WO2021212307A1 - 驱动系统和可移动平台 - Google Patents

驱动系统和可移动平台 Download PDF

Info

Publication number
WO2021212307A1
WO2021212307A1 PCT/CN2020/085861 CN2020085861W WO2021212307A1 WO 2021212307 A1 WO2021212307 A1 WO 2021212307A1 CN 2020085861 W CN2020085861 W CN 2020085861W WO 2021212307 A1 WO2021212307 A1 WO 2021212307A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
sub
output
capacitor
Prior art date
Application number
PCT/CN2020/085861
Other languages
English (en)
French (fr)
Inventor
牛金涛
邱贞平
李彬齐
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004311.9A priority Critical patent/CN112586088A/zh
Priority to PCT/CN2020/085861 priority patent/WO2021212307A1/zh
Publication of WO2021212307A1 publication Critical patent/WO2021212307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the invention relates to the technical field of equipment control, in particular to a drive system and a movable platform.
  • Movable platforms such as unmanned aerial vehicles and unmanned vehicles have been widely used in many fields. Take drones as an example.
  • the drones can be equipped with other loads including LED loads.
  • the LED loads can reflect the operating conditions of the drones, and other loads can ensure that the drones can achieve various flight functions.
  • the control signal generated by the microcontroller in the drone is usually used to directly control whether the LED is lit.
  • the microcontroller controls whether the LED is lit, it also needs to control other components in the drone, such as ESCs, flight controls, sensors, etc., so that the drone can fly normally.
  • the processing pressure of the microcontroller is high, and it will be impossible to control whether the LED is lit in time, which will result in the user not being able to know the operating status of the drone in time, and further, because of the inability to understand the operating status in time. And make a wrong operation.
  • the invention provides a driving system and a movable platform, which are used for timely and accurate control of the working state of the LED load.
  • the first aspect of the present invention is to provide a driving system, which includes: a power supply, a protection circuit, a microcontroller, and an LED load;
  • the input end of the protection circuit is respectively connected to the power supply and the microcontroller, and the output end of the protection circuit is connected to the LED load;
  • the power supply is used to supply power to multiple systems in the movable platform including the drive system; the protection circuit is used to output a first control signal according to an output result of the drive system; Logic processing is performed on the first control signal and the second control signal output by the microcontroller, and the working state of the LED load is controlled according to the processing result.
  • the second aspect of the present invention is to provide a movable platform that includes: a body, a power system, a driving system, and a control device;
  • the power system is arranged on the body and used to provide power for the movable platform
  • the driving system specifically includes: a power supply, a protection circuit, and an LED load;
  • the input end of the protection circuit is respectively connected to the power supply and the control device, and the output end of the protection circuit is connected to the LED load;
  • the power supply is used to supply power to multiple systems in the movable platform including the drive system;
  • the protection circuit is used to output a first control signal according to an output result of the drive system; Performing logic processing on the first control signal and the second control signal output by the control device, and controlling the working state of the LED load according to the processing result;
  • the control device is configured to generate the second control signal according to the working state of the movable platform.
  • the driving system provided by the present invention includes: a power supply, a protection circuit, a microcontroller, and an LED load. Among them, the input end of the protection circuit is respectively connected with the power supply and the microcontroller, and the output end of the protection circuit is connected with the LED load.
  • the power supply is used to supply power to multiple systems including the drive system in the movable platform.
  • the protection circuit is used to output the first control signal according to the output result of the entire driving system, and at the same time receive the second control signal output by the microcontroller, and then logically process the two control signals, and finally control the LED load point according to the processing result Bright situation.
  • the power supply of the drive system simultaneously supplies power to multiple systems in the movable platform, such as the drive system and the flight control system.
  • This power supply is actually a common power source. Because of the shared power supply, there is no need to provide a separate power supply for the drive system as in the prior art, thereby reducing the volume and cost of the circuit in the movable platform.
  • LED load working status control needs to be based on both the first control signal output by the protection circuit and the second control signal output by the microcontroller, and directly controlling the working status of the LED load is an independent protection circuit instead of a microcontroller.
  • the microcontroller is only used to send the second control signal and does not undertake any control work. This also avoids the situation that the microcontroller can’t control whether the LED load is lit in time due to the excessive working pressure of the microcontroller. While ensuring timely control of the LED load’s working status, it also avoids the problem caused by untimely control.
  • the LED load is damaged. It is precisely because of this timely control that users can know the working status of the movable platform in time according to the lighting condition of the LED load.
  • FIG. 1 is a schematic structural diagram of a driving system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another driving system provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of yet another driving system provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of yet another driving system provided by an embodiment of the present invention.
  • Fig. 5 is a schematic circuit diagram of a driving system provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a driving system provided by an embodiment of the present invention. As shown in FIG. 1, the system may include: a power supply 11, a protection circuit 12, a microcontroller 13 and an LED load 14.
  • the input end of the protection circuit 12 is connected to the power supply 11 and the microcontroller 13 respectively, and the output end of the protection circuit 12 is connected to the LED load 14.
  • the work engineering of the drive system can be described as: the power supply 11 supplies power to the entire drive system.
  • the protection circuit 12 can output the first control signal according to the output result of the entire driving system, where the output result may be the current value or the voltage value of the driving system.
  • the second control signal output by the microcontroller 13 has nothing to do with the drive system, but is related to the working status of other systems or functional modules and devices in the movable platform, such as sensors, ESCs, and mobile devices configured in the movable platform. It is related to the working status of the flight control system of the platform and so on.
  • the protection circuit 12 will further perform logic processing on the two control signals, and control the working state of the LED load 14 according to the processing result, that is, whether the LED load 14 is turned on.
  • the protection circuit 12 In practical applications, in a situation, when the first control signal output by the protection circuit 12 is a low-level signal, and the microcontroller 13 outputs a high-level signal, it can be considered that the drive system is in a normal working state, and the protection circuit 12 The processing result obtained after logic processing is a low-level signal. The protection circuit 12 outputs this low-level signal to make the LED load 14 light up.
  • the processing result obtained after the protection circuit 12 performs logic processing is: the protection circuit 12
  • the output state is a high-impedance state, and the LED load 14 is turned off at this time.
  • the protection circuit 12 when the first control signal output by the protection circuit 12 is a high-level signal, and the microcontroller 13 outputs a high-level signal, it can be considered that an overcurrent situation has occurred in the driving system at this time, and the protection circuit 12 performs logic processing The subsequent processing result is: the output state of the protection circuit 12 is a high-impedance state. The high-impedance state of the protection circuit 12 will cause the LED load 14 to be extinguished, thereby avoiding damage to the LED load 14 due to overcurrent.
  • the power supply 11 supplies power to the drive system, it also supplies power to other power modules, devices, or systems in the movable platform. For example, it also supplies power to the sensors, ESCs, flight control systems, etc. configured in the mobile platform. It can be seen that the power supply 11 is actually a power supply shared by all modules and systems in a movable platform.
  • the driving system provided by the embodiment of the present invention is also applicable to any electronic device with an LED load.
  • the power supply 11 of the driving system is a common power supply. It is precisely because of the sharing of the power supply 11 that the volume and cost of the circuit in the movable platform are reduced.
  • the working state control of the LED load 14 needs to be based on the first control signal output by the protection circuit 12 and the second control signal output by the microcontroller 13, and the working state of the LED load 14 is controlled by an independent protection circuit 12.
  • the microcontroller 13 is only used to send the second control signal and does not undertake any control work. This also avoids the situation that the micro-controller 13 cannot control whether the LED load 14 is lit in time due to the excessive working pressure of the micro-controller.
  • the LED load 14 is damaged in time. It is precisely because of this timely control that the user can know the working status of the movable platform in time according to the lighting situation of the LED load 14.
  • FIG. 2 is a schematic structural diagram of another driving system provided by an embodiment of the present invention. As shown in FIG. 2, the system may further include a switch circuit 15.
  • the input terminal of the switch circuit 15 is connected to the output terminal of the protection circuit 12, and the output terminal of the switch circuit 15 is connected to the LED load 14.
  • the processing result output by the protection circuit 12 is input to the switch circuit 15.
  • the switching circuit 15 then controls its own switching state according to the processing result.
  • the switch circuit 15 controls itself to turn on, the LED load 14 lights up; when it controls itself to turn off, the LED load 14 turns off.
  • a switch circuit 15 is added at the front end of the LED load 14.
  • the processing result output by the protection circuit 12 is first input to the switch circuit 15, and finally the operating state of the LED load 14 is controlled by the switching state of the switch circuit 15 itself.
  • the use of the switch circuit 15 is equivalent to adding a protective barrier to the LED load 14 to avoid damage to the LED load 14 when overcurrent or other faults occur in the driving system.
  • the protection circuit 12 in the driving system may specifically include: a logic processing sub-circuit 121, a sampling sub-circuit 122, and a threshold value.
  • a sub-circuit 123 and a comparison sub-circuit 124 are provided.
  • connection relationship between the above-mentioned sub-circuits may be: the input end of the sampling sub-circuit 122 is connected to the power supply 11, and the output end of the sampling sub-circuit 122 is connected to the input end of the threshold setting sub-circuit 123 and the input end of the comparison sub-circuit 124, respectively. connect.
  • the output end of the threshold setting sub-circuit 123 is connected to the input end of the comparison sub-circuit 124, and the output end of the comparison sub-circuit 124 is connected to the logic processing sub-circuit 121.
  • the output terminal of the logic processing sub-circuit 121 is connected to the LED load 14.
  • the working process of the multiple sub-circuits may be: the sampling sub-circuit 122 is used to collect the output result in the driving system. In practical applications, the output result is usually a current value. Then, the sampling sub-circuit 122 converts it into a corresponding voltage value, but both the current value before the conversion and the voltage value after the conversion can be regarded as the actual output result of the driving system.
  • the threshold setting sub-circuit 123 is used to output a preset reference output result, that is, a preset voltage value. Optionally, the preset voltage value can be set according to actual requirements.
  • the comparison sub-circuit 124 is configured to receive the actual voltage value collected by the sampling sub-circuit 122 and the preset voltage value output by the threshold setting sub-circuit 123, and after the two are compared, the comparison result is input to the logic processing sub-circuit 121.
  • the comparison sub-circuit 124 For the comparison result, if the actual voltage value is greater than or equal to the preset voltage value, the comparison sub-circuit 124 outputs a high-level signal, which indicates that an overcurrent situation has occurred in the driving system. If the actual voltage value is less than the preset voltage value, the comparison sub-circuit 124 outputs a low-level signal, which indicates that the driving system is working normally.
  • the high-level signal or the low-level signal output by the comparison sub-circuit 124 may be equivalent to the first control signal in the embodiment shown in FIGS. 1 to 2.
  • the logic processing sub-circuit 121 while receiving the high and low level signals output by the comparison sub-circuit 124, can also receive the second control signal sent by the microcontroller 13, and perform logic processing on the two control signals to control the processing results.
  • the logic processing result is a low-level signal, that is, the logic processing sub-circuit 121 outputs a low-level signal.
  • Level signal the LED load 14 lights up at this time.
  • the logic processing result is: the output state of the logic processing sub-circuit 121 is a high impedance state, at this time the LED load 14 Extinguished.
  • the logic processing result is: the output state of the logic processing sub-circuit 121 is a high-impedance state, and the LED load 14 goes out.
  • the combination of the sampling sub-circuit 122, the threshold setting sub-circuit 123, and the comparing sub-circuit 124 can determine whether there is an overcurrent phenomenon in the driving system.
  • an independent logic processing sub-circuit 121 is used to perform logic processing on the control signals output by the comparator 124 and the microcontroller 13 to drive the operation of the LED load 14. That is, the working state of the LED load 14 is controlled by the independent logic processing sub-circuit 121 in the separate protection circuit 12.
  • the control process does not require the participation of the microcontroller 13 to ensure that the working state of the LED load 14 is controlled in time, It also avoids damage to the LED load 14 caused by improper control.
  • the protection circuit 122 in the driving system may specifically further include: Enhancer circuit 125 and time delay sub circuit 126.
  • connection relationship between the foregoing circuits may be: the input end of the capability enhancement sub-circuit 125 is connected to the output end of the comparison sub-circuit 124.
  • the input terminal of the delay sub-circuit 126 is connected with the output terminal of the capability enhancement sub-circuit 125; the output terminal of the delay sub-circuit 126 is connected with the input terminal of the logic processing sub-circuit 121.
  • the comparison sub-circuit 124 can input the comparison result output in the manner shown in FIG. 3 to the capability enhancement sub-circuit 125.
  • the capability enhancement sub-circuit 125 will further determine its own working state according to the comparison result.
  • the capability enhancement sub-circuit 125 determines that it starts to work to improve the load capacity of the comparison sub-circuit 124. At this time, the capability enhancement sub-circuit 125 outputs a high level corresponding to the working state. Level signal.
  • the capability enhancement sub-circuit 125, the delay sub-circuit 126, and the logic processing sub-circuit 121 can all be regarded as the load of the comparison sub-circuit 124.
  • the delay sub-circuit 126 After the delay sub-circuit 126 receives the high-level signal output by the capability enhancement sub-circuit 125, it will control itself to continuously output a high-level signal for a preset period of time.
  • This high-level signal is the example shown in FIGS. 1 and 2 The first control signal.
  • the LED load 14 At this time, the LED load 14 will stop working within the preset time period.
  • the overcurrent phenomenon that occurs in the driving system within the preset time period can be gradually alleviated until disappeared, thereby avoiding damage to the LED load 14 by the system overcurrent.
  • the preset duration can be artificially set according to requirements.
  • the capability enhancement sub-circuit 125 When the comparison sub-circuit 124 outputs a low-level signal, the capability enhancement sub-circuit 125 does not work, and at this time, the output state of the capability enhancement sub-circuit 125 is a high impedance state.
  • the delay sub-circuit 126 outputs a low-level signal by itself based on the output state of the capability enhancement sub-circuit 125 being a high-impedance state, and this low-level signal is also the first control signal in the foregoing embodiment. At this time, it is possible to control whether the LED load 14 is working normally based on the level signal output by the microcontroller 13.
  • the capability enhancement sub-circuit 125 starts to work to enhance the load carrying capacity of the comparison sub-circuit 124, and further enable the logic processing sub-circuit 121 to perform logical operations in a timely and accurate manner. Ensure that the LED load 14 is extinguished in time.
  • the time delay sub-circuit 126 can also provide a time delay of a preset time period, and the LED load 14 will be turned off for the preset time period. Through the time delay, the overcurrent phenomenon can be gradually alleviated to eliminated, and the LED load 14 can be prevented from being damaged. After a certain time delay, the drive system can continue to work normally.
  • the comparison sub-circuit 124 outputs a high-level signal corresponding to the comparison result; the capability enhancement sub-circuit 125 In the working state, it outputs a high-level signal; the time delay sub-circuit 126 outputs a high-level signal, which is also the first control signal.
  • the processing result of the logic processing sub-circuit 121 is: the output state of the logic processing sub-circuit 121 is a high-impedance state , The switch circuit 15 is in the off state, and the LED load 14 is extinguished. In this case, an overcurrent has occurred in the drive system.
  • the comparison sub-circuit 124 outputs a low-level signal corresponding to the comparison result; the capability enhancement sub-circuit 125 is in In the non-working state, and the output state of this sub-circuit is high-impedance state; the time delay sub-circuit 126 outputs a low-level signal, which is also the first control signal.
  • the logic processing sub-circuit 121 outputs a low-level signal, the switch circuit 15 is in the open state, and the LED load is 14 points Bright. In this case, the drive system is working normally.
  • the obtained first control signal is a low-level signal.
  • the processing result of the logic processing sub-circuit 121 is: the output state of the logic processing sub-circuit 121 is a high impedance state , The switch circuit 15 is in the off state, and the LED load 14 is extinguished.
  • the working process of the driving system has been introduced in the form of modules.
  • the circuit schematic diagram corresponding to this driving system can be shown in Fig. 5.
  • the switch circuit 15 in the embodiment shown in FIG. 2 may specifically include: a first resistor R1, a second resistor R2, and a first field effect transistor Q1.
  • the first end of the first resistor R1 is connected to the output end of the logic processing sub-circuit 121, and the second end of the first resistor R1 is connected to the sampling sub-circuit 122. With reference to the subsequent content, the first end of the first resistor R1 is connected to the drain D of the third field effect transistor Q3 in the logic processing sub-circuit 121. The second end of the first resistor R1 is connected to the second end of the fifth resistor R5 in the sampling sub-circuit 122.
  • the gate G of the first field effect transistor Q1 is connected to the first end of the first resistor R1
  • the source S of the first field effect transistor Q1 is connected to the second end of the first resistor R1
  • the drain of the first field effect transistor Q1 The pole D is connected to the first end of the second resistor R2.
  • the first end of the second resistor R2 is connected to the LED load 14, and the second end of the second resistor R2 is grounded.
  • first resistor R1 and second resistor R2 are both voltage divider resistors.
  • the first field effect transistor Q1 is a high-level conductive PMOS transistor.
  • the logic processing sub-circuit 121 in the embodiment shown in FIG. 2 may specifically include: a third resistor R3, a fourth resistor R4, a second field effect transistor Q2, and a third field effect transistor Q3.
  • the first end of the third resistor R3 is connected to the microcontroller 13, and the second end of the third resistor R3 is grounded.
  • the first end of the fourth resistor R4 is connected to the first end of the third resistor R3, the second end of the fourth resistor R4 is connected to the gate G of the third field effect transistor Q3, and the source S of the third field effect transistor Q3 Ground, the drain D of the third field effect transistor Q3 is connected to the first end of the first resistor R1.
  • the drain D of the second field effect transistor Q2 is connected to the second end of the fourth resistor R4, the source S of the second field effect transistor Q2 is grounded, and the gate G of the second field effect transistor Q2 is connected to the delay sub-circuit 126. With reference to the subsequent content, the gate G of the second field effect transistor Q2 is connected to the first end of the fourth capacitor C4 in the delay sub-circuit 126.
  • the aforementioned third resistor R3 is a pull-down resistor
  • the second resistor R2 is a current limiting resistor.
  • Both the first field effect transistor Q1 and the second field effect transistor Q2 are low-level conduction NMOS transistors.
  • the logic processing function of the logic processing sub-circuit 121 can also be implemented by a logic processing device.
  • the sampling sub-circuit 122 in the embodiment shown in FIG. 2 may specifically include: a fifth resistor R5.
  • the first end of the fifth resistor R5 is connected to the power supply VCC (ie, the power supply 11 in the foregoing embodiments), and the second end of the fifth resistor R5 is connected to the second end of the first resistor R1.
  • this fifth resistor R5 in addition to collecting the output result of the driving system, it can also be multiplexed into the switch circuit 15 and the comparator circuit 124. By multiplexing components, the size of the circuit can be reduced. Moreover, the combination of the second resistor R2 and the fifth resistor R5 can also achieve the function of adjusting the operating voltage of the LED load 14, so that the driving system provided by the embodiments of the present invention can be applied to the LED load 14 of various specifications.
  • the threshold setting sub-circuit 123 in the embodiment shown in FIG. 2 may specifically include: a sixth resistor R6, a seventh resistor R7, and a first capacitor C1.
  • the first end of the sixth resistor R6 is connected to the first end of the fifth resistor R5, the second end of the sixth resistor R6 is connected to the first end of the seventh resistor R7, and the second end of the seventh resistor R7 is connected to the comparator circuit. 124 connections.
  • the second end of the seventh resistor R7 is connected to the second end of the third capacitor C3 in the comparison sub-circuit 124.
  • the above-mentioned sixth resistor R6 and seventh resistor R7 are both voltage divider resistors.
  • the first end of the first capacitor C1 is connected to the first end of the seventh resistor R7, and the second end of the first capacitor C1 is connected to the second end of the seventh resistor R7.
  • the threshold can be customized through the parameter design of the fifth resistor R5 and the sixth resistor R6.
  • the comparison sub-circuit 124 in the embodiment shown in FIG. 2 may specifically include: an eighth resistor R8, a ninth resistor R9, a second capacitor C2, a third capacitor C3, and an amplifier U.
  • the first end of the eighth resistor R8 is connected to the second end of the fifth resistor R5, and the second end of the eighth resistor R8 is connected to the reverse input end of the amplifier U.
  • the first end of the ninth resistor R9 is connected to the second end of the eighth resistor R8, and the second end of the ninth resistor R9 is connected to the second end of the second capacitor C2.
  • the first end of the second capacitor C2 is connected to the first end of the ninth resistor R9, and the second end of the second capacitor C2 is grounded.
  • the first end of the third capacitor C3 is connected to the power supply VCC (ie, the power supply 11), and the second end of the third capacitor C3 is grounded.
  • the above-mentioned eighth resistor R8 and ninth resistor R9 are both voltage divider resistors.
  • the comparison sub-circuit 124 can also be implemented by an arithmetic comparator to implement the above-mentioned comparison function.
  • the capability enhancement sub-circuit 125 in the embodiment shown in FIG. 3 may specifically include: a transistor D.
  • the emitter e of the transistor D is connected to the delay sub-circuit 126, and in combination with the following content, the emitter e of the transistor D is connected to the first end of the tenth resistor R10 in the delay sub-circuit 126.
  • the base b of the transistor D is connected to the output terminal of the amplifier U, and the collector c of the transistor D is connected to the power supply VCC (ie, the power supply 11).
  • the transistor D may specifically be a MOSFET.
  • the delay sub-circuit 126 in the embodiment shown in FIG. 3 may specifically include: a tenth resistor R10 and a fourth capacitor C4.
  • the first end of the tenth resistor R10 is connected to the emitter e of the transistor D, and the second end of the tenth resistor R10 is grounded.
  • the aforementioned tenth resistor R10 is a discharge resistor.
  • the first end of the fourth capacitor C4 is connected to the first end of the tenth resistor R10, and the second end of the fourth capacitor C4 is grounded.
  • fault recovery time of the circuit can be customized through the parameter design of the tenth resistor R10 and the fourth capacitor C4.
  • the driving system provided by each embodiment of the present invention is composed of some relatively simple devices such as resistors, capacitors, and transistors, so that the volume of the circuit can be ensured.
  • the comparison sub-circuit 124 outputs a high-level signal corresponding to the comparison result.
  • the capability enhancement sub-circuit 125 is in a working state, and its output is a high-level signal, that is, the transistor D in the capability enhancement sub-circuit 125 is in a conducting state.
  • the first control signal output by the time delay sub-circuit 126 is a high-level signal.
  • the processing result of the logic processing sub-circuit 121 is: the output state of the logic processing sub-circuit 121 is high impedance State, the switch circuit 15 is in the off state, and the LED load 14 is extinguished. Specifically, the second field effect transistor Q2 in the logic processing sub-circuit 121 is in an on state, the third field effect transistor Q3 is in an off state, and the first field effect transistor Q1 in the switch circuit 15 is in an off state. In this case, an overcurrent has occurred in the drive system.
  • the comparison sub-circuit 124 outputs a low-level signal.
  • the capability enhancement sub-circuit 125 does not work, and the output state of the capability enhancement sub-circuit 125 is a high-impedance state, that is, the transistor D in the capability enhancement sub-circuit 125 is in an off state.
  • the first control signal output by the delay sub-circuit 126 is a low-level signal.
  • the logic processing sub-circuit 121 If the first control signal is a low-level signal, and the second control signal output by the microcontroller 13 is a high-level signal, the logic processing sub-circuit 121 outputs a low-level signal, the switch circuit 15 is in an open state, and the LED load 14 Light up. Specifically, the second field effect transistor Q2 in the logic processing sub-circuit 121 is in an off state, the third field effect transistor Q3 is in an on state, and the first field effect transistor Q1 in the switch circuit 15 is in an on state.
  • the obtained first control signal is a low-level signal.
  • the processing result of the logic processing sub-circuit 121 is: the output state of the logic processing sub-circuit 121 is high impedance State, the switch circuit 15 is in the off state, and the LED load 14 is extinguished. Specifically, the second field effect transistor Q2 in the logic processing sub-circuit 121 is in an on state, the third field effect transistor Q3 is in an off state, and the first field effect transistor Q1 in the switch circuit 15 is in an off state.
  • FIG. 6 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • an embodiment of the present invention provides a movable platform, and the movable platform is at least one of the following: Aircraft, unmanned ships, unmanned vehicles, movable intelligent robots, etc.; specifically, the movable platform includes: a body 21, a power system 22, a drive system 23, and a control device 24.
  • the power system 22 is arranged on the body 21 and is used to provide power for the movable platform.
  • the driving system 23 specifically includes: a power supply 231, a protection circuit 232 and an LED load 233.
  • the input end of the protection circuit 232 is connected to the power supply 231 and the control device 24 respectively, and the output end of the protection circuit 232 is connected to the LED load 233.
  • the power supply 231 is used to supply power to multiple systems in the movable platform including the driving system.
  • the protection circuit 232 is configured to output a first control signal according to the output result of the driving system; perform logic processing on the first control signal and the second control signal output by the control device 24, and control the control signal according to the processing result.
  • the working state of the LED load 233 is described.
  • the control device 24 is configured to generate the second control signal according to the working state of the movable platform.
  • the driving system further includes: a switch circuit 234.
  • the input terminal of the switch circuit 234 is connected with the output terminal of the protection circuit 232, and the output terminal of the switch circuit 234 is connected with the LED load 233.
  • the switch circuit 234 is used to determine its own switch state and the working state of the LED load 233 according to the processing result output by the protection circuit 232.
  • the protection circuit 232 specifically includes:
  • the logic processing sub-circuit 2321 whose output terminal is connected to the LED load 223.
  • the logic processing sub-circuit 2321 is configured to perform logic processing on the received first control signal and the second control signal.
  • the protection circuit 222 further includes: a sampling sub-circuit 2322, a threshold setting sub-circuit 2323, and a comparing sub-circuit 2324.
  • the input terminal of the sampling sub-circuit 2322 is connected to the power supply 231, and the output terminal of the sampling sub-circuit 2322 is connected to the input terminal of the threshold setting sub-circuit 2323 and the input terminal of the comparison sub-circuit 2324, respectively.
  • the output terminal of the threshold setting sub-circuit 2323 is connected to the input terminal of the comparison sub-circuit 2324, and the output terminal of the comparison sub-circuit 2324 is connected to the logic processing sub-circuit 2221.
  • the comparison sub-circuit 2324 is used to compare the actual voltage value of the driving system collected by the sampling sub-circuit 2322 with the preset voltage value output by the threshold setting sub-circuit 2323;
  • the level signal is input to the logic processing sub-circuit 2321.
  • the protection circuit 232 further includes:
  • the input terminal is connected with the output terminal of the comparator sub-circuit 2224 to enhance the ability of the sub-circuit 2325.
  • the capability enhancement sub-circuit 2325 is configured to determine its own working state according to the level signal corresponding to the comparison result; and input the output state of the circuit corresponding to the working state into the logic processing sub-circuit 2221.
  • the protection circuit further includes:
  • the input terminal of the delay sub-circuit 2326 is connected with the output terminal of the capability enhancement sub-circuit; the output terminal of the delay sub-circuit 2326 is connected with the input terminal of the logic processing sub-circuit 2321.
  • the delay sub-circuit 2326 is configured to determine that the high-level signal output by itself within a preset time period is the first control signal if the capability enhancement sub-circuit 2325 in the working state outputs a high-level signal, and Make the LED load 233 stop working within the preset time period; and,
  • the output state of the capability enhancement sub-circuit 2325 in the non-working state is a high impedance state, it is determined that the low-level signal output by itself is the first control signal, so that the LED load 233 can work normally.
  • the switch circuit 234 includes: a first resistor R1, a second resistor R2, and a first field effect transistor Q1.
  • the first end of the first resistor R1 is connected to the output end of the logic processing sub-circuit 2321, and the second end of the first resistor R1 is connected to the sampling sub-circuit 2322.
  • the gate G of the first field effect transistor Q1 is connected to the first end of the first resistor R1, and the source S of the first field effect transistor Q1 is connected to the second end of the first resistor R1, The drain D of the first field effect transistor Q1 is connected to the first end of the second resistor R2.
  • the first end of the second resistor R2 is connected to the LED load 233, and the second end of the second resistor R2 is grounded.
  • the logic processing sub-circuit 2321 in the protection circuit 232 includes: a third resistor R3, a fourth resistor R3, a second field effect transistor Q2, and a third field effect transistor Q3.
  • the first end of the third resistor R3 is connected to the control device 24, and the second end of the third resistor R3 is grounded.
  • the first end of the fourth resistor R4 is connected to the first end of the third resistor R3, the second end of the fourth resistor R4 is connected to the gate G of the third field effect transistor Q3, and the The source S of the third field effect transistor Q3 is grounded, and the drain D of the third field effect transistor Q3 is connected to the first end of the first resistor R1.
  • the drain D of the second field effect transistor Q2 is connected to the second end of the fourth resistor R4, the source S of the second field effect transistor Q2 is grounded, and the gate of the second field effect transistor Q2 is grounded. G is connected to the delay sub-circuit 2326.
  • the sampling sub-circuit 2322 in the protection circuit 232 includes: a fifth resistor R5.
  • the first end of the fifth resistor R5 is connected to the power supply 231, and the second end of the fifth resistor R5 is connected to the second end of the first resistor R1.
  • the threshold setting sub-circuit 2323 in the protection circuit 232 includes: a sixth resistor R6, a seventh resistor R7, and a first capacitor C1.
  • the first end of the sixth resistor R6 is connected to the first end of the fifth resistor R5, the second end of the sixth resistor R6 is connected to the first end of the seventh resistor R7, and the seventh resistor R6 is connected to the first end of the seventh resistor R7.
  • the second end of the resistor R7 is connected to the comparator circuit 2324.
  • the first end of the first capacitor C1 is connected to the first end of the seventh resistor R7, and the second end of the first capacitor C1 is connected to the second end of the seventh resistor R7.
  • the comparator sub-circuit 2324 in the protection circuit 232 includes: an eighth resistor R8, a ninth resistor R9, a second capacitor C2, a third capacitor C3, and an amplifier U.
  • the first end of the eighth resistor R8 is connected to the second end of the fifth resistor R5, and the second end of the eighth resistor R8 is connected to the reverse input end of the amplifier U.
  • the first end of the ninth resistor R9 is connected to the second end of the eighth resistor R8, and the second end of the ninth resistor R9 is connected to the second end of the second capacitor C2.
  • the first end of the second capacitor C2 is connected to the first end of the ninth resistor R9, and the second end of the second capacitor C2 is grounded.
  • the first end of the third capacitor C3 is connected to the power supply 231, and the second end of the third capacitor C3 is grounded.
  • the capability enhancement sub-circuit 2325 in the protection circuit 232 includes: a transistor D.
  • the emitter e of the transistor D is connected to the delay sub-circuit 2326, the base b of the transistor D is connected to the output terminal of the amplifier U, and the collector c of the transistor D is connected to the power supply 231 .
  • the delay sub-circuit 2326 in the protection circuit 232 includes: a tenth resistor R10 and a fourth capacitor C4.
  • the first end of the tenth resistor R10 is connected to the emitter e of the transistor D, and the second end of the tenth resistor R10 is grounded.
  • the first end of the fourth capacitor C4 is connected to the first end of the tenth resistor R10, and the second end of the fourth capacitor C4 is grounded.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Electronic Switches (AREA)

Abstract

一种驱动系统,包括:供电电源(11)、保护电路(12)、微控制器(13)以及LED负载(14);供电电源(11),用于为可移动平台中包括驱动系统在内的多个系统供电,由于供电电源(11)的共用,从而减小了可移动平台中电路的体积以及电路成本;保护电路(12),用于输出第一控制信号,同时接收微控制器(13)输出的第二控制信号,再根据两控制信号的逻辑处理结果控制LED负载(14)的点亮情况,直接控制LED负载(14)的工作状态是一个独立的保护电路(12),而不是工作压力大的微控制器(13),上述驱动系统借助独立的保护电路能够实现LED负载的及时控制,避免因控制不及时造成器件损坏。还包括一种可移动平台,该可移动平台包括上述驱动系统。

Description

驱动系统和可移动平台 技术领域
本发明涉及设备控制技术领域,尤其涉及一种驱动系统和可移动平台。
背景技术
如无人机、无人车等的可移动平台目前已经广泛应用到众多领域中。以无人机为例,无人机上可以装有包括LED负载在内的其他负载,LED负载可以反映无人机的运行状况,其他负载可以保证无人机的实现各种飞行功能。
在现有技术中,通常是由无人机中的微控制器生成的控制信号来直接控制LED是否点亮。但微控制器在控制LED是否点亮的同时,还需要对无人机中的其他部件,比如电调、飞控、传感器等等进行控制,以使得无人机能够正常飞行。这样,微控制器的处理压力较大,则会出现无法及时控制LED是否点亮的情况,从而导致用户不能及时的了解到无人机的运行状态,进一步的,还会因无法及时了解运行状态而作出错误操作。
因此,如何保证LED负载驱动的及时性就成为一个亟待解决的问题。
发明内容
本发明提供了一种驱动系统和可移动平台,用于及时、精准地控制LED负载的工作状态。
本发明的第一方面是为了提供一种驱动系统,所述系统包括:供电电源、保护电路、微控制器以及LED负载;
其中,所述保护电路的输入端分别与所述供电电源和所述微控制器连接,所述保护电路的输出端与所述LED负载连接;
其中,所述供电电源,用于为所述可移动平台中包括所述驱动系统在内的多个系统供电;所述保护电路,用于根据所述驱动系统的输出结果输出第一控制信号;对所述第一控制信号和所述微控制器输出的第二控制信号进行逻辑处理以及根据处理结果控制所述LED负载的工作状态。
本发明的第二方面是为了提供一种可移动平台,所述可移动平台包括: 机体、动力系统、驱动系统以及控制装置;
所述动力系统,设置于所述机体上,用于为所述可移动平台提供动力;
所述驱动系统具体包括:供电电源、保护电路以及LED负载;
其中,所述保护电路的输入端分别与所述供电电源和所述控制装置连接,所述保护电路的输出端与所述LED负载连接;
其中,所述供电电源,用于为所述可移动平台中包括所述驱动系统在内的多个系统供电;所述保护电路,用于根据所述驱动系统的输出结果输出第一控制信号;对所述第一控制信号和所述控制装置输出的第二控制信号进行逻辑处理以及根据处理结果控制所述LED负载的工作状态;
所述控制装置,用于根据所述可移动平台的工作状态生成所述第二控制信号。
本发明提供的驱动系统,包括:供电电源、保护电路、微控制器以及LED负载。其中,保护电路的输入端分别与供电电源和微控制器连接,保护电路的输出端与LED负载连接。
基于上述连接关系,供电电源,用于为可移动平台中包括驱动系统在内的多个系统供电。保护电路,用于根据整个驱动系统的输出结果输出第一控制信号,同时接收微控制器输出的第二控制信号,再对这两个控制信号进行逻辑处理,最终根据处理结果控制LED负载的点亮情况。
根据上述描述可知,一方面,驱动系统的供电电源是同时为可移动平台中的多个系统比如驱动系统、飞控系统等同时供电的,此供电电源实际上是一个共用电源。正是由于供电电源的共用,无需像现有技术中那样为驱动系统设置单独的供电电源,从而减小了可移动平台中电路的体积以及成本。
另一方面,LED负载工作状态控制需要同时依据保护电路输出的第一控制信号以及微控制器输出的第二控制信号,并且直接控制LED负载的工作状态是一个独立的保护电路而不是微控制器,微控制器只用于发送第二控制信号,不承担任何控制工作。这也就避免了因微控制器的工作压力过大,而使其无法及时控制LED负载是否点亮的情况,在能够保证及时控制LED负载工作状态的同时,也避免了因控制不及时造成的LED负载损坏。也正是由于这种及时控制,才能使用户能够根据LED负载的点亮情况及时了解可移动平台的工作状态。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种驱动系统的结构示意图;
图2为本发明实施例提供的另一种驱动系统的结构示意图;
图3为本发明实施例提供的又一种驱动系统的结构示意图;
图4为本发明实施例提供的又一种驱动系统的结构示意图;
图5为本发明实施例提供的驱动系统的电路原理图;
图6为本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本发明实施例提供的一种驱动系统的结构示意图。如图1所示,该系统可以包括:供电电源11、保护电路12、微控制器13以及LED负载14。
其中,保护电路12的输入端分别与供电电源11和微控制器13连接,保护电路12的输出端与LED负载连接14。
该驱动系统的工作工程可以描述为:供电电源11为整个驱动系统供电。开始供电后,保护电路12,一方面,能够根据整个驱动系统的输出结果输出第一控制信号,其中,输出结果可以是驱动系统的电流值或者电压值。另一方面,还能够接收微控制器13发出的第二控制信号。其中,微控制器13输出的第二控制信号与驱动系统无关,而与可移动平台中其他系统或功能模块、 器件的工作状态有关,比如与可移动平台中配置的传感器、电调、可移动平台的飞控系统等等的工作状态有关。
接着,保护电路12会进一步对这两路控制信号进行逻辑处理,并根据处理结果控制LED负载14的工作状态,也即是否点亮LED负载14。
在实际应用中,一种情况,当保护电路12输出的第一控制信号是低电平信号,并且微控制器13输出高电平信号时,此时可以认为驱动系统处于正常工作状态,保护电路12进行逻辑处理后得到的处理结果是低电平信号。保护电路12会输出此低电平信号,以使LED负载14点亮。
另一种情况,当保护电路12输出的第一控制信号是低电平信号,并且微控制器13输出低电平信号时,保护电路12进行逻辑处理后得到的处理结果是:保护电路12的输出状态为高阻态,此时使得LED负载14熄灭。
又一种情况,当保护电路12输出的第一控制信号为高电平信号,并且微控制器13输出高电平信号时,此时可以认为驱动系统发生过流情况,保护电路12进行逻辑处理后得到的处理结果是:保护电路12的输出状态为高阻态。保护电路12的高阻态会使得LED负载14熄灭,从而避免因过流而导致LED负载14损坏。
在上述描述的基础上,需要说明的有,供电电源11在为驱动系统供电的同时还会为可移动平台中的其他功模块、器件或者系统进行供电。比如同时为可移动平台中配置的传感器、电调、飞控系统等等供电。可见,此供电电源11实际上一个可移动平台中各模块和系统共用的电源。
另外,对于上述的可移动平台,其除了可以是背景技术中提及的无人机、无人车、无人船等等,还可以是具有运动能力的智能机器人等等。并且本发明实施例提供的驱动系统也适用于任何具有LED负载的电子设备。
本实施例的驱动系统,一方面,驱动系统的供电电源11是一个共用电源。正是由于供电电源11的共用,因此减小了可移动平台中电路的体积以及成本。另一方面,LED负载14工作状态控制需要同时依据保护电路12输出的第一控制信号以及微控制器13输出的第二控制信号,并且控制LED负载14的工作状态是一个独立的保护电路12,微控制器13只用于发送第二控制信号,不承担任何控制工作。这也就避免了因微控制器13的工作压力过大,而使其无法及时控制LED负载14是否点亮的情况,在保证能够及时控制LED负载14工作状态的同时,也避免了因控制不及时造成的LED负载14损坏。也正是由于这种及时控制, 才能使用户能够根据LED负载14的点亮情况及时了解可移动平台的工作状态。
在图1所示实施例的基础上,图2为本发明实施例提供的另一种驱动系统的结构示意图,如图2所示,该系统还可以包括:开关电路15。
其中,开关电路15的输入端与保护电路12的输出端连接,开关电路15的输出端与LED负载14连接。
保护电路12输出的处理结果会输入至开关电路15。开关电路15再根据此处理结果控制自身的开关状态。当开关电路15控制自身打开时,LED负载14点亮;当控制自身关闭时,LED负载14熄灭。
本实施例中,在图1所示实施例所能达到的有益效果的基础上,在LED负载14的前端还增添了一个开关电路15。保护电路12输出的处理结果会先输入至开关电路15,并最终由开关电路15自身的开关状态控制LED负载14的工作状态。此开关电路15的使用,相当于为LED负载14又增添了一层保护屏障,避免驱动系统中出现过流或其他故障时对LED负载14造成损坏。
在上述各实施例提供的驱动系统的基础上,一种可选地方式,如图3所示,该驱动系统中的保护电路12具体可以包括:逻辑处理子电路121、采样子电路122、阈值设置子电路123以及比较子电路124。
上述各子电路之间的连接关系可以为:采样子电路122的输入端与供电电源11连接,采样子电路122的输出端分别与阈值设置子电路123的输入端以及比较子电路124的输入端连接。阈值设置子电路123的输出端与比较子电路124的输入端连接,比较子电路124的输出端与逻辑处理子电路121连接。逻辑处理子电路121输出端与LED负载14连接。
多个子电路的工作过程可以是:采样子电路122用于采集驱动系统中的输出结果,在实际应用中,输出结果通常是电流值。然后,采样子电路122会将其转换成相应的电压值,但无论是转换前的电流值还是转换后的电压值都可以认为是驱动系统的实际输出结果。阈值设置子电路123用于输出预先设置的参考输出结果,也即是即预设电压值。可选地,可以根据实际需求设置预设电压值。
比较子电路124,用于接收采样子电路122采集的实际电压值以及阈值设 置子电路123输出的预设电压值,二者进行比较后,将比较结果输入至逻辑处理子电路121。
对于比较结果,若实际电压值大于或等于预设电压值,则比较子电路124输出高电平信号,此时表明驱动系统中出现过流情况。若实际电压值小于预设电压值,则比较子电路124输出低电平信号,此时表明驱动系统工作正常。其中,比较子电路124输出的高电平信号或低电平信号可以相当于图1~2所示实施例中的第一控制信号。
逻辑处理子电路121,在接收比较子电路124输出的高低电平信号的同时,还可以接收到微控制器13发出的第二控制信号,并对两控制信号进行逻辑处理,以利用处理结果控制LED负载14的工作状态。
对于处理结果,一种情况,若比较子电路124输出低平信号,并且微控制器13输出高电平信号时,逻辑处理结果是低电平信号,也即是逻辑处理子电路121输出低电平信号,此时LED负载14点亮。
又一种情况,若比较子电路124输出低平信号,并且微控制器13输出低电平信号时,逻辑处理结果是:逻辑处理子电路121的输出状态是高阻态,此时LED负载14熄灭。
另一种情况,若比较子电路124输出高电平信号,并且微控制器13输出高电平信号时,逻辑处理结果是:逻辑处理子电路121的输出状态是高阻态,此时LED负载14熄灭。
本实施例中,采样子电路122、阈值设置子电路123以及比较子电路124的结合使用可以判断驱动系统中是否存在过流现象。同时再利用独立的逻辑处理子电路121对比较子电路124和微控制器13输出的控制信号进行逻辑处理,从而驱动LED负载14的工作。也即是LED负载14的工作状态是由单独的保护电路12中的独立的逻辑处理子电路121控制的,控制过程无需微控制器13的参与,从而保证及时控制LED负载14工作状态的同时,也避免了因控制不及时造成的LED负载14损坏。
在图3所示实施例的基础上,对于驱动系统中的保护电12路,另一种可选地方式,可以如图4所示,该驱动系统中的保护电路122具体还可以包括:能力增强子电路125和时延子电路126。
上述各电路之间的连接关系可以为:能力增强子电路125的输入端与比较 子电路124的输出端连接。时延子电路126的输入端与能力增强子电路125的输出端连接;时延子电路126的输出端与逻辑处理子电路121的输入端连接。
多个子电路的工作可以描述为:比较子电路124可以将按照图3所示方式输出的比较结果输入至能力增强子电路125。能力增强子电路125则会进一步根据比较结果确定自身的工作状态。
当比较子电路124输出高电平信号时,能力增强子电路125确定自身开始工作,用以提高比较子电路124的带负载能力,此时能力增强子电路125输出的是与工作状态对应的高电平信号。其中,能力增强子电路125、时延子电路126以及逻辑处理子电路121都可以认为是比较子电路124的负载。
时延子电路126在接收到能力增强子电路125输出的高电平信号后,会控制自身在预设时长内持续输出高电平信号,此高电平信号即为图1~2所示实例中的第一控制信号。此时,LED负载14会在预设时长内停止工作。在预设时长内驱动系统中出现的过流现象可以逐步缓解直至消失,从而避免系统过流对LED负载14的损坏。其中,预设时长可以根据需求人为设定。
当比较子电路124输出低电平信号时,能力增强子电路125不工作,此时能力增强子电路125的输出状态是高阻态。
时延子电路126基于能力增强子电路125的输出状态为高阻态,自身会输出低电平信号,此低电平信号也即是上述实施例中的第一控制信号。此时,可以再基于微控制器13输出的电平信号控制LED负载14是否正常工作。
本实施例中,当驱动系统处于过流状态时,能力增强子电路125开始工作,以增强比较子电路124的带负载能力,进一步使得逻辑处理子电路121能够及时、准确的进行逻辑运算,以保证LED负载14及时熄灭。同时,时延子电路126也可以提供预设时长的时延,LED负载14会在预设时长内一直熄灭。通过时延能够使得过流现象逐渐缓解至消除,避免LED负载14损坏。在时延一定时长后,驱动系统又可以继续正常工作。
上述各实施例中已经以模块的形式介绍了驱动系统的工作过程。在实际应用中,对于各个子电路的输出状态的不同情况以及LED负载14最终的工作状态,可以存在以下情况:
一种情况,若采样子电路122采集到实际电压值大于或等于阈值设置子电路123输出的预设电压值,则比较子电路124输出与比较结果对应的高电平信 号;能力增强子电路125处于工作状态,其输出的是高电平信号;时延子电路126输出高电平信号,此信号也即第一控制信号。
若第一控制信号是高电平信号,微控制器13输出的第二控制信号也是高电平信号,则逻辑处理子电路121的处理结果是:逻辑处理子电路121的输出状态是高阻态,则开关电路15处于断开状态,LED负载14熄灭。此种情况也即是驱动系统中发生了过流。
另一种情况,若采样子电路122采集到实际电压值小于阈值设置子电路123输出的预设电压值,则比较子电路124输出与比较结果对应的低电平信号;能力增强子电路125处于不工作状态,且此子电路的输出状态是高阻态;时延子电路126输出低电平信号,此信号也即第一控制信号。
若第一控制信号是低电平信号,微控制器13输出的第二控制信号是高电平信号,则逻辑处理子电路121输出低电平信号,开关电路15处于打开状态,LED负载14点亮。此种情况也即是驱动系统正常工作。
与上述情况相似的,又一种情况,若采样子电路122采集到实际电压值小于阈值设置子电路123输出的预设电压值,则得到的第一控制信号是低电平信号。
若第一控制信号是低电平信号,微控制器13输出的第二控制信号是低电平信号,则逻辑处理子电路121的处理结果是:逻辑处理子电路121的输出状态是高阻态,开关电路15处于断开状态,LED负载14熄灭。
上述各实施例中已经以模块的形式介绍了驱动系统的工作过程。此驱动系统对应的电路原理图可以如图5所示。下面结合图5,以具体的电子器件形式说明驱动系统的具体构成和工作过程。
可选地,图2所示实施例中的开关电路15具体可以包括:第一电阻R1、第二电阻R2以及第一场效应管Q1。
第一电阻R1的第一端与逻辑处理子电路121的输出端连接,第一电阻R1的第二端与采样子电路122连接。结合后续内容,第一电阻R1的第一端是与逻辑处理子电路121中的第三场效应管Q3的漏极D连接。第一电阻R1的第二端是与采样子电路122中的第五电阻R5的第二端连接。
第一场效应管Q1的栅极G与第一电阻R1的第一端连接,第一场效应管Q1的源极S与第一电阻R1的第二端连接,第一场效应管Q1的漏极D与第二电阻R2的 第一端连接。
第二电阻R2的第一端与LED负载14连接,第二电阻R2的第二端接地。
其中,上述的第一电阻R1和第二电阻R2都是分压电阻。第一场效应管Q1是高电平导通的PMOS管。
可选地,图2所示实施例中的逻辑处理子电路121具体可以包括:第三电阻R3、第四电阻R4、第二场效应管Q2以及第三场效应管Q3。
第三电阻R3的第一端与微控制器13连接,第三电阻R3的第二端接地。
第四电阻R4的第一端与第三电阻R3的第一端连接,第四电阻R4的第二端与第三场效应管Q3的栅极G连接,第三场效应管Q3的源极S接地,第三场效应管Q3的漏极D与第一电阻R1的第一端连接。
第二场效应管Q2的漏极D与第四电阻R4的第二端连接,第二场效应管Q2的源极S接地,第二场效应管Q2的栅极G与时延子电路126连接。结合后续内容,第二场效应管Q2的栅极G是与时延子电路126中第四电容C4的第一端连接。
其中,上述的第三电阻R3是下拉电阻,第二电阻R2是限流电阻。第一场效应管Q1和第二场效应管Q2都是低电平导通的NMOS管。并且在实际应用中,逻辑处理子电路121的逻辑处理功能也能够由逻辑处理器件实现。
可选地,图2所示实施例中的采样子电路122具体可以包括:第五电阻R5。
第五电阻R5的第一端与供电电源VCC(即上述各实施例中的供电电源11)连接,第五电阻R5的第二端与第一电阻R1的第二端连接。
值得说明的有,对于此第五电阻R5,除了起到采集驱动系统的输出结果的作用,其还可以复用到开关电路15和比较子电路124中。通过元件复用,能够减小电路的体积。并且,此第二电阻R2和第五电阻R5结合使用还能够实现调节LED负载14工作电压的作用,从而使得本发明各实施例提供的驱动系统能够适用于各规格的LED负载14。
可选地,图2所示实施例中的阈值设置子电路123具体可以包括:第六电阻R6、第七电阻R7以及第一电容C1。
第六电阻R6的第一端与第五电阻R5的第一端连接,第六电阻R6的第二端与第七电阻R7的第一端连接,第七电阻R7的第二端与比较子电路124连接。结 合后续内容,第七电阻R7的第二端与比较子电路124中第三电容C3的第二端连接。其中,上述的第六电阻R6和第七电阻R7都是分压电阻。
第一电容C1的第一端与第七电阻R7的第一端连接,第一电容C1的第二端与第七电阻R7的第二端连接。
需要说明的有,可以通过第五电阻R5和第六电阻R6的参数设计来实现阈值的自定义。
可选地,图2所示实施例中的比较子电路124具体可以包括:第八电阻R8、第九电阻R9、第二电容C2、第三电容C3以及放大器U。
第八电阻R8的第一端与第五电阻R5的第二端连接,第八电阻R8的第二端与放大器U的反向输入端连接。
第九电阻R9的第一端与第八电阻R8的第二端连接,第九电阻R9的第二端与第二电容C2的第二端连接。
第二电容C2的第一端与第九电阻R9的第一端连接,第二电容C2的第二端接地。
第三电容C3的第一端与供电电源VCC(即供电电源11)连接,第三电容C3的第二端接地。
其中,上述的第八电阻R8和第九电阻R9都是分压电阻。并且需要说明的有,此比较子电路124也可以由运算比较器来实现上述的比较功能。
可选地,图3所示实施例中的能力增强子电路125具体可以包括:三极管D。三极管D的发射极e与时延子电路126连接,结合后续内容,三极管D的发射极e与时延子电路126中的第十电阻R10的第一端连接。
三极管D的基极b与放大器U的输出端连接,三极管D的集电极c与供电电源VCC(即供电电源11)连接。实际应用中,此三极管D具体可以是MOSFET管。
可选地,图3所示实施例中的时延子电路126具体可以包括:第十电阻R10和第四电容C4。
第十电阻R10的第一端与三极管D的发射极e连接,第十电阻R10的第二端接地。上述的第十电阻R10是放电电阻。
第四电容C4的第一端与第十电阻R10的第一端连接,第四电容C4的第二端 接地。
需要说明的有,可以通过第十电阻R10和第四电容C4的参数设计可以自定义电路的故障恢复时间。
根据上述描述的各部分电路的组成可知,本发明各实施例提供的驱动系统都是由一些电阻、电容、晶体管等较简单的器件构成的,因此能够保证电路的体积。
对于在如图5所示实施例之前描述的三种情况,下面分别说明在每种情况下,电路原理图中各器件的工作状态:
一种情况,若采样子电路122采集到实际电压值大于或等于阈值设置子电路123输出的预设电压值,则比较子电路124输出与比较结果对应的高电平信号。此时,能力增强子电路125处于工作状态,其输出的是高电平信号,也即是能力增强子电路125中的三极管D处于导通状态。时延子电路126输出的第一控制信号是高电平信号。
若第一控制信号是高电平信号,并且微控制器13输出的第二控制信号也是高电平信号,则逻辑处理子电路121的处理结果是:逻辑处理子电路121的输出状态是高阻态,开关电路15处于断开状态,LED负载14熄灭。具体来说,逻辑处理子电路121中的第二场效应管Q2处于导通状态,第三场效应管Q3处于截止状态;开关电路15中的第一场效应管Q1截止状态。此种情况也即是驱动系统中发生了过流。
另一种情况,若采样子电路122采集到实际电压值小于阈值设置子电路123输出的预设电压值,则比较子电路124输出低电平信号。此时,能力增强子电路125不工作,此能力增强子电路125的输出状态是高阻态,也即是能力增强子电路125中的三极管D处于截止状态。同时,时延子电路126输出的第一控制信号为低电平信号。
若第一控制信号是低电平信号,并且微控制器13输出的第二控制信号是高电平信号,则逻辑处理子电路121输出低电平信号,开关电路15处于打开状态,LED负载14点亮。具体来说,逻辑处理子电路121中的第二场效应管Q2处于截止状态,第三场效应管Q3处于导通状态;开关电路15中的第一场效应管Q1导通状态。
与上述情况相似的,又一种情况,若采样子电路122采集到实际电压值小 于阈值设置子电路123输出的预设电压值,则得到的第一控制信号是低电平信号。
若第一控制信号是低电平信号,并且微控制器13输出的第二控制信号是低电平信号,则逻辑处理子电路121的处理结果是:逻辑处理子电路121的输出状态是高阻态,开关电路15处于断开状态,LED负载14熄灭。具体来说,逻辑处理子电路121中的第二场效应管Q2处于导通状态,第三场效应管Q3处于截止状态;开关电路15中的第一场效应管Q1截止状态。
图6为本发明实施例提供的一种可移动平台的结构示意图;参考附图6所示,本发明实施例的提供了一种可移动平台,该可移动平台为以下至少之一:无人飞行器、无人船、无人车、可移动的智能机器人等等;具体的,该可移动平台包括:机体21、动力系统22、驱动系统23以及控制装置24。
所述动力系统22,设置于所述机体21上,用于为所述可移动平台提供动力。
所述驱动系统23具体包括:供电电源231、保护电路232以及LED负载233。
其中,所述保护电路232的输入端分别与所述供电电源231和所述控制装置24连接,所述保护电路232的输出端与所述LED负载233连接。
其中,所述供电电源231,用于为所述可移动平台中包括所述驱动系统在内的多个系统供电。所述保护电路232,用于根据所述驱动系统的输出结果输出第一控制信号;对所述第一控制信号和所述控制装置24输出的第二控制信号进行逻辑处理以及根据处理结果控制所述LED负载233的工作状态。
所述控制装置24,用于根据所述可移动平台的工作状态生成所述第二控制信号。
可选地,所述驱动系统还包括:开关电路234。
所述开关电路234的输入端与所述保护电路232的输出端连接,所述开关电路234的输出端与所述LED负载233连接。
所述开关电路234,用于根据所述保护电路232输出的处理结果确定自身的开关状态以及所述LED负载233的工作状态。
可选地,所述保护电路232具体包括:
输出端与所述LED负载223连接的逻辑处理子电路2321。
所述逻辑处理子电路2321,用于对接收到的所述第一控制信号以及所述 第二控制信号进行逻辑处理。
可选地,所述保护电路222还包括:采样子电路2322、阈值设置子电路2323以及比较子电路2324。
所述所述采样子电路2322的输入端与所述供电电源231连接,所述采样子电路2322的输出端分别与所述阈值设置子电路2323的输入端以及所述比较子电路2324的输入端连接,所述阈值设置子电路2323的输出端与所述比较子电路2324的输入端连接,所述比较子电路2324的输出端与所述逻辑处理子电路2221连接。
所述比较子电路2324,用于将所述采样子电路2322采集到的所述驱动系统的实际电压值与所述阈值设置子电路2323输出的预设电压值进行比较;将与比较结果对应的电平信号输入所述逻辑处理子电路2321。
可选地,所述保护电路232还包括:
输入端与所述比较子电路2224的输出端连接的能力增强子电路2325。
所述能力增强子电路2325,用于根据所述与比较结果对应的电平信号确定自身的工作状态;将与所述工作状态对应的电路输出状态输入所述逻辑处理子电路2221。
可选地,所述保护电路还包括:
时延子电路2326。
所述时延子电路2326的输入端与所述能力增强子电路的输出端连接;所述时延子电路2326的输出端与所述逻辑处理子电路2321的输入端连接。
所述时延子电路2326,用于若处于工作状态的所述能力增强子电路2325输出高电平信号,则确定自身在预设时长内输出的高电平信号为所述第一控制信号,以使所述LED负载233在所述预设时长内停止工作;以及,
若处于非工作状态的所述能力增强子电路2325的输出状态为高阻态,则确定自身输出的低电平信号为所述第一控制信号,以使所述LED负载233正常工作。
可选地,所述开关电路234包括:第一电阻R1、第二电阻R2以及第一场效应管Q1。
所述第一电阻R1的第一端与所述逻辑处理子电路2321的输出端连接,所述第一电阻R1的第二端与所述采样子电路2322连接。
所述第一场效应管Q1的栅极G与所述第一电阻R1的第一端连接,所述第一 场效应管Q1的源极S与所述第一电阻R1的第二端连接,所述第一场效应管Q1的漏极D与所述第二电阻R2的第一端连接。
所述第二电阻R2的第一端与所述LED负载233连接,所述第二电阻R2的第二端接地。
可选地,所述保护电路232中的逻辑处理子电路2321包括:第三电阻R3、第四电阻R3、第二场效应管Q2以及第三场效应管Q3。
所述第三电阻R3的第一端与所述控制装置24连接,所述第三电阻R3的第二端接地。
所述第四电阻R4的第一端与所述第三电阻R3的第一端连接,所述第四电阻R4的第二端与所述第三场效应管Q3的栅极G连接,所述第三场效应管Q3的源极S接地,所述第三场效应管Q3的漏极D与所述第一电阻R1的第一端连接。
所述第二场效应管Q2的漏极D与所述第四电阻R4的第二端连接,所述第二场效应管Q2的源极S接地,所述第二场效应管Q2的栅极G与所述时延子电路2326连接。
可选地,所述保护电路232中的采样子电路2322包括:第五电阻R5。
所述第五电阻R5的第一端与所述供电电源231连接,所述第五电阻R5的第二端与所述第一电阻R1的第二端连接。
可选地,所述保护电路232中的阈值设置子电路2323包括:第六电阻R6、第七电阻R7以及第一电容C1。
所述第六电阻R6的第一端与所述第五电阻R5的第一端连接,所述第六电阻R6的第二端与所述第七电阻R7的第一端连接,所述第七电阻R7的第二端与所述比较子电路2324连接。
所述第一电容C1的第一端与所述第七电阻R7的第一端连接,所述第一电容C1的第二端与所述第七电阻R7的第二端连接。
可选地,所述保护电路232中的比较子电路2324包括:第八电阻R8、第九电阻R9、第二电容C2、第三电容C3以及放大器U。
所述第八电阻R8的第一端与所述第五电阻R5的第二端连接,所述第八电阻R8的第二端与所述放大器U的反向输入端连接。
所述第九电阻R9的第一端与所述第八电阻R8的第二端连接,所述第九电阻R9的第二端与所述第二电容C2的第二端连接。
所述第二电容C2的第一端与所述第九电阻R9的第一端连接,所述第二电 容C2的第二端接地。
所述第三电容C3的第一端与所述供电电源231连接,所述第三电容C3的第二端接地。
可选地,所述保护电路232中的能力增强子电路2325包括:三极管D。所述三极管D的发射极e与所述时延子电路2326连接,所述三极管D的基极b与所述放大器U的输出端连接,所述三极管D的集电极c与所述供电电源231连接。
可选地,所述保护电路232中的时延子电路2326包括:第十电阻R10以及第四电容C4。
所述第十电阻R10的第一端与所述三极管D的发射极e连接,所述第十电阻R10的第二端接地。
所述第四电容C4的第一端与所述第十电阻R10的第一端连接,所述第四电容C4的第二端接地。
图6所示的可移动平台中的驱动系统具体的工作过程以及构成方式可以参见图1~图5所示的实施例,本实施例未详细描述的部分,
Figure PCTCN2020085861-appb-000001
可参考对图1~图5所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1~图5所示实施例中的描述,在此不再赘述。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种驱动系统,其特征在于,应用于可移动平台,所述系统包括:供电电源、保护电路、微控制器以及LED负载;
    其中,所述供电电源,用于为所述可移动平台中包括所述驱动系统在内的多个系统供电;所述保护电路,用于根据所述驱动系统的输出结果输出第一控制信号;对所述第一控制信号和所述微控制器输出的第二控制信号进行逻辑处理以及根据处理结果控制所述LED负载的工作状态。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括:
    开关电路,用于根据所述保护电路输出的处理结果确定自身的开关状态以及所述LED负载的工作状态。
  3. 根据权利要求2所述的系统,其特征在于,所述保护电路包括:逻辑处理子电路,用于对接收到的所述第一控制信号以及所述第二控制信号进行逻辑处理。
  4. 根据权利要求3所述的系统,其特征在于,所述保护电路还包括:采样子电路、阈值设置子电路以及比较子电路;
    所述比较子电路,用于将所述采样子电路采集到的所述驱动系统的实际电压值与所述阈值设置子电路输出的预设电压值进行比较;将与比较结果对应的电平信号输入所述逻辑处理子电路。
  5. 根据权利要求4所述的系统,其特征在于,所述保护电路还包括:能力增强子电路,用于根据所述与比较结果对应的电平信号确定自身的工作状态;将与所述工作状态对应的电路输出状态输入所述逻辑处理子电路。
  6. 根据权利要求5所述的系统,其特征在于,所述保护电路还包括:
    时延子电路,用于若处于工作状态的所述能力增强子电路输出高电平信号,则确定自身在预设时长内输出的高电平信号为所述第一控制信号,以使所述LED负载在所述预设时长内停止工作;以及,
    若处于非工作状态的所述能力增强子电路的输出状态为高阻态,则确定自身输出的低电平信号为所述第一控制信号,以使所述LED负载正常工作。
  7. 根据权利要求6所述的系统,其特征在于,若所述比较子电路输出的与比较结果对应的电平信号为高电平信号,则所述能力增强子电路输出高电平信号,所述时延子电路输出的第一控制信号为高电平信号。
  8. 根据权利要求6所述的系统,其特征在于,若所述比较子电路输出的 与比较结果对应的电平信号为低电平信号,则所述能力增强子电路的输出状态为高阻态,所述时延子电路输出的第一控制信号为低电平信号。
  9. 根据权利要求7或8所述的系统,其特征在于,若所述第二控制信号与所述第一控制信号同为高电平信号或者低电平信号,则所述逻辑处理子电路的输出状态为高阻态,所述开关电路处于关闭状态,所述LED负载停止工作。
  10. 根据权利要求8所述的系统,其特征在于,若所述第一控制信号为低电平信号,所述第二控制信号为高电平信号,则所述逻辑处理子电路输出的处理结果为低电平信号,所述开关电路处于打开状态,所述LED负载开始工作。
  11. 根据权利要求6所述的系统,其特征在于,所述开关电路包括:第一电阻、第二电阻以及第一场效应管;
    所述第一电阻的第一端与所述逻辑处理子电路的输出端连接,所述第一电阻的第二端与所述采样子电路连接;
    所述第一场效应管的栅极与所述第一电阻的第一端连接,所述第一场效应管的源极与所述第一电阻的第二端连接,所述第一场效应管的漏极与所述第二电阻的第一端连接;
    所述第二电阻的第一端与所述LED负载连接,所述第二电阻的第二端接地。
  12. 根据权利要求11所述的系统,其特征在于,所述逻辑处理子电路包括:第三电阻、第四电阻、第二场效应管以及第三场效应管;
    所述第三电阻的第一端与所述微控制器连接,所述第三电阻的第二端接地;
    所述第四电阻的第一端与所述第三电阻的第一端连接,所述第四电阻的第二端与所述第三场效应管的栅极连接,所述第三场效应管的源极接地,所述第三场效应管的漏极与所述第一电阻的第一端连接;
    所述第二场效应管的漏极与所述第四电阻的第二端连接,所述第二场效应管的源极接地,所述第二场效应管的栅极与所述时延子电路连接。
  13. 根据权利要求12所述的系统,其特征在于,所述采样子电路包括:第五电阻;
    所述第五电阻的第一端与所述供电电源连接,所述第五电阻的第二端与所述第一电阻的第二端连接。
  14. 根据权利要求13所述的系统,其特征在于,所述阈值设置子电路包括:第六电阻、第七电阻以及第一电容;
    所述第六电阻的第一端与所述第五电阻的第一端连接,所述第六电阻的第二端与所述第七电阻的第一端连接,所述第七电阻的第二端与所述比较子电路连接;
    所述第一电容的第一端与所述第七电阻的第一端连接,所述第一电容的第二端与所述第七电阻的第二端连接。
  15. 根据权利要求14所述的系统,其特征在于,所述比较子电路包括:第八电阻、第九电阻、第二电容、第三电容以及放大器;
    所述第八电阻的第一端与所述第五电阻的第二端连接,所述第八电阻的第二端与所述放大器的反向输入端连接;
    所述第九电阻的第一端与所述第八电阻的第二端连接,所述第九电阻的第二端与所述第二电容的第二端连接;
    所述第二电容的第一端与所述第九电阻的第一端连接,所述第二电容的第二端接地;
    所述第三电容的第一端与所述供电电源连接,所述第三电容的第二端接地。
  16. 根据权利要求15所述的系统,其特征在于,所述能力增强子电路包括:三极管,所述三极管的发射极与所述时延子电路连接,所述三极管的基极与所述放大器的输出端连接,所述三极管的集电极与所述供电电源连接。
  17. 根据权利要求16所述的系统,其特征在于,所述时延子电路包括:第十电阻以及第四电容;
    所述第十电阻的第一端与所述三极管的发射极连接,所述第十电阻的第二端接地;
    所述第四电容的第一端与所述第十电阻的第一端连接,所述第四电容的第二端接地。
  18. 一种可移动平台,其特征在于,所述平台包括:机体、动力系统、驱动系统以及控制装置;
    所述动力系统,设置于所述机体上,用于为所述可移动平台提供动力;
    所述驱动系统具体包括:供电电源、保护电路以及LED负载;
    其中,所述供电电源,用于为所述可移动平台中包括所述驱动系统在内的多个系统供电;所述保护电路,用于根据所述驱动系统的输出结果输出第一控制信号;对所述第一控制信号和所述控制装置输出的第二控制信号进行 逻辑处理以及根据处理结果控制所述LED负载的工作状态;
    所述控制装置,用于根据所述可移动平台的工作状态生成所述第二控制信号。
  19. 根据权利要求18所述的平台,其特征在于,所述驱动系统还包括:
    开关电路,用于根据所述保护电路输出的处理结果确定自身的开关状态以及所述LED负载的工作状态。
  20. 根据权利要求19所述的平台,其特征在于,所述驱动系统中的保护电路具体包括:
    逻辑处理子电路,用于对接收到的所述第一控制信号以及所述第二控制信号进行逻辑处理。
  21. 根据权利要求20所述的平台,其特征在于,所述驱动系统中的保护电路还包括:采样子电路、阈值设置子电路以及比较子电路;
    所述比较子电路,用于将所述采样子电路采集到的所述驱动系统的实际电压值与所述阈值设置子电路输出的预设电压值进行比较;将与比较结果对应的电平信号输入所述逻辑处理子电路。
  22. 根据权利要求21所述的平台,其特征在于,所述驱动系统中的保护电路还包括:能力增强子电路,用于根据所述与比较结果对应的电平信号确定自身的工作状态;将与所述工作状态对应的电路输出状态输入所述逻辑处理子电路。
  23. 根据权利要求22所述的平台,其特征在于,所述驱动系统中的保护电路还包括:
    时延子电路,用于若处于工作状态的所述能力增强子电路输出高电平信号,则确定自身在预设时长内输出的高电平信号为所述第一控制信号,以使所述LED负载在所述预设时长内停止工作;以及,
    若处于非工作状态的所述能力增强子电路的输出状态为高阻态,则确定自身输出的低电平信号为所述第一控制信号,以使所述LED负载正常工作。
  24. 根据权利要求23所述的平台,其特征在于,所述开关电路包括:第一电阻、第二电阻以及第一场效应管;
    所述第一电阻的第一端与所述逻辑处理子电路的输出端连接,所述第一电阻的第二端与所述采样子电路连接;
    所述第一场效应管的栅极与所述第一电阻的第一端连接,所述第一场效 应管的源极与所述第一电阻的第二端连接,所述第一场效应管的漏极与所述第二电阻的第一端连接;
    所述第二电阻的第一端与所述LED负载连接,所述第二电阻的第二端接地。
  25. 根据权利要求24所述的平台,其特征在于,所述保护电路中的逻辑处理子电路包括:第三电阻、第四电阻、第二场效应管以及第三场效应管;
    所述第三电阻的第一端与所述控制装置连接,所述第三电阻的第二端接地;
    所述第四电阻的第一端与所述第三电阻的第一端连接,所述第四电阻的第二端与所述第三场效应管的栅极连接,所述第三场效应管的源极接地,所述第三场效应管的漏极与所述第一电阻的第一端连接;
    所述第二场效应管的漏极与所述第四电阻的第二端连接,所述第二场效应管的源极接地,所述第二场效应管的栅极与所述时延子电路连接。
  26. 根据权利要求25所述的平台,其特征在于,所述保护电路中的采样子电路包括:第五电阻;
    所述第五电阻的第一端与所述供电电源连接,所述第五电阻的第二端与所述第一电阻的第二端连接。
  27. 根据权利要求26所述的平台,其特征在于,所述保护电路中的阈值设置子电路包括:第六电阻、第七电阻以及第一电容;
    所述第六电阻的第一端与所述第五电阻的第一端连接,所述第六电阻的第二端与所述第七电阻的第一端连接,所述第七电阻的第二端与所述比较子电路连接;
    所述第一电容的第一端与所述第七电阻的第一端连接,所述第一电容的第二端与所述第七电阻的第二端连接。
  28. 根据权利要求27所述的平台,其特征在于,所述保护电路中的比较子电路包括:第八电阻、第九电阻、第二电容、第三电容以及放大器;
    所述第八电阻的第一端与所述第五电阻的第二端连接,所述第八电阻的第二端与所述放大器的反向输入端连接;
    所述第九电阻的第一端与所述第八电阻的第二端连接,所述第九电阻的第二端与所述第二电容的第二端连接;
    所述第二电容的第一端与所述第九电阻的第一端连接,所述第二电容的第二端接地;
    所述第三电容的第一端与所述供电电源连接,所述第三电容的第二端接地
  29. 根据权利要求28所述的平台,其特征在于,所述保护电路中的能力增强子电路包括:三极管;
    所述三极管的发射极与所述时延子电路连接,所述三极管的基极与所述放大器的输出端连接,所述三极管的集电极与所述供电电源连接。
  30. 根据权利要求29所述的平台,其特征在于,所述保护电路中的时延子电路包括:第十电阻以及第四电容;
    所述第十电阻的第一端与所述三极管的发射极连接,所述第十电阻的第二端接地;
    所述第四电容的第一端与所述第十电阻的第一端连接,所述第四电容的第二端接地。
PCT/CN2020/085861 2020-04-21 2020-04-21 驱动系统和可移动平台 WO2021212307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004311.9A CN112586088A (zh) 2020-04-21 2020-04-21 驱动系统和可移动平台
PCT/CN2020/085861 WO2021212307A1 (zh) 2020-04-21 2020-04-21 驱动系统和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/085861 WO2021212307A1 (zh) 2020-04-21 2020-04-21 驱动系统和可移动平台

Publications (1)

Publication Number Publication Date
WO2021212307A1 true WO2021212307A1 (zh) 2021-10-28

Family

ID=75145422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085861 WO2021212307A1 (zh) 2020-04-21 2020-04-21 驱动系统和可移动平台

Country Status (2)

Country Link
CN (1) CN112586088A (zh)
WO (1) WO2021212307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446211A (zh) * 2022-03-07 2022-05-06 深圳创维-Rgb电子有限公司 显示面板驱动方法及显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113659814B (zh) * 2021-08-18 2023-06-09 睿驰电装(大连)电动系统有限公司 高低边驱动电路、高低边驱动系统和汽车控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126894A1 (ko) * 2016-01-18 2017-07-27 김성호 추락 경고장치 및 이를 갖춘 무인항공기
CN107567149A (zh) * 2017-10-09 2018-01-09 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统
CN108738201A (zh) * 2018-06-21 2018-11-02 上海晶丰明源半导体股份有限公司 控制电路、led驱动芯片、led驱动系统及led驱动方法
CN109573079A (zh) * 2017-09-29 2019-04-05 威盛视源智能科技(天津)有限公司 一种搭载于无人机的破拆装置及其控制电路
CN109672236A (zh) * 2018-11-29 2019-04-23 中海阳能源集团股份有限公司 一种高精度室内定位机器人的无线充电系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575668A (en) * 1984-07-09 1986-03-11 Liebert Corporation Controller for providing PWM drive to an A.C. motor
CN102917509B (zh) * 2012-11-01 2015-06-24 天宝电子(惠州)有限公司 智能型数字led驱动控制器及照明监控系统
CN203775489U (zh) * 2014-03-27 2014-08-13 刘以辉 一种led模块用电子控制装置
CN110659149A (zh) * 2019-09-19 2020-01-07 江西精骏电控技术有限公司 一种低速车用低成本的硬件看门狗保护电路设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126894A1 (ko) * 2016-01-18 2017-07-27 김성호 추락 경고장치 및 이를 갖춘 무인항공기
CN109573079A (zh) * 2017-09-29 2019-04-05 威盛视源智能科技(天津)有限公司 一种搭载于无人机的破拆装置及其控制电路
CN107567149A (zh) * 2017-10-09 2018-01-09 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统
CN108738201A (zh) * 2018-06-21 2018-11-02 上海晶丰明源半导体股份有限公司 控制电路、led驱动芯片、led驱动系统及led驱动方法
CN109672236A (zh) * 2018-11-29 2019-04-23 中海阳能源集团股份有限公司 一种高精度室内定位机器人的无线充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446211A (zh) * 2022-03-07 2022-05-06 深圳创维-Rgb电子有限公司 显示面板驱动方法及显示面板

Also Published As

Publication number Publication date
CN112586088A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
KR102379554B1 (ko) 보호 회로
WO2021212307A1 (zh) 驱动系统和可移动平台
CN102231598B (zh) 一种电源电路
US10712426B2 (en) Fault tolerant digital input receiver circuit
CN108462163B (zh) 满足负向浪涌要求的直流防反接电路
WO2016197500A1 (zh) 一种oring控制电路和电源系统
WO2018223741A1 (zh) 电池冗余电路、无人飞行器及其电池供电的控制方法
KR102555498B1 (ko) 돌입 전류 제한 장치 및 이를 포함하는 시스템
US9680305B2 (en) Implementation of fire safety shutdown for solar panels with high reliability
US10270247B2 (en) Power switch module, smart grid power supply arrangement and method therefor
CN115051443A (zh) 用于无人车的相机供电装置及无人车
CN210640869U (zh) 输出电路以及伺服驱动器
EP3211970A1 (en) Led driving output end capacitor protection circuit
CN213817350U (zh) 一种电源输出电路和伺服系统
CN216794976U (zh) 一种通用湿接点输入输出电路
CN209994276U (zh) 开关电路、接口板、电源管理系统、载荷系统及卫星系统
CN220292000U (zh) Lin驱动电路、lin节点以及lin总线
CN104880975B (zh) 低压芯片控制高压器件的接口电路以及低压控制电路
CN109236095B (zh) 可实现电动闭门器上电和掉电启动的控制电路及实现方法
CN109428576B (zh) 一种多路ip复用pad的控制系统
CN220985374U (zh) 一种双电源供电电路、电子电路及设备
CN215267648U (zh) 保护电路以及智能设备
CN212012118U (zh) 过压保护电路
CN111200313B (zh) 电源切换系统
JP2018113550A (ja) プルアップ抵抗内蔵ドライバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932654

Country of ref document: EP

Kind code of ref document: A1