JP2013542328A - Magnesium alloy sheet having improved room temperature formability and method for producing the same - Google Patents
Magnesium alloy sheet having improved room temperature formability and method for producing the same Download PDFInfo
- Publication number
- JP2013542328A JP2013542328A JP2013536491A JP2013536491A JP2013542328A JP 2013542328 A JP2013542328 A JP 2013542328A JP 2013536491 A JP2013536491 A JP 2013536491A JP 2013536491 A JP2013536491 A JP 2013536491A JP 2013542328 A JP2013542328 A JP 2013542328A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- room temperature
- residual stress
- alloy sheet
- formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 70
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000000137 annealing Methods 0.000 claims description 21
- 238000005480 shot peening Methods 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 5
- 238000005488 sandblasting Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 33
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 18
- 229910052749 magnesium Inorganic materials 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 17
- 239000002994 raw material Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000005553 drilling Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000009864 tensile test Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 238000007545 Vickers hardness test Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000010924 continuous production Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052776 Thorium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910003023 Mg-Al Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 conventionally Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C1/00—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
- B24C1/10—Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24C—ABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
- B24C5/00—Devices or accessories for generating abrasive blasts
- B24C5/005—Vibratory devices, e.g. for generating abrasive blasts by ultrasonic vibrations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/47—Burnishing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/47—Burnishing
- Y10T29/479—Burnishing by shot peening or blasting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Continuous Casting (AREA)
Abstract
常温成形性を向上させたマグネシウム合金板材およびその製造方法が開示される。本発明の一実施例による常温成形性を向上させたマグネシウム合金板材の製造方法は、マグネシウム合金元素材の表面に圧縮残留応力を付加する前処理を行う第1ステップを含むことを特徴とする。
【選択図】図1
Disclosed are magnesium alloy sheet materials having improved room temperature formability and methods for producing the same. A method for manufacturing a magnesium alloy sheet with improved room temperature formability according to an embodiment of the present invention includes a first step of performing a pretreatment to add compressive residual stress to the surface of a magnesium alloy base material.
[Selection] Figure 1
Description
本発明は、マグネシウム合金板材およびその製造方法に関し、より詳しくは、常温成形性を向上させたマグネシウム合金板材およびその製造方法に関する。 The present invention relates to a magnesium alloy sheet and a method for producing the same, and more particularly to a magnesium alloy sheet having improved room temperature formability and a method for producing the same.
マグネシウム材料は、密度がアルミニウムの2/3、鉄の1/4のレベルに過ぎないだけでなく、他の金属と合金する場合、熱伝導率は亜鉛の1.2倍、鉄の2倍となり、プラスチックなどと比較しても放熱性に優れた特性を有している。また、電磁波遮蔽性、振動吸収性、腐食抵抗性などに優れているため、軽量化が求められる自動車部品および携帯用電子製品の素材として脚光を浴びている。 Magnesium materials are not only 2/3 the density of aluminum and 1/4 the level of iron, but when alloyed with other metals, the thermal conductivity is 1.2 times that of zinc and 2 times that of iron. Compared to plastic, etc., it has excellent heat dissipation characteristics. In addition, because of its excellent electromagnetic shielding properties, vibration absorption properties, corrosion resistance, etc., it has been attracting attention as a material for automobile parts and portable electronic products that require weight reduction.
しかし、マグネシウム材料(純粋マグネシウムまたはマグネシウム合金)は、既存の鋼板やアルミニウム合金板材の製造および加工とは異なる点があり、それは、マグネシウムが常温で伸び率が低いということである。マグネシウムは六方稠密構造(HCP)を有しており、常温で自由に変形するための十分なスリップシステム(slip system)を有しないので非常に脆性が強く、成形性が不足しているという点が限界として指摘されている。 However, the magnesium material (pure magnesium or magnesium alloy) is different from the production and processing of existing steel plates and aluminum alloy plates, which means that magnesium has a low elongation at room temperature. Magnesium has a hexagonal close-packed structure (HCP), and since it does not have a sufficient slip system for free deformation at room temperature, it is very brittle and has poor moldability. It is pointed out as a limit.
このようなマグネシウム材料の常温成形の限界により、従来は、マグネシウム材料を主にダイキャスティングなどの鋳造法を使って成形してきた。しかし、鋳造法は、鋳型を別に製作しなければならないので製造時間および製造費用が増加するだけでなく、高い不良率によって品質が不均一となり、薄板形状の製造が難しいという短所がある。 Due to the limitation of such room temperature molding of magnesium material, conventionally, magnesium material has been mainly molded by using a casting method such as die casting. However, the casting method not only increases the manufacturing time and manufacturing cost because the mold has to be manufactured separately, but also has a disadvantage that the quality is non-uniform due to a high defect rate and it is difficult to manufacture a thin plate shape.
一方、マグネシウム材料を複雑な形状に製造するために、プレス加工などを通じて成形する方法がある。プレス加工成形方法においては、常温でマグネシウム材料を成形すると容易に破壊されるため、素材および金型の温度を200〜300℃の領域で成形する温間成形を行っている。 On the other hand, in order to manufacture a magnesium material in a complicated shape, there is a method of forming through a press process or the like. In the press forming method, since a magnesium material is easily destroyed when it is molded at room temperature, warm forming is performed in which the temperature of the material and the mold is in the range of 200 to 300 ° C.
しかし、上述した温間成形の場合は、大量生産のための連続工程が行われ難いだけでなく、費用などの問題で常用化するのに好適でないという問題点があった。 However, in the case of the above-mentioned warm forming, not only is it difficult to perform a continuous process for mass production, but there is a problem that it is not suitable for regular use due to problems such as cost.
したがって、常温においてもプレス加工などを通じて成形および加工ができるように常温成形性を向上させたマグネシウム材料に対する要求が増大している。 Accordingly, there is an increasing demand for a magnesium material having improved room temperature formability so that it can be molded and processed through press working or the like even at room temperature.
本発明の実施例は、マグネシウム合金の表面に圧縮残留応力を付加することにより、常温成形性を向上させたマグネシウム合金板材およびその製造方法を提供しようとする。 Embodiments of the present invention seek to provide a magnesium alloy sheet material having improved room temperature formability by applying compressive residual stress to the surface of the magnesium alloy and a method for producing the same.
本発明の一側面によれば、マグネシウム合金元素材の表面に圧縮残留応力を付加する前処理を行う第1ステップを含むことを特徴とする常温成形性を向上させたマグネシウム合金板材の製造方法を提供することができる。 According to one aspect of the present invention, there is provided a method for producing a magnesium alloy sheet material having improved room temperature formability, including a first step of performing a pretreatment for adding compressive residual stress to a surface of a magnesium alloy base material. Can be provided.
また、前記第1ステップは、サンドブラスト(sand blast)、ショットピーニング(shot peening)、レーザーピーニング(laser peening)または超音波ピーニング(ultrasonic peening)のうちいずれか一つの工程であることを特徴とする。 The first step may be any one of sand blast, shot peening, laser peening, and ultrasonic peening.
また、前記第1ステップの前に、前記マグネシウム合金元素材をアニーリング(annealing)するアニーリングステップをさらに含むことを特徴とする。 In addition, the method may further include an annealing step of annealing the magnesium alloy base material before the first step.
本発明の他の側面によれば、本発明の一側面による常温成形性を向上させたマグネシウム合金板材の製造方法を使って製造されることを特徴とする常温成形性を向上させたマグネシウム合金板材を提供することができる。 According to another aspect of the present invention, a magnesium alloy sheet material having improved room temperature formability is manufactured using the method for manufacturing a magnesium alloy sheet material having improved room temperature formability according to one aspect of the present invention. Can be provided.
本発明の実施例は、マグネシウム合金元素材の表面に圧縮残留応力を付加する前処理工程を行うことにより、マグネシウム材料の常温における低い成形性を向上させることができる。 The Example of this invention can improve the low moldability in normal temperature of a magnesium material by performing the pre-processing process which adds a compressive residual stress to the surface of a magnesium alloy raw material.
また、常温成形性が向上したマグネシウム合金板材を提供することにより、大量生産のための連続工程を可能にして、大面積のマグネシウム合金の大面積部品を生産することができる。 In addition, by providing a magnesium alloy sheet having improved room temperature formability, a continuous process for mass production is possible, and large area parts of a large area magnesium alloy can be produced.
図1は、本発明の一実施例による常温成形性を向上させたマグネシウム合金板材の製造方法を示すフローチャートである。 FIG. 1 is a flowchart illustrating a method for manufacturing a magnesium alloy sheet having improved room temperature formability according to an embodiment of the present invention.
図1を参照すれば、常温成形性を向上させたマグネシウム合金板材の製造方法は、マグネシウム合金元素材の表面に圧縮残留応力を付加する前処理を行う第1ステップ(S200)を含む。 Referring to FIG. 1, the method for manufacturing a magnesium alloy sheet with improved room temperature formability includes a first step (S200) of performing a pretreatment to add compressive residual stress to the surface of the magnesium alloy base material.
本発明において、マグネシウム合金はマグネシウムを主成分とする合金を意味する。例えば、Mg−Al−Zn、Mg−Al、Mg−Zn、Mg−Mn系であるAZ31、AZ61、AZ80、AZ91、AM100合金などが挙げられる。また、Zrを含有する高強度合金であるZK系;Th、Ceを含有する耐熱合金であるEZ、EK、HK、HZ、MH系;Al、Siを含有する耐熱鋳造合金であるAS21、AS41;Ag、R.E、Th、Zrなどを含有する耐熱合金であるQE22、QH21、WE54;およびLiを含有するLA91、L14A1合金なども含むことができる。 In the present invention, a magnesium alloy means an alloy containing magnesium as a main component. For example, Mg-Al-Zn, Mg-Al, Mg-Zn, Mg-Mn-based AZ31, AZ61, AZ80, AZ91, AM100 alloy and the like can be mentioned. ZK-based high-strength alloys containing Zr; EZ, EK, HK, HZ, MH-based heat-resistant alloys containing Th, Ce; AS21, AS41, heat-resistant cast alloys containing Al, Si; Ag, R.A. QE22, QH21, WE54, which are heat-resistant alloys containing E, Th, Zr, etc .; and LA91, L14A1 alloys containing Li, and the like can also be included.
第1ステップ(S200)は、マグネシウム合金元素材の前処理において、マグネシウム合金の表面に圧縮残留応力を付加できる工程を行うことを意味する。 A 1st step (S200) means performing the process which can add a compressive residual stress to the surface of a magnesium alloy in the pre-processing of a magnesium alloy raw material.
圧縮残留応力は、塑性変形により素材が変形した後、外力が全て除去された状態においても素材に残っている応力をいう。 Compressive residual stress refers to the stress remaining in the material even after the external force is completely removed after the material is deformed by plastic deformation.
圧縮残留応力を付加する工程は、従来に金属の疲労寿命を高めるために行われるものとして知られてきた。しかし、本発明の発明者らは、マグネシウム合金元素材の前処理過程において、マグネシウム合金元素材の表面に圧縮残留応力を付加する場合、マグネシウム合金の常温成形性を向上できるということを確認した。 The process of adding compressive residual stress has been known to be performed to increase the fatigue life of metals. However, the inventors of the present invention have confirmed that, in the pretreatment process of the magnesium alloy base material, when compressive residual stress is applied to the surface of the magnesium alloy base material, the room temperature formability of the magnesium alloy can be improved.
したがって、本発明は、マグネシウム合金元素材の前処理工程として圧縮残留応力を付加する工程を採択することにより、マグネシウム合金の常温における低い成形性を大幅に改善させたことを特徴とする。 Accordingly, the present invention is characterized in that the low formability of the magnesium alloy at room temperature is greatly improved by adopting a step of applying compressive residual stress as a pretreatment step of the magnesium alloy base material.
第1ステップ(S200)は、サンドブラスト(sand blast)工程、ショットピーニング(shot peening)工程、レーザーピーニング(laser peening)工程、または超音波ピーニング(ultrasonic peening)工程のうちいずれか一つの工程であってもよい。 The first step (S200) is any one of a sand blasting process, a shot peening process, a laser peening process, and an ultrasonic peening process. Also good.
ショットピーニングは、金属の表面にショットボール(shot ball)という鋼球を高速で投射して、金属の表面をハンマリング(hammering)する一種の冷間加工である。ショットボールが金属の表面に高速衝突し、ショットボールの運動エネルギーが瞬間的に材料の表面に塑性変形(plastic deformation)を与え、表面から離脱するようになる。 Shot peening is a kind of cold working in which a steel ball called a shot ball is projected onto a metal surface at a high speed to hammer the metal surface. The shot ball collides with the surface of the metal at high speed, and the kinetic energy of the shot ball instantaneously causes plastic deformation on the surface of the material and comes off from the surface.
サンドブラストは、砂を圧縮空気を介して材料の表面に噴射して圧縮残留応力を付加する工程である。 Sand blasting is a process of applying compressive residual stress by jetting sand onto the surface of a material via compressed air.
レーザーピーニングは、材料の表面に不透明な塗膜および透明な塗膜からなる層を覆わせた後、焦点の直径が約2.5mm〜25mmのレーザビームを照射することにより、生成されたプラズマ圧力による衝撃波を通じて圧縮残留応力を付加する工程である。 In laser peening, a layer made of an opaque coating and a transparent coating is covered on the surface of a material, and then a plasma pressure generated by irradiating a laser beam having a focal point diameter of about 2.5 mm to 25 mm. This is a step of applying compressive residual stress through shock waves caused by the above.
超音波ピーニングは、鉄球を超音波を用いて共振させ、前記鉄球を金属の表面に分散させて圧縮残留応力を付加する工程である。 Ultrasonic peening is a process in which an iron ball is resonated using ultrasonic waves, and the iron ball is dispersed on a metal surface to apply compressive residual stress.
一方、圧縮残留応力を付加する工程は、マグネシウムの表面に圧縮残留応力を付加できる工程であればいずれもよく、上述した具体例に限定されない。しかし、以下では、説明の便宜のために、圧縮残留応力を付加する工程がショットピーニング工程である場合を中心に説明する。 On the other hand, the step of applying compressive residual stress may be any step as long as it can apply compressive residual stress to the surface of magnesium, and is not limited to the specific example described above. However, in the following, for convenience of explanation, the explanation will be focused on the case where the process of applying compressive residual stress is a shot peening process.
本発明の一実施例によるマグネシウム合金の常温成形性の向上方法は、第1ステップ(S200)の前に、前記マグネシウム合金元素材をアニーリング(annealing)するアニーリングステップ(S100)をさらに含むことを特徴とする。 The method for improving the formability of a magnesium alloy at room temperature according to an embodiment of the present invention further includes an annealing step (S100) of annealing the magnesium alloy base material before the first step (S200). And
本発明の発明者らは、マグネシウム合金元素材の前処理過程において、マグネシウム合金元素材をアニーリング処理した後に、前記マグネシウム合金元素材の表面に圧縮残留応力を付加する場合に、マグネシウム合金の常温成形性がより向上できたことをさらに確認した。 The inventors of the present invention, in the pretreatment process of the magnesium alloy source material, after annealing the magnesium alloy source material, when compressive residual stress is applied to the surface of the magnesium alloy source material, room temperature molding of the magnesium alloy It was further confirmed that the property could be improved.
前記アニーリング(annealing)は、マグネシウム合金元素材を一定の温度に加熱した後、徐々に冷まして内部組織を均一にする熱処理方法を意味する。 The annealing means a heat treatment method in which the magnesium alloy base material is heated to a certain temperature and then gradually cooled to make the internal structure uniform.
アニーリングステップ(S100)において、熱処理温度は、条件(素材の種類、前状態)に応じて異なり得るし、特に限定されない。例えば、前記マグネシウム合金を300〜400℃で熱処理した後、空冷させることができる。 In the annealing step (S100), the heat treatment temperature may vary depending on conditions (type of material, previous state), and is not particularly limited. For example, the magnesium alloy can be air-cooled after heat treatment at 300 to 400 ° C.
また、前記熱処理時間は特に限定されない。例えば、時間および費用の効率化を最適化するために、前記熱処理時間は30分以内に実施することができる。 The heat treatment time is not particularly limited. For example, to optimize time and cost efficiency, the heat treatment time can be performed within 30 minutes.
上述したように、本発明の実施例は、マグネシウム合金元素材の表面に圧縮残留応力を付加する前処理工程を行うことにより、マグネシウム材料の従来の短所であった常温における低い成形性を向上できるという効果がある。 As described above, the embodiment of the present invention can improve the low formability at room temperature, which is a conventional disadvantage of magnesium material, by performing a pretreatment step of adding compressive residual stress to the surface of the magnesium alloy raw material. There is an effect.
また、本発明の実施例による方法を使って製造された常温成形性を向上させたマグネシウム合金板材は、大量生産のための連続工程を可能にして、大面積のマグネシウム合金板材を生産できるという追加的な効果がある。 In addition, the magnesium alloy sheet material having improved room temperature formability manufactured using the method according to the embodiment of the present invention enables a continuous process for mass production and can produce a large area magnesium alloy sheet material. Has a positive effect.
以下では、比較例および実施例によって本発明をより詳細に説明する。但し、下記の比較例および実施例は本発明を詳細に説明するために例示するものに過ぎず、本発明の権利範囲を限定しないことは明らかである。
(実施例)
<マグネシウム合金元素材の準備>
Hereinafter, the present invention will be described in more detail by way of comparative examples and examples. However, the following comparative examples and examples are merely illustrative for the purpose of explaining the present invention in detail, and it is clear that the scope of rights of the present invention is not limited.
(Example)
<Preparation of the original magnesium alloy material>
下記の表1のような条件下で、比較例1〜3、実施例1〜4に該当する元素材を準備した。基本素材はAZ31Bであり、厚さは1.6mmであり、ストリップキャスティング(Strip Casting)工程をによって製造された板材である。ストリップキャスティングは、溶湯で直接圧延ロールの間を通過させながら冷却させて板材を製造する工程をいう。 Under the conditions shown in Table 1 below, raw materials corresponding to Comparative Examples 1 to 3 and Examples 1 to 4 were prepared. The basic material is AZ31B, the thickness is 1.6 mm, and the plate material is manufactured by a strip casting process. Strip casting refers to a process in which a plate material is produced by cooling while passing directly between rolling rolls with a molten metal.
圧縮残留応力を付加する工程としてはショットピーニング(shot peening)工程が使われた。遂行条件は、圧力0.8MPaおよび噴射距離15cmの条件下で、ショットボール(Aluminia Powder #240)を60秒〜120秒間噴射した。 A shot peening process was used as a process for applying compressive residual stress. As performance conditions, shot balls (Aluminia Powder # 240) were sprayed for 60 seconds to 120 seconds under conditions of a pressure of 0.8 MPa and a spray distance of 15 cm.
一方、アニーリング(annealing)は、各温度で20分〜60分間維持した後、空冷した。 On the other hand, annealing was maintained for 20 to 60 minutes at each temperature, and then air-cooled.
マグネシウム合金元素材の表面に圧縮残留応力の付加有無を確認するために、比較例1、2と実施例2に対してビッカース硬さ試験を実施した。ビッカース硬さ試験は、Micro Vickers FM 700硬度計を用いて実施し、試験条件は、試験荷重500gf、ドウェル時間(dwell time)5secであった。下記の表2においては、比較例1、2と実施例2に該当するマグネシウム合金元素材の厚さ方向に応じた硬度変化を整理した。一方、実施例2の場合は、マグネシウム合金元素材の上部(表面)、内部、および下部に区分して硬度を測定した。 A Vickers hardness test was performed on Comparative Examples 1 and 2 and Example 2 in order to confirm whether or not compression residual stress was applied to the surface of the magnesium alloy source material. The Vickers hardness test was carried out using a Micro Vickers FM 700 hardness tester, and the test conditions were a test load of 500 gf and a dwell time of 5 sec. In Table 2 below, the hardness changes according to the thickness direction of the magnesium alloy base material corresponding to Comparative Examples 1 and 2 and Example 2 are arranged. On the other hand, in the case of Example 2, the hardness was measured by dividing the magnesium alloy base material into an upper part (surface), an inner part, and a lower part.
上記の表2を参照すれば、元素材の前処理をしない場合(比較例1)の硬度は、Hv65.8(平均値、以下、同様)と測定された。また、元素材にアニーリング処理だけをした場合は(比較例2)、硬度がHv58.5と測定され、元素材がより軟化したことを確認することができる。 Referring to Table 2 above, the hardness when the raw material was not pretreated (Comparative Example 1) was measured as Hv 65.8 (average value, hereinafter the same). Further, when only the annealing treatment is performed on the original material (Comparative Example 2), the hardness is measured as Hv 58.5, and it can be confirmed that the original material is further softened.
一方、元素材にアニーリング処理をし、圧縮残留応力を付加した場合は(実施例2)、元素材の上部(表面)は硬度がHv90.5(最大Hv98.6)に上昇し、また、内部も硬度がHv73.43(最大Hv75.1)に上昇したことを確認することができる。すなわち、実施例2は、比較例1または2より表面および内部の硬度がいずれも上昇した。したがって、マグネシウム板材の表面が圧縮残留応力の付加工程(ショットピーニング)によって塑性変形が発生して硬化すると同時に圧縮残留応力が残留することが分かる。
<穿孔法(Hole Drilling Method)による残留応力の測定>
On the other hand, when the original material is annealed and compressive residual stress is applied (Example 2), the hardness of the upper part (surface) of the original material increases to Hv 90.5 (maximum Hv 98.6), It can also be confirmed that the hardness has increased to Hv 73.43 (maximum Hv 75.1). That is, in Example 2, both the surface and internal hardness increased compared to Comparative Example 1 or 2. Therefore, it can be seen that the surface of the magnesium plate material is plastically deformed and hardened by the compressive residual stress adding step (shot peening), and at the same time, the compressive residual stress remains.
<Measurement of Residual Stress by Hole Drilling Method>
比較例および実施例に対し、ASTM E837−08による穿孔法(Hole Drilling Method)によって圧縮残留応力を測定した。すなわち、前記ビッカース硬さ試験から提示された残留応力の存在有無に対して定量的な結果を導き出した。
穿孔法は、残留応力が存在する素材を穿孔すると応力の平衡状態に到達するために周辺の拘束が解除されるという理論に基づくものであり、周囲の弛緩した変化量は歪みゲージを用いて測定する。
For the comparative examples and examples, compressive residual stress was measured by a hole drilling method (Hole Drilling Method) according to ASTM E837-08. That is, a quantitative result was derived for the presence or absence of residual stress presented from the Vickers hardness test.
The perforation method is based on the theory that when a material with residual stress is perforated, the surrounding constraints are released to reach the equilibrium state of the stress. To do.
本測定に使われた装置はRS−200(ドリル装置、Vishay、USA)、P−3(Strain Indicator、Vishay、USA)、H−drill ver3.10(分析S/W、Vishay、USA)であり、歪みゲージはCEA−06−06UL−120(Vishay、USA)を使った。 The equipment used for this measurement was RS-200 (drilling equipment, Vishay, USA), P-3 (Strain Indicator, Vishay, USA), H-drill ver 3.10 (analysis S / W, Vishay, USA). The strain gauge used was CEA-06-06UL-120 (Vishay, USA).
一方、残留応力の測定のために試験片の真中を2番ゲージに決め、これを基準にして左、右に20mm離れた位置に1番および3番ゲージのホール部分を位置させた。 On the other hand, for the measurement of residual stress, the center of the test piece was determined to be No. 2 gauge, and the holes of No. 1 and No. 3 gauges were positioned 20 mm away from the left and right with reference to this.
図2aは、比較例1〜比較例3の穿孔法によって測定された残留応力の程度を示すグラフである。 FIG. 2 a is a graph showing the degree of residual stress measured by the drilling method of Comparative Examples 1 to 3.
基準点から(−)方向は試験片に圧縮残留応力が存在することを示し、(+)方向は試験片に引張残留応力が存在することを示す。一方、N1、N2、N3は試験回数を示す。 The (−) direction from the reference point indicates that compressive residual stress exists in the test piece, and the (+) direction indicates that tensile residual stress exists in the test piece. On the other hand, N1, N2, and N3 indicate the number of tests.
図2aを参照すれば、元素材の前処理をしない場合(比較例1)は圧縮残留応力が存在することを確認することができ、アニーリング処理だけをした場合(比較例2および3)は引張残留応力が存在することを確認することができる。 Referring to FIG. 2a, it can be confirmed that compressive residual stress exists when the raw material is not pretreated (Comparative Example 1), and when only the annealing treatment is performed (Comparative Examples 2 and 3) It can be confirmed that there is residual stress.
図2bは、実施例1〜実施例3の穿孔法によって測定された残留応力の程度を示すグラフである。S1、S2、S3は試験回数を示す。 FIG. 2 b is a graph showing the degree of residual stress measured by the drilling method of Examples 1 to 3. S1, S2, and S3 indicate the number of tests.
図2bを参照すれば、元素材に圧縮残留応力を付加した場合は(実施例1)、上述した比較例1と比較して、圧縮残留応力がより増加したことを確認することができる。また、アニーリング処理を行った後に圧縮残留応力を付加した場合は(実施例2および3)、アニーリング処理だけをした場合(比較例2および3)の引張残留応力が圧縮残留応力状態に変化したことを確認することができる。 Referring to FIG. 2b, when compressive residual stress is added to the original material (Example 1), it can be confirmed that the compressive residual stress is increased as compared with Comparative Example 1 described above. In addition, when compressive residual stress was applied after the annealing treatment (Examples 2 and 3), the tensile residual stress when only the annealing treatment was performed (Comparative Examples 2 and 3) was changed to the compressive residual stress state. Can be confirmed.
したがって、マグネシウム板材の表面には、圧縮残留応力の付加工程(ショットピーニング)によって圧縮残留応力が生成されたことが分かる。
<1軸引張試験(Tensile test)>
Therefore, it can be seen that compressive residual stress was generated on the surface of the magnesium plate material by the compression residual stress adding step (shot peening).
<Tensile test>
比較例1と実施例1〜実施例3に対して1軸引張試験を実施した。引張試験はINSTRON−4206装置においてASTM−E8M規格の試験片(gage length 25mm)を用い、試験速度は75mm/minであった。 A uniaxial tensile test was performed on Comparative Example 1 and Examples 1 to 3. In the tensile test, an ASTM-E8M standard test piece (gauge length 25 mm) was used in an INSTRON-4206 apparatus, and the test speed was 75 mm / min.
図3は、比較例1〜3および実施例1〜3に該当するマグネシウム合金板材の引張試験の結果値を示すグラフである。図3を参照すれば、前記グラフは応力−歪み曲線(stress−strain curve)であって、試験片に加えた応力に対する試験片の変形程度を示す曲線である。 FIG. 3 is a graph showing results of tensile tests of magnesium alloy sheet materials corresponding to Comparative Examples 1 to 3 and Examples 1 to 3. Referring to FIG. 3, the graph is a stress-strain curve, which is a curve showing the degree of deformation of the test piece with respect to the stress applied to the test piece.
伸び率(elongation)は、前記応力−歪み曲線において試験片の伸びた長さを試験片の初期長さで分けた数値を意味するものであり、素材の成形性を示す一般的な尺度である。 Elongation means a numerical value obtained by dividing the length of the test piece in the stress-strain curve by the initial length of the test piece, and is a general measure of the formability of the material. .
まず、元素材の前処理をしない比較例1においては、引張強度(Tensile Strength)が285.69Mpaであり、伸び率は15%と測定された。 First, in Comparative Example 1 in which the raw material was not pretreated, the tensile strength was 285.69 MPa, and the elongation was measured to be 15%.
これと比較し、前記グラフに示されているように、元素材に圧縮残留応力を付加する工程だけを行った実施例1の場合、引張強度は276.58Mpaであり、伸び率は17.62%と多少向上したことが分かる。また、元素材を345℃でアニーリングし、圧縮残留応力を付加する工程を行った実施例2の場合、引張強度は262.46Mpaであり、伸び率は23.16%とより向上したことを確認することができる。 In comparison with this, as shown in the graph, in Example 1 in which only the process of applying compressive residual stress to the original material was performed, the tensile strength was 276.58 Mpa and the elongation was 17.62. It can be seen that there is a slight improvement. In Example 2 where the raw material was annealed at 345 ° C. and subjected to the step of applying compressive residual stress, it was confirmed that the tensile strength was 262.46 Mpa and the elongation was improved to 23.16%. can do.
一方、マグネシウム板材の場合、2軸以上の応力状態にある場合が多いため、1軸引張試験だけでは成形性を正しく判断し難い。したがって、マグネシウム板材の成形性の判断は、1軸引張試験と共に後述するエリクセン試験および深絞り試験の結果と共になされなければならない。
<成形性試験(エリクセン試験)>
On the other hand, in the case of a magnesium plate material, since it is often in a stress state of two or more axes, it is difficult to correctly determine formability only by a uniaxial tensile test. Therefore, the judgment of the formability of the magnesium sheet must be made together with the results of the Erichsen test and the deep drawing test described later together with the uniaxial tensile test.
<Formability test (Ericsen test)>
比較例1〜3、実施例1〜4に対して成形性試験を実施した。成形性試験方法としてはエリクセン試験(Erichsen test)を使った。エリクセン試験は、板材の成形性を判断する代表的な試験法であり、上下ダイの間に素材が圧着された状態でボール形状のパンチが上部に上昇して素材が破損するまでの高さを測定することによって板材の成形性を測定することをいう。 A moldability test was performed on Comparative Examples 1 to 3 and Examples 1 to 4. The Erichsen test was used as a formability test method. The Eriksen test is a typical test method for determining the formability of a plate material. The height of the ball-shaped punch rising up and breaking the material while the material is pressed between the upper and lower dies is measured. It means to measure the formability of the plate material by measuring.
エリクセン試験はErichsen−142/40装置で行われ、試験条件は圧力(pressure)0.8Mpa、パンチスピード0.5mm/s、blank holding forceは3.5kNであった。 The Erichsen test was performed on an Erichsen-142 / 40 apparatus, the test conditions were pressure 0.8 Mpa, punch speed 0.5 mm / s, blank holding force 3.5 kN.
エリクセン試験から導き出されるエリクセン値(Index of Erichsen)は、素材が破断することなく変形する成形性を示す指標であり、1軸引張試験とは異なり、2軸以上の応力状態において成形性を示す代表的な指数である。エリクセン値が高いほど成形性が良いものとして解釈される。 The Eriksen value (Index of Erichsen) derived from the Eriksen test is an index indicating the formability of the material without deforming, and is representative of the formability in a biaxial or higher stress state, unlike the uniaxial tensile test. Index. The higher the Erichsen value, the better the moldability.
下記の表3においては、上述した成形性の試験結果として、比較例1〜3、実施例1〜4のエリクセン値を示す。これと関連し、図4は、比較例2および比較例3と実施例によって前処理されたマグネシウム合金板材のエリクセン試験の結果値を示すグラフである。 In Table 3 below, the Erichsen values of Comparative Examples 1 to 3 and Examples 1 to 4 are shown as the moldability test results described above. In this connection, FIG. 4 is a graph showing the Eriksen test result values of the magnesium alloy sheets pretreated by Comparative Examples 2 and 3 and Examples.
前記グラフにおいて、Y軸は力(force)であり、X軸はマグネシウム合金板材の伸びた程度(stroke)を示す。したがって、同一の力によるマグネシウム合金板材の伸びた程度を対比することにより、上述した比較例および実施例間のマグネシウム合金板材の成形性を比較することができる。 In the graph, the Y-axis is force, and the X-axis indicates the degree of elongation of the magnesium alloy sheet. Therefore, by comparing the degree of elongation of the magnesium alloy sheet material with the same force, it is possible to compare the formability of the magnesium alloy sheet material between the comparative example and the example described above.
上記の表3および図4を参照すれば、元素材の前処理をしない場合と比較し(比較例1)、アニーリング処理をするか(比較例2および比較例3)、元素材に圧縮残留応力を付加する工程を遂行した時(実施例1)、成形性試験で優れた結果を得て、マグネシウム合金板材の成形性が増加する効果があることが分かる。 Referring to Table 3 and FIG. 4 described above, compared with the case where the raw material is not pretreated (Comparative Example 1), whether the annealing treatment is performed (Comparative Example 2 and Comparative Example 3), or compressive residual stress on the raw material When the step of adding is performed (Example 1), excellent results are obtained in the formability test, and it can be seen that there is an effect of increasing the formability of the magnesium alloy sheet.
また、アニーリング処理後に圧縮残留応力を付加する工程を順次行った場合は(実施例2および実施例3)、アニーリング処理または圧縮残留応力を付加する工程だけを遂行した場合より、マグネシウム合金板材の成形性がより増加する効果があることを確認することができる。 Further, when the step of adding compressive residual stress is sequentially performed after the annealing treatment (Example 2 and Example 3), the magnesium alloy sheet is formed more than the case of performing only the annealing treatment or the step of applying compressive residual stress. It can be confirmed that there is an effect of increasing the sex.
但し、アニーリング処理後に圧縮残留応力を付加する工程を順次行う場合であっても、アニーリング処理温度が400℃以上である場合は、成形性がむしろ低くなることを確認することができた。
<深絞り(deep drawing)四角カップの成形>
However, even when the step of applying compressive residual stress was sequentially performed after the annealing treatment, it was confirmed that the formability was rather lowered when the annealing treatment temperature was 400 ° C. or higher.
<Deep drawing square cup molding>
比較例1、2および実施例2に対して深絞り四角カップの成形を実施した。深絞り加工は、平板から継ぎ目のない中空容器を作る代表的な成形法であり、ダイ表面上にある素材を円周方向に縮めながらパンチとダイ間を移動させて側壁を作る技法である。 A deep drawn square cup was molded for Comparative Examples 1 and 2 and Example 2. Deep drawing is a typical forming method for making a seamless hollow container from a flat plate, and is a technique for making a side wall by moving between a punch and a die while shrinking a material on a die surface in a circumferential direction.
深絞り四角形の成形条件は、比較例1、2の場合、金型温度100℃、パンチ速度0.43mm/s、成形高さ7mmであり、40×60mmの大きさに成形を実施した。一方、実施例2の場合は金型の温度を常温で行い、残りの条件は前記と同様である。 In the case of Comparative Examples 1 and 2, the deep drawing rectangle was molded at a mold temperature of 100 ° C., a punch speed of 0.43 mm / s, a molding height of 7 mm, and was molded to a size of 40 × 60 mm. On the other hand, in the case of Example 2, the temperature of the mold is set at room temperature, and the remaining conditions are the same as described above.
遂行の結果、前処理をしない元素材(比較例1)またはアニーリングだけを実施した元素材(比較例2)の場合は、破断が生じて四角カップの成形が失敗したものと観察された。 As a result of execution, in the case of the original material without pretreatment (Comparative Example 1) or the original material subjected to only annealing (Comparative Example 2), it was observed that the formation of the square cup failed due to breakage.
しかし、アニーリングおよび圧縮残留応力の付加工程を前処理として行った元素材(実施例2)の場合は、常温で成形したのに破断が生じることなく四角カップの成形に成功することにより、成形性がより向上したことを確認することができた。 However, in the case of the original material (Example 2) which has been subjected to the annealing and compressive residual stress addition process as a pre-treatment, the moldability is improved by successfully forming the square cup without breaking even though it is molded at room temperature. We were able to confirm that improved.
以上、本発明の実施例について説明したが、当該技術分野で通常の知識を有した者であれば、特許請求の範囲に記載された本発明の思想から逸脱しない範囲内で構成要素の付加、変更、削除または追加などによって本発明を様々に修正および変更できるものであり、これもまた本発明の権利範囲内に含まれると言える。 As described above, the embodiments of the present invention have been described. However, those who have ordinary knowledge in the technical field can add components without departing from the spirit of the present invention described in the claims. The present invention can be variously modified and changed by changing, deleting, or adding, and it can be said that this is also included in the scope of the right of the present invention.
Claims (4)
サンドブラスト(sand blast)、ショットピーニング(shot peening)、レーザーピーニング(laser peening)または超音波ピーニング(ultrasonic peening)のうちいずれか一つの工程であることを特徴とする、請求項1に記載の常温成形性を向上させたマグネシウム合金板材の製造方法。 The first step includes
The room temperature molding according to claim 1, wherein the process is one of sand blasting, shot peening, laser peening, and ultrasonic peening. For producing a magnesium alloy sheet having improved properties.
前記マグネシウム合金元素材をアニーリング(annealing)するアニーリングステップをさらに含むことを特徴とする、請求項1に記載の常温成形性を向上させたマグネシウム合金板材の製造方法。 Before the first step,
The method for manufacturing a magnesium alloy sheet with improved room temperature formability according to claim 1, further comprising an annealing step of annealing the magnesium alloy source material.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0105012 | 2010-10-27 | ||
KR1020100105012A KR101237232B1 (en) | 2010-10-27 | 2010-10-27 | The mg alloy sheet having increasing formability and methods of manufaturing the same |
PCT/KR2011/006354 WO2012057446A2 (en) | 2010-10-27 | 2011-08-29 | Magnesium alloy sheet having improved formability at room temperature, and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013542328A true JP2013542328A (en) | 2013-11-21 |
Family
ID=45994497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013536491A Pending JP2013542328A (en) | 2010-10-27 | 2011-08-29 | Magnesium alloy sheet having improved room temperature formability and method for producing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130209309A1 (en) |
JP (1) | JP2013542328A (en) |
KR (1) | KR101237232B1 (en) |
WO (1) | WO2012057446A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016083696A (en) * | 2014-10-29 | 2016-05-19 | 権田金属工業株式会社 | Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product |
WO2021210146A1 (en) * | 2020-04-16 | 2021-10-21 | 住友電気工業株式会社 | Magnesium alloy sheet, magnesium alloy molded body, method for producing magnesium alloy sheet, and method for producing magnesium alloy molded body |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108300918B (en) | 2017-01-11 | 2020-05-12 | 北京科技大学 | Calcium-containing rare earth magnesium alloy sheet with high room temperature forming performance and preparation method thereof |
WO2024136558A1 (en) * | 2022-12-22 | 2024-06-27 | 주식회사 엘지에너지솔루션 | Method for manufacturing anode current collector, anode current collector, and anode, electrode assembly, and secondary battery comprising anode current collector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764401A (en) * | 1970-11-17 | 1973-10-09 | North American Rockwell | Metallic articles and the manufacture thereof |
JPH10166271A (en) * | 1996-12-09 | 1998-06-23 | Sinto Brator Co Ltd | Shot peening method for light alloy product |
JP2006122969A (en) * | 2004-10-29 | 2006-05-18 | Muneharu Kutsuna | Welded joint of metallic material and metallic clad material, and laser peening of casting material |
JP2008284644A (en) * | 2007-05-17 | 2008-11-27 | Sintokogio Ltd | Cold working method for magnesium alloy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006105103A (en) | 2004-10-08 | 2006-04-20 | Toyota Motor Corp | Piston |
-
2010
- 2010-10-27 KR KR1020100105012A patent/KR101237232B1/en active IP Right Grant
-
2011
- 2011-08-29 JP JP2013536491A patent/JP2013542328A/en active Pending
- 2011-08-29 US US13/881,255 patent/US20130209309A1/en not_active Abandoned
- 2011-08-29 WO PCT/KR2011/006354 patent/WO2012057446A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3764401A (en) * | 1970-11-17 | 1973-10-09 | North American Rockwell | Metallic articles and the manufacture thereof |
JPH10166271A (en) * | 1996-12-09 | 1998-06-23 | Sinto Brator Co Ltd | Shot peening method for light alloy product |
JP2006122969A (en) * | 2004-10-29 | 2006-05-18 | Muneharu Kutsuna | Welded joint of metallic material and metallic clad material, and laser peening of casting material |
JP2008284644A (en) * | 2007-05-17 | 2008-11-27 | Sintokogio Ltd | Cold working method for magnesium alloy |
Non-Patent Citations (2)
Title |
---|
JPN6014047288; '表面加工熱処理したAZ31マグネシウム合金の機械的性質と成形性' 日本金属学会秋期大会講演概要 Vol.135th, 2004, p.487 * |
JPN6014047289; '高機能マグネシウム合金の成形・利用技術に関する研究(第8報)' 岐阜県製品技術研究所研究報告 No.5, 2004, p.51-55 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016083696A (en) * | 2014-10-29 | 2016-05-19 | 権田金属工業株式会社 | Magnesium alloy plate material, production method of magnesium alloy plate material, magnesium alloy product, production method of magnesium alloy product and magnesium alloy final product |
WO2021210146A1 (en) * | 2020-04-16 | 2021-10-21 | 住友電気工業株式会社 | Magnesium alloy sheet, magnesium alloy molded body, method for producing magnesium alloy sheet, and method for producing magnesium alloy molded body |
WO2021210510A1 (en) * | 2020-04-16 | 2021-10-21 | 住友電気工業株式会社 | Magnesium alloy sheet, magnesium alloy molded article, method for manufacturing magnesium alloy sheet, and method for manufacturing magnesium alloy molded article |
Also Published As
Publication number | Publication date |
---|---|
US20130209309A1 (en) | 2013-08-15 |
WO2012057446A2 (en) | 2012-05-03 |
WO2012057446A3 (en) | 2012-06-21 |
KR20120043799A (en) | 2012-05-07 |
KR101237232B1 (en) | 2013-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gryguc et al. | Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg | |
Cheng et al. | The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming | |
Xu et al. | Hole expansion of twinning-induced plasticity steel | |
Hama et al. | Springback characteristics of magnesium alloy sheet AZ31B in draw-bending | |
WO2017111550A1 (en) | Magnesium alloy sheet material and manufacturing method therefor | |
CN108138265A (en) | For making the method for hardening aluminum alloy warm working | |
JP2013542328A (en) | Magnesium alloy sheet having improved room temperature formability and method for producing the same | |
CN108138266A (en) | For making the method for the aluminium alloy warm working age-hardenable in T4 annealed strips | |
Elambharathi et al. | Novel insights on different treatment of magnesium alloys: A critical review | |
Wang et al. | Effect of strain path on microstructure and mechanical properties of AZ31 magnesium alloy sheets processed by constrained groove pressing | |
Panicker et al. | Warm redrawing of AA6082 sheets and investigations into the effect of aging heat treatment on cup wall strength | |
Wang et al. | Influence of blank holder type on drawability of 5182-O aluminum sheet at room temperature | |
Zhao et al. | An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method | |
Qiang et al. | Precision forging technologies for magnesium alloy bracket and wheel | |
JP7157158B2 (en) | Magnesium alloy plate and manufacturing method thereof | |
Azimi et al. | Effect of temperature on microstructural evolution and subsequent enhancement of mechanical properties in a backward extruded magnesium alloy | |
Geng et al. | Effect of solution treatment time on plasticity and ductile fracture of 7075 aluminum alloy sheet in hot stamping process | |
Zheng et al. | Study of thermal forming limit of medium-Mn steel based on finite element analysis and experiments | |
Ullah et al. | A review on the deformation mechanism and formability enhancement strategies in incremental sheet forming | |
JP6043272B2 (en) | Manufacturing method of press-molded products | |
Huang et al. | Formability of Fe-Mn-C twinning induced plasticity steel | |
KR101502751B1 (en) | Method for manufacturing cold rolled magnesium alloy sheet having enhanced formability, yield strength and tensile strength and cold rolled magnesium alloy sheet having enhanced formability, yield strength and tensile strength manufactured thereby | |
Qing et al. | Grain refining and property improvement of AZ31 Mg alloy by hot rolling | |
Chen et al. | Embossment formation in press forging of AZ31 magnesium-alloy sheets | |
KR101610360B1 (en) | Magnesium alloy sheet, method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150414 |