WO2021210510A1 - Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article - Google Patents

Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article Download PDF

Info

Publication number
WO2021210510A1
WO2021210510A1 PCT/JP2021/015057 JP2021015057W WO2021210510A1 WO 2021210510 A1 WO2021210510 A1 WO 2021210510A1 JP 2021015057 W JP2021015057 W JP 2021015057W WO 2021210510 A1 WO2021210510 A1 WO 2021210510A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
alloy plate
mass
less
magnesium
Prior art date
Application number
PCT/JP2021/015057
Other languages
French (fr)
Japanese (ja)
Inventor
百合 城野
和葉 諏澤
水谷 学
雄 吉田
克仁 吉田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021210510A1 publication Critical patent/WO2021210510A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present disclosure relates to a magnesium alloy plate, a magnesium alloy molded body, a method for manufacturing a magnesium alloy plate, and a method for manufacturing a magnesium alloy molded body.
  • This application claims priority based on PCT / JP2020 / 016797 of the international application dated April 16, 2020, and incorporates all the contents described in the international application.
  • Patent Document 1 discloses a magnesium alloy rolled material made of a magnesium alloy.
  • This magnesium alloy contains aluminum, a first-class element and a second-class element, and the balance is composed of magnesium and unavoidable impurities.
  • Aluminum is contained in an amount of 0.3% by mass or more and less than 3% by mass.
  • the first-class element is at least one element selected from the group consisting of calcium, strontium, and lanthanoids having atomic numbers 57 to 64, which are 0.1% by mass or more and 1.5% by mass or less.
  • the second element is at least one element selected from the group consisting of manganese, vanadium, and zirconium of 0.05% by mass or more and 1.5% by mass or less.
  • Patent Document 1 discloses a manufacturing method including a casting step, a pre-rolling heat treatment step, a rolling step, a post-rolling heat treatment step, and an aging heat treatment step as a method for manufacturing the magnesium alloy rolled material.
  • the magnesium alloy rolled material obtained by this production method contains a first precipitate containing aluminum and a first-class element, and a second precipitate containing aluminum and a second-class element. Each of the first precipitate and the second precipitate is an extremely small nano-order precipitate.
  • the magnesium alloy plate of the present disclosure is a magnesium alloy plate made of a magnesium alloy, and the magnesium alloy contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, and the balance is magnesium and It has a composition composed of unavoidable impurities and a structure in which crystallizations containing aluminum and manganese are dispersed, and the maximum diameter of the crystallization is 0.20 ⁇ m or more and 1.50 ⁇ m or less.
  • the magnesium alloy molded product of the present disclosure includes the magnesium alloy plate of the present disclosure.
  • the method for producing a magnesium alloy plate of the present disclosure includes a casting step of continuously casting a molten magnesium alloy by a twin roll casting method to produce a plate-shaped cast material, and rolling the cast material to produce a magnesium alloy plate.
  • the magnesium alloy containing less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese is prepared, and the balance is magnesium and unavoidable impurities.
  • the cooling rate of the molten metal is set to 800 ° C./sec or more.
  • the method for producing a magnesium alloy molded product of the present disclosure includes a molding step of warm-molding the magnesium alloy plate obtained by the method for producing a magnesium alloy plate of the present disclosure to produce a magnesium alloy molded product.
  • the molding temperature is 200 ° C. or higher and 300 ° C. or lower.
  • FIG. 1 is a flowchart showing a method for manufacturing a magnesium alloy plate according to an embodiment and a method for manufacturing a magnesium alloy molded body according to the embodiment.
  • FIG. 2 is a graph showing the relationship between the cooling rate of the molten metal when the molten magnesium alloy is continuously cast by the double roll casting method and the maximum diameter of the crystals in the obtained magnesium alloy plate.
  • FIG. 3 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 1 with a tabletop microscope.
  • FIG. 4 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 1.
  • FIG. 5 shows the sample No. 1 in Test Example 1.
  • FIG. 6 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 2.
  • FIG. 7 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 3 with a tabletop microscope.
  • FIG. 8 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 3.
  • FIG. 9 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 4 with a tabletop microscope.
  • FIG. 10 shows the sample No.
  • FIG. 11 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate 5 with a tabletop microscope.
  • FIG. 12 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 5.
  • FIG. 13 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of 10 magnesium alloy plates with a tabletop microscope.
  • FIG. 14 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of 10 magnesium alloy plates.
  • Aluminum contained in the magnesium alloy contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity.
  • Magnesium alloys containing aluminum contain manganese in order to prevent impurities such as iron from being mixed in during the manufacturing process.
  • crystallizations containing aluminum and manganese can be produced in the matrix composed of magnesium. This crystallized material is the starting point of corrosion.
  • Patent Document 1 has room for further improvement in obtaining a magnesium alloy plate having both thermal conductivity and corrosion resistance, although it is excellent in moldability.
  • the magnesium alloy plate of the present disclosure and the magnesium alloy molded product of the present disclosure are excellent in thermal conductivity and corrosion resistance.
  • the method for producing a magnesium alloy plate of the present disclosure can obtain a magnesium alloy plate having excellent thermal conductivity and corrosion resistance.
  • the method for producing a magnesium alloy molded product of the present disclosure provides a magnesium alloy molded product having excellent thermal conductivity and corrosion resistance.
  • the magnesium alloy plate according to one aspect of the present disclosure is a magnesium alloy plate made of a magnesium alloy, and the magnesium alloy contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese.
  • the composition is composed of magnesium and unavoidable impurities in the balance, and has a structure in which crystallization containing aluminum and manganese is dispersed, and the maximum diameter of the crystallization is 0.20 ⁇ m or more and 1.50 ⁇ m or less. ..
  • the magnesium alloy plate of the present disclosure is excellent in thermal conductivity and corrosion resistance.
  • the crystallized product is an intermetallic compound produced in the casting process during the production of a magnesium alloy plate, and its size is usually on the micro order.
  • the precipitate disclosed in Patent Document 1 is an intermetallic compound produced in the heat treatment process applied to the cast material, and the size is usually nano-order.
  • magnesium alloy plate of the present disclosure there is a form in which aluminum is contained in an amount of 0.10% by mass or more.
  • the content of aluminum contained in the magnesium alloy is 0.10% by mass or more, it is easy to improve the corrosion resistance.
  • magnesium alloy plate of the present disclosure a form in which manganese is contained in an amount of 0.10% by mass or more can be mentioned.
  • the content of manganese contained in the magnesium alloy is 0.10% by mass or more, it is easy to prevent impurities such as iron from being mixed in during the manufacturing process. By suppressing the mixing of impurities such as iron, it is easy to suppress the deterioration of corrosion resistance.
  • the composition further includes a form containing 0.10% by mass or more and 1.00% by mass or less of calcium.
  • magnesium alloy further contains calcium in the above range, it is easy to improve mechanical properties such as strength and proof stress. Further, when the magnesium alloy further contains calcium in the above range, the flame retardancy can be easily improved.
  • the composition further includes a form containing 0.10% by mass or more and 2.00% by mass or less of zinc.
  • the magnesium alloy further contains zinc in the above range, it is easy to improve the mechanical properties. Further, when the magnesium alloy further contains zinc in the above range, the warm formability can be easily improved. However, when the magnesium alloy contains both calcium and zinc, the corrosion resistance tends to decrease.
  • the composition further includes a form containing 0.10% by mass or more and 1.00% by mass or less of strontium.
  • the magnesium alloy further contains strontium in the above range, it is easy to improve the mechanical properties. Further, when the magnesium alloy further contains strontium in the above range, the heat resistance can be improved and the high temperature creep resistance can be improved.
  • the magnesium alloy plate of the present disclosure there is a form in which the number density of the crystallized products is 0.010 / ⁇ m 2 or more and 0.060 / ⁇ m 2 or less.
  • the number density of crystallization is 0.060 / ⁇ m 2 or less, there are few crystallizations that can be the starting point of corrosion, and it is easy to suppress a decrease in corrosion resistance.
  • the number density of the crystallized material is 0.010 / ⁇ m 2 or more, the effect of improving the yield strength of the crystallized material can be expected.
  • the thermal conductivity is 100 W / m ⁇ K or more.
  • the above form is superior in thermal conductivity to known standard alloys such as AZ91 and AZ31.
  • the above form has high yield strength.
  • the half width of the X-ray diffraction peak correlates with the strain introduced in the manufacturing process of the magnesium alloy plate.
  • the half width of the X-ray diffraction peak satisfies the above range, it can be said that a specific amount of strain remains in the magnesium alloy plate.
  • the magnesium alloy plate has a specific amount of strain, it is easy to perform warm forming on the magnesium alloy plate, and the formability by warm forming can be improved.
  • the magnesium alloy molded product according to one aspect of the present disclosure includes the magnesium alloy plate according to any one of (1) to (10) above.
  • the magnesium alloy molded body of the present disclosure is excellent in thermal conductivity and corrosion resistance by containing the magnesium alloy plate of the present disclosure.
  • the method for producing a magnesium alloy plate includes a casting step of continuously casting a molten magnesium alloy by a twin roll casting method to produce a plate-shaped cast material, and rolling the cast material.
  • the casting step includes a rolling step of applying the magnesium alloy plate to produce a magnesium alloy plate, and the casting step contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, and the balance is magnesium and unavoidable impurities.
  • a magnesium alloy is prepared, and the cooling rate of the molten metal is set to 800 ° C./sec or more.
  • the content of aluminum contained in the magnesium alloy is less than 2.00% by mass, the decrease in thermal conductivity can be suppressed.
  • containing 1.00% by mass or less of manganese in the magnesium alloy it is possible to prevent impurities such as iron from being mixed in during the manufacturing process.
  • crystallizations containing aluminum and manganese may be produced in the matrix composed of magnesium in the casting process.
  • the cooling rate at the time of casting is as fast as 800 ° C./sec or more. Therefore, even if the above-mentioned crystallized product is produced in the casting process, the crystallized product is fine.
  • the crystallized product has a maximum diameter of 1.50 ⁇ m or less. Since the crystallized material is fine, the crystallized material is unlikely to be the starting point of corrosion in the obtained magnesium alloy plate, and the deterioration of corrosion resistance can be suppressed. From the above, the method for producing a magnesium alloy plate of the present disclosure can obtain a magnesium alloy plate having excellent thermal conductivity and corrosion resistance.
  • a heat treatment step of heat-treating the cast material to homogenize it is provided between the casting step and the rolling step.
  • Examples thereof include a form in which the cast material heat-treated in the heat treatment step is rolled.
  • the composition of the magnesium alloy can be homogenized, and it is easy to suppress variations in characteristics.
  • the magnesium alloy plate obtained by the method for producing a magnesium alloy plate according to the above (12) or (13) is warm-formed.
  • a molding step for producing a magnesium alloy molded body is provided, and the temperature of the warm molding is set to 200 ° C. or higher and 300 ° C. or lower.
  • the magnesium alloy plate obtained by the above-mentioned method for manufacturing a magnesium alloy plate has a specific amount of strain remaining due to rolling.
  • the moldability by warm forming is improved. Therefore, the method for producing a magnesium alloy molded product of the present disclosure can obtain a magnesium alloy molded product which is excellent in thermal conductivity, excellent corrosion resistance, has little damage such as cracks, or is substantially nonexistent.
  • the magnesium alloy plate of the embodiment is a plate material made of a magnesium alloy.
  • the magnesium alloy constituting the magnesium alloy plate contains aluminum of more than 0% by mass and less than 2.00% by mass and manganese of more than 0% by mass and less than 1.00% by mass, and the balance is composed of magnesium and unavoidable impurities. Be prepared. Further, the magnesium alloy constituting the magnesium alloy plate has a structure in which crystals containing aluminum and manganese are dispersed.
  • a detailed description will be given.
  • the magnesium alloy constituting the magnesium alloy plate of the embodiment contains aluminum (Al) and manganese (Mn), which are solute elements soluble in magnesium (Mg), in a specific range, and also contains the largest amount of magnesium.
  • the magnesium content is 90.00% by mass or more.
  • the magnesium alloy can further contain calcium (Ca), zinc (Zn), strontium (Sr) and the like in a specific range.
  • Aluminum contributes to the improvement of corrosion resistance.
  • Aluminum mainly exists as a crystallized product together with manganese. Crystals containing aluminum and manganese are dispersed in the matrix composed of magnesium. Since the above-mentioned crystals are dispersed in the matrix phase, the effect of improving the yield strength can be expected.
  • the aluminum content is preferably 0.10% by mass or more. When the aluminum content is 0.10% by mass or more, the corrosion resistance can be easily improved.
  • the content of aluminum is less than 2.00% by mass. Aluminum contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity. When the aluminum content is less than 2.00% by mass, the decrease in thermal conductivity can be suppressed.
  • the content of aluminum is 0.10% by mass or more and less than 2.00% by mass, and further 0.20% by mass or more and 1.50% by mass or less, particularly 0.25% by mass or more and 1.00% by mass or less. Can be mentioned.
  • Manganese suppresses the mixing of impurities such as iron (Fe) in the manufacturing process. By suppressing the mixing of impurities such as iron, it is easy to suppress the deterioration of corrosion resistance. As mentioned above, manganese mainly exists as a crystallized product together with aluminum.
  • the manganese content is preferably 0.10% by mass or more. When the manganese content is 0.10% by mass or more, it is easy to prevent impurities such as iron from being mixed in during the manufacturing process.
  • the manganese content is 1.00% by mass or less. If the amount of manganese is too large, a large amount of crystallized products containing aluminum and manganese are likely to be produced.
  • the above-mentioned crystallized product tends to be a starting point of corrosion and may reduce corrosion resistance.
  • the crystallized product is preferably dispersed in the matrix in a specific range. When the manganese content is 1.00% by mass or less, it is possible to suppress excessive formation of the above-mentioned crystallized products.
  • the manganese content may be 0.10% by mass or more and 1.00% by mass or less, further 0.20% by mass or more and 0.80% by mass or less, and particularly 0.20% by mass or more and 0.70% by mass or less. Can be mentioned.
  • the calcium content may be 0.10% by mass or more and 1.00% by mass or less. Further, the calcium content is 0.10% by mass or more and 0.80% by mass or less, particularly 0.10% by mass or more and 0.50% by mass or less.
  • Zinc also contributes to the improvement of warm moldability.
  • the zinc content is 0.10% by mass or more and 2.00% by mass or less. Further, the zinc content is 0.10% by mass or more and 1.50% by mass or less, and in particular, 0.10% by mass or more and 1.00% by mass or less.
  • Strontium also contributes to the improvement of heat resistance. Strontium also contributes to the improvement of high temperature creep resistance. High-temperature creep property is a phenomenon in which a material to which a constant stress is applied in a high-temperature environment deforms with the passage of time.
  • the content of strontium is 0.10% by mass or more and 1.00% by mass or less. Further, the content of strontium is 0.20% by mass or more and 0.80% by mass or less, particularly 0.20% by mass or more and 0.50% by mass or less.
  • Magnesium alloy may contain one element selected from the group consisting of calcium, zinc, and strontium. Magnesium alloys include calcium and strontium, or zinc and strontium in combination. The combination of calcium and zinc tends to reduce corrosion resistance.
  • the unavoidable impurities are not particularly limited, and examples thereof include iron, silicon (Si), nickel (Ni), cobalt (Co), and copper (Cu).
  • the total content of unavoidable impurities is preferably 1.00% by mass or less, more preferably 0.50% by mass or less, 0.15% by mass or less, and 0.05% by mass or less.
  • the total content of iron, nickel, and cobalt that can hinder the improvement of corrosion resistance is preferably less than 0.05% by mass, more preferably 0.01% by mass or less.
  • the composition of the magnesium alloy can be confirmed by performing component analysis.
  • component analysis for example, energy dispersive X-ray spectroscopy (EDX) or electron probe microanalyzer (EPMA) attached to a scanning electron microscope (SEM) can be used.
  • Other component analysis methods include inductively coupled plasma emission spectroscopic analysis (ICP-OES) or emission spectroscopic analysis. It is preferable to use ICP-OES for component analysis.
  • the magnesium alloy constituting the magnesium alloy plate of the embodiment includes a structure containing a matrix containing magnesium as a main component and crystals dispersed in the matrix.
  • the matrix is composed of a solid solution in which a solute element such as aluminum is dissolved in magnesium.
  • the crystallization contains aluminum and manganese.
  • the crystallization is typically fine particles.
  • the maximum diameter of the crystallized product is 0.20 ⁇ m or more and 1.50 ⁇ m or less. As described above, the crystallized product tends to be a starting point of corrosion and can reduce the corrosion resistance. When the maximum diameter of the crystallized product is 1.50 ⁇ m or less, even if the crystallized product is generated, the crystallized product is unlikely to be the starting point of corrosion, and a decrease in corrosion resistance can be suppressed. On the other hand, when the maximum diameter of the crystallized product is 0.20 ⁇ m or more, the effect of improving the yield strength due to the dispersion of the crystallized product can be expected. Further, the maximum diameter of the crystallized product is 0.50 ⁇ m or more and 1.50 ⁇ m or less, particularly 0.80 ⁇ m or more and 1.40 ⁇ m or less, and 1.00 ⁇ m or more and 1.40 ⁇ m or less.
  • the average particle size of the crystallized product is 0.20 ⁇ m or more and 0.40 ⁇ m or less.
  • the average particle size of the crystallized product is 0.20 ⁇ m or more, the effect of improving the yield strength due to the dispersion of the crystallized product can be expected.
  • the average particle size of the crystallized product is 0.40 ⁇ m or less, even if the crystallized product is generated, the crystallized product is unlikely to be the starting point of corrosion, and a decrease in corrosion resistance can be suppressed.
  • the average particle size of the crystallized product is 0.25 ⁇ m or more and 0.38 ⁇ m or less, particularly 0.28 ⁇ m or more and 0.36 ⁇ m or less.
  • the maximum diameter and average particle size of the crystallized material can be determined by using an observation image acquired by a tabletop microscope on the surface or cross section of the magnesium alloy plate.
  • the observation field of view is acquired so that the observation image contains 200 or more crystallized materials.
  • the observation field of view may be one or more.
  • each observation visual field is acquired so that the total number of crystals in each observation visual field is 200 or more.
  • the number of observation visual fields may be 5 or more.
  • the size of each observation field may be 80 ⁇ m ⁇ 60 ⁇ m.
  • the observation image of each observation field is binarized to extract crystallization of 0.20 ⁇ m or more. For each of the extracted crystals, determine the equivalent circle diameter.
  • the equivalent circle diameter is the diameter of a perfect circle having the area of the extracted crystallized material.
  • the maximum circle-equivalent diameter of the obtained circle-equivalent diameters is defined as the maximum diameter of the crystallized material.
  • the maximum diameter of the crystallized material in the magnesium alloy shall be the largest value among the maximum diameters of each observation field of view.
  • the average value of the obtained circle-equivalent diameter is defined as the average particle size of the crystallized product.
  • the average particle size of the crystals in the magnesium alloy shall be the average value of the average particle size of the entire observation field.
  • the number density of crystallization is 0.010 / ⁇ m 2 or more and 0.060 / ⁇ m 2 or less.
  • the number density of crystallization is 0.060 / ⁇ m 2 or less, there are few crystallizations that can be the starting point of corrosion, and it is easy to suppress a decrease in corrosion resistance.
  • the number density of the crystallized material is 0.010 / ⁇ m 2 or more, the effect of improving the yield strength of the crystallized material can be expected.
  • the number density of the crystallization is 0.012 / ⁇ m 2 or more and 0.050 / ⁇ m 2 or less, particularly 0.013 / ⁇ m 2 or more and 0.045 / ⁇ m 2 or less.
  • the number density of the crystallization is determined by using the above-mentioned observation image acquired by a tabletop microscope. In each observation field, the number of extracted crystals in the observation field is measured. The average value obtained by dividing the number of crystallizations by the visual field area is defined as the number density of crystallizations.
  • the number density of the crystallized matter in the magnesium alloy shall be the average value of the number density of the crystallized matter in the entire observation field.
  • the thermal conductivity of the magnesium alloy plate of the embodiment is 100 W / m ⁇ K or more.
  • the magnesium alloy plate of the embodiment is superior in thermal conductivity to known standard alloys such as AZ91 and AZ31.
  • the reason why the magnesium alloy plate of the embodiment is excellent in thermal conductivity is that the content of aluminum in the magnesium alloy constituting the magnesium alloy plate is small.
  • the thermal conductivity of the magnesium alloy plate is less than 150 W / m ⁇ K.
  • the thermal conductivity is obtained by using a commercially available measuring device and using a laser flash method or an optical alternating current method.
  • the area ratio of the corrosion product of the magnesium alloy plate of the embodiment is 7.0% or less.
  • a corrosion product is a substance produced when the matrix is chemically or electrochemically eroded or materially deteriorated starting from a crystallized product.
  • the magnesium alloy plate of the embodiment has excellent corrosion resistance.
  • the reason why the magnesium alloy plate of the embodiment is excellent in corrosion resistance is that the maximum diameter of the crystallized product is as fine as 1.50 ⁇ m or less.
  • the area ratio of corrosion products of magnesium alloy plates is determined by measurement in accordance with JIS H 0541: 2003 "Alkaline salt water corrosion test method for magnesium and magnesium alloys".
  • the alkaline salt spray test is carried out in accordance with JIS Z 2371: 2015.
  • the test piece shall be a flat plate, and as a typical size, the thickness shall be 3 mm or less, and the size shall be 150 mm ⁇ 70 mm.
  • the test time is 96 hours.
  • the surface of the test piece after the test is captured by a scanner and binarized using the image analysis software "ImageJ" to determine the area of the corrosion product.
  • the area ratio of the corrosion product is a value obtained by dividing the area of the corrosion product by the exposed area of the test piece to be subjected to the alkaline salt spray test as a percentage.
  • the 0.2% proof stress of the magnesium alloy plate of the embodiment is 200 MPa or more.
  • the magnesium alloy plate of the embodiment has a high proof stress and is unlikely to break.
  • the reason why the magnesium alloy plate of the embodiment has a high yield strength is that crystals having a maximum diameter of 0.20 ⁇ m or more are dispersed in the matrix phase.
  • 0.2% proof stress is measured by performing a tensile test in accordance with JIS Z 2241: 2011 "Metallic Material Tensile Test Method".
  • the 0.2% proof stress is a value at room temperature. Room temperature is 20 ° C ⁇ 15 ° C.
  • the test piece shall be a JIS 13B plate-shaped piece, and shall be collected from any location on the magnesium alloy plate. It is preferable to collect the test piece excluding the peripheral edge of the magnesium alloy plate and the region in the vicinity thereof so that proper measurement can be easily performed. For example, a test piece may be collected from an inner region 5 mm or more away from the peripheral edge.
  • the half width of the X-ray diffraction peak is 0.07 ° or more and 0.40 ° or less.
  • the half width of the peak of the (0002) plane by X-ray diffraction using CuK ⁇ X-ray is 0.07 ° or more and 0.40 ° or less.
  • the half width of the X-ray diffraction peak correlates with the strain introduced in the manufacturing process of the magnesium alloy plate. When the half width of the X-ray diffraction peak is large, it means that the amount of distortion of the magnesium alloy plate is large.
  • a half-value width of 0.07 ° or more means that the magnesium alloy plate has some strain.
  • the magnesium alloy plate has a certain degree of distortion, it is easy to perform warm forming on the magnesium alloy plate, and the moldability by warm forming can be improved.
  • the half width is 0.40 ° or less, it can be said that excessive strain does not remain in the magnesium alloy plate. Since no excessive strain remains on the magnesium alloy plate, it is possible to suppress a decrease in room temperature ductility of the magnesium alloy plate.
  • the half width of the X-ray diffraction peak in the magnesium alloy plate is further 0.08 ° or more and 0.30 ° or less, particularly 0.10 ° or more and 0.20 ° or less.
  • the magnesium alloy molded product of the embodiment includes the magnesium alloy plate of the above-described embodiment.
  • the magnesium alloy molded body of the embodiment is not particularly limited as long as it is press-molded using the magnesium alloy plate of the above-described embodiment, and includes housings for electronic devices, various panels for automobiles, industrial equipment parts, and the like. Can be mentioned.
  • the method for manufacturing a magnesium alloy plate of the embodiment includes a casting step 1 and a rolling step 3.
  • the method for producing a magnesium alloy plate of the embodiment can include a heat treatment step 2 between the casting step 1 and the rolling step 3.
  • the method for manufacturing the magnesium alloy molded product of the embodiment includes a casting step 1, a rolling step 3, and a molding step 4.
  • the method for producing a magnesium alloy molded product of the embodiment can include a heat treatment step 2 between the casting step 1 and the rolling step 3. That is, the method for manufacturing the magnesium alloy molded body of the embodiment further includes the molding step 4 after the rolling step 3 as compared with the method for manufacturing the magnesium alloy plate of the embodiment.
  • a detailed description will be given.
  • the casting step 1 is a step of continuously casting a molten magnesium alloy by a double roll casting method to produce a plate-shaped cast material.
  • Magnesium alloys have the specific composition described above.
  • the composition of the magnesium alloy constituting the molten metal is maintained during the manufacturing process. Therefore, the composition of the magnesium alloy constituting the molten metal and the composition of the magnesium alloy constituting the obtained magnesium alloy plate are the same.
  • the double roll casting method is a kind of continuous casting method and is a casting method capable of quenching and solidifying.
  • molten metal is supplied between a pair of rolls, which are movable molds, and brought into contact with the rolls to cool and solidify the molten metal.
  • crystals containing aluminum and manganese can be produced in the matrix composed of magnesium.
  • the symbol “y” is the maximum diameter of the crystallized product in the obtained magnesium alloy plate.
  • the unit of the maximum diameter of the crystallized product is ⁇ m.
  • the symbol “x” is the cooling rate of the molten metal.
  • the unit of cooling rate is ° C / sec.
  • the symbol “ln” means the natural logarithm.
  • the above calculation formula is an approximate formula obtained from the result of actually producing a magnesium alloy plate by changing the cooling rate of the molten metal and measuring the maximum diameter of the crystallized product in the obtained magnesium alloy plate. Is.
  • the horizontal axis is the cooling rate and the vertical axis is the maximum diameter of the crystallized material.
  • the maximum diameter of the crystallized material is indicated by a black circle.
  • the manufacturing conditions other than the cooling rate are all the same.
  • examples of the cooling rate and the maximum diameter of the crystallized product include the following.
  • the cooling rate is 600 ° C./sec and the maximum diameter of the crystallized material is 1.9 ⁇ m.
  • the cooling rate is 800 ° C./sec and the maximum diameter of the crystallized material is 1.5 ⁇ m.
  • the cooling rate is 900 ° C./sec and the maximum diameter of the crystallized material is 1.3 ⁇ m.
  • the cooling rate can be changed by adjusting the cooling conditions. Examples of the cooling conditions include the temperature and flow rate of the refrigerant flowing in the roll, the flow velocity, the thermal conductivity of the constituent materials of the roll, and the like.
  • the cooling rate of the molten metal is 800 ° C / sec or more.
  • the crystallized product is fine.
  • the crystallized product has a maximum diameter of 1.5 ⁇ m or less. Since the crystallized material is fine, the crystallized material is unlikely to be the starting point of corrosion in the obtained magnesium alloy plate, and the deterioration of corrosion resistance can be suppressed.
  • the heat treatment step 2 is a step of subjecting the cast material obtained in the casting step to heat treatment to homogenize it.
  • the heat treatment temperature may be 350 ° C. or higher and 450 ° C. or lower.
  • the heat treatment temperature is the temperature of the casting material to be heated.
  • the heat treatment temperature is 350 ° C. or higher, the composition of the magnesium alloy can be homogenized, and variations in characteristics can be suppressed.
  • the heat treatment temperature is 450 ° C. or lower, excessive heat treatment can be suppressed.
  • the heat treatment temperature may be further set to 370 ° C. or higher and 430 ° C. or lower, particularly 380 ° C. or higher and 420 ° C. or lower.
  • the holding time of the heat treatment may be 1 hour or more and 24 hours or less.
  • the heat treatment holding time is 1 hour or more, the composition of the magnesium alloy can be homogenized, and variations in characteristics can be suppressed.
  • the heat treatment holding time is 24 hours or less, excessive heat treatment can be suppressed.
  • the holding time of the heat treatment may be further set to 2 hours or more and 20 hours or less, particularly 3 hours or more and 10 hours or less.
  • Examples of the heat treatment atmosphere include an atmospheric atmosphere and a nitrogen atmosphere.
  • the heat treatment step 2 is not essential and can be omitted.
  • the rolling step 3 is a step of rolling the cast material to produce a magnesium alloy plate.
  • the rolling step 3 rolls the heat-treated cast material.
  • a rolling apparatus having rolling rolls arranged facing each other is used, and a casting material is inserted between the rolling rolls. At this time, each of the cast material and the rolling roll is heated to a specific temperature.
  • the heating temperature during rolling may be 200 ° C. or higher and 300 ° C. or lower for both the cast material and the rolling roll.
  • the heating temperature may be further set to 220 ° C. or higher and 280 ° C. or lower, particularly 230 ° C. or higher and 270 ° C. or lower.
  • the heating temperature of the cast material is the temperature of the cast material immediately before it comes into contact with the rolling roll. Heating of the cast material may be performed by separately providing a heating furnace. It is possible to adjust the transport distance and transport time, and control the temperature of the atmosphere so that the temperature does not drop between the time when the cast material comes into contact with the rolling roll from the heating furnace.
  • Rolling may be performed in one or more passes, and may be performed in multiple passes.
  • the reduction rate per pass is 10% or more and less than 40%, and further 20% or more and 30% or less.
  • the total reduction rate may be 50% or more and 95% or less, and further 65% or more and 85% or less.
  • the rolling reduction is an amount calculated by ⁇ (h1-h2) / h1 ⁇ ⁇ 100 when the plate thicknesses of the plate materials before and after rolling are h1 and h2, respectively, and represents the degree of rolling workability.
  • the method for manufacturing a magnesium alloy plate of the embodiment does not include a second heat treatment step after the rolling step 3.
  • the second heat treatment step after the rolling step 3 is a heat treatment including a post-rolling heat treatment step and an aging heat treatment step disclosed in Patent Document 1.
  • the molding step 4 is a step of warm-forming the magnesium alloy plate obtained in the rolling step 3 to produce a magnesium alloy molded body.
  • the heating temperature may be 200 ° C. or higher and 300 ° C. or lower.
  • the heating temperature may be further set to 220 ° C. or higher and 280 ° C. or lower, particularly 230 ° C. or higher and 270 ° C. or lower.
  • the magnesium alloy plate and the magnesium alloy molded product of the embodiment are excellent in thermal conductivity. This is because the content of aluminum contained in the magnesium alloy is as small as less than 2.00% by mass. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment are excellent in corrosion resistance. Even if crystallization containing aluminum and manganese is generated in the magnesium alloy, the crystallization is unlikely to be the starting point of corrosion because the maximum diameter of the crystallization is as fine as 1.50 ⁇ m or less. Is. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment have high yield strength. This is because the above-mentioned crystals having a maximum diameter of 0.20 ⁇ m or more are dispersed in the matrix composed of magnesium. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment are easy to be warm-molded, and the moldability by the warm-molding can be improved. This is because the magnesium alloy plate has a specific amount of strain.
  • the cooling rate at the time of casting is set to 800 ° C./sec or more, so that even if crystals containing aluminum and magnesium are produced in the casting process, the crystals are produced. Can be finely divided. Therefore, the method for manufacturing the magnesium alloy plate of the embodiment can satisfactorily manufacture the magnesium alloy plate of the embodiment.
  • the method for producing the magnesium alloy molded product of the embodiment is that the magnesium alloy plate of the embodiment is warm-molded to have excellent thermal conductivity, excellent corrosion resistance, and less damage such as cracks. The alloy molded body can be manufactured satisfactorily.
  • Sample No. Sample No. 1 to sample No. 5 ⁇ Sample No. Sample No. 1 to sample No. Reference numeral 5 denotes a magnesium alloy plate obtained through a casting step, a heat treatment step, and a rolling step.
  • Sample No. Reference numeral 4 contains 0.52% by mass of aluminum, 0.25% by mass of manganese, and 0.20% by mass of strontium, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.52% Al-0.25% Mn-0.20% Sr.
  • Sample No. Reference numeral 5 contains 0.25% by mass of aluminum, 0.18% by mass of manganese, and 0.10% by mass of zinc, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.25% Al-0.18% Mn-0.10% Zn.
  • a known configuration can be used for the double roll continuous casting apparatus.
  • the cooling rate in the casting process was 1000 ° C./sec.
  • the thickness of the plate was 4 mm.
  • Heat treatment process In the heat treatment step, the cast material obtained in the casting step was heat-treated. In the heat treatment, the cast material to be heated was heated to 400 ° C. The holding time of the heat treatment was 5 hours.
  • Rolling process In the rolling step, the cast material heat-treated in the heat treatment step was rolled to produce a magnesium alloy plate.
  • a rolling apparatus equipped with rolling rolls arranged facing each other was used. A known configuration can be used for the rolling apparatus. Rolling was carried out in a state where both the cast material and the rolling roll were heated to 240 ° C. Rolling was carried out in 7 passes with a rolling reduction rate of 25% per pass. The thickness of the magnesium alloy plate was 0.6 mm.
  • the magnesium alloy plate Since the rolling process, the magnesium alloy plate has not been heat treated.
  • Sample No. 10 A magnesium alloy plate made of ASTM standard AZ31 alloy was prepared. Conditions other than the composition of the magnesium alloy are described in Sample No. Sample No. 1 to sample No. It was the same as 5.
  • composition of the magnesium alloy plate of each of the obtained samples was measured by ICP-OES. As a result, the composition of the magnesium alloy plate of each sample was almost the same as the composition of the magnesium alloy of the molten metal used in each sample.
  • the cross section of the magnesium alloy plate of each of the obtained samples was observed with a tabletop microscope, and the maximum diameter, average particle size, and number density of the crystals containing aluminum and manganese were measured.
  • a tabletop microscope a Miniscope TM3030 manufactured by Hitachi High-Tech Co., Ltd. was used.
  • five observation fields were acquired so as to include 300 or more crystallized substances.
  • Each observation field was acquired so that the total number of crystals in each of the five observation fields was 300 or more.
  • the observation magnification was 2000 times.
  • the size of each observation field was 80 ⁇ m ⁇ 60 ⁇ m.
  • the observation image of each observation field of view was binarized using the image analysis software "Image J", and crystallization of 0.20 ⁇ m or more was extracted. That is, when calculating the average particle size of the crystallized material, the crystallized material having a size of less than 0.20 ⁇ m is not extracted. Then, the equivalent circle diameter was determined for each of the extracted crystals.
  • the equivalent circle diameter is the diameter of a perfect circle having the area of the extracted crystallized material.
  • the largest circle-equivalent diameter among the obtained circle-equivalent diameters was defined as the maximum diameter of the crystallized material.
  • the maximum diameter of the crystallized material in the magnesium alloy was set to the largest value among the maximum diameters of each observation field of view.
  • the average value of the obtained circle-equivalent diameter was taken as the average particle size of the crystallized product.
  • the average particle size of the crystals in the magnesium alloy was taken as the average value of the average particle size of all observation fields.
  • the number of extracted crystallized substances in the observation visual field was measured, and the average value of the values obtained by dividing the number of crystallized substances present by the visual field area was taken as the number density of the crystallized products.
  • the number density of the crystallized matter in the magnesium alloy was taken as the average value of the number density of the crystallized matter in the entire observation field. The results are shown in Table 1.
  • FIG. 3 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 1 observed with a tabletop microscope.
  • FIG. 5 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 2 observed with a tabletop microscope.
  • FIG. 7 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 3 observed with a tabletop microscope.
  • FIG. 9 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 4 observed with a tabletop microscope.
  • FIG. 11 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No.
  • FIG. 13 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of 10 observed with a tabletop microscope.
  • the region that looks gray is the matrix 11, and the region that looks white is the crystallized product 12.
  • the thermal conductivity of the magnesium alloy plate of each of the obtained samples was measured.
  • the thermal conductivity was determined from the thermal diffusivity obtained by collecting a test piece for measurement from the magnesium alloy plate of each sample and measuring the thermal diffusivity using a commercially available measuring device.
  • the optical AC method thermal diffusivity measuring device LaserPIT manufactured by Advance Riko Co., Ltd. was used as the measuring device.
  • the size of the test piece was 5 mm ⁇ 25 mm ⁇ thickness 0.4 mm.
  • the thermal conductivity was calculated from thermal diffusivity ⁇ specific heat capacity ⁇ density. The results are shown in Table 1.
  • ⁇ Corrosion resistance> The area ratio of the corrosion products of the magnesium alloy plate of each of the obtained samples was measured.
  • the area ratio of corrosion products was measured in accordance with JIS H 0541: 2003 “Magnesium and Magnesium Alloy Alkaline Salt Water Corrosion Test Method”. Specifically, a test piece for measurement was taken from the magnesium alloy plate of each sample, and the alkaline salt spray test specified in JIS Z 2371: 2015 was carried out for 96 hours.
  • the test piece had a size of 150 mm ⁇ 70 mm ⁇ thickness 0.6 mm, and the outer peripheral portion and the back surface were covered with masking tape.
  • the exposed area of the test piece to be subjected to the alkaline salt spray test was 140 mm ⁇ 60 mm.
  • the surface of the test piece after the test was scanned with a scanner and binarized using the image analysis software "Image J" to determine the area of the corrosion product.
  • DADF-AK1 manufactured by Canon Inc. was used as the scanner.
  • the area ratio of the corrosion product was a value obtained by dividing the area of the corrosion product by the above-mentioned exposed area as a percentage. The results are shown in Table 1.
  • FIG. 4 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 1 after being subjected to an alkaline salt spray test.
  • FIG. 6 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 2 after being subjected to an alkaline salt spray test.
  • FIG. 8 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 3 after being subjected to an alkaline salt spray test.
  • FIG. 10 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 4 after being subjected to an alkaline salt spray test.
  • FIG. 12 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No.
  • FIG. 14 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 10 after being subjected to an alkaline salt spray test.
  • the region that appears black or white is the corrosion product 20.
  • the magnesium alloy plate of No. 5 has a thermal conductivity of 100 W / m ⁇ K or more, particularly 115 W / m ⁇ K or more, and is excellent in thermal conductivity.
  • Sample No. Sample No. 1 to sample No. It is considered that the reason why the magnesium alloy plate of No. 5 is excellent in thermal conductivity is that the content of aluminum contained in the magnesium alloy is as small as less than 2.00% by mass. This is because aluminum contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity.
  • the magnesium alloy plate of No. 5 has an aluminum content of less than 1.10% by mass, particularly 0.52% by mass or less, and is further excellent in thermal conductivity.
  • Sample No. Sample No. 1 to sample No. The magnesium alloy plate of No. 5 has an area ratio of corrosion products of 7.0% or less and is excellent in corrosion resistance. Sample No. Sample No. 1 to sample No. It is considered that the reason why the magnesium alloy plate of No. 5 is excellent in corrosion resistance is that the maximum diameter of the crystallized product is as small as 1.50 ⁇ m or less. It is considered that the maximum diameter of the crystallized product was as small as 1.50 ⁇ m or less, so that the crystallized product could be suppressed from becoming the starting point of corrosion. Further, it is considered that the fact that the average particle size of the crystallized product was as small as 0.40 ⁇ m or less also prevented the crystallized product from becoming the starting point of corrosion. As shown in FIGS.
  • the magnesium alloy plate of No. 4 is more excellent in corrosion resistance because the number density of crystallized products is 0.010 / ⁇ m 2 or more and 0.060 / ⁇ m 2 or less.
  • sample No. From sample No. 2 The magnesium alloy plate of No. 4 has a 0.2% proof stress of 200 MPa or more and is also excellent in proof stress when the number density of crystallization is 0.010 / ⁇ m 2 or more and 0.060 / ⁇ m 2 or less.
  • Sample No. From sample No. 2 It is considered that the reason why the magnesium alloy plate of No. 4 is excellent in proof stress is that a certain number of crystallizations of 1.00 ⁇ m or more are dispersed in the matrix composed of magnesium.
  • sample No. The magnesium alloy plate of 10 has a thermal conductivity of 66 W / m ⁇ K and is inferior in thermal conductivity. Sample No. It is considered that the reason why the magnesium alloy plate of 10 is inferior in thermal conductivity is that the content of aluminum contained in the magnesium alloy is as high as 2.0% by mass or more.
  • the magnesium alloy plate of 10 has an area ratio of corrosion products of 15.3% and is inferior in corrosion resistance. Actually, the sample No. As shown in FIG. 14, the magnesium alloy plate of No. 10 was found to be corroded in appearance. Sample No. It is considered that the reason why the magnesium alloy plate of No. 10 is inferior in corrosion resistance is that, as shown in FIG. 13, the maximum diameter of the crystallized product is as large as more than 1.50 ⁇ m. It is considered that the crystallized material became the starting point of corrosion because the maximum diameter of the crystallized material was as large as more than 1.50 ⁇ m. Further, it is considered that the crystallized product became the starting point of corrosion because the average particle size of the crystallized product was as large as more than 0.50 ⁇ m.
  • Test Example 2 Sample No. prepared in Test Example 1.
  • the magnesium alloy plate of No. 2 was subjected to square drawing at a heating temperature of 240 ° C. to prepare a magnesium alloy molded body.
  • Sample No. The recrystallization temperature of the magnesium alloy constituting the magnesium alloy plate of No. 2 is 230 ° C. Therefore, the heating temperature is the sample No. It is equal to or higher than the recrystallization temperature of the magnesium alloy in 2.
  • the magnesium alloy molded body has a box shape including a rectangular flat plate portion and a side wall portion erected from the flat plate portion.
  • the size of the top plate was 100 mm ⁇ 50 mm, and the height of the side wall was 10 mm.
  • the cracked state of the obtained magnesium alloy molded product was visually confirmed. As a result, no cracks were found in the magnesium alloy molded product.
  • XRD X-ray diffraction method
  • the sample No. The magnesium alloy plate of No. 2 had a half width of the X-ray diffraction peak of 0.11140 °. That is, the sample No. The magnesium alloy plate of No. 2 had some distortion. Sample No. It is considered that since the magnesium alloy plate of No. 2 has a certain degree of distortion, it is easy to perform warm forming on the magnesium alloy plate, and the moldability by warm forming can be improved.
  • sample No. 2 The half width of the peak of the (0002) plane was measured by XRD for the magnesium alloy plate of No. 2 whose strain was removed by annealing. The measurement conditions were the same as those described above. As a result, the half-value width of the X-ray diffraction peak of the magnesium alloy plate from which the strain after annealing was removed was 0.0587 °. From this, the sample No. It can be seen that the magnesium alloy plate of No. 2 has some distortion.
  • Sample No. 1 Sample No. Sample No. 3 to sample No. Regarding the magnesium alloy plate of No. 5, the sample No. A magnesium alloy molded product was produced by performing square drawing in the same manner as in 2. As a result, no cracks were found in any of the magnesium alloy molded bodies. All of the magnesium alloy plates have a half-value width of the X-ray diffraction peak of 0.07 ° or more and 0.40 ° or less, and have a certain degree of distortion, so that the magnesium alloy plate can be easily warm-formed. It is considered that the moldability by warm molding could be improved.
  • the present invention is not limited to these examples, but is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
  • the composition of the magnesium alloy, the cooling rate in the casting process, the rolling conditions in the rolling process, and the like can be appropriately changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A magnesium alloy sheet composed of a magnesium alloy, wherein: the magnesium alloy has a composition containing less than 2.00 mass% of aluminum and 1.00 mass% or less of manganese, with the remainder consisting of magnesium and unavoidable impurities, and also has a structure in which crystals containing aluminum and manganese are dispersed therein; and the maximum size of the crystals is 0.20 μm to 1.50 μm inclusive.

Description

マグネシウム合金板、マグネシウム合金成形体、マグネシウム合金板の製造方法、及びマグネシウム合金成形体の製造方法Magnesium alloy plate, magnesium alloy molded body, manufacturing method of magnesium alloy plate, and manufacturing method of magnesium alloy molded body
 本開示は、マグネシウム合金板、マグネシウム合金成形体、マグネシウム合金板の製造方法、及びマグネシウム合金成形体の製造方法に関する。
 本出願は、2020年04月16日付の国際出願のPCT/JP2020/016797に基づく優先権を主張し、前記国際出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a magnesium alloy plate, a magnesium alloy molded body, a method for manufacturing a magnesium alloy plate, and a method for manufacturing a magnesium alloy molded body.
This application claims priority based on PCT / JP2020 / 016797 of the international application dated April 16, 2020, and incorporates all the contents described in the international application.
 特許文献1は、マグネシウム合金からなるマグネシウム合金圧延材を開示する。このマグネシウム合金は、アルミニウムと第1類元素と第2類元素とを含有し、残部がマグネシウム及び不可避不純物からなる。アルミニウムは、0.3質量%以上3質量%未満含まれる。第1類元素は、0.1質量%以上1.5質量%以下のカルシウム、ストロンチウム、及び原子番号が57番から64番までのランタノイドからなる群から選ばれる少なくとも1種類の元素である。第2類元素は、0.05質量%以上1.5質量%以下のマンガン、バナジウム、及びジルコニウムからなる群から選ばれる少なくとも1種類の元素である。 Patent Document 1 discloses a magnesium alloy rolled material made of a magnesium alloy. This magnesium alloy contains aluminum, a first-class element and a second-class element, and the balance is composed of magnesium and unavoidable impurities. Aluminum is contained in an amount of 0.3% by mass or more and less than 3% by mass. The first-class element is at least one element selected from the group consisting of calcium, strontium, and lanthanoids having atomic numbers 57 to 64, which are 0.1% by mass or more and 1.5% by mass or less. The second element is at least one element selected from the group consisting of manganese, vanadium, and zirconium of 0.05% by mass or more and 1.5% by mass or less.
 特許文献1は、上記マグネシウム合金圧延材を製造する方法として、鋳造工程と、圧延前熱処理工程と、圧延工程と、圧延後熱処理工程と、時効熱処理工程とを備える製造方法を開示する。この製造方法により得られる上記マグネシウム合金圧延材は、アルミニウム及び第1類元素を含む第1析出物と、アルミニウム及び第2類元素を含む第2析出物とを含む。第1析出物及び第2析出物の各々は、極めて小さいナノオーダーの析出物である。 Patent Document 1 discloses a manufacturing method including a casting step, a pre-rolling heat treatment step, a rolling step, a post-rolling heat treatment step, and an aging heat treatment step as a method for manufacturing the magnesium alloy rolled material. The magnesium alloy rolled material obtained by this production method contains a first precipitate containing aluminum and a first-class element, and a second precipitate containing aluminum and a second-class element. Each of the first precipitate and the second precipitate is an extremely small nano-order precipitate.
特開2017-78220号公報JP-A-2017-78220
 本開示のマグネシウム合金板は、マグネシウム合金からなるマグネシウム合金板であって、前記マグネシウム合金は、2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる組成と、アルミニウムとマンガンとを含む晶出物が分散された組織とを備え、前記晶出物の最大径が0.20μm以上1.50μm以下である。 The magnesium alloy plate of the present disclosure is a magnesium alloy plate made of a magnesium alloy, and the magnesium alloy contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, and the balance is magnesium and It has a composition composed of unavoidable impurities and a structure in which crystallizations containing aluminum and manganese are dispersed, and the maximum diameter of the crystallization is 0.20 μm or more and 1.50 μm or less.
 本開示のマグネシウム合金成形体は、本開示のマグネシウム合金板を含む。 The magnesium alloy molded product of the present disclosure includes the magnesium alloy plate of the present disclosure.
 本開示のマグネシウム合金板の製造方法は、マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造して板状の鋳造材を作製する鋳造工程と、前記鋳造材に圧延を施してマグネシウム合金板を作製する圧延工程とを備え、前記鋳造工程では、2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる前記マグネシウム合金を準備し、前記溶湯の冷却速度を800℃/秒以上とする。 The method for producing a magnesium alloy plate of the present disclosure includes a casting step of continuously casting a molten magnesium alloy by a twin roll casting method to produce a plate-shaped cast material, and rolling the cast material to produce a magnesium alloy plate. In the casting step, the magnesium alloy containing less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese is prepared, and the balance is magnesium and unavoidable impurities. The cooling rate of the molten metal is set to 800 ° C./sec or more.
 本開示のマグネシウム合金成形体の製造方法は、本開示のマグネシウム合金板の製造方法で得られたマグネシウム合金板に温間成形を施してマグネシウム合金成形体を作製する成形工程を備え、前記温間成形の温度を200℃以上300℃以下とする。 The method for producing a magnesium alloy molded product of the present disclosure includes a molding step of warm-molding the magnesium alloy plate obtained by the method for producing a magnesium alloy plate of the present disclosure to produce a magnesium alloy molded product. The molding temperature is 200 ° C. or higher and 300 ° C. or lower.
図1は、実施形態のマグネシウム合金板の製造方法、及び実施形態のマグネシウム合金成形体の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a magnesium alloy plate according to an embodiment and a method for manufacturing a magnesium alloy molded body according to the embodiment. 図2は、マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造する際の溶湯の冷却速度と、得られたマグネシウム合金板における晶出物の最大径との関係を示すグラフの図である。FIG. 2 is a graph showing the relationship between the cooling rate of the molten metal when the molten magnesium alloy is continuously cast by the double roll casting method and the maximum diameter of the crystals in the obtained magnesium alloy plate. 図3は、試験例1において、試料No.1のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 3 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 1 with a tabletop microscope. 図4は、試験例1において、試料No.1のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 4 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 1. 図5は、試験例1において、試料No.2のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 5 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 2 with a tabletop microscope. 図6は、試験例1において、試料No.2のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 6 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 2. 図7は、試験例1において、試料No.3のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 7 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 3 with a tabletop microscope. 図8は、試験例1において、試料No.3のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 8 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 3. 図9は、試験例1において、試料No.4のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 9 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate of 4 with a tabletop microscope. 図10は、試験例1において、試料No.4のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 10 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 4. 図11は、試験例1において、試料No.5のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 11 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of the magnesium alloy plate 5 with a tabletop microscope. 図12は、試験例1において、試料No.5のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 12 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of the magnesium alloy plate of 5. 図13は、試験例1において、試料No.10のマグネシウム合金板の断面を卓上顕微鏡で観察した顕微鏡写真を示す図である。FIG. 13 shows the sample No. 1 in Test Example 1. It is a figure which shows the micrograph which observed the cross section of 10 magnesium alloy plates with a tabletop microscope. 図14は、試験例1において、試料No.10のマグネシウム合金板の耐食性を評価した外観写真を示す図である。FIG. 14 shows the sample No. 1 in Test Example 1. It is a figure which shows the appearance photograph which evaluated the corrosion resistance of 10 magnesium alloy plates.
 [本開示が解決しようとする課題]
 マグネシウム合金に含まれるアルミニウムは、耐食性の向上に寄与するものの、熱伝導性を低下させ得る。アルミニウムが含まれるマグネシウム合金は、製造過程で鉄等の不純物が混入することを抑制するために、マンガンが含まれる。マグネシウム合金中にアルミニウム及びマンガンが含まれる場合、マグネシウムからなる母相中に、アルミニウムとマンガンとを含む晶出物が生成され得る。この晶出物は、腐食の起点になる。晶出物による耐食性の低下を抑制するには、アルミニウムの含有量を多くすることが望ましい。しかし、アルミニウムの含有量を多くすると、熱伝導性が低下する。特許文献1は、成形性に優れるものの、熱伝導性と耐食性とを兼ね備えるマグネシウム合金板を得るにあたり、更なる改善の余地がある。
[Issues to be solved by this disclosure]
Aluminum contained in the magnesium alloy contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity. Magnesium alloys containing aluminum contain manganese in order to prevent impurities such as iron from being mixed in during the manufacturing process. When aluminum and manganese are contained in the magnesium alloy, crystallizations containing aluminum and manganese can be produced in the matrix composed of magnesium. This crystallized material is the starting point of corrosion. In order to suppress the deterioration of corrosion resistance due to crystallization, it is desirable to increase the aluminum content. However, when the aluminum content is increased, the thermal conductivity decreases. Patent Document 1 has room for further improvement in obtaining a magnesium alloy plate having both thermal conductivity and corrosion resistance, although it is excellent in moldability.
 本開示は、熱伝導性に優れると共に、耐食性に優れるマグネシウム合金板、及びマグネシウム合金成形体を提供することを目的の一つとする。本開示は、熱伝導性に優れると共に、耐食性に優れるマグネシウム合金板の製造方法、及びマグネシウム合金成形体の製造方法を提供することを別の目的の一つとする。 One of the purposes of the present disclosure is to provide a magnesium alloy plate having excellent thermal conductivity and excellent corrosion resistance, and a magnesium alloy molded body. Another object of the present disclosure is to provide a method for producing a magnesium alloy plate having excellent thermal conductivity and excellent corrosion resistance, and a method for producing a magnesium alloy molded product.
 [本開示の効果]
 本開示のマグネシウム合金板、及び本開示のマグネシウム合金成形体は、熱伝導性に優れると共に、耐食性に優れる。本開示のマグネシウム合金板の製造方法は、熱伝導性に優れると共に、耐食性に優れるマグネシウム合金板が得られる。本開示のマグネシウム合金成形体の製造方法は、熱伝導性に優れると共に、耐食性に優れるマグネシウム合金成形体が得られる。
[Effect of the present disclosure]
The magnesium alloy plate of the present disclosure and the magnesium alloy molded product of the present disclosure are excellent in thermal conductivity and corrosion resistance. The method for producing a magnesium alloy plate of the present disclosure can obtain a magnesium alloy plate having excellent thermal conductivity and corrosion resistance. The method for producing a magnesium alloy molded product of the present disclosure provides a magnesium alloy molded product having excellent thermal conductivity and corrosion resistance.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係るマグネシウム合金板は、マグネシウム合金からなるマグネシウム合金板であって、前記マグネシウム合金は、2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる組成と、アルミニウムとマンガンとを含む晶出物が分散された組織とを備え、前記晶出物の最大径が0.20μm以上1.50μm以下である。 (1) The magnesium alloy plate according to one aspect of the present disclosure is a magnesium alloy plate made of a magnesium alloy, and the magnesium alloy contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese. The composition is composed of magnesium and unavoidable impurities in the balance, and has a structure in which crystallization containing aluminum and manganese is dispersed, and the maximum diameter of the crystallization is 0.20 μm or more and 1.50 μm or less. ..
 マグネシウム合金に含まれるアルミニウムの含有量が2.00質量%未満であることで、熱伝導性の低下を抑制できる。マグネシウム合金に1.00質量%以下のマンガンを含むことで、製造過程で鉄等の不純物が混入されることを抑制できる。マグネシウム合金は、上述したように、マグネシウムからなる母相中に、アルミニウムとマンガンとを含む晶出物が生成され得る。晶出物が生成されたとしても、晶出物の最大径が1.50μm以下と微細であることで、晶出物が腐食の起点になり難く、耐食性の低下を抑制できる。最大径が0.20μm以上の晶出物が母相中に分散されていることで、耐力の向上効果が期待できる。以上より、本開示のマグネシウム合金板は、熱伝導性に優れると共に、耐食性に優れる。 When the content of aluminum contained in the magnesium alloy is less than 2.00% by mass, the decrease in thermal conductivity can be suppressed. By containing 1.00% by mass or less of manganese in the magnesium alloy, it is possible to prevent impurities such as iron from being mixed in during the manufacturing process. As described above, in the magnesium alloy, crystals containing aluminum and manganese can be produced in the matrix composed of magnesium. Even if the crystallized product is generated, since the maximum diameter of the crystallized product is as fine as 1.50 μm or less, the crystallized product is unlikely to be the starting point of corrosion, and a decrease in corrosion resistance can be suppressed. Since the crystallized products having a maximum diameter of 0.20 μm or more are dispersed in the matrix phase, the effect of improving the yield strength can be expected. From the above, the magnesium alloy plate of the present disclosure is excellent in thermal conductivity and corrosion resistance.
 晶出物は、後述するように、マグネシウム合金板の製造時の鋳造過程で生成される金属間化合物であり、大きさは通常マイクロオーダーである。一方、特許文献1に開示される析出物は、鋳造材に対して施される熱処理過程で生成される金属間化合物であり、大きさは通常ナノオーダーである。 As will be described later, the crystallized product is an intermetallic compound produced in the casting process during the production of a magnesium alloy plate, and its size is usually on the micro order. On the other hand, the precipitate disclosed in Patent Document 1 is an intermetallic compound produced in the heat treatment process applied to the cast material, and the size is usually nano-order.
 (2)本開示のマグネシウム合金板の一例として、アルミニウムは、0.10質量%以上含まれる形態が挙げられる。 (2) As an example of the magnesium alloy plate of the present disclosure, there is a form in which aluminum is contained in an amount of 0.10% by mass or more.
 マグネシウム合金に含まれるアルミニウムの含有量が0.10質量%以上であることで、耐食性を向上し易い。 When the content of aluminum contained in the magnesium alloy is 0.10% by mass or more, it is easy to improve the corrosion resistance.
 (3)本開示のマグネシウム合金板の一例として、マンガンは、0.10質量%以上含まれる形態が挙げられる。 (3) As an example of the magnesium alloy plate of the present disclosure, a form in which manganese is contained in an amount of 0.10% by mass or more can be mentioned.
 マグネシウム合金に含まれるマンガンの含有量が0.10質量%以上であることで、製造過程で鉄等の不純物が混入することを抑制し易い。鉄等の不純物の混入を抑制することで、耐食性の低下を抑制し易い。 When the content of manganese contained in the magnesium alloy is 0.10% by mass or more, it is easy to prevent impurities such as iron from being mixed in during the manufacturing process. By suppressing the mixing of impurities such as iron, it is easy to suppress the deterioration of corrosion resistance.
 (4)本開示のマグネシウム合金板の一例として、前記組成は、更に、0.10質量%以上1.00質量%以下のカルシウムを含む形態が挙げられる。 (4) As an example of the magnesium alloy plate of the present disclosure, the composition further includes a form containing 0.10% by mass or more and 1.00% by mass or less of calcium.
 マグネシウム合金が更にカルシウムを上記範囲で含むことで、強度や耐力等の機械的特性を向上し易い。また、マグネシウム合金が更にカルシウムを上記範囲で含むことで、難燃性を向上し易い。 Since the magnesium alloy further contains calcium in the above range, it is easy to improve mechanical properties such as strength and proof stress. Further, when the magnesium alloy further contains calcium in the above range, the flame retardancy can be easily improved.
 (5)本開示のマグネシウム合金板の一例として、前記組成は、更に、0.10質量%以上2.00質量%以下の亜鉛を含む形態が挙げられる。 (5) As an example of the magnesium alloy plate of the present disclosure, the composition further includes a form containing 0.10% by mass or more and 2.00% by mass or less of zinc.
 マグネシウム合金が更に亜鉛を上記範囲で含むことで、機械的特性を向上し易い。また、マグネシウム合金が更に亜鉛を上記範囲で含むことで、温間成形性を向上し易い。しかし、マグネシウム合金にカルシウムと亜鉛の双方を含むと、逆に耐食性が低下する傾向にある。 Since the magnesium alloy further contains zinc in the above range, it is easy to improve the mechanical properties. Further, when the magnesium alloy further contains zinc in the above range, the warm formability can be easily improved. However, when the magnesium alloy contains both calcium and zinc, the corrosion resistance tends to decrease.
 (6)本開示のマグネシウム合金板の一例として、前記組成は、更に、0.10質量%以上1.00質量%以下のストロンチウムを含む形態が挙げられる。 (6) As an example of the magnesium alloy plate of the present disclosure, the composition further includes a form containing 0.10% by mass or more and 1.00% by mass or less of strontium.
 マグネシウム合金が更にストロンチウムを上記範囲で含むことで、機械的特性を向上し易い。また、マグネシウム合金が更にストロンチウムを上記範囲で含むことで、耐熱性を向上できる上に、耐高温クリープ性を向上できる。 Since the magnesium alloy further contains strontium in the above range, it is easy to improve the mechanical properties. Further, when the magnesium alloy further contains strontium in the above range, the heat resistance can be improved and the high temperature creep resistance can be improved.
 (7)本開示のマグネシウム合金板の一例として、前記晶出物の数密度が0.010個/μm以上0.060個/μm以下である形態が挙げられる。 (7) As an example of the magnesium alloy plate of the present disclosure, there is a form in which the number density of the crystallized products is 0.010 / μm 2 or more and 0.060 / μm 2 or less.
 晶出物の数密度が0.060個/μm以下であることで、腐食の起点となり得る晶出物が少なく、耐食性の低下を抑制し易い。一方、晶出物の数密度が0.010個/μm以上であることで、晶出物による耐力の向上効果が期待できる。 When the number density of crystallization is 0.060 / μm 2 or less, there are few crystallizations that can be the starting point of corrosion, and it is easy to suppress a decrease in corrosion resistance. On the other hand, when the number density of the crystallized material is 0.010 / μm 2 or more, the effect of improving the yield strength of the crystallized material can be expected.
 (8)本開示のマグネシウム合金板の一例として、熱伝導率が100W/m・K以上である形態が挙げられる。 (8) As an example of the magnesium alloy plate of the present disclosure, there is a form in which the thermal conductivity is 100 W / m · K or more.
 上記形態は、AZ91やAZ31等の公知の規格合金よりも熱伝導性に優れる。 The above form is superior in thermal conductivity to known standard alloys such as AZ91 and AZ31.
 (9)本開示のマグネシウム合金板の一例として、0.2%耐力が200MPa以上である形態が挙げられる。 (9) As an example of the magnesium alloy plate of the present disclosure, there is a form in which the 0.2% proof stress is 200 MPa or more.
 上記形態は、高い耐力を有する。 The above form has high yield strength.
 (10)本開示のマグネシウム合金板の一例として、X線回折ピークの半値幅が0.07°以上0.40°以下である形態が挙げられる。 (10) As an example of the magnesium alloy plate of the present disclosure, there is a form in which the half width of the X-ray diffraction peak is 0.07 ° or more and 0.40 ° or less.
 X線回折ピークの半値幅は、マグネシウム合金板の製造過程で導入された歪みと相関する。X線回折ピークの半値幅が上記範囲を満たすことは、マグネシウム合金板に特定量の歪みが残存していると言える。マグネシウム合金板が特定量の歪みを有することで、マグネシウム合金板に温間成形を施し易く、温間成形による成形性を向上できる。 The half width of the X-ray diffraction peak correlates with the strain introduced in the manufacturing process of the magnesium alloy plate. When the half width of the X-ray diffraction peak satisfies the above range, it can be said that a specific amount of strain remains in the magnesium alloy plate. When the magnesium alloy plate has a specific amount of strain, it is easy to perform warm forming on the magnesium alloy plate, and the formability by warm forming can be improved.
 (11)本開示の一態様に係るマグネシウム合金成形体は、上記(1)から(10)のいずれか1つに記載のマグネシウム合金板を含む。 (11) The magnesium alloy molded product according to one aspect of the present disclosure includes the magnesium alloy plate according to any one of (1) to (10) above.
 本開示のマグネシウム合金成形体は、本開示のマグネシウム合金板を含むことで、熱伝導性に優れると共に、耐食性に優れる。 The magnesium alloy molded body of the present disclosure is excellent in thermal conductivity and corrosion resistance by containing the magnesium alloy plate of the present disclosure.
 (12)本開示の一態様に係るマグネシウム合金板の製造方法は、マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造して板状の鋳造材を作製する鋳造工程と、前記鋳造材に圧延を施してマグネシウム合金板を作製する圧延工程とを備え、前記鋳造工程では、2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる前記マグネシウム合金を準備し、前記溶湯の冷却速度を800℃/秒以上とする。 (12) The method for producing a magnesium alloy plate according to one aspect of the present disclosure includes a casting step of continuously casting a molten magnesium alloy by a twin roll casting method to produce a plate-shaped cast material, and rolling the cast material. The casting step includes a rolling step of applying the magnesium alloy plate to produce a magnesium alloy plate, and the casting step contains less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, and the balance is magnesium and unavoidable impurities. A magnesium alloy is prepared, and the cooling rate of the molten metal is set to 800 ° C./sec or more.
 マグネシウム合金に含まれるアルミニウムの含有量が2.00質量%未満であることで、熱伝導性の低下を抑制できる。マグネシウム合金に1.00質量%以下のマンガンを含むことで、製造過程で鉄等の不純物が混入されることを抑制できる。マグネシウム合金中にアルミニウム及びマンガンが含まれる場合、鋳造過程において、マグネシウムからなる母相中に、アルミニウムとマンガンとを含む晶出物が生成され得る。本開示のマグネシウム合金板の製造方法では、鋳造時の冷却速度が800℃/秒以上と速い。よって、鋳造過程で上記晶出物が生成されたとしても、晶出物は微細である。具体的には、晶出物は、最大径が1.50μm以下を満たす。晶出物が微細であることで、得られるマグネシウム合金板において、晶出物が腐食の起点になり難く、耐食性の低下を抑制できる。以上より、本開示のマグネシウム合金板の製造方法は、熱伝導性に優れると共に、耐食性に優れるマグネシウム合金板が得られる。 When the content of aluminum contained in the magnesium alloy is less than 2.00% by mass, the decrease in thermal conductivity can be suppressed. By containing 1.00% by mass or less of manganese in the magnesium alloy, it is possible to prevent impurities such as iron from being mixed in during the manufacturing process. When aluminum and manganese are contained in the magnesium alloy, crystallizations containing aluminum and manganese may be produced in the matrix composed of magnesium in the casting process. In the method for producing a magnesium alloy plate of the present disclosure, the cooling rate at the time of casting is as fast as 800 ° C./sec or more. Therefore, even if the above-mentioned crystallized product is produced in the casting process, the crystallized product is fine. Specifically, the crystallized product has a maximum diameter of 1.50 μm or less. Since the crystallized material is fine, the crystallized material is unlikely to be the starting point of corrosion in the obtained magnesium alloy plate, and the deterioration of corrosion resistance can be suppressed. From the above, the method for producing a magnesium alloy plate of the present disclosure can obtain a magnesium alloy plate having excellent thermal conductivity and corrosion resistance.
 (13)本開示のマグネシウム合金板の製造方法の一例として、前記鋳造工程と前記圧延工程との間に、前記鋳造材に熱処理を施して均質化する熱処理工程を備え、前記圧延工程では、前記熱処理工程で熱処理された前記鋳造材に圧延を施す形態が挙げられる。 (13) As an example of the method for producing a magnesium alloy plate of the present disclosure, a heat treatment step of heat-treating the cast material to homogenize it is provided between the casting step and the rolling step. Examples thereof include a form in which the cast material heat-treated in the heat treatment step is rolled.
 鋳造工程と圧延工程との間に熱処理工程を備えることで、マグネシウム合金の組成を均質化することができ、特性のばらつきを抑制し易い。 By providing a heat treatment process between the casting process and the rolling process, the composition of the magnesium alloy can be homogenized, and it is easy to suppress variations in characteristics.
 (14)本開示の一態様に係るマグネシウム合金成形体の製造方法は、上記(12)又は上記(13)に記載のマグネシウム合金板の製造方法で得られたマグネシウム合金板に温間成形を施してマグネシウム合金成形体を作製する成形工程を備え、前記温間成形の温度を200℃以上300℃以下とする。 (14) In the method for producing a magnesium alloy molded product according to one aspect of the present disclosure, the magnesium alloy plate obtained by the method for producing a magnesium alloy plate according to the above (12) or (13) is warm-formed. A molding step for producing a magnesium alloy molded body is provided, and the temperature of the warm molding is set to 200 ° C. or higher and 300 ° C. or lower.
 上述したマグネシウム合金板の製造方法で得られたマグネシウム合金板は、圧延によって特定量の歪みが残存している。歪みが残存したマグネシウム合金板に温間成形を施すことで、温間成形による成形性が向上される。よって、本開示のマグネシウム合金成形体の製造方法は、熱伝導性に優れると共に、耐食性に優れる上に、割れ等の損傷が少ない、又は実質的に存在しないマグネシウム合金成形体が得られる。 The magnesium alloy plate obtained by the above-mentioned method for manufacturing a magnesium alloy plate has a specific amount of strain remaining due to rolling. By performing warm forming on the magnesium alloy plate in which the strain remains, the moldability by warm forming is improved. Therefore, the method for producing a magnesium alloy molded product of the present disclosure can obtain a magnesium alloy molded product which is excellent in thermal conductivity, excellent corrosion resistance, has little damage such as cracks, or is substantially nonexistent.
 [本開示の実施形態の詳細]
 以下、本開示の実施形態のマグネシウム合金板、マグネシウム合金成形体、マグネシウム合金板の製造方法、及びマグネシウム合金成形体の製造方法を具体的に説明する。
[Details of Embodiments of the present disclosure]
Hereinafter, the magnesium alloy plate, the magnesium alloy molded body, the method for producing the magnesium alloy plate, and the method for producing the magnesium alloy molded body according to the embodiment of the present disclosure will be specifically described.
 <マグネシウム合金板>
 実施形態のマグネシウム合金板は、マグネシウム合金からなる板材である。マグネシウム合金板を構成するマグネシウム合金は、0質量%超2.00質量%未満のアルミニウムと、0質量%超1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる組成を備える。また、マグネシウム合金板を構成するマグネシウム合金は、アルミニウムとマンガンとを含む晶出物が分散された組織を備える。以下、詳細に説明する。
<Magnesium alloy plate>
The magnesium alloy plate of the embodiment is a plate material made of a magnesium alloy. The magnesium alloy constituting the magnesium alloy plate contains aluminum of more than 0% by mass and less than 2.00% by mass and manganese of more than 0% by mass and less than 1.00% by mass, and the balance is composed of magnesium and unavoidable impurities. Be prepared. Further, the magnesium alloy constituting the magnesium alloy plate has a structure in which crystals containing aluminum and manganese are dispersed. Hereinafter, a detailed description will be given.
 〔組成〕
 実施形態のマグネシウム合金板を構成するマグネシウム合金は、マグネシウム(Mg)に固溶可能な溶質元素であるアルミニウム(Al)及びマンガン(Mn)を特定の範囲で含むと共に、マグネシウムを最も多く含む。マグネシウムの含有量は、90.00質量%以上である。マグネシウム合金は、更に、カルシウム(Ca)、亜鉛(Zn)、ストロンチウム(Sr)等を特定の範囲で含むことができる。
〔composition〕
The magnesium alloy constituting the magnesium alloy plate of the embodiment contains aluminum (Al) and manganese (Mn), which are solute elements soluble in magnesium (Mg), in a specific range, and also contains the largest amount of magnesium. The magnesium content is 90.00% by mass or more. The magnesium alloy can further contain calcium (Ca), zinc (Zn), strontium (Sr) and the like in a specific range.
 〈アルミニウム〉
 アルミニウムは、耐食性の向上に寄与する。アルミニウムは、主として、マンガンと共に晶出物として存在する。アルミニウムとマンガンとを含む晶出物は、マグネシウムからなる母相中に分散して存在する。上記晶出物が母相中に分散されていることで、耐力の向上効果が期待できる。
<aluminum>
Aluminum contributes to the improvement of corrosion resistance. Aluminum mainly exists as a crystallized product together with manganese. Crystals containing aluminum and manganese are dispersed in the matrix composed of magnesium. Since the above-mentioned crystals are dispersed in the matrix phase, the effect of improving the yield strength can be expected.
 アルミニウムの含有量は、0.10質量%以上であることが好ましい。アルミニウムの含有量が0.10質量%以上であることで、耐食性を向上し易い。アルミニウムの含有量は、2.00質量%未満である。アルミニウムは、耐食性の向上に寄与するものの、熱伝導性を低下させ得る。アルミニウムの含有量が2.00質量%未満であることで、熱伝導性の低下を抑制できる。アルミニウムの含有量は、0.10質量%以上2.00質量%未満、更に0.20質量%以上1.50質量%以下、特に0.25質量%以上1.00質量%以下であることが挙げられる。 The aluminum content is preferably 0.10% by mass or more. When the aluminum content is 0.10% by mass or more, the corrosion resistance can be easily improved. The content of aluminum is less than 2.00% by mass. Aluminum contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity. When the aluminum content is less than 2.00% by mass, the decrease in thermal conductivity can be suppressed. The content of aluminum is 0.10% by mass or more and less than 2.00% by mass, and further 0.20% by mass or more and 1.50% by mass or less, particularly 0.25% by mass or more and 1.00% by mass or less. Can be mentioned.
 〈マンガン〉
 マンガンは、製造過程で鉄(Fe)等の不純物が混入することを抑制する。鉄等の不純物の混入を抑制することで、耐食性の低下を抑制し易い。マンガンは、上述したように、主として、アルミニウムと共に晶出物として存在する。
<manganese>
Manganese suppresses the mixing of impurities such as iron (Fe) in the manufacturing process. By suppressing the mixing of impurities such as iron, it is easy to suppress the deterioration of corrosion resistance. As mentioned above, manganese mainly exists as a crystallized product together with aluminum.
 マンガンの含有量は、0.10質量%以上であることが好ましい。マンガンの含有量が0.10質量%以上であることで、製造過程で鉄等の不純物が混入することを抑制し易い。マンガンの含有量は、1.00質量%以下である。マンガンが多過ぎると、アルミニウムとマンガンとを含む晶出物が多く生成され易い。上記晶出物は、腐食の起点になり易く、耐食性を低下し得る。上記晶出物は、特定の範囲で母相中に分散されていることが好ましい。マンガンの含有量が1.00質量%以下であることで、上記晶出物が過度に生成されることを抑制できる。マンガンの含有量は、0.10質量%以上1.00質量%以下、更に0.20質量%以上0.80質量%以下、特に0.20質量%以上0.70質量%以下であることが挙げられる。 The manganese content is preferably 0.10% by mass or more. When the manganese content is 0.10% by mass or more, it is easy to prevent impurities such as iron from being mixed in during the manufacturing process. The manganese content is 1.00% by mass or less. If the amount of manganese is too large, a large amount of crystallized products containing aluminum and manganese are likely to be produced. The above-mentioned crystallized product tends to be a starting point of corrosion and may reduce corrosion resistance. The crystallized product is preferably dispersed in the matrix in a specific range. When the manganese content is 1.00% by mass or less, it is possible to suppress excessive formation of the above-mentioned crystallized products. The manganese content may be 0.10% by mass or more and 1.00% by mass or less, further 0.20% by mass or more and 0.80% by mass or less, and particularly 0.20% by mass or more and 0.70% by mass or less. Can be mentioned.
 〈カルシウム、亜鉛、ストロンチウム〉
 カルシウム、亜鉛、及びストロンチウムは、強度や耐力といった機械的特性の向上に寄与する。
<Calcium, zinc, strontium>
Calcium, zinc, and strontium contribute to the improvement of mechanical properties such as strength and yield strength.
 カルシウムは、難燃性の向上にも寄与する。カルシウムの含有量は、0.10質量%以上1.00質量%以下であることが挙げられる。カルシウムの含有量は、更に0.10質量%以上0.80質量%以下、特に0.10質量%以上0.50質量%以下であることが挙げられる。 Calcium also contributes to improving flame retardancy. The calcium content may be 0.10% by mass or more and 1.00% by mass or less. Further, the calcium content is 0.10% by mass or more and 0.80% by mass or less, particularly 0.10% by mass or more and 0.50% by mass or less.
 亜鉛は、温間成形性の向上にも寄与する。亜鉛の含有量は、0.10質量%以上2.00質量%以下であることが挙げられる。亜鉛の含有量は、更に0.10質量%以上1.50質量%以下、特に0.10質量%以上1.00質量%以下であることが挙げられる。 Zinc also contributes to the improvement of warm moldability. The zinc content is 0.10% by mass or more and 2.00% by mass or less. Further, the zinc content is 0.10% by mass or more and 1.50% by mass or less, and in particular, 0.10% by mass or more and 1.00% by mass or less.
 ストロンチウムは、耐熱性の向上にも寄与する。ストロンチウムは、耐高温クリープ性の向上にも寄与する。高温クリープ性とは、高温環境下で一定の応力が加わった材料が、時間の経過と共に変形する現象である。ストロンチウムの含有量は、0.10質量%以上1.00質量%以下であることが挙げられる。ストロンチウムの含有量は、更に0.20質量%以上0.80質量%以下、特に0.20質量%以上0.50質量%以下であることが挙げられる。 Strontium also contributes to the improvement of heat resistance. Strontium also contributes to the improvement of high temperature creep resistance. High-temperature creep property is a phenomenon in which a material to which a constant stress is applied in a high-temperature environment deforms with the passage of time. The content of strontium is 0.10% by mass or more and 1.00% by mass or less. Further, the content of strontium is 0.20% by mass or more and 0.80% by mass or less, particularly 0.20% by mass or more and 0.50% by mass or less.
 マグネシウム合金は、カルシウム、亜鉛、及びストロンチウムからなる群より選択される1種類の元素を含むことが挙げられる。マグネシウム合金は、カルシウムとストロンチウム、又は亜鉛とストロンチウムの組み合わせで含むことが挙げられる。カルシウムと亜鉛の組み合わせは、耐食性が低下する傾向にある。 Magnesium alloy may contain one element selected from the group consisting of calcium, zinc, and strontium. Magnesium alloys include calcium and strontium, or zinc and strontium in combination. The combination of calcium and zinc tends to reduce corrosion resistance.
 〈不可避不純物〉
 不可避不純物は、特に制限はなく、例えば、鉄、シリコン(Si)、ニッケル(Ni)、コバルト(Co)、銅(Cu)等が挙げられる。不可避不純物の含有量は、合計で1.00質量%以下、更に0.50質量%以下、0.15質量%以下、0.05質量%以下であることが好ましい。特に、耐食性の向上を阻害し得る鉄、ニッケル、コバルトの合計含有量は、0.05質量%未満、更に0.01質量%以下であることが好ましい。
<Inevitable impurities>
The unavoidable impurities are not particularly limited, and examples thereof include iron, silicon (Si), nickel (Ni), cobalt (Co), and copper (Cu). The total content of unavoidable impurities is preferably 1.00% by mass or less, more preferably 0.50% by mass or less, 0.15% by mass or less, and 0.05% by mass or less. In particular, the total content of iron, nickel, and cobalt that can hinder the improvement of corrosion resistance is preferably less than 0.05% by mass, more preferably 0.01% by mass or less.
 マグネシウム合金の組成は、成分分析を行うことで確認できる。成分分析には、例えば、走査型電子顕微鏡(SEM)に付属されるエネルギー分散型X線分光法(EDX)又は電子線マイクロアナライザ(EPMA)等が利用できる。その他の成分分析法は、誘導結合プラズマ発光分光分析法(ICP-OES)又は発光分光分析等が挙げられる。成分分析は、ICP-OESを利用することが好ましい。 The composition of the magnesium alloy can be confirmed by performing component analysis. For component analysis, for example, energy dispersive X-ray spectroscopy (EDX) or electron probe microanalyzer (EPMA) attached to a scanning electron microscope (SEM) can be used. Other component analysis methods include inductively coupled plasma emission spectroscopic analysis (ICP-OES) or emission spectroscopic analysis. It is preferable to use ICP-OES for component analysis.
 〔組織〕
 実施形態のマグネシウム合金板を構成するマグネシウム合金は、マグネシウムを主成分とする母相と、母相中に分散される晶出物とを含む組織を備える。母相は、マグネシウムにアルミニウム等の溶質元素が固溶した固溶体から構成される。晶出物は、アルミニウムとマンガンとを含む。
[Organization]
The magnesium alloy constituting the magnesium alloy plate of the embodiment includes a structure containing a matrix containing magnesium as a main component and crystals dispersed in the matrix. The matrix is composed of a solid solution in which a solute element such as aluminum is dissolved in magnesium. The crystallization contains aluminum and manganese.
 〈晶出物の粒径〉
 晶出物は、代表的には、微細な粒子である。具体的には、晶出物の最大径は、0.20μm以上1.50μm以下である。晶出物は、上述したように、腐食の起点になり易く、耐食性を低下し得る。晶出物の最大径が1.50μm以下であることで、晶出物が生成されたとしても、晶出物が腐食の起点になり難く、耐食性の低下を抑制できる。一方、晶出物の最大径が0.20μm以上であることで、晶出物の分散による耐力の向上効果が期待できる。晶出物の最大径は、更に0.50μm以上1.50μm以下、特に0.80μm以上1.40μm以下、1.00μm以上1.40μm以下であることが挙げられる。
<particle size of crystallized material>
The crystallization is typically fine particles. Specifically, the maximum diameter of the crystallized product is 0.20 μm or more and 1.50 μm or less. As described above, the crystallized product tends to be a starting point of corrosion and can reduce the corrosion resistance. When the maximum diameter of the crystallized product is 1.50 μm or less, even if the crystallized product is generated, the crystallized product is unlikely to be the starting point of corrosion, and a decrease in corrosion resistance can be suppressed. On the other hand, when the maximum diameter of the crystallized product is 0.20 μm or more, the effect of improving the yield strength due to the dispersion of the crystallized product can be expected. Further, the maximum diameter of the crystallized product is 0.50 μm or more and 1.50 μm or less, particularly 0.80 μm or more and 1.40 μm or less, and 1.00 μm or more and 1.40 μm or less.
 晶出物の平均粒径は、0.20μm以上0.40μm以下であることが挙げられる。晶出物の平均粒径が0.20μm以上であることで、晶出物の分散による耐力の向上効果が期待できる。一方、晶出物の平均粒径が0.40μm以下であることで、晶出物が生成されたとしても、晶出物が腐食の起点になり難く、耐食性の低下を抑制できる。晶出物の平均粒径は、更に0.25μm以上0.38μm以下、特に0.28μm以上0.36μm以下であることが挙げられる。 The average particle size of the crystallized product is 0.20 μm or more and 0.40 μm or less. When the average particle size of the crystallized product is 0.20 μm or more, the effect of improving the yield strength due to the dispersion of the crystallized product can be expected. On the other hand, when the average particle size of the crystallized product is 0.40 μm or less, even if the crystallized product is generated, the crystallized product is unlikely to be the starting point of corrosion, and a decrease in corrosion resistance can be suppressed. Further, the average particle size of the crystallized product is 0.25 μm or more and 0.38 μm or less, particularly 0.28 μm or more and 0.36 μm or less.
 晶出物の最大径及び平均粒径は、マグネシウム合金板の表面又は断面において、卓上顕微鏡によって取得した観察像を利用して求められる。観察像において、晶出物が200個以上含まれるように観察視野を取得する。観察視野は一つでも複数でもよい。複数の観察視野を取得する場合、各観察視野内の晶出物の合計数が200個以上となるように各観察視野を取得する。複数の観察視野を取得する場合、観察視野数は5個以上であることが挙げられる。各観察視野のサイズは、80μm×60μmとすることが挙げられる。各観察視野の観察像を二値化処理して0.20μm以上の晶出物を抽出する。抽出した晶出物の各々について、円相当径を求める。円相当径とは、抽出した晶出物の面積を有する真円の直径である。求めた円相当径のうち最大の円相当径を、晶出物の最大径とする。マグネシウム合金内の晶出物の最大径は、各観察視野の最大径のうち、最も大きい値とする。また、求めた円相当径の平均値を、晶出物の平均粒径とする。マグネシウム合金内の晶出物の平均粒径は、全観察視野の平均粒径の平均値とする。 The maximum diameter and average particle size of the crystallized material can be determined by using an observation image acquired by a tabletop microscope on the surface or cross section of the magnesium alloy plate. The observation field of view is acquired so that the observation image contains 200 or more crystallized materials. The observation field of view may be one or more. When acquiring a plurality of observation visual fields, each observation visual field is acquired so that the total number of crystals in each observation visual field is 200 or more. When acquiring a plurality of observation visual fields, the number of observation visual fields may be 5 or more. The size of each observation field may be 80 μm × 60 μm. The observation image of each observation field is binarized to extract crystallization of 0.20 μm or more. For each of the extracted crystals, determine the equivalent circle diameter. The equivalent circle diameter is the diameter of a perfect circle having the area of the extracted crystallized material. The maximum circle-equivalent diameter of the obtained circle-equivalent diameters is defined as the maximum diameter of the crystallized material. The maximum diameter of the crystallized material in the magnesium alloy shall be the largest value among the maximum diameters of each observation field of view. Further, the average value of the obtained circle-equivalent diameter is defined as the average particle size of the crystallized product. The average particle size of the crystals in the magnesium alloy shall be the average value of the average particle size of the entire observation field.
 〈晶出物の数密度〉
 晶出物の数密度は、0.010個/μm以上0.060個/μm以下であることが挙げられる。晶出物の数密度が0.060個/μm以下であることで、腐食の起点となり得る晶出物が少なく、耐食性の低下を抑制し易い。一方、晶出物の数密度が0.010個/μm以上であることで、晶出物による耐力の向上効果が期待できる。晶出物の数密度は、更に0.012個/μm以上0.050個/μm以下、特に0.013個/μm以上0.045個/μm以下であることが挙げられる。晶出物の数密度は、卓上顕微鏡によって取得した上記観察像を利用して求められる。各観察視野において、観察視野中の抽出した晶出物の存在数を測定する。晶出物の存在数を視野面積で除した値の平均値を、晶出物の数密度とする。マグネシウム合金内の晶出物の数密度は、全観察視野の晶出物の数密度の平均値とする。
<Number density of crystallization>
The number density of crystallization is 0.010 / μm 2 or more and 0.060 / μm 2 or less. When the number density of crystallization is 0.060 / μm 2 or less, there are few crystallizations that can be the starting point of corrosion, and it is easy to suppress a decrease in corrosion resistance. On the other hand, when the number density of the crystallized material is 0.010 / μm 2 or more, the effect of improving the yield strength of the crystallized material can be expected. Further, the number density of the crystallization is 0.012 / μm 2 or more and 0.050 / μm 2 or less, particularly 0.013 / μm 2 or more and 0.045 / μm 2 or less. The number density of the crystallization is determined by using the above-mentioned observation image acquired by a tabletop microscope. In each observation field, the number of extracted crystals in the observation field is measured. The average value obtained by dividing the number of crystallizations by the visual field area is defined as the number density of crystallizations. The number density of the crystallized matter in the magnesium alloy shall be the average value of the number density of the crystallized matter in the entire observation field.
 〔熱伝導率〕
 実施形態のマグネシウム合金板の熱伝導率は、100W/m・K以上であることが挙げられる。熱伝導率が100W/m・K以上であれば、実施形態のマグネシウム合金板は、AZ91やAZ31等の公知の規格合金よりも熱伝導性に優れる。実施形態のマグネシウム合金板が熱伝導性に優れる理由は、マグネシウム合金板を構成するマグネシウム合金中のアルミニウムの含有量が少ないからである。マグネシウム合金板の熱伝導率は、高いほど好ましく、更に120W/m・K以上、特に130W/m・K以上であることが挙げられる。マグネシウム合金板の熱伝導率は、150W/m・K未満であることが挙げられる。熱伝導率は、市販の測定装置を用いて、レーザーフラッシュ法や光交流法を利用して求められる。
〔Thermal conductivity〕
The thermal conductivity of the magnesium alloy plate of the embodiment is 100 W / m · K or more. When the thermal conductivity is 100 W / m · K or more, the magnesium alloy plate of the embodiment is superior in thermal conductivity to known standard alloys such as AZ91 and AZ31. The reason why the magnesium alloy plate of the embodiment is excellent in thermal conductivity is that the content of aluminum in the magnesium alloy constituting the magnesium alloy plate is small. The higher the thermal conductivity of the magnesium alloy plate, the more preferable it is, and further, it is mentioned that it is 120 W / m · K or more, particularly 130 W / m · K or more. The thermal conductivity of the magnesium alloy plate is less than 150 W / m · K. The thermal conductivity is obtained by using a commercially available measuring device and using a laser flash method or an optical alternating current method.
 〔腐食生成物の面積率〕
 実施形態のマグネシウム合金板の腐食生成物の面積率は、7.0%以下であることが挙げられる。腐食生成物は、母相が晶出物を起点として化学的又は電気化学的に侵食されるかもしくは材質的に劣化することで生成された物質である。腐食生成物の面積率が7.0%以下であれば、実施形態のマグネシウム合金板は、耐食性に優れる。実施形態のマグネシウム合金板が耐食性に優れる理由は、晶出物の最大径が1.50μm以下と微細であるからである。マグネシウム合金板の腐食生成物の面積率は、小さいほど好ましく、更に3.0%以下、特に2.0%以下であることが挙げられる。
[Area ratio of corrosion products]
The area ratio of the corrosion product of the magnesium alloy plate of the embodiment is 7.0% or less. A corrosion product is a substance produced when the matrix is chemically or electrochemically eroded or materially deteriorated starting from a crystallized product. When the area ratio of the corrosion product is 7.0% or less, the magnesium alloy plate of the embodiment has excellent corrosion resistance. The reason why the magnesium alloy plate of the embodiment is excellent in corrosion resistance is that the maximum diameter of the crystallized product is as fine as 1.50 μm or less. The smaller the area ratio of the corrosion product of the magnesium alloy plate is, the more preferable it is, and more preferably 3.0% or less, particularly 2.0% or less.
 マグネシウム合金板の腐食生成物の面積率は、JIS H 0541:2003「マグネシウム及びマグネシウム合金のアルカリ性塩水腐食試験方法」に準拠した測定によって求められる。アルカリ性塩水噴霧試験は、JIS Z 2371:2015の規定に従って行う。試験片は、平板とし、代表的なサイズとして、厚さ3mm以下で、150mm×70mmとする。試験時間は96時間とする。試験後の試験片に対して、試験片の表面をスキャナで取り込み、画像解析ソフトウェア「Image J」を用いて二値化処理し、腐食生成物の面積を求める。腐食生成物の面積率は、腐食生成物の面積を、試験片のうちアルカリ性塩水噴霧試験がなされる暴露面積で除した比率をパーセンテージで示した値とする。 The area ratio of corrosion products of magnesium alloy plates is determined by measurement in accordance with JIS H 0541: 2003 "Alkaline salt water corrosion test method for magnesium and magnesium alloys". The alkaline salt spray test is carried out in accordance with JIS Z 2371: 2015. The test piece shall be a flat plate, and as a typical size, the thickness shall be 3 mm or less, and the size shall be 150 mm × 70 mm. The test time is 96 hours. The surface of the test piece after the test is captured by a scanner and binarized using the image analysis software "ImageJ" to determine the area of the corrosion product. The area ratio of the corrosion product is a value obtained by dividing the area of the corrosion product by the exposed area of the test piece to be subjected to the alkaline salt spray test as a percentage.
 〔0.2%耐力〕
 実施形態のマグネシウム合金板の0.2%耐力は、200MPa以上であることが挙げられる。0.2%耐力が200MPa以上であれば、実施形態のマグネシウム合金板は、高い耐力を有することで、破断し難い。実施形態のマグネシウム合金板が高い耐力を有する理由は、最大径が0.20μm以上の晶出物が母相中に分散されているからである。マグネシウム合金板の0.2%耐力は、高いほど好ましく、更に210MPa以上、特に220MPa以上であることが挙げられる。
[0.2% proof stress]
The 0.2% proof stress of the magnesium alloy plate of the embodiment is 200 MPa or more. When the 0.2% proof stress is 200 MPa or more, the magnesium alloy plate of the embodiment has a high proof stress and is unlikely to break. The reason why the magnesium alloy plate of the embodiment has a high yield strength is that crystals having a maximum diameter of 0.20 μm or more are dispersed in the matrix phase. The higher the 0.2% proof stress of the magnesium alloy plate is, the more preferable it is, and further, 210 MPa or more, particularly 220 MPa or more can be mentioned.
 0.2%耐力は、JIS Z 2241:2011「金属材料引張試験方法」に準拠して、引張試験を行って測定する。0.2%耐力は、室温での値である。室温は、20℃±15℃である。試験片は、JIS 13B号の板状片とし、マグネシウム合金板の任意の箇所から採取する。なお、マグネシウム合金板の周縁及びその近傍の領域を除いて試験片を採取すると、適正な測定が行い易く好ましい。例えば、上記周縁から5mm以上離れた内側の領域から、試験片を採取することが挙げられる。 0.2% proof stress is measured by performing a tensile test in accordance with JIS Z 2241: 2011 "Metallic Material Tensile Test Method". The 0.2% proof stress is a value at room temperature. Room temperature is 20 ° C ± 15 ° C. The test piece shall be a JIS 13B plate-shaped piece, and shall be collected from any location on the magnesium alloy plate. It is preferable to collect the test piece excluding the peripheral edge of the magnesium alloy plate and the region in the vicinity thereof so that proper measurement can be easily performed. For example, a test piece may be collected from an inner region 5 mm or more away from the peripheral edge.
 〔その他〕
 実施形態のマグネシウム合金板は、X線回折ピークの半値幅が0.07°以上0.40°以下であることが挙げられる。具体的には、実施形態のマグネシウム合金板は、CuKαX線を用いたX線回折による(0002)面のピークの半値幅が0.07°以上0.40°以下であることが挙げられる。X線回折ピークの半値幅は、マグネシウム合金板の製造過程で導入された歪みと相関する。X線回折ピークの半値幅が大きいと、マグネシウム合金板の歪みの量が大きいことを意味する。半値幅が0.07°以上であることは、マグネシウム合金板がある程度の歪みを有するということである。マグネシウム合金板がある程度の歪みを有することで、マグネシウム合金板に温間成形を施し易く、温間成形による成形性を向上できる。一方、半値幅が0.40°以下であることは、マグネシウム合金板に過剰な歪みが残存していないと言える。マグネシウム合金板に過剰な歪みが残存していないことで、マグネシウム合金板の室温延性の低下を抑制できる。マグネシウム合金板におけるX線回折ピークの半値幅は、更に0.08°以上0.30°以下、特に0.10°以上0.20°以下であることが挙げられる。
〔others〕
In the magnesium alloy plate of the embodiment, the half width of the X-ray diffraction peak is 0.07 ° or more and 0.40 ° or less. Specifically, in the magnesium alloy plate of the embodiment, the half width of the peak of the (0002) plane by X-ray diffraction using CuKαX-ray is 0.07 ° or more and 0.40 ° or less. The half width of the X-ray diffraction peak correlates with the strain introduced in the manufacturing process of the magnesium alloy plate. When the half width of the X-ray diffraction peak is large, it means that the amount of distortion of the magnesium alloy plate is large. A half-value width of 0.07 ° or more means that the magnesium alloy plate has some strain. When the magnesium alloy plate has a certain degree of distortion, it is easy to perform warm forming on the magnesium alloy plate, and the moldability by warm forming can be improved. On the other hand, when the half width is 0.40 ° or less, it can be said that excessive strain does not remain in the magnesium alloy plate. Since no excessive strain remains on the magnesium alloy plate, it is possible to suppress a decrease in room temperature ductility of the magnesium alloy plate. The half width of the X-ray diffraction peak in the magnesium alloy plate is further 0.08 ° or more and 0.30 ° or less, particularly 0.10 ° or more and 0.20 ° or less.
 <マグネシウム合金成形体>
 実施形態のマグネシウム合金成形体は、上述した実施形態のマグネシウム合金板を含む。実施形態のマグネシウム合金成形体は、上述した実施形態のマグネシウム合金板を用いてプレス成形したものであれば特に制限はなく、電子機器の筐体、自動車用の各種パネル、産業用機器部品等が挙げられる。
<Magnesium alloy molded product>
The magnesium alloy molded product of the embodiment includes the magnesium alloy plate of the above-described embodiment. The magnesium alloy molded body of the embodiment is not particularly limited as long as it is press-molded using the magnesium alloy plate of the above-described embodiment, and includes housings for electronic devices, various panels for automobiles, industrial equipment parts, and the like. Can be mentioned.
 <マグネシウム合金板の製造方法、及びマグネシウム合金成形体の製造方法>
 実施形態のマグネシウム合金板の製造方法は、図1に示すように、鋳造工程1と圧延工程3とを備える。実施形態のマグネシウム合金板の製造方法は、鋳造工程1と圧延工程3との間に熱処理工程2を備えることができる。
<Manufacturing method of magnesium alloy plate and manufacturing method of magnesium alloy molded product>
As shown in FIG. 1, the method for manufacturing a magnesium alloy plate of the embodiment includes a casting step 1 and a rolling step 3. The method for producing a magnesium alloy plate of the embodiment can include a heat treatment step 2 between the casting step 1 and the rolling step 3.
 実施形態のマグネシウム合金成形体の製造方法は、図1に示すように、鋳造工程1と圧延工程3と成形工程4とを備える。実施形態のマグネシウム合金成形体の製造方法は、鋳造工程1と圧延工程3との間に熱処理工程2を備えることができる。つまり、実施形態のマグネシウム合金成形体の製造方法は、実施形態のマグネシウム合金板の製造方法に対して、更に、圧延工程3の後に成形工程4を備える。以下、詳細に説明する。 As shown in FIG. 1, the method for manufacturing the magnesium alloy molded product of the embodiment includes a casting step 1, a rolling step 3, and a molding step 4. The method for producing a magnesium alloy molded product of the embodiment can include a heat treatment step 2 between the casting step 1 and the rolling step 3. That is, the method for manufacturing the magnesium alloy molded body of the embodiment further includes the molding step 4 after the rolling step 3 as compared with the method for manufacturing the magnesium alloy plate of the embodiment. Hereinafter, a detailed description will be given.
 〔鋳造工程〕
 鋳造工程1は、マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造して板状の鋳造材を作製する工程である。マグネシウム合金は、上述した特定の組成を有する。溶湯を構成するマグネシウム合金の組成は、製造過程においても維持される。よって、溶湯を構成するマグネシウム合金の組成と、得られるマグネシウム合金板を構成するマグネシウム合金の組成とは、同じである。双ロール鋳造法は、連続鋳造法の一種であって、急冷凝固が可能な鋳造法である。双ロール鋳造法は、可動鋳型である一対のロール間に溶湯を供給して、ロールに接触させることで溶湯を冷却して凝固させる。鋳造工程1において、マグネシウムからなる母相中に、アルミニウムとマンガンとを含む晶出物が生成され得る。
[Casting process]
The casting step 1 is a step of continuously casting a molten magnesium alloy by a double roll casting method to produce a plate-shaped cast material. Magnesium alloys have the specific composition described above. The composition of the magnesium alloy constituting the molten metal is maintained during the manufacturing process. Therefore, the composition of the magnesium alloy constituting the molten metal and the composition of the magnesium alloy constituting the obtained magnesium alloy plate are the same. The double roll casting method is a kind of continuous casting method and is a casting method capable of quenching and solidifying. In the twin-roll casting method, molten metal is supplied between a pair of rolls, which are movable molds, and brought into contact with the rolls to cool and solidify the molten metal. In the casting step 1, crystals containing aluminum and manganese can be produced in the matrix composed of magnesium.
 溶湯の冷却速度と、得られたマグネシウム合金板における晶出物の最大径とは、「y=-1.492ln(x)+11.485」の計算式で表される関係にある。記号「y」は、得られたマグネシウム合金板における晶出物の最大径である。晶出物の最大径の単位はμmである。記号「x」は、溶湯の冷却速度である。冷却速度の単位は℃/秒である。記号「ln」は、自然対数を意味する。上記計算式は、図2に示すように、実際に溶湯の冷却速度を変えてマグネシウム合金板を作製し、得られたマグネシウム合金板における晶出物の最大径を測定した結果から求めた近似式である。図2に示すグラフは、横軸が冷却速度であり、縦軸が晶出物の最大径である。図2に示すグラフでは、冷却速度を低い方から2.5℃/秒、100℃/秒、450℃/秒、1000℃/秒と変えて、それぞれの冷却速度においてマグネシウム合金板を作製したときの晶出物の最大径を黒丸で示している。なお、冷却速度以外の製造条件は全て同じである。上記計算式では、冷却速度及び晶出物の最大径の例として、以下が挙げられる。冷却速度が600℃/秒で、晶出物の最大径が1.9μmである。冷却速度が800℃/秒で、晶出物の最大径が1.5μmである。冷却速度が900℃/秒で、晶出物の最大径が1.3μmである。冷却速度は、冷却条件を調整することで変えられる。冷却条件としては、例えばロール内に流通される冷媒の温度や流量、流速、ロールの構成材料の熱伝導率等が挙げられる。 The cooling rate of the molten metal and the maximum diameter of the crystals in the obtained magnesium alloy plate are in a relationship expressed by the formula of "y = −1.492 ln (x) + 11.485". The symbol "y" is the maximum diameter of the crystallized product in the obtained magnesium alloy plate. The unit of the maximum diameter of the crystallized product is μm. The symbol "x" is the cooling rate of the molten metal. The unit of cooling rate is ° C / sec. The symbol "ln" means the natural logarithm. As shown in FIG. 2, the above calculation formula is an approximate formula obtained from the result of actually producing a magnesium alloy plate by changing the cooling rate of the molten metal and measuring the maximum diameter of the crystallized product in the obtained magnesium alloy plate. Is. In the graph shown in FIG. 2, the horizontal axis is the cooling rate and the vertical axis is the maximum diameter of the crystallized material. In the graph shown in FIG. 2, when the magnesium alloy plate is produced at each cooling rate by changing the cooling rate from the lowest to 2.5 ° C / sec, 100 ° C / sec, 450 ° C / sec, and 1000 ° C / sec. The maximum diameter of the crystallized material is indicated by a black circle. The manufacturing conditions other than the cooling rate are all the same. In the above formula, examples of the cooling rate and the maximum diameter of the crystallized product include the following. The cooling rate is 600 ° C./sec and the maximum diameter of the crystallized material is 1.9 μm. The cooling rate is 800 ° C./sec and the maximum diameter of the crystallized material is 1.5 μm. The cooling rate is 900 ° C./sec and the maximum diameter of the crystallized material is 1.3 μm. The cooling rate can be changed by adjusting the cooling conditions. Examples of the cooling conditions include the temperature and flow rate of the refrigerant flowing in the roll, the flow velocity, the thermal conductivity of the constituent materials of the roll, and the like.
 上記計算式より、溶湯の冷却速度は、800℃/秒以上とする。冷却速度が800℃/秒以上であることで、上記晶出物は微細である。具体的には、晶出物は、最大径が1.5μm以下を満たす。晶出物が微細であることで、得られるマグネシウム合金板において、晶出物が腐食の起点になり難く、耐食性の低下を抑制できる。冷却速度は、速いほど晶出物が微細となり易く、更に900℃/秒以上、950℃/秒以上、特に1000℃/秒以上であることが挙げられる。 From the above formula, the cooling rate of the molten metal is 800 ° C / sec or more. When the cooling rate is 800 ° C./sec or more, the crystallized product is fine. Specifically, the crystallized product has a maximum diameter of 1.5 μm or less. Since the crystallized material is fine, the crystallized material is unlikely to be the starting point of corrosion in the obtained magnesium alloy plate, and the deterioration of corrosion resistance can be suppressed. As for the cooling rate, the faster the crystallized material is, the finer the crystallized product is, and further, 900 ° C./sec or more, 950 ° C./sec or more, particularly 1000 ° C./sec or more.
 〔熱処理工程〕
 熱処理工程2は、鋳造工程で得られた鋳造材に熱処理を施して均質化する工程である。熱処理温度は、350℃以上450℃以下とすることが挙げられる。熱処理温度は、加熱対象である鋳造材の温度である。熱処理温度が350℃以上であることで、マグネシウム合金の組成を均質化させることができ、特性のばらつきを抑制することができる。一方、熱処理温度が450℃以下であることで、過度の熱処理を抑制できる。熱処理温度は、更に370℃以上430℃以下、特に380℃以上420℃以下とすることが挙げられる。熱処理の保持時間は、1時間以上24時間以下とすることが挙げられる。熱処理の保持時間が1時間以上であることで、マグネシウム合金の組成を均質化させることができ、特性のばらつきを抑制することができる。一方、熱処理の保持時間が24時間以下であることで、過度の熱処理を抑制できる。熱処理の保持時間は、更に2時間以上20時間以下、特に3時間以上10時間以下とすることが挙げられる。熱処理雰囲気は、大気雰囲気や窒素雰囲気等が挙げられる。熱処理工程2は、必須ではなく、省略できる。
[Heat treatment process]
The heat treatment step 2 is a step of subjecting the cast material obtained in the casting step to heat treatment to homogenize it. The heat treatment temperature may be 350 ° C. or higher and 450 ° C. or lower. The heat treatment temperature is the temperature of the casting material to be heated. When the heat treatment temperature is 350 ° C. or higher, the composition of the magnesium alloy can be homogenized, and variations in characteristics can be suppressed. On the other hand, when the heat treatment temperature is 450 ° C. or lower, excessive heat treatment can be suppressed. The heat treatment temperature may be further set to 370 ° C. or higher and 430 ° C. or lower, particularly 380 ° C. or higher and 420 ° C. or lower. The holding time of the heat treatment may be 1 hour or more and 24 hours or less. When the heat treatment holding time is 1 hour or more, the composition of the magnesium alloy can be homogenized, and variations in characteristics can be suppressed. On the other hand, when the heat treatment holding time is 24 hours or less, excessive heat treatment can be suppressed. The holding time of the heat treatment may be further set to 2 hours or more and 20 hours or less, particularly 3 hours or more and 10 hours or less. Examples of the heat treatment atmosphere include an atmospheric atmosphere and a nitrogen atmosphere. The heat treatment step 2 is not essential and can be omitted.
 〔圧延工程〕
 圧延工程3は、鋳造材に圧延を施してマグネシウム合金板を作製する工程である。熱処理工程2を行う場合、圧延工程3は、熱処理された鋳造材に圧延を施す。圧延は、互いに向かい合って配置された圧延ロールを備える圧延装置を用い、その圧延ロール間に鋳造材を挿通させる。このとき、鋳造材及び圧延ロールの各々を特定の温度に加熱する。
[Rolling process]
The rolling step 3 is a step of rolling the cast material to produce a magnesium alloy plate. When the heat treatment step 2 is performed, the rolling step 3 rolls the heat-treated cast material. For rolling, a rolling apparatus having rolling rolls arranged facing each other is used, and a casting material is inserted between the rolling rolls. At this time, each of the cast material and the rolling roll is heated to a specific temperature.
 圧延時の加熱温度は、鋳造材及び圧延ロール共に、200℃以上300℃以下とすることが挙げられる。加熱温度が200℃以上であることで、圧延時に割れが生じることを抑制できる。一方、加熱温度が300℃以下であることで、過度の加熱を抑制できる。加熱温度は、更に220℃以上280℃以下、特に230℃以上270℃以下とすることが挙げられる。なお、鋳造材の加熱温度は、圧延ロールに接触する直前の鋳造材の温度である。鋳造材の加熱は、加熱炉を別途設けて行うことが挙げられる。鋳造材が加熱炉から圧延ロールに接触するまでの間に温度が低下しないように、搬送距離や搬送時間を調整したり、雰囲気の温度を制御したりすることが挙げられる。 The heating temperature during rolling may be 200 ° C. or higher and 300 ° C. or lower for both the cast material and the rolling roll. When the heating temperature is 200 ° C. or higher, it is possible to suppress the occurrence of cracks during rolling. On the other hand, when the heating temperature is 300 ° C. or lower, excessive heating can be suppressed. The heating temperature may be further set to 220 ° C. or higher and 280 ° C. or lower, particularly 230 ° C. or higher and 270 ° C. or lower. The heating temperature of the cast material is the temperature of the cast material immediately before it comes into contact with the rolling roll. Heating of the cast material may be performed by separately providing a heating furnace. It is possible to adjust the transport distance and transport time, and control the temperature of the atmosphere so that the temperature does not drop between the time when the cast material comes into contact with the rolling roll from the heating furnace.
 圧延は、1パス以上行い、複数パス行ってもよい。1パス当たりの圧下率は、10%以上40%未満、更に20%以上30%以下とすることが挙げられる。複数パス行う場合、総圧下率は、50%以上95%以下、更に65%以上85%以下とすることが挙げられる。圧下率は、圧延前後の板材の板厚をそれぞれh1、h2とするとき、{(h1-h2)/h1}×100で算出される量で、圧延の加工度を表す。 Rolling may be performed in one or more passes, and may be performed in multiple passes. The reduction rate per pass is 10% or more and less than 40%, and further 20% or more and 30% or less. When performing a plurality of passes, the total reduction rate may be 50% or more and 95% or less, and further 65% or more and 85% or less. The rolling reduction is an amount calculated by {(h1-h2) / h1} × 100 when the plate thicknesses of the plate materials before and after rolling are h1 and h2, respectively, and represents the degree of rolling workability.
 実施形態のマグネシウム合金板の製造方法は、圧延工程3の後に、第二の熱処理工程を備えない。圧延工程3の後の第二の熱処理工程とは、特許文献1に開示される圧延後熱処理工程、及び時効熱処理工程を含む熱処理である。 The method for manufacturing a magnesium alloy plate of the embodiment does not include a second heat treatment step after the rolling step 3. The second heat treatment step after the rolling step 3 is a heat treatment including a post-rolling heat treatment step and an aging heat treatment step disclosed in Patent Document 1.
 〔成形工程〕
 成形工程4は、圧延工程3で得られたマグネシウム合金板に温間成形を施してマグネシウム合金成形体を作製する工程である。温間成形は、金型を加熱した状態で成形する。加熱温度は、200℃以上300℃以下とすることが挙げられる。加熱温度が200℃以上であることで、成形時にマグネシウム合金板に割れが生じることを抑制できる。一方、加熱温度が300℃以下であることで、過度の加熱を抑制できる。加熱温度は、更に220℃以上280℃以下、特に230℃以上270℃以下とすることが挙げられる。
[Molding process]
The molding step 4 is a step of warm-forming the magnesium alloy plate obtained in the rolling step 3 to produce a magnesium alloy molded body. In warm molding, the mold is molded in a heated state. The heating temperature may be 200 ° C. or higher and 300 ° C. or lower. When the heating temperature is 200 ° C. or higher, it is possible to prevent the magnesium alloy plate from cracking during molding. On the other hand, when the heating temperature is 300 ° C. or lower, excessive heating can be suppressed. The heating temperature may be further set to 220 ° C. or higher and 280 ° C. or lower, particularly 230 ° C. or higher and 270 ° C. or lower.
 <効果>
 実施形態のマグネシウム合金板及びマグネシウム合金成形体は、熱伝導性に優れる。マグネシウム合金に含まれるアルミニウムの含有量が、2.00質量%未満と少ないからである。また、実施形態のマグネシウム合金板及びマグネシウム合金成形体は、耐食性に優れる。マグネシウム合金中にアルミニウムとマンガンとを含む晶出物が生成されたとしても、その晶出物の最大径が1.50μm以下と微細であることで、晶出物が腐食の起点になり難いからである。また、実施形態のマグネシウム合金板及びマグネシウム合金成形体は、高い耐力を有する。最大径が0.20μm以上の上記晶出物がマグネシウムからなる母相中に分散されているからである。また、実施形態のマグネシウム合金板及びマグネシウム合金成形体は、温間成形を施し易く、温間成形による成形性を向上できる。マグネシウム合金板が、特定量の歪みを有するからである。
<Effect>
The magnesium alloy plate and the magnesium alloy molded product of the embodiment are excellent in thermal conductivity. This is because the content of aluminum contained in the magnesium alloy is as small as less than 2.00% by mass. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment are excellent in corrosion resistance. Even if crystallization containing aluminum and manganese is generated in the magnesium alloy, the crystallization is unlikely to be the starting point of corrosion because the maximum diameter of the crystallization is as fine as 1.50 μm or less. Is. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment have high yield strength. This is because the above-mentioned crystals having a maximum diameter of 0.20 μm or more are dispersed in the matrix composed of magnesium. Further, the magnesium alloy plate and the magnesium alloy molded product of the embodiment are easy to be warm-molded, and the moldability by the warm-molding can be improved. This is because the magnesium alloy plate has a specific amount of strain.
 実施形態のマグネシウム合金板の製造方法は、鋳造時の冷却速度を800℃/秒以上とすることで、鋳造過程でアルミニウムとマグネシウムとを含む晶出物が生成されたとしても、その晶出物を微細にできる。よって、実施形態のマグネシウム合金板の製造方法は、実施形態のマグネシウム合金板を良好に製造できる。実施形態のマグネシウム合金成形体の製造方法は、実施形態のマグネシウム合金板に温間成形を施すことで、熱伝導性に優れると共に、耐食性に優れる上に、割れ等の損傷が少ない実施形態のマグネシウム合金成形体を良好に製造できる。 In the method for producing a magnesium alloy plate of the embodiment, the cooling rate at the time of casting is set to 800 ° C./sec or more, so that even if crystals containing aluminum and magnesium are produced in the casting process, the crystals are produced. Can be finely divided. Therefore, the method for manufacturing the magnesium alloy plate of the embodiment can satisfactorily manufacture the magnesium alloy plate of the embodiment. The method for producing the magnesium alloy molded product of the embodiment is that the magnesium alloy plate of the embodiment is warm-molded to have excellent thermal conductivity, excellent corrosion resistance, and less damage such as cracks. The alloy molded body can be manufactured satisfactorily.
 [試験例1]
 マグネシウム合金板を作製して、組織、熱伝導性、耐食性、及び耐力を調べた。
[Test Example 1]
A magnesium alloy plate was prepared and examined for structure, thermal conductivity, corrosion resistance, and proof stress.
 <試験片>
 ≪試料No.1から試料No.5≫
 試料No.1から試料No.5は、鋳造工程と熱処理工程と圧延工程とを経て得られたマグネシウム合金板である。
<Test piece>
<< Sample No. Sample No. 1 to sample No. 5 ≫
Sample No. Sample No. 1 to sample No. Reference numeral 5 denotes a magnesium alloy plate obtained through a casting step, a heat treatment step, and a rolling step.
 〔鋳造工程〕
 鋳造工程では、マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造して板状の鋳造材を作製した。各試料のマグネシウム合金の組成は次のようにした。試料No.1は、0.49質量%のアルミニウムと、0.24質量%のマンガンとを含み、残部がマグネシウム及び不可避不純物である。表1では、Mg-0.49%Al-0.24%Mnと表記している。試料No.2は、1.10質量%のアルミニウムと、0.70質量%のマンガンと、0.25質量%のカルシウムとを含み、残部がマグネシウム及び不可避不純物である。表1では、Mg-1.10%Al-0.70%Mn-0.25%Caと表記している。試料No.3は、0.48質量%のアルミニウムと、0.24質量%のマンガンと、0.11質量%のカルシウムとを含み、残部がマグネシウム及び不可避不純物である。表1では、Mg-0.48%Al-0.24%Mn-0.11%Caと表記している。試料No.4は、0.52質量%のアルミニウムと、0.25質量%のマンガンと、0.20質量%のストロンチウムとを含み、残部がマグネシウム及び不可避不純物である。表1では、Mg-0.52%Al-0.25%Mn-0.20%Srと表記している。試料No.5は、0.25質量%のアルミニウムと、0.18質量%のマンガンと、0.10質量%の亜鉛とを含み、残部がマグネシウム及び不可避不純物である。表1では、Mg-0.25%Al-0.18%Mn-0.10%Znと表記している。
[Casting process]
In the casting process, molten magnesium alloy was continuously cast by a double-roll casting method to produce a plate-shaped cast material. The composition of the magnesium alloy of each sample was as follows. Sample No. Reference numeral 1 contains 0.49% by mass of aluminum and 0.24% by mass of manganese, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.49% Al-0.24% Mn. Sample No. Reference numeral 2 contains 1.10% by mass of aluminum, 0.70% by mass of manganese, and 0.25% by mass of calcium, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-1.10% Al-0.70% Mn-0.25% Ca. Sample No. 3 contains 0.48% by mass of aluminum, 0.24% by mass of manganese, and 0.11% by mass of calcium, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.48% Al-0.24% Mn-0.11% Ca. Sample No. Reference numeral 4 contains 0.52% by mass of aluminum, 0.25% by mass of manganese, and 0.20% by mass of strontium, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.52% Al-0.25% Mn-0.20% Sr. Sample No. Reference numeral 5 contains 0.25% by mass of aluminum, 0.18% by mass of manganese, and 0.10% by mass of zinc, and the balance is magnesium and unavoidable impurities. In Table 1, it is expressed as Mg-0.25% Al-0.18% Mn-0.10% Zn.
 双ロール連続鋳造装置は、公知の構成が利用できる。鋳造工程における冷却速度は、1000℃/秒とした。板の厚さは4mmとした。 A known configuration can be used for the double roll continuous casting apparatus. The cooling rate in the casting process was 1000 ° C./sec. The thickness of the plate was 4 mm.
 〔熱処理工程〕
 熱処理工程では、鋳造工程で得られた鋳造材に熱処理を施した。熱処理は、加熱対象である鋳造材が400℃となるように加熱した。熱処理の保持時間は5時間とした。
[Heat treatment process]
In the heat treatment step, the cast material obtained in the casting step was heat-treated. In the heat treatment, the cast material to be heated was heated to 400 ° C. The holding time of the heat treatment was 5 hours.
 〔圧延工程〕
 圧延工程では、熱処理工程で熱処理された鋳造材に圧延を施してマグネシウム合金板を作製した。圧延は、互いに向かい合って配置された圧延ロールを備える圧延装置を用いた。圧延装置は、公知の構成が利用できる。圧延は、鋳造材及び圧延ロール共に240℃に加熱した状態で行った。圧延は、1パス当たりの圧下率を25%とし、7パス行った。マグネシウム合金板の厚さは0.6mmであった。
[Rolling process]
In the rolling step, the cast material heat-treated in the heat treatment step was rolled to produce a magnesium alloy plate. For rolling, a rolling apparatus equipped with rolling rolls arranged facing each other was used. A known configuration can be used for the rolling apparatus. Rolling was carried out in a state where both the cast material and the rolling roll were heated to 240 ° C. Rolling was carried out in 7 passes with a rolling reduction rate of 25% per pass. The thickness of the magnesium alloy plate was 0.6 mm.
 圧延工程以降、上記マグネシウム合金板には、熱処理を施していない。 Since the rolling process, the magnesium alloy plate has not been heat treated.
 ≪試料No.10≫
 ASTM規格のAZ31合金からなるマグネシウム合金板を準備した。マグネシウム合金の組成以外の条件は、試料No.1から試料No.5と同様とした。
<< Sample No. 10 >>
A magnesium alloy plate made of ASTM standard AZ31 alloy was prepared. Conditions other than the composition of the magnesium alloy are described in Sample No. Sample No. 1 to sample No. It was the same as 5.
 <組成>
 得られた各試料のマグネシウム合金板の組成をICP-OESにより測定した。その結果、各試料のマグネシウム合金板の組成は、各試料で用いた溶湯のマグネシウム合金の組成とほぼ同じであった。
<Composition>
The composition of the magnesium alloy plate of each of the obtained samples was measured by ICP-OES. As a result, the composition of the magnesium alloy plate of each sample was almost the same as the composition of the magnesium alloy of the molten metal used in each sample.
 <組織>
 得られた各試料のマグネシウム合金板の断面を卓上顕微鏡で観察して、アルミニウムとマンガンとを含む晶出物の最大径、平均粒径、及び数密度を測定した。卓上顕微鏡は、株式会社日立ハイテク製のMiniscope TM3030を用いた。まず、卓上顕微鏡によって取得したマグネシウム合金板の断面の観察像において、晶出物が300個以上含まれるように5個の観察視野を取得した。各観察視野は、5個の観察視野の各晶出物の合計数が300個以上となるように取得した。観察倍率は、2000倍とした。各観察視野のサイズは、80μm×60μmとした。次に、各観察視野の観察像について、画像解析ソフトウェア「Image J」を用いて二値化処理し、0.20μm以上の晶出物を抽出した。つまり、晶出物の平均粒径の算出に際して、0.20μm未満の晶出物は抽出しない。そして、抽出した晶出物の各々について、円相当径を求めた。円相当径とは、抽出した晶出物の面積を有する真円の直径である。求めた円相当径のうち最大の円相当径を、晶出物の最大径とした。マグネシウム合金内の晶出物の最大径は、各観察視野の最大径のうち、最も大きい値とした。また、求めた円相当径の平均値を、晶出物の平均粒径とした。マグネシウム合金内の晶出物の平均粒径は、全観察視野の平均粒径の平均値とした。更に、上記観察視野中の抽出した晶出物の存在数を測定し、晶出物の存在数を視野面積で除した値の平均値を、晶出物の数密度とした。マグネシウム合金内の晶出物の数密度は、全観察視野の晶出物の数密度の平均値とした。その結果を表1に示す。
<Organization>
The cross section of the magnesium alloy plate of each of the obtained samples was observed with a tabletop microscope, and the maximum diameter, average particle size, and number density of the crystals containing aluminum and manganese were measured. As the tabletop microscope, a Miniscope TM3030 manufactured by Hitachi High-Tech Co., Ltd. was used. First, in the observation image of the cross section of the magnesium alloy plate acquired by the tabletop microscope, five observation fields were acquired so as to include 300 or more crystallized substances. Each observation field was acquired so that the total number of crystals in each of the five observation fields was 300 or more. The observation magnification was 2000 times. The size of each observation field was 80 μm × 60 μm. Next, the observation image of each observation field of view was binarized using the image analysis software "Image J", and crystallization of 0.20 μm or more was extracted. That is, when calculating the average particle size of the crystallized material, the crystallized material having a size of less than 0.20 μm is not extracted. Then, the equivalent circle diameter was determined for each of the extracted crystals. The equivalent circle diameter is the diameter of a perfect circle having the area of the extracted crystallized material. The largest circle-equivalent diameter among the obtained circle-equivalent diameters was defined as the maximum diameter of the crystallized material. The maximum diameter of the crystallized material in the magnesium alloy was set to the largest value among the maximum diameters of each observation field of view. Further, the average value of the obtained circle-equivalent diameter was taken as the average particle size of the crystallized product. The average particle size of the crystals in the magnesium alloy was taken as the average value of the average particle size of all observation fields. Further, the number of extracted crystallized substances in the observation visual field was measured, and the average value of the values obtained by dividing the number of crystallized substances present by the visual field area was taken as the number density of the crystallized products. The number density of the crystallized matter in the magnesium alloy was taken as the average value of the number density of the crystallized matter in the entire observation field. The results are shown in Table 1.
 図3は、試料No.1のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図5は、試料No.2のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図7は、試料No.3のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図9は、試料No.4のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図11は、試料No.5のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図13は、試料No.10のマグネシウム合金板10の断面を卓上顕微鏡で観察した顕微鏡写真の一例である。図3、図5、図7、図9、図11、及び図13の各マグネシウム合金板10において、灰色に見える領域が母相11であり、白色に見える領域が晶出物12である。 FIG. 3 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 1 observed with a tabletop microscope. FIG. 5 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 2 observed with a tabletop microscope. FIG. 7 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 3 observed with a tabletop microscope. FIG. 9 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 4 observed with a tabletop microscope. FIG. 11 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of No. 5 observed with a tabletop microscope. FIG. 13 shows the sample No. This is an example of a micrograph of the cross section of the magnesium alloy plate 10 of 10 observed with a tabletop microscope. In each of the magnesium alloy plates 10 of FIGS. 3, 5, 7, 9, 11, and 13, the region that looks gray is the matrix 11, and the region that looks white is the crystallized product 12.
 <熱伝導性>
 得られた各試料のマグネシウム合金板の熱伝導率を測定した。熱伝導率は、各試料のマグネシウム合金板から測定用の試験片を採取し、市販の測定装置を用いて熱拡散率を測定し、この熱拡散率から求めた。測定装置は、アドバンス理工株式会社製の光交流法熱拡散率測定装置 LaserPITを用いた。試験片のサイズを5mm×25mm×厚さ0.4mmとした。熱伝導率は、熱拡散率×比熱容量×密度から算出した。その結果を表1に示す。
<Thermal conductivity>
The thermal conductivity of the magnesium alloy plate of each of the obtained samples was measured. The thermal conductivity was determined from the thermal diffusivity obtained by collecting a test piece for measurement from the magnesium alloy plate of each sample and measuring the thermal diffusivity using a commercially available measuring device. As the measuring device, the optical AC method thermal diffusivity measuring device LaserPIT manufactured by Advance Riko Co., Ltd. was used. The size of the test piece was 5 mm × 25 mm × thickness 0.4 mm. The thermal conductivity was calculated from thermal diffusivity × specific heat capacity × density. The results are shown in Table 1.
 <耐食性>
 得られた各試料のマグネシウム合金板の腐食生成物の面積率を測定した。腐食生成物の面積率は、JIS H 0541:2003「マグネシウム及びマグネシウム合金のアルカリ性塩水腐食試験方法」に準拠して測定した。具体的には、各試料のマグネシウム合金板から測定用の試験片を採取し、JIS Z 2371:2015に規定されるアルカリ性塩水噴霧試験を96時間実施した。試験片は、150mm×70mm×厚さ0.6mmのサイズとし、外周部及び裏面をマスキングテープにより被覆した。試験片のうちアルカリ性塩水噴霧試験がなされる暴露面積は、140mm×60mmであった。試験後の試験片に対して、試験片の表面をスキャナで取り込み、画像解析ソフトウェア「Image J」を用いて二値化処理し、腐食生成物の面積を求めた。スキャナは、キャノン株式会社製のDADF-AK1を用いた。腐食生成物の面積率は、腐食生成物の面積を上記暴露面積で除した比率をパーセンテージで示した値とした。その結果を表1に示す。
<Corrosion resistance>
The area ratio of the corrosion products of the magnesium alloy plate of each of the obtained samples was measured. The area ratio of corrosion products was measured in accordance with JIS H 0541: 2003 “Magnesium and Magnesium Alloy Alkaline Salt Water Corrosion Test Method”. Specifically, a test piece for measurement was taken from the magnesium alloy plate of each sample, and the alkaline salt spray test specified in JIS Z 2371: 2015 was carried out for 96 hours. The test piece had a size of 150 mm × 70 mm × thickness 0.6 mm, and the outer peripheral portion and the back surface were covered with masking tape. The exposed area of the test piece to be subjected to the alkaline salt spray test was 140 mm × 60 mm. The surface of the test piece after the test was scanned with a scanner and binarized using the image analysis software "Image J" to determine the area of the corrosion product. As the scanner, DADF-AK1 manufactured by Canon Inc. was used. The area ratio of the corrosion product was a value obtained by dividing the area of the corrosion product by the above-mentioned exposed area as a percentage. The results are shown in Table 1.
 図4は、試料No.1のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図6は、試料No.2のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図8は、試料No.3のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図10は、試料No.4のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図12は、試料No.5のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図14は、試料No.10のマグネシウム合金板10にアルカリ性塩水噴霧試験を施した後の外観写真の一例である。図4、図6、図8、図10、図12、及び図14の各マグネシウム合金板10において、黒色又は白色に見える領域が腐食生成物20である。 FIG. 4 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 1 after being subjected to an alkaline salt spray test. FIG. 6 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 2 after being subjected to an alkaline salt spray test. FIG. 8 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 3 after being subjected to an alkaline salt spray test. FIG. 10 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 4 after being subjected to an alkaline salt spray test. FIG. 12 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 5 after being subjected to an alkaline salt spray test. FIG. 14 shows the sample No. This is an example of an external photograph of the magnesium alloy plate 10 of No. 10 after being subjected to an alkaline salt spray test. In each of the magnesium alloy plates 10 of FIGS. 4, 6, 8, 10, 12, and 14, the region that appears black or white is the corrosion product 20.
 <耐力>
 得られた各試料のマグネシウム合金板の0.2%耐力を測定した。0.2%耐力は、JIS Z 2241:2011「金属材料引張試験方法」に準拠して、引張試験を行って測定した。引張試験は、マグネシウム合金板の圧延方向及び板幅方向の各々に沿って測定した。圧延方向の0.2%耐力と板幅方向の0.2%耐力との平均値をマグネシウム合金板の0.2%耐力とした。試験温度は、室温、ここでは22℃とした。その結果を表1に示す。
<Yield strength>
The 0.2% proof stress of the magnesium alloy plate of each of the obtained samples was measured. The 0.2% proof stress was measured by performing a tensile test in accordance with JIS Z 2241: 2011 “Metallic Material Tensile Test Method”. The tensile test was measured along each of the rolling direction and the plate width direction of the magnesium alloy plate. The average value of the 0.2% proof stress in the rolling direction and the 0.2% proof stress in the plate width direction was taken as the 0.2% proof stress of the magnesium alloy plate. The test temperature was room temperature, 22 ° C. here. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から以下のことがわかる。試料No.1から試料No.5のマグネシウム合金板は、熱伝導率が100W/m・K以上、特に115W/m・K以上であり、熱伝導性に優れる。試料No.1から試料No.5のマグネシウム合金板が熱伝導性に優れる理由は、マグネシウム合金に含まれるアルミニウムの含有量が2.00質量%未満と少ないからと考えられる。アルミニウムは、耐食性の向上に寄与するものの、熱伝導性を低下させ得るからである。特に、試料No.1、試料No.3から試料No.5のマグネシウム合金板は、マグネシウム合金に含まれるアルミニウムの含有量が1.10質量%未満、特に0.52質量%以下であり、熱伝導性に更に優れる。 The following can be seen from Table 1. Sample No. Sample No. 1 to sample No. The magnesium alloy plate of No. 5 has a thermal conductivity of 100 W / m · K or more, particularly 115 W / m · K or more, and is excellent in thermal conductivity. Sample No. Sample No. 1 to sample No. It is considered that the reason why the magnesium alloy plate of No. 5 is excellent in thermal conductivity is that the content of aluminum contained in the magnesium alloy is as small as less than 2.00% by mass. This is because aluminum contributes to the improvement of corrosion resistance, but can reduce the thermal conductivity. In particular, sample No. 1. Sample No. Sample No. 3 to sample No. The magnesium alloy plate of No. 5 has an aluminum content of less than 1.10% by mass, particularly 0.52% by mass or less, and is further excellent in thermal conductivity.
 試料No.1から試料No.5のマグネシウム合金板は、腐食生成物の面積率が7.0%以下であり、耐食性に優れる。試料No.1から試料No.5のマグネシウム合金板が耐食性に優れる理由は、晶出物の最大径が1.50μm以下と小さいからと考えられる。晶出物の最大径が1.50μm以下と小さいことで、晶出物が腐食の起点になることを抑制できたと考えられる。また、晶出物の平均粒径が0.40μm以下と小さいことでも、晶出物が腐食の起点になることを抑制できたと考えられる。図4、図6、図8、図10、及び図12に示すように、試料No.1から試料No.5のマグネシウム合金板は、外観に腐食がほぼ見受けられなかった。試料No.1から試料No.5のマグネシウム合金板は、図3、図5、図7、図9、及び図11に示すように、微細な晶出物が分散されていた。 Sample No. Sample No. 1 to sample No. The magnesium alloy plate of No. 5 has an area ratio of corrosion products of 7.0% or less and is excellent in corrosion resistance. Sample No. Sample No. 1 to sample No. It is considered that the reason why the magnesium alloy plate of No. 5 is excellent in corrosion resistance is that the maximum diameter of the crystallized product is as small as 1.50 μm or less. It is considered that the maximum diameter of the crystallized product was as small as 1.50 μm or less, so that the crystallized product could be suppressed from becoming the starting point of corrosion. Further, it is considered that the fact that the average particle size of the crystallized product was as small as 0.40 μm or less also prevented the crystallized product from becoming the starting point of corrosion. As shown in FIGS. 4, 6, 8, 10, and 12, the sample No. Sample No. 1 to sample No. The magnesium alloy plate of No. 5 showed almost no corrosion in appearance. Sample No. Sample No. 1 to sample No. As shown in FIGS. 3, 5, 7, 9, and 11, the magnesium alloy plate of No. 5 had fine crystallized substances dispersed therein.
 試料No.2から試料No.4のマグネシウム合金板は、晶出物の数密度が0.010個/μm以上0.060個/μm以下であることで、耐食性により優れる。また、試料No.2から試料No.4のマグネシウム合金板は、晶出物の数密度が0.010個/μm以上0.060個/μm以下であることで、0.2%耐力が200MPa以上であり、耐力にも優れる。試料No.2から試料No.4のマグネシウム合金板が耐力に優れる理由は、1.00μm以上のある程度の数の晶出物がマグネシウムからなる母相中に分散されているからと考えられる。 Sample No. From sample No. 2 The magnesium alloy plate of No. 4 is more excellent in corrosion resistance because the number density of crystallized products is 0.010 / μm 2 or more and 0.060 / μm 2 or less. In addition, sample No. From sample No. 2 The magnesium alloy plate of No. 4 has a 0.2% proof stress of 200 MPa or more and is also excellent in proof stress when the number density of crystallization is 0.010 / μm 2 or more and 0.060 / μm 2 or less. Sample No. From sample No. 2 It is considered that the reason why the magnesium alloy plate of No. 4 is excellent in proof stress is that a certain number of crystallizations of 1.00 μm or more are dispersed in the matrix composed of magnesium.
 一方、試料No.10のマグネシウム合金板は、熱伝導率が66W/m・Kであり、熱伝導性に劣る。試料No.10のマグネシウム合金板が熱伝導性に劣る理由は、マグネシウム合金に含まれるアルミニウムの含有量が2.0質量%以上と多いからと考えられる。 On the other hand, sample No. The magnesium alloy plate of 10 has a thermal conductivity of 66 W / m · K and is inferior in thermal conductivity. Sample No. It is considered that the reason why the magnesium alloy plate of 10 is inferior in thermal conductivity is that the content of aluminum contained in the magnesium alloy is as high as 2.0% by mass or more.
 試料No.10のマグネシウム合金板は、腐食生成物の面積率が15.3%であり、耐食性に劣る。実際に、試料No.10のマグネシウム合金板は、図14に示すように、外観に腐食が見受けられた。試料No.10のマグネシウム合金板が耐食性に劣る理由は、図13に示すように、晶出物の最大径が1.50μm超と大きいからと考えられる。晶出物の最大径が1.50μm超と大きいことで、晶出物が腐食の起点になったと考えられる。また、晶出物の平均粒径が0.50μm超と大きいことでも、晶出物が腐食の起点になったと考えられる。 Sample No. The magnesium alloy plate of 10 has an area ratio of corrosion products of 15.3% and is inferior in corrosion resistance. Actually, the sample No. As shown in FIG. 14, the magnesium alloy plate of No. 10 was found to be corroded in appearance. Sample No. It is considered that the reason why the magnesium alloy plate of No. 10 is inferior in corrosion resistance is that, as shown in FIG. 13, the maximum diameter of the crystallized product is as large as more than 1.50 μm. It is considered that the crystallized material became the starting point of corrosion because the maximum diameter of the crystallized material was as large as more than 1.50 μm. Further, it is considered that the crystallized product became the starting point of corrosion because the average particle size of the crystallized product was as large as more than 0.50 μm.
 [試験例2]
 試験例1で作製した試料No.2のマグネシウム合金板に、加熱温度240℃で角絞り加工を施し、マグネシウム合金成形体を作製した。試料No.2のマグネシウム合金板を構成するマグネシウム合金の再結晶温度は、230℃である。よって、上記加熱温度は、試料No.2におけるマグネシウム合金の再結晶温度以上である。マグネシウム合金成形体は、矩形状の平板部と、平板部から立設される側壁部とを備える箱型とした。天板部の大きさは100mm×50mmとし、側壁部の高さは10mmとした。得られたマグネシウム合金成形体の割れ状態を目視にて確認した。その結果、マグネシウム合金成形体に割れは見受けられなかった。
[Test Example 2]
Sample No. prepared in Test Example 1. The magnesium alloy plate of No. 2 was subjected to square drawing at a heating temperature of 240 ° C. to prepare a magnesium alloy molded body. Sample No. The recrystallization temperature of the magnesium alloy constituting the magnesium alloy plate of No. 2 is 230 ° C. Therefore, the heating temperature is the sample No. It is equal to or higher than the recrystallization temperature of the magnesium alloy in 2. The magnesium alloy molded body has a box shape including a rectangular flat plate portion and a side wall portion erected from the flat plate portion. The size of the top plate was 100 mm × 50 mm, and the height of the side wall was 10 mm. The cracked state of the obtained magnesium alloy molded product was visually confirmed. As a result, no cracks were found in the magnesium alloy molded product.
 試料No.2のマグネシウム合金板について、X線回折法(XRD)により(0002)面のピークの半値幅を測定した。測定は、CuKαX線を用いて、以下の条件で行った。励起条件は、45kV、40mAとした。入射光学系は、Bragg-Brentano HD(BBHD)とした。発散スリットは、1/4°とした。発散防止スリットは、1°とした。受光光学系は、ソーラースリットで4mradとした。操作方法は、2θ-θスキャンとした。測定範囲は、2θ=30°~40°とした。ステップ幅は、0.0131°とした。積算時間は、148.92secとした。その結果、試料No.2のマグネシウム合金板は、X線回折ピークの半値幅が0.11140°であった。つまり、試料No.2のマグネシウム合金板は、ある程度の歪みを有していた。試料No.2のマグネシウム合金板がある程度の歪みを有していることで、マグネシウム合金板に温間成形を施し易く、温間成形による成形性を向上できたと考えられる。 Sample No. For the magnesium alloy plate of No. 2, the half width of the peak of the (0002) plane was measured by the X-ray diffraction method (XRD). The measurement was carried out using CuKαX-ray under the following conditions. The excitation conditions were 45 kV and 40 mA. The incident optical system was Bragg-Brentano HD (BBHD). The divergence slit was 1/4 °. The divergence prevention slit was set to 1 °. The light receiving optical system was set to 4 mrad with a solar slit. The operation method was a 2θ-θ scan. The measurement range was 2θ = 30 ° to 40 °. The step width was 0.0131 °. The integration time was 148.92 sec. As a result, the sample No. The magnesium alloy plate of No. 2 had a half width of the X-ray diffraction peak of 0.11140 °. That is, the sample No. The magnesium alloy plate of No. 2 had some distortion. Sample No. It is considered that since the magnesium alloy plate of No. 2 has a certain degree of distortion, it is easy to perform warm forming on the magnesium alloy plate, and the moldability by warm forming can be improved.
 参考として、試料No.2のマグネシウム合金板に焼鈍を施して歪みを除去したマグネシウム合金板について、XRDにより(0002)面のピークの半値幅を測定した。測定条件は、上述した条件と同様とした。その結果、焼鈍後の歪みを除去したマグネシウム合金板は、X線回折ピークの半値幅が0.0587°であった。このことからも、試料No.2のマグネシウム合金板は、ある程度の歪みを有していることがわかる。 For reference, sample No. The half width of the peak of the (0002) plane was measured by XRD for the magnesium alloy plate of No. 2 whose strain was removed by annealing. The measurement conditions were the same as those described above. As a result, the half-value width of the X-ray diffraction peak of the magnesium alloy plate from which the strain after annealing was removed was 0.0587 °. From this, the sample No. It can be seen that the magnesium alloy plate of No. 2 has some distortion.
 試料No.1、試料No.3から試料No.5のマグネシウム合金板についても、試料No.2と同様に角絞り加工を施し、マグネシウム合金成形体を作製した。その結果、いずれのマグネシウム合金成形体にも割れは見受けられなかった。いずれのマグネシウム合金板も、X線回折ピークの半値幅が0.07°以上0.40°以下であり、ある程度の歪みを有していることで、マグネシウム合金板に温間成形を施し易く、温間成形による成形性を向上できたと考えられる。 Sample No. 1. Sample No. Sample No. 3 to sample No. Regarding the magnesium alloy plate of No. 5, the sample No. A magnesium alloy molded product was produced by performing square drawing in the same manner as in 2. As a result, no cracks were found in any of the magnesium alloy molded bodies. All of the magnesium alloy plates have a half-value width of the X-ray diffraction peak of 0.07 ° or more and 0.40 ° or less, and have a certain degree of distortion, so that the magnesium alloy plate can be easily warm-formed. It is considered that the moldability by warm molding could be improved.
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、試験例において、マグネシウム合金の組成や、鋳造工程における冷却速度、圧延工程における圧延条件等を適宜変更できる。 The present invention is not limited to these examples, but is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims. For example, in the test example, the composition of the magnesium alloy, the cooling rate in the casting process, the rolling conditions in the rolling process, and the like can be appropriately changed.
 1 鋳造工程、2 熱処理工程、3 圧延工程、4 成形工程
 10 マグネシウム合金板、11 母相、12 晶出物
 20  腐食生成物
1 Casting process, 2 Heat treatment process, 3 Rolling process, 4 Molding process 10 Magnesium alloy plate, 11 Mother phase, 12 Crystals 20 Corrosion products

Claims (14)

  1.  マグネシウム合金からなるマグネシウム合金板であって、
     前記マグネシウム合金は、
      2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる組成と、
      アルミニウムとマンガンとを含む晶出物が分散された組織とを備え、
     前記晶出物の最大径が0.20μm以上1.50μm以下である、
     マグネシウム合金板。
    It is a magnesium alloy plate made of magnesium alloy.
    The magnesium alloy is
    A composition containing less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, with the balance being magnesium and unavoidable impurities.
    It has a structure in which crystals containing aluminum and manganese are dispersed.
    The maximum diameter of the crystallized product is 0.20 μm or more and 1.50 μm or less.
    Magnesium alloy plate.
  2.  アルミニウムは、0.10質量%以上含まれる請求項1に記載のマグネシウム合金板。 The magnesium alloy plate according to claim 1, wherein aluminum is contained in an amount of 0.10% by mass or more.
  3.  マンガンは、0.10質量%以上含まれる請求項1又は請求項2に記載のマグネシウム合金板。 The magnesium alloy plate according to claim 1 or 2, wherein manganese is contained in an amount of 0.10% by mass or more.
  4.  前記組成は、更に、0.10質量%以上1.00質量%以下のカルシウムを含む請求項1から請求項3のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 3, further comprising 0.10% by mass or more and 1.00% by mass or less of calcium.
  5.  前記組成は、更に、0.10質量%以上2.00質量%以下の亜鉛を含む請求項1から請求項3のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 3, further comprising 0.10% by mass or more and 2.00% by mass or less of zinc.
  6.  前記組成は、更に、0.10質量%以上1.00質量%以下のストロンチウムを含む請求項1から請求項5のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 5, further comprising 0.10% by mass or more and 1.00% by mass or less of strontium.
  7.  前記晶出物の数密度が0.010個/μm以上0.060個/μm以下である請求項1から請求項6のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 6, wherein the number density of the crystallized products is 0.010 / μm 2 or more and 0.060 / μm 2 or less.
  8.  熱伝導率が100W/m・K以上である請求項1から請求項7のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 7, wherein the thermal conductivity is 100 W / m · K or more.
  9.  0.2%耐力が200MPa以上である請求項1から請求項8のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 8, wherein the 0.2% proof stress is 200 MPa or more.
  10.  X線回折ピークの半値幅が0.07°以上0.40°以下である請求項1から請求項9のいずれか1項に記載のマグネシウム合金板。 The magnesium alloy plate according to any one of claims 1 to 9, wherein the half width of the X-ray diffraction peak is 0.07 ° or more and 0.40 ° or less.
  11.  請求項1から請求項10のいずれか1項に記載のマグネシウム合金板を含む、
     マグネシウム合金成形体。
    The magnesium alloy plate according to any one of claims 1 to 10 is included.
    Magnesium alloy molded body.
  12.  マグネシウム合金の溶湯を双ロール鋳造法により連続鋳造して板状の鋳造材を作製する鋳造工程と、
     前記鋳造材に圧延を施してマグネシウム合金板を作製する圧延工程とを備え、
     前記鋳造工程では、
      2.00質量%未満のアルミニウムと、1.00質量%以下のマンガンとを含み、残部がマグネシウム及び不可避不純物からなる前記マグネシウム合金を準備し、
      前記溶湯の冷却速度を800℃/秒以上とする、
     マグネシウム合金板の製造方法。
    A casting process in which molten magnesium alloy is continuously cast by a double-roll casting method to produce a plate-shaped casting material.
    It is provided with a rolling process for producing a magnesium alloy plate by rolling the cast material.
    In the casting process,
    Prepare the magnesium alloy containing less than 2.00% by mass of aluminum and 1.00% by mass or less of manganese, the balance of which is magnesium and unavoidable impurities.
    The cooling rate of the molten metal is set to 800 ° C./sec or more.
    Manufacturing method of magnesium alloy plate.
  13.  前記鋳造工程と前記圧延工程との間に、前記鋳造材に熱処理を施して均質化する熱処理工程を備え、
     前記圧延工程では、前記熱処理工程で熱処理された前記鋳造材に圧延を施す請求項12に記載のマグネシウム合金板の製造方法。
    A heat treatment step of heat-treating the cast material to homogenize it is provided between the casting step and the rolling step.
    The method for producing a magnesium alloy plate according to claim 12, wherein in the rolling step, the cast material heat-treated in the heat treatment step is rolled.
  14.  請求項12又は請求項13に記載のマグネシウム合金板の製造方法で得られたマグネシウム合金板に温間成形を施してマグネシウム合金成形体を作製する成形工程を備え、
     前記温間成形の温度を200℃以上300℃以下とする、
     マグネシウム合金成形体の製造方法。
    A molding step of warm-molding the magnesium alloy plate obtained by the method for producing a magnesium alloy plate according to claim 12 or 13 to produce a magnesium alloy molded body is provided.
    The temperature of the warm molding is set to 200 ° C. or higher and 300 ° C. or lower.
    A method for manufacturing a magnesium alloy molded product.
PCT/JP2021/015057 2020-04-16 2021-04-09 Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article WO2021210510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/016797 WO2021210146A1 (en) 2020-04-16 2020-04-16 Magnesium alloy sheet, magnesium alloy molded body, method for producing magnesium alloy sheet, and method for producing magnesium alloy molded body
JPPCT/JP2020/016797 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021210510A1 true WO2021210510A1 (en) 2021-10-21

Family

ID=78084918

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/016797 WO2021210146A1 (en) 2020-04-16 2020-04-16 Magnesium alloy sheet, magnesium alloy molded body, method for producing magnesium alloy sheet, and method for producing magnesium alloy molded body
PCT/JP2021/015057 WO2021210510A1 (en) 2020-04-16 2021-04-09 Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016797 WO2021210146A1 (en) 2020-04-16 2020-04-16 Magnesium alloy sheet, magnesium alloy molded body, method for producing magnesium alloy sheet, and method for producing magnesium alloy molded body

Country Status (1)

Country Link
WO (2) WO2021210146A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156007A (en) * 2008-12-26 2010-07-15 Mitsubishi Alum Co Ltd Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP2012122112A (en) * 2010-12-10 2012-06-28 Mitsubishi Alum Co Ltd Cast magnesium alloy plate with excellent surface texture, method for producing the same, and magnesium alloy plate with excellent surface texture
JP2012193412A (en) * 2011-03-16 2012-10-11 Mitsubishi Alum Co Ltd Magnesium alloy sheet material excellent in surface property and production method therefor
JP2013542328A (en) * 2010-10-27 2013-11-21 コリア インスティテュート オブ マシーナリー アンド マテリアルズ Magnesium alloy sheet having improved room temperature formability and method for producing the same
JP2017078220A (en) * 2015-10-21 2017-04-27 住友電気工業株式会社 Magnesium alloy rolled material and production method therefor, and press-formed article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156007A (en) * 2008-12-26 2010-07-15 Mitsubishi Alum Co Ltd Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP2013542328A (en) * 2010-10-27 2013-11-21 コリア インスティテュート オブ マシーナリー アンド マテリアルズ Magnesium alloy sheet having improved room temperature formability and method for producing the same
JP2012122112A (en) * 2010-12-10 2012-06-28 Mitsubishi Alum Co Ltd Cast magnesium alloy plate with excellent surface texture, method for producing the same, and magnesium alloy plate with excellent surface texture
JP2012193412A (en) * 2011-03-16 2012-10-11 Mitsubishi Alum Co Ltd Magnesium alloy sheet material excellent in surface property and production method therefor
JP2017078220A (en) * 2015-10-21 2017-04-27 住友電気工業株式会社 Magnesium alloy rolled material and production method therefor, and press-formed article

Also Published As

Publication number Publication date
WO2021210146A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
Yu et al. Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions
JP5880811B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
US10844468B2 (en) Copper alloy sheet material and current-carrying component
CN115772628A (en) Method for manufacturing alloy member
KR101799615B1 (en) Magnesium alloy sheet and method for producing same
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
KR101785121B1 (en) Magnesium alloy sheet
EP3395458B1 (en) Magnesium alloy sheet and method for manufacturing same
WO2010103971A1 (en) Magnesium alloy member
KR102043774B1 (en) High formability magnesium alloy sheet and method for manufacturing the same
Yang et al. Preparation of nanostructured CoCrFeMnNi high entropy alloy by hot pressing sintering gas atomized powders
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
TWI486457B (en) Magnesium alloy plate
Rong et al. High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components
JP2012140709A (en) Aluminum alloy sheet for molding
JP4955969B2 (en) Manufacturing method of forming aluminum alloy sheet
WO2021210510A1 (en) Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article
JP4550598B2 (en) Aluminum alloy sheet for forming
US10475547B2 (en) Aluminum-alloy sheet for bus bar and manufacturing method thereof
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2023047623A (en) Heat-resistant alloy and method for producing heat-resistant alloy
JP6136037B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
JP2020524219A (en) Magnesium alloy sheet material and manufacturing method thereof
EP3929319A1 (en) Aluminum alloy material
US20220372598A1 (en) Aluminum alloy material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP