WO2018173701A1 - Secondary battery manufacturing method and manufacturing device - Google Patents

Secondary battery manufacturing method and manufacturing device Download PDF

Info

Publication number
WO2018173701A1
WO2018173701A1 PCT/JP2018/008094 JP2018008094W WO2018173701A1 WO 2018173701 A1 WO2018173701 A1 WO 2018173701A1 JP 2018008094 W JP2018008094 W JP 2018008094W WO 2018173701 A1 WO2018173701 A1 WO 2018173701A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode assembly
electrode
manufacturing
pressing
Prior art date
Application number
PCT/JP2018/008094
Other languages
French (fr)
Japanese (ja)
Inventor
和也 石濱
徹 川合
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018173701A1 publication Critical patent/WO2018173701A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a secondary battery.
  • the secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body.
  • an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body.
  • lithium ions move between the positive electrode and the negative electrode through the electrolyte, and the battery is charged and discharged.
  • an electrode assembly precursor in which positive electrodes and negative electrodes are alternately arranged via separators is pressed with a press plate to adhere and integrate the electrode assembly precursor. Get a solid.
  • the electrode assembly is accommodated in the exterior body, and an electrolyte is injected into the exterior body to seal the inside of the exterior body.
  • Patent Documents 1 and 2 A secondary battery provided with a stepped portion has been reported as a secondary battery that meets such requirements.
  • an electrode assembly precursor for example, FIG. 9 having a stepped portion (for example, a stepped portion 305 having two upper surfaces having different heights as shown in FIG. 9). It has been found that even if the electrode assembly precursor 300 shown) is pressed with a press plate (eg, press plates 310, 320 shown in FIG. 9), sufficient adhesion and integration of the electrode assembly precursor cannot be achieved.
  • the press surface 311 of the press plate 310 has a planar shape and contacts only the upper surface of the uppermost step portion 301, so that the electrodes and the step portions 302 and 303 other than the uppermost step portion 301 are arranged. It was difficult to fully integrate the separator and the like. As a result, the process of accommodating the obtained electrode assembly in the exterior body becomes complicated. Further, since the pressure applied to the electrode assembly precursor is non-uniform, the battery characteristics of the secondary battery are also non-uniform.
  • the present invention can apply a pressure not only to the uppermost step portion of the electrode assembly precursor but also to a step portion other than the uppermost step portion.
  • An object of the present invention is to provide a battery manufacturing method and a manufacturing apparatus.
  • the present invention has an object to provide a method and an apparatus for manufacturing a secondary battery that can uniformly apply pressure to all the steps when the electrode assembly precursor has steps.
  • the present invention A positive electrode and a negative electrode are alternately arranged via separators, and an electrode assembly precursor having a stepped portion is pressed using a pressing member having a press surface corresponding to the stepped shape of the stepped portion, to thereby form an electrode
  • the present invention relates to a method for manufacturing a secondary battery (particularly a method for manufacturing an electrode assembly) to obtain an assembly.
  • the present invention also provides A pressing member for alternately pressing a positive electrode and a negative electrode through separators and pressing an electrode assembly precursor having a stepped portion to obtain an electrode assembly, corresponding to the stepped shape of the stepped portion
  • the present invention relates to a secondary battery manufacturing apparatus (particularly an electrode assembly manufacturing apparatus) including a pressed member having a pressed surface.
  • the method and apparatus for manufacturing a secondary battery of the present invention even when the electrode assembly precursor has a stepped portion, not only the uppermost step portion of the electrode assembly precursor but also the uppermost step portion.
  • the pressure can also be applied at the step.
  • the pressure can be uniformly applied to all the steps. For this reason, an electrode, a separator, etc. can fully be adhere
  • the process of accommodating the obtained electrode assembly in the exterior body is simple and safe.
  • the pressure applied to all the steps of the electrode assembly precursor is uniform, the battery characteristics of all the steps in one secondary battery are also uniform.
  • the typical perspective view of the manufacturing device of the rechargeable battery concerning Embodiment 1 of the present invention is shown.
  • the typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 2 of this invention is shown.
  • the typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 3 of this invention is shown.
  • the typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 4 of this invention is shown.
  • the typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 5 of this invention is shown.
  • the typical sectional view showing the relation between the press member, the electrode assembly precursor, and the lower breath board in the manufacturing device of the secondary battery concerning the present invention is shown. In the manufacturing apparatus of the secondary battery of FIG.
  • the present invention provides a method and apparatus for manufacturing a secondary battery.
  • the term “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”.
  • the method for manufacturing a secondary battery of the present invention includes a dry bonding step.
  • the dry bonding process is a process of applying pressure to the electrode assembly precursor in the thickness direction.
  • An electrode assembly precursor is an intermediate or intermediate structure of an electrode assembly that includes a positive electrode, a negative electrode, and a separator, and in which the positive electrode and the negative electrode are simply arranged alternately via the separator. .
  • the electrode assembly precursor is in a state that can be formed into an electrode assembly by bonding and integration simply by being pressed in a dry bonding process. Specifically, components such as a positive electrode, a negative electrode, and a separator are simply laminated. It is a layered product in the state of being.
  • the electrodes (positive electrode and negative electrode) constituting the electrode assembly precursor and the separator are bonded and integrated to obtain an electrode assembly. For this reason, the accommodation process to the exterior body of the obtained electrode assembly becomes safe and simple. Also, the thickness and shape of the electrode assembly can be controlled.
  • the dry adhesion means adhesion in a state where members (for example, a positive electrode, a negative electrode, a separator, and the like) constituting the electrode assembly precursor are not wetted by the electrolyte.
  • the electrode assembly precursor 1 has a stepped portion 10 as shown in FIGS. 1A and 1B.
  • the step portion is a discontinuous portion of the upper surface that is configured by two upper surfaces having different heights in a side view, and the height of the steps locally changes between the two upper surfaces.
  • the side view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from the side in the thickness (height) direction, and is in agreement with the side view.
  • the placement is placement in which the surface (plane) having the largest area constituting the appearance of the object (for example, the electrode assembly precursor) is the bottom surface.
  • Side view includes side view by fluoroscopy. That is, as shown in FIG. 1A and FIG.
  • the stepped portion is not only a stepped portion that can clearly distinguish the height difference when viewed from the side, but the height difference when viewed from the side is actually Including a step portion that cannot be discriminated but can be discriminated by fluoroscopy.
  • the stepped portion includes not only a stepped portion providing a low stepped portion having a thickness thinner than its periphery at the end portion in plan view but also a stepped portion providing the low stepped portion at the center portion.
  • the plan view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from directly above in the thickness (height) direction, and is in agreement with the plan view.
  • the stepped portion is usually composed of two upper surfaces having different heights and a side surface 10a connecting the two upper surfaces therebetween.
  • the stepped portion is each component when it is assumed that the electrode assembly precursor 1 is divided into components in the thickness direction on the side surface 10a constituting the stepped portion 10, and usually has a thickness for each stepped portion. However, the thickness is substantially constant at each step.
  • the upper surface is an upper surface when an object (for example, an electrode assembly precursor) is placed.
  • the electrode assembly precursor 1 has two step portions 10, but may have only one step portion 10, or may have three or more steps.
  • FIG. 1A is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 1 of the present invention.
  • FIG. 1B is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 2 of the present invention.
  • the step assembly pressing method is adopted to press the electrode assembly precursor 1 to obtain the electrode assembly.
  • the electrode assembly precursor 1 is pressed using a pressing member 3 having a press surface 3 a corresponding to the stepped shape of the stepped portion 10.
  • the press surface 3 a corresponding to the step shape of the step portion 10 is a press surface 3 a having a shape corresponding to the shape of the surface (upper surface) on the step portion 10 side of the electrode assembly precursor 1.
  • the press surface 3a corresponding to the step shape of the step portion 10 has the electrode assembly precursor 1 such that the press member 3 has a step portion 30 that fits with the step portion 10 of the electrode assembly precursor 1. It is the side surface.
  • the press surface 3 a of the press member 3 has a shape complementary to the surface (upper surface) on the stepped portion 10 side of the electrode assembly precursor 1.
  • the press surface 3a of the press member 3 is formed on all the upper surfaces (for example, 11a) of all the step portions (for example, 11, 12, and 13) provided by all the step portions 10 in the electrode assembly precursor 1. , 12a and 13a) can be directly or indirectly abutted during pressing.
  • the manufacturing apparatus of the secondary battery of the present invention shown in FIG. 1A and FIG. 1B is a pressing device using a stepped portion pressing method, and includes a pressing member 3 having a pressing surface 3a corresponding to the stepped shape of the stepped portion 10 and the pressing member 3.
  • the press plate 35 is disposed opposite to the press plate 35.
  • the step size k (for example, k1 and k2) of the step portion 30 of the press member 3 matches the step size h (for example, h1 and h2) of the step portion 10 of the electrode assembly precursor 1 to which each step portion 30 corresponds. It is preferable to make it. This is because the pressure can be more uniformly applied to the upper surfaces of all the step portions of the electrode assembly precursor 1, and better battery characteristics (for example, life characteristics) can be obtained.
  • the step size h of the step portion 10 of the electrode assembly precursor 1 may be the step size (design size) of the step portion 10 when the electrode assembly precursor becomes an electrode assembly by pressing.
  • the pressing is preferably performed under a uniform pressure condition for the pressure applied to the electrode assembly precursor 1. That is, the pressure (surface pressure) applied to the upper surfaces (for example, 11a, 12a and 13a) of all the step portions (for example, 11, 12 and 13) in the electrode assembly precursor 1 is 5% or less in uniformity. It is preferable to have. Thereby, the pressure applied to all the steps becomes more uniform, and the uniformity of the battery characteristics is further improved. Such uniformity can be easily achieved by matching the step size k of the step portion 30 with the step size h of the step portion 10 as described above.
  • the pressure at each step can be measured with a load cell.
  • the press member 3 has two step portions 30, but the present invention is not limited to this, and depending on the number of step portions 10 included in the electrode assembly precursor 1, the press member 3 has steps. You may have only one part 30, or you may have three or more.
  • the pressing member 3 has a stepped portion 30 that fits with the stepped portion 10 of the electrode assembly precursor 1, whereby the upper surfaces of all the stepped portions of the electrode assembly precursor 1 and the direct or It is a member having a press surface 3a that can be contacted indirectly.
  • the press member 3 may be, for example, one (31) of the press plates (31, 35) of the press device as shown in FIG. 1A, or one press plate (31) as shown in FIG. 1B. It may be a pressing jig (32) disposed between the electrode assembly precursor 1 and the electrode assembly precursor 1. That is, in the present invention, as shown in FIG. 1A, the press plate 31 as the press member 3 may have a press surface 3a corresponding to the step shape of the step portion 10, or as shown in FIG. 1B. In addition, the pressing jig 32 as the pressing member 3 may have a pressing surface 3 a corresponding to the step shape of the stepped portion 10.
  • the press plate is usually a member 31 or 35 that is provided in two in one press device and pressurizes an object between them.
  • one of the press plates 31 is used as the press member 3.
  • the other press plate 35 may be used as the press member 3 according to the shape of the electrode assembly precursor 1.
  • the press jig is an auxiliary member 32 interposed between the press plate and the electrode assembly precursor.
  • a pressing jig 32 is used as the pressing member 3 between one of the pressing plates 31 and 35 and the electrode assembly precursor 1.
  • a press jig (not shown) may be used as the press member 3 between the other press plate 35 and the electrode assembly precursor 1 according to the shape of the electrode assembly precursor 1. Good.
  • FIG. 1C is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 3 of the present invention.
  • the secondary battery manufacturing apparatus (particularly the electrode assembly manufacturing apparatus) of FIG. 1C is a press apparatus 50. Specifically, the pressure in the z direction is applied to the press plate 31 via the movable plate 52 by the rotation of the bolt 51. And a press plate 35 (fixed plate).
  • a press jig 32 as a press member 3 is interposed adjacent to each electrode assembly precursor 1. Thereby, a pressure can be uniformly and simultaneously applied to all the steps in the plurality of electrode assembly precursors 1.
  • the press member 3 is shown as one member, as shown to FIG. 2A, the press member 3 is divided
  • segmented press members ( 3p, 3q, 3r) may be used for each step (11, 12, 13) of the electrode assembly precursor 1.
  • the pressure applied to the electrode assembly precursor 1 can be adjusted for each step (11, 12, 13).
  • the pressure applied to all the steps can be adjusted more uniformly, and the uniformity of the battery characteristics is further improved.
  • the lower press plate 35 is also divided, and the electrode assembly precursor 1 has two or more divided lower press plates (35p, 35q, 35r).
  • FIG. 2A shows a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 4 of the present invention.
  • FIG. 2B shows a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 5 of the present invention.
  • the press member 3 may be made of any material as long as pressure can be applied to the upper surfaces (for example, 11a, 12a, and 13a) of all the step portions (for example, 11, 12, and 13) of the electrode assembly precursor 1. Good.
  • the pressing member 3 may be a rigid body or an elastic body, for example, but is preferably a rigid body. As shown in FIG. 3, when the electrode assembly precursor 1 is pressed between the press member 3 and the lower press plate 35, the press member 3 is a rigid body. The corner portion 15 can be further pressed with a uniform pressure. Furthermore, since the press member 3 is not deformed when pressure is applied, damage to the electrode assembly precursor 1 can be prevented. On the other hand, when the press member 3 is an elastic body, as shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing the relationship among the press member 3, the electrode assembly precursor 1, and the lower breath plate 35 in the secondary battery manufacturing apparatus according to the present invention.
  • FIG. 4 is a partially enlarged view of the vicinity of the uppermost step portion of the electrode assembly precursor 1 when the press member 3 is a rigid body in the secondary battery manufacturing apparatus of FIG. 3.
  • FIG. 5 shows a partially enlarged view of the vicinity of the uppermost step portion of the electrode assembly precursor 1 when the press member 3 is an elastic body.
  • the rigid body means an object having rigidity, and more specifically, an object that does not deform even by a normal pressure applied to the press member 3. More specifically, the rigid body is made of a material having a Young's modulus of 1 GPa or more and 500 GPa or less.
  • a material that can constitute a rigid press member for example, a polymer material (for example, phenol resin, polypropylene resin, polyester resin (particularly polyethylene terephthalate resin), polyimide resin, polyphenylene sulfide resin, polyvinyl formal resin, polyurethane resin, Polyamideimide resin, polyamide resin, etc.), and metal materials (for example, iron, aluminum, gold, silver, copper, stainless steel, etc.).
  • the elastic body means an object having elasticity, and more specifically, an object that is deformed by a normal pressure applied to the press member 3 but returns to its original shape when the force is removed. More specifically, the elastic body is made of a material having a Young's modulus of 0.005 GPa or more and less than 1 GPa (particularly 0.005 GPa or more and 0.5 GPa or less). Examples of the material that can constitute the press member as the elastic body include rubber materials similar to the rubber materials included in the elastic sheet described later.
  • an elastic sheet (not shown) may be interposed between the press member 3 and the electrode assembly precursor 1.
  • the press member 3 is a rigid body, it is more preferable to interpose an elastic sheet between the press member 3 and the electrode assembly precursor 1. This is because the pressure can be more uniformly applied to the upper surface of the step portion of the electrode assembly precursor 1.
  • the elastic sheet includes a rubber material.
  • rubber materials include silicone rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluorine rubber, epichlorohydrin rubber, and urethane rubber. It may be at least one rubber material selected from the group consisting of and the like.
  • the thickness of the elastic sheet is usually 100 ⁇ m or more and 5 mm or less.
  • the pressure on the electrode assembly precursor surface is not particularly limited as long as adhesion and bonding between the electrodes (positive electrode and negative electrode) and the separator are promoted, and is usually a pressure higher than atmospheric pressure. .
  • the pressure is usually in the range of 0.1 MPa or more and 5.0 MPa or less, and preferably in the range of 0.5 MPa or more and 3.0 MPa or less from the viewpoint of further promoting the adhesion.
  • the temperature of the electrode assembly precursor is not particularly limited as long as adhesion and bonding between the electrode (positive electrode and negative electrode) and the separator are promoted.
  • the temperature is maintained within a range of 25 ° C to 110 ° C. May be.
  • the electrode assembly precursor is preferably maintained at a temperature in the range of 50 ° C. or higher and 100 ° C. or lower, more preferably 70 ° C., from the viewpoint of further promoting adhesion between the electrode (positive electrode and negative electrode) and the separator.
  • the temperature is maintained at 90 ° C. or lower.
  • the temperature of the electrode assembly precursor can be maintained within the above range by heating the pressing member 3 to the above temperature in this step.
  • the temperature of the electrode assembly precursor may be a set temperature of the press member.
  • the pressing time is not particularly limited as long as the adhesion between the electrode (positive electrode and negative electrode) and the separator is promoted, and is usually 1 second or more and 10 minutes or less. To preferably within a range of 5 seconds to 9 minutes, and more preferably within a range of 10 seconds to 8 minutes.
  • the dry bonding step may be performed using, for example, the apparatus shown in FIGS. 1A, 1B, and 1C described above. From the viewpoint of applying high pressure, it is preferable to use the apparatus shown in FIGS. 1A and 1B.
  • the electrode assembly precursor 1 includes the positive electrode, the negative electrode, and the separator, and the intermediate or intermediate structure of the electrode assembly in which the positive electrode and the negative electrode are simply arranged alternately via the separator. And has one or more step portions 10.
  • the step size (level difference) of each step portion (that is, the height difference between two upper surfaces constituting each step portion) h is not particularly limited.
  • the step size h of each step portion is independently 100 ⁇ m or more and 10 mm or less, particularly 500 ⁇ m or more and 8 mm or less, from the viewpoint of the uniformity of pressure to all the step portions and the electronic device application of the secondary battery. Preferably, it is 1 mm or more and 5 mm or less.
  • the step size h of the step portion 10 of the electrode assembly precursor 1 is the step size (design size) of the step portion 10 when the electrode assembly precursor becomes an electrode assembly by pressing. It's okay.
  • the step size (design dimension) of the step portion of the electrode assembly is usually equal to the step size (design dimension) of the step portion of the secondary battery as the final product.
  • each step portion 10 is the number of electrodes constituting the electrode assembly and the electrode assembly having a winding structure when the electrode assembly has a planar laminated structure and / or a winding structure which will be described later. It can be controlled by adjusting the number of windings in.
  • the stepped portion is useful for arranging a substrate or accommodating an adhesive layer, which will be described later. That is, by arranging the substrate on the upper surface of the lower step portion in the step portion, it is possible to secure a space for arranging the substrate.
  • the step portion accommodates the adhesive layer used when the secondary battery is installed in the casing of the electronic device, an accommodation space for the adhesive layer can be secured. As a result of these, the energy density of the secondary battery is improved.
  • all the upper surfaces of the electrode assembly precursor 1 have a planar shape that is substantially parallel to a horizontal surface (for example, the bottom surface when mounted).
  • the three-dimensional precursor 1 may have an upper surface that is inclined with respect to a horizontal plane and / or an upper surface that has a curved shape.
  • the press member 3 has the press surface 3a corresponding to the shape, so that all the steps of the electrode assembly precursor 1 have. The pressure can be uniformly applied to the part.
  • the planar view shape of the electrode assembly precursor 1 is not particularly limited, and may be a rectangular shape or an irregular shape in the planar view.
  • the plan view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from directly above in the thickness (height) direction, and is in agreement with the plan view.
  • the irregular shape in the plan view shape of the electrode assembly precursor is a shape having a notch in the plan view.
  • the notch is a part where a part of the cutout is intentionally lost from the initial shape.
  • the initial shape before the formation of the notch is usually rectangular.
  • the planar view shape of the notch is not particularly limited, and examples thereof include a rectangular shape, a triangular shape, a fan shape, a semicircular shape, and a circular shape.
  • the rectangular shape includes so-called rectangles and squares, and is usually a rectangle.
  • the electrode assembly precursor 1 is a plane in which a plurality of electrode units (electrode constituent layers) including a positive electrode 5, a negative electrode 6, and a separator 7 disposed between the positive electrode and the negative electrode are stacked in a planar shape. You may have a laminated structure.
  • the structure of the electrode assembly precursor 1 is not limited to a planar laminated structure.
  • an electrode unit (electrode configuration including a positive electrode 5, a negative electrode 6, and a separator 7 disposed between the positive electrode and the negative electrode. Layer) may be wound in a roll shape (winding laminated structure) (jelly roll type), or a composite structure of a planar laminated structure and a wound structure as shown in FIG.
  • the electrode assembly precursor may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded.
  • the electrode assembly precursor 1 preferably has a planar laminated structure.
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector (foil), and it is sufficient that the positive electrode material layer is provided on at least one side of the positive electrode current collector.
  • a positive electrode material layer may be provided on both surfaces of the positive electrode current collector, or a positive electrode material layer may be provided on one surface of the positive electrode current collector.
  • a positive electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
  • the positive electrode material layer contains a positive electrode active material.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector (foil), and it is sufficient that the negative electrode material layer is provided on at least one surface of the negative electrode current collector.
  • a negative electrode material layer may be provided on both surfaces of the negative electrode current collector, or a negative electrode material layer may be provided on one surface of the negative electrode current collector.
  • a negative electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a negative electrode material layer on both surfaces of the negative electrode current collector.
  • the negative electrode material layer contains a negative electrode active material.
  • the positive electrode active material included in the positive electrode material layer and the negative electrode active material included in the negative electrode material layer are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. As will be described later, the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for sufficient contact between the particles and shape retention. Furthermore, it is also preferable that a conductive additive is included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, and smooth transmission of electrons that promote the battery reaction. In order to do so, a conductive aid may be included in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer is polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer is carbon black.
  • the binder and conductive additive of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer is artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer is styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator is a member provided from the viewpoint of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the separator usually has an adhesive layer on the surface (both sides), but an adhesive layer in the form of a film may exist independently between the separator and the electrode (positive electrode and negative electrode).
  • the material constituting the adhesive layer is not particularly limited as long as it is a polymer that exhibits adhesiveness by melting and solidifying without being dissolved in the electrolyte described later.
  • polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer Examples include coalescence and acrylic resin.
  • the thickness of the adhesive layer is usually 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the separator may have an inorganic particle coat layer on the surface.
  • the electrode assembly obtained in the dry bonding process is usually subjected to a so-called wet bonding process and an initial charging process after being enclosed in an outer package together with an electrolyte.
  • wet bonding process When enclosing the electrode assembly and the electrolyte in the exterior body, usually, two external terminals are connected to the electrode (positive electrode or negative electrode) via the current collecting lead, and as a result, led out from the exterior body.
  • the electrode assembly and the electrolyte are sealed in the exterior body by sealing the interior (opening) of the exterior body after the electrode assembly is accommodated in the exterior body and the electrolyte is injected into the exterior body. Achieved.
  • the inside of the exterior body is usually sealed under reduced pressure. That is, the opening of the exterior body is sealed while the electrode assembly is accommodated and the inside of the exterior body into which the electrolyte is injected is maintained in a reduced pressure state.
  • the sealing method is not particularly limited as long as the sealing of the opening of the exterior body is achieved.
  • the sealing may be achieved by a heat seal method.
  • sealing may be achieved by a laser irradiation method.
  • Electrolyte helps the movement of metal ions released from the electrodes (positive and negative electrodes).
  • the electrolyte may be a “non-aqueous” electrolyte, such as an organic electrolyte and an organic solvent, or may be a “aqueous” electrolyte containing water.
  • the secondary battery of the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a “non-aqueous” solvent and a solute is used as an electrolyte.
  • the electrolyte may have a form such as liquid or gel (in the present specification, “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution”).
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate.
  • Li salts such as LiPF 6 and LiBF 4 are preferably used.
  • the exterior body is preferably a flexible pouch (soft bag), but may be a hard case (hard housing).
  • the flexible pouch is usually formed from a laminate film, and sealing is achieved by heat-sealing the peripheral edge.
  • the laminate film a film obtained by laminating a metal foil and a polymer film is generally used.
  • a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used.
  • the thickness of the laminate film is not particularly limited, and is preferably 1 ⁇ m or more and 1 mm or less, for example.
  • the hard case is usually formed from a metal plate, and sealing is achieved by irradiating the peripheral edge with a laser.
  • a metal plate a metal material made of aluminum, nickel, iron, copper, stainless steel or the like is common.
  • the thickness of a metal plate is not specifically limited, For example, 1 micrometer or more and 1 mm or less are preferable.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the form of the current collecting lead is not particularly limited, and may be, for example, a linear shape or a plate shape.
  • any external terminal used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the form of the external terminal 5 is not particularly limited, and is usually plate-shaped.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the current collecting lead can also be used as an external terminal.
  • the wet adhesion process is a process of applying pressure in the thickness direction to the secondary battery precursor obtained by enclosing the electrode assembly and the electrolyte in the exterior body.
  • the wet adhesion process promotes adhesion between the electrodes (positive electrode and negative electrode) and the separator, and as a result, the uniformity of battery characteristics is further improved.
  • the thickness and shape of the secondary battery can be controlled.
  • the wet adhesion means adhesion in a state where members (for example, a positive electrode, a negative electrode, a separator, and the like) that the secondary battery precursor has in the outer package are wetted by an electrolyte.
  • the initial charging process is the first charge / discharge process of the secondary battery precursor performed for the purpose of forming a solid electrolyte interface film (hereinafter referred to as “SEI film”) on the negative electrode surface. Also called charging process or conditioning process.
  • SEI film solid electrolyte interface film
  • charging process or conditioning process By uniformly forming the SEI film on the negative electrode surface, the decomposition of the electrolyte component is suppressed in the secondary battery, and the capacity of the secondary battery can be stabilized and the life can be extended.
  • charging may be performed at least once, and charging / discharging is usually performed once or more.
  • One charge / discharge includes one charge and one subsequent discharge. If charging / discharging is performed twice or more, the charging-discharging is repeated the corresponding number of times.
  • a substrate in the secondary battery manufactured by the method of the present invention, a substrate may be disposed using the step portion.
  • the substrate may be disposed on the upper surface of the low step portion constituting the step portion of the secondary battery.
  • the substrate may be a so-called rigid substrate or a flexible substrate.
  • any rigid substrate used in the field of substrates used with secondary batteries can be used, and examples thereof include a glass / epoxy resin substrate.
  • the substrate examples include an electronic circuit substrate such as a printed circuit board, a semiconductor substrate such as a silicon wafer, and a glass substrate such as a display panel.
  • an electronic circuit substrate such as a printed circuit board
  • a semiconductor substrate such as a silicon wafer
  • a glass substrate such as a display panel.
  • a secondary battery pack is constituted by the protection circuit board and the secondary battery.
  • the secondary battery obtained according to the present invention can be used in various fields where power storage is assumed.
  • the secondary battery obtained according to the present invention in particular the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smart phone, a smart watch, a notebook)
  • Mobile devices such as personal computers, digital cameras, activity meters, arm computers and electronic paper), home / small industrial applications (eg, power tools, golf carts, home / nursing / industrial robots), large industries Applications (for example, forklifts, elevators, bay harbor cranes), transportation systems (for example, hybrid cars, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation) , Road conditioners, smart grids, general home storage energy storage systems Field), IoT areas such as arm, as well as, it is possible to utilize space and deep sea applications (for example, spacecraft, areas such as submersible research vessel) and the like.
  • Electrode assembly precursor 3 Press member 3a: Press surface of press member 5: Positive electrode 6: Negative electrode 7: Separator 10: Stepped portion of electrode assembly precursor 11: Top step 11a: Upper surface of the uppermost step portion 12:13: Step portion other than the uppermost step portion 15: Corner portion of the step portion 30: Step portion of the pressing member 31: Upper press plate 35: Lower press plate

Landscapes

  • Secondary Cells (AREA)

Abstract

A secondary battery manufacturing method and manufacturing device are provided which, in the case that an electrode assembly precursor has a stepped portion, can apply a voltage not only to the topmost step of the electrode assembly precursor, but also to steps other than the topmost step. This invention relates to a secondary battery manufacturing method and manufacturing device in which a positive electrode and a negative electrode are arranged in an alternating fashion with a separator interposed therebetween, and an electrode assembly precursor 1 having a stepped portion 10 is pressed using a pressing member 3 having a pressing surface 3a corresponding to the stepped shape of the stepped portion 10, to obtain an electrode assembly.

Description

二次電池の製造方法および製造装置Secondary battery manufacturing method and manufacturing apparatus
 本発明は二次電池の製造方法および製造装置に関する。 The present invention relates to a method and an apparatus for manufacturing a secondary battery.
 従来、種々の電子機器の電源として、二次電池が用いられている。二次電池は、正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に封入された構造を有している。特にリチウムイオン二次電池においては、電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる。 Conventionally, secondary batteries have been used as power sources for various electronic devices. The secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body. In particular, in a lithium ion secondary battery, lithium ions move between the positive electrode and the negative electrode through the electrolyte, and the battery is charged and discharged.
 二次電池の製造に際しては、正極および負極がセパレータを介して交互に配置された電極組立体前駆体をプレス板でプレスすることにより、電極組立体前駆体の接着および一体化を行い、電極組立体を得る。電極組立体は外装体に収容され、電解質を外装体に注入し、外装体の内部を封止する。 In manufacturing a secondary battery, an electrode assembly precursor in which positive electrodes and negative electrodes are alternately arranged via separators is pressed with a press plate to adhere and integrate the electrode assembly precursor. Get a solid. The electrode assembly is accommodated in the exterior body, and an electrolyte is injected into the exterior body to seal the inside of the exterior body.
 一方、電子機器の薄型化および小型化が進んでおり、それに伴い、二次電池の薄型化および小型化への要求が高まっている。このような要求に応える二次電池として、段差部を設けた二次電池が報告されている(特許文献1,2)。 On the other hand, electronic devices are becoming thinner and smaller, and accordingly, demand for thinner and smaller secondary batteries is increasing. A secondary battery provided with a stepped portion has been reported as a secondary battery that meets such requirements (Patent Documents 1 and 2).
国際公開2015/141920号International Publication No. 2015/141920 特許第5779828号Japanese Patent No. 5779828
 そこで、本発明の発明者等は、段差部(例えば、図9に示すように互いに高さの異なる2つの上面により構成される段差部305)を有する電極組立体前駆体(例えば、図9に示す電極組立体前駆体300)をプレス板(例えば、図9に示すプレス板310,320)でプレスしても、電極組立体前駆体の十分な接着および一体化を達成できないことを見い出した。詳しくは、図9に示すように、プレス板310のプレス面311は平面形状を有し、最上段部301の上面のみに接触するため、最上段部301以外の段部302,303において電極およびセパレータ等を十分に一体化させることは困難であった。その結果、得られた電極組立体の外装体への収容処理が煩雑となった。また電極組立体前駆体に印加される圧力が不均一なため、二次電池の電池特性もまた不均一となった。 Accordingly, the inventors of the present invention have developed an electrode assembly precursor (for example, FIG. 9) having a stepped portion (for example, a stepped portion 305 having two upper surfaces having different heights as shown in FIG. 9). It has been found that even if the electrode assembly precursor 300 shown) is pressed with a press plate (eg, press plates 310, 320 shown in FIG. 9), sufficient adhesion and integration of the electrode assembly precursor cannot be achieved. Specifically, as shown in FIG. 9, the press surface 311 of the press plate 310 has a planar shape and contacts only the upper surface of the uppermost step portion 301, so that the electrodes and the step portions 302 and 303 other than the uppermost step portion 301 are arranged. It was difficult to fully integrate the separator and the like. As a result, the process of accommodating the obtained electrode assembly in the exterior body becomes complicated. Further, since the pressure applied to the electrode assembly precursor is non-uniform, the battery characteristics of the secondary battery are also non-uniform.
 本発明は、電極組立体前駆体が段差部を有する場合、当該電極組立体前駆体の最上段部だけでなく、最上段部以外の段部においても、圧力を印加することができる、二次電池の製造方法および製造装置を提供することを目的とする。 When the electrode assembly precursor has a stepped portion, the present invention can apply a pressure not only to the uppermost step portion of the electrode assembly precursor but also to a step portion other than the uppermost step portion. An object of the present invention is to provide a battery manufacturing method and a manufacturing apparatus.
 本発明は特に、電極組立体前駆体が段差部を有する場合、全ての段部に圧力を均一に印加することができる、二次電池の製造方法および製造装置を提供することを目的とする。 Particularly, the present invention has an object to provide a method and an apparatus for manufacturing a secondary battery that can uniformly apply pressure to all the steps when the electrode assembly precursor has steps.
 本発明は、
 正極および負極がセパレータを介して交互に配置されており、かつ段差部を有する電極組立体前駆体を、前記段差部の段差形状に対応したプレス面を有するプレス部材を用いてプレスして、電極組立体を得る、二次電池の製造方法(特に電極組立体の製造方法)に関する。
The present invention
A positive electrode and a negative electrode are alternately arranged via separators, and an electrode assembly precursor having a stepped portion is pressed using a pressing member having a press surface corresponding to the stepped shape of the stepped portion, to thereby form an electrode The present invention relates to a method for manufacturing a secondary battery (particularly a method for manufacturing an electrode assembly) to obtain an assembly.
 本発明はまた、
 正極および負極がセパレータを介して交互に配置されており、かつ段差部を有する電極組立体前駆体をプレスして電極組立体を得るためのプレス部材であって、前記段差部の段差形状に対応したプレス面を有するプレス部材を含む、二次電池の製造装置(特に電極組立体の製造装置)に関する。
The present invention also provides
A pressing member for alternately pressing a positive electrode and a negative electrode through separators and pressing an electrode assembly precursor having a stepped portion to obtain an electrode assembly, corresponding to the stepped shape of the stepped portion The present invention relates to a secondary battery manufacturing apparatus (particularly an electrode assembly manufacturing apparatus) including a pressed member having a pressed surface.
 本発明の二次電池の製造方法および製造装置によれば、電極組立体前駆体が段差部を有する場合であっても、当該電極組立体前駆体の最上段部だけでなく、最上段部以外の段部においても、圧力を印加することができる。特に、全ての段部に圧力を均一に印加することができる。このため、全ての段部において電極およびセパレータ等を十分に接着および一体化させることができる。その結果、得られた電極組立体の外装体への収容処理が簡便かつ安全になる。また電極組立体前駆体の全ての段部に印加される圧力が均一なため、1つの二次電池における全ての段部の電池特性もまた均一となる。 According to the method and apparatus for manufacturing a secondary battery of the present invention, even when the electrode assembly precursor has a stepped portion, not only the uppermost step portion of the electrode assembly precursor but also the uppermost step portion. The pressure can also be applied at the step. In particular, the pressure can be uniformly applied to all the steps. For this reason, an electrode, a separator, etc. can fully be adhere | attached and integrated in all the step parts. As a result, the process of accommodating the obtained electrode assembly in the exterior body is simple and safe. In addition, since the pressure applied to all the steps of the electrode assembly precursor is uniform, the battery characteristics of all the steps in one secondary battery are also uniform.
本発明の実施態様1に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing device of the rechargeable battery concerning Embodiment 1 of the present invention is shown. 本発明の実施態様2に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 2 of this invention is shown. 本発明の実施態様3に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 3 of this invention is shown. 本発明の実施態様4に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 4 of this invention is shown. 本発明の実施態様5に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing apparatus of the secondary battery which concerns on Embodiment 5 of this invention is shown. 本発明に係る二次電池の製造装置におけるプレス部材と電極組立体前駆体と下部ブレス板との関係を示す模式的断面図を示す。The typical sectional view showing the relation between the press member, the electrode assembly precursor, and the lower breath board in the manufacturing device of the secondary battery concerning the present invention is shown. 図3の二次電池の製造装置において、プレス部材が剛体であるとき、電極組立体前駆体の最上段部近傍の一部拡大図を示す。In the manufacturing apparatus of the secondary battery of FIG. 3, when a press member is a rigid body, the partially expanded view of the vicinity of the uppermost step part of an electrode assembly precursor is shown. 図3の二次電池の製造装置において、プレス部材が弾性体であるとき、電極組立体前駆体の最上段部近傍の一部拡大図を示す。In the secondary battery manufacturing apparatus of FIG. 3, when the pressing member is an elastic body, a partially enlarged view of the vicinity of the uppermost step portion of the electrode assembly precursor is shown. 平面積層構造を有する電極組立体の模式的断面図を示す。The typical sectional view of the electrode assembly which has a plane lamination structure is shown. 巻回構造を有する電極組立体の模式的断面図を示す。The typical sectional view of the electrode assembly which has winding structure is shown. 平面積層構造と巻回構造との複合構造を有する電極組立体の模式的断面図を示す。The typical sectional view of the electrode assembly which has the compound structure of a plane lamination structure and a winding structure is shown. 従来技術に係る二次電池の製造装置の模式的斜視図を示す。The typical perspective view of the manufacturing apparatus of the secondary battery concerning a prior art is shown.
[二次電池の製造方法および製造装置]
 本発明は二次電池の製造方法および製造装置を提供する。本明細書中、「二次電池」という用語は充電および放電の繰り返しが可能な電池のことを指している。従って、「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。
[Method and apparatus for producing secondary battery]
The present invention provides a method and apparatus for manufacturing a secondary battery. In this specification, the term “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”.
 以下、本発明の二次電池の製造方法を、二次電池の製造装置等を示す図面を用いて詳しく説明する。本明細書中、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。本明細書で直接的または間接的に用いる“上下方向”、“左右方向”および“表裏方向”はそれぞれ、図中における上下方向、左右方向および表裏方向に対応した方向に相当する。特記しない限り、同じ符号または記号は、形状が異なること以外、同じ部材または同じ意味内容を示すものとする。 Hereinafter, a method for manufacturing a secondary battery of the present invention will be described in detail with reference to the drawings showing a secondary battery manufacturing apparatus and the like. In the present specification, various elements in the drawings are merely schematically and exemplarily shown for understanding of the present invention, and the appearance and size ratio may be different from the actual ones. The “vertical direction”, “left / right direction”, and “front / back direction” used directly or indirectly in this specification correspond to directions corresponding to the vertical direction, left / right direction, and front / back direction in the drawing, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members or the same meaning contents except that the shapes are different.
(乾式接着工程)
 本発明の二次電池の製造方法は乾式接着工程を含む。乾式接着工程とは電極組立体前駆体に対してその厚み方向で加圧する工程のことである。電極組立体前駆体とは、正極、負極およびセパレータを含み、単に、正極と負極とがセパレータを介して交互に配置されているだけの、電極組立体の中間体または中間構造物のことである。換言すると、電極組立体前駆体は、乾式接着工程でプレスされるだけで接着および一体化により電極組立体となり得る状態のものであり、詳しくは正極、負極およびセパレータ等の構成部材が単に積層されている状態の層状物である。乾式接着工程により、電極組立体前駆体を構成する電極(正極および負極)とセパレータとの間の接着および一体化を行い、電極組立体を得る。このため、得られた電極組立体の外装体への収容処理が安全かつ簡便になる。また電極組立体の厚みや形状を制御することもできる。乾式接着とは、電極組立体前駆体を構成する部材(例えば、正極、負極およびセパレータ等)が電解質により湿潤していない状態での接着という意味である。
(Dry bonding process)
The method for manufacturing a secondary battery of the present invention includes a dry bonding step. The dry bonding process is a process of applying pressure to the electrode assembly precursor in the thickness direction. An electrode assembly precursor is an intermediate or intermediate structure of an electrode assembly that includes a positive electrode, a negative electrode, and a separator, and in which the positive electrode and the negative electrode are simply arranged alternately via the separator. . In other words, the electrode assembly precursor is in a state that can be formed into an electrode assembly by bonding and integration simply by being pressed in a dry bonding process. Specifically, components such as a positive electrode, a negative electrode, and a separator are simply laminated. It is a layered product in the state of being. In the dry bonding process, the electrodes (positive electrode and negative electrode) constituting the electrode assembly precursor and the separator are bonded and integrated to obtain an electrode assembly. For this reason, the accommodation process to the exterior body of the obtained electrode assembly becomes safe and simple. Also, the thickness and shape of the electrode assembly can be controlled. The dry adhesion means adhesion in a state where members (for example, a positive electrode, a negative electrode, a separator, and the like) constituting the electrode assembly precursor are not wetted by the electrolyte.
 電極組立体前駆体1は図1Aおよび図1Bに示すように段差部10を有する。段差部とは、側面視において互いに高さの異なる2つの上面により構成され、当該2つの上面の間でそれらの高さが局所的に変化する、上面の不連続部分のことである。側面視とは、対象物(例えば、電極組立体前駆体)を載置してその厚み(高さ)方向の真横から見たときの状態のことであり、側面図と同意である。載置は、対象物(例えば、電極組立体前駆体)の外観を構成する最大面積の面(平面)を底面にした載置である。側面視は透視による側面視も含む。すなわち段差部は、図1Aおよび図1Bに示すように、真横から見たときに明らかに上面の高低差を判別できる段差部だけでなく、真横から見たときに上面の高低差は実際には判別できないが、透視により判別できる段差部も包含する。換言すると、段差部は、平面視において端部に、厚みがその周囲よりも薄い低段部を提供する段差部だけでなく、中央部に当該低段部を提供する段差部も包含する。平面視とは、対象物(例えば、電極組立体前駆体)を載置してその厚み(高さ)方向の真上から見たときの状態のことであり、平面図と同意である。段差部は通常、当該高さの異なる2つの上面とそれらの間で当該2つの上面を連結する側面10aとから構成されている。段部は、段差部10を構成する側面10aにて厚み方向で電極組立体前駆体1を構成要素に分割したものと仮定したときの各構成要素のことであり、通常、段部ごとに厚みが異なり、各段部において厚みは略一定である。上面は、対象物(例えば、電極組立体前駆体)を載置したときの上面のことである。図1Aおよび図1Bにおいて電極組立体前駆体1は2つの段差部10を有しているが、段差部10を1つのみ有していてもよいし、または3つ以上有していてもよい。図1Aは本発明の実施態様1に係る二次電池の製造装置の模式的斜視図を示す。図1Bは本発明の実施態様2に係る二次電池の製造装置の模式的斜視図を示す。 The electrode assembly precursor 1 has a stepped portion 10 as shown in FIGS. 1A and 1B. The step portion is a discontinuous portion of the upper surface that is configured by two upper surfaces having different heights in a side view, and the height of the steps locally changes between the two upper surfaces. The side view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from the side in the thickness (height) direction, and is in agreement with the side view. The placement is placement in which the surface (plane) having the largest area constituting the appearance of the object (for example, the electrode assembly precursor) is the bottom surface. Side view includes side view by fluoroscopy. That is, as shown in FIG. 1A and FIG. 1B, the stepped portion is not only a stepped portion that can clearly distinguish the height difference when viewed from the side, but the height difference when viewed from the side is actually Including a step portion that cannot be discriminated but can be discriminated by fluoroscopy. In other words, the stepped portion includes not only a stepped portion providing a low stepped portion having a thickness thinner than its periphery at the end portion in plan view but also a stepped portion providing the low stepped portion at the center portion. The plan view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from directly above in the thickness (height) direction, and is in agreement with the plan view. The stepped portion is usually composed of two upper surfaces having different heights and a side surface 10a connecting the two upper surfaces therebetween. The stepped portion is each component when it is assumed that the electrode assembly precursor 1 is divided into components in the thickness direction on the side surface 10a constituting the stepped portion 10, and usually has a thickness for each stepped portion. However, the thickness is substantially constant at each step. The upper surface is an upper surface when an object (for example, an electrode assembly precursor) is placed. In FIG. 1A and FIG. 1B, the electrode assembly precursor 1 has two step portions 10, but may have only one step portion 10, or may have three or more steps. . FIG. 1A is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 1 of the present invention. FIG. 1B is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 2 of the present invention.
 乾式接着工程においては、段差部プレス方式を採用して、電極組立体前駆体1をプレスし、電極組立体を得る。段差部プレス方式においては、詳しくは、図1Aおよび図1Bに示すように、電極組立体前駆体1を、段差部10の段差形状に対応したプレス面3aを有するプレス部材3を用いてプレスして、電極組立体を得る。段差部10の段差形状に対応したプレス面3aとは、電極組立体前駆体1が有する段差部10側の面(上面)の形状に対応した形状を有するプレス面3aのことである。換言すると、段差部10の段差形状に対応したプレス面3aは、プレス部材3が、電極組立体前駆体1の段差部10と嵌合する段差部30を有するような、電極組立体前駆体1側の面のことである。例えば、プレス部材3のプレス面3aは、電極組立体前駆体1が有する段差部10側の面(上面)に対して相補的な形状を有している、ともいえる。詳しくは、プレス部材3が有するプレス面3aは、電極組立体前駆体1において全ての段差部10により提供される全ての段部(例えば、11、12および13)の全ての上面(例えば、11a、12aおよび13a)に対して、プレス時に、直接的または間接的に当接し得る面である。このようなプレス部材3を用いることにより、電極組立体前駆体の最上段部(例えば、11)だけでなく、最上段部以外の段部(例えば、12,13)においても、プレス部材3により圧力を印加することができる。このため、全ての段部において電極およびセパレータ等を十分に接着および一体化させることができる。図1Aおよび図1Bに示す本発明の二次電池の製造装置は、段差部プレス方式によるプレス装置であり、段差部10の段差形状に対応したプレス面3aを有するプレス部材3および当該プレス部材3に対向して配置されるプレス板35を有する。 In the dry bonding process, the step assembly pressing method is adopted to press the electrode assembly precursor 1 to obtain the electrode assembly. Specifically, in the stepped portion pressing method, as shown in FIGS. 1A and 1B, the electrode assembly precursor 1 is pressed using a pressing member 3 having a press surface 3 a corresponding to the stepped shape of the stepped portion 10. Thus, an electrode assembly is obtained. The press surface 3 a corresponding to the step shape of the step portion 10 is a press surface 3 a having a shape corresponding to the shape of the surface (upper surface) on the step portion 10 side of the electrode assembly precursor 1. In other words, the press surface 3a corresponding to the step shape of the step portion 10 has the electrode assembly precursor 1 such that the press member 3 has a step portion 30 that fits with the step portion 10 of the electrode assembly precursor 1. It is the side surface. For example, it can be said that the press surface 3 a of the press member 3 has a shape complementary to the surface (upper surface) on the stepped portion 10 side of the electrode assembly precursor 1. Specifically, the press surface 3a of the press member 3 is formed on all the upper surfaces (for example, 11a) of all the step portions (for example, 11, 12, and 13) provided by all the step portions 10 in the electrode assembly precursor 1. , 12a and 13a) can be directly or indirectly abutted during pressing. By using such a press member 3, not only the uppermost step (for example, 11) of the electrode assembly precursor but also the step portions (for example, 12, 13) other than the uppermost step, Pressure can be applied. For this reason, an electrode, a separator, etc. can fully be adhere | attached and integrated in all the step parts. The manufacturing apparatus of the secondary battery of the present invention shown in FIG. 1A and FIG. 1B is a pressing device using a stepped portion pressing method, and includes a pressing member 3 having a pressing surface 3a corresponding to the stepped shape of the stepped portion 10 and the pressing member 3. The press plate 35 is disposed opposite to the press plate 35.
 プレス部材3の段差部30の段差寸法k(例えば、k1およびk2)を、各段差部30が対応する電極組立体前駆体1の段差部10の段差寸法h(例えば、h1およびh2)と一致させることが好ましい。電極組立体前駆体1の全ての段部の上面に圧力をより均一に印加することができ、電池特性(例えば、寿命特性)のより良好な特性が得られるためである。なお、電極組立体前駆体1の段差部10の段差寸法hは、当該電極組立体前駆体がプレスにより電極組立体となったときの段差部10の段差寸法(設計寸法)であってよい。 The step size k (for example, k1 and k2) of the step portion 30 of the press member 3 matches the step size h (for example, h1 and h2) of the step portion 10 of the electrode assembly precursor 1 to which each step portion 30 corresponds. It is preferable to make it. This is because the pressure can be more uniformly applied to the upper surfaces of all the step portions of the electrode assembly precursor 1, and better battery characteristics (for example, life characteristics) can be obtained. The step size h of the step portion 10 of the electrode assembly precursor 1 may be the step size (design size) of the step portion 10 when the electrode assembly precursor becomes an electrode assembly by pressing.
 プレスは電極組立体前駆体1に印加される圧力について均一圧力条件で行うことが好ましい。すなわち、電極組立体前駆体1において全ての段部(例えば、11、12および13)の上面(例えば、11a、12aおよび13a)に印加される圧力(面圧)は、5%以下の均一性を有することが好ましい。これにより、全ての段部に印加される圧力がより均一になり、電池特性の均一性がさらに向上する。このような均一性は、上記のように、段差部30の段差寸法kを段差部10の段差寸法hと一致させることにより、容易に達成することができる。 The pressing is preferably performed under a uniform pressure condition for the pressure applied to the electrode assembly precursor 1. That is, the pressure (surface pressure) applied to the upper surfaces (for example, 11a, 12a and 13a) of all the step portions (for example, 11, 12 and 13) in the electrode assembly precursor 1 is 5% or less in uniformity. It is preferable to have. Thereby, the pressure applied to all the steps becomes more uniform, and the uniformity of the battery characteristics is further improved. Such uniformity can be easily achieved by matching the step size k of the step portion 30 with the step size h of the step portion 10 as described above.
 全ての段部の上面に印加される圧力の均一性は、各段部において任意の10点で測定された圧力および以下の式により算出することができる:
 均一性(%)={(Pmax-Pmin)/Pmin}×100
 Pmax:全ての段部で測定された圧力のうち最大の圧力;
 Pmin:全ての段部で測定された圧力のうち最小の圧力。
The uniformity of the pressure applied to the upper surface of all steps can be calculated by the pressure measured at any 10 points in each step and the following formula:
Uniformity (%) = {(Pmax−Pmin) / Pmin} × 100
Pmax: the maximum pressure among the pressures measured at all steps;
Pmin: The minimum pressure among the pressures measured at all steps.
 各段部での圧力はロードセルにより測定することができる。 The pressure at each step can be measured with a load cell.
 図1Aおよび図1Bにおいて、プレス部材3は段差部30を2つ有しているが、これに限定されるものではなく、電極組立体前駆体1が有する段差部10の数に応じて、段差部30を1つのみ有していてもよいし、または3つ以上有していてもよい。 In FIG. 1A and FIG. 1B, the press member 3 has two step portions 30, but the present invention is not limited to this, and depending on the number of step portions 10 included in the electrode assembly precursor 1, the press member 3 has steps. You may have only one part 30, or you may have three or more.
 プレス部材3は、電極組立体前駆体1の段差部10と嵌合する段差部30を有し、これにより電極組立体前駆体1が有する全ての段部の上面と、プレス時に、直接的または間接的に当接し得るプレス面3aを有する部材である。プレス部材3は、例えば、図1Aに示すようにプレス装置のプレス板(31,35)の一方(31)であってもよいし、または図1Bに示すように一方のプレス板(31)と電極組立体前駆体1との間に配置されるプレス治具(32)であってもよい。すなわち、本発明においては、図1Aに示すように、プレス部材3としてのプレス板31が段差部10の段差形状に対応したプレス面3aを有していてもよいし、または図1Bに示すように、プレス部材3としてのプレス治具32が段差部10の段差形状に対応したプレス面3aを有していてもよい。 The pressing member 3 has a stepped portion 30 that fits with the stepped portion 10 of the electrode assembly precursor 1, whereby the upper surfaces of all the stepped portions of the electrode assembly precursor 1 and the direct or It is a member having a press surface 3a that can be contacted indirectly. The press member 3 may be, for example, one (31) of the press plates (31, 35) of the press device as shown in FIG. 1A, or one press plate (31) as shown in FIG. 1B. It may be a pressing jig (32) disposed between the electrode assembly precursor 1 and the electrode assembly precursor 1. That is, in the present invention, as shown in FIG. 1A, the press plate 31 as the press member 3 may have a press surface 3a corresponding to the step shape of the step portion 10, or as shown in FIG. 1B. In addition, the pressing jig 32 as the pressing member 3 may have a pressing surface 3 a corresponding to the step shape of the stepped portion 10.
 プレス板は、通常、1つのプレス装置に2つで具備され、それらの間で対象物を加圧するための部材31,35である。図1Aにおいては、これらのプレス板のうち一方のプレス板31をプレス部材3として用いている。本発明は、電極組立体前駆体1が有する形状に応じて、他方のプレス板35もプレス部材3として用いてもよい。 The press plate is usually a member 31 or 35 that is provided in two in one press device and pressurizes an object between them. In FIG. 1A, one of the press plates 31 is used as the press member 3. In the present invention, the other press plate 35 may be used as the press member 3 according to the shape of the electrode assembly precursor 1.
 プレス治具は、プレス板と電極組立体前駆体との間に介在する補助部材32である。図1Bにおいては、プレス板31,35のうち一方のプレス板31と電極組立体前駆体1との間にプレス部材3としてプレス治具32を用いている。本発明は、電極組立体前駆体1が有する形状に応じて、他方のプレス板35と電極組立体前駆体1との間にもプレス部材3としてプレス治具(図示せず)を用いてもよい。 The press jig is an auxiliary member 32 interposed between the press plate and the electrode assembly precursor. In FIG. 1B, a pressing jig 32 is used as the pressing member 3 between one of the pressing plates 31 and 35 and the electrode assembly precursor 1. In the present invention, a press jig (not shown) may be used as the press member 3 between the other press plate 35 and the electrode assembly precursor 1 according to the shape of the electrode assembly precursor 1. Good.
 プレス部材3としてプレス治具32を用いる場合、図1Cに示すように、複数のプレス治具32を用いて、複数の電極組立体前駆体1を同時にプレスすることにより、複数の電極組立体を同時に得ることができる。図1Cは本発明の実施態様3に係る二次電池の製造装置の模式的斜視図を示す。図1Cの二次電池の製造装置(特に電極組立体の製造装置)はプレス装置50であり、詳しくは、ボルト51の回転により、z方向の圧力を、可動板52を介して、プレス板31とプレス板35(固定板)との間に付与するようになっている。このとき、プレス板31と各電極組立体前駆体1との間には、当該各電極組立体前駆体1と隣接してプレス部材3としてのプレス治具32が介在している。これにより、複数の電極組立体前駆体1における全ての段部に圧力を均一かつ同時に印加することができる。 When a press jig 32 is used as the press member 3, as shown in FIG. 1C, a plurality of electrode assemblies precursors 1 are simultaneously pressed using a plurality of press jigs 32, whereby a plurality of electrode assemblies are formed. Can be obtained at the same time. FIG. 1C is a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 3 of the present invention. The secondary battery manufacturing apparatus (particularly the electrode assembly manufacturing apparatus) of FIG. 1C is a press apparatus 50. Specifically, the pressure in the z direction is applied to the press plate 31 via the movable plate 52 by the rotation of the bolt 51. And a press plate 35 (fixed plate). At this time, between the press plate 31 and each electrode assembly precursor 1, a press jig 32 as a press member 3 is interposed adjacent to each electrode assembly precursor 1. Thereby, a pressure can be uniformly and simultaneously applied to all the steps in the plurality of electrode assembly precursors 1.
 図1A、図1Bおよび図1Cにおいて、プレス部材3は1つの部材として示されているが、図2Aに示すように、プレス部材3を分割して、当該分割された2つ以上のプレス部材(3p、3q、3r)を用いて、電極組立体前駆体1が有する各段部(11、12、13)ごとに、プレスを行ってもよい。これにより、電極組立体前駆体1に印加される圧力を各段部(11、12、13)ごとに調整することができる。このため、全ての段部に印加される圧力をより均一に調整することができ、電池特性の均一性がさらに向上する。このとき、図2Bに示すように、下部プレス板35もまた分割して、当該分割された2つ以上の下部プレス板(35p、35q、35r)を用いて、電極組立体前駆体1が有する各段部(11、12、13)ごとに、プレスを行ってもよい。これにより、電極組立体前駆体1に印加される圧力を各段部(11、12、13)ごとに調整することが簡便になる。図2Aは本発明の実施態様4に係る二次電池の製造装置の模式的斜視図を示す。図2Bは本発明の実施態様5に係る二次電池の製造装置の模式的斜視図を示す。 In FIG. 1A, FIG. 1B, and FIG. 1C, although the press member 3 is shown as one member, as shown to FIG. 2A, the press member 3 is divided | segmented and the said two or more divided | segmented press members ( 3p, 3q, 3r) may be used for each step (11, 12, 13) of the electrode assembly precursor 1. Thereby, the pressure applied to the electrode assembly precursor 1 can be adjusted for each step (11, 12, 13). For this reason, the pressure applied to all the steps can be adjusted more uniformly, and the uniformity of the battery characteristics is further improved. At this time, as shown in FIG. 2B, the lower press plate 35 is also divided, and the electrode assembly precursor 1 has two or more divided lower press plates (35p, 35q, 35r). You may press for every step part (11, 12, 13). This makes it easy to adjust the pressure applied to the electrode assembly precursor 1 for each step (11, 12, 13). FIG. 2A shows a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 4 of the present invention. FIG. 2B shows a schematic perspective view of a secondary battery manufacturing apparatus according to Embodiment 5 of the present invention.
 プレス部材3は、電極組立体前駆体1の全ての段部(例えば、11、12および13)の上面(例えば、11a、12aおよび13a)に圧力を印加できる限り、あらゆる材料からなっていてもよい。プレス部材3は例えば、剛体であってもよいし、または弾性体であってもよいが、剛体であることが好ましい。図3に示すように、電極組立体前駆体1をプレス部材3と下部プレス板35との間で加圧するとき、プレス部材3が剛体であることで、図4に示すように、段差部のコーナー部分15にもより一層、均一な圧力でプレスすることができる。さらには、圧力を加えた時にプレス部材3が変形しないために、電極組立体前駆体1の損傷を防ぐことができる。一方、プレス部材3が弾性体である場合、図5に示すように、圧力によりプレス部材3が弾性変形するため、段差部のコーナー部分15に過剰な圧力がかかったり、かつ/または段差部の側面10aに圧力がかかったりして、電極組立体前駆体1が損傷することがある。図3は、本発明に係る二次電池の製造装置におけるプレス部材3と電極組立体前駆体1と下部ブレス板35との関係を示す模式的断面図を示す。図4は、図3の二次電池の製造装置において、プレス部材3が剛体であるとき、電極組立体前駆体1の最上段部近傍の一部拡大図を示す。図5は、プレス部材3が弾性体であるとき、電極組立体前駆体1の最上段部近傍の一部拡大図を示す。 The press member 3 may be made of any material as long as pressure can be applied to the upper surfaces (for example, 11a, 12a, and 13a) of all the step portions (for example, 11, 12, and 13) of the electrode assembly precursor 1. Good. The pressing member 3 may be a rigid body or an elastic body, for example, but is preferably a rigid body. As shown in FIG. 3, when the electrode assembly precursor 1 is pressed between the press member 3 and the lower press plate 35, the press member 3 is a rigid body. The corner portion 15 can be further pressed with a uniform pressure. Furthermore, since the press member 3 is not deformed when pressure is applied, damage to the electrode assembly precursor 1 can be prevented. On the other hand, when the press member 3 is an elastic body, as shown in FIG. 5, the press member 3 is elastically deformed by pressure, so that excessive pressure is applied to the corner portion 15 of the step portion and / or the step portion The electrode assembly precursor 1 may be damaged by pressure applied to the side surface 10a. FIG. 3 is a schematic cross-sectional view showing the relationship among the press member 3, the electrode assembly precursor 1, and the lower breath plate 35 in the secondary battery manufacturing apparatus according to the present invention. FIG. 4 is a partially enlarged view of the vicinity of the uppermost step portion of the electrode assembly precursor 1 when the press member 3 is a rigid body in the secondary battery manufacturing apparatus of FIG. 3. FIG. 5 shows a partially enlarged view of the vicinity of the uppermost step portion of the electrode assembly precursor 1 when the press member 3 is an elastic body.
 剛体とは、剛性を有する物体という意味であり、詳しくはプレス部材3に対して加えられる通常の圧力によっても変形しないような物体である。より詳しくは、剛体は、1GPa以上500GPa以下のヤング率を有する材料からなっている。剛体としてのプレス部材を構成し得る材料として、例えば、ポリマー材料(例えば、フェノール樹脂、ポリプロピレン樹脂、ポリエステル樹脂(特にポリエチレンテレフテレート樹脂)、ポリイミド樹脂、ポリフェニレンサルファイド樹脂、ポリビニルホルマール樹脂、ポリウレタン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂等)、ならびに金属材料(例えば、鉄、アルミニウム、金、銀、銅、ステンレス等)が挙げられる。 The rigid body means an object having rigidity, and more specifically, an object that does not deform even by a normal pressure applied to the press member 3. More specifically, the rigid body is made of a material having a Young's modulus of 1 GPa or more and 500 GPa or less. As a material that can constitute a rigid press member, for example, a polymer material (for example, phenol resin, polypropylene resin, polyester resin (particularly polyethylene terephthalate resin), polyimide resin, polyphenylene sulfide resin, polyvinyl formal resin, polyurethane resin, Polyamideimide resin, polyamide resin, etc.), and metal materials (for example, iron, aluminum, gold, silver, copper, stainless steel, etc.).
 弾性体とは、弾性を有する物体という意味であり、詳しくはプレス部材3に対して加えられる通常の圧力によって変形するが、除力すると元の形状へと戻る物体である。より詳しくは、弾性体は、0.005GPa以上1GPa未満(特に0.005GPa以上0.5GPa以下)のヤング率を有する材料からなっている。弾性体としてのプレス部材を構成し得る材料として、例えば、後述の弾性シートに含まれるゴム材料と同様のゴム材料が挙げられる。 The elastic body means an object having elasticity, and more specifically, an object that is deformed by a normal pressure applied to the press member 3 but returns to its original shape when the force is removed. More specifically, the elastic body is made of a material having a Young's modulus of 0.005 GPa or more and less than 1 GPa (particularly 0.005 GPa or more and 0.5 GPa or less). Examples of the material that can constitute the press member as the elastic body include rubber materials similar to the rubber materials included in the elastic sheet described later.
 乾式接着工程においては、プレス部材3と電極組立体前駆体1との間に、弾性シート(図示せず)を介在させてもよい。特にプレス部材3が剛体であるとき、プレス部材3と電極組立体前駆体1との間に、弾性シートを介在させることがより好ましい。電極組立体前駆体1の段部の上面に、より均一に圧力を印加できるためである。弾性シートはゴム材料を含むものである。ゴム材料としては、例えば、シリコーンゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ポリイソブチレン、エチレンプロピレンゴム、クロロスルホン化ポリエチレン、アクリルゴム、フッ素ゴム、エピクロルヒドリンゴム、ウレタンゴム等から成る群から選択される少なくとも1種のゴム材料であってよい。弾性シートの厚みは通常、100μm以上5mm以下である。 In the dry bonding process, an elastic sheet (not shown) may be interposed between the press member 3 and the electrode assembly precursor 1. In particular, when the press member 3 is a rigid body, it is more preferable to interpose an elastic sheet between the press member 3 and the electrode assembly precursor 1. This is because the pressure can be more uniformly applied to the upper surface of the step portion of the electrode assembly precursor 1. The elastic sheet includes a rubber material. Examples of rubber materials include silicone rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, chloroprene rubber, nitrile rubber, polyisobutylene, ethylene propylene rubber, chlorosulfonated polyethylene, acrylic rubber, fluorine rubber, epichlorohydrin rubber, and urethane rubber. It may be at least one rubber material selected from the group consisting of and the like. The thickness of the elastic sheet is usually 100 μm or more and 5 mm or less.
 乾式接着工程において電極組立体前駆体表面への圧力は、電極(正極および負極)とセパレータとの間の接着および結合が促進される限り特に限定されず、通常は大気圧よりも高い圧力である。詳しくは、圧力は通常、0.1MPa以上5.0MPa以下の範囲内であり、上記接着のさらなる促進の観点から好ましくは0.5MPa以上3.0MPa以下の範囲内である。 In the dry bonding process, the pressure on the electrode assembly precursor surface is not particularly limited as long as adhesion and bonding between the electrodes (positive electrode and negative electrode) and the separator are promoted, and is usually a pressure higher than atmospheric pressure. . Specifically, the pressure is usually in the range of 0.1 MPa or more and 5.0 MPa or less, and preferably in the range of 0.5 MPa or more and 3.0 MPa or less from the viewpoint of further promoting the adhesion.
 乾式接着工程において電極組立体前駆体の温度は、電極(正極および負極)とセパレータとの間の接着および結合が促進される限り特に限定されず、例えば25℃以上110℃以下の範囲内に維持されてよい。電極組立体前駆体は、電極(正極および負極)とセパレータとの間の接着のさらなる促進の観点から50℃以上100℃以下の範囲内の温度に維持されることが好ましく、より好ましくは70℃以上90℃以下の温度に維持される。詳しくは、本工程でプレス部材3を上記温度に加熱することにより、電極組立体前駆体の温度を上記範囲内に維持することができる。電極組立体前駆体の温度はプレス部材の設定温度であってもよい。 In the dry bonding process, the temperature of the electrode assembly precursor is not particularly limited as long as adhesion and bonding between the electrode (positive electrode and negative electrode) and the separator are promoted. For example, the temperature is maintained within a range of 25 ° C to 110 ° C. May be. The electrode assembly precursor is preferably maintained at a temperature in the range of 50 ° C. or higher and 100 ° C. or lower, more preferably 70 ° C., from the viewpoint of further promoting adhesion between the electrode (positive electrode and negative electrode) and the separator. The temperature is maintained at 90 ° C. or lower. Specifically, the temperature of the electrode assembly precursor can be maintained within the above range by heating the pressing member 3 to the above temperature in this step. The temperature of the electrode assembly precursor may be a set temperature of the press member.
 乾式接着工程において加圧時間は、電極(正極および負極)とセパレータとの間の接着が促進される限り特に限定されず、通常は1秒以上10分間以下であり、上記接着のさらなる促進の観点から好ましくは5秒以上9分間以下の範囲内であり、より好ましくは10秒以上8分以下の範囲内である。 In the dry bonding step, the pressing time is not particularly limited as long as the adhesion between the electrode (positive electrode and negative electrode) and the separator is promoted, and is usually 1 second or more and 10 minutes or less. To preferably within a range of 5 seconds to 9 minutes, and more preferably within a range of 10 seconds to 8 minutes.
 乾式接着工程は、例えば、上記した図1A、図1Bおよび図1Cの装置を用いて実施してもよく、高圧力の印加の観点から、図1Aおよび図1Bの装置を用いることが好ましい。 The dry bonding step may be performed using, for example, the apparatus shown in FIGS. 1A, 1B, and 1C described above. From the viewpoint of applying high pressure, it is preferable to use the apparatus shown in FIGS. 1A and 1B.
(電極組立体前駆体)
 電極組立体前駆体1は、上記したように、正極、負極およびセパレータを含み、単に、正極と負極とがセパレータを介して交互に配置されているだけの、電極組立体の中間体または中間構造物であり、1以上の段差部10を有する。
(Electrode assembly precursor)
As described above, the electrode assembly precursor 1 includes the positive electrode, the negative electrode, and the separator, and the intermediate or intermediate structure of the electrode assembly in which the positive electrode and the negative electrode are simply arranged alternately via the separator. And has one or more step portions 10.
 電極組立体前駆体1が有する1つ以上の段差部10において、各段差部の段差寸法(レベル差)(すなわち、各段差部を構成する2つの上面の高低差)hは特に限定されない。各段差部の段差寸法hは、全ての段部への圧力の均一性および二次電池の電子機器用途の観点から、それぞれ独立して、100μm以上10mm以下、特に500μm以上8mm以下であることが好ましく、1mm以上5mm以下であることがより好ましい。電極組立体前駆体1の段差部10の段差寸法hは、上記したように、当該電極組立体前駆体がプレスにより電極組立体となったときの段差部10の段差寸法(設計寸法)であってよい。電極組立体の段差部の段差寸法(設計寸法)は通常、最終製品としての二次電池の段差部の段差寸法(設計寸法)に等しい。 In the one or more step portions 10 of the electrode assembly precursor 1, the step size (level difference) of each step portion (that is, the height difference between two upper surfaces constituting each step portion) h is not particularly limited. The step size h of each step portion is independently 100 μm or more and 10 mm or less, particularly 500 μm or more and 8 mm or less, from the viewpoint of the uniformity of pressure to all the step portions and the electronic device application of the secondary battery. Preferably, it is 1 mm or more and 5 mm or less. As described above, the step size h of the step portion 10 of the electrode assembly precursor 1 is the step size (design size) of the step portion 10 when the electrode assembly precursor becomes an electrode assembly by pressing. It's okay. The step size (design dimension) of the step portion of the electrode assembly is usually equal to the step size (design dimension) of the step portion of the secondary battery as the final product.
 各段差部10の段差寸法hは、電極組立体が後述する平面積層構造および/または巻回構造を有する場合における当該電極組立体を構成する電極の数および電極組立体が巻回構造を有する場合における巻回の回数を調整することにより制御できる。 The step size h of each step portion 10 is the number of electrodes constituting the electrode assembly and the electrode assembly having a winding structure when the electrode assembly has a planar laminated structure and / or a winding structure which will be described later. It can be controlled by adjusting the number of windings in.
 段差部は後述する基板の配置または接着層の収容に有用である。すなわち、段差部における低段部の上面に基板を配置することにより、基板の配置スペースを確保することができる。二次電池を電子機器の筐体内に設置するときに使用される接着層を段差部が収容することにより、接着層の収容スペースを確保することができる。これらの結果として、二次電池のエネルギー密度が向上する。 The stepped portion is useful for arranging a substrate or accommodating an adhesive layer, which will be described later. That is, by arranging the substrate on the upper surface of the lower step portion in the step portion, it is possible to secure a space for arranging the substrate. When the step portion accommodates the adhesive layer used when the secondary battery is installed in the casing of the electronic device, an accommodation space for the adhesive layer can be secured. As a result of these, the energy density of the secondary battery is improved.
 電極組立体前駆体1における全ての上面は、図1A、図1Bおよび図1Cにおいて、水平面(例えば、載置時の底面)に略平行で平面形状を有しているが、本発明において電極組立体前駆体1は、水平面に対して傾斜している上面および/または曲面形状を有している上面を有していてもよい。本発明において電極組立体前駆体1がこのような上面形状を有していても、プレス部材3が当該形状に対応したプレス面3aを有することにより、電極組立体前駆体1が有する全ての段部に圧力を均一に印加することができる。 In FIG. 1A, FIG. 1B, and FIG. 1C, all the upper surfaces of the electrode assembly precursor 1 have a planar shape that is substantially parallel to a horizontal surface (for example, the bottom surface when mounted). The three-dimensional precursor 1 may have an upper surface that is inclined with respect to a horizontal plane and / or an upper surface that has a curved shape. Even if the electrode assembly precursor 1 has such an upper surface shape in the present invention, the press member 3 has the press surface 3a corresponding to the shape, so that all the steps of the electrode assembly precursor 1 have. The pressure can be uniformly applied to the part.
 電極組立体前駆体1が有する平面視形状は特に限定されず、平面視において、矩形状であっても、または異形状であってもよい。平面視とは、対象物(例えば、電極組立体前駆体)を載置してその厚み(高さ)方向の真上から見たときの状態のことであり、平面図と同意である。電極組立体前駆体の平面視形状における異形状とは、平面視において切り欠き部を有する形状のことである。切り欠き部とは、初期の形状からその一部を意図的に欠損させた部分のことである。切り欠き部形成前の初期の形状は通常、矩形状である。切り欠き部の平面視形状は特に限定されず、例えば、矩形状、三角形状、扇形形状、半円形状、円形状等が挙げられる。矩形状はいわゆる長方形および正方形を包含し、通常は長方形である。 The planar view shape of the electrode assembly precursor 1 is not particularly limited, and may be a rectangular shape or an irregular shape in the planar view. The plan view is a state when an object (for example, an electrode assembly precursor) is placed and viewed from directly above in the thickness (height) direction, and is in agreement with the plan view. The irregular shape in the plan view shape of the electrode assembly precursor is a shape having a notch in the plan view. The notch is a part where a part of the cutout is intentionally lost from the initial shape. The initial shape before the formation of the notch is usually rectangular. The planar view shape of the notch is not particularly limited, and examples thereof include a rectangular shape, a triangular shape, a fan shape, a semicircular shape, and a circular shape. The rectangular shape includes so-called rectangles and squares, and is usually a rectangle.
 電極組立体前駆体1は、図6に示すように正極5、負極6および正極と負極との間に配置されたセパレータ7を含む複数の電極ユニット(電極構成層)を平面状に積層した平面積層構造を有していてもよい。電極組立体前駆体1の構造は平面積層構造に限定されず、例えば、図7に示すように正極5、負極6および正極と負極との間に配置されたセパレータ7を含む電極ユニット(電極構成層)をロール状に巻回した巻回構造(巻回積層構造)(ジェリーロール型)を有していてもよいし、または図8に示すように平面積層構造と巻回構造との複合構造を有していてもよい。また例えば、電極組立体前駆体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタックアンドフォールディング型構造を有していてもよい。電極組立体前駆体の全ての段部へのより均一な圧力の印加の観点から、電極組立体前駆体1は平面積層構造を有することが好ましい。 As shown in FIG. 6, the electrode assembly precursor 1 is a plane in which a plurality of electrode units (electrode constituent layers) including a positive electrode 5, a negative electrode 6, and a separator 7 disposed between the positive electrode and the negative electrode are stacked in a planar shape. You may have a laminated structure. The structure of the electrode assembly precursor 1 is not limited to a planar laminated structure. For example, as shown in FIG. 7, an electrode unit (electrode configuration including a positive electrode 5, a negative electrode 6, and a separator 7 disposed between the positive electrode and the negative electrode. Layer) may be wound in a roll shape (winding laminated structure) (jelly roll type), or a composite structure of a planar laminated structure and a wound structure as shown in FIG. You may have. In addition, for example, the electrode assembly precursor may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded. From the viewpoint of applying a more uniform pressure to all the step portions of the electrode assembly precursor, the electrode assembly precursor 1 preferably has a planar laminated structure.
 正極は少なくとも正極材層および正極集電体(箔)から構成されており、正極集電体の少なくとも片面に正極材層が設けられていればよい。例えば、正極は、正極集電体の両面に正極材層が設けられていてもよいし、または正極集電体の片面に正極材層が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい正極は正極集電体の両面に正極材層が設けられている。正極材層には正極活物質が含まれている。 The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector (foil), and it is sufficient that the positive electrode material layer is provided on at least one side of the positive electrode current collector. For example, in the positive electrode, a positive electrode material layer may be provided on both surfaces of the positive electrode current collector, or a positive electrode material layer may be provided on one surface of the positive electrode current collector. A positive electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a positive electrode material layer on both surfaces of the positive electrode current collector. The positive electrode material layer contains a positive electrode active material.
 負極は少なくとも負極材層および負極集電体(箔)から構成されており、負極集電体の少なくとも片面に負極材層が設けられていればよい。例えば、負極は、負極集電体の両面に負極材層が設けられていてもよいし、または負極集電体の片面に負極材層が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい負極は負極集電体の両面に負極材層が設けられている。負極材層には負極活物質が含まれている。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector (foil), and it is sufficient that the negative electrode material layer is provided on at least one surface of the negative electrode current collector. For example, in the negative electrode, a negative electrode material layer may be provided on both surfaces of the negative electrode current collector, or a negative electrode material layer may be provided on one surface of the negative electrode current collector. A negative electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a negative electrode material layer on both surfaces of the negative electrode current collector. The negative electrode material layer contains a negative electrode active material.
 正極材層に含まれる正極活物質および負極材層に含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。後述でも触れるが、正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆる“リチウムイオン電池”に相当する。 The positive electrode active material included in the positive electrode material layer and the negative electrode active material included in the negative electrode material layer are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. As will be described later, the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions. That is, a secondary battery in which lithium ions move between the positive electrode and the negative electrode through the electrolyte to charge and discharge the battery is preferable. When lithium ions are involved in charging / discharging, the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”.
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていることも好ましい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for sufficient contact between the particles and shape retention. Furthermore, it is also preferable that a conductive additive is included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, and smooth transmission of electrons that promote the battery reaction. In order to do so, a conductive aid may be included in the negative electrode material layer. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層に含まれる正極活物質がコバルト酸リチウムとなっている。 The positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably included as a positive electrode active material. For example, the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材層のバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材層の導電助剤はカーボンブラックである。さらに好適な態様では、正極材層のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。 The binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like. The conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In a more preferred aspect, the binder of the positive electrode material layer is polyvinylidene fluoride, and in another more preferred aspect, the conductive additive of the positive electrode material layer is carbon black. In a more preferred embodiment, the binder and conductive additive of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極材層の負極活物質が人造黒鉛となっている。 Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like. In particular, graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium. For example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused. In a more preferred embodiment, the negative electrode active material of the negative electrode material layer is artificial graphite.
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材層に含まれるバインダーはスチレンブタジエンゴムとなっている。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned. In a more preferred embodiment, the binder contained in the negative electrode material layer is styrene butadiene rubber. The conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In addition, the component resulting from the thickener component (for example, carboxymethylcellulose) used at the time of battery manufacture may be contained in the negative electrode material layer.
 さらに好適な態様では、負極材層における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。 In a more preferred embodiment, the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene butadiene rubber.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction. Such a current collector may be a sheet-like metal member and may have a porous or perforated form. For example, the current collector may be a metal foil, a punching metal, a net or an expanded metal. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
 セパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。 The separator is a member provided from the viewpoint of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte. In other words, the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode. Preferably, the separator is a porous or microporous insulating member and has a film form due to its small thickness. Although only illustrative, a polyolefin microporous film may be used as the separator. In this regard, the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
 セパレータは通常、表面(両面)に接着層を有しているが、セパレータと電極(正極および負極)との間に独立してフィルム形態の接着層が存在してもよい。接着層を構成する材料は、後述の電解質に溶解することなく、溶融および固化により接着性を発現するポリマーであれば特に限定されず、例えば、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、アクリル系樹脂などが挙げられる。接着層の厚みは通常、0.5μm以上5μm以下である。セパレータは表面に無機粒子コート層を有していてもよい。 The separator usually has an adhesive layer on the surface (both sides), but an adhesive layer in the form of a film may exist independently between the separator and the electrode (positive electrode and negative electrode). The material constituting the adhesive layer is not particularly limited as long as it is a polymer that exhibits adhesiveness by melting and solidifying without being dissolved in the electrolyte described later. For example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer Examples include coalescence and acrylic resin. The thickness of the adhesive layer is usually 0.5 μm or more and 5 μm or less. The separator may have an inorganic particle coat layer on the surface.
(その他の工程)
 乾式接着工程で得られた電極組立体は通常、電解質とともに外装体に封入した後、いわゆる湿式接着工程および初期充電工程を行う。電極組立体および電解質の外装体への封入に際しては通常、2つの外部端子が集電リードを介して電極(正極または負極)に連結され、結果として外装体から外部に導出される。
(Other processes)
The electrode assembly obtained in the dry bonding process is usually subjected to a so-called wet bonding process and an initial charging process after being enclosed in an outer package together with an electrolyte. When enclosing the electrode assembly and the electrolyte in the exterior body, usually, two external terminals are connected to the electrode (positive electrode or negative electrode) via the current collecting lead, and as a result, led out from the exterior body.
 電極組立体および電解質の外装体への封入は通常、電極組立体の外装体への収容および電解質の外装体への注入を行った後、外装体の内部(開口部)を封止することにより達成される。 Usually, the electrode assembly and the electrolyte are sealed in the exterior body by sealing the interior (opening) of the exterior body after the electrode assembly is accommodated in the exterior body and the electrolyte is injected into the exterior body. Achieved.
 封入工程においては通常、外装体の内部が減圧状態で封止を行う。すなわち、電極組立体を収容し、かつ電解質を注入した外装体の内部を減圧状態に維持して、外装体の開口部の封止を行う。 In the sealing process, the inside of the exterior body is usually sealed under reduced pressure. That is, the opening of the exterior body is sealed while the electrode assembly is accommodated and the inside of the exterior body into which the electrolyte is injected is maintained in a reduced pressure state.
 封止方法は、外装体の開口部の封止が達成される限り特に限定されない。例えば、外装体が後述のフレキシブルパウチである場合、封止はヒートシール法により達成されてよい。また例えば、外装体が後述のハードケースである場合、封止はレーザー照射法により達成されてよい。 The sealing method is not particularly limited as long as the sealing of the opening of the exterior body is achieved. For example, when the exterior body is a flexible pouch described later, the sealing may be achieved by a heat seal method. For example, when the exterior body is a hard case described later, sealing may be achieved by a laser irradiation method.
 電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であっても、または水を含む“水系”の電解質であってもよい。本発明の二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。 Electrolyte helps the movement of metal ions released from the electrodes (positive and negative electrodes). The electrolyte may be a “non-aqueous” electrolyte, such as an organic electrolyte and an organic solvent, or may be a “aqueous” electrolyte containing water. The secondary battery of the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a “non-aqueous” solvent and a solute is used as an electrolyte. The electrolyte may have a form such as liquid or gel (in the present specification, “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution”).
 具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの好適な実施態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。 As a specific nonaqueous electrolyte solvent, a solvent containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC). In one preferred embodiment of the present invention, a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate.
 具体的な非水電解質の溶質としては、例えば、LiPFおよびLiBFなどのLi塩が好ましく用いられる。 As specific nonaqueous electrolyte solutes, for example, Li salts such as LiPF 6 and LiBF 4 are preferably used.
 外装体はフレキシブルパウチ(軟質袋体)であることが好ましいが、ハードケース(硬質筐体)であってもよい。外装体がフレキシブルパウチである場合、フレキシブルパウチは通常、ラミネートフィルムから形成され、周縁部をヒートシールすることにより、封止が達成される。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。ラミネートフィルムの厚さは特に限定されず、例えば、1μm以上1mm以下が好ましい。 The exterior body is preferably a flexible pouch (soft bag), but may be a hard case (hard housing). When the exterior body is a flexible pouch, the flexible pouch is usually formed from a laminate film, and sealing is achieved by heat-sealing the peripheral edge. As the laminate film, a film obtained by laminating a metal foil and a polymer film is generally used. Specifically, a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified. The outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used. The metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used. The inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used. The thickness of the laminate film is not particularly limited, and is preferably 1 μm or more and 1 mm or less, for example.
 外装体がハードケースである場合、ハードケースは通常、金属板から形成され、周縁部をレーザー照射することにより、封止が達成される。金属板としては、アルミニウム、ニッケル、鉄、銅、ステンレスなどからなる金属材料が一般的である。金属板の厚さは特に限定されず、例えば、1μm以上1mm以下が好ましい。 When the exterior body is a hard case, the hard case is usually formed from a metal plate, and sealing is achieved by irradiating the peripheral edge with a laser. As the metal plate, a metal material made of aluminum, nickel, iron, copper, stainless steel or the like is common. The thickness of a metal plate is not specifically limited, For example, 1 micrometer or more and 1 mm or less are preferable.
 集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。集電リードの形態は特に限定されず、例えば、線状であってもよいし、または板状であってもよい。 As the current collecting lead, any current collecting lead used in the field of secondary batteries can be used. Such a current collecting lead may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel. The form of the current collecting lead is not particularly limited, and may be, for example, a linear shape or a plate shape.
 外部端子としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5の形態は特に限定されず、通常は板状である。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。また、前記集電リードを外部端子として用いることも可能である。 As the external terminal, any external terminal used in the field of secondary batteries can be used. Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel. The form of the external terminal 5 is not particularly limited, and is usually plate-shaped. The external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device. The current collecting lead can also be used as an external terminal.
 湿式接着工程は、外装体に電極組立体および電解質を封入して得られた二次電池前駆体に対して、その厚み方向で加圧する工程である。湿式接着工程により、電極(正極および負極)とセパレータとの間の接着が促進され、結果として電池特性の均一性がより一層、向上する。また二次電池の厚みや形状を制御することもできる。湿式接着とは、二次電池前駆体が外装体内に有する部材(例えば、正極、負極およびセパレータ等)が電解質により湿潤した状態での接着という意味である。 The wet adhesion process is a process of applying pressure in the thickness direction to the secondary battery precursor obtained by enclosing the electrode assembly and the electrolyte in the exterior body. The wet adhesion process promotes adhesion between the electrodes (positive electrode and negative electrode) and the separator, and as a result, the uniformity of battery characteristics is further improved. In addition, the thickness and shape of the secondary battery can be controlled. The wet adhesion means adhesion in a state where members (for example, a positive electrode, a negative electrode, a separator, and the like) that the secondary battery precursor has in the outer package are wetted by an electrolyte.
 初期充電工程は、負極表面に固体電解質界面(Solid Electrolyte Interface)被膜(以下、「SEI被膜」という)を形成することを目的として行われる二次電池前駆体の最初の充放電工程であり、初期充電工程またはコンディショニング工程とも呼ばれる。SEI被膜が負極表面に均一に形成されることにより、二次電池において電解質成分の分解が抑制され、二次電池の容量安定化および長寿命化を達成することができる。初期充電工程では、充電を少なくとも1回行えばよく、通常は充放電を1回以上行う。1回の充放電は、1回の充電およびその後の1回の放電を含む。充放電を2回以上行う場合、充電-放電を当該回数だけ繰り返す。 The initial charging process is the first charge / discharge process of the secondary battery precursor performed for the purpose of forming a solid electrolyte interface film (hereinafter referred to as “SEI film”) on the negative electrode surface. Also called charging process or conditioning process. By uniformly forming the SEI film on the negative electrode surface, the decomposition of the electrolyte component is suppressed in the secondary battery, and the capacity of the secondary battery can be stabilized and the life can be extended. In the initial charging step, charging may be performed at least once, and charging / discharging is usually performed once or more. One charge / discharge includes one charge and one subsequent discharge. If charging / discharging is performed twice or more, the charging-discharging is repeated the corresponding number of times.
[基板]
 本発明の方法により製造される二次電池には、段差部を利用して、基板が配置されてもよい。すなわち、当該二次電池が有する段差部を構成する低段部の上面に基板が配置されてもよい。これにより基板の配置スペースを確保することができる。
[substrate]
In the secondary battery manufactured by the method of the present invention, a substrate may be disposed using the step portion. In other words, the substrate may be disposed on the upper surface of the low step portion constituting the step portion of the secondary battery. Thereby, the arrangement | positioning space of a board | substrate is securable.
 基板はいわゆるリジッド基板であってもよいし、またはフレキシブル基板であってもよい。リジッド基板としては、二次電池とともに使用される基板の分野で使用されるあらゆるリジッド基板が使用可能であり、例えば、ガラス・エポキシ樹脂基板が挙げられる。 The substrate may be a so-called rigid substrate or a flexible substrate. As the rigid substrate, any rigid substrate used in the field of substrates used with secondary batteries can be used, and examples thereof include a glass / epoxy resin substrate.
 基板としては、プリント基板などの電子回路基板、シリコンウェハーなどの半導体基板、ディスプレイパネルなどのガラス基板等が挙げられる。 Examples of the substrate include an electronic circuit substrate such as a printed circuit board, a semiconductor substrate such as a silicon wafer, and a glass substrate such as a display panel.
 基板が、二次電池の過充電、過放電および過電流を防止するための、いわゆる保護回路基板であるとき、当該保護回路基板および上記二次電池より、二次電池パックが構成される。 When the board is a so-called protection circuit board for preventing overcharge, overdischarge and overcurrent of the secondary battery, a secondary battery pack is constituted by the protection circuit board and the secondary battery.
 本発明に従って得られる二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明に従って得られる二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコン、デジタルカメラ、活動量計、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery obtained according to the present invention can be used in various fields where power storage is assumed. The secondary battery obtained according to the present invention, in particular the non-aqueous electrolyte secondary battery, is merely an example, and the electric / information / communication field (for example, a mobile phone, a smart phone, a smart watch, a notebook) Mobile devices such as personal computers, digital cameras, activity meters, arm computers and electronic paper), home / small industrial applications (eg, power tools, golf carts, home / nursing / industrial robots), large industries Applications (for example, forklifts, elevators, bay harbor cranes), transportation systems (for example, hybrid cars, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (for example, various power generation) , Road conditioners, smart grids, general home storage energy storage systems Field), IoT areas such as arm, as well as, it is possible to utilize space and deep sea applications (for example, spacecraft, areas such as submersible research vessel) and the like.
 1:1a:1b:1c:電極組立体前駆体
 3:プレス部材
 3a:プレス部材が有するプレス面
 5:正極
 6:負極
 7:セパレータ
 10:電極組立体前駆体が有する段差部
 11:最上段部
 11a:最上段部の上面
 12:13:最上段部以外の段部
 15:段差部のコーナー部分
 30:プレス部材が有する段差部
 31:上部プレス板
 35:下部プレス板
1: 1a: 1b: 1c: Electrode assembly precursor 3: Press member 3a: Press surface of press member 5: Positive electrode 6: Negative electrode 7: Separator 10: Stepped portion of electrode assembly precursor 11: Top step 11a: Upper surface of the uppermost step portion 12:13: Step portion other than the uppermost step portion 15: Corner portion of the step portion 30: Step portion of the pressing member 31: Upper press plate 35: Lower press plate

Claims (22)

  1.  正極および負極がセパレータを介して交互に配置されており、かつ段差部を有する電極組立体前駆体を、前記段差部の段差形状に対応したプレス面を有するプレス部材を用いてプレスして、電極組立体を得る、二次電池の製造方法。 A positive electrode and a negative electrode are alternately arranged via separators, and an electrode assembly precursor having a stepped portion is pressed using a pressing member having a press surface corresponding to the stepped shape of the stepped portion, to thereby form an electrode A method for manufacturing a secondary battery, wherein an assembly is obtained.
  2.  前記プレスにより、前記電極組立体前駆体の接着および一体化を行う、請求項1に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 1, wherein the electrode assembly precursor is bonded and integrated by the pressing.
  3.  前記プレス部材がプレス装置のプレス板であるか、または該プレス板と前記電極組立体前駆体との間に配置されるプレス治具である、請求項1または2に記載の二次電池の製造方法。 The manufacturing of the secondary battery according to claim 1 or 2, wherein the pressing member is a pressing plate of a pressing device, or a pressing jig disposed between the pressing plate and the electrode assembly precursor. Method.
  4.  前記プレス部材が剛体である、請求項1~3のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 3, wherein the press member is a rigid body.
  5.  前記プレス部材と前記電極組立体前駆体との間に弾性シートを介在させてプレスを行う、請求項1~4のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 4, wherein pressing is performed with an elastic sheet interposed between the pressing member and the electrode assembly precursor.
  6.  前記プレス部材が分割されており、該分割された2つ以上のプレス部材を用いて、前記電極組立体前駆体が前記段差部に基づいて有する各段部ごとに、プレスを行う、請求項1~5のいずれかに記載の二次電池の製造方法。 The said press member is divided | segmented and it presses for every step part which the said electrode assembly precursor has based on the said level | step-difference part using two or more said divided | segmented press members. 6. A method for producing a secondary battery according to any one of.
  7.  前記プレスを前記電極組立体前駆体に印加される圧力について均一圧力条件で行う、請求項1~6のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 6, wherein the pressing is performed under a uniform pressure condition with respect to a pressure applied to the electrode assembly precursor.
  8.  前記段差部の段差寸法が100μm以上10mm以下である、請求項1~7のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 7, wherein a step size of the step portion is 100 µm or more and 10 mm or less.
  9.  前記電極組立体前駆体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有するか、前記正極、前記負極および前記セパレータを含む電極ユニットをロール状に巻回した巻回構造を有するか、またはこれらの複合構造を有する、請求項1~8のいずれかに記載の二次電池の製造方法。 The electrode assembly precursor has a planar laminated structure in which a plurality of electrode units including the positive electrode, the negative electrode, and the separator are stacked in a planar shape, or the electrode unit including the positive electrode, the negative electrode, and the separator is rolled. The method for producing a secondary battery according to any one of claims 1 to 8, wherein the method has a wound structure wound around or a composite structure thereof.
  10.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1~9のいずれかに記載の二次電池の製造方法。 The method for producing a secondary battery according to any one of claims 1 to 9, wherein the positive electrode and the negative electrode have a layer capable of occluding and releasing lithium ions.
  11.  前記二次電池がモバイル機器用二次電池である、請求項1~10のいずれかに記載の二次電池の製造方法。 The method for producing a secondary battery according to any one of claims 1 to 10, wherein the secondary battery is a secondary battery for mobile devices.
  12.  正極および負極がセパレータを介して交互に配置されており、かつ段差部を有する電極組立体前駆体をプレスして電極組立体を得るためのプレス部材であって、前記段差部の段差形状に対応したプレス面を有するプレス部材を含む、二次電池の製造装置。 A pressing member for alternately pressing a positive electrode and a negative electrode through separators and pressing an electrode assembly precursor having a stepped portion to obtain an electrode assembly, corresponding to the stepped shape of the stepped portion The manufacturing apparatus of a secondary battery including the press member which has the pressed surface.
  13.  前記プレスにより、前記電極組立体前駆体の接着および一体化を行う、請求項12に記載の二次電池の製造装置。 The apparatus for manufacturing a secondary battery according to claim 12, wherein the electrode assembly precursor is bonded and integrated by the press.
  14.  前記プレス部材がプレス装置のプレス板であるか、または該プレス板と前記電極組立体前駆体との間に配置されるプレス治具である、請求項12または13に記載の二次電池の製造装置。 The manufacturing of the secondary battery according to claim 12 or 13, wherein the pressing member is a pressing plate of a pressing device, or a pressing jig disposed between the pressing plate and the electrode assembly precursor. apparatus.
  15.  前記プレス部材が剛体である、請求項12~14のいずれかに記載の二次電池の製造装置。 15. The apparatus for manufacturing a secondary battery according to claim 12, wherein the press member is a rigid body.
  16.  前記プレス部材と前記電極組立体前駆体との間に介在させる弾性シートをさらに含む、請求項12~15のいずれかに記載の二次電池の製造装置。 The secondary battery manufacturing apparatus according to any one of claims 12 to 15, further comprising an elastic sheet interposed between the press member and the electrode assembly precursor.
  17.  前記プレス部材が分割されており、該分割された2つ以上のプレス部材を用いて、前記電極組立体前駆体が前記段差部に基づいて有する各段部ごとに、プレスを行う、請求項12~16のいずれかに記載の二次電池の製造装置。 The said press member is divided | segmented, It presses for every step part which the said electrode assembly precursor has based on the said level | step-difference part using two or more said divided | segmented press members. 17. The secondary battery manufacturing apparatus according to any one of items 16 to 16.
  18.  前記プレスを前記電極組立体前駆体に印加される圧力について均一圧力条件で行う、請求項12~17のいずれかに記載の二次電池の製造装置。 The secondary battery manufacturing apparatus according to any one of claims 12 to 17, wherein the pressing is performed under a uniform pressure condition with respect to a pressure applied to the electrode assembly precursor.
  19.  前記段差部の段差寸法が100μm以上10mm以下である、請求項12~18のいずれかに記載の二次電池の製造装置。 The apparatus for manufacturing a secondary battery according to any one of claims 12 to 18, wherein a step size of the step portion is 100 µm or more and 10 mm or less.
  20.  前記電極組立体前駆体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有するか、前記正極、前記負極および前記セパレータを含む電極ユニットをロール状に巻回した巻回構造を有するか、またはこれらの複合構造を有する、請求項12~19のいずれかに記載の二次電池の製造装置。 The electrode assembly precursor has a planar laminated structure in which a plurality of electrode units including the positive electrode, the negative electrode, and the separator are stacked in a planar shape, or the electrode unit including the positive electrode, the negative electrode, and the separator is rolled. The apparatus for manufacturing a secondary battery according to any one of claims 12 to 19, which has a wound structure wound around or a composite structure thereof.
  21.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項12~20のいずれかに記載の二次電池の製造装置。 The secondary battery manufacturing apparatus according to any one of claims 12 to 20, wherein the positive electrode and the negative electrode have a layer capable of inserting and extracting lithium ions.
  22.  前記二次電池がモバイル機器用二次電池である、請求項12~21のいずれかに記載の二次電池の製造装置。 The secondary battery manufacturing apparatus according to any one of claims 12 to 21, wherein the secondary battery is a secondary battery for a mobile device.
PCT/JP2018/008094 2017-03-21 2018-03-02 Secondary battery manufacturing method and manufacturing device WO2018173701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-054445 2017-03-21
JP2017054445 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173701A1 true WO2018173701A1 (en) 2018-09-27

Family

ID=63584272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008094 WO2018173701A1 (en) 2017-03-21 2018-03-02 Secondary battery manufacturing method and manufacturing device

Country Status (1)

Country Link
WO (1) WO2018173701A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270121A (en) * 1993-03-24 1994-09-27 Ngk Insulators Ltd Pressuring method and device
JP2006147180A (en) * 2004-11-16 2006-06-08 Toshiba Corp Non-aqueous electrolyte secondary battery
KR20140137562A (en) * 2013-05-23 2014-12-03 주식회사 엘지화학 Jig for Measuring of Battery Thickness and Method for Measuring of Battery Thickness Using the Same
JP5779828B2 (en) * 2012-05-25 2015-09-16 エルジー・ケム・リミテッド Electrode assembly having step, battery cell, battery pack and device including the same
JP2016046344A (en) * 2014-08-21 2016-04-04 株式会社村田製作所 Method of manufacturing multilayer ceramic electronic component and press device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06270121A (en) * 1993-03-24 1994-09-27 Ngk Insulators Ltd Pressuring method and device
JP2006147180A (en) * 2004-11-16 2006-06-08 Toshiba Corp Non-aqueous electrolyte secondary battery
JP5779828B2 (en) * 2012-05-25 2015-09-16 エルジー・ケム・リミテッド Electrode assembly having step, battery cell, battery pack and device including the same
KR20140137562A (en) * 2013-05-23 2014-12-03 주식회사 엘지화학 Jig for Measuring of Battery Thickness and Method for Measuring of Battery Thickness Using the Same
JP2016046344A (en) * 2014-08-21 2016-04-04 株式会社村田製作所 Method of manufacturing multilayer ceramic electronic component and press device

Similar Documents

Publication Publication Date Title
CN110462873B (en) secondary battery
US20190334210A1 (en) Secondary battery
US20190296399A1 (en) Secondary battery
CN110495045B (en) Secondary battery and method for manufacturing same
US11387493B2 (en) Secondary battery
CN110036501B (en) Secondary battery
CN110121797B (en) Secondary battery
WO2018173701A1 (en) Secondary battery manufacturing method and manufacturing device
CN110945687B (en) Method for manufacturing secondary battery
WO2018173700A1 (en) Secondary battery manufacturing method and manufacturing device
WO2018163775A1 (en) Secondary battery production method
WO2018221318A1 (en) Method for manufacturing secondary battery
WO2018154987A1 (en) Secondary battery and method for producing same
WO2017208534A1 (en) Secondary battery
WO2024042915A1 (en) Secondary battery and method for manufacturing same
JP2018181705A (en) Secondary battery and manufacturing method thereof
WO2021210653A1 (en) Secondary cell and method for manufacturing same
US11929467B2 (en) Secondary battery
JP2018206490A (en) Secondary battery and manufacturing method thereof
WO2022009997A1 (en) Secondary battery
WO2018180167A1 (en) Secondary battery production method
WO2018100846A1 (en) Secondary battery and device
WO2018105277A1 (en) Secondary battery
WO2019009207A1 (en) Battery pack and method for producing battery pack
JP2018181699A (en) Secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP