2020086158W WO2021212370A1 WO 2021212370 A1 WO2021212370 A1 WO 2021212370A1 CN 2020086158 W CN2020086158 W CN 2020086158W WO 2021212370 A1 WO2021212370 A1 WO 2021212370A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
emitting surface
incident surface
unit
Prior art date
Application number
PCT/CN2020/086158
Other languages
English (en)
French (fr)
Inventor
王正
郭铭丰
Original Assignee
诚益光电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚益光电科技股份有限公司 filed Critical 诚益光电科技股份有限公司
Priority to PCT/CN2020/086158 priority Critical patent/WO2021212370A1/zh
Publication of WO2021212370A1 publication Critical patent/WO2021212370A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides

Definitions

  • the present invention relates to an illuminating device and an optical module, in particular to an illuminating system used for a low-beam lamp, an illuminating device and an optical module with supplementary light of the low-beam lamp.
  • the low beam LEDs are arranged in a row and the high beam LEDs are arranged in a row.
  • the distance between the light-emitting surfaces of the two is usually between 0.3mm and 0.7mm; therefore, the light pattern formed by the light beam projected by the low-beam Among the light patterns formed by the beams projected by the high beam, there will be the following problems:
  • the technical problem to be solved by the present invention is to provide an illuminating device and an optical module for the shortcomings of the prior art.
  • an illuminating device including a light source module, a lens module, and an optical module.
  • the light source module includes at least one first light emitting unit, and at least one of the first light emitting units has a first light source light emitting surface.
  • the lens module corresponds to at least one of the first light emitting units.
  • the optical module is located between the light source module and the lens module, the optical module includes a first light guide unit, and the first light guide unit includes a first light incident surface, a second light incident surface, and a first light exit surface And a second light-emitting surface, the first light-incident surface is connected to the second light-incident surface, a first predetermined angle exists between the second light-incident surface and the first light-emitting surface, the first The predetermined included angle is between 90 degrees and 150 degrees, and the second light-emitting surface corresponds to the first light-incident surface; wherein, the first light-incident surface is parallel to the light-emitting surface of the first light source, and the first light-emitting surface is parallel to the light-emitting surface of the first light source.
  • the lens module has a focal point and a focal length, the lens module defines a focal plane with the focal point, the focal plane is parallel to the light-emitting surface of the first light source, and the incident surface of the lens module is connected to the first light source.
  • the distance between the light-emitting surfaces of a light source is greater than the focal length of the lens module; wherein there is a second predetermined distance between the focal plane and the light-emitting surface of the first light source, and the second predetermined distance is between 0.2mm ⁇ 5mm.
  • an illuminating device including a light source module, a lens module, and an optical module.
  • the light source module includes at least one first light emitting unit, and at least one of the first light emitting units has a first light source light emitting surface.
  • the lens module corresponds to at least one of the first light emitting units.
  • the optical module is located between the light source module and the lens module, the optical module includes a first light guide unit, and the first light guide unit includes a first light incident surface, a second light incident surface, and a first light exit surface And a second light-emitting surface, the first light-incident surface is connected to the second light-incident surface, a first predetermined angle exists between the second light-incident surface and the first light-emitting surface, the first The predetermined included angle is between 40 degrees and 60 degrees, and the second light-emitting surface corresponds to the second light-incident surface; wherein, the first light-incident surface is parallel to the light-emitting surface of the first light source, and the first light-emitting surface is parallel to the light-emitting surface of the first light source.
  • the lens module has a focal point and a focal length, the lens module defines a focal plane with the focal point, the focal plane is parallel to the light-emitting surface of the first light source, and the incident surface of the lens module is connected to the first light source.
  • the distance between the light-emitting surfaces of a light source is greater than the focal length of the lens module; wherein there is a second predetermined distance between the focal plane and the light-emitting surface of the first light source, and the second predetermined distance is between 0.2mm ⁇ 5mm.
  • the illuminating device includes a light source module and a lens module, and the optical module is located in the light source module and Between the lens modules, the optical module includes a first light guide unit, and the first light guide unit includes a first light entrance surface, a second light entrance surface, a first light exit surface, and a second light exit surface.
  • the first light-incident surface is connected to the second light-incident surface, a first predetermined included angle is formed between the second light-incident surface and the first light-emitting surface, and the first predetermined included angle is between 90 degrees and 150 degrees, the second light-emitting surface corresponds to the first light-incident surface; wherein, the first light-incident surface is parallel to the light-emitting surface of the first light source, and the first light-incident surface is opposite to the first light-incident surface.
  • the lighting device includes a light source module and a lens module, and the optical module is located in the light source module and Between the lens modules, the optical module includes a first light guide unit, and the first light guide unit includes a first light entrance surface, a second light entrance surface, a first light exit surface, and a second light exit surface.
  • the first light-incident surface is connected to the second light-incident surface, and there is a first predetermined included angle between the second light-incident surface and the first light-emitting surface, and the first predetermined included angle is between 40 degrees and 60 degrees, the second light-emitting surface corresponds to the second light-incident surface; wherein, the first light-incident surface is parallel to the light-emitting surface of the first light source, and the first light-incident surface is There is a first predetermined distance between the light emitting surfaces of a light source, and the first predetermined distance is between 0.01 mm and 0.5 mm.
  • the lighting device and the optical module provided by the present invention can pass through "the optical module is located between the light source module and the lens module, and the optical module includes a first light guide unit, so
  • the first light guide unit includes a first light-incident surface, a second light-incident surface, a first light-emitting surface, and a second light-emitting surface.
  • the first light-incident surface is connected to the second light-incident surface.
  • first predetermined included angle between the light incident surface and the first light exit surface there is a first predetermined included angle between the light incident surface and the first light exit surface, the first predetermined included angle is between 90 degrees and 150 degrees, and the second light exit surface corresponds to the first light incident surface ", "The first light-incident surface is parallel to the light-emitting surface of the first light source, and there is a first preset distance between the first light-incident surface and the light-emitting surface of the first light source, and the first preset The pitch is between 0.01mm ⁇ 0.5mm", "The lens module has a focal point and a focal length, the lens module defines a focal plane with the focal point, the focal plane is parallel to the light-emitting surface of the first light source, and the The distance between the incident surface of the lens module and the light-emitting surface of the first light source is greater than the focal length of the lens module" and "there is a second predetermined distance between the focal plane and the light-emitting surface of the first light source, The technical solution
  • the lighting device and optical module provided by the present invention can pass through "the optical module is located between the light source module and the lens module, and the optical module includes a first light guide unit, so
  • the first light guide unit includes a first light-incident surface, a second light-incident surface, a first light-emitting surface, and a second light-emitting surface.
  • the first light-incident surface is connected to the second light-incident surface.
  • first predetermined included angle between the light incident surface and the first light exit surface there is a first predetermined included angle between the light incident surface and the first light exit surface, the first predetermined included angle is between 40 degrees and 60 degrees, and the second light exit surface corresponds to the second light incident surface ", "The first light-incident surface is parallel to the light-emitting surface of the first light source, and there is a first preset distance between the first light-incident surface and the light-emitting surface of the first light source, and the first preset The pitch is between 0.01mm ⁇ 0.5mm", "The lens module has a focal point and a focal length, the lens module defines a focal plane with the focal point, the focal plane is parallel to the light-emitting surface of the first light source, and the The distance between the incident surface of the lens module and the light-emitting surface of the first light source is greater than the focal length of the lens module" and "there is a second predetermined distance between the focal plane and the light-emitting surface of the first light source, The technical solution
  • Fig. 1 is a schematic diagram of the light pattern of one of the existing lighting devices.
  • Fig. 2 is a schematic diagram of another light type of the existing lighting device.
  • Fig. 3 is an exploded schematic diagram of the lighting device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the lighting device according to the first embodiment of the present invention.
  • FIG. 5 is a first schematic cross-sectional view of the optical module of the lighting device according to the first embodiment of the present invention.
  • FIG. 6 is a second schematic cross-sectional view of the optical module of the lighting device according to the first embodiment of the present invention.
  • FIG. 7 is a third schematic cross-sectional view of the optical module of the lighting device according to the first embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the light path of the lighting device according to the first embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a low-beam lamp type of the lighting device according to the first embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of the optical module of the lighting device according to the second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the light path of the lighting device according to the second embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of the optical module of the lighting device according to the third embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the light path of the lighting device according to the third embodiment of the present invention.
  • Fig. 14 is an exploded schematic diagram of a lighting device according to a fourth embodiment of the present invention.
  • 15 is a schematic cross-sectional view of a lighting device according to a fourth embodiment of the present invention.
  • 16 is a schematic front view of the light source module of the lighting device according to the fourth embodiment of the present invention.
  • FIG. 17 is a schematic diagram of the first light path of the lighting device according to the fourth embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the second light path of the lighting device according to the fourth embodiment of the present invention.
  • FIG. 19 is a schematic diagram of the third light path of the lighting device according to the fourth embodiment of the present invention.
  • Fig. 20 is a schematic diagram of a high-beam lamp type of the illuminating device according to the fourth embodiment of the present invention.
  • FIG. 21 is a first perspective schematic view of the supporting unit of the lighting device according to the fourth embodiment of the present invention.
  • FIG. 22 is a second perspective schematic view of the supporting unit of the lighting device according to the fourth embodiment of the present invention.
  • FIG. 23 is a schematic cross-sectional view of the optical module of the lighting device according to the fifth embodiment of the present invention.
  • FIG. 24 is a schematic diagram of the first light path of the lighting device according to the fifth embodiment of the present invention.
  • FIG. 25 is a schematic diagram of the second light path of the lighting device according to the fifth embodiment of the present invention.
  • FIG. 26 is a three-dimensional schematic diagram of the optical module of the lighting device according to the sixth embodiment of the present invention.
  • FIG. 27 is a schematic cross-sectional view of the optical module of the lighting device according to the sixth embodiment of the present invention.
  • FIG. 28 is a schematic diagram of the optical path of the optical module of the lighting device according to the sixth embodiment of the present invention.
  • Fig. 29 is a schematic diagram of a low-beam lamp type of the illuminating device according to the sixth embodiment of the present invention.
  • Fig. 30 is a three-dimensional schematic diagram of a lighting device according to a seventh embodiment of the present invention.
  • FIG. 31 is a first cross-sectional schematic diagram of the optical module of the lighting device according to the seventh embodiment of the present invention.
  • FIG. 32 is a second cross-sectional schematic diagram of the optical module of the lighting device according to the seventh embodiment of the present invention.
  • FIG. 33 is a schematic diagram of the first light path of the lighting device according to the seventh embodiment of the present invention.
  • FIG. 34 is a schematic diagram of the second light path of the lighting device according to the seventh embodiment of the present invention.
  • 35 is a third schematic cross-sectional view of the optical module of the lighting device according to the seventh embodiment of the present invention.
  • Fig. 36 is an exploded schematic diagram of the lighting device according to the eighth embodiment of the present invention.
  • Fig. 37 is a schematic diagram of the optical path of the lighting device according to the eighth embodiment of the present invention.
  • Z lighting device; 1: light source module; 11: first light-emitting unit; 110: first light-emitting surface; 110a: central axis; 110b: lower edge side; 110c: lower reference surface 110c; 12: second light-emitting unit; 120: second light source emitting surface; 2: lens module; 200: incident surface; 201: exit surface; 21: focal point; 210: focal plane; 22: optical axis; 3: substrate module; 4: multiple fixed modules; D : Optical module; D1: first light guide unit; D11: first light-incident surface; D12: second light-incident surface; D13: first light-emitting surface; D14: second light-emitting surface; D15, D151 ⁇ D153: third Light emitting surface; D16: connecting surface; D2: supporting unit; D20: main body part; D200: opening; D201: upper rib; D202: lower rib; D2020: inner surface; D2021: outer surface; D21: first fixing part D22: the
  • FIGS. 3-9 are respectively an exploded schematic view, a schematic cross-sectional view, a first schematic cross-sectional view of the optical module, a second schematic cross-sectional view of the optical module, and a third schematic cross-sectional view of the optical module according to the first embodiment of the present invention.
  • the first embodiment of the present invention provides a lighting device Z, which includes a light source module 1, a lens module 2, and an optical module D.
  • the light source module 1 includes at least one first light emitting unit 11, and the at least one first light emitting unit 11 has a first light source light emitting surface 110.
  • the lens module 2 corresponds to at least one first light emitting unit 11.
  • the optical module D may be a transparent piece.
  • the optical module D is located between the light source module 1 and the lens module 2.
  • the optical module D includes a first light guide unit D1, and the first light guide unit D1 includes a first light incident surface D11 and a second light incident surface D11.
  • Glossy surface D12, first light-emitting surface D13 and second light-emitting surface D14, first light-incident surface D11 is connected to second light-incident surface D12, and a first predetermined clip is provided between second light-incident surface D12 and first light-emitting surface D13 Angle A1, the first predetermined included angle A1 is between 90 degrees and 150 degrees, the second light-emitting surface D14 corresponds to the first light-incident surface D11; the first light-incident surface D11 is parallel to the light-emitting surface 110 of the first light source, and the first light-incident surface D11 There is a first predetermined distance C1 between the surface D11 and the first light source emitting surface 110, and the first predetermined distance C1 is
  • the lens module 2 has a focal point 21 and a focal length.
  • the lens module 2 defines a focal plane 210 with the focal point 21.
  • the focal plane 210 is parallel to the light-emitting surface 110 of the first light source.
  • the incident surface 200 of the lens module 2 and the light-emitting surface 110 of the first light source are parallel to each other. The distance between them is greater than the focal length of the lens module 2; wherein, there is a second preset distance C2 between the focal plane 210 and the first light source emitting surface 110, and the second preset distance C2 is between 0.2mm and 5mm, where 0.5mm ⁇ 1.5mm is better.
  • the lighting device Z provided by the present invention can be applied to lighting equipment for mobile vehicles (for example, automobiles, locomotives, bicycles, etc.).
  • the lighting device Z includes a light source module 1, a lens module 2, and an optical module D.
  • the light source module 1 includes at least one first light-emitting unit 11, the first light-emitting unit 11 may be a light-emitting diode (LED), and the first light-emitting unit 11 has a first light-emitting surface 110;
  • two first light-emitting units 11 are taken as an example, but not limited to this.
  • the lens module 2 is arranged corresponding to the light source module 1, the incident surface 200 of the lens module 2 faces the light source module 1, and the exit surface 201 of the lens module 2 is far away from the light source module 1.
  • the lens module 2 can be a plano-convex lens, but not This is a limitation.
  • any lens or lens group (composed of more than one lens) technology that can achieve the purpose of the invention is included in the scope of the lens module referred to in the present invention.
  • the lens module 2 may have a focal point 21, and the lens module 2 defines a focal plane 210 with the focal point 21.
  • the focal plane 210 may be an infinite virtual plane, but is not limited to this.
  • the convex surface of the lens module 2 may be an aspheric curved surface, or may be composed of a plurality of aspheric curved surfaces.
  • the aspheric curved surface also has an optical axis. 22 (further detailed later), and the aspherical surface profile is asymmetrical on both sides of the optical axis (as shown in the lens module 2 of FIG. 4), but the present invention is not limited to this.
  • the optical module D is arranged between the light source module 1 and the lens module 2.
  • the optical module D can include a first light guide unit D1.
  • the material of the first light guide unit D1 is transparent plastic or glass. If it is plastic, the material can be optical grade PC or PMMA, but the invention does not use this Is limited.
  • the first light guide unit D1 may have a first light-incident surface D11, a second light-incident surface D12, a first light-emitting surface D13, and a second light-emitting surface D14.
  • the first light-incident surface D11 faces the first light-emitting surface 110; wherein, preferably, the first light-incident surface D11 may be parallel to the first light-emitting surface 110, and the first light-incident surface D11 and the first light-emitting surface 110 There may be a first predetermined distance C1 between them, the first predetermined distance C1 may be between 0.01 mm and 0.5 mm, and the first predetermined distance C1 may preferably be between 0.2 mm and 0.3 mm. Alternatively, as shown in FIG.
  • the first light-incident surface D11 may be approximately parallel to the first light-emitting surface 110, that is, the first light-incident surface D11 may be inclined relative to the first light-emitting surface 110, and the first light-incident surface D11
  • the surface D11 and the first light emitting surface 110 also have a first inclination angle B1 ranging from 1 degree to 30 degrees; wherein the inclination direction of the first light incident surface D11 can be the same as the first light emitting surface D13 (as shown in FIG. 6 ), it can also be opposite to the first light-emitting surface D13.
  • the first light-incident surface D11 may be a smooth light-permeable surface, but is not limited to this.
  • the first light-incident surface D11 may also be a non-smooth light-permeable surface (that is, there is a light guide surface on the surface). microstructure).
  • the second light incident surface D12 is connected to the first light output surface D13, and there may be a first predetermined included angle A1 between the second light incident surface D12 and the first light exit surface D13; wherein, the first predetermined included angle A1 may be between 90
  • the first predetermined included angle A1 may preferably be between 130 degrees and 140 degrees, and the first predetermined included angle A1 is more preferably 135 degrees.
  • the second light-emitting surface D14 corresponds to the first light-incident surface D11.
  • the first light guide unit D1 may have only one light-emitting surface, that is, the first light-emitting surface D13.
  • the focal plane 210 of the lens module 2 may be parallel to the light-emitting surface 110 of the first light source.
  • the lens module 2 also has a focal length, which can be the distance between the incident surface 200 of the lens module 2 and the focal point 21, and the distance between the incident surface 200 of the lens module 2 and the first light source emitting surface 110 can be greater than that of the lens module 2. That is, there is a second preset distance C2 between the focal plane 210 and the light emitting surface 110 of the first light source, and the second preset distance C2 is between 0.2mm and 5mm, where It is preferably 0.5 mm to 1.5 mm, and more preferably 1.2 mm, but the present invention is not limited to this.
  • the focal plane 210 of the lens module 2 may also be approximately parallel to the light-emitting surface 110 of the first light source. As shown in FIG. 6, the focal plane 210 and the light-emitting surface 110 of the first light source may also have an included angle of 1 to 30 degrees. (Similar to the above-mentioned first inclination angle B1, which is not specifically marked here).
  • the first light-emitting unit 11 when the illuminating device Z of the present invention projects a low-beam lamp type light beam, the first light-emitting unit 11 generates the first light beam L1 through the first light-emitting surface 110. Then, the first light beam L1 generated by the light emitting surface 110 of the first light source enters the first light guide unit D1 through the first light incident surface D11, and is emitted to the first light guide unit D13 through the first light output surface D13 and the second light output surface D14.
  • the exterior of the unit D1 further, as shown in FIG. 5 and FIG.
  • the first light beam L1 is first refracted through the first light incident surface D11 and projected to the first light output surface D13 and the second light output surface D14, In addition, the first light beam L1 is then emitted to the outside of the first light guide unit D1 through the second refraction of the first light exit surface D13 and the second light exit surface D14.
  • the first light beam L1 refracted by the first light-emitting surface D13 and the second light-emitting surface D14 enters the lens module 2 through the incident surface 200 of the lens module 2, and then is projected to the lens module 2 through the exit surface 201 of the lens module 2
  • the test screen can be a projection screen, but not limited to this
  • the light pattern formed by the first light beam L1 on the test screen that is, the low-beam light type, as shown in the figure
  • the edge ie, the cut-off line shown in 9) may fall within a fixed angle range below the HV point, and the fixed angle range may be -0.57° ⁇ 0.3°, but the present invention is not limited to this.
  • the lighting device Z provided by the present invention adopts the above-mentioned technical solution.
  • the first light guide unit D1 does not completely cover the light-emitting surface 110 of the first light source (the present invention is not limited to this)
  • the first light guide unit D1 Part of the first light beam L1 projected by the light-emitting surface 110 of the light source (that is, the part far away from the optical axis 22 of the lens module 2) will not be refracted by the optical module D, but directly enters the lens module 2, and the first light beam L1 of the part
  • a light beam L1 is projected by the lens module 2, it will fall below the cut-off line of light and dark and away from the area of the cut-off line; while the other part of the first light beam L1 will be refracted by the first light guide unit D1 of the optical module D (such as As shown in FIG.
  • the light-emitting point in the figure is the light-emitting point on the light-emitting surface 110 of the first light source that is closer to the optical axis 22) and changes the route, and then enters the lens module 2, so that another part of the first light beam L1 passes through the lens module. 2 After being cast, it can fall on the edge of the formed light pattern (that is, the cut-off line), and fall on a fixed angle range below the HV point.
  • the fixed angle range can be -0.57° ⁇ 0.3°.
  • the present invention Not limited to this.
  • the brightest point (ie hot spot) of the light pattern formed by the high beam LED will be at the origin (ie HV), and the low beam
  • the edge of the light pattern formed by the lamp LED ie, the cut-off line
  • the fixed angle range can be -0.57° ⁇ 0.3°.
  • the second light-emitting surface D14 may be parallel to the first light-incident surface D11, and the second light-emitting surface D14 may be a fog surface or a non-smooth light-permeable optical surface structure; wherein, the first light guide unit D1
  • the thickness H is between 0.2mm and 1.0mm.
  • the thickness H of the first light guide unit D1 may preferably be 0.5-0.6 mm.
  • the second light-emitting surface D14 and the first light-incident surface D11 of the present invention may be parallel to each other. Therefore, the second light-emitting surface D14 and the first light-emitting surface 110 are also parallel to each other.
  • first light-incident surface D11, the second light-incident surface D12, the first light-emitting surface D13, and the second light-emitting surface D14 may also be smooth optical surfaces through which light can penetrate, but are not limited thereto.
  • the second light-emitting surface D14 may also be approximately parallel to the first light-incident surface D11, that is, similar to the manner in which the first light-incident surface D11 is approximately parallel to the first light-emitting surface 110, which is not specifically described here.
  • the connecting position P of the second light-incident surface D12 and the first light-emitting surface D13 is located between the focal plane 210 and the second light-emitting surface D14.
  • the location of the contact position P between the second light-incident surface D12 and the first light-emitting surface D13 of the present invention is between the focal plane 210 and the second light-emitting surface D14, and may be located in the lens module
  • the position above the focal point 21 of 2 ie, the area above the optical axis 22
  • this contact position P is relative to the cut-off line.
  • the contact position P of the second light-incident surface D12 and the first light-emitting surface D13 of the present invention may also be located above the focal point 21 of the lens module 2 and on the central axis of the first light-emitting surface 110 of the first light-emitting unit 11 In the range below 110a, the region closer to the optical axis 22 of the lens is preferred; that is, the contact position P can be located between the optical axis 22 and the central axis 110a of the first light-emitting surface 110, or located at the center of the lens module 2.
  • the focal point 21 is above and close to the lower reference surface 110c of the first light-emitting unit 11, wherein the lower reference surface 110c is close to the edge of the first light-emitting surface 110 or on the edge of the first light-emitting surface 110; in addition, the lower reference surface of the first light-emitting unit 11
  • the surface 110c and the surface of the lower edge side 110b of the first light emitting unit 11 may overlap and be coplanar.
  • FIG. 10 and FIG. 11 are respectively a cross-sectional schematic diagram and a schematic diagram of the optical path of the optical module of the lighting device according to the second embodiment of the present invention.
  • FIG. 1 to FIG. 9 As shown in the figure, the illuminating device Z of this embodiment and the illuminating device Z of the above-mentioned first embodiment operate in a similar manner to the same elements, which will not be repeated here. It is worth noting that in this embodiment, the first The light guide unit D1 may further include a third light-emitting surface D15 and a connecting surface D16.
  • the third light-emitting surface D15 is connected to the second light-emitting surface D14, and the connecting surface D16 is connected to the first light-emitting surface D13 and the third light-emitting surface D15;
  • the first light guide unit D1 of the present invention further includes a third light emitting surface D15 and a connecting surface D16.
  • One end of the third light emitting surface D15 can be connected to the second light emitting surface D14, the other end of the third light emitting surface D15 can be connected to one end of the connecting surface D16, and the other end of the connecting surface D16 can be connected to the first light emitting surface D13.
  • a second predetermined included angle A2 may be formed between the connecting surface D16 and the first light-emitting surface D13, the second predetermined included angle A2 may be between 40 degrees and 60 degrees, and the second predetermined included angle A2 may preferably be 48 degrees.
  • the intersection of the connecting surface D16 and the third light-emitting surface D15 is located between the contact position P of the second light-incident surface D12 and the first light-emitting surface D13 and the second light-emitting surface D14.
  • the first light beam L1 after the first light beam L1 is generated on the light-emitting surface 110 of the first light source, a part of the first light beam L1 will not be refracted by the optical module D, but directly enter the lens module 2, and another part of the first light beam L1 will pass through the optical module D.
  • the refraction of the first light guide unit D1 (as shown in FIG. 11, the light-emitting point in the figure is the light-emitting point closer to the optical axis 22 on the light-emitting surface 110 of the first light source) changes its route, and then enters the lens module 2.
  • first light beam L1 will be first refracted through the first light incident surface D11 and projected onto the first light emitting surface D13, the third light emitting surface D15, and the second light emitting surface D14, and then pass through The first light-emitting surface D13, the third light-emitting surface D15, and the second light-emitting surface D14 produce a second refraction and are emitted to the outside of the first light guide unit D1.
  • the first light beam L1 refracted by the first light-emitting surface D13, the second light-emitting surface D14, and the third light-emitting surface D15 is projected on the test screen through the lens module 2 to form a light pattern (ie, a low-beam light type, such as
  • the edge (ie, the cut-off line of light and dark) shown in FIG. 9 may fall in a fixed angle range below the HV point, and the fixed angle range may be above -0.57° ⁇ 0.3°, but the present invention is not limited thereto.
  • FIGS. 12 and 13 are respectively a cross-sectional schematic diagram and a schematic diagram of an optical path of an optical module of a lighting device according to a third embodiment of the present invention. Please also refer to FIGS. 1 to 11. As shown in the figure, the illuminating device Z of this embodiment and the illuminating device Z of the foregoing embodiments operate in a similar manner to the same elements, and will not be repeated here. It is worth noting that in this embodiment, the second light emitting The surface D14 is inclined to the first light-incident surface D11.
  • the first light guide unit D1 further includes a plurality of third light-emitting surfaces D151-D153, and the plurality of third light-emitting surfaces D151-D153 are located on the first light-emitting surface D13 and the second light-emitting surface. Between D14, a plurality of third light-emitting surfaces D15 are connected to each other, and one of the third light-emitting surfaces D153 is connected to the first light-emitting surface D13, and the other third light-emitting surface D151 is connected to the second light-emitting surface D14.
  • the first light-emitting surface D13, the second light-emitting surface D14, and each of the third light-emitting surfaces D151 to D153 may have a planar structure, and the first light-emitting surface D13, the second light-emitting surface D14, and a plurality of third light-emitting surfaces D151-D153 The slopes of are different from each other, and in the order from the first light-emitting surface D13 to the second light-emitting surface D14, the slopes of the first light-emitting surface D13, the plurality of third light-emitting surfaces D151 to D153, and the second light-emitting surface D14 become more and more vibrating;
  • the first light-emitting surface D13, the second light-emitting surface D14, and each of the third light-emitting surfaces D151 to D153 may also have a curved structure, and the first light-emitting surface D13, the plurality of third light-emitting surfaces D151 to D153
  • the light exit surface of the first light guide unit D1 facing the lens module 2 of the present invention may be a continuous curved surface or an inclined surface structure.
  • the first light guide unit D1 may further include a plurality of third light emitting surfaces D151 to D153.
  • the plurality of third light-emitting surfaces D151 to D153 are connected to each other, one end of the third light-emitting surface D153 is connected to the first light-emitting surface D13, and one end of the third light-emitting surface D151 is connected to the second light-emitting surface D14.
  • the first light-emitting surface D13, the second light-emitting surface D14, and the plurality of third light-emitting surfaces D151 to D153 may be inclined surfaces with different slopes from each other, or curved surfaces with different curvatures from each other, but not limited thereto.
  • the first light beam L1 after the first light beam L1 is generated on the light-emitting surface 110 of the first light source, a part of the first light beam L1 will not be refracted by the optical module D, but will directly enter the lens module 2, and the other part of the first light beam L1 will pass through the optical module.
  • the refraction of the first light guide unit D1 of D (as shown in FIG. 13, the light-emitting point in the figure is the light-emitting point closer to the optical axis 22 on the light-emitting surface 110 of the first light source) changes the route, and then enters the lens module 2.
  • first light beam L1 will be first refracted through the first light incident surface D11 and projected onto the first light emitting surface D13, the second light emitting surface D14, and a plurality of third light emitting surfaces D151 to D153. , And then through the first light-emitting surface D13, the second light-emitting surface D14, and the plurality of third light-emitting surfaces D151 to D153 to produce a second refraction and emit to the outside of the first light guide unit D1.
  • the first light beam L1 refracted by the first light-emitting surface D13, the second light-emitting surface D14, and the plurality of third light-emitting surfaces D151 to D153 can pass through the lens module 2 to form a light pattern (ie, low beam) on the test screen.
  • the light type as shown in Figure 9
  • the edge ie, the cut-off line
  • the fixed angle range can be -0.57° ⁇ 0.3°, but the present invention is not limited to this .
  • FIGS. 14 to 22 are respectively an exploded schematic diagram, a cross-sectional schematic diagram, a front schematic diagram of a light source module, a schematic diagram of a first light path, a schematic diagram of a second light path, a schematic diagram of a third light path, and a high beam of the lighting device according to the fourth embodiment of the present invention.
  • the light type schematic diagram, the first three-dimensional schematic diagram of the supporting unit, and the second three-dimensional schematic diagram of the supporting unit please refer to FIGS. 1 to 13 together.
  • the illuminating device Z of this embodiment and the illuminating device Z of the foregoing embodiments operate in a similar manner to the same elements, and will not be repeated here.
  • the light source module 1 It further includes at least one second light-emitting unit 12, at least one second light-emitting unit 12 is close to at least one first light-emitting unit 11, at least one second light-emitting unit 12 has a second light-emitting surface 120, and the second light-emitting surface 120 It is coplanar with the light-emitting surface 110 of the first light source; wherein the lens module 2 has an optical axis 22 which is perpendicular to the light-emitting surface 120 of the second light source.
  • the light source module 1 of the present invention may further include at least one second light-emitting unit 12, and the second light-emitting unit 12 may be a light-emitting diode (LED). ), and the second light-emitting unit 12 may have a second light-emitting surface 120; wherein, in this embodiment, two second light-emitting units 12 are taken as an example, but not limited thereto.
  • the second light-emitting unit 12 may be a light-emitting diode (LED).
  • LED light-emitting diode
  • the second light-emitting unit 12 may have a second light-emitting surface 120; wherein, in this embodiment, two second light-emitting units 12 are taken as an example, but not limited thereto.
  • the plurality of first light emitting units 11 may be located above the plurality of second light emitting units 12, the second light emitting surface 120 and the first light emitting surface 110 may be located on the same plane or different planes, and the first light emitting unit 11 And the second light emitting unit 12 can be electrically and thermally connected to the metal substrate (as described later).
  • the first light-emitting unit 11 may be the light source of the low beam, that is, the light type formed by the projected light is a low-beam light type (or a first light type); the second light-emitting unit 12 may be a high-beam light
  • the light source, that is, the light type formed by the light projected by the second light-emitting unit 12 is a high beam light type (or a second light type), but it is not limited to this.
  • the lens module 2 may also have an optical axis 22 that passes through the focal point 21 of the lens module 2 and may be perpendicular to the second light source emitting surface 120, and the optical axis 22 may pass through the second light source emitting surface 120 and is close to The position of the light emitting surface 110 of the first light source.
  • the optical axis 22 corresponds to the light-emitting surface 120 of the second light source and is located in the middle position between the two sides of the second light-emitting unit 12, but it is not limited to this;
  • the optical axis 22 corresponds to the position between the light-emitting surfaces 120 of the two second light sources and is located in the middle position between the two second light-emitting units 12, but not Limited by this.
  • the focal point 21 of the lens module 2 is not on the light-emitting surface 110 of the first light source, and is located within the boundary E of the light-emitting surface 120 of the second light source (as shown in FIG. 16), or located on the second light-emitting unit 12 It is preferable that the light beam L2 is projected toward the lens module 2 and is closer to the first light-emitting unit 11.
  • the second light-emitting unit 12 when the second light-emitting unit 12 is applied to the optical module D of the first embodiment, after the second light-emitting surface 120 generates the second light beam L2, part of the second light beam L2 will not be refracted by the optical module D. While directly entering the lens module 2, another part of the second light beam L2 will be refracted by the first light guide unit D1 of the optical module D (as shown in FIG. 17, the light-emitting point in the figure only represents the light-emitting surface 120 of the second light source). One of the light-emitting points is closer to the first light-emitting unit 11) to change the route and enter the lens module 2 again.
  • the second light beam L2 will be first refracted through the second light-incident surface D12 and projected to the second light-emitting surface D14, and will be totally reflected on the second light-emitting surface D14 and be guided by the first light beam.
  • the upper edge surface D17 of the light unit D1 is emitted to the outside of the first light guide unit D1.
  • the second light beam L2 refracted by the upper edge surface D17 of the first light guide unit D1 is projected to the test screen via the exit surface 201 of the lens module 2, the light pattern formed by the test screen (as shown in FIG. 20) (Shown) can make up for the dark shadow area between the light pattern formed by the low beam LED and the light pattern formed by the high beam LED (the shadow area W shown in FIG. 2).
  • the second light-emitting unit 12 when the second light-emitting unit 12 is applied to the optical module D of the second embodiment, after the second light beam L2 is generated on the light-emitting surface 120 of the second light source, part of the second light beam L2 will not be refracted by the optical module D. While directly entering the lens module 2, the other part of the second light beam L2 will be refracted by the first light guide unit D1 of the optical module D (as shown in FIG. Close to one of the light-emitting points of the first light-emitting unit 11) to change the route, and then enter the lens module 2 again.
  • the second light beam L2 will be first refracted through the second light-incident surface D12 and projected to the second light-emitting surface D14, and will be totally reflected on the second light-emitting surface D14 and be guided by the first light beam.
  • the upper edge surface D17 of the light unit D1 is emitted to the outside of the first light guide unit D1.
  • the second light beam L2 refracted by the upper edge surface D17 of the first light guide unit D1 is projected to the test screen via the exit surface 201 of the lens module 2, the light pattern formed by the test screen (as shown in FIG. 20) (Shown) can make up for the dark shadow area between the light pattern formed by the low beam LED and the light pattern formed by the high beam LED (the shadow area W shown in FIG. 2).
  • the second light-emitting unit 12 When the second light-emitting unit 12 is applied to the optical module D of the third embodiment, after the second light-emitting surface 120 generates the second light beam L2, part of the second light beam L2 will not be refracted by the optical module D. Enter the lens module 2 directly, and another part of the second light beam L2 will be refracted by the first light guide unit D1 of the optical module D (as shown in FIG. Change the route at a light-emitting point of the first light-emitting unit 11), and then enter the lens module 2 again.
  • the second light beam L2 will be first refracted through the second light-incident surface D12 and projected to the second light-emitting surface D14, and will be totally reflected on the second light-emitting surface D14 and be guided by the first light beam.
  • the upper edge surface D17 of the light unit D1 is emitted to the outside of the first light guide unit D1.
  • the second light beam L2 refracted by the upper edge surface D17 of the first light guide unit D1 is projected to the test screen via the exit surface 201 of the lens module 2, the light pattern formed by the test screen (as shown in FIG. 20) (Shown) can make up for the dark shadow area between the light pattern formed by the low beam LED and the light pattern formed by the high beam LED (the shadow area W shown in FIG. 2).
  • the focal point 21 of the lens module 2 is located within the boundary E of the light-emitting surface 120 of the second light source, or is located on the second light-emitting unit 12 In the area where the two light beams L2 are projected toward the lens module 2, when the area closer to the first light-emitting unit 11 is better, the brightest point of the light pattern formed by the second light-emitting unit 12 (high beam LED) will be at the origin ( That is, the HV point), the edge of the light pattern (ie, the cut-off line) formed by the first light-emitting unit 11 (low beam LED) can successfully correspond to the fixed angle range below the HV point, and the fixed angle range is -0.57° ⁇ 0.3°, the present invention is not limited to this; and, at the same time, it can also reduce when the low beam LED and the high beam LED are arranged oppositely, When there is a certain gap between 120), there will be a dark
  • the optical module D further includes a supporting unit D2, the center of the supporting unit D2 has an opening D200 penetrating the body, and the first light guide unit D1 is located in the opening D200; wherein, the supporting unit D2 and the first light guide unit D1 are single element.
  • the optical module D may further include a supporting unit D2, which can be transparent plastic or glass, if it is plastic, the material can be optical grade PC or PMMA, but the present invention is not limited to this.
  • the center of the supporting unit D2 has an opening D200 penetrating the body of the supporting unit D2, and the first light guide unit D1 may be located in the opening D200 of the supporting unit D2.
  • the supporting unit D2 and the first light guiding unit D1 may be separate components, or the supporting unit D2 and the first light guiding unit D1 may be a single component. Furthermore, as shown in FIG. 21 and FIG. 22, the supporting unit D2 may include a main body part D20, a first fixing part D21, and a second fixing part D22.
  • the main body D20 has an opening D200, an upper rib D201, and a lower rib D202.
  • the opening D200 is located between the upper rib D201 and the lower rib D202; and the first light guide unit D1 is disposed in the opening D200 and is located on the upper rib. Between the part D201 and the lower rib D202.
  • the first fixing part D21 and the second fixing part D22 can be symmetrically arranged on both sides of the main part D20, but the present invention is not limited to this.
  • the lighting device Z further includes a substrate module 3 and a plurality of fixing modules 4.
  • the substrate module 3 can be a metal substrate with both electrical and thermal conductivity characteristics, but it is not limited to this; the light source module 1 can Set on the base module 3.
  • the plurality of fixing modules 4 can be locking elements, such as screws, but not limited to this.
  • both sides of the supporting unit D2 may have perforations D210 and D220 respectively, that is, the first fixing member D21 and the second fixing member D22 have perforations D210 and D220 respectively. Therefore, each fixing module 4 passes through the corresponding through holes D210 and D220 and can be detachably connected to the substrate module 3 to fix the optical module D to the substrate module 3, and the optical module D covers the light source module 1.
  • FIGS. 23 to 25 are respectively a cross-sectional schematic diagram, a first optical path diagram, and a second optical path diagram of the optical module of the lighting device according to the fifth embodiment of the present invention.
  • FIGS. 1-22 are respectively a cross-sectional schematic diagram, a first optical path diagram, and a second optical path diagram of the optical module of the lighting device according to the fifth embodiment of the present invention.
  • the illuminating device Z of this embodiment and the illuminating device Z of the foregoing embodiments operate in a similar manner to the same elements, which will not be repeated here.
  • the optical module D It also includes a second light guide unit D3.
  • the second light guide unit D3 includes a third light entrance surface D31, a fourth light entrance surface D32, a fourth light exit surface D33, and a fifth light exit surface D34.
  • the third light entrance surface D31 is connected to The fourth light-incident surface D32, the fourth light-incident surface D32 and the third light-emitting surface D33 have a third predetermined included angle A3, the third predetermined included angle A3 is between 90 degrees and 150 degrees, and the fifth light exit surface D34 corresponds to The third light-incident surface D31; wherein, the third light-incident surface D31 is parallel to the second light-emitting surface 120, there is a third preset distance C3 between the third light-incident surface D31 and the second light-emitting surface 120, and the third preset Set the spacing C3 to be between 0.01 mm and 0.5 mm.
  • the optical module D of the present invention further includes a second light guide unit D3.
  • the material of the second light guide unit D3 can be transparent plastic or glass. If it is plastic, the material can be Optical grade PC or PMMA, but the present invention is not limited to this.
  • the second light guide unit D3 can be arranged in the opening D200 adjacent to the first light guide unit D1, and the second light guide unit D3 is connected to the lower rib D202 of the support unit D2; wherein, the second light guide unit D3 is connected to the lower rib D202 of the supporting unit D2.
  • the lower rib D202 may be a separate element, or the second light guide unit D3 and the lower rib D202 may be a single element.
  • the second light guiding unit D3 corresponds to the second light emitting surface 120 of the second light emitting unit 12, and the first light guiding unit D1 corresponds to the first light emitting surface 110 of the first light emitting unit 11; wherein, the second light guiding unit D3
  • the fourth preset distance C4 may be between 0.5 mm and 1.5 mm.
  • the fourth preset distance C4 may preferably be between 0.8 mm and 1.2 mm. Limited by this.
  • the second light guide unit D3 may have a third light-incident surface D31, a fourth light-incident surface D32, a fourth light-emitting surface D33, and a fifth light-emitting surface D34.
  • the third light-incident surface D31 faces the second light-emitting surface 120; wherein, preferably, the third light-incident surface D31 can be parallel to the second light-emitting surface 120, and the third light-incident surface D31 and the second light-emitting surface 120
  • the third light incident surface D31 may be approximately parallel to the second light source emitting surface 120, that is, the third light incident surface D31 may be inclined relative to the second light source emitting surface 120, and the third light incident surface D31 and the second light source
  • the light-emitting surfaces 120 may also have an included angle of 1 degree to 30 degrees (similar to the aforementioned first oblique included angle B1, which is not specifically shown here); wherein, the oblique direction of the third light-incident surface D31 may be the same as that of the first oblique angle B1.
  • the four light-emitting surfaces D33 are the same, and can also be opposite to the fourth light-emitting surface D33.
  • the fourth light incident surface D32 is connected to the fourth light output surface D33, and there may be a third predetermined included angle A3 between the fourth light incident surface D32 and the fourth light exit surface D33; wherein, the third predetermined included angle A3 may be between 90
  • the third predetermined included angle A3 is preferably between 100 degrees and 155 degrees, and the third predetermined included angle A3 is preferably 120 degrees.
  • the fourth light-emitting surface D34 corresponds to the third light-incident surface D31.
  • the third light-incident surface D31, the fourth light-incident surface D32, the fourth light-emitting surface D33, and the fifth light-emitting surface D34 may be smooth light-transmissive optical surface structures, but the fourth light-emitting surface D33 and the fifth light-emitting surface D33
  • the surface D34 may also be a matte surface or a non-smooth light-permeable optical surface structure.
  • the third predetermined included angle A3 is 90 degrees
  • the second light guide unit D3 may have only one light-emitting surface, that is, the fourth light-emitting surface D33 and the fifth light-emitting surface D34 are coplanar (the specific implementation is as the aforementioned first The embodiment is shown in FIG. 7 and is not specifically shown here).
  • the fourth light-emitting surface D33 may be a flat surface, or a folded surface structure such as an obtuse angle or a curved surface.
  • the first light beam L1 that has a relatively large angle generated on the light-emitting surface 110 of the first light source and cannot pass through the first light guide unit D1 can be refracted by the fourth light entrance surface D32 and enter the second light guide unit D3 (such as As shown in FIG. 24, the light-emitting point in the figure only represents a light-emitting point on the light-emitting surface 110 of the first light source that is closer to the second light-emitting unit 120). If the fourth light-emitting surface D33 and the fifth light-emitting surface D34 are foggy surfaces, the first light beam L1 entering the second light guide unit D3 can exit through the scattering of the fourth light-emitting surface D33 and the fifth light-emitting surface D34.
  • the second light guide unit D3 is projected to the lens module 2.
  • the first light beam L1 projected by the lens module 2 can be used to compensate and increase the brightness of the light-type after-light area formed by the low beam (compare the brightness of the after-light area Y in FIG. 9 with that of the after-light area Y in FIG. 1 Brightness, the brightness of the after-light area Y in FIG. 9 is significantly higher than that in FIG. 1, and the range of the after-light area is much wider than that in FIG. 1).
  • part of the second light beam L2 generated on the light-emitting surface 120 of the second light source is projected to the second light guide unit D3, and enters the second light guide unit D3 through the third light incident surface D31 (as shown in FIG. 25, FIG.
  • the luminous point in represents only one of the luminous sources on the luminous surface 120 of the second light source
  • the second light beam L2 can be projected to the lens module 2 through the refraction of the fourth light-emitting surface D33 and the fifth light-emitting surface D34.
  • the second light beam L2 projected by the lens module 2 can be used to fill the light pattern formed by the high beam, so that the light pattern formed by the high beam is more full.
  • the third light-incident surface D31 is parallel to the focal plane 210, and the focal plane 210 is located between the second light source emitting surface 120 and the fifth light-emitting surface D34; wherein the focal point 21 and the optical axis 22 are located on the second light-incident surface D12 And the fourth light-incident surface D32.
  • the focal plane 210 of the lens module 2 may be parallel to the third light incident surface D31 of the second light guide unit D3, but the focal plane 210 may also be approximately parallel to the third light incident surface of the second light guide unit D3 D31, that is, the included angle between the focal plane 210 and the third light-incident surface D31 may be 1 degree to 30 degrees (similar to the aforementioned first oblique included angle B1, which is not specifically shown here).
  • the second light guide unit D3 and the supporting unit D2 of the present invention may be a single integrally formed member, or may be two independent members.
  • Figures 26 to 29 are respectively a three-dimensional schematic diagram of an optical module, a cross-sectional schematic diagram of the optical module, a schematic diagram of the optical path of the optical module, and a schematic diagram of a low beam light type of the illumination device according to the sixth embodiment of the present invention.
  • the optical module D It also includes a reflecting unit D4 connected to the supporting unit D2.
  • the reflecting unit D4 has a reflecting surface D40.
  • the reflecting surface D40 and the first light source emitting surface 110 or the second light emitting surface 120 have a fourth predetermined angle A4,
  • the fourth predetermined included angle A4 is between 120 degrees and 150 degrees.
  • the optical module D of the illuminating device Z of the present invention may further include a reflection unit D4, which may be a mirror or other elements with reflection function.
  • the reflecting unit D4 may be disposed under the supporting unit D2, and two sides of the reflecting unit D4 are respectively connected to the first fixing member D21 and the second fixing member D22 of the supporting unit D2.
  • the reflecting unit D4 has a reflecting surface D40, and the reflecting surface D40 may correspond to the second light guide unit D3 and the lower rib D202.
  • the fourth predetermined included angle A4 may be between 120 degrees and 150 degrees. Degrees; Among them, the fourth predetermined included angle A4 may preferably be between 130 degrees and 140 degrees, and 135 degrees is the best, but the present invention is not limited to this.
  • the second light guide unit D3 may further include a sixth light-emitting surface D35, the sixth light-emitting surface D35 may be connected to the fifth light-emitting surface D34, and the sixth light-emitting surface D35 is connected to the fifth light-emitting surface D34.
  • the connection R of the five light-emitting surface D34 may be rounded, acute or right-angled. In this embodiment, rounded corners are taken as an example, but it is not limited thereto.
  • the sixth light-emitting surface D35 and the fifth light-emitting surface D34 may have a fifth predetermined included angle A5, and the fifth predetermined included angle A5 may be between 70 degrees and 110 degrees.
  • the lower rib D202 of the support unit D2 may also have an inner surface D2020 and an outer surface D2021 corresponding to the inner surface D2020.
  • the inner surface D2020 is connected to the third light incident surface D31 of the second light guide unit D3, and there may be a sixth predetermined included angle A6 between the inner surface D2020 and the third light incident surface D31, and the sixth predetermined included angle A6 may be between 70 degrees to 110 degrees.
  • the outer surface D2021 is connected to the sixth light emitting surface D35 of the second light guide unit D3. Therefore, the second light guide unit D3 and the lower rib D202 may be slightly L-shaped, but not limited to this.
  • the third light-incident surface D31, the third light-incident surface D32, and the inner surface D2020 may be smooth optical surfaces through which light can penetrate
  • the fourth light-emitting surface D33, the fifth light-emitting surface D34, and the sixth light-emitting surface D35 are
  • the outer surface D2021 may be a light-permeable matte structure, but the invention is not limited to this.
  • the first light guide unit D1 does not completely cover the light emitting surface 110 of the first light source (but the present invention is not limited to this)
  • the first light beam L1 projected by the light emitting surface 110 of the first light source wherein A part of the first light beam L1 (that is, the part close to the optical axis 22) will not be refracted by the first light guide unit D1, but will be projected to the third light entrance surface D31 and the fourth light entrance surface of the second light guide unit D3 D32 is projected to the inner surface D2020, and enters the second light guide unit D3 through the refraction of the third light-incident surface D31, the fourth light-incident surface D32 and the inner surface D2020 (as shown in FIG.
  • the light-emitting point in the figure It only represents one of the light-emitting points on the light-emitting surface 110 of the first light source, and is closer to the second light-emitting unit 12). If the fourth light-emitting surface D33, the fifth light-emitting surface D34, the sixth light-emitting surface D35 and the connection R are foggy surfaces, the first light beam L1 entering the second light guide unit D3 can pass through the fourth light-emitting surface D33, the fifth light-emitting surface D33, and the fifth light-emitting surface D35.
  • the light-emitting surface D34, the sixth light-emitting surface D35, and the junction R are scattered away from the second light guide unit D3, and are projected onto the reflective surface D40 of the reflective unit D4. Then, the first light beam L1 is projected to the lens module 2 through the reflection of the reflective surface D40, so that after the first light beam L1 is projected by the lens module 2, it can fall above the formed low beam light pattern, that is, fall on the HV point (I.e. the cut-off line of light and dark), which can further strengthen the after-light area Y (compare the brightness of the after-light area Y in Figure 29 with the brightness of the after-light area Y in Figure 9. The brightness of the after-light area Y in Figure 29 is significantly higher than Figure 9, and the range of the after-light area is far wider than that of Figure 9) the brightness of the light source; however, the present invention is not limited to this.
  • the second light guide unit D3 is located between the first light guide unit D1 and the reflective unit D4; wherein the reflective surface D40 has an upper side D400 close to the support unit D2 and a lower side D401 far away from the support unit D2 There is a fifth preset distance C5 between the upper side D400 and the optical axis 22, and the fifth preset distance C5 is between 1.5 mm and 10 mm.
  • the reflective surface D40 of the present invention has an upper side D400 and a lower side D401; wherein the upper side D400 and the lower side D401 refer to the edges or corners of the reflective surface D40 , Instead of referring to the planes on both sides of the reflective surface D40.
  • the upper side D400 can be located on the same reference plane (ie coplanar) with the first light source emitting surface 110, the second light emitting surface 120 or both, and the upper side D400 can also be placed to emit light with the first light source.
  • the surface 110 or the light-emitting surface 120 of the second light source is at a position of ⁇ 5 mm before and after the reference surface, but it is not limited to this.
  • the appearance of the reflecting unit D4 of the present invention may be quadrangular, and a predetermined distance is maintained between the upper side D400 and the outer surface D2021 of the lower rib D202 (a person skilled in the art to which the present invention belongs can be determined by the above-mentioned fifth prediction). Set the distance C5 to infer, and it will not be described in particular here), as shown in Figs. 26 and 27.
  • the appearance of the reflecting unit D4 of the present invention may also be polygonal, and there is no gap between the upper side D400 and the outer surface D2021; that is, the upper side D400 of the reflecting unit D4 is connected to the main part D20 and the outer surface D2021 , The first fixing member D21 and the second fixing member D22.
  • the present invention further proposes an optical module D according to the above-mentioned first to sixth embodiments, which can be applied to the above-mentioned lighting device Z.
  • the lighting device Z includes a light source module 1 and a lens module 2, and the optical module D is located in the light source.
  • the optical module D includes a first light guide unit D1
  • the first light guide unit D1 includes a first light entrance surface D11, a second light entrance surface D12, a first light exit surface D13, and a second light exit surface Surface D14
  • the first light-incident surface D11 is connected to the second light-incident surface D12
  • the second light-incident surface D12 and the first light-emitting surface D13 have a first predetermined included angle A1
  • the first predetermined included angle A1 is between 90 degrees ⁇ 150 degrees
  • the second light-emitting surface D14 corresponds to the first light-incident surface D11;
  • the first light-incident surface D11 is parallel to the first light-emitting surface 110, between the first light-incident surface D11 and the first light-emitting surface 110 It has a first preset distance C1, and the first preset distance C1 is between 0.01 mm and 0.5 mm.
  • the second light-emitting surface D14 is parallel to the first light-incident surface D11, and the second light-emitting surface D14 is a light-permeable structure with a fog surface or a non-smooth surface; wherein the thickness H of the first light guide unit D1 is between 0.2mm ⁇ 1.0mm.
  • the thickness H of the first light guide unit D1 may preferably be between 0.5 mm and 0.6 mm; wherein, the first predetermined included angle A1 may preferably be between 130 degrees and 140 degrees, more preferably 135 degrees; wherein, The first predetermined distance C1 may preferably be between 0.2 mm and 0.3 mm.
  • the first light guide unit D1 further includes a third light-emitting surface D15 and a connecting surface D16.
  • the third light-emitting surface D15 is connected to the second light-emitting surface D14, and the connecting surface D16 is connected to the first light-emitting surface D13 and the third light-emitting surface.
  • the second light-emitting surface D14 is inclined to the first light-incident surface D11, and the first light guide unit D1 further includes a plurality of third light-emitting surfaces D151 to D153, and the plurality of third light-emitting surfaces D151 to D153 are located on the first light-emitting surface.
  • a plurality of third light-emitting surfaces D15 are connected to each other, and one of the third light-emitting surfaces D153 is connected to the first light-emitting surface D13, and the other third light-emitting surface D151 is connected to the second light-emitting surface D14; where each third light-emitting surface D15 is a planar structure, and the slopes of the multiple third light-emitting surfaces D15 are different from each other, or each third light-emitting surface D15 is a curved structure, and the plurality of third light-emitting surfaces D15 The curvatures are different from each other.
  • the optical module D may further include a supporting unit D2 and a second light guide unit D3.
  • the supporting unit D2 has an opening D200 penetrating the body; the second light guide unit D3 is disposed in the opening D200 adjacent to the first light guide unit D1, and the second light guide unit D3 includes a third light incident surface D31 and a fourth light incident surface D31.
  • the third light-incident surface D31 is connected to the fourth light-incident surface D32. There is a third predetermined angle between the fourth light-incident surface D32 and the fourth light-emitting surface D33.
  • the third predetermined included angle A3 is between 90 degrees and 150 degrees
  • the fifth light-emitting surface D34 corresponds to the third light-incident surface D31; wherein, there is a fourth light guide unit D3 and the first light guide unit D1.
  • the preset distance C4, the fourth preset distance C4 is between 0.5 mm and 1.5 mm.
  • the optical module D further includes a reflecting unit D4 connected to the supporting unit D2, the reflecting unit D4 has a reflecting surface D40, and a fourth predetermined angle A4 is formed between the reflecting surface D40 and the light emitting surface 110 of the first light source.
  • the fourth predetermined included angle A4 is between 120 degrees and 150 degrees.
  • the second light guide unit D3 is located between the first light guide unit D1 and the reflective unit D4; wherein the reflective surface D40 has an upper side D400 close to the support unit D2 and a lower side D401 far away from the support unit D2 There is a fifth preset distance C5 between the upper side D400 and the optical axis 22, and the fifth preset distance C5 is between 1.5 mm and 10 mm.
  • the angle between the first light incident surface D11 and the second light incident surface D12 may be an acute angle, a right angle or an obtuse angle
  • the third light incident surface D31 and the fourth light incident surface D31 The included angle between D32 can also be an acute angle, a right angle or an obtuse angle, but the present invention is not limited to this.
  • FIGS. 30 to 35 are respectively a three-dimensional schematic diagram of a lighting device according to a seventh embodiment of the present invention, a first cross-sectional diagram of an optical module, a second cross-sectional diagram of an optical module, a first optical path diagram, a second optical path diagram, and optical
  • the third cross-sectional schematic diagram of the module please also refer to Figure 1 to Figure 27.
  • the seventh embodiment of the present invention provides a lighting device Z, which includes a light source module 1, a lens module 2, and an optical module D.
  • the light source module 1 includes at least one first light emitting unit 11, and the at least one first light emitting unit 11 has a first light source light emitting surface 110.
  • the lens module 2 corresponds to at least one first light emitting unit 11.
  • the optical module D is located between the light source module 1 and the lens module 2.
  • the optical module D includes a first light guide unit D1, and the first light guide unit D1 includes a first light incident surface D11, a second light incident surface D12, and a first light exit surface D13 and the second light-emitting surface D14, the first light-incident surface D11 is connected to the second light-incident surface D12, the second light-incident surface D12 and the first light-emitting surface D13 have a first predetermined included angle A1, a first predetermined included angle A1 can be between 40 degrees and 60 degrees, and the second light-emitting surface D14 corresponds to the second light-incident surface D12; wherein, the first light-incident surface D11 is parallel to the first light-emitting surface 110, and the first light-incident surface D11 is connected to the first light-emitting surface 110.
  • the lens module 2 has a focal point 21 and a focal length.
  • the lens module 2 defines a focal plane 210 with the focal point 21.
  • the focal plane 210 is parallel to the light-emitting surface 110 of the first light source.
  • the incident surface 200 of the lens module 2 and the light-emitting surface 110 of the first light source are parallel to each other.
  • the distance between them is greater than the focal length of the lens module 2; wherein, there is a second preset distance C2 between the focal plane 210 and the first light source emitting surface 110, and the second preset distance C2 is between 0.2mm and 5mm, where 0.5mm-1.5mm is preferred, and 1.2mm is more preferred, but the present invention is not limited to this.
  • the difference between the lighting device Z provided by this embodiment and the lighting device Z of the foregoing first embodiment is that the optical module D of the lighting device Z of this embodiment may include The first light guide unit D1, the first light guide unit D1 includes a first light incident surface D11, a second light incident surface D12, a first light output surface D13, and a second light output surface D14.
  • the first light guide unit D1 can be a parallelogram structure or a quadrilateral structure, and a first predetermined included angle A1 can be formed between the second light incident surface D12 and the first light exit surface D13; wherein, the first predetermined included angle A1 can be between From 40 degrees to 60 degrees, the first predetermined included angle A1 may preferably be 45 degrees.
  • the first light incident surface D11 may be parallel to the first light source emitting surface 110, or the first light incident surface D11 is approximately parallel to the first light source emitting surface 110 and has a distance of 1 degree to from the first light source emitting surface 110. An included angle of 30 degrees.
  • the first light incident surface D11 may be an optical plane, but the present invention is not limited to the first light incident surface D11 being a plane.
  • the first light incident surface D11 may also be a curved surface or a concave-convex surface.
  • the lens module 2 may have a focal point 21 and a focal length.
  • the focal point 21 is not on the light-emitting surface 110 of the first light source, and the light located within the boundary E of the light-emitting surface 120 of the second light source or located in the second light-emitting unit 12 is emitted toward the lens module 2
  • the area closer to the first light-emitting unit 11 is better (as shown in the foregoing fourth embodiment and FIG. 32), and the focal length of the lens module 2 can be between the incident surface 200 of the lens module 2 and the focal point 21 The distance between.
  • the focal plane 210 may be parallel to the light-emitting surface 110 of the first light source, as shown in FIG.
  • the focal plane 210 is approximately parallel to the light-emitting surface 110 of the first light source, as shown in FIG. There may also be an included angle of 1 degree to 30 degrees (similar to the aforementioned first inclined included angle B1, as shown in FIG. 6, which is not specifically labeled here).
  • the distance between the incident surface 200 of the lens module 2 and the light-emitting surface 110 of the first light source may be greater than the focal length of the lens module 2, but is not limited to this; that is, the focal plane 210 and the light-emitting surface 110 of the first light source are separated
  • the lighting device Z of the present invention projects a light beam
  • the first light guide unit D1 does not completely cover the light-emitting surface 110 of the first light source (the present invention is not limited to this)
  • the first light-emitting unit 11 passes Of the first light beam L1 generated by the light-emitting surface 110 of the first light source, a part of the first light beam L1 (that is, the part far away from the optical axis 22 of the lens) will not be refracted by the optical module D, but directly enters the lens module 2.
  • the light-emitting point of the shaft 22 changes its route through the refraction of the first light guide unit D1 of the optical module D (as shown in Figure 33 and Figure 34), and then enters the lens module 2 to make another part of the first light beam L1 After being projected by the lens module 2, it can fall on the edge of the formed light pattern (that is, the cut-off line), and fall on a fixed angle range below the HV point.
  • the fixed angle range can be -0.57° ⁇ 0.3° , But the present invention is not limited to this.
  • the path traveled by the first light beam L1 passing through another part of the first light guide unit D1 can be roughly divided into two different paths, which can be a total reflection path or a non-total reflection path, that is, the other part
  • the first light beam L1 can be divided into a first light beam L11 belonging to a total reflection path and a first light beam L12 belonging to a non-total reflection path.
  • FIG. 33 only marks the first light beam L11 of the total reflection path, and the other unmarked light beams are L12. As shown in FIG.
  • the first light beam L11 is first projected from the light-emitting surface 110 of the first light source to the first light-incident surface D11 in the total reflection path, and enters the first light-incident surface D11 through the first refraction of the first light-incident surface D11.
  • the light guide unit D1 After the light guide unit D1, it passes through the first total reflection of the second light-emitting surface D14 and the second total reflection of the second light-incident surface D12, and finally passes through the second refraction of the first light-emitting surface D13 to emit to the A light guide unit D1 outside.
  • the first light beam L11 generated by the light-emitting surface 110 of the first light source will undergo two refractions and two total reflections before the first light beam L11 leaves the first light guide unit D1.
  • the first light beam L11 refracted by the first light-emitting surface D13 is projected by the lens module 2 and formed on the test screen.
  • the fixed angle range below the HV point, the fixed angle range may be -0.57° ⁇ 0.3°, but the present invention is not limited to this. What needs to be explained is that the light falling on the cut-off line of light and dark needs to undergo two refractions and two total reflections.
  • the first light beam L12 is first projected from the light-emitting surface 110 of the first light source to the first light-incident surface D11 and the second light-incident surface D12 in the path of non-total reflection, and then passes through the first light-incident surface D11 and the second light-incident surface D12. After the first refraction of the surface D11 and the second light-incident surface D12 enters the first light guide unit D1, it is emitted to the first light guide unit through the second refraction of the first light-emitting surface D13 and the second light-emitting surface D14 Outside of D1.
  • the cut-off line of the light and dark will fall within a fixed angle range below the HV point.
  • the fixed angle range may be -0.57° ⁇ 0.3°, but the present invention is not limited to this.
  • first light-incident surface D11 may be parallel to the first light-emitting surface D13
  • second light-incident surface D12 may be parallel to the second light-emitting surface D14
  • the thickness H of the first light guide unit D1 may be between 0.2 mm and 1.0mm
  • the thickness H of the first light guide unit D1 may preferably be between 0.5mm and 0.6mm.
  • the first light-incident surface D11 and the first light-emitting surface D13 may be parallel to each other.
  • the first light-incident surface D11 may also be approximately parallel to the first light-emitting surface D13, and have a second inclination angle B2 of 1 to 15 degrees with the first light-emitting surface D13.
  • the second light-incident surface D12 and the second light-emitting surface D14 may be parallel to each other, but the second light-incident surface D12 may also be approximately parallel to the second light-emitting surface D14, and the distance between the second light-incident surface D12 and the second light-emitting surface D14 is 1 to 15 degrees.
  • a fourth oblique angle B4 of 35 degrees to 55 degrees can be formed between the second light incident surface D12 and the optical axis 22, wherein the fourth oblique included angle B4 is preferably 40 degrees to 50 degrees, and 45 degrees Is the best. Therefore, the first light guide unit D1 may be a parallelogram or a quadrilateral.
  • the contact position P of the second light-incident surface D12 and the first light-emitting surface D13 may be located between the optical axis 22 of the lens module 2 and the central axis 110a of the first light-emitting surface 110 of the first light-emitting unit 11.
  • the location of the contact position P between the second light-incident surface D12 and the first light-emitting surface D13 of the present invention is between the optical axis 22 and the central axis 110a, that is, the area above the optical axis 22 .
  • this contact position P corresponds to the position of the cut-off line, wherein the contact position P is preferably located near the optical axis 22 of the lens module 2.
  • the contact position P of the second light-incident surface D12 and the first light-emitting surface D13 of the present invention may also be located above the focal point 21 of the lens module 2 and between the range below the central axis 110a of the first light-emitting surface 110 ; That is, the contact position P may be located between the optical axis 22 and the central axis 110a of the first light-emitting surface 110, wherein a position closer to the optical axis 22 is preferred, or the contact position P may be located above the optical axis 22 and close to the first
  • the surfaces of the lower edge side 110b of a light emitting unit 11 overlap and are coplanar.
  • FIGS. 36 and 37 are respectively an exploded schematic diagram and a schematic diagram of a light path of the lighting device according to the eighth embodiment of the present invention. Please also refer to FIGS. 1 to 35. As shown in the figure, the illuminating device Z of this embodiment and the illuminating device Z of the seventh embodiment described above operate in a similar manner to the same elements, which will not be repeated here.
  • the light source module 1 further includes at least one second light-emitting unit 12, at least one second light-emitting unit 12 is close to at least one first light-emitting unit 11, at least one second light-emitting unit 12 has a second light-emitting surface 120, and the second light source emits light
  • the surface 120 is coplanar with the light-emitting surface 110 of the first light source, but the invention is not limited thereto; wherein, the lens module 2 has an optical axis 22 which is perpendicular to the light-emitting surface 120 of the second light source.
  • the light source module 1 of the present invention may further include at least one second light-emitting unit 12, and the second light-emitting unit 12 may be a light-emitting diode (LED). ), and the second light-emitting unit 12 may have a second light-emitting surface 120; wherein, in this embodiment, two second light-emitting units 12 are taken as an example, but not limited thereto.
  • the second light-emitting unit 12 may be a light-emitting diode (LED).
  • LED light-emitting diode
  • the second light-emitting unit 12 may have a second light-emitting surface 120; wherein, in this embodiment, two second light-emitting units 12 are taken as an example, but not limited thereto.
  • the plurality of first light-emitting units 11 may be located above the plurality of second light-emitting units 12, and the second light-emitting surface 120 and the first light-emitting surface 110 are located on the same horizontal plane, but the present invention is not limited to this; wherein, The first light-emitting unit 11 may be the light-emitting source of the low beam, and the second light-emitting unit 12 may be the light-emitting source of the high beam, but it is not limited to this.
  • the lens module 2 may also have an optical axis 22, which may pass through the center or near the center of the lens module 2, and the optical axis 22 may pass through the focal point 21 of the lens module 2 and be perpendicular to the second light source emitting surface 120, the optical axis 22
  • the light-emitting surface 120 of the second light source can pass through and is closer to the light-emitting surface 110 of the first light source, but the present invention is not limited to that the optical axis 22 can be perpendicular to the light-emitting surface 120 of the second light source.
  • the optical axis 22 corresponds to the light-emitting surface 120 of the second light source and is located in the middle position between the two sides of the second light-emitting unit 12; and when the second light-emitting unit 12 When the number is two, the optical axis 22 corresponds to the position between the light-emitting surfaces 120 of the two second light sources and is located in the middle position between the two second light-emitting units 12.
  • the lens module 2 After a part of the second light beam L2 and the other part of the second light beam L2 are emitted by the lens module 2, they will form the light pattern of the high beam, and the brightest point of the light pattern formed by the high beam LED will be at the origin ( That is HV) on.
  • the edge of the light pattern (ie, the cut-off line) formed by the first light-emitting unit 11 (ie, the low beam LED) can successfully correspond to the HV point (-0.57° ⁇ 0.3°), and at the same time, it can also reduce the low beam.
  • the optical module D further includes a support unit D2, the center of the support unit D2 has an opening D200, and the first light guide unit D1 is located in the opening D200; wherein the support unit D2 and the first light guide unit D1 are a single element.
  • the optical module D may further include a supporting unit D2, and the supporting unit D2 may be made of a transparent or opaque material.
  • the first light guide unit D1 may be located in the opening D200 of the support unit D2.
  • the supporting unit D2 and the first light guide unit D1 may be independent elements or a single element.
  • the lighting device Z further includes a substrate module 3 and a plurality of fixing modules 4.
  • the substrate module 3 may be a metal substrate, but not limited to this; the light source module 1 may be disposed on the substrate module 3.
  • the plurality of fixing modules 4 can be locking elements, such as screws, but not limited to this.
  • both sides of the supporting unit D2 may have perforations D210 and D220 respectively. Therefore, each fixing module 4 passes through the corresponding through holes D210 and D220 and can be detachably connected to the substrate module 3 to fix the optical module D to the substrate module 3, and the optical module D covers the light source module 1.
  • the optical module D may further include a second light guide unit D3, and the second light guide unit D3 includes a third light incident surface D31, a fourth light incident surface D32, and a fourth light exit surface.
  • D33 and the fifth light-emitting surface D34 the third light-incident surface D31 is connected to the fourth light-incident surface D32, the fourth light-incident surface D32 and the fourth light-emitting surface D33 have a third predetermined angle A3, the third predetermined clip The angle A3 is between 90 degrees and 150 degrees, and the fifth light-emitting surface D34 corresponds to the third light-incident surface D31; wherein, the third light-incident surface D31 is parallel to the second light source emitting surface 120, and the third light-incident surface D31 is connected to the second light-emitting surface 120.
  • the optical module D may further include a reflecting unit D4 connected to the supporting unit D2, the reflecting unit D4 may have a reflecting surface D40, the reflecting surface D40 and the first light emitting surface 110 or the second light emitting surface 120 There may be a fourth predetermined included angle A4 between, and the fourth predetermined included angle A4 may be between 120 degrees and 150 degrees.
  • a reflecting unit D4 connected to the supporting unit D2
  • the reflecting unit D4 may have a reflecting surface D40, the reflecting surface D40 and the first light emitting surface 110 or the second light emitting surface 120
  • There may be a fourth predetermined included angle A4 between, and the fourth predetermined included angle A4 may be between 120 degrees and 150 degrees.
  • the specific embodiments are as shown in the aforementioned sixth embodiment and FIGS. 26 to 28, and are not specifically described here.
  • the second light guide unit D3 is located between the first light guide unit D1 and the reflective unit D4; wherein the reflective surface D40 may have an upper side D400 close to the support unit D2 and a lower side far away from the support unit D2 D401, there may be a fifth preset distance C5 between the upper side D400 and the optical axis 22, and the fifth preset distance C5 may be between 1.5 mm and 10 mm.
  • the specific embodiments are as shown in the aforementioned sixth embodiment and FIGS. 26 to 28, and are not specifically described here.
  • the third light-incident surface D31 is parallel to the focal plane 210, and the focal plane 210 is located between the second light source emitting surface 120 and the fifth light-emitting surface D34; wherein, the focal point 21 and the optical axis 22 are located on the second light-incident surface Between 120 and the fifth light incident surface D34.
  • the specific implementation is similar to the foregoing fifth embodiment, and is not specifically described here.
  • the present invention further provides an optical module D according to the above-mentioned sixth embodiment to the eighth embodiment, which can be applied to the lighting device Z.
  • the lighting device Z includes a light source module 1 and a lens module 2, and the optical module D is located in the light source module.
  • the optical module D includes a first light guide unit D1
  • the first light guide unit D1 includes a first light entrance surface D11, a second light entrance surface D12, a first light exit surface D13, and a second light exit surface D14
  • the first light-incident surface D11 is connected to the second light-incident surface D12
  • the second light-incident surface D12 and the first light-emitting surface D13 have a first predetermined included angle A1
  • the first predetermined included angle A1 may be between 40 degrees ⁇ 60 degrees
  • the second light-emitting surface D14 corresponds to the second light-incident surface D12
  • the first light-incident surface D11 is parallel to the first light-emitting surface 110, between the first light-incident surface D11 and the first light-emitting surface 110
  • There is a first predetermined distance C1 and the first predetermined distance C1 may be between 0.01 mm and 0.5 mm.
  • first light incident surface D11 is parallel to the first light output surface D13
  • second light incident surface D12 is parallel to the second light output surface D14; wherein the thickness H of the first light guide unit D1 may be between 0.2 mm and 1.0 mm .
  • the thickness H of the first light guide unit D1 may preferably be between 0.5 mm and 0.6 mm; wherein, the first predetermined included angle A1 may preferably be 45 degrees; wherein, the first predetermined distance C1 may preferably be between 0.2 mm ⁇ 0.3mm.
  • the optical module D may further include a supporting unit D2 and a second light guide unit D3.
  • the supporting unit D2 has an opening D200 penetrating the body; the second light guide unit D3 is disposed in the opening D200 adjacent to the first light guide unit D1, and the second light guide unit D3 includes a third light incident surface D31 and a fourth light incident surface D31.
  • the third light-incident surface D31 is connected to the fourth light-incident surface D32. There is a third predetermined angle between the fourth light-incident surface D32 and the fourth light-emitting surface D33.
  • the third predetermined included angle A3 is between 90 degrees and 150 degrees
  • the fifth light-emitting surface D34 corresponds to the third light-incident surface D31; wherein, there is a fourth light guide unit D3 and the first light guide unit D1.
  • the preset distance C4, the fourth preset distance C4 is between 0.5 mm and 1.5 mm.
  • the optical module D may further include a reflecting unit D4, the reflecting unit D4 is connected to the supporting unit D2, the reflecting unit D4 may have a reflecting surface D40, and there may be a fourth predetermined clip between the reflecting surface D40 and the first light emitting surface 110 Angle A4, the fourth predetermined included angle A4 may be between 120 degrees and 150 degrees.
  • the second light guide unit D3 is located between the first light guide unit D1 and the reflective unit D4; wherein the reflective surface D40 may have an upper side D400 close to the support unit D2 and a lower side far away from the support unit D2 D401, there may be a fifth preset distance C5 between the upper side D400 and the optical axis 22, and the fifth preset distance C5 may be between 1.5 mm and 10 mm.
  • the angle between the first light-incident surface D11 and the second light-incident surface D12 may be an acute angle, a right angle, or an obtuse angle, but the present invention does not use this Is limited.
  • the lighting device Z and the optical module D provided by the present invention can pass "the optical module D is located between the light source module 1 and the lens module 2, and the optical module D includes a first light guide unit D1,
  • the first light guide unit D1 includes a first light entrance surface D11, a second light entrance surface D12, a first light exit surface D13, and a second light exit surface D14.
  • the first light entrance surface D11 is connected to the second light entrance surface D12.
  • the first light-incident surface D11 is parallel to the first light-emitting surface 110, and there is a first predetermined distance C1 between the first light-incident surface D11 and the first light-emitting surface 110, and the first predetermined distance C1 is between 0.01 mm and 0.5. mm",
  • the lens module 2 has a focal point 21 and a focal length.
  • the lens module 2 defines a focal plane 210 with the focal point 21.
  • the focal plane 210 is parallel to the light emitting surface 110 of the first light source, and the incident surface 200 of the lens module 2 and the first light source emit light.
  • the distance between the surfaces 110 is greater than the focal length of the lens module 2" and "the focal plane 210 and the first light source emitting surface 110 have a second preset distance C2, and the second preset distance C2 is between 0.2mm and 5mm"
  • the illuminating device Z and the optical module D provided by the present invention can pass "the optical module D is located between the light source module 1 and the lens module 2, and the optical module D includes a first light guide unit D1,
  • the first light guide unit D1 includes a first light entrance surface D11, a second light entrance surface D12, a first light exit surface D13, and a second light exit surface D14.
  • the first light entrance surface D11 is connected to the second light entrance surface D12.
  • the first predetermined included angle A1 between the light incident surface D12 and the first light exit surface D13 there is a first predetermined included angle A1 between the light incident surface D12 and the first light exit surface D13, the first predetermined included angle A1 is between 40 degrees and 60 degrees, and the second light exit surface D14 corresponds to the second light incident surface D12 "
  • the first light-incident surface D11 is parallel to the first light-emitting surface 110, and there is a first predetermined distance C1 between the first light-incident surface D11 and the first light-emitting surface 110, and the first predetermined distance C1 is between 0.01 mm and 0.5. mm”
  • the lens module 2 has a focal point 21 and a focal length.
  • the lens module 2 defines a focal plane 210 with the focal point 21.
  • the focal plane 210 is parallel to the light emitting surface 110 of the first light source, and the incident surface 200 of the lens module 2 and the first light source emit light.
  • the distance between the surfaces 110 is greater than the focal length of the lens module 2" and "the focal plane 210 and the first light source emitting surface 110 have a second preset distance C2, and the second preset distance C2 is between 0.2mm and 5mm"
  • the lighting device Z and the optical module D provided by the present invention adopt the above-mentioned technical solution and utilize the structural arrangement of the first light guide unit D1 to improve the light supplement effect of the low beam LED lamp, so as to make the LED lighting
  • the size of the module can continue to be miniaturized, so that when the brightest point of the light pattern formed by the high beam LED is at the origin (ie HV) or meets the legal requirements, the low beam LED
  • the edge of the formed light pattern (that is, the cut-off line) can successfully correspond to -0.57° ⁇ 0.3° below the HV point, and at the same time, it can also reduce the light emission when the low beam LED and the high beam LED are arranged oppositely.
  • there is a certain gap between the faces there will be a dark area between the low beam light type and the high beam LED light type.

Abstract

一种照明装置(Z)及光学模块(D),该照明装置(Z)包括光源模块(1)、透镜模块(2)以及光学模块(D)。光源模块(1)包括具有第一光源发光面(110)的第一发光单元(11)。光学模块(D)包括第一导光单元(D1),第一导光单元(D1)包括第一入光面(D11)、第二入光面(D12)、第一出光面(D13)以及第二出光面(D14),第二入光面(D12)与第一出光面(D13)之间具有第一预定夹角(A1),第一预定夹角(A1)介于90度~150度;其中,第一入光面(D11)与第一光源发光面(110)之间具有第一预设间距(C1),第一预设间距(C1)介于0.01mm~0.5mm。透镜模块(2)具有焦点(21)以及焦距,透镜模块(2)以焦点(21)定义出焦平面(210),且透镜模块(2)的入射面(200)与第一光源发光面(110)之间的距离大于透镜模块(2)的焦距。焦平面(210)与第一光源发光面(110)之间具有第二预设间距(C2),第二预设间距(C2)介于0.2mm~5mm。该照明装置(Z)及光学模块(D)能起到补光的功效。

Description

照明装置及光学模块 技术领域
本发明涉及一种照明装置及光学模块,尤其涉及一种用于远近光灯的照明系统,具有近光灯的补光的照明装置及光学模块。
背景技术
在现有的投射式的照明装置下,当发光二极管(Light-emitting diode,LED)的光源相对紧密排列时,形成近光灯LED呈一列排列以及远光灯LED呈一列排列。而在近光灯LED与远光灯LED相对排列时,两者发光面之间的间距通常介于0.3mm~0.7mm之间;因此,近光灯所投射出的光束所形成的光型与远光灯所投射出的光束所形成的光型之间,会存在以下的问题:
一、在透镜较小的情况时(直径大约<5cm),当近光灯LED所形成的光型的边缘(即明暗截止线)对应到-0.57°时,远光灯LED所形成的光型的亮区会朝上偏离,导致远光灯LED所形成的光型的最亮点(即hot spot)不在原点(即HV点)上,而无法符合法规(如欧规UN ECE R112或R113)要求;或是当远光灯LED所形成的光型的最亮点(即hot spot)对应到原点(即HV点)时,近光灯LED的所形成的光型的边缘(即明暗截止线)无法对应到-0.57°时而无法符合法规(如欧规UN ECE R112或R113)的要求,即如图1所示。
二、如图2所示,当近光灯LED与远光灯LED相对排列时,两者发光面之间具有一定的间隙时,如间隙介于0.3mm~0.7mm之间,因此,近光灯LED的所形成的光型与远光灯LED所形成的光型之间,会有暗影区W(即亮度严重不足)的存在。
故,如何通过结构设计的改良,如何克服上述的缺陷,已成为本领域所欲解决的重要课题之一。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种照明装置及光学模块。
为了解决上述的技术问题,本发明所采用的其中一技术方案是提供一种照明装置, 包括光源模块、透镜模块以及光学模块。光源模块包括至少一个第一发光单元,至少一个所述第一发光单元具有第一光源发光面。透镜模块对应于至少一个所述第一发光单元。光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于90度~150度,所述第二出光面对应于所述第一入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。其中,所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距;其中,所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm。
为了解决上述的技术问题,本发明所采用的另外一技术方案是提供一种照明装置,包括光源模块、透镜模块以及光学模块。光源模块包括至少一个第一发光单元,至少一个所述第一发光单元具有第一光源发光面。透镜模块对应于至少一个所述第一发光单元。光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于40度~60度,所述第二出光面对应于所述第二入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。其中,所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距;其中,所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm。
为了解决上述的技术问题,本发明所采用的另外再一技术方案是提供一种光学模块,适用于照明装置,所述照明装置包括光源模块与透镜模块,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预 定夹角介于90度~150度,所述第二出光面对应于所述第一入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。
为了解决上述的技术问题,本发明所采用的另外又一技术方案是提供一种光学模块,适用于照明装置,所述照明装置包括光源模块与透镜模块,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于40度~60度,所述第二出光面对应于所述第二入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。
本发明的其中一有益效果在于,本发明所提供的照明装置及光学模块,能通过“光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于90度~150度,所述第二出光面对应于所述第一入光面”、“所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm”、“所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距”以及“所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm”的技术方案,以起到补光的功效。
本发明的另外一有益效果在于,本发明所提供的照明装置及光学模块,能通过“光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于40度~60度,所述第二出光面对应于所述第二入光面”、“所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm”、“所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源 发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距”以及“所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm”的技术方案,以起到补光的功效。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为现有照明装置的其中一种的光型示意图。
图2为现有照明装置的另外一种的光型示意图。
图3为本发明第一实施例的照明装置的分解示意图。
图4为本发明第一实施例的照明装置的剖面示意图。
图5为本发明第一实施例的照明装置的光学模块的第一剖面示意图。
图6为本发明第一实施例的照明装置的光学模块的第二剖面示意图。
图7为本发明第一实施例的照明装置的光学模块的第三剖面示意图。
图8为本发明第一实施例的照明装置的光路示意图。
图9为本发明第一实施例的照明装置的近光灯光型示意图。
图10为本发明第二实施例的照明装置的光学模块的剖面示意图。
图11为本发明第二实施例的照明装置的光路示意图。
图12为本发明第三实施例的照明装置的光学模块的剖面示意图。
图13为本发明第三实施例的照明装置的光路示意图。
图14为本发明第四实施例的照明装置的分解示意图。
图15为本发明第四实施例的照明装置的剖面示意图。
图16为本发明第四实施例的照明装置的光源模块的主视示意图。
图17为本发明第四实施例的照明装置的第一光路示意图。
图18为本发明第四实施例的照明装置的第二光路示意图。
图19为本发明第四实施例的照明装置的第三光路示意图。
图20为本发明第四实施例的照明装置的远光灯光型示意图。
图21为本发明第四实施例的照明装置的支撑单元的第一立体示意图。
图22为本发明第四实施例的照明装置的支撑单元的第二立体示意图。
图23为本发明第五实施例的照明装置的光学模块的剖面示意图。
图24为本发明第五实施例的照明装置的第一光路示意图。
图25为本发明第五实施例的照明装置的第二光路示意图。
图26为本发明第六实施例的照明装置的光学模块的立体示意图。
图27为本发明第六实施例的照明装置的光学模块的剖面示意图。
图28为本发明第六实施例的照明装置的光学模块的光路示意图。
图29为本发明第六实施例的照明装置的近光灯光型示意图。
图30为本发明第七实施例的照明装置的立体示意图。
图31为本发明第七实施例的照明装置的光学模块的第一剖面示意图。
图32为本发明第七实施例的照明装置的光学模块的第二剖面示意图。
图33为本发明第七实施例的照明装置的第一光路示意图。
图34为本发明第七实施例的照明装置的第二光路示意图。
图35为本发明第七实施例的照明装置的光学模块的第三剖面示意图。
图36为本发明第八实施例的照明装置的分解示意图。
图37为本发明第八实施例的照明装置的光路示意图。
附图标记如下:
Z:照明装置;1:光源模块;11:第一发光单元;110:第一光源发光面;110a:中心轴;110b:下缘侧;110c:下方基准面110c;12:第二发光单元;120:第二光源发光面;2:透镜模块;200:入射面;201:出射面;21:焦点;210:焦平面;22:光轴;3:基板模块;4:多个固定模块;D:光学模块;D1:第一导光单元;D11:第一入光面;D12:第二入光面;D13:第一出光面;D14:第二出光面;D15、D151~D153:第三出光面;D16:连接面;D2:支撑单元;D20:主体件;D200:开口;D201:上肋部;D202:下肋部;D2020:内表面;D2021:外表面;D21:第一固定件;D22:第二固定件;D210、D220:穿孔;D3:第二导光单元;D31:第三入光面;D32:第四入光面;D33:第四出光面;D34:第五出光面;D35:第六出光面;D4:反射单元;D40:反射面;D400:上侧边;D401:下侧边;A1:第一预定夹角;A2:第二预定夹角;A3:第三预定夹角;A4:第四预定夹角;A5:第五预定夹角;A6:第六预定夹角;B1:第一倾斜夹角;B2:第二倾斜夹角;B3:第三倾斜夹角;B4:第四倾斜夹角;E:边界;C1:第一预设间距;C2:第二预设间距;C3:第三预设间距;C4:第四预设间距;C5:第五预设间距;L1、L11、L12:第一光束;L2:第二光束;H:厚度;P:相接位置;R:连接处;Y:余光区;W:暗影区。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开有关“照明装置及光学模块”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种元件,但这些元件不应受这些术语的限制。这些术语主要是用以区分一元件与另一元件。
第一实施例
请参阅图3至图9,分别为本发明第一实施例的照明装置的分解示意图、剖面示意图、光学模块的第一剖面示意图、光学模块的第二剖面示意图、光学模块的第三剖面示意图、光路示意图及近光灯光型示意图。本发明第一实施例提供一种照明装置Z,包括光源模块1、透镜模块2以及光学模块D。光源模块1包括至少一个第一发光单元11,至少一个第一发光单元11具有第一光源发光面110。透镜模块2对应于至少一个第一发光单元11。光学模块D可为透明件,光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1介于90度~150度,第二出光面D14对应于第一入光面D11;第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1介于0.01mm~0.5mm。其中,透镜模块2具有焦点21以及焦距,透镜模块2以焦点21定义出焦平面210,焦平面210平行于第一光源发光面110,且透镜模块2的入射面200与第一光源发光面110之间的距离大于透镜模块2的焦距;其中,焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间,其中以0.5mm~1.5mm为佳。
具体来说,本发明所提供的照明装置Z可应用于行动载具(例如汽车、机车或自行车等)的照明设备。照明装置Z包括了光源模块1、透镜模块2以及光学模块D。光源模块1包括了至少一个第一发光单元11,第一发光单元11可为发光二极管(Light-emitting diode,LED),且第一发光单元11具有第一光源发光面110;其中,在本实施例中,第一发光单元11以两个作为示例,但不以此为限。透镜模块2对应光源模块1设置,透镜模块2的入射面200面向于光源模块1,透镜模块2的出射面201远离于光源模块1;其中,透镜模块2可为平凸型透镜,但不以此为限,现有技术领域者当知道任何可达成本发明的目的的透镜或透镜组(由一片以上的透镜组成)技术,都被包含在本发明所称的透镜模块的范围内。透镜模块2可具有焦点21,并且,透镜模块2以焦点21定义出焦平面210,焦平面210可为无限大的虚拟平面,但不以此为限。其中,透镜模块2的凸面(即出射面201)可为非球面曲面,或由多个非球面曲面构成,在本实施例中(如图4所示),所述非球面曲面还具有光轴22(进一步在后面详述),且非球面曲面外型在光轴的两侧为非对称(如图4的透镜模块2所示),但本发明不以此为限。
而光源模块1与透镜模块2之间设置有光学模块D。光学模块D可包括第一导光单元D1,第一导光单元D1的材料为透明的塑胶或是玻璃,若是为塑胶,其材质可为光学级的PC或是PMMA,但本发明不以此为限。配合图5所示,第一导光单元D1可具有第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14。第一入光面D11面向于第一光源发光面110;其中,优选地,第一入光面D11可平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间可具有第一预设间距C1,第一预设间距C1可介于0.01mm~0.5mm,第一预设间距C1优选可介于0.2mm~0.3mm。或者,如图6所示,第一入光面D11可约略平行于第一光源发光面110,即第一入光面D11相对于第一光源发光面110可呈倾斜状态,且第一入光面D11与第一光源发光面110之间也具有1度~30度的第一倾斜夹角B1;其中,第一入光面D11的倾斜方向可与第一出光面D13相同(如图6所示),也可与第一出光面D13相反。另外,第一入光面D11可为平滑的光可穿透的面,但不以此为限,第一入光面D11也可为非平滑光可穿透的面(即表面上有导光微结构)。第二入光面D12与第一出光面D13连接,且第二入光面D12与第一出光面D13之间可具有第一预定夹角A1;其中,第一预定夹角A1可介于90度~150度,第一预定夹角A1优选可介于130度~140度,第一预定夹角A1以135度为更佳。第二出光面D14对应于第一入光面D11。此 外,配合图7所示,当第一预定夹角A1为90度时,第一导光单元D1可仅具有一个出光面,即第一出光面D13。
上述透镜模块2的焦平面210可平行于第一光源发光面110。并且,透镜模块2还具有焦距,焦距可为透镜模块2的入射面200到焦点21之间的距离,透镜模块2的入射面200与第一光源发光面110之间的距离可大于透镜模块2的焦距,但不以此为限;也就是说,焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间,其中以0.5mm~1.5mm为佳,且以1.2mm为更佳,但本发明不以此为限。此外,透镜模块2的焦平面210也可约略平行于第一光源发光面110,如图6所示,焦平面210与第一光源发光面110之间也可具有1度~30度的夹角(类似上述第一倾斜夹角B1,在此不再特别标示)。
因此,在本发明的照明装置Z投射近光灯光型的光束时,第一发光单元11通过第一光源发光面110产生第一光束L1。接着,第一光源发光面110所产生的第一光束L1经由第一入光面D11进入第一导光单元D1后,经由第一出光面D13与第二出光面D14而射出至第一导光单元D1的外部;进一步来说,配合图5与图8所示,第一光束L1先经由第一入光面D11产生第一次折射而投射至第一出光面D13与第二出光面D14,并且,第一光束L1再经由第一出光面D13以及第二出光面D14的第二次折射而射出至第一导光单元D1的外部。接下来,由第一出光面D13以及第二出光面D14所折射出的第一光束L1会经由透镜模块2的入射面200进入透镜模块2后,再经由透镜模块2的出射面201而投射至测试屏幕(图中未示出,测试屏幕可为投影布幕,但不以此为限)上,并且,第一光束L1在测试屏幕上所形成的光型(即近光灯光型,如图9所示)的边缘(即明暗截止线)可落在HV点以下的固定角度范围,此固定角度范围可为-0.57°±0.3°,但本发明不以此为限。
由此,本发明所提供的照明装置Z通过上述的技术方案,当第一导光单元D1没有完全将第一光源发光面110完全罩住时(本发明不以此为限),由第一光源发光面110所投射出的第一光束L1,其中一部分(即远离透镜模块2的光轴22的部分)不会经由光学模块D的折射,而直接进入透镜模块2,而所述部分的第一光束L1由透镜模块2投出后,会落在明暗截线以下,远离明暗截止线的区域;而另一部分的第一光束L1会经由光学模块D的第一导光单元D1的折射(如图8所示,图中的发光点为第一光源发光面110中较靠近光轴22的发光点)而改变路线,再进入透镜模块2中,进而使得另一部分的第一光束L1由透镜模块2投出后,可落在所形成的光型的 边缘(即明暗截止线),且落在HV点以下的固定角度范围上,此固定角度范围可为-0.57°±0.3°,然而本发明不以此为限。并且,本发明的照明装置Z同时投射出近光灯光束与远光灯光束时,远光灯LED所形成的光型的最亮点(即hot spot)会在原点(即HV),且近光灯LED所形成的光型的边缘(即明暗截止线)可成功的对应到HV点以下的固定角度范围,此固定角度范围可为-0.57°±0.3°。
进一步地,第二出光面D14可平行于第一入光面D11,且第二出光面D14可为雾面或为非平滑的光可穿透的光学面结构;其中,第一导光单元D1的厚度H介于0.2mm~1.0mm。其中,第一导光单元D1的厚度H优选可介于0.5-0.6mm。举例来说,配合图5所示,本发明的第二出光面D14可与第一入光面D11相互平行,因此,第二出光面D14也与第一光源发光面110相互平行。并且,第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14也可为平滑的光可穿透的光学面,但不以此为限。此外,第二出光面D14也可约略平行于第一入光面D11,即类似上述第一入光面D11约略平行于第一光源发光面110的方式,在此不再特别说明。
更进一步地,第二入光面D12与第一出光面D13的相接位置P位于焦平面210与第二出光面D14之间。举例来说,配合图5所示,本发明的第二入光面D12与第一出光面D13的相接位置P的位置在焦平面210与第二出光面D14之间,并可位于透镜模块2的焦点21以上的位置(即光轴22以上的区域),其中以靠近透镜光轴22的附近为佳,且此相接位置P相对于明暗截止线的位置。进一步来说,本发明的第二入光面D12与第一出光面D13的相接位置P也可位于透镜模块2的焦点21以上且在第一发光单元11的第一发光面110的中心轴110a以下的范围之间,其中以位于较靠近透镜光轴22的区域为佳;即相接位置P可以位于光轴22与第一发光面110的中心轴110a之间、或者位于透镜模块2的焦点21以上且靠近第一发光单元11的下方基准面110c,其中下方基准面110c靠近第一发光面110的边缘或在第一发光面110的边缘上;另外,第一发光单元11的下方基准面110c与第一发光单元11的下缘侧110b的表面可以重叠且共面。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第二实施例
请参阅图10及图11,分别为本发明第二实施例的照明装置的光学模块的剖面示意图及光路示意图,并请一并参阅图1至图9。如图所示,本实施例的照明装置Z与上述第一实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意 的是,在本实施例中,第一导光单元D1进一步可包括第三出光面D15以及连接面D16,第三出光面D15连接于第二出光面D14,连接面D16连接于第一出光面D13与第三出光面D15;其中,连接面D16与第一出光面D13之间具有第二预定夹角A2,第二预定夹角A2介于40度~60度。
举例来说,配合图10所示,本发明的第一导光单元D1进一步包括了第三出光面D15以及连接面D16。第三出光面D15的一端可与第二出光面D14连接,第三出光面D15的另一端可与连接面D16的一端连接,而连接面D16的另一端可与第一出光面D13连接。并且,连接面D16与第一出光面D13之间可形成第二预定夹角A2,第二预定夹角A2可介于40度~60度,第二预定夹角A2优选可为48度。另外,连接面D16与第三出光面D15的交点位于第二入光面D12与第一出光面D13的相接位置P及第二出光面D14之间。
因此,在第一光源发光面110产生第一光束L1后,其中一部分第一光束L1不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第一光束L1会经由光学模块D的第一导光单元D1的折射(如图11所示,图中的发光点为第一光源发光面110中较靠近光轴22的发光点)而改变路线,再进入透镜模块2中。进一步来说,另一部分的第一光束L1会先经由第一入光面D11产生第一次的折射而投射至第一出光面D13、第三出光面D15以及第二出光面D14后,再经由第一出光面D13、第三出光面D15以及第二出光面D14产生第二次的折射而射出至第一导光单元D1的外部。接下来,由第一出光面D13、第二出光面D14以及第三出光面D15折射出的第一光束L1经由透镜模块2投射在测试屏幕上所形成的光型(即近光灯光型,如图9所示)的边缘(即其明暗截止线)可以落在HV点以下的固定角度范围,所述固定角度范围可为-0.57°±0.3°上,但本发明不以此为限。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第三实施例
请参阅图12及图13,分别为本发明第三实施例的照明装置的光学模块的剖面示意图以及光路示意图,并请一并参阅图1至图11。如图所示,本实施例的照明装置Z与上述各实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意的是,在本实施例中,第二出光面D14倾斜于第一入光面D11,第一导光单元D1还进一步包括多个第三出光面D151~D153,多个第三出光面D151~D153位于第一出光面D13与第二出光面D14之间,多个第三出光面D15彼此连接,且其中一个第三出 光面D153连接于第一出光面D13,另外一个第三出光面D151连接于第二出光面D14。其中,第一出光面D13、第二出光面D14与每一个第三出光面D151~D153可为平面结构,且第一出光面D13、第二出光面D14与多个第三出光面D151~D153的斜率彼此不同,并且,按第一出光面D13至第二出光面D14的顺序,第一出光面D13、多个第三出光面D151~D153与第二出光面D14的斜率愈来愈抖;或者,第一出光面D13、第二出光面D14与每一个第三出光面D151~D153也可以为曲面结构,且第一出光面D13、多个第三出光面D151~D153与第二出光面D14的曲率彼此不同,且其曲率半径依序按第一出光面D13、多个第三出光面D151~D153到第二出光面D14的顺序愈来愈大。
举例来说,配合图12所示,本发明的第一导光单元D1朝向透镜模块2的出光面可为连续型的曲面或斜面结构。第一导光单元D1进一步可包括多个第三出光面D151~D153。多个第三出光面D151~D153彼此连接,第三出光面D153的一端连接于第一出光面D13,且第三出光面D151的一端与第二出光面D14连接。其中,第一出光面D13、第二出光面D14以及多个第三出光面D151~D153可为彼此斜率不同的斜面,或者彼此曲率不同的曲面,但不以此为限。
因此,在第一光源发光面110产生第一光束L1后,其中一部分的第一光束L1不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第一光束L1会经由光学模块D的第一导光单元D1的折射(如图13所示,图中的发光点为第一光源发光面110中较靠近光轴22的发光点)而改变路线,再进入透镜模块2中。进一步来说,另一部分的第一光束L1会先经由第一入光面D11产生第一次的折射而投射至第一出光面D13、第二出光面D14以及多个第三出光面D151~D153,再经由第一出光面D13、第二出光面D14以及多个第三出光面D151~D153产生第二次的折射而射出至第一导光单元D1的外部。接下来,由第一出光面D13以及第二出光面D14以及多个第三出光面D151~D153产生折射出的第一光束L1可经由透镜模块2在测试屏幕所形成的光型(即近光灯光型,如图9所示)的边缘(即明暗截止线)可落在HV点以下的固定角度范围,此固定角度范围可为-0.57°±0.3°上,但本发明不以此为限。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第四实施例
请参阅图14至图22,分别为本发明第四实施例的照明装置的分解示意图、剖面示意图、光源模块的主视示意图、第一光路示意图、第二光路示意图、第三光路示意 图、远光灯光型示意图、支撑单元的第一立体示意图以及支撑单元的第二立体示意图,并请一并参阅图1至图13。如图所示,本实施例的照明装置Z与上述各实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意的是,在本实施例中,光源模块1还进一步包括至少一个第二发光单元12,至少一个第二发光单元12靠近于至少一个第一发光单元11,至少一个第二发光单元12具有第二光源发光面120,且第二光源发光面120与第一光源发光面110共面(coplanar);其中,透镜模块2具有光轴22,光轴22垂直于第二光源发光面120。
具体来说,配合图5、图14至图16所示,本发明的光源模块1还进一步可包括至少一个第二发光单元12,第二发光单元12可为发光二极管(Light-emitting diode,LED),且第二发光单元12可具有第二光源发光面120;其中,在本实施例中,第二发光单元12以两个作为示例,但不以此为限。多个第一发光单元11可位于多个第二发光单元12的上方,第二光源发光面120与第一光源发光面110可位于同一个平面上或不同的平面上,且第一发光单元11以及第二发光单元12可电连接及热传导连接于金属基板(如后所述)。其中,第一发光单元11可为近光灯的发光源,即所投射出来的光线所形成的光型为近光灯光型(或第一光型);第二发光单元12可为远光灯的发光源,即第二发光单元12所投射出来的光线所形成的光型为远光灯光型(或第二光型),但不以此为限。并且,透镜模块2还可具有光轴22,光轴22通过透镜模块2的焦点21,并可垂直于第二光源发光面120,且光轴22可通过第二光源发光面120,并靠近于第一光源发光面110的位置。其中,当第二发光单元12数量为一个的时候,光轴22对应于第二光源发光面120上且位于第二发光单元12两侧之间的正中间位置上,但不以此为限;而当第二发光单元12数量为两个的时候,光轴22对应于两个第二光源发光面120之间的位置且位于两个第二发光单元12之间的正中间位置上,但不以此为限。换句话说,透镜模块2的焦点21不在第一光源发光面110上,其中以位于第二光源发光面120的边界E(如图16所示)内,或位于第二发光单元12的第二光束L2朝透镜模块2投射的区域内,并且较靠近第一发光单元11的区域为佳。
因此,当第二发光单元12应用于第一实施例的光学模块D时,在第二光源发光面120产生第二光束L2后,其中一部分的第二光束L2不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第二光束L2会经由光学模块D的第一导光单元D1的折射(如图17所示,图中的发光点仅表示第二光源发光面120上的其中一个发 光点,且较靠近于第一发光单元11)而改变路线,再进入透镜模块2中。进一步来说,另一部分的第二光束L2会先经由第二入光面D12产生第一次的折射而投射至第二出光面D14,并在第二出光面D14产生全反射而由第一导光单元D1的上缘面D17射出至第一导光单元D1的外部。接下来,由第一导光单元D1的上缘面D17折射出的第二光束L2经由透镜模块2的出射面201而投射至测试屏幕后,在测试屏幕所形成的光型(如图20所示)可弥补近光灯LED的所形成的光型与远光灯LED所形成的光型之间的暗影区(如图2中所示的暗影区W)。
其中,当第二发光单元12应用于第二实施例的光学模块D时,在第二光源发光面120产生第二光束L2后,其中一部分的第二光束L2不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第二光束L2会经由光学模块D的第一导光单元D1的折射(如图18所示,图中的发光点仅表示第二光源发光面120上较靠近于第一发光单元11的其中一个发光点)而改变路线,再进入透镜模块2中。进一步来说,另一部分的第二光束L2会先经由第二入光面D12产生第一次的折射而投射至第二出光面D14,并在第二出光面D14产生全反射而由第一导光单元D1的上缘面D17射出至第一导光单元D1的外部。接下来,由第一导光单元D1的上缘面D17折射出的第二光束L2经由透镜模块2的出射面201而投射至测试屏幕后,在测试屏幕所形成的光型(如图20所示)可弥补近光灯LED的所形成的光型与远光灯LED所形成的光型之间的暗影区(如图2中所示的暗影区W)。
而当第二发光单元12应用于第三实施例的光学模块D时,在第二光源发光面120产生第二光束L2后,其中一部分的第二光束L2不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第二光束L2会经由光学模块D的第一导光单元D1的折射(如图19所示,图中的发光点仅表示第二光源发光面120上较靠近于第一发光单元11的一个发光点)而改变路线,再进入透镜模块2中。进一步来说,另一部分的第二光束L2会先经由第二入光面D12产生第一次的折射而投射至第二出光面D14,并在第二出光面D14产生全反射而由第一导光单元D1的上缘面D17射出至第一导光单元D1的外部。接下来,由第一导光单元D1的上缘面D17折射出的第二光束L2经由透镜模块2的出射面201而投射至测试屏幕后,在测试屏幕所形成的光型(如图20所示)可弥补近光灯LED的所形成的光型与远光灯LED所形成的光型之间的暗影区(如图2中所示的暗影区W)。
由于本发明的照明装置Z同时投射出近光灯光束与远光灯光束时,因透镜模块2 的焦点21位于第二光源发光面120的边界E内,或者,位于第二发光单元12的第二光束L2朝透镜模块2投射的区域内,其中以较靠近第一发光单元11的区域为佳时,第二发光单元12(远光灯LED)所形成的光型的最亮点会在原点(即HV点),第一发光单元11(近光灯LED)所形成的光型的边缘(即明暗截止线)可成功的对应到HV点以下的固定角度范围,此固定角度范围为-0.57°±0.3°,本发明不以此为限;并且,同时还能减少当近光灯LED与远光灯LED相对排列时,两者发光面(即第一光源发光面110与第二光源发光面120)之间具有一定的间隙时,近光灯LED的光型与远光灯LED的光型之间会有暗影区(如图2中所示的暗影区W)的情形产生。
进一步地,光学模块D还进一步包括支撑单元D2,支撑单元D2的中心具有贯穿本体的开口D200,第一导光单元D1位于开口D200中;其中,支撑单元D2与第一导光单元D1为单一元件。举例来说,配合图14、图15、图21及图22所示,光学模块D进一步可包括支撑单元D2,其可为透明的塑胶或是玻璃,若是为塑胶,其材质可为光学级的PC或是PMMA,但本发明不以此为限。支撑单元D2的中心具有贯穿支撑单元D2本体的开口D200,第一导光单元D1可位于支撑单元D2的开口D200中。支撑单元D2与第一导光单元D1可为各自独立的元件、或者支撑单元D2与第一导光单元D1可为单一元件。进一步来说,配合图21及图22所示,支撑单元D2可包括主体件D20、第一固定件D21以及第二固定件D22。主体件D20具有开口D200、上肋部D201以及下肋部D202,开口D200位于上肋部D201与下肋部D202之间;并且,第一导光单元D1设置于开口D200中,并位于上肋部D201与下肋部D202之间。第一固定件D21与第二固定件D22可对称地设置于主体件D20的两侧,但本发明不以此为限。
更进一步地,照明装置Z还进一步包括基板模块3以及多个固定模块4。举例来说,配合图14、图15、图21及图22所示,基板模块3可为金属材质的基板,并同时兼具导电及导热的特性,但不以此为限;光源模块1可设置于基板模块3上。多个固定模块4可为锁固元件,例如螺丝,但不以此为限。并且,支撑单元D2的两侧可分别具有穿孔D210、D220,即第一固定件D21与第二固定件D22各自具有穿孔D210、D220。因此,通过每一个固定模块4穿过各自所对应的穿孔D210、D220,并能拆卸地连接于基板模块3,以将光学模块D固定于基板模块3,且光学模块D覆盖光源模块1。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第五实施例
请参阅图23至图25,分别为本发明第五实施例的照明装置的光学模块的剖面示意图、第一光路示意图及第二光路示意图,并请一并参阅图1至图22。如图所示,本实施例的照明装置Z与上述各实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意的是,在本实施例中,光学模块D还包括第二导光单元D3,第二导光单元D3包括第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34,第三入光面D31连接于第四入光面D32,第四入光面D32与第三出光面D33之间具有第三预定夹角A3,第三预定夹角A3介于90度~150度,第五出光面D34对应于第三入光面D31;其中,第三入光面D31平行于第二光源发光面120,第三入光面D31与第二光源发光面120之间具有第三预设间距C3,第三预设间距C3介于0.01mm~0.5mm。
举例来说,配合图23所示,本发明的光学模块D还包括第二导光单元D3,第二导光单元D3的材料可为透明的塑胶或是玻璃,若是为塑胶,其材质可为光学级的PC或是PMMA,但本发明不以此为限。第二导光单元D3可与第一导光单元D1相邻地设置于开口D200中,且第二导光单元D3连接于支撑单元D2的下肋部D202;其中,第二导光单元D3与下肋部D202可为各自独立的元件、或者第二导光单元D3与下肋部D202可为单一元件。第二导光单元D3对应于第二发光单元12的第二光源发光面120,第一导光单元D1对应于第一发光单元11的第一光源发光面110;其中,第二导光单元D3与第一导光单元D1之间具有第四预设间距C4,第四预设间距C4可介于0.5mm~1.5mm,第四预设间距C4优选可介于0.8mm~1.2mm,但不以此为限。第二导光单元D3可具有第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34。第三入光面D31面向于第二光源发光面120;其中,优选地,第三入光面D31可平行于第二光源发光面120,第三入光面D31与第二光源发光面120之间可具有第三预设间距C3,第三预设间距C3可介于0.01mm~0.5mm,第三预设间距C3优选可介于0.2mm~0.3mm。或者,第三入光面D31可约略平行于第二光源发光面120,即第三入光面D31相对于第二光源发光面120可呈倾斜状态,且第三入光面D31与第二光源发光面120之间也可具有1度~30度的夹角(类似前述的第一倾斜夹角B1,在此不再特别示出);其中,第三入光面D31的倾斜方向可与第四出光面D33相同,也可与第四出光面D33相反。第四入光面D32与第四出光面D33连接,且第四入光面D32与第四出光面D33之间可具有第三预定夹角A3;其中,第三预定夹角A3可 介于90度~150度,第三预定夹角A3优选可介于100度~155度,第三预定夹角A3以120度为更佳。第四出光面D34对应于第三入光面D31。
此外,第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34可为平滑的光可穿透的光学面结构,但第四出光面D33以及第五出光面D34也可以是雾面或为非平滑的光可穿透的光学面结构。当第三预定夹角A3为90度时,第二导光单元D3可仅具有一个出光面,即第四出光面D33与第五出光面D34为共面型态(具体实施方式如前述第一实施例与图7所示,在此不再特别示出)。并且,第四出光面D33可为平面,或者为钝角、弧面等折面结构。
因此,在第一光源发光面110所产生的较大角度且无法通过第一导光单元D1的第一光束L1,可经由第四入光面D32折射而进入第二导光单元D3中(如图24所示,图中的发光点仅表示第一光源发光面110上较靠近于第二发光单元120的一个发光点)。若是第四出光面D33及第五出光面D34为雾面时,进入第二导光单元D3中的第一光束L1可经由第四出光面D33以及第五出光面D34的散射(scattering)而离开第二导光单元D3,以投射到透镜模块2。最后,由透镜模块2投射出的第一光束L1可用于弥补且增加近光灯所形成的光型的余光区的亮度(比较图9余光区Y的亮度与图1余光区Y的亮度,图9的余光区Y亮度明显远高于图1,并且余光区的范围还远较图1为宽广)。
并且,在第二光源发光面120所产生的部分第二光束L2投射到第二导光单元D3,并经由第三入光面D31进入第二导光单元D3后(如图25所示,图中的发光点仅表示第二光源发光面120上的其中一个发光源),第二光束L2可经由第四出光面D33以及第五出光面D34的折射,而投射到透镜模块2。最后,由透镜模块2投射出的第二光束L2可用于填补远光灯所形成的光型,使得远光灯所形成的光型更加饱满。
进一步地,第三入光面D31平行于焦平面210,且焦平面210位于第二光源发光面120与第五出光面D34之间;其中,焦点21以及光轴22位于第二入光面D12与第四入光面D32之间。举例来说,透镜模块2的焦平面210可平行于第二导光单元D3的第三入光面D31,但,焦平面210也可约略平行于第二导光单元D3的第三入光面D31,即焦平面210与第三入光面D31之间可具有1度~30度的夹角(类似前述第一倾斜夹角B1,在此不再特别示出)。
值得注意的是,本发明的第二导光单元D3与支撑单元D2可为一体成型的单一构件,也可以是各自独立的两个构件。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第六实施例
请参阅图26至图29,分别为本发明第六实施例的照明装置的光学模块的立体示意图、光学模块的剖面示意图、光学模块的光路示意图以及近光灯光型示意图,并请一并参阅图1至图25。如图所示,本实施例的照明装置Z与上述各实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意的是,在本实施例中,光学模块D还包括反射单元D4,反射单元D4连接于支撑单元D2,反射单元D4具有反射面D40,反射面D40与第一光源发光面110或第二光源发光面120之间具有第四预定夹角A4,第四预定夹角A4介于120度~150度。
举例来说,配合图26及图27所示,本发明的照明装置Z的光学模块D还可进一步包括反射单元D4,反射单元D4可为反射镜或其他具反射功能的元件。反射单元D4可设置于在支撑单元D2的下方,且反射单元D4的两侧分别连接于支撑单元D2的第一固定件D21与第二固定件D22。反射单元D4具有反射面D40,反射面D40可对应于第二导光单元D3与下肋部D202。并且,反射面D40与第一光源发光面110之间、或反射面D40与第二光源发光面120之间可具有第四预定夹角A4,第四预定夹角A4可介于120度~150度;其中,第四预定夹角A4优选可介于130度~140度,并以135度为最佳,但本发明不以此为限。
进一步来说,配合图26及图27所示,第二导光单元D3还可包括第六出光面D35,第六出光面D35可与第五出光面D34连接,且第六出光面D35与第五出光面D34的连接处R可为圆角、锐角或直角,本实施例中以圆角作为示例,但不以此为限。第六出光面D35与第五出光面D34之间可具有第五预定夹角A5,第五预定夹角A5可介于70度~110度。并且,支撑单元D2的下肋部D202还可具有内表面D2020以及对应于内表面D2020的外表面D2021。内表面D2020与第二导光单元D3的第三入光面D31连接,且内表面D2020与第三入光面D31之间可具有第六预定夹角A6,第六预定夹角A6可介于70度~110度。外表面D2021与第二导光单元D3的第六出光面D35连接。因此,第二导光单元D3与下肋部D202可略呈L型,但不以此为限。此外,第三入光面D31、第三入光面D32与内表面D2020可为平滑的光可穿透的光学表面,而第四出光面D33、第五出光面D34、第六出光面D35与外表面D2021可为光可穿透的雾面结构,但本发明不以此为限。
因此,当第一导光单元D1没有完全将第一光源发光面110完全罩住时(但本发 明不以此为限),由第一光源发光面110所投射出的第一光束L1,其中一部分的第一光束L1(即靠近光轴22的部分)不会经由第一导光单元D1的折射,而会投射到第二导光单元D3的第三入光面D31与第四入光面D32与投射到内表面D2020,并经由第三入光面D31与第四入光面D32及内表面D2020的折射而进入第二导光单元D3中(如图28所示,图中的发光点仅表示第一光源发光面110上的其中一个发光点,且较靠近于第二发光单元12)。若是第四出光面D33、第五出光面D34、第六出光面D35及连接处R为雾面时,进入第二导光单元D3中的第一光束L1可经由第四出光面D33、第五出光面D34、第六出光面D35及连接处R的散射而离开第二导光单元D3,并投射到反射单元D4的反射面D40。接着,第一光束L1经由反射面D40的反射而投射到透镜模块2,使得第一光束L1由透镜模块2投出后,可落在所形成的近光灯光型的上方,即落在HV点(即明暗截止线)上方的范围,进而可补强余光区Y(比较图29余光区Y的亮度与图9余光区Y的亮度,图29的余光区Y亮度明显远高于图9,并且余光区的范围还远较图9为宽广)的光源亮度;但,本发明不以此为限。
更进一步地,第二导光单元D3位于第一导光单元D1与反射单元D4之间;其中,反射面D40具有靠近于支撑单元D2的上侧边D400以及远离支撑单元D2的下侧边D401,上侧边D400与光轴22之间具有第五预设间距C5,第五预设间距C5介于1.5mm~10mm。
举例来说,配合图26及图27所示,本发明的反射面D40具有上侧边D400以及下侧边D401;其中,上侧边D400与下侧边D401指反射面D40的边缘或边角,而非指反射面D40两侧的平面。上侧边D400与光轴22之间可具有第五预设间距C5,第五预设间距C5可介于1.5mm~10mm,优选可介于1.5mm~5mm,但不以此为限。其中,上侧边D400可与第一光源发光面110、第二光源发光面120或其两者位于同一个基准面上(即共面),上侧边D400也可以置于以第一光源发光面110或第二光源发光面120为基准面的前后±5mm的位置上,但不以此为限。
此外,本发明的反射单元D4的外型可为四角形,且上侧边D400与下肋部D202的外表面D2021之间保持一预定的距离(本发明所属技术领域中技术人员可由上述第五预设间距C5来推知,在此不再特别说明),如图26及图27所示。但是,本发明的反射单元D4的外型也可为多角形,且上侧边D400与外表面D2021之间没有间隙;即,反射单元D4的上侧边D400连接于主体件D20、外表面D2021、第一固定件D21以及第二固定件D22。
此外,本发明根据上述第一实施例至第六实施例,再提出一种光学模块D,可适用于上述的照明装置Z,照明装置Z包括光源模块1与透镜模块2,光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1介于90度~150度,第二出光面D14对应于第一入光面D11;其中,第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1介于0.01mm~0.5mm。
进一步地,第二出光面D14平行于第一入光面D11,且第二出光面D14为雾面或非平滑面的光可穿透结构;其中,第一导光单元D1的厚度H介于0.2mm~1.0mm。
更进一步地,第一导光单元D1的厚度H优选可介于0.5mm~0.6mm;其中,第一预定夹角A1优选可介于130度~140度,更佳为135度度;其中,第一预设间距C1优选可介于0.2mm~0.3mm。
更进一步地,第一导光单元D1进一步包括第三出光面D15以及连接面D16,第三出光面D15连接于第二出光面D14,连接面D16连接于第一出光面D13与第三出光面D15;其中,连接面D16与第一出光面D13之间具有第二预定夹角A2,第二预定夹角A2可介于40度~60度。
更进一步地,第二出光面D14倾斜于第一入光面D11,第一导光单元D1还进一步包括多个第三出光面D151~D153,多个第三出光面D151~D153位于第一出光面D13与第二出光面D14之间,多个第三出光面D15彼此连接,且其中一个第三出光面D153连接于第一出光面D13,另外一个第三出光面D151连接于第二出光面D14;其中,每一个第三出光面D15为平面结构,且多个第三出光面D15的斜率彼此不同,或者,每一个第三出光面D15为曲面结构,且多个第三出光面D15的曲率彼此不同。
更进一步地,光学模块D还可包括支撑单元D2以及第二导光单元D3。支撑单元D2具有贯穿本体的开口D200;第二导光单元D3与第一导光单元D1相邻地设置于开口D200中,第二导光单元D3包括第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34,第三入光面D31连接于第四入光面D32,第四入光面D32与第四出光面D33之间具有第三预定夹角A3,第三预定夹角A3介于90度~150度,第五出光面D34对应于第三入光面D31;其中,第二导光单元D3与第一导光单元D1 之间具有第四预设间距C4,第四预设间距C4介于0.5mm~1.5mm。
更进一步地,光学模块D还包括反射单元D4,反射单元D4连接于支撑单元D2,反射单元D4具有反射面D40,反射面D40与第一光源发光面110之间具有第四预定夹角A4,第四预定夹角A4介于120度~150度。
更进一步地,第二导光单元D3位于第一导光单元D1与反射单元D4之间;其中,反射面D40具有靠近于支撑单元D2的上侧边D400以及远离支撑单元D2的下侧边D401,上侧边D400与光轴22之间具有第五预设间距C5,第五预设间距C5介于1.5mm~10mm。
值得注意的是,在上述各实施例中,第一入光面D11与第二入光面D12之间的夹角可为锐角、直角或钝角,第三入光面D31与第四入光面D32之间的夹角也可为锐角、直角或钝角,但本发明不以此为限。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第七实施例
请参阅图30至图35,分别为本发明第七实施例的照明装置的立体示意图、光学模块的第一剖面示意图、光学模块的第二剖面示意图、第一光路示意图、第二光路示意图以及光学模块的第三剖面示意图,并请一并参阅图1至图27。如图所示,本发明第七实施例提供一种照明装置Z,其包括光源模块1、透镜模块2以及光学模块D。光源模块1包括至少一个第一发光单元11,至少一个第一发光单元11具有第一光源发光面110。透镜模块2对应于至少一个第一发光单元11。光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1可介于40度~60度,第二出光面D14对应于第二入光面D12;其中,第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1可介于0.01mm~0.5mm。其中,透镜模块2具有焦点21以及焦距,透镜模块2以焦点21定义出焦平面210,焦平面210平行于第一光源发光面110,且透镜模块2的入射面200与第一光源发光面110之间的距离大于透镜模块2的焦距;其中,焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间,其中以0.5mm~1.5mm为佳,且以1.2mm为更佳,但本发明不以此为限。
具体来说,根据图31与图5比较所示,本实施例所提供的照明装置Z与前述第一实施例的照明装置Z的差异在于,本实施例的照明装置Z的光学模块D可包括第一导光单元D1,第一导光单元D1包括了第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14。第一导光单元D1可为平行四边形结构或四边形结构,且第二入光面D12与第一出光面D13之间可形成第一预定夹角A1;其中,第一预定夹角A1可介于40度~60度,第一预定夹角A1优选可为45度。并且,第一入光面D11可平行于第一光源发光面110,或者,第一入光面D11约略平行于第一光源发光面110,并与第一光源发光面110之间具有1度~30度的夹角。第一入光面D11可为光学平面,但本发明不以第一入光面D11为平面为限,第一入光面D11也可为曲面或凹凸面。第一入光面D11与第一光源发光面110之间可具有第一预设间距C1;其中,第一预设间距C1可介于0.01mm~0.5mm,第一预设间距C1优选可介于0.2mm~0.3mm。
而透镜模块2可具有焦点21以及焦距,焦点21不在第一光源发光面110上,其中以位于第二光源发光面120的边界E内,或位于第二发光单元12的光线朝透镜模块2射出的区域内,其中以较靠近第一发光单元11的区域为佳(如前述第四实施例以及图32所示),而透镜模块2的焦距可为透镜模块2的入射面200到焦点21之间的距离。焦平面210可平行于第一光源发光面110,如图31所示;或者,焦平面210约略平行于第一光源发光面110,如图32所示,焦平面210与第一光源发光面110之间也可具有1度~30度的夹角(类似前述第一倾斜夹角B1,如图6所示,在此不再特别标示)。并且,透镜模块2的入射面200与第一光源发光面110之间的距离可大于透镜模块2的焦距,但不以此为限;也就是说,焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间,其中以0.5mm~1.5mm为佳,且以1.2mm为更佳,但本发明不以此为限。
因此,在本发明的照明装置Z投射出光束时,当第一导光单元D1没有完全将第一光源发光面110完全罩住时(本发明不以此为限),第一发光单元11通过第一光源发光面110所产生的第一光束L1,其中一部分的第一光束L1(即远离透镜光轴22的部分)不会经由光学模块D的折射,而直接进入透镜模块2,而所述其中一部分的第一光束L1由透镜模块2投出后,会落在明暗截线以下,远离明暗截止线的区域;而另一部分的第一光束L1即位于第一光源发光面110中较靠近光轴22的发光点,会经由光学模块D的第一导光单元D1的折射(如图33及图34所示)而改变路线,再 进入透镜模块2中,进而使得另一部分的第一光束L1由透镜模块2投出后,可落在所形成的光型的边缘(即明暗截止线),且落在HV点以下的一固定角度范围上,此固定角度范可为-0.57°±0.3°,但本发明不以此为限。
进一步来说,经过第一导光单元D1的另一部分的第一光束L1的光线行经的路径,大致可分为两种不同的路径,分别可为全反射路径或非全反射路径,即另一部分的第一光束L1可分为属于全反射路径的第一光束L11以及属于非全反射路径的第一光束L12。为使附图清晰可辨,图33只标示全反射路径的第一光束L11,其他未标示的为L12。配合图33所示,第一光束L11在全反射路径中,先由第一光源发光面110投射至第一入光面D11,并经由第一入光面D11的第一次折射而进入第一导光单元D1后,再经由第二出光面D14的第一次全反射以及第二入光面D12的第两次全反射后,最后经由第一出光面D13的第二次折射而射出至第一导光单元D1的外部。换句话说,第一光源发光面110所产生的第一光束L11,从进入第一导光单元D1之后,要经过两次折射以及两次全反射之后,第一光束L11才会离开第一导光单元D1。接下来,由第一出光面D13折射出的第一光束L11经由透镜模块2的投射而在测试屏幕上所形成的光型(如图9所示)的边缘(即明暗截止线)可落在HV点以下的固定角度范围上,此固定角度范围可为-0.57°±0.3°,但本发明不以此为限。需要说明的事,要落在明暗截止线上的光线,需要经过两次的折射及两次的全反射。
再请配合图34所示,第一光束L12在非全反射的路径中,先由第一光源发光面110投射至第一入光面D11与第二入光面D12,并经由第一入光面D11与第二入光面D12的第一次折射而进入第一导光单元D1后,再经由第一出光面D13与第二出光面D14的第二次折射而射出至第一导光单元D1的外部。换句话说,第一光束L1从进入第一导光单元D1后,经过两次的折射,才会离开第一导光单元D1,接着,再经由透镜模块2而投射到测试屏幕上所形成的光型(如图9所示),其明暗截止线会落在HV点以下的一固定角度范围,此固定角度范围可为-0.57°±0.3°,但本发明不以此为限。
进一步地,第一入光面D11可平行于第一出光面D13,第二入光面D12可平行于第二出光面D14;其中,第一导光单元D1的厚度H可介于0.2mm~1.0mm,第一导光单元D1的厚度H较佳可介于0.5mm~0.6mm。举例来说,配合图31所示,第一入光面D11可与第一出光面D13相互平行。但是,如图32所示,第一入光面D11也可约略平行于第一出光面D13,而与第一出光面D13之间具有1度~15度的第二倾斜夹 角B2。第二入光面D12可与第二出光面D14相互平行,但第二入光面D12也可约略平行于第二出光面D14,并与第二出光面D14之间具有1度~15度的第三倾斜夹角B3。并且,第二入光面D12与光轴22之间可形成35度~55度的第四倾斜夹角B4,其中,第四倾斜夹角B4以40度~50度为佳,而以45度为最佳。因此,第一导光单元D1可为平行四边形或是四边形。
更进一步地,第二入光面D12与第一出光面D13的相接位置P可位于透镜模块2的光轴22与第一发光单元11的第一发光面110的中心轴110a之间。举例来说,配合图31所示,本发明的第二入光面D12与第一出光面D13的相接位置P的位置在光轴22与中心轴110a之间,即光轴22以上的区域,且此相接位置P对应于明暗截止线的位置,其中以相接位置P位于透镜模块2的光轴22的附近为佳。进一步来说,本发明的第二入光面D12与第一出光面D13的相接位置P也可位于透镜模块2的焦点21以上且在第一发光面110的中心轴110a以下的范围之间;即相接位置P可以位于光轴22与第一发光面110的中心轴110a之间,其中以较靠近光轴22的位置为佳、或者相接位置P可以位于光轴22以上且靠近第一发光单元11的下方基准面110c,其中下方基准面110c靠近第一发光面110的边缘或在第一发光面110的边缘上;另外,第一发光单元11的下方基准面110c也可与第一发光单元11的下缘侧110b的表面重叠且共面。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
第八实施例
请参阅图36及图37,分别为本发明第八实施例的照明装置的分解示意图以及光路示意图,并请一并参阅图1至图35。如图所示,本实施例的照明装置Z与上述第七实施例的照明装置Z相同的元件的作动方式相似,在此不再赘述,值得注意的是,在本实施例中,光源模块1还进一步包括至少一个第二发光单元12,至少一个第二发光单元12紧靠近于至少一个第一发光单元11,至少一个第二发光单元12具有第二光源发光面120,且第二光源发光面120与第一光源发光面110共面(coplanar),但本发明不以此为限;其中,透镜模块2具有光轴22,光轴22垂直于第二光源发光面120。
具体来说,配合图25、图30及图31所示,本发明的光源模块1还进一步可包括至少一个第二发光单元12,第二发光单元12可为发光二极管(Light-emitting diode,LED),且第二发光单元12可具有第二光源发光面120;其中,在本实施例中,第二发光单元12以两个作为示例,但不以此为限。多个第一发光单元11可位于多个第二 发光单元12的上方,且第二光源发光面120与第一光源发光面110位于同一个水平面上,但本发明不以此为限;其中,第一发光单元11可为近光灯的发光源,第二发光单元12可为远光灯的发光源,但不以此为限。透镜模块2还可具有光轴22,光轴22可通过透镜模块2的中心或中心附近,并且,光轴22可通过透镜模块2的焦点21且垂直于第二光源发光面120,光轴22可通过第二光源发光面120且较靠近第一光源发光面110的位置,但本发明不以光轴22可垂直于第二光源发光面120为限。其中,当第二发光单元12数量为一个的时候,光轴22对应于第二光源发光面120上且位于第二发光单元12两侧之间的正中间位置上;而当第二发光单元12数量为两个的时候,光轴22对应于两个第二光源发光面120之间的位置且位于两个第二发光单元12之间的正中间位置上。
因此,配合图31及图37所示,在第二光源发光面120产生第二光束L2时,其中一部分的第二光束L2不会经由光学模块D的折射,而直接进入透镜模块2,另一部分的第二光束L2会经由光学模块D的第一导光单元D1的折射(如图37所示,图中的发光点仅为第二光源发光面120上紧邻于光轴的其中一个发光点)而改变路线,再进入透镜模块2中。最后,其中一部分的第二光束L2与另一部分的第二光束L2由透镜模块2射出后,会形成远光灯的光型,并且远光灯LED所形成的光型的最亮点会在原点(即HV)上。而第一发光单元11(即近光灯LED)所形成的光型的边缘(即明暗截止线)可成功的对应到HV点以下(-0.57°±0.3°),并且同时还能减少近光灯LED与远光灯LED紧密相对排列时(第一光源发光面110与第二光源发光面120之间具有一定的间隙时),近光灯光型与远光灯LED光型之间会有暗影区的情形(如图20所示)。
进一步地,光学模块D还进一步包括支撑单元D2,支撑单元D2的中心具有开口D200,第一导光单元D1位于开口D200中;其中,支撑单元D2与第一导光单元D1为单一元件。举例来说,配合图31及图36所示,光学模块D进一步可包括支撑单元D2,支撑单元D2可为透明或不透明的材质。第一导光单元D1可位于支撑单元D2的开口D200中。支撑单元D2与第一导光单元D1可为各自独立的元件或者单一元件。
更进一步地,照明装置Z还进一步包括基板模块3以及多个固定模块4。举例来说,配合图36所示,基板模块3可为金属材质的基板,但不以此为限;光源模块1可设置于基板模块3上。多个固定模块4可为锁固元件,例如螺丝,但不以此为限。并且,支撑单元D2的两侧可分别具有穿孔D210、D220。因此,通过每一个固定模块 4穿过各自所对应的穿孔D210、D220,并能拆卸地连接于基板模块3,以将光学模块D固定于基板模块3,且光学模块D覆盖光源模块1。
更进一步地,配合图36及图37所示,光学模块D还可包括第二导光单元D3,第二导光单元D3包括第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34,第三入光面D31连接于第四入光面D32,第四入光面D32与第四出光面D33之间具有第三预定夹角A3,第三预定夹角A3介于90度~150度,第五出光面D34对应于第三入光面D31;其中,第三入光面D31平行于第二光源发光面120,第三入光面D31与第二光源发光面120之间具有第三预设间距C3,第三预设间距C3介于0.01mm~0.5mm。具体实施方式与前述第五实施例相似,在此不再特别说明。
更进一步地,光学模块D还可包括反射单元D4,反射单元D4连接于支撑单元D2,反射单元D4可具有反射面D40,反射面D40与第一光源发光面110或第二光源发光面120之间可具有第四预定夹角A4,第四预定夹角A4可介于120度~150度。具体实施方式如前述第六实施例以及图26至图28所示,在此不再特别说明。
更进一步地,第二导光单元D3位于第一导光单元D1与反射单元D4之间;其中,反射面D40可具有靠近于支撑单元D2的上侧边D400以及远离支撑单元D2的下侧边D401,上侧边D400与光轴22之间可具有第五预设间距C5,第五预设间距C5可介于1.5mm~10mm。具体实施方式如前述第六实施例以及图26至图28所示,在此不再特别说明。
更进一步地,第三入光面D31平行于焦平面210,且焦平面210位于第二光源发光面120与第五出光面D34之间;其中,焦点21以及光轴22位于第二入光面120与第五入光面D34之间。具体实施方式与前述第五实施例相似,在此不再特别说明。
此外,本发明根据上述的第六实施例至第八实施例,再提出一种光学模块D,可适用于照明装置Z,照明装置Z包括光源模块1与透镜模块2,光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1可介于40度~60度,第二出光面D14对应于第二入光面D12;其中,第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1可介于0.01mm~0.5mm。
进一步地,第一入光面D11平行于第一出光面D13,第二入光面D12平行于第二出光面D14;其中,第一导光单元D1的厚度H可介于0.2mm~1.0mm。
更进一步地,第一导光单元D1的厚度H优选可介于0.5mm~0.6mm;其中,第一预定夹角A1优选可为45度;其中,第一预设间距C1优选可介于0.2mm~0.3mm。
更进一步地,光学模块D还可包括支撑单元D2以及第二导光单元D3。支撑单元D2具有贯穿本体的开口D200;第二导光单元D3与第一导光单元D1相邻地设置于开口D200中,第二导光单元D3包括第三入光面D31、第四入光面D32、第四出光面D33以及第五出光面D34,第三入光面D31连接于第四入光面D32,第四入光面D32与第四出光面D33之间具有第三预定夹角A3,第三预定夹角A3介于90度~150度,第五出光面D34对应于第三入光面D31;其中,第二导光单元D3与第一导光单元D1之间具有第四预设间距C4,第四预设间距C4介于0.5mm~1.5mm。
更进一步地,光学模块D还可包括反射单元D4,反射单元D4连接于支撑单元D2,反射单元D4可具有反射面D40,反射面D40与第一光源发光面110之间可具有第四预定夹角A4,第四预定夹角A4可介于120度~150度。
更进一步地,第二导光单元D3位于第一导光单元D1与反射单元D4之间;其中,反射面D40可具有靠近于支撑单元D2的上侧边D400以及远离支撑单元D2的下侧边D401,上侧边D400与光轴22之间可具有第五预设间距C5,第五预设间距C5可介于1.5mm~10mm。
值得注意的是,在上述第七实施例与第八实施例中,第一入光面D11与第二入光面D12之间的夹角可为锐角、直角或钝角,但本发明不以此为限。
然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
实施例的有益效果
本发明的其中一有益效果在于,本发明所提供的照明装置Z及光学模块D,能通过“光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1介于90度~150度,第二出光面D14对应于第一入光面D11”、“第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1介于0.01mm~0.5mm”、“透镜模块2具有焦点21以及焦距,透镜模块2以焦点21定 义出焦平面210,焦平面210平行于第一光源发光面110,且透镜模块2的入射面200与第一光源发光面110之间的距离大于透镜模块2的焦距”以及“焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间”的技术方案,以起到补光的功效。
本发明的另外一有益效果在于,本发明所提供的照明装置Z及光学模块D,能通过“光学模块D位于光源模块1以及透镜模块2之间,光学模块D包括第一导光单元D1,第一导光单元D1包括第一入光面D11、第二入光面D12、第一出光面D13以及第二出光面D14,第一入光面D11连接于第二入光面D12,第二入光面D12与第一出光面D13之间具有第一预定夹角A1,第一预定夹角A1介于40度~60度,第二出光面D14对应于第二入光面D12”、“第一入光面D11平行于第一光源发光面110,第一入光面D11与第一光源发光面110之间具有第一预设间距C1,第一预设间距C1介于0.01mm~0.5mm”、“透镜模块2具有焦点21以及焦距,透镜模块2以焦点21定义出焦平面210,焦平面210平行于第一光源发光面110,且透镜模块2的入射面200与第一光源发光面110之间的距离大于透镜模块2的焦距”以及“焦平面210与第一光源发光面110之间具有第二预设间距C2,第二预设间距C2介于0.2mm~5mm之间”的技术方案,以起到补光的功效。
更进一步来说,本发明所提供的照明装置Z及光学模块D通过上述的技术方案,利用第一导光单元D1的结构设置,来提升近光灯LED灯的补光效果,以使得LED照明模块在成功达成符合法规的情形下,模块的尺寸还能持续小型化,以使当远光灯LED所形成的光型的最亮点在原点(即HV)或符合法规要求时,近光灯LED所形成的光型的边缘(即明暗截止线)可成功的对应到HV点以下的-0.57°±0.3°,并且同时还能减少近光灯LED与远光灯LED相对排列时,两者发光面之间具有一定的间隙时,近光灯光型与远光灯LED光型之间会有暗影区的情形。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。

Claims (34)

  1. 一种照明装置,其特征在于,包括:
    光源模块,所述光源模块包括至少一个第一发光单元,至少一个所述第一发光单元具有第一光源发光面;
    透镜模块,所述透镜模块对应于至少一个所述第一发光单元;以及
    光学模块,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于90度~150度,所述第二出光面对应于所述第一入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm;
    其中,所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距;其中,所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm之间。
  2. 根据权利要求1所述的照明装置,其特征在于,所述第二出光面平行于所述第一入光面,且所述第二出光面为雾面或非平滑面的结构;其中,所述第一导光单元的厚度介于0.2mm~1.0mm。
  3. 根据权利要求2所述的照明装置,其特征在于,所述第一导光单元的厚度为0.5mm;其中,所述第一预定夹角为135度;其中,所述第一预设间距为0.2mm;其中,所述第二预设间距为1.2mm。
  4. 根据权利要求2所述的照明装置,其特征在于,所述第一导光单元进一步包括第三出光面以及连接面,所述第三出光面连接于所述第二出光面,所述连接面连接于所述第一出光面与所述第三出光面;其中,所述连接面与所述第一出光面之间具有第二预定夹角,所述第二预定夹角介于40度~60度。
  5. 根据权利要求1所述的照明装置,其特征在于,所述第二出光面倾斜于所述第一入光面,所述第一导光单元还进一步包括多个第三出光面,多个所述第三出光面位于所述第一出光面与所述第二出光面之间,多个所述第三出光面彼此连接,且其中一个所述第三出光面连接于所述第一出光面,另外一个所述第三出光面连接于所述第二出光面;其中,每一个所述第三出光面为平面结构,且多个所述第三出光面的斜率彼此不同,或者,每一个 所述第三出光面为曲面结构,且多个所述第三出光面的曲率彼此不同。
  6. 根据权利要求1所述的照明装置,其特征在于,所述第二入光面与所述第一出光面的相接位置位于所述透镜模块的所述焦平面与所述第二出光面之间。
  7. 根据权利要求1所述的照明装置,其特征在于,所述光源模块还进一步包括至少一个第二发光单元,至少一个所述第二发光单元靠近于至少一个所述第一发光单元,至少一个所述第二发光单元具有第二光源发光面,且所述第二光源发光面与所述第一光源发光面共面;其中,所述透镜模块具有光轴,所述光轴垂直于所述第二光源发光面;其中,所述光学模块还进一步包括支撑单元,所述支撑单元的中心具有开口,所述第一导光单元位于所述开口中;其中,所述支撑单元与所述第一导光单元为单一元件。
  8. 根据权利要求7所述的照明装置,其特征在于,所述光学模块还包括第二导光单元,所述第二导光单元包括第三入光面、第四入光面、第四出光面以及第五出光面,所述第三入光面连接于所述第四入光面,所述第四入光面与所述第四出光面之间具有第三预定夹角,所述第三预定夹角介于90度~150度,所述第五出光面对应于所述第三入光面;其中,所述第三入光面平行于所述第二光源发光面,所述第三入光面与所述第二光源发光面之间具有第三预设间距,所述第三预设间距介于0.01mm~0.5mm。
  9. 根据权利要求8所述的照明装置,其特征在于,所述第三入光面平行于所述焦平面,且所述焦平面位于所述第二光源发光面与所述第五出光面之间;其中,所述焦点以及所述光轴位于所述第二入光面与所述第四入光面之间。
  10. 根据权利要求8所述的照明装置,其特征在于,所述光学模块还包括反射单元,所述反射单元连接于所述支撑单元,所述反射单元具有反射面,所述反射面与所述第一光源发光面或所述第二光源发光面之间具有第四预定夹角,所述第四预定夹角介于120度~150度。
  11. 根据权利要求10所述的照明装置,其特征在于,所述第二导光单元位于所述第一导光单元与所述反射单元之间;其中,所述反射面具有靠近于所述支撑单元的上侧边以及远离所述支撑单元的下侧边,所述上侧边与所述光轴之间具有第五预设间距,所述第五预设间距介于1.5mm~10mm。
  12. 一种照明装置,其特征在于,包括:
    光源模块,所述光源模块包括至少一个第一发光单元,至少一个所述第一发光单元具有一第一光源发光面;
    透镜模块,所述透镜模块对应于至少一个所述第一发光单元;以及
    光学模块,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于40度~60度,所述第二出光面对应于所述第二入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm;
    其中,所述透镜模块具有焦点以及焦距,所述透镜模块以所述焦点定义出焦平面,所述焦平面平行于所述第一光源发光面,且所述透镜模块的入射面与所述第一光源发光面之间的距离大于所述透镜模块的所述焦距;其中,所述焦平面与所述第一光源发光面之间具有第二预设间距,所述第二预设间距介于0.2mm~5mm之间。
  13. 根据权利要求12所述的照明装置,其特征在于,所述第一入光面平行于所述第一出光面,所述第二入光面平行于所述第二出光面;其中,所述第一导光单元的厚度介于0.2mm~1.0mm。
  14. 根据权利要求13所述的照明装置,其特征在于,所述第一导光单元的厚度为0.5mm;其中,所述第一预定夹角为45度;其中,所述第一预设间距为0.2mm;其中,所述第二预设间距为1.2mm。
  15. 根据权利要求12所述的照明装置,其特征在于,所述透镜模块具有光轴,所述第二入光面与所述第一出光面的相接位置位于所述透镜模块的所述光轴与所述第一发光单元的下缘侧之间。
  16. 根据权利要求12所述的照明装置,其特征在于,所述光源模块还进一步包括至少一个第二发光单元,至少一个所述第二发光单元靠近于至少一个所述第一发光单元,至少一个所述第二发光单元具有第二光源发光面,且所述第二光源发光面与所述第一光源发光面共面;其中,所述透镜模块具有光轴,所述光轴垂直于所述第二光源发光面;其中,所述光学模块还进一步包括支撑单元,所述支撑单元的中心具有开口,所述第一导光单元位于所述开口中;其中,所述支撑单元与所述第一导光单元为单一元件。
  17. 根据权利要求16所述的照明装置,其特征在于,所述光学模块还包括第二导光单元,所述第二导光单元包括第三入光面、第四入光面、第四出光面以及第五出光面,所述第三入光面连接于所述第四入光面,所述第四入光面与所述第四出光面之间具有第三预定夹角,所述第三预定夹角介于90度~150度,所述第四出光面对应于所述第三入光面;其中,所述第三入光面平行于所述第二光源发光面,所述第三入光面与所述第二光源发光面 之间具有第三预设间距,所述第三预设间距介于0.01mm~0.5mm。
  18. 根据权利要求17所述的照明装置,其特征在于,所述第三入光面平行于所述焦平面,且所述焦平面位于所述第二光源发光面与所述第五出光面之间;其中,所述焦点以及所述光轴位于所述第二入光面与所述第四入光面之间。
  19. 根据权利要求17所述的照明装置,其特征在于,所述光学模块还包括反射单元,所述反射单元连接于所述支撑单元,所述反射单元具有反射面,所述反射面与所述第一光源发光面或所述第二光源发光面之间具有第四预定夹角,所述第四预定夹角介于120度~150度。
  20. 根据权利要求19所述的照明装置,其特征在于,所述第二导光单元位于所述第一导光单元与所述反射单元之间;其中,所述反射面具有靠近于所述支撑单元的上侧边以及远离所述支撑单元的下侧边,所述上侧边与所述光轴之间具有第五预设间距,所述第五预设间距介于1.5mm~10mm。
  21. 一种光学模块,其特征在于,适用于照明装置,所述照明装置包括光源模块与透镜模块,所述光源模块具有第一光源发光面,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于90度~150度,所述第二出光面对应于所述第一入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。
  22. 根据权利要求21所述的光学模块,其特征在于,所述第二出光面平行于所述第一入光面,且所述第二出光面为雾面或非平滑面的结构;其中,所述第一导光单元的厚度介于0.2mm~1.0mm。
  23. 根据权利要求22所述的光学模块,其特征在于,所述第一导光单元的厚度为0.5mm;其中,所述第一预定夹角为135度;其中,所述第一预设间距为0.2mm。
  24. 根据权利要求22所述的光学模块,其特征在于,所述第一导光单元进一步包括第三出光面以及连接面,所述第三出光面连接于所述第二出光面,所述连接面连接于所述第一出光面与所述第三出光面;其中,所述连接面与所述第一出光面之间具有第二预定夹角,所述第二预定夹角介于40度~60度。
  25. 根据权利要求21所述的光学模块,其特征在于,所述第二出光面倾斜于所述第一 入光面,所述第一导光单元还进一步包括多个第三出光面,多个所述第三出光面位于所述第一出光面与所述第二出光面之间,多个所述第三出光面彼此连接,且其中一个所述第三出光面连接于所述第一出光面,另外一个所述第三出光面连接于所述第二出光面;其中,每一个所述第三出光面为平面结构,且多个所述第三出光面的斜率彼此不同,或者,每一个所述第三出光面为曲面结构,且多个所述第三出光面的曲率彼此不同。
  26. 根据权利要求21所述的光学模块,其特征在于,所述光学模块还包括:
    支撑单元,所述支撑单元具有贯穿本体的一开口;
    第二导光单元,所述第二导光单元与所述第一导光单元相邻地设置于所述开口中,所述第二导光单元包括第三入光面、第四入光面、第四出光面以及第五出光面,所述第三入光面连接于所述第四入光面,所述第四入光面与所述第四出光面之间具有第三预定夹角,所述第三预定夹角介于90度~150度,所述第四出光面对应于所述第三入光面;
    其中,所述第二导光单元与所述第一导光单元之间具有第四预设间距,所述第四预设间距介于0.5mm~1.5mm。
  27. 根据权利要求26所述的光学模块,其特征在于,所述光学模块还包括反射单元,所述反射单元连接于所述支撑单元,所述反射单元具有反射面,所述反射面与所述第一光源发光面之间具有第四预定夹角,所述第四预定夹角介于120度~150度。
  28. 根据权利要求27所述的光学模块,其特征在于,所述第二导光单元位于所述第一导光单元与所述反射单元之间;其中,所述反射面具有靠近于所述支撑单元的上侧边以及远离所述支撑单元的下侧边,所述上侧边与所述光轴之间具有第五预设间距,所述第五预设间距介于1.5mm~10mm。
  29. 一种光学模块,其特征在于,适用于照明装置,所述照明装置包括光源模块与透镜模块,所述光源模块具有第一光源发光面,所述光学模块位于所述光源模块以及所述透镜模块之间,所述光学模块包括第一导光单元,所述第一导光单元包括第一入光面、第二入光面、第一出光面以及第二出光面,所述第一入光面连接于所述第二入光面,所述第二入光面与所述第一出光面之间具有第一预定夹角,所述第一预定夹角介于40度~60度,所述第二出光面对应于所述第二入光面;其中,所述第一入光面平行于所述第一光源发光面,所述第一入光面与所述第一光源发光面之间具有第一预设间距,所述第一预设间距介于0.01mm~0.5mm。
  30. 根据权利要求29所述的光学模块,其特征在于,所述第一入光面平行于所述第一出光面,所述第二入光面平行于所述第二出光面;其中,所述第一导光单元的厚度介于 0.2mm~1mm。
  31. 根据权利要求30所述的光学模块,其特征在于,所述第一导光单元的厚度为0.5mm;其中,所述第一预定夹角为45度;其中,所述第一预设间距为0.2mm。
  32. 根据权利要求29所述的光学模块,其特征在于,所述光学模块还包括:
    支撑单元,所述支撑单元具有贯穿本体的开口;
    第二导光单元,所述第二导光单元与所述第一导光单元相邻地设置于所述开口中,所述第二导光单元包括第三入光面、第四入光面、第四出光面以及第五出光面,所述第三入光面连接于所述第四入光面,所述第四入光面与所述第四出光面之间具有第三预定夹角,所述第三预定夹角介于90度~150度,所述第四出光面对应于所述第三入光面;
    其中,所述第二导光单元与所述第一导光单元之间具有第四预设间距,所述第四预设间距介于0.5mm~1.5mm。
  33. 根据权利要求32所述的光学模块,其特征在于,所述光学模块还包括反射单元,所述反射单元连接于所述支撑单元,所述反射单元具有反射面,所述反射面与所述第一光源发光面之间具有第四预定夹角,所述第四预定夹角介于120度~150度。
  34. 根据权利要求33所述的光学模块,其特征在于,所述第二导光单元位于所述第一导光单元与所述反射单元之间;其中,所述反射面具有靠近于所述支撑单元的上侧边以及远离所述支撑单元的下侧边,所述上侧边与所述光轴之间具有第五预设间距,所述第五预设间距介于1.5mm~10mm。
PCT/CN2020/086158 2020-04-22 2020-04-22 照明装置及光学模块 WO2021212370A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086158 WO2021212370A1 (zh) 2020-04-22 2020-04-22 照明装置及光学模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086158 WO2021212370A1 (zh) 2020-04-22 2020-04-22 照明装置及光学模块

Publications (1)

Publication Number Publication Date
WO2021212370A1 true WO2021212370A1 (zh) 2021-10-28

Family

ID=78270944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086158 WO2021212370A1 (zh) 2020-04-22 2020-04-22 照明装置及光学模块

Country Status (1)

Country Link
WO (1) WO2021212370A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211628A (ja) * 2016-05-28 2017-11-30 鴻海精密工業股▲ふん▼有限公司 レンズ及び該レンズを備える車両用灯具構造
TWI611135B (zh) * 2016-10-13 2018-01-11 國立臺灣科技大學 雷射車燈
CN107631271A (zh) * 2017-10-31 2018-01-26 欧普道路照明有限公司 一种透镜、光源模组、光源模组组合和照明装置
CN108626679A (zh) * 2018-05-22 2018-10-09 常州星宇车灯股份有限公司 一种基于光导的用于机动车辆的光源组件
CN109253417A (zh) * 2018-10-16 2019-01-22 苏州欧普照明有限公司 光学模组及光源模组
CN209944232U (zh) * 2019-05-21 2020-01-14 现代精密塑胶模具(深圳)有限公司 一种透镜及灯具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211628A (ja) * 2016-05-28 2017-11-30 鴻海精密工業股▲ふん▼有限公司 レンズ及び該レンズを備える車両用灯具構造
TWI611135B (zh) * 2016-10-13 2018-01-11 國立臺灣科技大學 雷射車燈
CN107631271A (zh) * 2017-10-31 2018-01-26 欧普道路照明有限公司 一种透镜、光源模组、光源模组组合和照明装置
CN108626679A (zh) * 2018-05-22 2018-10-09 常州星宇车灯股份有限公司 一种基于光导的用于机动车辆的光源组件
CN109253417A (zh) * 2018-10-16 2019-01-22 苏州欧普照明有限公司 光学模组及光源模组
CN209944232U (zh) * 2019-05-21 2020-01-14 现代精密塑胶模具(深圳)有限公司 一种透镜及灯具

Similar Documents

Publication Publication Date Title
US11085603B2 (en) Motor vehicle headlight module for emitting a light beam
US8469552B2 (en) Street lighting device
KR101156272B1 (ko) 배열, 조명 설비 및 조사 장치
JP6383953B2 (ja) 照明装置およびその照明装置を搭載した自動車
JP5369359B2 (ja) 灯具
CN206361642U (zh) 光束调整装置和用于车灯的光学装置
US9429299B2 (en) Optical member with prisms
US9234641B2 (en) Optical lens and light source device
KR20110056405A (ko) 균일한 시준된 광을 생성하기 위한 컴팩트한 광학 시스템 및 렌즈
CN106164581B (zh) 照明灯具
US20180272921A1 (en) Light-projecting device and light cut-off structure thereof
US11668445B2 (en) Multi-beam vehicle light
US8371725B2 (en) Shaped optical prism structure
TWI720874B (zh) 照明裝置及光學模組
TWM611948U (zh) 車燈裝置
TWI698613B (zh) 高效率光線投射裝置
JP2004022223A (ja) 照明装置
WO2021212370A1 (zh) 照明装置及光学模块
JP2012209212A (ja) 車両用灯具
TWM599878U (zh) 照明裝置及光學模組
CN212157016U (zh) 照明装置及光学模块
KR20200101773A (ko) 빛공해 억제형 조명장치
CN220540928U (zh) 一种led雾灯
US20240068641A1 (en) Uniform illumination lens and lamp thereof
TWI788114B (zh) 車燈裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932174

Country of ref document: EP

Kind code of ref document: A1