WO2022009997A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2022009997A1
WO2022009997A1 PCT/JP2021/026538 JP2021026538W WO2022009997A1 WO 2022009997 A1 WO2022009997 A1 WO 2022009997A1 JP 2021026538 W JP2021026538 W JP 2021026538W WO 2022009997 A1 WO2022009997 A1 WO 2022009997A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
battery
groove
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2021/026538
Other languages
French (fr)
Japanese (ja)
Inventor
昌義 谷田
弘隆 前吉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022009997A1 publication Critical patent/WO2022009997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery, and more particularly to a secondary battery using a square battery can in the outer case.
  • the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes.
  • secondary batteries are used in mobile devices such as mobile phones, smartphones and notebook computers.
  • an electrode assembly in which an electrode constituent layer including a positive electrode, a negative electrode and a separator is wound or laminated is impregnated in an electrolytic solution and enclosed in an outer case made of a battery can.
  • Patent Document 1 proposes a secondary battery in which a cleavage groove is provided on a side surface of a square battery can.
  • a cleavage groove is provided on the side surface of the square battery can so as to intersect diagonally.
  • a large stress is applied to the diagonal portion of the side surface of the square battery can, so that the opening formed by the cleavage of the cleavage groove can be increased.
  • a square battery can is referred to as a battery can.
  • the thickness of the battery can When the thickness of the battery can is large, the strength of the battery can is large, so that the stress when the internal pressure rises tends to be concentrated in the cleavage groove, and the cleavage groove can be opened.
  • the thickness of the battery can becomes thin for example, according to the findings of the present inventors, when the thickness of the battery can becomes 0.1 mm or less, the deformation of the entire battery can becomes large, so that the cleavage groove is cleaved. There is a problem that a place other than the cleavage groove is cleaved before the opening, or a larger stress is required to cleave the cleavage groove. In such a case, it becomes difficult to ensure the safety of the secondary battery.
  • the thickness of the cleavage groove portion of the battery can becomes thin, and the strength required for normal use cannot be secured, or the battery There is a problem that the processing cost of the can increases.
  • an object of the present invention is to provide a secondary battery capable of ensuring the safety of the secondary battery even if the thickness of the battery can is reduced.
  • the secondary battery of the present invention is a secondary battery using a square battery can for the outer case, and the square battery can has a pair of facing main surfaces and the pair of main surfaces. It has a peripheral surface located between the surfaces, and has a groove located on at least one diagonal of the at least one main surface on at least one main surface of the pair of main surfaces. It is characterized by.
  • the present invention it is possible to provide a secondary battery capable of ensuring the safety of the secondary battery even if the thickness of the battery can is reduced.
  • it is a simulation result showing the relationship between the internal pressure and the strain when the L / D is set to 0.1, the length of the groove is fixed, and the position of the start point of the groove is changed.
  • it is a simulation result showing the relationship between the internal pressure and the strain when the position of the starting point of the groove is fixed and the length of the groove is changed with d / D set to 0.15.
  • cross-sectional view described directly or indirectly herein is based on a hypothetical cross section of a secondary battery cut along the stacking direction of the electrode assembly or electrode constituent layers that make up the secondary battery. ing. Further, the "planar view” used in the present specification is based on a sketch when the object is viewed from above or below along the direction of the thickness.
  • the "secondary battery” referred to in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present invention is not excessively bound by its name, and may include, for example, a power storage device.
  • FIG. 1 is a schematic perspective view showing an example of the external shape of the secondary battery according to the present embodiment.
  • the secondary battery A uses a square battery can 1 as an outer case, and an electrode assembly in which one or a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated in the square battery can 1 (not). (Illustrated) is housed.
  • the square battery can 1 has a pair of main surfaces 11 and 12 facing each other and a peripheral surface 13 located between the pair of main surfaces 11 and 12.
  • the main surface 11 has corners 111, 112, 113, 114 at the four corners.
  • the main surface 11 has virtual diagonal lines 115 and 116, and in plan view, the diagonal line 115 extends from one corner 111 through the center 117 of the main surface 11 to the other corner 112. Another diagonal 116 extends from one corner 113 through the center 117 of the main surface 11 to the other corner 114. Further, a groove 118 is formed on the diagonal line 115.
  • the main surface means the surface having the maximum area in the surface of the battery can.
  • the center of the main surface is said to be the point where two diagonal lines intersect.
  • the fact that the groove is located diagonally means that the groove overlaps the diagonal line in the length direction of the groove in a plan view.
  • the battery When the internal pressure of the battery can rises, the battery can is deformed so that the diagonal becomes a ridge and swells. By providing the grooves on the diagonal line, the deformation becomes larger and the battery can is easily cleaved. Therefore, even when the thickness of the battery can is reduced, it can be easily cleaved at the groove portion.
  • FIG. 2 is a simulation result showing the distribution of strain generated on the main surface of the battery can of the secondary battery according to the embodiment of the present invention
  • FIG. 3 is the main surface of the battery can of the secondary battery according to the comparative example. It is a simulation result showing the distribution of the strain generated in.
  • a battery can described in Patent Document 1 in which a cleavage groove is provided so as to intersect diagonally is used.
  • the thickness of the battery cans used in Examples and Comparative Examples was 0.0075 mm, and the internal pressure was 1 MPa. The lighter the color, the greater the strain, and the darker the color, the smaller the strain.
  • the stress is concentrated in the groove portion and the strain is large, whereas in the comparative example, the strain is generated in the portion other than the groove, specifically, the diagonal portion, and the stress is dispersed. You can see that.
  • the present invention by providing the grooves diagonally, it is possible to easily cleave the grooves by concentrating the stress on the grooves.
  • FIG. 4 is a simulation result showing the relationship between the internal pressure and the strain generated in the groove in the secondary battery according to the comparative example, and shows the case where the thickness of the battery can is 0.2 mm and 0.075 mm. ing.
  • the strain tends to increase as the internal pressure increases.
  • the thickness of the battery can is 0.075 mm, the strain increases at first and the groove is deformed as the internal pressure increases, but when the internal pressure exceeds a certain level, the strain tends not to increase. It is considered that this is because the stress concentration on the groove portion is relaxed by the start of deformation of the portion other than the groove portion, and the strain of the groove portion is less likely to increase.
  • the thickness of the battery can when the thickness of the battery can is reduced, for example, when the thickness is 0.1 mm or less, a place other than the groove may be cleaved or the groove may be cleaved before the groove is cleaved. There is a problem that a large stress is required.
  • FIG. 5 is a simulation result showing the relationship between the internal pressure and the strain generated in the groove when a battery can having a thickness of 0.075 mm is used in the secondary batteries of the example and the comparative example. ..
  • the example it can be seen that as the internal pressure increases, a larger strain is generated in the groove as compared with the comparative example. From this, it can be seen that in the examples, the grooves are more easily cleaved than in the comparative examples.
  • FIG. 1 shows an example in which the groove is located on one diagonal line of one main surface, but the present invention is not limited thereto.
  • grooves may be located on each of the two diagonal lines on one main surface.
  • the number of grooves may be one or a plurality, and the plurality of grooves may be located on the same diagonal line, but the predetermined strength required for the battery can can be secured and the processing cost of the battery can can be reduced. From the viewpoint of suppressing the increase, it is preferable that one groove is located diagonally between the center of the main surface and one corner.
  • FIG. 6 is a top view of the battery can for explaining the position and length of the groove.
  • the groove 118 has a start point 118a on one corner 111 side and an end point 118b on the center 117 side.
  • the d / D is preferably 0 or more and 0.2 or less. .. More preferably, the d / D is 0.05 or more and 0.2 or less.
  • the groove has a length L defined by the distance between the start point 118a and the end point 118b, and the L / D is preferably 0.05 or more and 1 or less. More preferably, the L / D is 0.1 or more and 1 or less.
  • FIG. 7 is a simulation result showing the relationship between the internal pressure and the strain when the L / D is set to 0.1, the length of the groove is fixed, and the position of the start point of the groove is changed in the embodiment.
  • (1) is when d / D is in the range of 0.1 or more and 0.2 or less
  • (2) is when d / D is in the range of 0.15 or more and 0.25 or less (3).
  • FIG. 8 is an example of a simulation result showing the relationship between the internal pressure and the strain when the position of the starting point of the groove is fixed and the length of the groove is changed by setting the d / D to 0.15 in the embodiment. ..
  • (4) is when the L / D is 0.2
  • (5) is when the L / D is 0.1
  • (6) is when the L / D is 0.05.
  • the results are shown. From FIG. 7, it can be seen that the closer the position of the starting point of the groove is to the corner, the greater the strain. Further, from FIG. 8, it can be seen that the longer the groove length, the greater the strain.
  • the groove depth t is t from the viewpoint of securing the residual wall thickness for ensuring the strength required for the battery can and from the viewpoint of reducing the processing cost when the thickness of the battery can is T.
  • / T is 0.2 or more and 0.4 or less, preferably 0.3 or more and 0.4 or less.
  • the cross-sectional shape of the groove in the width direction is not particularly limited, but may be, for example, a V-shape in which the groove width narrows along the depth direction or a U-shape in which the groove width does not change in the depth direction. can.
  • the groove can be formed by processing the battery can by drawing or the like and then processing by an etching method or a press process or the like.
  • the battery can used in the present invention is a square battery can.
  • the square battery can is not particularly limited as long as its cross-sectional shape is rectangular, and its appearance includes not only a rectangular parallelepiped shape or a cubic shape but also a flat shape.
  • the battery can may be any as long as it has a can portion having an opening and a sealing portion for sealing the opening.
  • a known battery can made of aluminum alloy or the like can be used as the battery can.
  • the thickness of the battery can is not particularly limited, but when a battery can having a thickness of 0.1 mm or less is used, a particularly excellent effect can be obtained in that the groove is easily cleaved.
  • the secondary battery according to the present invention includes an electrode assembly in which one or more electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated.
  • an electrode assembly is enclosed in a battery can together with an electrolyte (for example, a non-aqueous electrolyte).
  • the structure of the electrode assembly is not necessarily limited to the planar laminated structure, and for example, an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode is wound in a roll shape. It may have a winding structure.
  • the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator and a negative electrode are laminated on a long film and then folded.
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector.
  • a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material.
  • each of the plurality of positive electrodes in the electrode assembly may be provided with positive electrode material layers on both sides of the positive electrode current collector, or the positive electrode material layer may be provided on only one side of the positive electrode current collector. It may be the one that exists.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector.
  • a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material.
  • each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both sides of the negative electrode current collector, or a negative electrode material layer may be provided on only one side of the negative electrode current collector. It may be the one that exists.
  • the electrode active materials contained in the positive and negative electrodes are substances that are directly involved in the transfer of electrons in the secondary battery, and are the main substances of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. be. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer" and the "negative electrode active material contained in the negative electrode material layer", and such ions are transferred between the positive electrode and the negative electrode. The electrons are transferred and charged and discharged.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers that can occlude and release lithium ions.
  • the secondary battery according to the present invention is a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery. ..
  • the secondary battery according to the present invention corresponds to a so-called "lithium ion battery", and the positive electrode and the negative electrode have a layer capable of occluding and discharging lithium ions.
  • the positive electrode active material of the positive electrode material layer is composed of, for example, granules
  • a binder may be contained in the positive electrode material layer for more sufficient contact between particles and shape retention.
  • a conductive auxiliary agent may be contained in the positive electrode material layer in order to facilitate the transfer of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is composed of, for example, granules, it may contain a binder for better contact between the particles and shape retention, and transfer of electrons to promote the battery reaction.
  • a conductive auxiliary agent may be contained in the negative electrode material layer in order to facilitate the above.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as a “positive electrode mixture layer” and a “negative electrode mixture layer”, respectively, because of the form in which a plurality of components are contained.
  • the positive electrode active material may be a substance that contributes to the occlusion and release of lithium ions.
  • the positive electrode active material may be, for example, a lithium-containing composite oxide.
  • the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material.
  • the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal.
  • Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species.
  • the binder that can be contained in the positive electrode material layer is not particularly limited, but is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer and polytetrafluoroethylene. At least one species selected from the group consisting of the above can be mentioned.
  • the conductive auxiliary agent that can be contained in the positive electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
  • the thickness dimension of the positive electrode material layer is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the negative electrode active material may be a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, and / or lithium alloys.
  • Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, and diamond-like carbon.
  • graphite has high electron conductivity and excellent adhesion to a negative electrode current collector.
  • the oxide of the negative electrode active material at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like can be mentioned.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide may be amorphous as its structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
  • the binder that can be contained in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Can be mentioned.
  • the binder contained in the negative electrode material layer may be styrene-butadiene rubber.
  • the conductive auxiliary agent that can be contained in the negative electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase growth.
  • the negative electrode material layer may contain a component derived from the thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
  • the thickness dimension of the negative electrode material layer is not particularly limited, but may be 1 ⁇ m or more and 300 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the thickness dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated by the electrode active material due to the battery reaction.
  • Such an electrode current collector may be a sheet-shaped metal member. Further, such an electrode current collector may have a porous or perforated form.
  • the current collector may be a metal leaf, a punching metal, a net, an expanded metal, or the like.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • stainless steel in this specification refers to stainless steel specified in, for example, “JIS G 0203 steel term", and may be chromium or an alloy steel containing chromium and nickel.
  • the thickness dimensions of the positive electrode current collector and the negative electrode current collector are not particularly limited, but may be 1 ⁇ m or more and 100 ⁇ m or less, for example, 10 ⁇ m or more and 70 ⁇ m or less.
  • the thickness dimension of the positive electrode current collector and the negative electrode current collector is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
  • the separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte.
  • the separator is a member through which ions pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member, which has a film morphology due to its small thickness.
  • a microporous film made of polyolefin may be used as a separator.
  • the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP".
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like.
  • the surface of the separator may have adhesiveness.
  • the separator should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, and / or an insulating inorganic particle having the same function.
  • the thickness dimension of the separator is not particularly limited, but may be 1 ⁇ m or more and 100 ⁇ m or less, for example, 2 ⁇ m or more and 20 ⁇ m or less.
  • the thickness dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points may be adopted.
  • an electrode assembly composed of an electrode constituent layer including a positive electrode, a negative electrode and a separator is enclosed in a battery can together with an electrolyte.
  • the electrolyte can assist in the movement of metal ions emitted from the electrodes (positive electrode and / or negative electrode).
  • the electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be a "water-based" electrolyte containing water.
  • the electrolyte is preferably an "non-aqueous" electrolyte containing an organic electrolyte and / or an organic solvent and the like. That is, it is preferable that the electrolyte is a non-aqueous electrolyte.
  • the electrolyte there will be metal ions emitted from the electrodes (positive electrode and / or negative electrode), and therefore the electrolyte will assist in the movement of the metal ions in the battery reaction.
  • the electrolyte may be in the form of a liquid or a gel.
  • a non-aqueous electrolyte is an electrolyte containing a solvent and a solute.
  • the specific solvent for the non-aqueous electrolyte may be one containing at least carbonate.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to.
  • the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) and dipropyl carbonate (DPC).
  • non-aqueous electrolyte a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, and for example, a mixture of ethylene carbonate and diethyl carbonate may be used.
  • a specific non-aqueous electrolyte solute for example, a Li salt such as LiPF 6 and / or LiBF 4 may be used.
  • the secondary battery according to the present invention can be used in various fields where storage is expected.
  • the secondary battery according to the present invention is merely an example, but the secondary battery according to the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, etc.) in which mobile devices and the like are used.
  • household / small industrial applications for example, electric tools
  • Golf cart, home / nursing / industrial robot field large industrial use (eg forklift, elevator, bay port crane field)
  • transportation system field eg hybrid car, electric car, bus, train, Electric assisted bicycles, electric motorcycles and other electric vehicles
  • power system applications for example, various power generation, road conditioners, smart grids, general household-installed power storage systems, etc.
  • medical applications earphone hearing aids and other medical equipment fields
  • Pharmaceutical applications fields such as dose management systems
  • IoT fields for example, fields such as space explorers and submersible research vessels.

Abstract

Provided is a secondary battery that can ensure safety of the secondary battery even when the thickness of a battery can is thin. The secondary battery of the present invention is a secondary battery that uses a square battery can for the exterior case. The square battery can has a pair of facing main surfaces, and a peripheral surface positioned between the pair of main surfaces, and at least one main surface of the pair of main surfaces has a groove positioned on at least one diagonal line of at least one main surface.

Description

二次電池Secondary battery
 本発明は二次電池に関し、さらに詳しくは、外装ケースに角形電池缶を用いてなる二次電池に関する。 The present invention relates to a secondary battery, and more particularly to a secondary battery using a square battery can in the outer case.
 二次電池は、いわゆる蓄電池ゆえ充電および放電の繰り返しが可能であり、様々な用途に用いられている。例えば、携帯電話、スマートフォンおよびノートパソコンなどのモバイル機器に二次電池が用いられている。 Since the secondary battery is a so-called storage battery, it can be repeatedly charged and discharged, and is used for various purposes. For example, secondary batteries are used in mobile devices such as mobile phones, smartphones and notebook computers.
 二次電池としては、正極、負極及びセパレータを含む電極構成層が巻回あるいは積層された電極組立体を電解液に含浸させ、電池缶からなる外装ケースに封入したものが知られている。 As a secondary battery, an electrode assembly in which an electrode constituent layer including a positive electrode, a negative electrode and a separator is wound or laminated is impregnated in an electrolytic solution and enclosed in an outer case made of a battery can.
 二次電池は、過充電状態等により高温になると、電解液が分解してガスが発生し、これにより電池缶内部の圧力(以下、内圧ともいう)が上昇して電池缶が破裂する場合がある。これに対し、電池缶の一部に開裂用の溝(以下、開裂溝ともいう)を設けることで、発生したガスにより内圧が上昇した場合、その溝が開裂することでガスを排出して、電池缶の破裂を防止する二次電池が提案されている。例えば、特許文献1には、角形電池缶の側面に開裂溝を設けた二次電池が提案されている。 When the temperature of a secondary battery becomes high due to an overcharged state, the electrolytic solution decomposes and gas is generated, which may increase the pressure inside the battery can (hereinafter, also referred to as internal pressure) and cause the battery can to explode. be. On the other hand, by providing a groove for cleavage (hereinafter, also referred to as a cleavage groove) in a part of the battery can, when the internal pressure rises due to the generated gas, the groove is cleaved to discharge the gas. Secondary batteries have been proposed to prevent the battery can from exploding. For example, Patent Document 1 proposes a secondary battery in which a cleavage groove is provided on a side surface of a square battery can.
特開2013−98027号公報Japanese Unexamined Patent Publication No. 2013-98027
 特許文献1の二次電池では、角形電池缶の側面に、対角線に交差するように開裂溝を設けている。内圧が上昇した場合、角形電池缶側面の対角線部分に大きな応力がかかるので、開裂溝の開裂によって形成される開口を大きくすることができる。なお、以下、特に断らない限り、角形電池缶を電池缶という。 In the secondary battery of Patent Document 1, a cleavage groove is provided on the side surface of the square battery can so as to intersect diagonally. When the internal pressure rises, a large stress is applied to the diagonal portion of the side surface of the square battery can, so that the opening formed by the cleavage of the cleavage groove can be increased. Hereinafter, unless otherwise specified, a square battery can is referred to as a battery can.
 電池缶の厚さが大きい場合、電池缶の強度が大きいので、内圧上昇時の応力は開裂溝に集中し易くなり、開裂溝を開裂させることが可能となる。しかし、電池缶の厚さが薄くなると、例えば、本発明者らの知見によれば、電池缶の厚さが0.1mm以下となると、電池缶全体の変形が大きくなるため、開裂溝が開裂する前に開裂溝以外の場所が開裂したり、開裂溝を開裂させるためにより大きな応力が必要となるという問題がある。このような場合、二次電池の安全性を確保することが困難となる。また、開裂溝の溝を深くすることで開裂し易くすることは可能であるが、電池缶の開裂溝の部分の厚さが薄くなり、通常の使用に必要な強度が確保できなくなったり、電池缶の加工コストが増加する等の問題がある。 When the thickness of the battery can is large, the strength of the battery can is large, so that the stress when the internal pressure rises tends to be concentrated in the cleavage groove, and the cleavage groove can be opened. However, when the thickness of the battery can becomes thin, for example, according to the findings of the present inventors, when the thickness of the battery can becomes 0.1 mm or less, the deformation of the entire battery can becomes large, so that the cleavage groove is cleaved. There is a problem that a place other than the cleavage groove is cleaved before the opening, or a larger stress is required to cleave the cleavage groove. In such a case, it becomes difficult to ensure the safety of the secondary battery. Further, although it is possible to make the cleavage easier by deepening the groove of the cleavage groove, the thickness of the cleavage groove portion of the battery can becomes thin, and the strength required for normal use cannot be secured, or the battery There is a problem that the processing cost of the can increases.
 そこで、本発明は、電池缶の厚さを薄くしても、二次電池の安全性を確保することが可能な二次電池を提供することを目的とした。 Therefore, an object of the present invention is to provide a secondary battery capable of ensuring the safety of the secondary battery even if the thickness of the battery can is reduced.
 上記課題を解決するため、本発明の二次電池は、外装ケースに角形電池缶を用いてなる二次電池であって、前記角形電池缶は、対向する一対の主面と、前記一対の主面の間に位置する周面とを有し、前記一対の主面の少なくとも一方の主面に、前記少なくとも一方の主面の少なくとも1本の対角線上に位置する溝を有してなる、ことを特徴とする。 In order to solve the above problems, the secondary battery of the present invention is a secondary battery using a square battery can for the outer case, and the square battery can has a pair of facing main surfaces and the pair of main surfaces. It has a peripheral surface located between the surfaces, and has a groove located on at least one diagonal of the at least one main surface on at least one main surface of the pair of main surfaces. It is characterized by.
 本発明によれば、電池缶の厚さを薄くしても、二次電池の安全性を確保することが可能な二次電池を提供することが可能となる。 According to the present invention, it is possible to provide a secondary battery capable of ensuring the safety of the secondary battery even if the thickness of the battery can is reduced.
実施の形態に係る二次電池の外観形状の一例を示す模式斜視図であるIt is a schematic perspective view which shows an example of the appearance shape of the secondary battery which concerns on embodiment. 実施例に係る二次電池の電池缶の主面に発生するひずみの分布を示すシミュレーション結果である。It is a simulation result which shows the distribution of the strain generated on the main surface of the battery can of the secondary battery which concerns on Example. 比較例に係る二次電池の電池缶の主面に発生するひずみの分布を示すシミュレーション結果である。It is a simulation result which shows the distribution of the strain generated on the main surface of the battery can of the secondary battery which concerns on a comparative example. 比較例に係る二次電池において、内圧と溝に発生するひずみとの関係を示すシミュレーション結果である。This is a simulation result showing the relationship between the internal pressure and the strain generated in the groove in the secondary battery according to the comparative example. 実施例と比較例の二次電池において、厚さが0.075mmである電池缶を用いた場合の、内圧と溝に発生するひずみとの関係を示すシミュレーション結果である。It is a simulation result which shows the relationship between the internal pressure and the strain generated in a groove in the case of using the battery can which the thickness is 0.075 mm in the secondary battery of an Example and a comparative example. 実施の形態に係る二次電池の上面図であるIt is a top view of the secondary battery which concerns on embodiment. 実施例において、L/Dを0.1とし溝の長さを固定し、溝の始点の位置を変化させた時の内圧とひずみの関係を示すシミュレーション結果である。In the embodiment, it is a simulation result showing the relationship between the internal pressure and the strain when the L / D is set to 0.1, the length of the groove is fixed, and the position of the start point of the groove is changed. 実施例において、d/Dを0.15として溝の始点の位置を固定し、溝の長さを変化させた時の内圧とひずみの関係を示すシミュレーション結果である。In the embodiment, it is a simulation result showing the relationship between the internal pressure and the strain when the position of the starting point of the groove is fixed and the length of the groove is changed with d / D set to 0.15.
 以下では、本発明の一実施形態に係る二次電池をより詳細に説明する。必要に応じて図面を参照して説明を行うものの、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観または寸法比などは実物と異なり得る。 Hereinafter, the secondary battery according to the embodiment of the present invention will be described in more detail. Although the description will be given with reference to the drawings as necessary, the various elements in the drawings are merely schematically and exemplary for the purpose of understanding the present invention, and the appearance or dimensional ratio may differ from the actual ones. ..
 本明細書で直接的または間接的に説明される「断面視」は、二次電池を構成する電極組立体または電極構成層の積層方向に沿って二次電池を切り取った仮想的な断面に基づいている。また、本明細書で用いる「平面視」とは、かかる厚みの方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。 The "cross-sectional view" described directly or indirectly herein is based on a hypothetical cross section of a secondary battery cut along the stacking direction of the electrode assembly or electrode constituent layers that make up the secondary battery. ing. Further, the "planar view" used in the present specification is based on a sketch when the object is viewed from above or below along the direction of the thickness.
 また、本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。 Further, the "vertical direction" and the "horizontal direction" used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively. Unless otherwise specified, the same sign or symbol shall indicate the same member or part or the same meaning.
 また、本明細書でいう「二次電池」は、充電および放電の繰り返しが可能な電池のことを指している。従って、本発明に係る二次電池は、その名称に過度に拘泥されるものでなく、例えば蓄電デバイスなども対象に含まれ得る。 Further, the "secondary battery" referred to in the present specification refers to a battery that can be repeatedly charged and discharged. Therefore, the secondary battery according to the present invention is not excessively bound by its name, and may include, for example, a power storage device.
 本明細書で言及する各種の数値範囲は、「未満」または「より多い/より大きい」などの特段の用語が付されない限り、下限および上限の数値そのものも含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、下限値の“1”を含むと共に、上限値の“10”も含むものとして解釈され得る。 The various numerical ranges referred to herein are intended to include the lower and upper limits themselves, unless specific terms such as "less than" or "more / greater" are used. That is, taking a numerical range such as 1 to 10 as an example, it can be interpreted as including the lower limit value "1" and the upper limit value "10".
 図1は、本実施の形態に係る二次電池の外観形状の一例を示す模式斜視図である。二次電池Aは、外装ケースに角形電池缶1を用いおり、角形電池缶1の中には、正極、負極及びセパレータを含む電極構成層が1層あるいは複数層積層された電極組立体(不図示)が収容されている。角形電池缶1は、対向する一対の主面11、12と、その一対の主面11、12との間に位置する周面13とを有している。主面11は、四隅に角111、112、113、114を有する。主面11は、仮想の対角線115、116を有しており、平面視で、対角線115は、一方の角111から、主面11の中心117を通り、他方の角112へと延在し、別の対角線116は、一方の角113から、主面11の中心117を通り、他方の角114へと延在している。また、対角線115上には、溝118が形成されている。ここで、主面とは、電池缶の表面の内で、最大面積を有する面をいう。また、主面の中心とは2本の対角線が交差する点という。また、溝が対角線上に位置するとは、平面視で、溝の長さ方向において、溝が対角線と重なることをいう。 FIG. 1 is a schematic perspective view showing an example of the external shape of the secondary battery according to the present embodiment. The secondary battery A uses a square battery can 1 as an outer case, and an electrode assembly in which one or a plurality of electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated in the square battery can 1 (not). (Illustrated) is housed. The square battery can 1 has a pair of main surfaces 11 and 12 facing each other and a peripheral surface 13 located between the pair of main surfaces 11 and 12. The main surface 11 has corners 111, 112, 113, 114 at the four corners. The main surface 11 has virtual diagonal lines 115 and 116, and in plan view, the diagonal line 115 extends from one corner 111 through the center 117 of the main surface 11 to the other corner 112. Another diagonal 116 extends from one corner 113 through the center 117 of the main surface 11 to the other corner 114. Further, a groove 118 is formed on the diagonal line 115. Here, the main surface means the surface having the maximum area in the surface of the battery can. The center of the main surface is said to be the point where two diagonal lines intersect. Further, the fact that the groove is located diagonally means that the groove overlaps the diagonal line in the length direction of the groove in a plan view.
 電池缶の内圧が上昇すると、電池缶は、対角線が稜線となって膨らむ変形をする。対角線上に溝を設けることで、変形がより大きくなり、電池缶が開裂し易くなる。そのため、電池缶の厚さを薄くした場合でも、溝の部分で開裂し易くさせることができる。 When the internal pressure of the battery can rises, the battery can is deformed so that the diagonal becomes a ridge and swells. By providing the grooves on the diagonal line, the deformation becomes larger and the battery can is easily cleaved. Therefore, even when the thickness of the battery can is reduced, it can be easily cleaved at the groove portion.
 上記の本発明の効果について、有限要素法解析ソフトを用いたシミュレーション結果に基づいて説明する。図2は、本発明の実施例に係る二次電池の電池缶の主面に発生するひずみの分布を示すシミュレーション結果であり、図3は、比較例に係る二次電池の電池缶の主面に発生するひずみの分布を示すシミュレーション結果である。比較例には、特許文献1に記載されている、対角線に交差するように開裂溝を設けた電池缶を用いている。また、実施例および比較例に用いた電池缶の厚さは、0.0075mm、内圧は1MPaとした。色の薄い部分ほどひずみが大きく、色の濃い部分ほどひずみが小さいことを示す。実施例では、溝部分に応力が集中してひずみが大きくなっているのに対し、比較例では、溝以外の部分、具体的には対角線部分にもひずみが発生しており、応力が分散していることがわかる。このように、本発明では、溝を対角線上に設けることで、溝に応力を集中させることで、溝を開裂し易くすることが可能である。 The above-mentioned effect of the present invention will be described based on the simulation results using the finite element method analysis software. FIG. 2 is a simulation result showing the distribution of strain generated on the main surface of the battery can of the secondary battery according to the embodiment of the present invention, and FIG. 3 is the main surface of the battery can of the secondary battery according to the comparative example. It is a simulation result showing the distribution of the strain generated in. As a comparative example, a battery can described in Patent Document 1 in which a cleavage groove is provided so as to intersect diagonally is used. The thickness of the battery cans used in Examples and Comparative Examples was 0.0075 mm, and the internal pressure was 1 MPa. The lighter the color, the greater the strain, and the darker the color, the smaller the strain. In the embodiment, the stress is concentrated in the groove portion and the strain is large, whereas in the comparative example, the strain is generated in the portion other than the groove, specifically, the diagonal portion, and the stress is dispersed. You can see that. As described above, in the present invention, by providing the grooves diagonally, it is possible to easily cleave the grooves by concentrating the stress on the grooves.
 次に、図4は、比較例に係る二次電池において、内圧と溝に発生するひずみとの関係を示すシミュレーション結果であり、電池缶の厚さが0.2mmと0.075mmの場合を示している。電池缶の厚さが0.2mmの場合、内圧の上昇とともに、ひずみは上昇する傾向を示す。これに対し、電池缶の厚さが0.075mmの場合、内圧の上昇とともに、最初はひずみが大きくなり溝は変形するが、内圧がある程度以上となると、ひずみは増加しない傾向を示す。これは、溝以外の他の部分の変形が始まることで、溝部分に対する応力の集中が緩和され、溝部分のひずみが増加しにくくなったものと考えられる。そのため、比較例では、電池缶の厚さを薄くした場合、例えば、厚さを0.1mm以下とした場合、溝が開裂する前に溝以外の場所が開裂したり、溝を開裂させるためにより大きな応力が必要となるという問題がある。 Next, FIG. 4 is a simulation result showing the relationship between the internal pressure and the strain generated in the groove in the secondary battery according to the comparative example, and shows the case where the thickness of the battery can is 0.2 mm and 0.075 mm. ing. When the thickness of the battery can is 0.2 mm, the strain tends to increase as the internal pressure increases. On the other hand, when the thickness of the battery can is 0.075 mm, the strain increases at first and the groove is deformed as the internal pressure increases, but when the internal pressure exceeds a certain level, the strain tends not to increase. It is considered that this is because the stress concentration on the groove portion is relaxed by the start of deformation of the portion other than the groove portion, and the strain of the groove portion is less likely to increase. Therefore, in the comparative example, when the thickness of the battery can is reduced, for example, when the thickness is 0.1 mm or less, a place other than the groove may be cleaved or the groove may be cleaved before the groove is cleaved. There is a problem that a large stress is required.
 次に、図5は、実施例と比較例の二次電池において、厚さが0.075mmである電池缶を用いた場合の、内圧と溝に発生するひずみとの関係を示すシミュレーション結果である。実施例の場合、内圧の上昇とともに、比較例に比べて、より大きなひずみが溝に発生することがわかる。これより、実施例では、比較例に比べ、溝がより開裂し易くなっていることがわかる。 Next, FIG. 5 is a simulation result showing the relationship between the internal pressure and the strain generated in the groove when a battery can having a thickness of 0.075 mm is used in the secondary batteries of the example and the comparative example. .. In the case of the example, it can be seen that as the internal pressure increases, a larger strain is generated in the groove as compared with the comparative example. From this, it can be seen that in the examples, the grooves are more easily cleaved than in the comparative examples.
 また、図1では、溝が一方の主面の1本の対角線上に位置している例を示したが、本発明は、それに限定されるものでない。例えば、一方の主面上の2本の対角線上のそれぞれに、溝が位置していてもよい。また、溝は1つでも複数でもよく、その複数の溝が同一の対角線上に位置していてもよいが、電池缶に必要とされる所定の強度を確保したり、電池缶の加工コストの増加を抑制する観点から、1つの溝が、主面の中心から一方の角の間の対角線上に位置していることが好ましい。 Further, FIG. 1 shows an example in which the groove is located on one diagonal line of one main surface, but the present invention is not limited thereto. For example, grooves may be located on each of the two diagonal lines on one main surface. Further, the number of grooves may be one or a plurality, and the plurality of grooves may be located on the same diagonal line, but the predetermined strength required for the battery can can be secured and the processing cost of the battery can can be reduced. From the viewpoint of suppressing the increase, it is preferable that one groove is located diagonally between the center of the main surface and one corner.
 次に、溝の位置と長さについて、さらに具体的に説明する。図6は、溝の位置と長さを説明するための、電池缶の上面図である。溝118は、一方の角111側の始点118aと中心117側の終点118bを有している。一方の角111と始点118aとの間の距離をdとし、一方の角111と中心117との間の距離をDとした時、d/Dは、0以上0.2以下であることが好ましい。より好ましくは、d/Dは、0.05以上0.2以下である。また、溝は、始点118aと終点118bとの間の距離で規定される長さLを有しており、L/Dは、0.05以上1以下であることが好ましい。より好ましくは、L/Dは、0.1以上1以下である。 Next, the position and length of the groove will be explained more specifically. FIG. 6 is a top view of the battery can for explaining the position and length of the groove. The groove 118 has a start point 118a on one corner 111 side and an end point 118b on the center 117 side. When the distance between one corner 111 and the start point 118a is d and the distance between one corner 111 and the center 117 is D, the d / D is preferably 0 or more and 0.2 or less. .. More preferably, the d / D is 0.05 or more and 0.2 or less. Further, the groove has a length L defined by the distance between the start point 118a and the end point 118b, and the L / D is preferably 0.05 or more and 1 or less. More preferably, the L / D is 0.1 or more and 1 or less.
 上記の溝の位置と長さについて、有限要素法解析ソフトを用いたシミュレーション結果に基づいて説明する。図7は実施例において、L/Dを0.1とし溝の長さを固定し、溝の始点の位置を変化させた時の内圧とひずみの関係を示すシミュレーション結果である。図7中、(1)は、d/Dが0.1以上0.2以下の範囲の場合、(2)は、d/Dが0.15以上0.25以下の範囲の場合、(3)は、d/Dが0.2以上0.3以下の範囲の場合の結果を示している。また、図8は、実施例において、d/Dを0.15として溝の始点の位置を固定し、溝の長さを変化させた時の内圧とひずみの関係を示すシミュレーション結果の一例である。図8中、は、(4)はL/Dが0.2の場合、(5)は、L/Dが0.1の場合、(6)は、L/Dが0.05の場合の結果を示している。図7より、溝の始点の位置が角に近いほど、ひずみが大きくなることがわかる。また、図8より、溝の長さが長くなるほど、ひずみが大きくなることがわかる。 The position and length of the above groove will be explained based on the simulation results using the finite element method analysis software. FIG. 7 is a simulation result showing the relationship between the internal pressure and the strain when the L / D is set to 0.1, the length of the groove is fixed, and the position of the start point of the groove is changed in the embodiment. In FIG. 7, (1) is when d / D is in the range of 0.1 or more and 0.2 or less, and (2) is when d / D is in the range of 0.15 or more and 0.25 or less (3). ) Shows the result when d / D is in the range of 0.2 or more and 0.3 or less. Further, FIG. 8 is an example of a simulation result showing the relationship between the internal pressure and the strain when the position of the starting point of the groove is fixed and the length of the groove is changed by setting the d / D to 0.15 in the embodiment. .. In FIG. 8, (4) is when the L / D is 0.2, (5) is when the L / D is 0.1, and (6) is when the L / D is 0.05. The results are shown. From FIG. 7, it can be seen that the closer the position of the starting point of the groove is to the corner, the greater the strain. Further, from FIG. 8, it can be seen that the longer the groove length, the greater the strain.
 また、溝の深さtは、電池缶の厚さをTとした時、電池缶に必要な強度を確保するための残肉厚さを確保する観点から、および加工コスト低減の観点から、t/Tが0.2以上0.4以下、好ましくは0.3以上0.4以下である。 Further, the groove depth t is t from the viewpoint of securing the residual wall thickness for ensuring the strength required for the battery can and from the viewpoint of reducing the processing cost when the thickness of the battery can is T. / T is 0.2 or more and 0.4 or less, preferably 0.3 or more and 0.4 or less.
 また、溝の幅方向断面形状は、特に限定されないが、例えば、深さ方向に沿って溝幅が狭くなるV字型形状または深さ方向で溝幅が変化しないU字型形状をとることができる。 The cross-sectional shape of the groove in the width direction is not particularly limited, but may be, for example, a V-shape in which the groove width narrows along the depth direction or a U-shape in which the groove width does not change in the depth direction. can.
 また、溝は、電池缶を絞り加工等により加工した後、エッチング法またはプレス加工等により加工することで形成することができる。 Further, the groove can be formed by processing the battery can by drawing or the like and then processing by an etching method or a press process or the like.
 本発明に用いる電池缶は、角形電池缶である。ここで、角形電池缶は、その断面形状が矩形であれば特に限定されず、外観は直方体形状または立方体形状だけでなく、扁平形状のものも含まれる。また、電池缶は、開口を有する缶部と開口を封口する封口部とを備えているものであればよい。また、電池缶には、アルミニウム合金製等の公知の電池缶を用いることができる。またた、電池缶の厚さは特に限定されないが、厚さが0.1mm以下の電池缶を用いた場合、溝が開裂し易くなるという点で特に優れた効果を得ることができる。 The battery can used in the present invention is a square battery can. Here, the square battery can is not particularly limited as long as its cross-sectional shape is rectangular, and its appearance includes not only a rectangular parallelepiped shape or a cubic shape but also a flat shape. Further, the battery can may be any as long as it has a can portion having an opening and a sealing portion for sealing the opening. Further, as the battery can, a known battery can made of aluminum alloy or the like can be used. Further, the thickness of the battery can is not particularly limited, but when a battery can having a thickness of 0.1 mm or less is used, a particularly excellent effect can be obtained in that the groove is easily cleaved.
 以下、本発明の二次電池を構成する他の部材について説明する。 Hereinafter, other members constituting the secondary battery of the present invention will be described.
 本発明に係る二次電池は、正極、負極及びセパレータを含む電極構成層が1つ以上積層した電極組立体を有して成る。二次電池ではこのような電極組立体が電解質(例えば非水電解質)と共に電池缶に封入されている。なお、電極組立体の構造は平面積層構造に必ずしも限定されず、例えば、正極、負極および正極と負極との間に配置されたセパレータを含む電極ユニット(電極構成層)をロール状に巻回した巻回構造を有していてもよい。また、例えば、電極組立体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタック・アンド・フォールディング型構造を有していてもよい。 The secondary battery according to the present invention includes an electrode assembly in which one or more electrode constituent layers including a positive electrode, a negative electrode, and a separator are laminated. In a secondary battery, such an electrode assembly is enclosed in a battery can together with an electrolyte (for example, a non-aqueous electrolyte). The structure of the electrode assembly is not necessarily limited to the planar laminated structure, and for example, an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator arranged between the positive electrode and the negative electrode is wound in a roll shape. It may have a winding structure. Further, for example, the electrode assembly may have a so-called stack-and-folding structure in which a positive electrode, a separator and a negative electrode are laminated on a long film and then folded.
 正極は、少なくとも正極材層および正極集電体から構成されている。正極では正極集電体の少なくとも片面に正極材層が設けられており、正極材層には電極活物質として正極活物質が含まれている。例えば、電極組立体における複数の正極は、それぞれ、正極集電体の両面に正極材層が設けられているものでよいし、あるいは、正極集電体の片面にのみ正極材層が設けられているものでもよい。 The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector. In the positive electrode, a positive electrode material layer is provided on at least one surface of the positive electrode current collector, and the positive electrode material layer contains a positive electrode active material as an electrode active material. For example, each of the plurality of positive electrodes in the electrode assembly may be provided with positive electrode material layers on both sides of the positive electrode current collector, or the positive electrode material layer may be provided on only one side of the positive electrode current collector. It may be the one that exists.
 負極は、少なくとも負極材層および負極集電体から構成されている。負極では負極集電体の少なくとも片面に負極材層が設けられており、負極材層には電極活物質として負極活物質が含まれている。例えば、電極組立体における複数の負極は、それぞれ、負極集電体の両面に負極材層が設けられているものでよいし、あるいは、負極集電体の片面にのみ負極材層が設けられているものでもよい。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector. In the negative electrode, a negative electrode material layer is provided on at least one surface of the negative electrode current collector, and the negative electrode material layer contains a negative electrode active material as an electrode active material. For example, each of the plurality of negative electrodes in the electrode assembly may be provided with a negative electrode material layer on both sides of the negative electrode current collector, or a negative electrode material layer may be provided on only one side of the negative electrode current collector. It may be the one that exists.
 正極および負極に含まれる電極活物質、即ち、正極活物質および負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、本発明に係る二次電池は、非水電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる非水電解質二次電池となっていることが好ましい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆる“リチウムイオン電池”に相当し、正極および負極がリチウムイオンを吸蔵放出可能な層を有する。 The electrode active materials contained in the positive and negative electrodes, that is, the positive electrode active material and the negative electrode active material, are substances that are directly involved in the transfer of electrons in the secondary battery, and are the main substances of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. be. More specifically, ions are brought to the electrolyte due to the "positive electrode active material contained in the positive electrode material layer" and the "negative electrode active material contained in the negative electrode material layer", and such ions are transferred between the positive electrode and the negative electrode. The electrons are transferred and charged and discharged. The positive electrode material layer and the negative electrode material layer are particularly preferably layers that can occlude and release lithium ions. That is, it is preferable that the secondary battery according to the present invention is a non-aqueous electrolyte secondary battery in which lithium ions move between the positive electrode and the negative electrode via the non-aqueous electrolyte to charge and discharge the battery. .. When lithium ions are involved in charging and discharging, the secondary battery according to the present invention corresponds to a so-called "lithium ion battery", and the positive electrode and the negative electrode have a layer capable of occluding and discharging lithium ions.
 正極材層の正極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが正極材層に含まれていてよい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていてもよい。同様にして、負極材層の負極活物質は例えば粒状体から構成されるところ、粒子同士のより十分な接触と形状保持のためにバインダーが含まれていてよく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 When the positive electrode active material of the positive electrode material layer is composed of, for example, granules, a binder may be contained in the positive electrode material layer for more sufficient contact between particles and shape retention. Further, a conductive auxiliary agent may be contained in the positive electrode material layer in order to facilitate the transfer of electrons that promote the battery reaction. Similarly, where the negative electrode active material of the negative electrode material layer is composed of, for example, granules, it may contain a binder for better contact between the particles and shape retention, and transfer of electrons to promote the battery reaction. A conductive auxiliary agent may be contained in the negative electrode material layer in order to facilitate the above. As described above, the positive electrode material layer and the negative electrode material layer can also be referred to as a “positive electrode mixture layer” and a “negative electrode mixture layer”, respectively, because of the form in which a plurality of components are contained.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であってよい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であってよい。つまり、本発明に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。 The positive electrode active material may be a substance that contributes to the occlusion and release of lithium ions. From this point of view, the positive electrode active material may be, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material may be a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably contained as the positive electrode active material. For example, the positive electrode active material may be lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate, or a part of the transition metal thereof replaced with another metal. Such a positive electrode active material may be contained as a single species, but may be contained in combination of two or more species.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビニリデン、ビニリデンフルオライド−ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド−テトラフルオロエチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。 The binder that can be contained in the positive electrode material layer is not particularly limited, but is not particularly limited, but is limited to polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer and polytetrafluoroethylene. At least one species selected from the group consisting of the above can be mentioned. The conductive auxiliary agent that can be contained in the positive electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned.
 正極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば5μm以上200μm以下である。正極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the positive electrode material layer is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the positive electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であってよい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、および/または、リチウム合金などであることが好ましい。 The negative electrode active material may be a substance that contributes to the occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, and / or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていてよい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。 Examples of various carbon materials for the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, and diamond-like carbon. In particular, graphite has high electron conductivity and excellent adhesion to a negative electrode current collector. As the oxide of the negative electrode active material, at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide and the like can be mentioned. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium, for example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such an oxide may be amorphous as its structural form. This is because deterioration due to non-uniformity such as grain boundaries or defects is less likely to occur.
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。例えば、負極材層に含まれるバインダーはスチレンブタジエンゴムとなっていてよい。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be contained in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene-butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide-based resin, and polyamide-imide-based resin. Can be mentioned. For example, the binder contained in the negative electrode material layer may be styrene-butadiene rubber. The conductive auxiliary agent that can be contained in the negative electrode material layer is not particularly limited, but is limited to carbon black such as thermal black, furnace black, channel black, ketjen black and acetylene black, graphite, carbon nanotubes and vapor phase growth. At least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives can be mentioned. The negative electrode material layer may contain a component derived from the thickener component (for example, carboxylmethyl cellulose) used at the time of manufacturing the battery.
 負極材層の厚み寸法は、特に制限されるわけではないが、1μm以上300μm以下であってよく、例えば、5μm以上200μm以下である。負極材層の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the negative electrode material layer is not particularly limited, but may be 1 μm or more and 300 μm or less, for example, 5 μm or more and 200 μm or less. The thickness dimension of the negative electrode material layer is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して電極活物質で発生した電子を集めたり供給したりするのに資する部材である。このような電極集電体は、シート状の金属部材であってよい。また、このような電極集電体は、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。なお、本明細書における「ステンレス」は、例えば「JIS G 0203 鉄鋼用語」に規定されているステンレス鋼のことを指しており、クロムまたはクロムとニッケルとを含有させた合金鋼であってよい。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated by the electrode active material due to the battery reaction. Such an electrode current collector may be a sheet-shaped metal member. Further, such an electrode current collector may have a porous or perforated form. For example, the current collector may be a metal leaf, a punching metal, a net, an expanded metal, or the like. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil. In addition, "stainless steel" in this specification refers to stainless steel specified in, for example, "JIS G 0203 steel term", and may be chromium or an alloy steel containing chromium and nickel.
 正極集電体および負極集電体の各厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば10μm以上70μm以下である。正極集電体および負極集電体の厚み寸法は二次電池内部での厚みであり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimensions of the positive electrode current collector and the negative electrode current collector are not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 10 μm or more and 70 μm or less. The thickness dimension of the positive electrode current collector and the negative electrode current collector is the thickness inside the secondary battery, and the average value of the measured values at any 10 points may be adopted.
 正極および負極に用いられるセパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極と間の電子的接触を防止しつつイオンを通過させる部材であるといえる。例えば、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面が無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面が接着性を有していてもよい。なお、本発明において、セパレータは、その名称によって特に拘泥されるべきでなく、同様の機能を有する固体電解質、ゲル状電解質、および/または絶縁性の無機粒子などであってもよい。 The separator used for the positive electrode and the negative electrode is a member provided from the viewpoint of preventing a short circuit due to contact between the positive and negative electrodes and retaining the electrolyte. In other words, it can be said that the separator is a member through which ions pass while preventing electronic contact between the positive electrode and the negative electrode. For example, the separator is a porous or microporous insulating member, which has a film morphology due to its small thickness. Although only an example, a microporous film made of polyolefin may be used as a separator. In this respect, the microporous membrane used as the separator may contain, for example, only polyethylene (PE) or polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of a "microporous membrane made of PE" and a "microporous membrane made of PP". The surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer or the like. The surface of the separator may have adhesiveness. In the present invention, the separator should not be particularly bound by its name, and may be a solid electrolyte, a gel-like electrolyte, and / or an insulating inorganic particle having the same function.
 セパレータの厚み寸法は、特に制限されるわけではないが、1μm以上100μm以下であってよく、例えば2μm以上20μm以下である。セパレータの厚み寸法は二次電池内部での厚み(特に正極と負極との間での厚み)であり、任意の10箇所における測定値の平均値を採用してよい。 The thickness dimension of the separator is not particularly limited, but may be 1 μm or more and 100 μm or less, for example, 2 μm or more and 20 μm or less. The thickness dimension of the separator is the thickness inside the secondary battery (particularly the thickness between the positive electrode and the negative electrode), and the average value of the measured values at any 10 points may be adopted.
 本発明の二次電池では、正極、負極およびセパレータを含む電極構成層から成る電極組立体が電解質と共に電池缶に封入されている。電解質は電極(正極および/または負極)から放出された金属イオンの移動を助力することができる。電解質は有機電解質および有機溶媒などの“非水系”の電解質であってよく、または水を含む“水系”の電解質であってもよい。正極および負極がリチウムイオンを吸蔵放出可能な層を有する場合、電解質は有機電解質および/または有機溶媒などを含んで成る“非水系”の電解質であることが好ましい。すなわち、電解質が非水電解質となっていることが好ましい。電解質では電極(正極および/または負極)から放出された金属イオンが存在することになり、それゆえ、電解質は電池反応における金属イオンの移動を助力することになる。なお、電解質は液体状またはゲル状などの形態を有していてよい。 In the secondary battery of the present invention, an electrode assembly composed of an electrode constituent layer including a positive electrode, a negative electrode and a separator is enclosed in a battery can together with an electrolyte. The electrolyte can assist in the movement of metal ions emitted from the electrodes (positive electrode and / or negative electrode). The electrolyte may be a "non-aqueous" electrolyte such as an organic electrolyte and an organic solvent, or it may be a "water-based" electrolyte containing water. When the positive electrode and the negative electrode have a layer capable of occluding and releasing lithium ions, the electrolyte is preferably an "non-aqueous" electrolyte containing an organic electrolyte and / or an organic solvent and the like. That is, it is preferable that the electrolyte is a non-aqueous electrolyte. In the electrolyte, there will be metal ions emitted from the electrodes (positive electrode and / or negative electrode), and therefore the electrolyte will assist in the movement of the metal ions in the battery reaction. The electrolyte may be in the form of a liquid or a gel.
 非水電解質は、溶媒と溶質とを含む電解質である。具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものであってよい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。あくまでも例示にすぎないが、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられてよく、例えばエチレンカーボネートとジエチルカーボネートとの混合物を用いてよい。また、具体的な非水電解質の溶質としては、例えば、LiPFおよび/またはLiBFなどのLi塩が用いられてよい。 A non-aqueous electrolyte is an electrolyte containing a solvent and a solute. The specific solvent for the non-aqueous electrolyte may be one containing at least carbonate. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC) and dipropyl carbonate (DPC). Although only an example, a combination of cyclic carbonates and chain carbonates may be used as the non-aqueous electrolyte, and for example, a mixture of ethylene carbonate and diethyl carbonate may be used. Further, as a specific non-aqueous electrolyte solute, for example, a Li salt such as LiPF 6 and / or LiBF 4 may be used.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments of the present invention have been described above, they are merely exemplary examples. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various aspects are conceivable.
 本発明に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明に係る二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ワイヤレスイヤホン、ウェアラブルデバイスなどまたは、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車など電動車両の分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。 The secondary battery according to the present invention can be used in various fields where storage is expected. The secondary battery according to the present invention is merely an example, but the secondary battery according to the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, etc.) in which mobile devices and the like are used. Electronic paper, wireless earphones, wearable devices, etc. or electrical / electronic equipment fields including small electronic devices such as RFID tags, card-type electronic money, smart watches, etc. or mobile equipment fields), household / small industrial applications (for example, electric tools) , Golf cart, home / nursing / industrial robot field), large industrial use (eg forklift, elevator, bay port crane field), transportation system field (eg hybrid car, electric car, bus, train, Electric assisted bicycles, electric motorcycles and other electric vehicles), power system applications (for example, various power generation, road conditioners, smart grids, general household-installed power storage systems, etc.), medical applications (earphone hearing aids and other medical equipment fields) ), Pharmaceutical applications (fields such as dose management systems), IoT fields, space / deep sea applications (for example, fields such as space explorers and submersible research vessels).
 1        角形電池缶
 11、12    主面
 13       周面
 111、112、113、114 角
 115、116 対角線
 117     中心
 118     溝
 118a    始点
 118b    終点
1 Square battery can 11, 12 Main surface 13 Peripheral surface 111, 112, 113, 114 Square 115, 116 Diagonal line 117 Center 118 Groove 118a Start point 118b End point

Claims (7)

  1.  外装ケースに角形電池缶を用いてなる二次電池であって、
     前記角形電池缶は、対向する一対の主面と、前記一対の主面の間に位置する周面とを有し、
     前記一対の主面の少なくとも一方の主面に、前記少なくとも一方の主面の少なくとも1本の対角線上に位置する溝を有してなる、二次電池。
    It is a secondary battery that uses a square battery can for the outer case.
    The square battery can has a pair of facing main surfaces and a peripheral surface located between the pair of main surfaces.
    A secondary battery having a groove located on at least one diagonal of the pair of main surfaces on at least one of the main surfaces.
  2.  前記少なくとも1本の対角線は、平面視で、前記少なくとも一方の主面の一方の角から、前記少なくとも一方の主面の中心を通り、他方の角へと延在しており、前記溝は、前記中心から前記一方の角の間の前記対角線上に位置している、請求項1に記載の二次電池。 The at least one diagonal extends from one corner of the at least one main surface through the center of the at least one main surface to the other corner in plan view, and the groove extends. The secondary battery according to claim 1, which is located on the diagonal line between the center and the one corner.
  3.  前記溝は、前記一方の角側の始点と前記中心側の終点を有し、前記一方の角と前記始点との間の距離をdとし、前記一方の角と前記中心との間の距離をDとした時、d/Dは、0以上0.3以下である、請求項2に記載の二次電池。 The groove has a start point on one corner side and an end point on the center side, the distance between the one corner and the start point is d, and the distance between the one corner and the center is defined as d. The secondary battery according to claim 2, wherein when D is used, d / D is 0 or more and 0.3 or less.
  4.  前記溝は、前記始点と前記終点との間の距離で規定される長さLを有しており、L/Dは、0.05以上1以下である、請求項3に記載の二次電池。 The secondary battery according to claim 3, wherein the groove has a length L defined by a distance between the start point and the end point, and the L / D is 0.05 or more and 1 or less. ..
  5.  前記角形電池缶の厚さは、0.1mm以下である、請求項1~4のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 4, wherein the thickness of the square battery can is 0.1 mm or less.
  6.  前記溝の深さtは、前記角形電池缶の厚さをTとしたときに、t/Tが0.2以上0.4≦である、請求項1~5のいずれか1項に記載の二次電池。 The one according to any one of claims 1 to 5, wherein the depth t of the groove has a t / T of 0.2 or more and 0.4 ≦, where T is the thickness of the square battery can. Secondary battery.
  7.  前記二次電池の正極および負極は、リチウムイオンを吸蔵放出可能な層を含んでいる、請求項1~6のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the positive electrode and the negative electrode of the secondary battery include a layer capable of storing and releasing lithium ions.
PCT/JP2021/026538 2020-07-10 2021-07-08 Secondary battery WO2022009997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020119107 2020-07-10
JP2020-119107 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022009997A1 true WO2022009997A1 (en) 2022-01-13

Family

ID=79552584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026538 WO2022009997A1 (en) 2020-07-10 2021-07-08 Secondary battery

Country Status (1)

Country Link
WO (1) WO2022009997A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159631A (en) * 1998-08-27 2000-12-12 Polystor Corporation Overcharge safety vents on prismatic cells
US20050106451A1 (en) * 2003-10-20 2005-05-19 Samsung Sdi Co., Ltd. Secondary battery with safety vents
JP2008519406A (en) * 2004-11-16 2008-06-05 ビーワイディー カンパニー リミテッド Explosion-proof battery type
JP2013098173A (en) * 2011-11-01 2013-05-20 Hitachi Maxell Ltd Sealed battery
JP2014086162A (en) * 2012-10-19 2014-05-12 Hitachi Maxell Ltd Sealed battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159631A (en) * 1998-08-27 2000-12-12 Polystor Corporation Overcharge safety vents on prismatic cells
US20050106451A1 (en) * 2003-10-20 2005-05-19 Samsung Sdi Co., Ltd. Secondary battery with safety vents
JP2008519406A (en) * 2004-11-16 2008-06-05 ビーワイディー カンパニー リミテッド Explosion-proof battery type
JP2013098173A (en) * 2011-11-01 2013-05-20 Hitachi Maxell Ltd Sealed battery
JP2014086162A (en) * 2012-10-19 2014-05-12 Hitachi Maxell Ltd Sealed battery

Similar Documents

Publication Publication Date Title
US11811022B2 (en) Secondary battery
WO2017209052A1 (en) Secondary battery
US10998600B2 (en) Laminated secondary battery and manufacturing method of the same, and device
US20190348647A1 (en) Secondary battery
US20210043886A1 (en) Secondary battery
US20190074535A1 (en) Secondary battery
US20230307713A1 (en) Method for manufacturing secondary battery
US20190296399A1 (en) Secondary battery
EP4231402A1 (en) Secondary battery
WO2021140838A1 (en) Secondary battery
WO2020218213A1 (en) Secondary battery
WO2022009997A1 (en) Secondary battery
US11387493B2 (en) Secondary battery
CN115552717A (en) Secondary battery
US20190334210A1 (en) Secondary battery
US20190221892A1 (en) Secondary battery
US20190305353A1 (en) Secondary battery
WO2017208534A1 (en) Secondary battery
WO2018163775A1 (en) Secondary battery production method
US20230040384A1 (en) Secondary battery
US11342590B2 (en) Secondary battery
US11929467B2 (en) Secondary battery
WO2022044672A1 (en) Secondary battery and method for manufacturing same
WO2020071362A1 (en) Secondary battery
WO2017208683A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP