WO2021210653A1 - Secondary cell and method for manufacturing same - Google Patents

Secondary cell and method for manufacturing same Download PDF

Info

Publication number
WO2021210653A1
WO2021210653A1 PCT/JP2021/015622 JP2021015622W WO2021210653A1 WO 2021210653 A1 WO2021210653 A1 WO 2021210653A1 JP 2021015622 W JP2021015622 W JP 2021015622W WO 2021210653 A1 WO2021210653 A1 WO 2021210653A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode
secondary battery
material layer
electrode material
Prior art date
Application number
PCT/JP2021/015622
Other languages
French (fr)
Japanese (ja)
Inventor
弥生 勝
真人 藤岡
隆幸 山平
高木 良介
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021210653A1 publication Critical patent/WO2021210653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery and a method for manufacturing the secondary battery.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • a secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • the secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and an electrolyte are housed in an exterior body.
  • the positive electrode includes a positive electrode current collector and a positive electrode material layer provided on at least one main surface of the positive electrode current collector.
  • the negative electrode includes a negative electrode material layer provided on at least one main surface of the negative electrode current collector and the negative electrode current collector.
  • an electrode material layer slurry is applied onto a foil to be a current collector, and the obtained laminate is subjected to a drying treatment to include a foil 11'and an electrode material layer 12'.
  • the laminate 10' was subjected to a step of pressurizing with, for example, a roll press machine 400'(see FIG. 6).
  • the laminated body 10' is pressurized, the foil 11'which becomes a current collector composed of a thin metal or the like stretches, and it may be difficult to increase the density of the electrode material layer 12'. As a result, it may be difficult to improve the energy density of the secondary battery.
  • an object of the present invention is to provide a secondary battery capable of increasing the density of the electrode material layer even by using a current collector composed of a thin metal or the like, and a method for manufacturing the secondary battery.
  • the electrode includes a current collector, an electrode material layer, and a conductive adhesive layer provided between the current collector and the electrode material layer along the stacking direction.
  • a secondary battery is provided in which the current collector is composed of at least one of a thin metal and a resin and the porosity of the electrode material layer is 25% or less.
  • a method for manufacturing a secondary battery including an electrode forming process.
  • the electrode forming process A step of forming a laminate by sequentially coating a conductive adhesive layer slurry and an electrode material layer slurry on a temporary support sheet, and A step of drying the laminate to form a conductive adhesive layer and an electrode material layer on the temporary support sheet, and A step of pressurizing the laminated body along the laminating direction of the laminated body so as to sandwich the upper surface and the lower surface of the laminated body.
  • a method for manufacturing a secondary battery comprises a step of laminating a current collector composed of at least one of a metal and a resin on the conductive adhesive layer after the peeling.
  • the present invention it is possible to increase the density of the electrode material layer even by using a current collector such as a thin metal or a resin.
  • the term "secondary battery” as used herein refers to a battery that can be repeatedly charged and discharged.
  • the “secondary battery” is not overly bound by its name and may include, for example, a “storage device”.
  • the term "planar view” as used herein refers to a state in which an object is viewed from above or below along a thickness direction based on a stacking direction of electrode materials constituting a secondary battery. Further, the "cross-sectional view” referred to in the present specification is a state when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the electrode materials constituting the secondary battery.
  • the present invention provides a secondary battery.
  • the secondary battery has a structure in which the electrode assembly and the electrolyte are housed and sealed inside the exterior body.
  • the electrode assembly may include a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
  • the electrode assembly may be a laminated electrode assembly or a wound (jelly roll) electrode assembly.
  • the laminated electrode assembly is a stack of a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator.
  • the wound electrode assembly is a wound electrode constituent layer including a positive electrode, a negative electrode, and a separator.
  • the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator, and a negative electrode are laminated on a long film and then folded.
  • the positive electrode 10A is composed of at least a positive electrode current collector 11A and a positive electrode material layer 12A (see FIG. 5), and the positive electrode material layer 12A is provided on at least one side of the positive electrode current collector 11A.
  • a drawer tab on the positive electrode side is positioned at a portion of the positive electrode current collector 11A where the positive electrode material layer 12A is not provided, that is, at the end of the positive electrode current collector 11A.
  • the positive electrode material layer 12A contains a positive electrode active material as an electrode active material.
  • the negative electrode 10B is composed of at least a negative electrode current collector 11B and a negative electrode material layer 12B (see FIG. 5), and a negative electrode material layer 12B is provided on at least one surface of the negative electrode current collector 11B.
  • the negative electrode side drawer tab is positioned at a portion of the negative electrode current collector 11B where the negative electrode material layer 12B is not provided, that is, at the end of the negative electrode current collector 11B.
  • the negative electrode material layer 12B contains a negative electrode active material as an electrode active material.
  • the positive electrode active material contained in the positive electrode material layer 12A and the negative electrode active material contained in the negative electrode material layer 12B are substances directly involved in the transfer of electrons in the secondary battery, and are mainly responsible for charge / discharge, that is, the battery reaction. It is a substance. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer 12A" and the "negative electrode active material contained in the negative electrode material layer 12B", and such ions are brought to the electrolyte with the positive electrode 10A and the negative electrode. It moves to and from 10B, and electrons are transferred to charge and discharge.
  • the positive electrode material layer 12A and the negative electrode material layer 12B are particularly preferably layers capable of occluding and releasing lithium ions.
  • a secondary battery in which lithium ions move between the positive electrode 10A and the negative electrode 10B via an electrolyte to charge and discharge the battery is preferable.
  • the secondary battery corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer 12A is made of, for example, granules, it is preferable that the positive electrode material layer 12A contains a binder for more sufficient contact between the particles and shape retention. Further, a conductive auxiliary agent may be contained in the positive electrode material layer 12A in order to facilitate the transfer of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer 12B is composed of particles, for example, it is preferable that the negative electrode active material contains a binder for more sufficient contact between particles and shape retention, and facilitates the transfer of electrons that promote the battery reaction.
  • the conductive auxiliary agent may be contained in the negative electrode material layer 12B.
  • the positive electrode material layer 12A and the negative electrode material layer 12B can also be referred to as a "positive electrode mixture layer” and a "negative electrode mixture layer", respectively, because of the form in which a plurality of components are contained.
  • the positive electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer 12A of the secondary battery, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal.
  • Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species.
  • the positive electrode active material contained in the positive electrode material layer 12A is lithium cobalt oxide.
  • the binder that can be contained in the positive electrode material layer 12A is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluorotyrene copolymer and polytetrafluoro. At least one species selected from the group consisting of Tylene and the like can be mentioned.
  • the conductive auxiliary agent that can be contained in the positive electrode material layer 12A is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase.
  • the binder of the positive electrode material layer 12A may be polyvinylidene fluoride.
  • the conductive auxiliary agent of the positive electrode material layer 12A is carbon black.
  • the binder and the conductive auxiliary agent of the positive electrode material layer 12A may be a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.
  • Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), soft carbon, hard carbon, and diamond-like carbon. In particular, graphite is preferable because it has high electron conductivity and excellent adhesion to the negative electrode current collector 11B.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • the negative electrode active material of the negative electrode material layer 12B may be artificial graphite.
  • the binder that can be contained in the negative electrode material layer 12B is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Seeds can be mentioned.
  • the binder contained in the negative electrode material layer 12B may be styrene-butadiene rubber.
  • the conductive auxiliary agent that can be contained in the negative electrode material layer 12B is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase.
  • the negative electrode material layer 12B may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
  • a thickener component for example, carboxylmethyl cellulose
  • the negative electrode active material and the binder in the negative electrode material layer 12B may be a combination of artificial graphite and styrene-butadiene rubber.
  • the positive electrode current collector 11A and the negative electrode current collector 11B used for the positive electrode 10A and the negative electrode 10B are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction.
  • a current collector may be a sheet-shaped metal member and may have a perforated or perforated form.
  • the current collector may be a metal leaf, a punching metal, a net, an expanded metal, or the like.
  • the positive electrode current collector 11A used for the positive electrode 10A is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector 11B used for the negative electrode 10B is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator 50 is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte.
  • the separator 50 is a member through which ions pass while preventing electronic contact between the positive electrode 10A and the negative electrode 10B.
  • the separator 50 is a porous or microporous insulating member and has a film morphology due to its small thickness.
  • a microporous polyolefin membrane may be used as the separator.
  • the microporous membrane used as the separator 50 may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin.
  • the separator 50 may be a laminate composed of a "microporous membrane made of PE” and a "microporous membrane made of PP".
  • the surface of the separator 50 may be covered with an inorganic particle coat layer and / or an adhesive layer or the like.
  • the surface of the separator may have adhesiveness.
  • the separator 50 should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, an insulating inorganic particle, or the like having the same function. From the viewpoint of further improving the handling of the electrodes, it is preferable that the separator 50 and the electrodes (positive electrode 10A / negative electrode 10B) are adhered to each other.
  • the separator 50 and the electrode are bonded by using an adhesive separator as the separator 50, applying an adhesive binder on the electrode material layer (positive electrode material layer 12A / negative electrode material layer 12B), and / or thermocompression bonding. Can be done.
  • Examples of the material of the adhesive binder that provides adhesiveness to the separator 50 or the electrode material layer include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene polymer, and acrylic resin.
  • the thickness of the adhesive layer obtained by applying an adhesive binder or the like may be 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the electrolyte is preferably an "non-aqueous" electrolyte such as an organic electrolyte and / or an organic solvent (ie, the electrolyte is a non-aqueous electrolyte). Is preferable).
  • the electrolyte metal ions released from the electrodes (positive electrode 10A and negative electrode 10B) are present, and therefore the electrolyte assists the movement of the metal ions in the battery reaction.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
  • chain carbonates examples include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, and for example, a mixture of ethylene carbonate and diethyl carbonate may be used.
  • Li salts such as LiPF 6 and LiBF 4 are used as LiPF 6 and / or LiBF 4 are preferably used as LiPF 6 and / or LiBF 4 is preferably used.
  • any current collector lead used in the field of secondary batteries can be used.
  • a current collecting lead may be composed of a material in which electron transfer can be achieved, and is composed of a conductive material such as aluminum, nickel, iron, copper, or stainless steel.
  • the positive electrode current collecting lead is preferably made of aluminum, and the negative electrode current collecting lead is preferably made of nickel.
  • the form of the positive electrode current collecting lead and the negative electrode current collecting lead is not particularly limited, and may be, for example, a wire or a plate.
  • any external terminal used in the field of secondary batteries can be used.
  • Such external terminals may be made of a material in which electron transfer can be achieved, and are usually made of a conductive material such as aluminum, nickel, iron, copper, stainless steel.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes.
  • the lead may have the function of an external terminal for a negative electrode.
  • the exterior body may take the form of a conductive hard case or a flexible case (pouch, etc.).
  • each of the plurality of positive electrodes is connected to the external terminal for the positive electrode via the current collecting lead for the positive electrode.
  • the external terminal for the positive electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking.
  • each of the plurality of negative electrodes is connected to the external terminal for the negative electrode via the current collecting lead for the negative electrode.
  • the external terminal for the negative electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking.
  • the current collector lead for the positive electrode connected to each of the plurality of positive electrodes may have the function of an external terminal for the positive electrode, and the current collector for the negative electrode connected to each of the plurality of negative electrodes may be provided.
  • the lead may have the function of an external terminal for a negative electrode.
  • the conductive hard case consists of a main body and a lid.
  • the main body portion is composed of a bottom portion and a side surface portion constituting the bottom surface of the exterior body.
  • the body and lid are sealed after accommodating the electrode assembly, electrolyte, current collector leads and external terminals.
  • the sealing method is not particularly limited, and examples thereof include a laser irradiation method.
  • any material that can form a hard case type exterior body can be used in the field of the secondary battery.
  • Such a material may be any material in which electron transfer can be achieved, including conductive materials such as aluminum, nickel, iron, copper and stainless steel.
  • the dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly.
  • the dimensions are such that the movement (displacement) of the electrode assembly inside the exterior body is prevented. It is preferable to have. By preventing the electrode assembly from moving, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
  • the flexible case is composed of a soft sheet.
  • the soft sheet may have enough softness to achieve bending of the seal portion, and is preferably a plastic sheet.
  • the plastic sheet is a sheet having a property of maintaining deformation due to an external force when it is removed after applying an external force.
  • a so-called laminated film can be used.
  • a flexible pouch made of a laminated film can be manufactured, for example, by laminating two laminated films and heat-sealing the peripheral portion thereof.
  • the laminated film is generally a film in which a metal foil and a polymer film are laminated, and specifically, a three-layer structure composed of an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation of moisture and the like and contact, and polymers such as polyamide and polyester can be preferably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be preferably used.
  • the inner layer polymer film protects the metal foil from the electrolyte stored inside and melts and seals the metal foil at the time of heat sealing, and polyolefin or acid-modified polyolefin can be preferably used.
  • the inventors of the present application have diligently studied a solution for making it possible to increase the density of the electrode material layer even by using a current collector composed of a thin metal or the like. As a result, a method for manufacturing the secondary battery of the present invention having the following characteristics has been devised.
  • the method for manufacturing a secondary battery includes a step of forming the electrode 10.
  • the step of forming the electrode 10 is Along the stacking direction, the conductive adhesive layer slurry 13a and the electrode material layer slurry 12a are sequentially coated on the temporary support sheet 200 to form the laminated body 300.
  • the laminate 300 is dried to form the conductive adhesive layer 13 and the electrode material layer 12 on the temporary support sheet 200. Pressurizing the laminate 300 along the stacking direction so as to sandwich the upper surface 301 and the lower surface 302 of the laminate 300, Peeling the temporary support sheet 200 after pressurization and It includes laminating and crimping a current collector 11 composed of at least one of metal and resin on the conductive adhesive layer 13.
  • a temporary support sheet 200 such as a PET film is prepared.
  • the "temporary support sheet" referred to in the present specification does not function as a component of the obtained secondary battery of the present invention, but is a component of the secondary battery (specifically, a conductive adhesive layer) during manufacturing. ) Temporarily supports the member. Therefore, specifically, a material other than the PET film may be used as long as it can support the member to be the conductive adhesive layer.
  • the conductive adhesive layer slurry 13a is applied onto the temporary support sheet 200.
  • the electrode material layer slurry 12a is coated on the coated conductive adhesive layer slurry 13a to form a predetermined laminated body 300.
  • the laminate 300 is dried to form the conductive adhesive layer 13 and the electrode material layer 12 located on the conductive adhesive layer 13 on the temporary support sheet 200.
  • the laminated body 300 is pressurized along the laminating direction so as to sandwich the upper surface 301 and the lower surface 302 of the laminated body 300.
  • the pressurizing method is not particularly limited, but specifically, as shown in FIG. 4, a roll press machine composed of two rolls 400 facing each other is used to hold the laminate 300 between the two rolls 400. You may let it pass and press the laminated body 300 at that time.
  • the surface free energy of the temporary support sheet 200 used in the present embodiment is preferably 20 mJ / m 2 or more.
  • the value is equal to or higher than the surface free energy, it is possible to preferably suppress the transfer of the conductive adhesive layer 13 which is a component of the laminated body 300 to the roll 400 side during the roll press.
  • the temporary support sheet 200 is peeled off.
  • a current collector 11 composed of at least one of metal and resin is laminated and pressure-bonded on the conductive adhesive layer 13.
  • the surface free energy of the surface of the conductive adhesive layer 13 exposed after the temporary support sheet 200 is peeled off is preferably 8.0 mJ / m 2 or more.
  • the binding property of the current collector 11 to the conductive adhesive layer 13 can be suitably ensured at the time of crimping the current collector 11 during roll pressing.
  • a predetermined electrode 10 can be obtained.
  • the electrode constituent layer is formed by laminating the positive electrode and the negative electrode along the stacking direction via the separator. By laminating at least two electrode constituent layers along the laminating direction, a laminated electrode assembly can be finally formed. Further, by winding a single electrode constituent layer, a wound electrode assembly can be finally formed.
  • the current collecting tab is welded while accommodating the electrode assembly in the exterior body. Then, the electrolytic solution is injected into the exterior body based on the decompression method.
  • the secondary battery according to the embodiment of the present invention can be manufactured.
  • one embodiment of the present invention does not adopt a method of pressurizing a laminate having a foil as a current collector and an electrode material layer as in the past, but laminates at the time of pressurization. It is characterized in that a temporary support sheet 200 is applied instead of the current collector as a component of the body 300.
  • the laminated body 300 in the step of pressurizing the laminated body 300 so as to sandwich the laminated body 300, the laminated body 300 does not include a current collector. That is, when the laminated body 300 is pressurized, the current collector, which is a component of the electrode, is not pressurized. Therefore, the elongation of the foil that becomes the current collector due to the pressurization of the current collector is avoided.
  • the electrode material layer which is a component of the electrode, does not exist on the current collector, which tends to generate elongation when the laminated body 300 is pressurized, but on the temporary support sheet 200, which does not easily generate elongation.
  • the current collector which is finally a component of the electrode is not pressurized. Therefore, even if a current collector having a property of easily generating elongation or a thin-layered current collector is used in order to meet the demand for miniaturization and weight reduction of the secondary battery, when the laminated body 300 is pressurized, It is possible to avoid the problem that the foil that becomes the current collector stretches. As a result, the strength of the current collector can be maintained even if a current collector having a property of easily causing elongation or a thinned current collector is used.
  • a thin current collector specifically, a metal current collector
  • a current collector specifically, a resin current collector
  • Young's modulus of 5 GPa or less and having a relatively easily stretchable property.
  • the electrode material layer which is a component of the electrode is pressurized. Therefore, it is possible to suitably realize a high density of the electrode material layer. Specifically, the porosity of the electrode material layer is 25% or less. From the above, according to one embodiment of the present invention, even if a thin current collector or a current collector having a property of being easily stretched is used, the density of the electrode material layer can be increased and the strength of the current collector 11 can be maintained. It becomes compatible.
  • FIG. 1 is a cross-sectional view schematically showing a secondary battery according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view schematically showing an electrode of a secondary battery according to an embodiment of the present invention.
  • the present invention has a configuration characteristic of electrodes, which are components of a secondary battery.
  • the electrode 10 has a current collector 11, an electrode material layer 12, and a conductive adhesive layer 13 provided between the current collector 11 and the electrode material layer 12 along the stacking direction.
  • the current collector 11 is a current collector composed of at least one of a thin metal and a resin, and the porosity of the electrode material layer 12 is 25% or less.
  • a thin metal current collector 11I can be adopted.
  • a resin current collector 11II can be used as the current collector 11.
  • the current collector 11 is a current collector composed of at least one of a thin metal and a resin, that is, when the current collector 11 is relatively thin and / or relatively elongated. Even when it has an easy property, the porosity of the electrode material layer 12 is 25% or less, that is, the porosity at which the density of the electrode material layer can be increased is achieved. From the above, according to one embodiment of the present invention, even when a current collector using a thin metal, a resin, or the like or a current collector in which elongation is likely to occur is used, the secondary battery It is possible to increase the density of the electrode material layer 12, which is a component of the above. As a result, it becomes possible to improve the energy density of the secondary battery.
  • the term "current collector composed of at least one of a thin metal and a resin” refers to a current collector having a thickness relatively smaller than the thickness of a normally used current collector of 50 ⁇ m or more and 500 ⁇ m or less.
  • a body specifically, a current collector having a thickness of 10 ⁇ m or less, and / or a current collector having a Young ratio of 5 GPa or less.
  • the current collector 11 and the electrode material layer 12 are joined to each other via the conductive adhesive layer 13, the current collector 11 is separated from the electrode material layer 12. Is suppressed. Therefore, it is possible to prevent the current collector 11 from being partially curved or the like. As a result, not only is it accompanied by "avoidance of stretching of the foil serving as the current collector when the laminated body 300 is pressurized" described in the above-mentioned manufacturing method column, but also by suppressing partial bending of the current collector 11 itself. , It becomes possible to maintain the strength of the current collector 11. From the above, according to one embodiment of the present invention, it is possible to increase the density of the electrode material layer 12, which is a component of the secondary battery, while maintaining the strength of the current collector 11.
  • Example 1 ⁇ Implementation process> An electrode was formed through the following steps.
  • a temporary support sheet was prepared. Specifically, a PET film having a surface free energy of 32.6 mJ / m 2 was prepared. A conductive adhesive layer was applied onto the temporary support sheet so as to have a predetermined thickness. Then, it was vacuum dried at 80 degrees for 10 minutes or more. Modified PP-A is used as a binder to be included in the conductive adhesive layer, and AB (acetylene black) is used as a filler. AB and the binder were weighed in predetermined amounts so that the volume of AB was 12 vol%. Then, while applying ultrasonic dispersion, the mixture was prepared by mixing with a fill mix at 4000 rpm for 10 minutes.
  • AB acetylene black
  • the positive electrode slurry was coated on the dried conductive adhesive layer to a predetermined thickness, and vacuum dried at 120 ° C. for 10 minutes or more after the coating.
  • LiCoO 2 was used as the positive electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
  • the conductive adhesive layer was applied onto a current collector (a resin current collector with a Young's modulus of 1.6 GPa) in the same manner so as to have a predetermined thickness.
  • the obtained laminate was pressed so as to have a density of 3.65 g / cc.
  • a roll press was used for the press, and the temperature of the roll surface was set to 100 ° C. Then, it was cut out to a size of 14 mm ⁇ for evaluation of battery characteristics, and the surface on the active material side and the separator cut out to 14 mm ⁇ were thermocompression bonded. Then, the PET film was peeled off.
  • a current collector with a conductive adhesive layer was cut out to 15 mm ⁇ , laminated so that the conductive adhesive layer was positioned on the side where the PET film was peeled off, and thermocompression bonded again to integrate them.
  • a coin cell secondary battery was assembled using an integrated electrode and separator, metallic lithium cut into 15 mm ⁇ and attached to a spacer made of SUS with the same diameter, and an electrolytic solution.
  • the coating thickness of the electrode was adjusted so that the battery capacity was about 1.7 mAh.
  • the secondary battery of the present invention was obtained.
  • the obtained secondary battery was measured under the following conditions.
  • the battery was charged with a constant current and constant voltage up to an upper limit voltage of 4.2 V with a current of 0.2 C.
  • the condition after the step at the time of constant voltage charging was 0.01 C current.
  • a constant current was discharged to a final voltage of 2.5 V with a current of 0.2 C.
  • AC resistance measurement (HIOKI3560ACm ⁇ ) is performed before the cycle characteristic survey, and AC resistance measurement (HIOKI3560ACm ⁇ ) is performed after the cycle characteristic survey, and the ratio (AC resistance value before the cycle / AC resistance value after the cycle) is calculated to calculate the AC resistance increase rate. And said.
  • Table 2 shows the respective resistance values and the rate of increase.
  • the pressed electrode was cut out to a predetermined size, attached to a measuring jig, the PET film was peeled off, and the surface free energy of the peeled surface was measured.
  • the porosity of the active material layer was determined with a mercury porosimeter (micromeritics AutoPole IV / SHIMADZU). Each measured value is shown in Table 1.
  • Example 2 ⁇ Implementation process> An electrode was formed through the following steps.
  • the temporary support sheet As the temporary support sheet, a PET film having a surface free energy of 22.8 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet in the same manner as in Example 1. The negative electrode slurry was similarly coated on the dried conductive adhesive layer to a predetermined thickness, and vacuum dried at 120 ° C. for 10 minutes or more after the coating. Gr was used as the negative electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
  • the conductive adhesive layer was applied onto a current collector (resin current collector having a Young's modulus of 1.6 GPa) similar to that in Example 1 in the same manner so as to have a predetermined thickness.
  • the obtained laminate was pressed so as to have a density of 1.65 g / cc.
  • the press was pressed at room temperature using a roll press machine.
  • the PET film was peeled off and thermocompression bonded to a current collector (a resin current collector having a Young's modulus of 1.6 GPa) in the same procedure as in Example 1.
  • the coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1.
  • Example 3 ⁇ Implementation process> An electrode was formed through the following steps.
  • the temporary support sheet As the temporary support sheet, a PET film having a surface free energy of 24.7 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet and dried in the same manner as in Example 1. The same negative electrode slurry as in Example 2 was applied onto the dried conductive adhesive layer using the same jig so as to have a predetermined thickness, and after the application, it was vacuum dried at 120 ° C. for 10 minutes or more. The conductive adhesive layer was applied onto a current collector (copper foil having a thickness of 10 ⁇ m) in the same manner so as to have a predetermined thickness.
  • a current collector copper foil having a thickness of 10 ⁇ m
  • the obtained laminate was pressed so as to have a density of 1.65 g / cc.
  • the press was pressed at room temperature using a roll press machine. After that, the PET film was peeled off and thermocompression bonded to a current collector (10 ⁇ m copper foil) in the same procedure as in Example 1.
  • the coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1.
  • Example 4 ⁇ Implementation process> An electrode was formed through the following steps.
  • the temporary support sheet As the temporary support sheet, a PET film having a surface free energy of 24.7 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet and dried in the same manner as in Example 1. On the dried conductive adhesive layer, the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig, and vacuum dried at 120 ° C. for 10 minutes or more after the application. The conductive adhesive layer was applied onto a current collector (copper foil having a thickness of 6 ⁇ m) in the same manner so as to have a desired thickness.
  • a current collector copper foil having a thickness of 6 ⁇ m
  • the obtained laminate was pressed so as to have a density of 1.65 g / cc.
  • the press was pressed at room temperature using a roll press machine.
  • the PET film was peeled off and thermocompression bonded to the current collector (6 ⁇ m copper foil) in the same procedure as in Example 1.
  • the coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1. Separately, at the stage where only the conductive adhesive layer was applied on the temporary support sheet, the presence or absence of transfer to the roll during roll-to-roll was confirmed.
  • Comparative Example 1 ⁇ Implementation process> An electrode was formed through the following steps.
  • a conductive adhesive layer similar to that in Example 1 was adjusted to have a predetermined thickness on a resin current collector having a Young's modulus of 1.6 GPa, and coated using a jig.
  • the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
  • the obtained electrode was pressed so as to have a density of 1.65 g / cc.
  • the press was pressed at room temperature using a roll press machine.
  • Comparative Example 2 ⁇ Implementation process> An electrode was formed through the following steps.
  • a conductive adhesive layer similar to that in Example 1 was adjusted to have the desired thickness on a copper foil having a thickness of 10 ⁇ m, and was coated using a jig.
  • the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
  • the obtained electrode was pressed so that the target density was 1.65 g / cc, but it became clear that the electrode had wrinkles. As a result of pressing in a range where wrinkles did not occur, it was found that the density of the electrodes could only be increased to 1.57 g / cc.
  • the press was pressed at room temperature using a roll press machine. After that, a coin cell having a metallic lithium counter electrode was prepared in the same manner as in Example 1, and the coin cell was evaluated, the surface free energy was measured, the porosity was measured, and the AC resistance was measured before and after the cycle test.
  • a conductive adhesive layer similar to that in Example 1 was adjusted to have a predetermined thickness on a Cu foil having a thickness of 6 ⁇ m, and coated using a jig.
  • the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
  • the obtained electrode was pressed so that the target density was 1.65 g / cc, but the electrode after pressing had wrinkles, and it was confirmed that some of the electrodes and the copper foil were peeled off. Therefore, as a result of performing electrode pressing within a range where wrinkles and tears did not occur, it was found that the density could only be increased to 1.50 g / cc.
  • a roll press was used for the press, and the press was performed at room temperature. After that, a coin cell having a metallic lithium counter electrode was prepared in the same manner as in Example 1, and the coin cell was evaluated, the surface free energy was measured, the porosity was measured, and the AC resistance was measured before and after the cycle test.
  • a PET film having a surface free energy of 32.6 mJ / m 2 was used as the temporary support sheet.
  • the conductive adhesive layer is not coated on the temporary support sheet, and the same positive electrode slurry as in Example 1 is coated with a jig so as to have a predetermined thickness, and after coating, 120 degrees for 10 minutes. The above was vacuum dried.
  • LiCoO 2 was used as the positive electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
  • the obtained temporary support sheet electrode was pressed so as to have a density of 3.65 g / cc.
  • a roll press was used for the press, and the temperature of the roll surface was set to 100 ° C. Then, it was cut out to a predetermined size for evaluation of battery characteristics, and the active material side and the separator were thermocompression-bonded, and then the PET film was peeled off.
  • a current collector (resin current collector with a Young's modulus of 1.6 GPa) without a conductive adhesive layer was laminated on the PET film peeling side of the positive electrode active material layer, and thermocompression bonded again to integrate them.
  • Comparative Example 5 ⁇ Implementation process> An electrode was formed through the following steps.
  • Example 2 As the temporary support sheet, a PET film having a surface free energy of 17.7 mJ / m 2 was used. The same conductive adhesive layer as in Example 1 was adjusted to have the desired thickness, and the coating was applied using a jig. After drying, the presence or absence of transfer to the roll during roll-to-roll was confirmed by the same procedure as in Example 2.
  • the secondary battery according to the embodiment of the present invention can be used in various fields where storage is expected.
  • the secondary battery according to the embodiment of the present invention particularly the non-aqueous electrolyte secondary battery, is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, notebooks, etc.) in which mobile devices and the like are used.
  • Mobile device fields such as personal computers and digital cameras, activity meters, arm computers, electronic paper), home / small industrial applications (for example, power tools, golf carts, home / nursing / industrial robot fields), large industries Applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (eg, various power generation) , Road conditioner, smart grid, general household installation type power storage system, etc.), medical use (medical equipment field such as earphone hearing aid), medical use (field such as dose management system), IoT field, space / deep sea It can be used for various purposes (for example, in the fields of space explorers, submersible research vessels, etc.).
  • large industries Applications eg, forklifts, elevators, bay port cranes
  • transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications eg, various power generation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

According to an embodiment of the present invention, there is provided a secondary cell including an electrode provided with a current collector (11), an electrode material layer (12), and an electroconductive adhesive layer (13) provided between the current collector and the electrode material layer, these elements being provided along the lamination direction, the current collector being configured from a thin metal and/or a resin, and the electrode material layer having a porosity of 25% or less.

Description

二次電池およびその製造方法Secondary battery and its manufacturing method
 本発明は、二次電池およびその製造方法に関する。 The present invention relates to a secondary battery and a method for manufacturing the secondary battery.
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。 Secondary batteries that can be repeatedly charged and discharged have been used for various purposes. For example, a secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
 二次電池は、正極、負極、および正極と負極との間に配置されたセパレータを含む電極組立体と、電解質とが外装体に収容された構造となっている。正極は、正極集電体および正極集電体の少なくとも一方の主面に設けられた正極材層を有して成る。負極は、負極集電体および負極集電体の少なくとも一方の主面に設けられた負極材層を有して成る。 The secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode, and an electrolyte are housed in an exterior body. The positive electrode includes a positive electrode current collector and a positive electrode material layer provided on at least one main surface of the positive electrode current collector. The negative electrode includes a negative electrode material layer provided on at least one main surface of the negative electrode current collector and the negative electrode current collector.
特開2000-200610号公報Japanese Unexamined Patent Publication No. 2000-200610 特許第6190980号公報Japanese Patent No. 6190980
 近年、二次電池の小型化および軽量化の要求は高まっており、かかる要求に応えるために集電体の薄層化、即ち薄厚金属等から構成される集電体が必要となっている。これに加え、二次電池のエネルギー密度の向上の観点から、電極材層の高密度化の要求も高まっている。 In recent years, there has been an increasing demand for miniaturization and weight reduction of secondary batteries, and in order to meet such demand, a thin layer of the current collector, that is, a current collector composed of a thin metal or the like is required. In addition to this, from the viewpoint of improving the energy density of the secondary battery, there is an increasing demand for increasing the density of the electrode material layer.
 これまでの電極の製造方法としては、集電体となる箔上に電極材層スラリーを塗工し、得られた積層体を乾燥処理に付し、箔11’および電極材層12’を備える積層体10’を、例えばロールプレス機400’により加圧する工程を経るものであった(図6参照)。しかしながら、積層体10’の加圧時に薄厚金属等から構成される集電体となる箔11’が伸び、電極材層12’の高密度化を図ることが困難となり得る。その結果、二次電池のエネルギー密度の向上を図ることが困難となり得る。 As a conventional method for manufacturing an electrode, an electrode material layer slurry is applied onto a foil to be a current collector, and the obtained laminate is subjected to a drying treatment to include a foil 11'and an electrode material layer 12'. The laminate 10'was subjected to a step of pressurizing with, for example, a roll press machine 400'(see FIG. 6). However, when the laminated body 10'is pressurized, the foil 11'which becomes a current collector composed of a thin metal or the like stretches, and it may be difficult to increase the density of the electrode material layer 12'. As a result, it may be difficult to improve the energy density of the secondary battery.
 本発明は、かかる事情に鑑みて案出されたものである。具体的には、本発明は、薄厚金属等から構成される集電体を用いても電極材層の高密度化が可能な二次電池およびその製造方法を提供することを目的とする。 The present invention was devised in view of such circumstances. Specifically, an object of the present invention is to provide a secondary battery capable of increasing the density of the electrode material layer even by using a current collector composed of a thin metal or the like, and a method for manufacturing the secondary battery.
 上記目的を達成するために、本発明の一実施形態では、
 積層方向に沿って集電体、電極材層、および該集電体と該電極材層との間に設けられた導電性接着層を備える電極を含み、
 前記集電体が薄厚金属および樹脂の少なくとも一方から構成され、かつ前記電極材層の空隙率が25%以下である、二次電池が供される。
In order to achieve the above object, in one embodiment of the present invention,
The electrode includes a current collector, an electrode material layer, and a conductive adhesive layer provided between the current collector and the electrode material layer along the stacking direction.
A secondary battery is provided in which the current collector is composed of at least one of a thin metal and a resin and the porosity of the electrode material layer is 25% or less.
 上記目的を達成するために、本発明の一実施形態では、
 電極の形成工程を含む二次電池の製造方法であって、 
 前記電極の形成工程が、
 仮支持シート上に導電性接着層スラリーおよび電極材層スラリーを順に塗工して積層体を形成する工程と、
 前記積層体を乾燥して、前記仮支持シート上に導電性接着層および電極材層を形成する工程と、
 前記積層体の上面と下面とを挟み込むように、前記積層体の積層方向に沿って前記積層体を加圧する工程と、
 前記加圧後に前記仮支持シートを剥離する工程と、
 前記剥離後、前記導電性接着層上に、金属および樹脂の少なくとも一方から構成される集電体を積層する工程を含む、二次電池の製造方法が供される。
In order to achieve the above object, in one embodiment of the present invention,
A method for manufacturing a secondary battery including an electrode forming process.
The electrode forming process
A step of forming a laminate by sequentially coating a conductive adhesive layer slurry and an electrode material layer slurry on a temporary support sheet, and
A step of drying the laminate to form a conductive adhesive layer and an electrode material layer on the temporary support sheet, and
A step of pressurizing the laminated body along the laminating direction of the laminated body so as to sandwich the upper surface and the lower surface of the laminated body.
The step of peeling off the temporary support sheet after the pressurization and
A method for manufacturing a secondary battery is provided, which comprises a step of laminating a current collector composed of at least one of a metal and a resin on the conductive adhesive layer after the peeling.
 本発明の一実施形態に従えば、薄厚金属や樹脂などの集電体を用いても電極材層の高密度化が可能である。 According to one embodiment of the present invention, it is possible to increase the density of the electrode material layer even by using a current collector such as a thin metal or a resin.
本発明の一実施形態に係る二次電池を模式的に示す断面図である。It is sectional drawing which shows typically the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極を模式的に示す拡大断面図である。It is an enlarged cross-sectional view which shows typically the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(仮支持シートの準備工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (preparation step of the temporary support sheet) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(導電性接着層スラリーの塗工工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (coating process of the conductive adhesive layer slurry) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(電極材層スラリーの塗工工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (coating process of electrode material layer slurry) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(積層体の乾燥工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (drying step of a laminated body) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(積層体の加圧工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (pressurizing process of a laminated body) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(仮支持シートの剥離工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method (peeling step of the temporary support sheet) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(集電体の積層・圧着工程)を模式的に示す断面図である。It is sectional drawing which shows typically the manufacturing method of the electrode of the secondary battery (the process of laminating and crimping a current collector) which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の電極の製造方法(積層体の加圧工程)を模式的に示す拡大断面図である。It is an enlarged cross-sectional view which shows typically the manufacturing method (pressurizing process of a laminated body) of the electrode of the secondary battery which concerns on one Embodiment of this invention. 電極構成層の基本的構成を模式的に示した断面図である。It is sectional drawing which shows typically the basic structure of the electrode constituent layer. 本願の技術的課題に関連する模式的斜視図である。It is a schematic perspective view which concerns on the technical subject of this application.
 以下では、図面を参照して本発明の一実施形態に係る二次電池を詳細に説明する。図面における各種要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比等は実物とは異なり得る。 Hereinafter, the secondary battery according to the embodiment of the present invention will be described in detail with reference to the drawings. The various elements in the drawings are merely schematically and exemplified for the understanding of the present invention, and the appearance, dimensional ratio, etc. may differ from the actual ones.
 本発明の一実施形態に係る二次電池の製造方法について説明する前に、二次電池の基本的構成について説明しておく。なお、本明細書でいう「二次電池」という用語は充電・放電の繰り返しが可能な電池のことを指す。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。本明細書でいう「平面視」とは、二次電池を構成する電極材の積層方向に基づく厚み方向に沿って対象物を上側または下側からみたときの状態のことである。又、本明細書でいう「断面視」とは、二次電池を構成する電極材の積層方向に基づく厚み方向に対して略垂直な方向からみたときの状態のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 Before explaining the method for manufacturing a secondary battery according to an embodiment of the present invention, the basic configuration of the secondary battery will be described. The term "secondary battery" as used herein refers to a battery that can be repeatedly charged and discharged. The "secondary battery" is not overly bound by its name and may include, for example, a "storage device". The term "planar view" as used herein refers to a state in which an object is viewed from above or below along a thickness direction based on a stacking direction of electrode materials constituting a secondary battery. Further, the "cross-sectional view" referred to in the present specification is a state when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the electrode materials constituting the secondary battery. The "vertical direction" and "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols shall indicate the same members / parts or the same meanings. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction" and the opposite direction corresponds to the "upward direction".
 本明細書で言及する各種の数値範囲は、下限および上限の数値そのものも含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、下限値の“1”を含むと共に、上限値の“10”をも含むものとして解釈され得る。 The various numerical ranges referred to herein are intended to include the lower and upper limits themselves. That is, taking a numerical range such as 1 to 10 as an example, it can be interpreted as including the lower limit value "1" and the upper limit value "10".
[二次電池の基本的構成]
 本発明では二次電池が提供される。二次電池は、外装体の内部に電極組立体と電解質とが収容および封入された構造を有して成る。電極組立体は、正極、負極、および正極と負極との間に配置されたセパレータを含み得る。電極組立体は、積層型電極組立体であってもよく巻回型(ジェリーロール型)電極組立体であってもよい。積層型電極組立体は、正極、負極およびセパレータを含む電極構成層が複数積層されたものである。巻回型電極組立体は、正極、負極およびセパレータを含む電極構成層が巻き回しされたものである。又、例えば、電極組立体は、正極、セパレータ、負極を長いフィルム上に積層してから折りたたんだいわゆるスタックアンドフォールディング構造を有していてもよい。
[Basic configuration of secondary battery]
The present invention provides a secondary battery. The secondary battery has a structure in which the electrode assembly and the electrolyte are housed and sealed inside the exterior body. The electrode assembly may include a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The electrode assembly may be a laminated electrode assembly or a wound (jelly roll) electrode assembly. The laminated electrode assembly is a stack of a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator. The wound electrode assembly is a wound electrode constituent layer including a positive electrode, a negative electrode, and a separator. Further, for example, the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator, and a negative electrode are laminated on a long film and then folded.
 正極10Aは、少なくとも正極集電体11Aおよび正極材層12Aから構成されており(図5参照)、正極集電体11Aの少なくとも片面に正極材層12Aが設けられている。当該正極集電体11Aのうち正極材層12Aが設けられていない箇所、すなわち正極集電体11Aの端部には正極側引出しタブが位置付けられている。正極材層12Aには電極活物質として正極活物質が含まれている。負極10Bは少なくとも負極集電体11Bおよび負極材層12Bから構成されており(図5参照)、負極集電体11Bの少なくとも片面に負極材層12Bが設けられている。当該負極集電体11Bのうち負極材層12Bが設けられていない箇所、すなわち負極集電体11Bの端部には負極側引出しタブが位置付けられている。負極材層12Bには電極活物質として負極活物質が含まれている。 The positive electrode 10A is composed of at least a positive electrode current collector 11A and a positive electrode material layer 12A (see FIG. 5), and the positive electrode material layer 12A is provided on at least one side of the positive electrode current collector 11A. A drawer tab on the positive electrode side is positioned at a portion of the positive electrode current collector 11A where the positive electrode material layer 12A is not provided, that is, at the end of the positive electrode current collector 11A. The positive electrode material layer 12A contains a positive electrode active material as an electrode active material. The negative electrode 10B is composed of at least a negative electrode current collector 11B and a negative electrode material layer 12B (see FIG. 5), and a negative electrode material layer 12B is provided on at least one surface of the negative electrode current collector 11B. The negative electrode side drawer tab is positioned at a portion of the negative electrode current collector 11B where the negative electrode material layer 12B is not provided, that is, at the end of the negative electrode current collector 11B. The negative electrode material layer 12B contains a negative electrode active material as an electrode active material.
 正極材層12Aに含まれる正極活物質および負極材層12Bに含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層12Aに含まれる正極活物質」および「負極材層12Bに含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極10Aと負極10Bとの間で移動して電子の受け渡しが行われて充放電がなされる。正極材層12Aおよび負極材層12Bは特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極10Aと負極10Bとの間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、二次電池は、いわゆる“リチウムイオン電池”に相当する。 The positive electrode active material contained in the positive electrode material layer 12A and the negative electrode active material contained in the negative electrode material layer 12B are substances directly involved in the transfer of electrons in the secondary battery, and are mainly responsible for charge / discharge, that is, the battery reaction. It is a substance. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer 12A" and the "negative electrode active material contained in the negative electrode material layer 12B", and such ions are brought to the electrolyte with the positive electrode 10A and the negative electrode. It moves to and from 10B, and electrons are transferred to charge and discharge. The positive electrode material layer 12A and the negative electrode material layer 12B are particularly preferably layers capable of occluding and releasing lithium ions. That is, a secondary battery in which lithium ions move between the positive electrode 10A and the negative electrode 10B via an electrolyte to charge and discharge the battery is preferable. When lithium ions are involved in charging and discharging, the secondary battery corresponds to a so-called "lithium ion battery".
 正極材層12Aの正極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層12Aに含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層12Aに含まれていてよい。同様に、負極材層12Bの負極活物質は例えば粒状体から成るところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層12Bに含まれていてよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層12Aおよび負極材層12Bはそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 Since the positive electrode active material of the positive electrode material layer 12A is made of, for example, granules, it is preferable that the positive electrode material layer 12A contains a binder for more sufficient contact between the particles and shape retention. Further, a conductive auxiliary agent may be contained in the positive electrode material layer 12A in order to facilitate the transfer of electrons that promote the battery reaction. Similarly, when the negative electrode active material of the negative electrode material layer 12B is composed of particles, for example, it is preferable that the negative electrode active material contains a binder for more sufficient contact between particles and shape retention, and facilitates the transfer of electrons that promote the battery reaction. The conductive auxiliary agent may be contained in the negative electrode material layer 12B. As described above, the positive electrode material layer 12A and the negative electrode material layer 12B can also be referred to as a "positive electrode mixture layer" and a "negative electrode mixture layer", respectively, because of the form in which a plurality of components are contained.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、二次電池の正極材層12Aにおいては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層12Aに含まれる正極活物質がコバルト酸リチウムとなっている。 The positive electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer 12A of the secondary battery, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal. Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material layer 12A is lithium cobalt oxide.
 正極材層12Aに含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層12Aに含まれ得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。例えば、正極材層12Aのバインダーはポリフッ化ビニリデンであってよい。あくまでも例示にすぎないが、正極材層12Aの導電助剤はカーボンブラックである。さらに、正極材層12Aのバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっていてよい。 The binder that can be contained in the positive electrode material layer 12A is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluorotyrene copolymer and polytetrafluoro. At least one species selected from the group consisting of Tylene and the like can be mentioned. The conductive auxiliary agent that can be contained in the positive electrode material layer 12A is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase. At least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. For example, the binder of the positive electrode material layer 12A may be polyvinylidene fluoride. Although it is merely an example, the conductive auxiliary agent of the positive electrode material layer 12A is carbon black. Further, the binder and the conductive auxiliary agent of the positive electrode material layer 12A may be a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, lithium alloys, and the like.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ソフトカーボン、ハードカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体11Bとの接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。あくまでも例示にすぎないが、負極材層12Bの負極活物質が人造黒鉛となっていてよい。 Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), soft carbon, hard carbon, and diamond-like carbon. In particular, graphite is preferable because it has high electron conductivity and excellent adhesion to the negative electrode current collector 11B. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. It is preferable that such an oxide is amorphous as its structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur. Although it is merely an example, the negative electrode active material of the negative electrode material layer 12B may be artificial graphite.
 負極材層12Bに含まれ得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば負極材層12Bに含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層12Bに含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層12Bには、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be contained in the negative electrode material layer 12B is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Seeds can be mentioned. For example, the binder contained in the negative electrode material layer 12B may be styrene-butadiene rubber. The conductive auxiliary agent that can be contained in the negative electrode material layer 12B is not particularly limited, but is carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase. At least one selected from carbon fibers such as grown carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. The negative electrode material layer 12B may contain a component derived from a thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
 あくまでも例示にすぎないが、負極材層12Bにおける負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっていてよい。 Although it is merely an example, the negative electrode active material and the binder in the negative electrode material layer 12B may be a combination of artificial graphite and styrene-butadiene rubber.
 正極10Aおよび負極10Bに用いられる正極集電体11Aおよび負極集電体11Bは電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極10Aに用いられる正極集電体11Aは、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極10Bに用いられる負極集電体11Bは、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector 11A and the negative electrode current collector 11B used for the positive electrode 10A and the negative electrode 10B are members that contribute to collecting and supplying electrons generated by the active material due to the battery reaction. Such a current collector may be a sheet-shaped metal member and may have a perforated or perforated form. For example, the current collector may be a metal leaf, a punching metal, a net, an expanded metal, or the like. The positive electrode current collector 11A used for the positive electrode 10A is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector 11B used for the negative electrode 10B is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
 セパレータ50は、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータ50は、正極10Aと負極10Bとの間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータ50は多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータ50として用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータ50は、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータ50の表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。 The separator 50 is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte. In other words, it can be said that the separator 50 is a member through which ions pass while preventing electronic contact between the positive electrode 10A and the negative electrode 10B. Preferably, the separator 50 is a porous or microporous insulating member and has a film morphology due to its small thickness. Although only an example, a microporous polyolefin membrane may be used as the separator. In this regard, the microporous membrane used as the separator 50 may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator 50 may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP". The surface of the separator 50 may be covered with an inorganic particle coat layer and / or an adhesive layer or the like. The surface of the separator may have adhesiveness.
 なお、セパレータ50は、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、絶縁性の無機粒子などであってもよい。なお、電極の取扱いの更なる向上の観点から、セパレータ50と電極(正極10A/負極10B)は接着されていることが好ましい。セパレータ50と電極との接着は、セパレータ50として接着性セパレータを用いること、電極材層(正極材層12A/負極材層12B)の上に接着性バインダーを塗布および/または熱圧着すること等によって為され得る。セパレータ50または電極材層に接着性を供する接着性バインダーの材料としては、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン重合体、アクリル系樹脂等が挙げられる。接着性バインダー塗布等による接着層の厚みは0.5μm以上5μm以下であってよい。 The separator 50 should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, an insulating inorganic particle, or the like having the same function. From the viewpoint of further improving the handling of the electrodes, it is preferable that the separator 50 and the electrodes (positive electrode 10A / negative electrode 10B) are adhered to each other. The separator 50 and the electrode are bonded by using an adhesive separator as the separator 50, applying an adhesive binder on the electrode material layer (positive electrode material layer 12A / negative electrode material layer 12B), and / or thermocompression bonding. Can be done. Examples of the material of the adhesive binder that provides adhesiveness to the separator 50 or the electrode material layer include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene polymer, and acrylic resin. The thickness of the adhesive layer obtained by applying an adhesive binder or the like may be 0.5 μm or more and 5 μm or less.
 正極10Aおよび負極10Bがリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質および/または有機溶媒などの“非水系”の電解質であることが好ましい(すなわち、電解質が非水電解質となっていることが好ましい)。電解質では電極(正極10A・負極10B)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。 When the positive electrode 10A and the negative electrode 10B have a layer capable of occluding and releasing lithium ions, the electrolyte is preferably an "non-aqueous" electrolyte such as an organic electrolyte and / or an organic solvent (ie, the electrolyte is a non-aqueous electrolyte). Is preferable). In the electrolyte, metal ions released from the electrodes (positive electrode 10A and negative electrode 10B) are present, and therefore the electrolyte assists the movement of the metal ions in the battery reaction.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられてよい。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPF、LiBF等のLi塩が用いられる。また、具体的な非水電解質の溶質としては、好ましくは例えばLiPFおよび/またはLiBF等のLi塩が用いられる。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. As a specific solvent for the non-aqueous electrolyte, a solvent containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC). Although only an example, a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, and for example, a mixture of ethylene carbonate and diethyl carbonate may be used. Further, as a specific non-aqueous electrolyte solute, for example, Li salts such as LiPF 6 and LiBF 4 are used. Further, as a specific non-aqueous electrolyte solute, a Li salt such as LiPF 6 and / or LiBF 4 is preferably used.
 正極用集電リードおよび負極用集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。正極用集電リードはアルミニウムから構成されることが好ましく、負極用集電リードはニッケルから構成されることが好ましい。正極用集電リードおよび負極用集電リードの形態は特に限定されず、例えば、線又はプレート状であってよい。 As the positive electrode current collector lead and the negative electrode current collector lead, any current collector lead used in the field of secondary batteries can be used. Such a current collecting lead may be composed of a material in which electron transfer can be achieved, and is composed of a conductive material such as aluminum, nickel, iron, copper, or stainless steel. The positive electrode current collecting lead is preferably made of aluminum, and the negative electrode current collecting lead is preferably made of nickel. The form of the positive electrode current collecting lead and the negative electrode current collecting lead is not particularly limited, and may be, for example, a wire or a plate.
 外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードが正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。 As the external terminal, any external terminal used in the field of secondary batteries can be used. Such external terminals may be made of a material in which electron transfer can be achieved, and are usually made of a conductive material such as aluminum, nickel, iron, copper, stainless steel. The external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device. Not limited to this, the positive electrode current collector lead connected to each of the plurality of positive electrodes may have the function of the positive electrode external terminal, and the negative electrode current collector connected to each of the plurality of negative electrodes. The lead may have the function of an external terminal for a negative electrode.
 外装体は、導電性ハードケース又はフレキシブルケース(パウチ等)の形態を採ってよい。外装体の形態がフレキシブルケース(パウチ等)である場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。同様に、複数の負極の各々は、負極用集電リードを介して負極用外部端子に連結されている。負極用外部端子はシール部により外装体に固定され、シール部が電解質の液漏れを防止する。なお、これに限定されず、複数の正極の各々と接続される正極用集電リードは正極用外部端子の機能を備えていてよく、また、複数の負極の各々と接続される負極用集電リードは負極用外部端子の機能を備えていてよい。外装体の形態が導電性ハードケースの場合、複数の正極の各々は、正極用集電リードを介して、正極用外部端子に連結されている。正極用外部端子はシール部により外装体に固定され、当該シール部は電解質の液漏れを防止する。 The exterior body may take the form of a conductive hard case or a flexible case (pouch, etc.). When the outer body is in the form of a flexible case (pouch or the like), each of the plurality of positive electrodes is connected to the external terminal for the positive electrode via the current collecting lead for the positive electrode. The external terminal for the positive electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking. Similarly, each of the plurality of negative electrodes is connected to the external terminal for the negative electrode via the current collecting lead for the negative electrode. The external terminal for the negative electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking. The current collector lead for the positive electrode connected to each of the plurality of positive electrodes may have the function of an external terminal for the positive electrode, and the current collector for the negative electrode connected to each of the plurality of negative electrodes may be provided. The lead may have the function of an external terminal for a negative electrode. When the outer body is in the form of a conductive hard case, each of the plurality of positive electrodes is connected to an external terminal for the positive electrode via a current collecting lead for the positive electrode. The external terminal for the positive electrode is fixed to the exterior body by the seal portion, and the seal portion prevents the electrolyte from leaking.
 導電性ハードケースは、本体部および蓋部からなっている。本体部は当該外装体の底面を構成する底部および側面部から成る。本体部と蓋部とは、電極組立体、電解質、集電リードおよび外部端子の収容後に密封される。密封方法としては、特に限定されるものではなく、例えばレーザー照射法等が挙げられる。本体部および蓋部を構成する材料としては、二次電池の分野でハードケース型外装体を構成し得るあらゆる材料が使用可能である。そのような材料は電子の移動が達成され得る材料であればよく、例えばアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料が挙げられる。本体部および蓋部の寸法は、主として電極組立体の寸法に応じて決定され、例えば電極組立体を収容したとき、外装体内での電極組立体の移動(ズレ)が防止される程度の寸法を有することが好ましい。電極組立体の移動を防止することにより、電極組立体の破壊が防止され、二次電池の安全性が向上する。 The conductive hard case consists of a main body and a lid. The main body portion is composed of a bottom portion and a side surface portion constituting the bottom surface of the exterior body. The body and lid are sealed after accommodating the electrode assembly, electrolyte, current collector leads and external terminals. The sealing method is not particularly limited, and examples thereof include a laser irradiation method. As the material for forming the main body and the lid, any material that can form a hard case type exterior body can be used in the field of the secondary battery. Such a material may be any material in which electron transfer can be achieved, including conductive materials such as aluminum, nickel, iron, copper and stainless steel. The dimensions of the main body and the lid are mainly determined according to the dimensions of the electrode assembly. For example, when the electrode assembly is housed, the dimensions are such that the movement (displacement) of the electrode assembly inside the exterior body is prevented. It is preferable to have. By preventing the electrode assembly from moving, the electrode assembly is prevented from being destroyed, and the safety of the secondary battery is improved.
 フレキシブルケースは、軟質シートから構成される。軟質シートは、シール部の折り曲げを達成できる程度の軟質性を有していればよく、好ましくは可塑性シートである。可塑性シートは、外力を付与した後、除去したとき、外力による変形が維持される特性を有するシートのことであり、例えば、いわゆるラミネートフィルムが使用できる。ラミネートフィルムからなるフレキシブルパウチは例えば、2枚のラミネートフィルムを重ね合わせ、その周縁部をヒートシールすることにより製造できる。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。 The flexible case is composed of a soft sheet. The soft sheet may have enough softness to achieve bending of the seal portion, and is preferably a plastic sheet. The plastic sheet is a sheet having a property of maintaining deformation due to an external force when it is removed after applying an external force. For example, a so-called laminated film can be used. A flexible pouch made of a laminated film can be manufactured, for example, by laminating two laminated films and heat-sealing the peripheral portion thereof. The laminated film is generally a film in which a metal foil and a polymer film are laminated, and specifically, a three-layer structure composed of an outer layer polymer film / metal foil / inner layer polymer film is exemplified. The outer layer polymer film is for preventing damage to the metal foil due to permeation of moisture and the like and contact, and polymers such as polyamide and polyester can be preferably used. The metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be preferably used. The inner layer polymer film protects the metal foil from the electrolyte stored inside and melts and seals the metal foil at the time of heat sealing, and polyolefin or acid-modified polyolefin can be preferably used.
[本発明の二次電池の製造方法]
 二次電池の基本的構成を考慮した上で、以下、本発明の一実施形態に係る二次電池の製造方法について説明する。
[Method for manufacturing the secondary battery of the present invention]
The method for manufacturing the secondary battery according to the embodiment of the present invention will be described below in consideration of the basic configuration of the secondary battery.
 本願発明者らは、薄厚金属等から構成される集電体を用いても電極材層の高密度化を可能とするための解決策について鋭意検討した。その結果、下記の特徴を有する本発明の二次電池の製造方法を案出するに至った。 The inventors of the present application have diligently studied a solution for making it possible to increase the density of the electrode material layer even by using a current collector composed of a thin metal or the like. As a result, a method for manufacturing the secondary battery of the present invention having the following characteristics has been devised.
 具体的には、本発明の一実施形態に係る二次電池の製造方法は、電極10の形成工程を含む。当該電極10の形成工程は、
 積層方向に沿って、仮支持シート200上に導電性接着層スラリー13aおよび電極材層スラリー12aを順に塗工して積層体300を形成することと、
 積層体300の乾燥を行って、仮支持シート200上にて導電性接着層13および電極材層12を形成することと、
 積層体300の上面301と下面302とを挟み込むように、積層方向に沿って積層体300を加圧することと、
 加圧後に仮支持シート200を剥離することと、
 導電性接着層13上に、金属および樹脂の少なくとも一方から構成される集電体11を積層して圧着することと
を含む。
Specifically, the method for manufacturing a secondary battery according to an embodiment of the present invention includes a step of forming the electrode 10. The step of forming the electrode 10 is
Along the stacking direction, the conductive adhesive layer slurry 13a and the electrode material layer slurry 12a are sequentially coated on the temporary support sheet 200 to form the laminated body 300.
The laminate 300 is dried to form the conductive adhesive layer 13 and the electrode material layer 12 on the temporary support sheet 200.
Pressurizing the laminate 300 along the stacking direction so as to sandwich the upper surface 301 and the lower surface 302 of the laminate 300,
Peeling the temporary support sheet 200 after pressurization and
It includes laminating and crimping a current collector 11 composed of at least one of metal and resin on the conductive adhesive layer 13.
 具体的には、まず、図3Aに示すように、PETフィルム等の仮支持シート200を準備する。本明細書でいう「仮支持シート」とは、得られる本発明の二次電池の構成要素として機能するものでなく、製造途中で同二次電池の構成要素(具体的には導電性接着層)となる部材を暫定的に支持するためのものを指す。よって、具体的には導電性接着剤層となる部材を支持できれば、PETフィルム以外の材料であってもよい。仮支持シート200の準備後、図3Bに示すように、仮支持シート200上に導電性接着層スラリー13aを塗工する。次いで、図3Cに示すように、塗工した導電性接着層スラリー13a上に電極材層スラリー12aを塗工して、所定の積層体300を形成する。次いで、図3Dに示すように、積層体300を乾燥させて、仮支持シート200上にて導電性接着層13および導電性接着層13上に位置する電極材層12を形成する。 Specifically, first, as shown in FIG. 3A, a temporary support sheet 200 such as a PET film is prepared. The "temporary support sheet" referred to in the present specification does not function as a component of the obtained secondary battery of the present invention, but is a component of the secondary battery (specifically, a conductive adhesive layer) during manufacturing. ) Temporarily supports the member. Therefore, specifically, a material other than the PET film may be used as long as it can support the member to be the conductive adhesive layer. After preparing the temporary support sheet 200, as shown in FIG. 3B, the conductive adhesive layer slurry 13a is applied onto the temporary support sheet 200. Next, as shown in FIG. 3C, the electrode material layer slurry 12a is coated on the coated conductive adhesive layer slurry 13a to form a predetermined laminated body 300. Next, as shown in FIG. 3D, the laminate 300 is dried to form the conductive adhesive layer 13 and the electrode material layer 12 located on the conductive adhesive layer 13 on the temporary support sheet 200.
 その後、図3Eに示すように、積層体300の上面301と下面302とを挟み込むように、積層方向に沿って積層体300を加圧する。加圧方法は特に限定されないが、具体的には、図4に示すように、相互に対向する2つのロール400から構成されるロールプレス機を用いて、2つのロール400間に積層体300を通過させ、その際に積層体300を押圧してもよい。 After that, as shown in FIG. 3E, the laminated body 300 is pressurized along the laminating direction so as to sandwich the upper surface 301 and the lower surface 302 of the laminated body 300. The pressurizing method is not particularly limited, but specifically, as shown in FIG. 4, a roll press machine composed of two rolls 400 facing each other is used to hold the laminate 300 between the two rolls 400. You may let it pass and press the laminated body 300 at that time.
 なお、本実施形態にて用いる仮支持シート200の表面自由エネルギーは、20mJ/m以上であることが好ましい。かかる表面自由エネルギー以上の値であると、ロールプレス時に、積層体300の構成要素である導電性接着層13がロール400側に転写することを好適に抑制できる。 The surface free energy of the temporary support sheet 200 used in the present embodiment is preferably 20 mJ / m 2 or more. When the value is equal to or higher than the surface free energy, it is possible to preferably suppress the transfer of the conductive adhesive layer 13 which is a component of the laminated body 300 to the roll 400 side during the roll press.
 次いで、図3Fに示すように、仮支持シート200を剥離させる。最後に、図3Gに示すように、導電性接着層13上に、金属および樹脂の少なくとも一方から構成される集電体11を積層して圧着する。なお、仮支持シート200の剥離後に露出する導電性接着層13の表面の表面自由エネルギーは8.0mJ/m以上であることが好ましい。かかる表面自由エネルギー以上の値であると、ロールプレス時に、集電体11の圧着時に導電性接着層13への集電体11の結着性を好適に確保することができる。 Next, as shown in FIG. 3F, the temporary support sheet 200 is peeled off. Finally, as shown in FIG. 3G, a current collector 11 composed of at least one of metal and resin is laminated and pressure-bonded on the conductive adhesive layer 13. The surface free energy of the surface of the conductive adhesive layer 13 exposed after the temporary support sheet 200 is peeled off is preferably 8.0 mJ / m 2 or more. When the value is equal to or higher than the surface free energy, the binding property of the current collector 11 to the conductive adhesive layer 13 can be suitably ensured at the time of crimping the current collector 11 during roll pressing.
 以上により、所定の電極10を得ることができる。 From the above, a predetermined electrode 10 can be obtained.
 電極10(正極および負極)の形成後、積層方向に沿ってセパレータを介して正極と負極とを積層することで電極構成層を形成する。少なくとも2つの電極構成層を積層方向に沿って積層すると、最終的に積層型電極組立体を形成することができる。又、単一の電極構成層を巻き回すと、最終的に巻回型電極組立体を形成することができる。 After forming the electrodes 10 (positive electrode and negative electrode), the electrode constituent layer is formed by laminating the positive electrode and the negative electrode along the stacking direction via the separator. By laminating at least two electrode constituent layers along the laminating direction, a laminated electrode assembly can be finally formed. Further, by winding a single electrode constituent layer, a wound electrode assembly can be finally formed.
 所定の電極組立体(巻回型/積層型)を形成した後、当該電極組立体を外装体に収容させつつ、集電タブを溶着する。次いで、減圧方式に基づき外装体内に電解液を注入する。 After forming a predetermined electrode assembly (winding type / laminated type), the current collecting tab is welded while accommodating the electrode assembly in the exterior body. Then, the electrolytic solution is injected into the exterior body based on the decompression method.
 以上の工程を主として経ることで、本発明の一実施形態に係る二次電池を製造することができる。 By mainly going through the above steps, the secondary battery according to the embodiment of the present invention can be manufactured.
 以上の事からも、本発明の一実施形態は、従前のように集電体となる箔と電極材層とを有して成る積層体を加圧する手法を採るのではなく、加圧時に積層体300の構成要素として集電体に代えて仮支持シート200を適用することに特徴を有する。かかる特徴に従えば、積層体300を挟み込むように積層体300を加圧する工程において、積層体300は集電体を含んでいない。即ち、積層体300の加圧時においては、電極の構成要素となる集電体が加圧されない。そのため、集電体の加圧に起因した集電体となる箔の伸び発生が回避される。これにより、積層体300の加圧時に、伸びの発生がしやすい集電体上に、電極の構成要素となる電極材層が存在するのではなく、伸びの発生しにくい仮支持シート200上に電極材層が存在することとなる。従って、積層体300の加圧時に、電極材層の高密度化を好適に実現可能となる。具体的には、電極材層の空隙率25%以下にでき、電極材層を高密度化することが可能となる。以上の事からも、本発明の一実施形態に従えば、伸びの発生がしやすい性質の集電体を用いても二次電池の構成要素である電極材層12の高密度化を図ることができる。その結果、二次電池のエネルギー密度の向上を図ることが可能となる。 From the above, one embodiment of the present invention does not adopt a method of pressurizing a laminate having a foil as a current collector and an electrode material layer as in the past, but laminates at the time of pressurization. It is characterized in that a temporary support sheet 200 is applied instead of the current collector as a component of the body 300. According to such a feature, in the step of pressurizing the laminated body 300 so as to sandwich the laminated body 300, the laminated body 300 does not include a current collector. That is, when the laminated body 300 is pressurized, the current collector, which is a component of the electrode, is not pressurized. Therefore, the elongation of the foil that becomes the current collector due to the pressurization of the current collector is avoided. As a result, the electrode material layer, which is a component of the electrode, does not exist on the current collector, which tends to generate elongation when the laminated body 300 is pressurized, but on the temporary support sheet 200, which does not easily generate elongation. There will be an electrode material layer. Therefore, when the laminated body 300 is pressurized, it is possible to suitably realize a high density of the electrode material layer. Specifically, the porosity of the electrode material layer can be reduced to 25% or less, and the density of the electrode material layer can be increased. From the above, according to one embodiment of the present invention, the density of the electrode material layer 12, which is a component of the secondary battery, can be increased even if a current collector having a property of easily causing elongation is used. Can be done. As a result, it becomes possible to improve the energy density of the secondary battery.
 更には、上述のように、本発明では、積層体300の加圧時には、最終的に電極の構成要素となる集電体が加圧されない。そのため、二次電池の小型化および軽量化の要求に応えるために伸びの発生がしやすい性質の集電体や、薄層化された集電体を用いても、積層体300の加圧時に集電体となる箔が伸びるといった問題を回避することができる。その結果、伸びの発生がしやすい性質の集電体や薄層化された集電体を用いても当該集電体の強度を維持することができる。 Furthermore, as described above, in the present invention, when the laminated body 300 is pressurized, the current collector which is finally a component of the electrode is not pressurized. Therefore, even if a current collector having a property of easily generating elongation or a thin-layered current collector is used in order to meet the demand for miniaturization and weight reduction of the secondary battery, when the laminated body 300 is pressurized, It is possible to avoid the problem that the foil that becomes the current collector stretches. As a result, the strength of the current collector can be maintained even if a current collector having a property of easily causing elongation or a thinned current collector is used.
 具体的には、厚さが10μm以下である薄厚の集電体(具体的には金属集電体)を用いることが可能となる。又、ヤング率が5GPa以下である相対的に伸びやすい特性を有する集電体(具体的には樹脂集電体)を用いることも可能となる。一方、本発明では、積層体300の加圧時に、電極の構成要素となる電極材層が加圧される。そのため、電極材層の高密度化を好適に実現可能となる。具体的には、電極材層の空隙率が25%以下となる。以上の事から、本発明の一実施形態に従えば、薄厚の集電体や伸びやすい特性を有する集電体を用いても電極材層の高密度化と集電体11の強度維持とを両立可能となる。 Specifically, it is possible to use a thin current collector (specifically, a metal current collector) having a thickness of 10 μm or less. It is also possible to use a current collector (specifically, a resin current collector) having a Young's modulus of 5 GPa or less and having a relatively easily stretchable property. On the other hand, in the present invention, when the laminate 300 is pressurized, the electrode material layer which is a component of the electrode is pressurized. Therefore, it is possible to suitably realize a high density of the electrode material layer. Specifically, the porosity of the electrode material layer is 25% or less. From the above, according to one embodiment of the present invention, even if a thin current collector or a current collector having a property of being easily stretched is used, the density of the electrode material layer can be increased and the strength of the current collector 11 can be maintained. It becomes compatible.
[本発明の二次電池]
 以下、上記工程を経て得られた本発明の一実施形態に係る二次電池の特徴部分について説明する。
[Secondary battery of the present invention]
Hereinafter, the characteristic portion of the secondary battery according to the embodiment of the present invention obtained through the above steps will be described.
 図1は、本発明の一実施形態に係る二次電池を模式的に示す断面図である。図2は、本発明の一実施形態に係る二次電池の電極を模式的に示す拡大断面図である。 FIG. 1 is a cross-sectional view schematically showing a secondary battery according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view schematically showing an electrode of a secondary battery according to an embodiment of the present invention.
 本発明は、二次電池の構成要素である電極に特徴的な構成を有する。具体的には、電極10が、積層方向に沿って集電体11、電極材層12、および集電体11と電極材層12との間に設けられた導電性接着層13を有して成る。更に、集電体11が薄厚金属および樹脂の少なくとも一方から構成される集電体であり、かつ電極材層12の空隙率が25%以下である。一例としては、図2に示すように、集電体11としては、薄厚の金属集電体11Iを採ることができる。別例としては、図2に示すように、集電体11としては、樹脂集電体11IIを採ることができる。 The present invention has a configuration characteristic of electrodes, which are components of a secondary battery. Specifically, the electrode 10 has a current collector 11, an electrode material layer 12, and a conductive adhesive layer 13 provided between the current collector 11 and the electrode material layer 12 along the stacking direction. Become. Further, the current collector 11 is a current collector composed of at least one of a thin metal and a resin, and the porosity of the electrode material layer 12 is 25% or less. As an example, as shown in FIG. 2, as the current collector 11, a thin metal current collector 11I can be adopted. As another example, as shown in FIG. 2, a resin current collector 11II can be used as the current collector 11.
 かかる特徴を有することで、集電体11が薄厚金属および樹脂の少なくとも一方から構成される集電体である場合、即ち集電体11が相対的に薄厚である場合および/又は相対的に延びやすい性質を有する場合であっても、電極材層12の空隙率が25%以下、即ち電極材層の高密度化が達成可能とされる空隙率が達成される。以上の事からも、本発明の一実施形態に従えば、薄厚金属や樹脂などを使用した集電体や、伸びの発生がしやすい集電体が用いられる場合であっても、二次電池の構成要素である電極材層12の高密度化を図ることができる。その結果、二次電池のエネルギー密度の向上を図ることが可能となる。本明細書でいう「薄厚金属および樹脂の少なくとも一方から構成される集電体」とは、通常使用される集電体の厚さ50μm以上500μm以下よりも相対的に小さい厚さを有する集電体、具体的には、10μm以下の厚さを有する集電体、および/またはヤング率が5GPa以下である集電体を指す。 By having such a feature, when the current collector 11 is a current collector composed of at least one of a thin metal and a resin, that is, when the current collector 11 is relatively thin and / or relatively elongated. Even when it has an easy property, the porosity of the electrode material layer 12 is 25% or less, that is, the porosity at which the density of the electrode material layer can be increased is achieved. From the above, according to one embodiment of the present invention, even when a current collector using a thin metal, a resin, or the like or a current collector in which elongation is likely to occur is used, the secondary battery It is possible to increase the density of the electrode material layer 12, which is a component of the above. As a result, it becomes possible to improve the energy density of the secondary battery. As used herein, the term "current collector composed of at least one of a thin metal and a resin" refers to a current collector having a thickness relatively smaller than the thickness of a normally used current collector of 50 μm or more and 500 μm or less. A body, specifically, a current collector having a thickness of 10 μm or less, and / or a current collector having a Young ratio of 5 GPa or less.
 又、物の構成自体の観点からも、導電性接着層13を介して集電体11と電極材層12とが互いに接合されているため、集電体11が電極材層12から剥離することが抑制される。そのため、集電体11が部分的に湾曲等することが抑制される。これにより、上記製法の欄にて述べた「積層体300の加圧時における集電体となる箔の伸び回避」に伴うだけでなく、集電体11自体の部分的な湾曲等の抑制により、集電体11の強度を維持することが可能となる。
以上の事から、本発明の一実施形態に従えば、集電体11の強度を維持しつつ、二次電池の構成要素である電極材層12の高密度化をできる。
Further, from the viewpoint of the structure of the object itself, since the current collector 11 and the electrode material layer 12 are joined to each other via the conductive adhesive layer 13, the current collector 11 is separated from the electrode material layer 12. Is suppressed. Therefore, it is possible to prevent the current collector 11 from being partially curved or the like. As a result, not only is it accompanied by "avoidance of stretching of the foil serving as the current collector when the laminated body 300 is pressurized" described in the above-mentioned manufacturing method column, but also by suppressing partial bending of the current collector 11 itself. , It becomes possible to maintain the strength of the current collector 11.
From the above, according to one embodiment of the present invention, it is possible to increase the density of the electrode material layer 12, which is a component of the secondary battery, while maintaining the strength of the current collector 11.
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。 Although one embodiment of the present invention has been described above, it merely exemplifies a typical example of the scope of application of the present invention. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modifications can be made.
 以下、実施例について説明する。 Hereinafter, examples will be described.
実施例1:
<実施工程>
 以下の工程を経て電極を形成した。
Example 1:
<Implementation process>
An electrode was formed through the following steps.
 まず、仮支持シートを用意した。具体的には、表面自由エネルギーが32.6mJ/mであるPETフィルムを用意した。仮支持シート上に、導電性接着層を所定の厚みとなるよう塗工した。次いで、80度で10分以上真空乾燥させた。なお、導電性接着層用に含めるバインダーとして変性PP-Aを、フィラーとしてAB(アセチレンブラック)
を使用し、ABの体積が12vol%となるように、ABとバインダーを所定量秤量した。次いで、超音波分散をかけながら、フィルミックスを用いて4000rpm×10分間混合し準備した。
First, a temporary support sheet was prepared. Specifically, a PET film having a surface free energy of 32.6 mJ / m 2 was prepared. A conductive adhesive layer was applied onto the temporary support sheet so as to have a predetermined thickness. Then, it was vacuum dried at 80 degrees for 10 minutes or more. Modified PP-A is used as a binder to be included in the conductive adhesive layer, and AB (acetylene black) is used as a filler.
AB and the binder were weighed in predetermined amounts so that the volume of AB was 12 vol%. Then, while applying ultrasonic dispersion, the mixture was prepared by mixing with a fill mix at 4000 rpm for 10 minutes.
 乾燥した導電性接着層上に、正極スラリーを所定の厚みになるように塗工し、塗工後120度で10分以上真空乾燥させた。正極活物質としては、LiCoOを使用し、溶剤系バインダーと有機系溶媒を用いてスラリーを準備した。 The positive electrode slurry was coated on the dried conductive adhesive layer to a predetermined thickness, and vacuum dried at 120 ° C. for 10 minutes or more after the coating. LiCoO 2 was used as the positive electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
 上記導電性接着層を、集電体(ヤング率1.6GPaの樹脂集電体)上に同様の方法で所定の厚みとなるように塗工した。 The conductive adhesive layer was applied onto a current collector (a resin current collector with a Young's modulus of 1.6 GPa) in the same manner so as to have a predetermined thickness.
 得られた積層体について、密度3.65g/ccとなるようにプレスを行った。プレスはロールプレス機を使用し、ロール表面の温度が100℃になるように設定した。その後、電池特性評価用に14mmΦの大きさに切り出し、活物質側の面と14mmΦに切り出したセパレータとを熱圧着させた。その後、PETフィルムを剥離した。導電性接着層付きの集電体を15mmΦに切り出し、PETフィルムを剥離した側に導電性接着層が位置づけられるように重ね、再び熱圧着させて一体化させた。 The obtained laminate was pressed so as to have a density of 3.65 g / cc. A roll press was used for the press, and the temperature of the roll surface was set to 100 ° C. Then, it was cut out to a size of 14 mmΦ for evaluation of battery characteristics, and the surface on the active material side and the separator cut out to 14 mmΦ were thermocompression bonded. Then, the PET film was peeled off. A current collector with a conductive adhesive layer was cut out to 15 mmΦ, laminated so that the conductive adhesive layer was positioned on the side where the PET film was peeled off, and thermocompression bonded again to integrate them.
 一体化した電極とセパレータ、15mmΦに切り出し同じ径のSUS製のスペーサに貼り付けた金属リチウム、及び電解液を用いて、コインセル二次電池を組み立てた。なお、電池容量は1.7mAh程度になるように、電極の塗工厚みを調整した。 A coin cell secondary battery was assembled using an integrated electrode and separator, metallic lithium cut into 15 mmΦ and attached to a spacer made of SUS with the same diameter, and an electrolytic solution. The coating thickness of the electrode was adjusted so that the battery capacity was about 1.7 mAh.
 以上により、本発明の二次電池を得た。得られた二次電池を以下の条件にて測定した。 From the above, the secondary battery of the present invention was obtained. The obtained secondary battery was measured under the following conditions.
<測定条件>
 二次電池作製後、10時間の休止時間を挟んだ後、0.2Cの電流で上限電圧4.2Vまで定電流定電圧充電した。定電圧充電時のステップ以降条件は、0.01C電流とした。放電時には、0.2Cの電流で終止電圧2.5Vまで定電流放電した。この「0.2C」とは、理論容量を5時間で放電しきる電流値である。上記条件を3サイクル繰り替えした。3サイクル目の容量を電池容量とした。
<Measurement conditions>
After the secondary battery was manufactured, after a pause of 10 hours, the battery was charged with a current of 0.2 C to a constant current and constant voltage up to an upper limit voltage of 4.2 V. The condition after the step at the time of constant voltage charging was 0.01 C current. At the time of discharge, a constant current was discharged to a final voltage of 2.5 V with a current of 0.2 C. This "0.2C" is a current value at which the theoretical capacity can be completely discharged in 5 hours. The above conditions were repeated for 3 cycles. The capacity of the third cycle was defined as the battery capacity.
 なお、サイクル特性を調べる際には、最初に、25℃の雰囲気中で2サイクル充放電して放電容量を測定した。続いて、同雰囲気中でサイクル数の合計が100サイクルとなるまで繰り返し充放電して放電容量を測定した。最後に、サイクル維持率(%)=(100サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。充電時には、0.2Cの電流で上限電圧4.2Vまで定電流定電圧充電した。定電圧充電時のステップ以降条件は、0.01C電流とした。放電時には、0.2Cの電流で終止電圧2.5Vまで定電流放電した。 When investigating the cycle characteristics, first, the discharge capacity was measured by charging and discharging for 2 cycles in an atmosphere of 25 ° C. Subsequently, the discharge capacity was measured by repeatedly charging and discharging until the total number of cycles reached 100 cycles in the same atmosphere. Finally, the cycle maintenance rate (%) = (discharge capacity in the 100th cycle / discharge capacity in the second cycle) × 100 was calculated. At the time of charging, the battery was charged with a constant current and constant voltage up to an upper limit voltage of 4.2 V with a current of 0.2 C. The condition after the step at the time of constant voltage charging was 0.01 C current. At the time of discharge, a constant current was discharged to a final voltage of 2.5 V with a current of 0.2 C.
 サイクル特性調査前に、AC抵抗測定(HIOKI3560ACmΩ)とサイクル特性調査後にAC抵抗測定(HIOKI3560ACmΩ)を行い、その比率(サイクル前のAC抵抗値/サイクル後のAC抵抗値)を算出しAC抵抗上昇率とした。それぞれの抵抗値、及び上昇率を表2に示す。 AC resistance measurement (HIOKI3560ACmΩ) is performed before the cycle characteristic survey, and AC resistance measurement (HIOKI3560ACmΩ) is performed after the cycle characteristic survey, and the ratio (AC resistance value before the cycle / AC resistance value after the cycle) is calculated to calculate the AC resistance increase rate. And said. Table 2 shows the respective resistance values and the rate of increase.
 プレス後の電極を所定の大きさに切り出し、測定冶具に貼り付けた後に、PETフィルムを剥離し、剥離した面の表面自由エネルギーを測定した。得られた電極について、水銀ポロシメータ(micromeritics AutoPorel IV/SHIMADZU)で活物質層の空隙率を求めた。各測定値を表1に示す。 The pressed electrode was cut out to a predetermined size, attached to a measuring jig, the PET film was peeled off, and the surface free energy of the peeled surface was measured. For the obtained electrode, the porosity of the active material layer was determined with a mercury porosimeter (micromeritics AutoPole IV / SHIMADZU). Each measured value is shown in Table 1.
 仮支持シート上に導電性接着層のみを塗工した段階で、ロールtoロール時におけるロールへの転写有無について確認した。 At the stage where only the conductive adhesive layer was applied on the temporary support sheet, it was confirmed whether or not there was transfer to the roll during roll-to-roll.
<結果>
 実施例1より、ヤング率が1.6GPaである樹脂集電体を用いた場合でも、3.65g/ccという高密度化を達成でき、かつ電池として充放電が可能であることを確認できた。また、サイクル前後でのAC抵抗の上昇率が10%であり、サイクルによる抵抗上昇が抑制されていることも確認できた。更に、仮支持シート上に塗工した導電性接着層がロールtoロール時にロールへ転写しないことも確認できた。
<Result>
From Example 1, it was confirmed that even when a resin current collector having a Young's modulus of 1.6 GPa was used, a high density of 3.65 g / cc could be achieved and that the battery could be charged and discharged. .. It was also confirmed that the rate of increase in AC resistance before and after the cycle was 10%, and that the increase in resistance due to the cycle was suppressed. Furthermore, it was also confirmed that the conductive adhesive layer coated on the temporary support sheet did not transfer to the roll during roll-to-roll.
実施例2:
<実施工程>
 以下の工程を経て電極を形成した。
Example 2:
<Implementation process>
An electrode was formed through the following steps.
 仮支持シートとして、表面自由エネルギーが22.8mJ/mであるPETフィルムを用いた。以降、実施例1と同様に導電性接着層を仮支持シート上に塗工した。乾燥した導電性接着層の上に、負極スラリーを所定の厚みになるように同じく塗工し、塗工後120度で10分以上真空乾燥させた。負極活物質には、Grを使用し、溶剤系バインダーと有機系溶媒を用いてスラリーを準備した。 As the temporary support sheet, a PET film having a surface free energy of 22.8 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet in the same manner as in Example 1. The negative electrode slurry was similarly coated on the dried conductive adhesive layer to a predetermined thickness, and vacuum dried at 120 ° C. for 10 minutes or more after the coating. Gr was used as the negative electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
 上記導電性接着層を、実施例1と同様の集電体(ヤング率1.6GPaの樹脂集電体)上にも同様の方法で所定の厚みとなるように塗工した。得られた積層体について、密度1.65g/ccとなるようにプレスを行った。プレスはロールプレス機を使用し、室温状態でプレスした。その後は、実施例1と同様の手順で、PETフィルムを剥離し、集電体(ヤング率1.6GPaの樹脂集電体)と熱圧着させた。コインセル評価、表面自由エネルギーの測定、空隙率の測定、サイクル試験前後のAC抵抗の測定についても、実施例1と同様の条件で実施した。 The conductive adhesive layer was applied onto a current collector (resin current collector having a Young's modulus of 1.6 GPa) similar to that in Example 1 in the same manner so as to have a predetermined thickness. The obtained laminate was pressed so as to have a density of 1.65 g / cc. The press was pressed at room temperature using a roll press machine. After that, the PET film was peeled off and thermocompression bonded to a current collector (a resin current collector having a Young's modulus of 1.6 GPa) in the same procedure as in Example 1. The coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1.
 又、仮支持シート上に導電性接着層のみを塗工した段階で、ロールtoロール時におけるロールへの転写有無について確認した。 Also, at the stage where only the conductive adhesive layer was applied on the temporary support sheet, it was confirmed whether or not there was transfer to the roll during roll-to-roll.
<結果> 
 実施例2より、ヤング率が1.6GPaである樹脂集電体を用いた場合でも、1.65g/ccいう高密度化を達成でき、かつ電池として充放電が可能であることを確認できた。また、サイクル前後でのAC抵抗の上昇率が14%であり、サイクルによる抵抗上昇が抑制できていることが確認できた。更に、仮支持シート上に塗工した導電性接着層が、ロールtoロール時にロールへ転写しないことが確認できた。
<Result>
From Example 2, it was confirmed that even when a resin current collector having a Young's modulus of 1.6 GPa was used, a high density of 1.65 g / cc could be achieved and that the battery could be charged and discharged. .. In addition, the rate of increase in AC resistance before and after the cycle was 14%, confirming that the increase in resistance due to the cycle could be suppressed. Furthermore, it was confirmed that the conductive adhesive layer coated on the temporary support sheet did not transfer to the roll during roll-to-roll.
実施例3:
<実施工程>
 以下の工程を経て電極を形成した。
Example 3:
<Implementation process>
An electrode was formed through the following steps.
 仮支持シートとして、表面自由エネルギーが24.7 mJ/mであるPETフィルムを使用した。以降、実施例1と同様に導電性接着層を仮支持シート上に塗工し乾燥した。乾燥した導電性接着層の上に、実施例2と同様の負極スラリーを所定の厚みになるように同じく冶具を使用して塗工し、塗工後120℃で10分以上真空乾燥させた。上記導電性接着層を、集電体(10μm厚みの銅箔)上にも同様の方法で所定の厚みとなるように塗工した。 As the temporary support sheet, a PET film having a surface free energy of 24.7 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet and dried in the same manner as in Example 1. The same negative electrode slurry as in Example 2 was applied onto the dried conductive adhesive layer using the same jig so as to have a predetermined thickness, and after the application, it was vacuum dried at 120 ° C. for 10 minutes or more. The conductive adhesive layer was applied onto a current collector (copper foil having a thickness of 10 μm) in the same manner so as to have a predetermined thickness.
 得られた積層体について、密度1.65g/ccとなるようにプレスを行った。プレスはロールプレス機を使用し、室温状態でプレスした。その後は、実施例1と同様の手順で、PETフィルムを剥がし、集電体(10μmの銅箔)と熱圧着させた。コインセル評価、表面自由エネルギーの測定、空隙率の測定、サイクル試験前後のAC抵抗の測定についても、実施例1と同様の条件で実施した。 The obtained laminate was pressed so as to have a density of 1.65 g / cc. The press was pressed at room temperature using a roll press machine. After that, the PET film was peeled off and thermocompression bonded to a current collector (10 μm copper foil) in the same procedure as in Example 1. The coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1.
 別途、仮支持シート上に導電性接着層のみを塗工した段階で、ロールtoロール時におけるロールへの転写有無について確認した。 Separately, at the stage where only the conductive adhesive layer was applied on the temporary support sheet, it was confirmed whether or not there was transfer to the roll during roll-to-roll.
<結果>
 厚みが10μmの薄層化電極においても、1.65g/ccという高密度化を達成でき、かつ電池として充放電が可能であることを確認できた。サイクル前後でのAC抵抗の上昇率が6%であり、サイクルによる抵抗上昇が抑制できていることが確認できた。更に、仮支持シート上に塗工した導電性接着層が、ロールtoロール時にロールへ転写しないことが確認できた。
<Result>
It was confirmed that even with a thinned electrode having a thickness of 10 μm, a high density of 1.65 g / cc could be achieved and that the battery could be charged and discharged. The rate of increase in AC resistance before and after the cycle was 6%, confirming that the increase in resistance due to the cycle could be suppressed. Furthermore, it was confirmed that the conductive adhesive layer coated on the temporary support sheet did not transfer to the roll during roll-to-roll.
実施例4:
<実施工程>
 以下の工程を経て電極を形成した。
Example 4:
<Implementation process>
An electrode was formed through the following steps.
 仮支持シートとして、表面自由エネルギーが24.7 mJ/mであるPETフィルムを使用した。以降、実施例1と同様に導電性接着層を仮支持シート上に塗工し乾燥した。乾燥した導電性接着層の上に、実施例2と同様の負極スラリーを所定の厚みになるように同じく冶具を使用して塗工し、塗工後120度で10分以上真空乾燥させた。上記導電性接着層を、集電体(6μm厚みの銅箔)上にも同様の方法で狙いの厚みとなるように塗工した。 As the temporary support sheet, a PET film having a surface free energy of 24.7 mJ / m 2 was used. After that, the conductive adhesive layer was applied onto the temporary support sheet and dried in the same manner as in Example 1. On the dried conductive adhesive layer, the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig, and vacuum dried at 120 ° C. for 10 minutes or more after the application. The conductive adhesive layer was applied onto a current collector (copper foil having a thickness of 6 μm) in the same manner so as to have a desired thickness.
 得られた積層体について、密度1.65g/ccなるようにプレスを行った。プレスはロールプレス機を使用し、室温状態でプレスした。その後は、実施例1と同様の手順で、PETフィルムを剥がし、集電体(6μmの銅箔)と熱圧着させた。コインセル評価、表面自由エネルギーの測定、空隙率の測定、サイクル試験前後のAC抵抗の測定についても、実施例1と同様の条件で実施した。別途、仮支持シート上に導電性接着層のみを塗工した段階で、ロールtoロール時におけるロールへの転写有無について確認した。 The obtained laminate was pressed so as to have a density of 1.65 g / cc. The press was pressed at room temperature using a roll press machine. After that, the PET film was peeled off and thermocompression bonded to the current collector (6 μm copper foil) in the same procedure as in Example 1. The coin cell evaluation, the surface free energy measurement, the porosity measurement, and the AC resistance measurement before and after the cycle test were also carried out under the same conditions as in Example 1. Separately, at the stage where only the conductive adhesive layer was applied on the temporary support sheet, the presence or absence of transfer to the roll during roll-to-roll was confirmed.
<結果>
 厚みが6μmの薄層化電極においても、1.65g/ccという高密度化を達成でき、かつ電池として充放電が可能であることを確認できた。サイクル前後でのAC抵抗の上昇率が8%であり、サイクルによる抵抗上昇が抑制できていることが確認できた。更に、仮支持シート上に塗工した導電性接着層が、ロールtoロール時にロールへ転写しないことが確認できた。
<Result>
It was confirmed that even with a thinned electrode having a thickness of 6 μm, a high density of 1.65 g / cc could be achieved and that the battery could be charged and discharged. The rate of increase in AC resistance before and after the cycle was 8%, confirming that the increase in resistance due to the cycle could be suppressed. Furthermore, it was confirmed that the conductive adhesive layer coated on the temporary support sheet did not transfer to the roll during roll-to-roll.
比較例1:
<実施工程>
 以下の工程を経て電極を形成した。
Comparative Example 1:
<Implementation process>
An electrode was formed through the following steps.
 ヤング率が1.6GPaの樹脂集電体上に、実施例1と同様の導電性接着層を所定の厚みとなるよう調整し、冶具を使用し塗工した。乾燥した導電性接着層上に、実施例2と同様の負極スラリーを所定の厚みになるように同じく冶具を使用して塗工し乾燥した。 A conductive adhesive layer similar to that in Example 1 was adjusted to have a predetermined thickness on a resin current collector having a Young's modulus of 1.6 GPa, and coated using a jig. On the dried conductive adhesive layer, the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
 得られた電極について、密度1.65g/ccとなるようにプレスを行った。プレスはロールプレス機を使用し、室温状態でプレスした。 The obtained electrode was pressed so as to have a density of 1.65 g / cc. The press was pressed at room temperature using a roll press machine.
<結果>
 プレス後の電極に、シワが生じており、密度が狙いまで上がっておらず、同一電極内において、密度のばらつきが生じていることが確認できた。シワの程度が激しいため、その後の工程と電池特性評価が不可能であった。
<Result>
It was confirmed that the electrode after pressing had wrinkles, the density did not rise to the target, and the density varied within the same electrode. Since the degree of wrinkles was severe, it was impossible to evaluate the subsequent process and battery characteristics.
比較例2:
<実施工程>
 以下の工程を経て電極を形成した。
Comparative Example 2:
<Implementation process>
An electrode was formed through the following steps.
 厚みが10μmの銅箔上に、実施例1と同様の導電性接着層を狙いの厚みとなるよう調整し、冶具を使用し塗工した。乾燥した導電性接着層上に、実施例2と同様の負極スラリーを所定の厚みになるように同じく冶具を使用して塗工し乾燥した。 A conductive adhesive layer similar to that in Example 1 was adjusted to have the desired thickness on a copper foil having a thickness of 10 μm, and was coated using a jig. On the dried conductive adhesive layer, the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
 得られた電極について、狙いの密度が1.65g/ccとなるようにプレスを行ったものの、電極にシワが生じることが明らかになった。シワの生じない範囲でプレスを行った結果、電極の密度は1.57g/ccまでしか上げることができないことが判明した。プレスはロールプレス機を使用し、室温状態でプレスした。以降、実施例1と同様に対極が金属リチウムのコインセルを作成し、コインセル評価、表面自由エネルギーの測定、空隙率の測定、およびサイクル試験前後のAC抵抗の測定を実施した。 The obtained electrode was pressed so that the target density was 1.65 g / cc, but it became clear that the electrode had wrinkles. As a result of pressing in a range where wrinkles did not occur, it was found that the density of the electrodes could only be increased to 1.57 g / cc. The press was pressed at room temperature using a roll press machine. After that, a coin cell having a metallic lithium counter electrode was prepared in the same manner as in Example 1, and the coin cell was evaluated, the surface free energy was measured, the porosity was measured, and the AC resistance was measured before and after the cycle test.
<結果>
 プレス後にてシワが発生しない品質の良い電極を作製するためには、電極密度が1.57g/ccまでしか上がらないことが分かった。この電極を用いて電池として充放電が可能であることは確認したが、サイクル前後でのAC抵抗上昇率が150%程度であり、サイクルによって、抵抗が顕著に増加していることが確認できた。
<Result>
It was found that the electrode density can only be increased to 1.57 g / cc in order to produce a high-quality electrode that does not generate wrinkles after pressing. It was confirmed that the battery can be charged and discharged using this electrode, but the AC resistance increase rate before and after the cycle was about 150%, and it was confirmed that the resistance increased remarkably with the cycle. ..
比較例3:
<実施工程>
 以下の工程を経て電極を形成した。
Comparative Example 3:
<Implementation process>
An electrode was formed through the following steps.
 厚みが6μmのCu箔上に、実施例1と同様の導電性接着層を所定の厚みとなるよう調整し、冶具を使用し塗工した。乾燥した導電性接着層上に、実施例2と同様の負極スラリーを所定の厚みになるように同じく冶具を使用して塗工し乾燥した。 A conductive adhesive layer similar to that in Example 1 was adjusted to have a predetermined thickness on a Cu foil having a thickness of 6 μm, and coated using a jig. On the dried conductive adhesive layer, the same negative electrode slurry as in Example 2 was applied to a predetermined thickness using the same jig and dried.
 得られた電極について、狙いの密度が1.65g/ccとなるようにプレスを行ったが、プレス後の電極にシワが生じており、一部電極と銅箔の剥離が確認できた。そこで、シワおよび破れの生じない範囲で電極プレスを行った結果、密度は1.50g/ccまでしか上げることができないことが判明した。なお、プレスにはロールプレス機を使用し、室温状態でプレスした。以降、実施例1と同様に対極が金属リチウムのコインセルを作成し、コインセル評価、表面自由エネルギーの測定、空隙率の測定、サイクル試験前後のAC抵抗の測定を実施した。 The obtained electrode was pressed so that the target density was 1.65 g / cc, but the electrode after pressing had wrinkles, and it was confirmed that some of the electrodes and the copper foil were peeled off. Therefore, as a result of performing electrode pressing within a range where wrinkles and tears did not occur, it was found that the density could only be increased to 1.50 g / cc. A roll press was used for the press, and the press was performed at room temperature. After that, a coin cell having a metallic lithium counter electrode was prepared in the same manner as in Example 1, and the coin cell was evaluated, the surface free energy was measured, the porosity was measured, and the AC resistance was measured before and after the cycle test.
<結果>
 プレス後にてシワや破れが発生しない品質の良い電極を作製するためには、電極密度が1.50g/ccまでしか上がらないことが分かった。この電極を用いて電池として充放電が可能であることは確認したが、サイクル前後でのAC抵抗上昇率が300%程度であり、サイクルによって、抵抗が顕著に増加していることが確認された。
<Result>
It was found that the electrode density can only be increased to 1.50 g / cc in order to produce a high-quality electrode that does not cause wrinkles or tears after pressing. It was confirmed that the battery can be charged and discharged using this electrode, but the AC resistance increase rate before and after the cycle was about 300%, and it was confirmed that the resistance increased remarkably with the cycle. ..
比較例4:
 <実施工程>
 以下の工程を経て電極を形成した。
Comparative Example 4:
<Implementation process>
An electrode was formed through the following steps.
 仮支持シートとして、表面自由エネルギーが32.6 mJ/mであるPETフィルムを使用した。仮支持シート上に、導電性接着層は塗工せず、実施例1と同様の正極スラリーを所定の厚みになるように同じく冶具を使用して塗工し、塗工後120度で10分以上真空乾燥させた。正極活物質には、LiCoOを使用し、溶剤系バインダーと有機系溶媒を用いてスラリーを準備した。 As the temporary support sheet, a PET film having a surface free energy of 32.6 mJ / m 2 was used. The conductive adhesive layer is not coated on the temporary support sheet, and the same positive electrode slurry as in Example 1 is coated with a jig so as to have a predetermined thickness, and after coating, 120 degrees for 10 minutes. The above was vacuum dried. LiCoO 2 was used as the positive electrode active material, and a slurry was prepared using a solvent-based binder and an organic solvent.
 得られた仮支持シート電極について、密度3.65g/ccとなるようにプレスを行った。プレスはロールプレス機を使用し、ロール表面の温度が100℃になるように設定した。その後、電池特性評価用に所定の大きさに切り出し、活物質側とセパレータを熱圧着させたのち、PETフィルムを剥離した。導電性接着層を塗工していない集電体(ヤング率1.6GPaの樹脂集電体)を正極活物質層のPETフィルム剥離側に重ね、再び熱圧着させ一体化した。 The obtained temporary support sheet electrode was pressed so as to have a density of 3.65 g / cc. A roll press was used for the press, and the temperature of the roll surface was set to 100 ° C. Then, it was cut out to a predetermined size for evaluation of battery characteristics, and the active material side and the separator were thermocompression-bonded, and then the PET film was peeled off. A current collector (resin current collector with a Young's modulus of 1.6 GPa) without a conductive adhesive layer was laminated on the PET film peeling side of the positive electrode active material layer, and thermocompression bonded again to integrate them.
<結果>
 熱圧着の圧力や温度の条件を変更しても、活物質と集電体(ヤング率1.6GPaの樹脂集電体)が圧着しないことが明らかになり、電池特性評価が不可能であることが判明した。
<Result>
It became clear that the active material and the current collector (resin current collector with Young's modulus of 1.6 GPa) did not crimp even if the thermocompression bonding pressure and temperature conditions were changed, making it impossible to evaluate battery characteristics. There was found.
比較例5:
 <実施工程>
 以下の工程を経て電極を形成した。
Comparative Example 5:
<Implementation process>
An electrode was formed through the following steps.
 仮支持シートとして、表面自由エネルギーが17.7mJ/mであるPETフィルムを使用した。実施例1と同様の導電性接着層を狙いの厚みとなるよう調整し、冶具を使用し塗工した。乾燥後、実施例2と同様の手順で、ロールtoロール時におけるロールへの転写有無について確認した。 As the temporary support sheet, a PET film having a surface free energy of 17.7 mJ / m 2 was used. The same conductive adhesive layer as in Example 1 was adjusted to have the desired thickness, and the coating was applied using a jig. After drying, the presence or absence of transfer to the roll during roll-to-roll was confirmed by the same procedure as in Example 2.
<結果>
 ロールに、導電性接着層が付着し転写することを確認した。
<Result>
It was confirmed that the conductive adhesive layer adhered to the roll and transferred.
表1. 電極作製条件

Figure JPOXMLDOC01-appb-I000001
Table 1. Electrode fabrication conditions

Figure JPOXMLDOC01-appb-I000001
表2.電池特性評価結果

Figure JPOXMLDOC01-appb-I000002
Table 2. Battery characteristics evaluation results

Figure JPOXMLDOC01-appb-I000002
 本発明の一実施形態に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医療用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船、などの分野)などに利用することができる。 The secondary battery according to the embodiment of the present invention can be used in various fields where storage is expected. Although only an example, the secondary battery according to the embodiment of the present invention, particularly the non-aqueous electrolyte secondary battery, is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, notebooks, etc.) in which mobile devices and the like are used. Mobile device fields such as personal computers and digital cameras, activity meters, arm computers, electronic paper), home / small industrial applications (for example, power tools, golf carts, home / nursing / industrial robot fields), large industries Applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (eg, various power generation) , Road conditioner, smart grid, general household installation type power storage system, etc.), medical use (medical equipment field such as earphone hearing aid), medical use (field such as dose management system), IoT field, space / deep sea It can be used for various purposes (for example, in the fields of space explorers, submersible research vessels, etc.).
10、10’  電極
10A 正極
10B 負極
11、11’  集電体
11A 正極集電体
11B 負極集電体
11I 金属集電体
11II 樹脂集電体
12、12’  電極材層
12A 正極材層
12B 負極材層
13  導電性接着層
13a 導電性接着スラリー
20  電解液
30  外装体30B、30B’ 負極側外部端子
50  セパレータ
100 二次電池
200 仮支持シート
300 積層体
301 積層体の上面
302 積層体の下面
400、400’ ローラー
10, 10'Electrode 10A Positive electrode 10B Negative electrode 11, 11' Electrode collector 11A Positive electrode current collector 11B Negative electrode current collector 11I Metal current collector 11II Resin current collector 12, 12' Electrode material layer 12A Positive electrode material layer 12B Negative electrode material Layer 13 Conductive adhesive layer 13a Conductive adhesive slurry 20 Electrolyte 30 Exterior 30B, 30B'Negative electrode side external terminal 50 Separator 100 Secondary battery 200 Temporary support sheet 300 Laminated body 301 Upper surface of laminated body 302 Lower surface of laminated body 400, 400'roller

Claims (11)

  1.  積層方向に沿って集電体、電極材層、および該集電体と該電極材層との間に設けられた導電性接着層を備える電極を含み、
     前記集電体が薄厚金属および樹脂の少なくとも一方から構成され、かつ前記電極材層の空隙率が25%以下である、二次電池。
    The electrode includes a current collector, an electrode material layer, and a conductive adhesive layer provided between the current collector and the electrode material layer along the stacking direction.
    A secondary battery in which the current collector is composed of at least one of a thin metal and a resin, and the porosity of the electrode material layer is 25% or less.
  2.  前記集電体が10μm以下の厚さを有する、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the current collector has a thickness of 10 μm or less.
  3.  前記集電体が5GPa以下のヤング率を有する、請求項1又は2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the current collector has a Young's modulus of 5 GPa or less.
  4.  前記電極がリチウムイオンを吸蔵放出可能となっている、請求項1~3のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 3, wherein the electrode can occlude and release lithium ions.
  5.  電極の形成工程を含む二次電池の製造方法であって、
     前記電極の形成工程が、
     仮支持シート上に導電性接着層スラリーおよび電極材層スラリーを順に塗工して積層体を形成する工程と、
     前記積層体を乾燥して、前記仮支持シート上に導電性接着層および電極材層を形成する工程と、
     前記積層体の上面と下面とを挟み込むように、前記積層体の積層方向に沿って前記積層体を加圧する工程と、
     前記加圧後に前記仮支持シートを剥離する工程と、
     前記剥離後、前記導電性接着層上に、金属および樹脂の少なくとも一方から構成される集電体を積層する工程を含む、二次電池の製造方法。
    A method for manufacturing a secondary battery including an electrode forming process.
    The electrode forming process
    A step of forming a laminate by sequentially coating a conductive adhesive layer slurry and an electrode material layer slurry on a temporary support sheet, and
    A step of drying the laminate to form a conductive adhesive layer and an electrode material layer on the temporary support sheet, and
    A step of pressurizing the laminated body along the laminating direction of the laminated body so as to sandwich the upper surface and the lower surface of the laminated body.
    The step of peeling off the temporary support sheet after the pressurization and
    A method for manufacturing a secondary battery, which comprises a step of laminating a current collector composed of at least one of a metal and a resin on the conductive adhesive layer after the peeling.
  6.  前記積層体を加圧する工程において、前記積層体は前記集電体を含んでいない、請求項5に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 5, wherein in the step of pressurizing the laminate, the laminate does not include the current collector.
  7. 前記集電体の厚さが10μm以下である、請求項5又は6に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 5 or 6, wherein the thickness of the current collector is 10 μm or less.
  8.  前記集電体のヤング率が5GPa以下である、請求項5~7のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 5 to 7, wherein the Young's modulus of the current collector is 5 GPa or less.
  9.  前記電極材層の空隙率が25%以下である、請求項5~8のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 5 to 8, wherein the porosity of the electrode material layer is 25% or less.
  10.  前記仮支持シートの表面自由エネルギーが、20mJ/m以上である、請求項5~9のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 5 to 9, wherein the surface free energy of the temporary support sheet is 20 mJ / m 2 or more.
  11.  前記導電性接着層表面の表面自由エネルギーが、8.0mJ/m以上である、請求項5~10のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 5 to 10, wherein the surface free energy of the surface of the conductive adhesive layer is 8.0 mJ / m 2 or more.
PCT/JP2021/015622 2020-04-16 2021-04-15 Secondary cell and method for manufacturing same WO2021210653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020073504 2020-04-16
JP2020-073504 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021210653A1 true WO2021210653A1 (en) 2021-10-21

Family

ID=78083662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015622 WO2021210653A1 (en) 2020-04-16 2021-04-15 Secondary cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2021210653A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (en) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003297337A (en) * 2002-03-29 2003-10-17 Tdk Corp Electrode structure, its manufacturing method, and secondary battery
JP2010097830A (en) * 2008-10-16 2010-04-30 Nippon Zeon Co Ltd Manufacturing method of electrode for electrochemical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (en) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003297337A (en) * 2002-03-29 2003-10-17 Tdk Corp Electrode structure, its manufacturing method, and secondary battery
JP2010097830A (en) * 2008-10-16 2010-04-30 Nippon Zeon Co Ltd Manufacturing method of electrode for electrochemical element

Similar Documents

Publication Publication Date Title
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
CN110462873B (en) secondary battery
US20200251786A1 (en) Lithium ion secondary battery and method of manufacturing the same
JP2021036484A (en) Secondary battery and manufacturing method of the secondary battery
WO2018180599A1 (en) Secondary battery
US11417912B2 (en) Secondary battery and method of manufacturing the same
US20190334210A1 (en) Secondary battery
US20190296399A1 (en) Secondary battery
WO2018155210A1 (en) Secondary battery and method for producing secondary battery
WO2021210653A1 (en) Secondary cell and method for manufacturing same
US11387493B2 (en) Secondary battery
US11411241B2 (en) Secondary battery
WO2018163775A1 (en) Secondary battery production method
JP6885410B2 (en) Secondary battery
JP6957952B2 (en) Secondary battery and its manufacturing method
JP2018181705A (en) Secondary battery and manufacturing method thereof
WO2023079974A1 (en) Secondary battery electrode and method for manufacturing the secondary battery electrode
JP2018206490A (en) Secondary battery and manufacturing method thereof
WO2021020212A1 (en) Secondary battery and method for manufacturing same
JP2021039818A (en) Secondary cell and manufacturing method of secondary cell
WO2022044672A1 (en) Secondary battery and method for manufacturing same
WO2018173701A1 (en) Secondary battery manufacturing method and manufacturing device
WO2018173700A1 (en) Secondary battery manufacturing method and manufacturing device
JP2018174102A (en) Secondary battery
WO2018180167A1 (en) Secondary battery production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21789240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP