WO2021209071A1 - 背光源、背光模组、背光驱动方法和显示装置 - Google Patents

背光源、背光模组、背光驱动方法和显示装置 Download PDF

Info

Publication number
WO2021209071A1
WO2021209071A1 PCT/CN2021/093846 CN2021093846W WO2021209071A1 WO 2021209071 A1 WO2021209071 A1 WO 2021209071A1 CN 2021093846 W CN2021093846 W CN 2021093846W WO 2021209071 A1 WO2021209071 A1 WO 2021209071A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
driving
electrically connected
module
row
Prior art date
Application number
PCT/CN2021/093846
Other languages
English (en)
French (fr)
Inventor
丘树国
周拥华
Original Assignee
北京奕斯伟计算技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京奕斯伟计算技术有限公司 filed Critical 北京奕斯伟计算技术有限公司
Publication of WO2021209071A1 publication Critical patent/WO2021209071A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a backlight source, a backlight module, a backlight driving method, and a display device.
  • the traditional LCD (liquid crystal display) panel backlight is provided by light-emitting diodes and light guide plates.
  • the brightness of the entire panel display area is adjusted by a unified backlight, which makes the LCD panel unable to achieve high contrast and high dynamic range display.
  • some improved solutions have gradually emerged, such as partitioned display technology and mini-LED (sub-millimeter light emitting diode) backlight display technology.
  • mini-LED backlight display technology has gradually become the mainstream trend due to its obvious advantages in terms of display quality improvement and technical breakthroughs. Since the luminous brightness of the mini-LED is proportional to the current flowing through it and has high linearity, controlling the luminous brightness of the min-LED will be achieved by accurately controlling the current flowing through the min-LED.
  • the control chip uses the method of converting voltage to current to control current accuracy. Due to the deviation of the manufacturing process, the nonlinearity of the current-to-voltage conversion ratio, and the temperature change in different regions, the control chip will control the current accuracy. This results in a deviation in the driving current (the driving current is the current for driving the mini-LED to emit light), thereby causing a deviation in brightness.
  • the main purpose of the present disclosure is to provide a backlight source, a backlight module, a backlight driving method, and a display device, which solves the problem of using the method of converting voltage to current to control current accuracy in related technologies. Factors such as non-linearity and temperature changes in different regions will cause the deviation of the driving current for driving the light-emitting diodes, thereby causing the problem of deviation of the brightness.
  • the present disclosure provides a backlight source, including a light-emitting unit, a driving current supply unit, a driving unit, and a switch control line, wherein:
  • the driving current providing unit is used for generating a driving current according to a digital driving signal, and outputting the driving current through a driving current output terminal;
  • the drive unit is electrically connected to the switch control line, the drive current output terminal, and the light-emitting unit, and is used to control the drive current under the control of the switch control signal on the switch control line. Amplify to obtain an amplified drive current, and provide the amplified drive current to the light-emitting unit to drive the light-emitting unit to emit light.
  • the drive current is an analog drive current
  • the digital drive signal is a corrected digital drive signal
  • the drive current supply unit includes a drive signal supply module, a gamma correction module, and a drive current supply module, wherein,
  • the drive signal providing module is used to provide an original digital drive signal to the gamma correction module
  • the gamma correction module is used to perform gamma correction on the original digital drive signal to obtain a corrected digital drive signal
  • the driving current providing module is used for converting the corrected digital driving signal into an analog driving current, and outputting the analog driving current through the driving current output terminal.
  • the drive unit includes a current mirror, a switch module, and an energy storage module, wherein:
  • the light-emitting unit includes P light-emitting modules, and P is a positive integer;
  • the current mirror includes an input branch and P output branches; the control ends of the P output branches are electrically connected to each other;
  • the input branch is electrically connected to the drive current output terminal
  • the control end of the switch module is electrically connected to the switch control line, the first end of the switch module is electrically connected to the drive current output end, and the second end of the switch module is electrically connected to the control of the output branch. Terminal is electrically connected, and the switch module is used to control the conduction or disconnection of the connection between the drive current output terminal and the control terminal of the output branch under the control of the switch control signal on the switch control line ;
  • the energy storage module is electrically connected to the control terminal of the output branch, and is used to maintain the potential of the control terminal of the output branch;
  • the p-th output branch is electrically connected to the p-th light-emitting module in the light-emitting unit, and is used to control the amplification of the driving current under the signal of the potential of the control terminal to obtain the p-th amplified driving current, and
  • the p-th amplified driving current is provided to the p-th light-emitting module to drive the p-th light-emitting module to emit light;
  • p is a positive integer less than or equal to P.
  • the input branch includes an input transistor
  • the p-th output branch includes a p-th output transistor
  • Both the control electrode and the first electrode of the input transistor are electrically connected to the drive current output terminal, and the second electrode of the input transistor is electrically connected to the first voltage terminal;
  • the control terminal of the p-th output transistor is the control terminal of the p-th output branch, the first terminal of the p-th output transistor is electrically connected to the p-th light-emitting module, and the second terminal of the p-th output transistor is It is electrically connected to the first voltage terminal.
  • the switch module includes a switch transistor
  • the control electrode of the switching transistor is electrically connected to the switching control line, the first electrode of the switching transistor is electrically connected to the driving current output terminal, and the second electrode of the switching transistor is electrically connected to the control of the output branch. Terminal electrical connection;
  • the energy storage module includes a sample and hold capacitor
  • the first end of the sample and hold capacitor is electrically connected to the control end of the output branch, and the second end of the sample and hold capacitor is electrically connected to the first voltage end.
  • the light-emitting module includes B light-emitting unit circuits; B is a positive integer; when B is greater than 1, the B light-emitting unit circuits are connected in parallel with each other;
  • the light-emitting unit circuit includes a light-emitting diode, the anode of the light-emitting diode is electrically connected to the second voltage terminal; the cathode of the light-emitting diode is electrically connected to the driving unit, and the cathode of the light-emitting diode is used to receive the amplifying drive Current.
  • the light-emitting module includes B light-emitting unit circuits; B is a positive integer; when B is greater than 1, the B light-emitting unit circuits are connected in parallel with each other;
  • the light-emitting unit circuit includes A light-emitting diodes connected in series with each other;
  • the anode of the first light emitting diode is electrically connected to the second voltage terminal, and the cathode of the a-1th light emitting diode is electrically connected to the anode of the ath light emitting diode;
  • the cathode of the A-th light-emitting diode is electrically connected to the driving unit, and the cathode of the light-emitting diode is used to receive the amplified driving current;
  • A is an integer greater than 1
  • a is a positive integer less than or equal to A
  • a is not equal to 1.
  • the present disclosure also provides a backlight driving method, which is applied to the above-mentioned backlight source, and the backlight driving method includes:
  • the driving current providing unit generates a driving current according to the digital driving signal, and outputs the driving current through the driving current output terminal;
  • the driving unit controls to amplify the driving current to obtain an amplified driving current, and provides the amplified driving current to the light-emitting unit to drive the light-emitting unit to emit light .
  • the present disclosure also provides a backlight module, which is applied to a display device.
  • the backlight module includes M rows of switch control lines, a switch control signal providing circuit, a driving circuit, a driving current providing circuit and a light emitting circuit, wherein the driving The circuit includes M rows and N columns of driving units, and the light-emitting circuit includes M rows and N columns of light-emitting units; M and N are integers greater than 1;
  • the driving current supply circuit includes at least one driving current supply unit; the driving current supply unit includes N driving current output terminals;
  • the driving current supply unit is configured to generate an n-th driving current according to the n-th digital driving signal, and output the n-th driving current through the n-th driving current output terminal; n is a positive integer less than or equal to N;
  • the switch control signal providing circuit is used to provide corresponding switch control signals to the M rows of switch control lines in a time-sharing manner
  • the driving unit in the mth row and the nth column is electrically connected to the light-emitting unit in the mth row and the nth column, the switch control line of the mth row, and the nth driving current output terminal of the driving current supply unit, for Under the control of the m-th switch control signal on the row switch control line, the n-th drive current output from the n-th drive current output terminal of the drive current supply unit is controlled to amplify to obtain the n-th amplified drive current, and the n-th is amplified
  • the driving current is provided to the light emitting unit in the mth row and the nth column to drive the light emitting unit in the mth row and the nth column to emit light;
  • n is a positive integer less than or equal to M.
  • both the driving circuit and the light-emitting circuit are provided in a display panel included in the display device.
  • the light-emitting unit in the m-th row and the n-th column includes P light-emitting modules, and the driving unit in the m-th row and the n-th column is used to obtain P n-th amplified driving currents; P is a positive integer;
  • the driving unit in the m-th row and the n-th column is configured to provide the p-th and n-th amplified driving current to the p-th light-emitting module included in the m-th row and the n-th column of the light-emitting unit, so as to drive the p-th light-emitting module to emit light;
  • p is a positive integer less than or equal to P.
  • the nth digital drive signal is an nth corrected digital drive signal
  • the nth drive current is an analog drive current
  • the drive current supply unit includes a drive signal supply module, a gamma correction module, and a drive current Provide modules, of which,
  • the driving signal providing module is used to provide the n-th original digital driving signal to the gamma correction module;
  • the gamma correction module performs gamma correction on the n-th original digital drive signal to obtain the n-th corrected digital drive signal;
  • the driving current supply module is used for converting the n-th corrected digital driving signal into an n-th analog driving current, and outputting the n-th analog driving current through the driving current output terminal.
  • the driving unit in the mth row and the nth column includes a current mirror in the mth row and nth column, a switch module in the mth row and nth column, and an energy storage module in the mth row and nth column, wherein,
  • the current mirror in the mth row and the nth column includes input branches in the mth row and nth column and P output branches in the mth row and nth column; P is a positive integer;
  • the input branch of the mth row and the nth column is electrically connected to the nth drive current output terminal;
  • the control ends of the P output branches in the mth row and the nth column are electrically connected to each other;
  • the control terminal of the switch module in the mth row and the nth column is electrically connected to the mth row switch control line, and the first terminal of the mth row and nth column switch module is electrically connected to the nth drive current output terminal ,
  • the second end of the switch module in the mth row and the nth column is electrically connected to the control terminals of the P output branches in the mth row and the nth column.
  • the switch module in the mth row and the nth column is used to Under the control of the switch control signal on the switch control line of the mth row, control to turn on or disconnect the connection between the nth drive current output terminal and the control terminal of the mth row and nth column output branch;
  • the energy storage module in the mth row and nth column is electrically connected to the control terminal of the output branch in the mth row and nth column, and is used to maintain the potential of the control terminal of the output branch in the mth row and nth column;
  • the p-th m-th row and n-th column output branch is electrically connected to the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit, and is configured to output branches in the p-th m-th column and n-th row.
  • the n-th driving current is controlled to be amplified to obtain the p-th and n-th amplified driving current, and the p-th and n-th amplified driving current is provided to the light-emitting unit in the m-th row and the n-th column
  • the included p-th light-emitting module is used to drive the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit to emit light.
  • the input branch in the m-th row and the n-th column includes an input transistor in the m-th row and the n-th column
  • the p-th m-th row and n-th column output branch includes the p-th m-th row and n-th column output Transistor
  • control electrode and the first electrode of the input transistor in the mth row and the nth column are electrically connected to the nth drive current output terminal, and the second electrode of the input transistor in the mth row and the nth column is electrically connected to the first voltage terminal. connect;
  • the control terminal of the p-th m-th row and n-th column output transistor is the control terminal of the p-th m-th row and n-th column output branch, and the first p-th m-th row and n-th column output transistor
  • the pole is electrically connected to the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit, and the second pole of the p-th m-th row and n-th column output transistor is electrically connected to the first voltage terminal.
  • the switch module in the mth row and the nth column includes a switch transistor in the mth row and the nth column;
  • the control electrode of the switching transistor of the mth row and the nth column is electrically connected to the mth row switch control line, and the first electrode of the mth row and nth column of the switching transistor is electrically connected to the nth drive current output terminal ,
  • the second pole of the switching transistor in the mth row and the nth column is electrically connected to the control terminal of the output branch of the mth row and the nth column;
  • the energy storage module in the mth row and the nth column includes a sample-and-hold capacitor in the mth row and the nth column;
  • the first end of the sample and hold capacitor in the mth row and nth column is electrically connected to the control end of the output branch in the mth row and nth column, and the second end of the sample and hold capacitor in the mth row and nth column is electrically connected to the A voltage terminal is electrically connected.
  • the switch control signal providing circuit includes a gate control circuit and a gate drive circuit
  • the gate control circuit is used to receive a digital control signal and convert the digital control signal into a plurality of logic signals
  • the gate driving circuit is configured to generate M switch control signals according to the logic signal, and provide the M switch control signals to the M rows of switch control lines, respectively.
  • the present disclosure also provides a backlight driving method, which is applied to the above-mentioned backlight module, the driving period includes M driving stages arranged in sequence; the backlight driving method includes:
  • the switch control signal supply circuit provides an effective m-th switch control signal to the m-th row switch control line, and the drive current supply unit generates the n-th drive current according to the n-th digital drive signal, and outputs it through the n-th drive current
  • the terminal outputs the n-th drive current to the drive unit in the m-th row and the n-th column.
  • the m-th column drive unit controls the amplification of the n-th drive current under the control of the m-th switch control signal to obtain n amplify the driving current, and provide the n-th amplified driving current to the light-emitting unit in the m-th row and the n-th column to drive the light-emitting unit in the m-th row and n-th column to emit light;
  • M and N are integers greater than 1, m is a positive integer less than or equal to M, and n is a positive integer less than or equal to N.
  • the present disclosure also provides a display device including the above-mentioned backlight module.
  • the display device described in the embodiment of the present disclosure further includes a display panel
  • the driving circuit included in the backlight module and the light emitting circuit included in the backlight module are both arranged in the display panel.
  • the backlight source, backlight module, backlight driving method, and display device described in the present disclosure can accurately adjust the current for driving the light-emitting unit to emit light, while avoiding the effects of temperature, process deviation, environmental noise, etc. Influence.
  • Fig. 1 is a structural diagram of a backlight according to an embodiment of the present disclosure
  • FIG. 2 is a structural diagram of an embodiment of a driving current supply unit in a backlight according to an embodiment of the present disclosure
  • 3A is a structural diagram of an embodiment of a driving unit in a backlight according to an embodiment of the present disclosure
  • 3B is a structural diagram of another embodiment of the driving unit in the backlight according to the embodiment of the present disclosure.
  • 4A is a circuit diagram of a specific embodiment of the driving unit
  • 4B is a circuit diagram of another specific embodiment of the driving unit.
  • 5A is a circuit diagram of an embodiment of the light-emitting module in the backlight according to the embodiment of the present disclosure
  • 5B is a circuit diagram of another embodiment of the light-emitting module.
  • Fig. 6 is a structural diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of a backlight module according to another embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of an embodiment of a switch control signal providing circuit in the backlight module of the present disclosure.
  • the transistors used in all the embodiments of the present disclosure may be triodes, thin film transistors or field effect transistors or other devices with the same characteristics.
  • one of the poles is referred to as the first pole, and the other pole is referred to as the second pole.
  • the control electrode when the transistor is a triode, can be a base electrode, the first electrode can be a collector, and the second electrode can be an emitter.
  • the control electrode may be a base electrode, the first electrode may be an emitter electrode, and the second electrode may be a collector electrode.
  • the control electrode when the transistor is a thin film transistor or a field effect transistor, the control electrode may be a gate, the first electrode may be a drain, and the second electrode may be a source.
  • the control electrode may be a gate, the first electrode may be a source, and the second electrode may be a drain.
  • the backlight includes a light-emitting unit 10, a driving current supply unit 11, a driving unit 12, and a switch control line S0, wherein,
  • the driving current providing unit 11 is configured to generate a driving current according to a digital driving signal, and output the driving current through the driving current output terminal IC0;
  • the drive unit 12 is electrically connected to the switch control line S0, the drive current output terminal IC0, and the light-emitting unit 10, respectively, and is used to control the pair of switches under the control of the switch control signal on the switch control line S0.
  • the driving current is amplified to obtain an amplified driving current, and the amplified driving current is provided to the light-emitting unit 10 to drive the light-emitting unit 10 to emit light.
  • the driving current supply unit 11 When the backlight source according to the embodiment of the present disclosure is working, the driving current supply unit 11 generates a driving current independent of temperature and related to the display screen according to the digital driving signal, and provides the driving current to the driving unit 12, The driving unit 12 amplifies the driving current, and drives the light-emitting unit 10 to emit light by amplifying the driving current, which can accurately adjust the current for driving the light-emitting unit to emit light while avoiding the effects of temperature, process deviation, environmental noise, etc. Influence.
  • the driving current may be an analog driving current
  • the digital driving signal may be a corrected digital driving signal
  • the driving current providing unit may include a driving signal providing module 21, a gamma correction module 22, and a driving current providing module 23, wherein,
  • the driving signal providing module 21 is used to provide an original digital driving signal to the gamma correction module 22;
  • the gamma correction module 22 is used to perform gamma correction on the original digital drive signal to obtain a corrected digital drive signal;
  • the driving current providing module 23 is used for converting the corrected digital driving signal into an analog driving current, and outputting the analog driving current through the driving current output terminal IC0.
  • the original digital drive signal is provided to the gamma correction module through the drive signal providing module, and the gamma correction module performs gamma correction on the original digital drive signal according to the preset gamma curve to obtain the corrected digital
  • the driving signal is then converted into a corresponding analog driving current through the driving current providing module 23, and the analog driving current is output through the driving current output terminal IC0.
  • the driving current providing module 23 when the driving current providing module 23 is working, it is assumed that when the decimal number corresponding to the corrected digital driving signal is 0, the driving current is 0, and when the decimal number corresponding to the corrected digital driving signal is 255 ,
  • the current of the drive current is the predetermined current value I0, and when the decimal number corresponding to the corrected digital drive signal is C, the current value of the drive current can be I0 ⁇ (C/255), but it is not limited to this.
  • C is a decimal number between 0 and 255.
  • the driving unit may include a current mirror, a switch module, and an energy storage module, where:
  • the light-emitting unit includes P light-emitting modules, and P is a positive integer;
  • the current mirror includes an input branch and P output branches; the control ends of the P output branches are electrically connected to each other; the input branch is electrically connected to the drive current output end;
  • the control end of the switch module is electrically connected to the switch control line, the first end of the switch module is electrically connected to the drive current output end, and the second end of the switch module is electrically connected to the control of the output branch. Terminal is electrically connected, and the switch module is used to control to turn on or disconnect the connection between the drive current output terminal and the control terminal of the output branch under the control of the switch control signal on the switch control line ;
  • the energy storage module is electrically connected to the control terminal of the output branch, and is used to maintain the potential of the control terminal of the output branch;
  • the p-th output branch is electrically connected to the p-th light-emitting module in the light-emitting unit, and is used to control the amplification of the driving current under the signal of the potential of the control terminal to obtain the p-th amplified driving current, and
  • the p-th amplified driving current is provided to the p-th light-emitting module to drive the p-th light-emitting module to emit light;
  • p is a positive integer less than or equal to P.
  • the p-th output branch amplifies the driving current to obtain the p-th amplified driving current.
  • the structure of the driving unit is illustrated below with P equal to 1 and P equal to 2 respectively.
  • an embodiment of the driving unit may include a current mirror, a switch module 31 and an energy storage module 32.
  • the current mirror includes an input branch 301 and an output branch 302;
  • the input branch 301 is electrically connected to the drive current output terminal IC0;
  • the control terminal of the switch module 31 is electrically connected to the switch control line S0, the first terminal of the switch module 31 is electrically connected to the drive current output terminal IC0, and the second terminal of the switch module 31 is electrically connected to the
  • the control terminal of the output branch 302 is electrically connected, and the switch module 31 is used to control the conduction or disconnection of the drive current output terminal IC0 and the output under the control of the switch control signal on the switch control line S0.
  • the energy storage module 32 is electrically connected to the control terminal of the output branch 302, and is used to maintain the potential of the control terminal of the output branch 302;
  • the output branch 302 is electrically connected to the light-emitting unit (not shown in FIG. 3A) through the output signal terminal D0, and is used to control the amplification of the driving current under the signal of the potential of the control terminal to obtain amplification Driving current, and providing the amplified driving current to the light-emitting unit through the output signal terminal D0 to drive the light-emitting unit to emit light.
  • the input branch 301 receives the driving current, and when the switch module 31 turns on the connection between the driving current output terminal IC0 and the control terminal of the output branch 302 , The drive current is provided to the control end of the output branch 302, the output branch 302 amplifies the drive current, and the energy storage module 32 maintains the potential of the control end of the output branch 302 so that the current mirror The amplified driving current is continuously output through the output signal terminal D0.
  • the potential of the control terminal of the output branch 302 can be maintained through the energy storage module 32, so that the current mirror can continuously output the amplified driving current through the output signal terminal D0.
  • the light-emitting unit remains always on during each frame of display time, avoiding the problem of high-frequency flicker of the picture caused by time-sharing display, thereby providing display quality.
  • an embodiment of the driving unit may include a current mirror, a switch module 31 and an energy storage module 32.
  • the light-emitting unit may include a first light-emitting module 101 and a second light-emitting module 102;
  • the output signal terminal includes a first output signal terminal D01 and a second output signal terminal D02;
  • the current mirror includes an input branch 301, a first output branch 3021, and a second output branch 3022;
  • the control end of the first output branch 3021 and the control end of the second output branch 3022 are electrically connected to each other;
  • the input branch 301 is electrically connected to the drive current output terminal IC0;
  • the control terminal of the switch module 31 is electrically connected to the switch control line S0, the first terminal of the switch module 31 is electrically connected to the drive current output terminal IC0, and the second terminal of the switch module 31 is connected to the
  • the control end of the first output branch 3021 is electrically connected to the control end of the second output branch 3022, and the switch module 31 is used to control the lead under the control of the switch control signal on the switch control line S0. Turn on or disconnect the connection between the drive current output terminal IC0 and the control terminal;
  • the energy storage module 32 is electrically connected to the control terminal of the first output branch 3021 and the control terminal of the second output branch 3022, and is used to maintain the potential and the control terminal of the first output branch 3021 The potential of the control terminal of the second output branch 3022.
  • the first output branch 3021 is electrically connected to the first light-emitting module 101 through the first output signal terminal D01, and is used to control the driving current under the signal of the potential of the control terminal. Performing amplification to obtain a first amplified driving current, and providing the first amplified driving current to the first light-emitting module 101 through the first output signal terminal D01 to drive the first light-emitting module 101 to emit light;
  • the second output branch 3022 is electrically connected to the second light emitting module 102 through the second output signal terminal D02, and is used to control the amplification of the driving current under the signal of the potential of the control terminal to obtain the second
  • the driving current is amplified, and the second amplified driving current is provided to the second light-emitting module 102 through the second output signal terminal D02 to drive the second light-emitting module 102 to emit light.
  • the current value of the first amplified drive current may be equal to the current value of the second amplified drive current, but it is not limited thereto.
  • P can also be other positive integers such as 3 or 4.
  • the input branch 301 receives the driving current, and when the switch module 31 turns on the connection between the driving current output terminal IC0 and the control terminals of the two output branches ,
  • the drive current is provided to the control end of the first output branch 3021 and the control end of the second output branch 3022, and the first output branch 3021 amplifies the drive current to obtain the first amplified drive current.
  • the second output branch 3022 amplifies the drive current to obtain a second amplified drive current.
  • the energy storage module 32 maintains the potential of the control terminal of the output branch 302 so that the current mirror passes through the first output signal terminal.
  • D01 continuously outputs the first amplified drive current, and causes the current mirror to continuously output the second amplified drive current through the second output signal terminal D02.
  • the embodiment of the drive unit described in the embodiment of the present disclosure can maintain the potentials of the control terminals of the two output branches through the energy storage module 32, so that the current mirror continuously outputs the corresponding amplified drive current through the two output signal terminals, respectively. It is achieved that the light-emitting module in the light-emitting unit keeps always on during each frame of display time, avoiding the problem of high-frequency flicker of the picture caused by the time-sharing display, so as to improve the display quality.
  • the input branch may include an input transistor
  • the p-th output branch may include a p-th output transistor
  • Both the control electrode and the first electrode of the input transistor are electrically connected to the drive current output terminal, and the second electrode of the input transistor is electrically connected to the first voltage terminal;
  • the control terminal of the p-th output transistor is the control terminal of the p-th output branch
  • the first electrode of the p-th output transistor is electrically connected to the p-th light-emitting module
  • the second electrode of the p-th output transistor is connected to the control terminal of the p-th output branch.
  • the first voltage terminal is electrically connected.
  • the first voltage terminal may be a ground terminal or a low voltage terminal, but it is not limited to this.
  • the switch module may include a switch transistor
  • the control electrode of the switching transistor is electrically connected to the switching control line
  • the first electrode of the switching transistor is electrically connected to the driving current output terminal
  • the second electrode of the switching transistor is electrically connected to the control of the output branch. Terminals are electrically connected.
  • the energy storage module may include a sample and hold capacitor
  • the first end of the sample and hold capacitor is electrically connected to the control end of the output branch, and the second end of the sample and hold capacitor is electrically connected to the first voltage end.
  • the input transistor, the output transistor, and the switch transistor may be thin film transistors or field effect transistors.
  • the control electrode may be a gate
  • the first electrode may be a source or a drain
  • the second electrode may be a drain or a source.
  • the input branch may include an input transistor T1
  • the output branch may include an output transistor T2
  • the switch module may include a switch Transistor Tg
  • the energy storage module may include a sample-and-hold capacitor C.
  • the gate of the input transistor T1 and the drain of the input transistor T1 are electrically connected to the drive current output terminal IC0, and the source of the input transistor T1 is electrically connected to the ground terminal GND;
  • the gate of the output transistor T2 is the control terminal of the output branch, the drain of the output transistor T2 is electrically connected to the output signal terminal D0, and the source of the output transistor T2 is electrically connected to the ground terminal GND.
  • the gate of the switching transistor Tg is electrically connected to the switching control line S0, the drain of the switching transistor Tg is electrically connected to the driving current output terminal IC0, and the source of the switching transistor Tg The pole is electrically connected to the gate of the output transistor T2;
  • the first end of the sample and hold capacitor C is electrically connected to the gate of T2, and the second end of the sample and hold capacitor C is electrically connected to the ground GND.
  • T1, T2, and Tg are all n-type thin film transistors, but not limited to this.
  • the gate of T1 and the drain of T1 are connected to the driving current through IC0.
  • the switching control signal provided by S0 is a high voltage signal
  • Tg is turned on to drive
  • the current is connected to the gate of T2
  • the current mirror amplifies the driving current to obtain the amplified driving current, and provides the amplified driving current to the light-emitting unit through D0; after that, the switch control signal provided by S0 becomes a low voltage signal to
  • the Tg is controlled to be turned off.
  • the sample-and-hold capacitor C maintains the potential of the gate of T2, so that the amplified driving current is continuously provided to the light-emitting unit through D0.
  • the amplification factor of the driving current by the driving unit is equal to the ratio of the aspect ratio of T2 to the aspect ratio of T1.
  • the embodiment of the present disclosure may amplify the driving current proportionally when Tg is turned on to obtain the amplified driving current, and provide the amplified driving current to the light-emitting unit to drive the light-emitting unit to emit light, and after Tg is turned off, the sample and hold The capacitor C controls and continues to provide the amplified driving current to the light-emitting unit until the Tg is turned on again during the next frame display time to write a new driving current.
  • the input branch may include an input transistor T1
  • the first output branch may include a first output transistor T21.
  • the second output branch may include a second output transistor T22;
  • the switch module may include a switch transistor Tg, and the energy storage module may include a sample-and-hold capacitor C.
  • the gate of the input transistor T1 and the drain of the input transistor T1 are both electrically connected to the drive current output terminal IC0, and the source of the input transistor T1 is electrically connected to the ground terminal GND;
  • the gate of the first output transistor T21 is the control terminal of the first output branch, the drain of the first output transistor T21 is electrically connected to the first output signal terminal D01, and the first output transistor T21 The source of is electrically connected to the ground terminal GND;
  • the gate of the second output transistor T22 is the control terminal of the second output branch, the drain of the second output transistor T22 is electrically connected to the second output signal terminal D02, and the second output transistor T22
  • the source of GND is electrically connected to the ground terminal GND.
  • the gate of the switching transistor Tg is electrically connected to the switching control line S0, the drain of the switching transistor Tg is electrically connected to the driving current output terminal IC0, and the source of the switching transistor Tg
  • the electrodes are respectively electrically connected to the gate of the first output transistor T21 and the gate of the second output transistor T22;
  • the first end of the sample and hold capacitor C is electrically connected to the gate of T21 and the gate of T22, respectively, and the second end of the sample and hold capacitor C is electrically connected to the ground terminal GND.
  • T1, T21, T22, and Tg are all n-type thin film transistors, but not limited to this.
  • the gate of T1 and the drain of T1 are connected to the driving current through IC0.
  • the switching control signal provided by S0 is a high voltage signal
  • Tg is turned on to drive
  • the current is connected to the gate of T21 and the gate of T22, and the current mirror amplifies the driving current to obtain the first amplified driving current and the second amplified driving current, and the first amplified driving current is provided to the first light-emitting module 101 through D01 ,
  • the second amplified driving current is provided to the second light-emitting module 102 through D02; after that, the switch control signal provided by S0 becomes a low-voltage signal to control Tg to turn off.
  • the sample-and-hold capacitor C maintains the gate of T21 And the potential of the gate of T22, so that the first amplified driving current is continuously provided to the first light-emitting module 101 through D01, and the second amplified driving current is continuously provided to the second light-emitting module 102 through D02.
  • the aspect ratio of T21 may be equal to the aspect ratio of T22, but it is not limited thereto.
  • the light-emitting module may include B light-emitting unit circuits; B is a positive integer; when B is greater than 1, the B light-emitting unit circuits are connected in parallel with each other;
  • the light-emitting unit circuit includes a light-emitting diode, the anode of the light-emitting diode is electrically connected to the second voltage terminal; the cathode of the light-emitting diode is electrically connected to the driving unit, and the cathode of the light-emitting diode is used to receive the amplifying drive Current.
  • the second voltage terminal may be a power supply voltage terminal, but is not limited to this.
  • the light-emitting unit circuit may include a plurality of light-emitting diodes connected in parallel with each other.
  • the light-emitting module may include B light-emitting unit circuits; B is a positive integer; when B is greater than 1, the B light-emitting unit circuits are connected in parallel;
  • the light-emitting unit circuit includes A light-emitting diodes connected in series with each other;
  • the anode of the first light emitting diode is electrically connected to the second voltage terminal, and the cathode of the a-1th light emitting diode is electrically connected to the anode of the ath light emitting diode;
  • the cathode of the A-th light-emitting diode is electrically connected to the driving unit, and the cathode of the light-emitting diode is used to receive the amplified driving current;
  • A is an integer greater than 1
  • a is a positive integer less than or equal to A
  • a is not equal to 1.
  • the light-emitting unit circuit may include at least two light-emitting diodes connected in series with each other, the light-emitting unit may include only one light-emitting unit circuit, or the light-emitting unit may also include multiple light-emitting unit circuits connected in parallel with each other .
  • the light-emitting diode may be a sub-millimeter light-emitting diode, but it is not limited thereto.
  • the light-emitting diodes may also be other types of light-emitting diodes, and the type of light-emitting diodes is not limited herein.
  • an embodiment of the light-emitting module may include a first light-emitting diode Md1, a second light-emitting diode Md2, a third light-emitting diode Md3, a fourth light-emitting diode Md4, a fifth light-emitting diode Md5, and a sixth light-emitting diode Md1, a second light-emitting diode Md2, a third light-emitting diode Md3, a fourth light-emitting diode Md4, a fifth light-emitting diode Md5, and a sixth light-emitting diode Md1, Md2, and Md3 connected in series.
  • the anode of Md1 is electrically connected to the power supply voltage terminal PVDD, and the cathode of Md1 is electrically connected to the anode of Md2;
  • the cathode of Md2 is electrically connected to the anode of Md3, the cathode of Md3 is electrically connected to the anode of Md4, the cathode of Md4 is electrically connected to the anode of Md5, the cathode of Md5 is electrically connected to the anode of Md6, and the cathode of Md6 is electrically connected to the anode of Md7.
  • the cathode of Md7 is electrically connected with the anode of Md8, the cathode of Md8 is electrically connected with the anode of Md9, and the cathode of Md9 can be connected to the amplified driving current.
  • an embodiment of the light-emitting module may include a first light-emitting unit circuit and a second light-emitting unit circuit connected in parallel with each other.
  • the first light-emitting unit circuit may include a first light-emitting diode Md1, a second light-emitting diode Md2, a third light-emitting diode Md3, a fourth light-emitting diode Md4, a fifth light-emitting diode Md5, and a sixth light-emitting diode Md1, Md2, and Md3 connected in series with each other.
  • Light emitting diode Md6 seventh light emitting diode Md7, eighth light emitting diode Md8 and ninth light emitting diode Md9;
  • the anode of Md1 is electrically connected to the power supply voltage terminal PVDD, and the cathode of Md1 is electrically connected to the anode of Md2;
  • the cathode of Md2 is electrically connected to the anode of Md3, the cathode of Md3 is electrically connected to the anode of Md4, the cathode of Md4 is electrically connected to the anode of Md5, the cathode of Md5 is electrically connected to the anode of Md6, and the cathode of Md6 is electrically connected to the anode of Md7.
  • the cathode of Md7 is electrically connected with the anode of Md8, the cathode of Md8 is electrically connected with the anode of Md9, and the cathode of Md9 can be connected to the amplified driving current.
  • the second light-emitting unit circuit may include a tenth light-emitting diode Md10, an eleventh light-emitting diode Md11, a twelfth light-emitting diode Md12, a thirteenth light-emitting diode Md13, and a fourteenth light-emitting diode Md10, Md11, Md12, Md13, and Md12 connected in series with each other.
  • Md14 fifteenth light-emitting diode Md15, sixteenth light-emitting diode Md16, seventeenth light-emitting diode Md17, and eighteenth light-emitting diode Md18;
  • the anode of Md10 is electrically connected to the power supply voltage terminal PVDD, the cathode of Md10 is electrically connected to the anode of Md11; the cathode of Md11 is electrically connected to the anode of Md12, the cathode of Md12 is electrically connected to the anode of Md13, and the cathode of Md13 is electrically connected to the anode of Md14.
  • the cathode of Md14 is electrically connected to the anode of Md15
  • the cathode of Md15 is electrically connected to the anode of Md16
  • the cathode of Md16 is electrically connected to the anode of Md17
  • the cathode of Md17 is electrically connected to the anode of Md18
  • the cathode of Md18 can be connected to the amplifier Drive current
  • the cathode of Md9 and the cathode of Md18 are electrically connected to each other.
  • the power supply voltage terminal PVDD can provide a 30V direct current voltage, but not limited to this; the power supply voltage can be provided by a PMIC (Power Management Integrated Circuit).
  • PMIC Power Management Integrated Circuit
  • the light-emitting module may include a plurality of light-emitting unit circuits connected in parallel, and each light-emitting unit circuit may include a plurality of light-emitting diodes connected in series with each other, but it is not limited to this.
  • the backlight driving method according to the embodiment of the present disclosure is applied to the above-mentioned backlight source, and the backlight driving method includes:
  • the driving current providing unit generates a corresponding driving current according to the digital driving signal, and outputs the driving current through the driving current output terminal;
  • the driving unit controls to amplify the driving current to obtain an amplified driving current, and provides the amplified driving current to the light-emitting unit to drive the light-emitting unit to emit light .
  • the driving current supply unit generates a driving current independent of temperature and related to the display screen according to the digital driving signal, and supplies the driving current to the driving unit, and
  • the driving unit amplifies the driving current and drives the light-emitting unit to emit light by amplifying the driving current.
  • the current for driving the light-emitting unit to emit light can be accurately adjusted while avoiding the influence of temperature, process deviation, environmental noise, and the like.
  • the backlight module according to the embodiment of the present disclosure is applied to a display device.
  • the backlight module includes M rows of switch control lines, a switch control signal providing circuit, a driving circuit, a driving current providing circuit and a light emitting circuit, wherein the driving circuit It includes M rows and N columns of driving units, and the light-emitting circuit includes M rows and N columns of light-emitting units; M and N are integers greater than 1;
  • the driving current providing circuit includes at least one driving current providing unit; the driving current providing unit includes N driving current output terminals;
  • the driving current supply unit is configured to generate an n-th driving current according to the n-th digital driving signal, and output the n-th driving current through the n-th driving current output terminal; n is a positive integer less than or equal to N;
  • the switch control signal providing circuit is used to provide corresponding switch control signals to the M rows of switch control lines in a time-sharing manner
  • the driving unit in the mth row and the nth column is electrically connected to the light-emitting unit in the mth row and the nth column, the switch control line of the mth row, and the nth driving current output terminal of the driving current supply unit, for Under the control of the m-th switch control signal on the row switch control line, the n-th drive current output from the n-th drive current output terminal of the drive current supply unit is controlled to amplify to obtain the n-th amplified drive current, and the n-th is amplified
  • the driving current is provided to the light emitting unit in the mth row and the nth column to drive the light emitting unit in the mth row and the nth column to emit light;
  • n is a positive integer less than or equal to M.
  • the driving circuit may include multiple rows and multiple columns of drive units, the light emitting circuit may include multiple rows and multiple columns of light emitting units, the m th row and the n th column drive units and the m th switch control line Connected, the driving current supply unit may include N driving current output terminals, the driving current supply unit generates an n-th driving current according to the n-th digital driving signal, and provides the n-th driving current through the n-th driving current output terminal, so The n-th drive current output terminal of the drive current supply unit may be electrically connected to the m-th row and n-th column drive unit for providing the n-th drive current to the m-th row and n-th column drive unit, and the switch control signal provides The circuit provides corresponding switch control signals to the M row switch control lines in time sharing to control the corresponding drive unit to amplify the received drive current to obtain the amplified drive current, and drive the corresponding light-emitting unit to
  • the driving current supply unit When the backlight module according to the embodiment of the present disclosure is in operation, the driving current supply unit generates a driving current independent of temperature and related to the display screen according to the digital driving signal, and provides the driving current to the corresponding driving unit.
  • the driving unit amplifies the driving current to obtain an amplified driving current, and drives the corresponding light-emitting unit to emit light through the amplified driving current, which can accurately adjust the current for driving the light-emitting unit to emit light while avoiding temperature, The influence of process deviation, environmental noise, etc.
  • the display device includes a display panel, and the driving circuit and the light emitting circuit are both provided in the display panel.
  • the light emitting circuit is provided in the display panel, the driving circuit for driving the light emitting circuit to emit light is provided outside the display panel, the connection line between the light emitting circuit and the driving circuit is long, and the light emitting circuit is provided in the display panel It needs to be electrically connected with a driving circuit arranged outside the display panel, and the connection is complicated, and it is difficult to realize in the process.
  • the driving circuit and the light-emitting circuit are both located in the display panel, and the distance between the driving circuit and the light-emitting circuit is relatively close, and because the driving circuit and the light-emitting circuit are both provided in the display panel, the driving circuit and the light-emitting circuit are both located in the display panel.
  • the connection between the two is simple and easy to realize in process.
  • the light-emitting unit in the m-th row and the n-th column may include P light-emitting modules, and the driving unit in the m-th row and the n-th column is used to obtain P n-th amplified driving currents; P is a positive integer;
  • the driving unit in the m-th row and the n-th column is configured to provide the p-th and n-th amplified driving current to the p-th light-emitting module included in the m-th row and the n-th column of the light-emitting unit, so as to drive the p-th light-emitting module to emit light;
  • p is a positive integer less than or equal to P.
  • each light-emitting unit may include at least one light-emitting module
  • the corresponding driving unit may include at least one output terminal for respectively providing corresponding light-emitting modules with corresponding amplified driving currents.
  • the backlight module As shown in FIG. 6, the backlight module according to the embodiment of the present disclosure is applied to a display device.
  • the backlight module includes M rows of switch control lines, a switch control signal supply circuit 60, a drive circuit, a drive current supply circuit, and a light emitting circuit.
  • the driving circuit includes M rows and N columns of driving units
  • the light-emitting circuit includes M rows and N columns of light-emitting units; M and N are integers greater than 1.
  • the driving current supply circuit includes a first driving current supply unit 711 and a second driving current supply unit 712; the first driving current supply unit 711 includes N driving current output terminals, the second The driving current supply unit 712 includes N driving current output terminals.
  • the switch control signal providing circuit 60 is used to provide corresponding switch control signals to the M rows of switch control lines in a time-sharing manner
  • the driving unit Dmn in the m-th row and the n-th column is electrically connected to the light-emitting unit Emn in the m-th row and the n-th column, the switch control line Sm in the m-th row, and the n-th driving current output terminal of the first driving current supply unit 711, and is used in all Under the control of the m-th switch control signal on the m-th row switch control line Sm, the n-th driving current output from the n-th driving current output terminal of the first driving current supply unit 711 is controlled to amplify to obtain the n-th amplified driving And provide the n-th amplified driving current to the light-emitting unit Emn in the m-th row and n-th column to drive the light-emitting unit Emn in the m-th row and n-th column to emit light;
  • n is a positive integer less than or equal to M.
  • the drive unit labeled D11 is the first row and first column drive unit
  • the drive unit labeled D12 is the first row and second column drive unit
  • the drive unit labeled D1n is the first row n-th column drive unit, labeled D1N
  • the drive unit in the first row and the Nth column; E11 is the light-emitting unit in the first row and the first column, the E12 is the light-emitting unit in the first row and the second column, and the E1n is the first row and the nth column
  • the light-emitting unit, marked E1N is the light-emitting unit in the first row and the Nth column;
  • E11 is electrically connected to the driving unit D11 in the first row and first column,
  • E12 is electrically connected to the driving unit D12 in the first row and second column, and E1n is connected to the first row
  • the driving unit D1n in the nth column is electrically connected
  • E1N is electrically connected to the driving unit D1N
  • the drive unit labeled D21 is the second row and first column drive unit
  • the drive unit labeled D22 is the second row and second column drive unit
  • the drive unit labeled D2n is the second row and nth column drive unit, labeled D2N
  • the light-emitting unit, marked E2N is the light-emitting unit in the second row and the Nth column;
  • E21 is electrically connected to the second row and first column drive unit D21
  • E22 is electrically connected to the second row and second column drive unit D22
  • E2n is electrically connected to the second row
  • the driving unit D2n in the nth column is electrically connected
  • E2N is electrically connected to the driving unit D2N in the
  • the drive unit labeled Dm1 is the first column of the m-th row
  • the drive unit labeled Dm2 is the second column of the m-th row
  • the drive unit labeled Dmn is the m-th column and the nth column, labeled DmN.
  • the one marked Em1 is the light-emitting unit in the mth row and the first column
  • the one marked Em2 is the light-emitting unit in the mth row and the second column
  • the one marked Emn is the mth row and nth column
  • the light-emitting unit, marked EmN is the light-emitting unit in the mth row and the Nth column
  • Em1 is electrically connected to the mth row and first column driving unit Dm1
  • Em2 is electrically connected to the mth row and second column driving unit Dm2
  • Emn is electrically connected to the mth row
  • the driving unit Dmn in the nth column is electrically connected
  • EmN is electrically connected to the driving unit DmN in the mth row and the Nth column.
  • the drive unit labeled DM1 is the M-th row and first column drive unit
  • the one labeled DM2 is the M-th row and second column drive unit
  • the one labeled DMn is the M-th row and n-th column drive unit
  • the label is DMN.
  • the one labeled EM1 is the light-emitting unit in the Mth row and the first column
  • the one labeled EM2 is the light-emitting unit in the Mth row and the second column
  • the one labeled EMn is the Mth row and the nth column
  • the light-emitting unit, labeled EMN is the light-emitting unit in the Mth row and the Nth column
  • EM1 is electrically connected to the driving unit DM1 in the Mth row and first column
  • EM2 is electrically connected to the Mth row and second column driving unit DM2
  • EMn is electrically connected to the Mth row
  • the driving unit DMN in the nth column is electrically connected
  • the EMN is electrically connected to the driving unit DMN in the Mth row and the Nth column.
  • the one marked S1 is the first switch control line
  • the one marked S2 is the second switch control line
  • the one marked Sm is the m-th row switch control line
  • the one marked SM is the M-th row switch control line.
  • the switch control signal providing circuit 60 is connected to the first switch control line S1, the second switch control line S2, the m-th switch control line Sm, and the M-th switch control line, respectively.
  • SM is electrically connected to provide corresponding switch control signals to the first switch control line S1, the second switch control line S2, the m-th switch control line Sm, and the M-th switch control line SM in a time-sharing manner .
  • the first driving current output terminal of the first driving current supply unit 711 is respectively connected to the first row and first column driving unit D11, the second row and first column driving unit D21, and the m-th row and first column driving unit.
  • Dm1 is electrically connected;
  • the second drive current output terminal of the first drive current supply unit 711 is electrically connected to the first row and second column drive unit D12, the second row and second column drive unit D22, and the m-th row and second column drive unit Dm2.
  • the nth drive current output end of the first drive current supply unit 711 is electrically connected to the first row and nth column drive unit D1n, the second row and the nth column drive unit D2n, and the mth row and nth column drive unit Dmn;
  • the Nth driving current output terminal of the first driving current supply unit 711 is electrically connected to the driving unit D1N in the first row and the Nth column, the driving unit D2N in the second row and the Nth column, and the driving unit DmN in the mth row and Nth column, respectively.
  • the first driving current output terminal of the second driving current supply unit 712 is electrically connected to the M-th row and first column driving unit DM1; the first driving current output terminal of the second driving current supply unit 711 is respectively connected to The first column driving unit from the m+1th row to the Mth row is electrically connected; the second driving current output terminal of the second driving current supply unit 712 is electrically connected to the M-th row and second column driving unit DM2; the second driving current is provided The second drive current output terminal of the unit 712 is electrically connected to the second column drive unit located in the m+1th row to the Mth row; the nth drive current output terminal of the second drive current supply unit 712 is connected to the nth row of the M The column driving unit DMn is electrically connected; the nth driving current output end of the second driving current supply unit 712 is electrically connected to the nth column driving unit located in the m+1th row to the Mth row; the second driving current supply unit 712 The N-th driving current output terminal
  • each light-emitting unit may include P light-emitting modules, where P is a positive integer
  • the driving unit electrically connected to the light-emitting unit may include P output signal terminals
  • the driving unit may It is used to amplify the corresponding driving current to obtain P amplified driving currents, and output the p-th amplified driving current to the p-th light-emitting module included in the light-emitting unit through the p-th output signal terminal, so as to drive the p-th light-emitting module to emit light
  • p is A positive integer less than or equal to P.
  • each driving unit may be as shown in FIG. 3A or FIG. 3B.
  • a driving cycle may include M driving stages.
  • the switch control signal supply circuit 60 provides the m-th switch control signal to the m-th switch control line Sn to control the switch modules in each drive unit located in the m-th row to turn on, so that the current mirror in each drive unit located in the m-th row can drive the first
  • the corresponding driving current provided by the current supply unit 711 is amplified to obtain the amplified driving current, and the amplified driving current is provided to the corresponding light-emitting unit; after the m-th driving stage is over, the driving units located in the m-th row
  • the switch module is closed.
  • the energy storage module in each driving unit in the mth row enables the amplified driving current to be continuously provided to the corresponding light-emitting unit to drive the corresponding light-emitting unit to emit light until the next driving cycle includes
  • the switch modules in the driving units in the m-th row are turned on again, and the first driving current supply unit 711 provides a new corresponding driving current to the driving units in the m-th row.
  • the driving period may be the display time of one frame, but is not limited to this.
  • the switch control signal supply circuit 60 and the drive current supply circuit can be arranged on the display drive chip, and multiple drive units located in the same row can be arranged on the same backlight. On the driver chip.
  • the switch control signal providing circuit 60, the first driving current providing unit 711, and the second driving current providing unit 712 are disposed on the display driving chip Drv.
  • the driving unit D11 in the first row and the first column, the driving unit D12 in the first row and the second column, the driving unit D1n in the first row and the nth column, and the driving unit D1N in the first row and the Nth column may be arranged in On the first backlight driving chip CI1; the second row and first column driving unit D21, the second row and second column driving unit D22, the second row and the nth column driving unit D2n, and the second row and the Nth column driving unit D2N may It is arranged on the second backlight driving chip CI2; the m-th row and the first column driving unit Dm1, the m-th row and the second column driving unit Dm2, the m-th row and the n-th column driving unit Dmn, and the m-th row and the N-th column driving unit DmN can be arranged on the m-th backlight driving chip CIm; the M-th row, the first column driving unit DM1, the M-th row and
  • the display device includes a display panel Pal, and the driving circuit and the light-emitting circuit can be arranged in the display panel Pal; in the embodiment of the present disclosure, the driving circuit and the light-emitting circuit are relatively close, and The driving circuit and the light-emitting circuit are both arranged in the display panel Pal, and the connection between the driving circuit and the light-emitting circuit is simple, and it is easy to implement in terms of technology.
  • the nth driving current may be an analog driving current;
  • the driving current providing unit may include a driving signal providing module, a gamma correction module, and a driving current providing module, where:
  • the driving signal providing module is used to provide the n-th original digital driving signal to the gamma correction module;
  • the gamma correction module performs gamma correction on the n-th original digital drive signal to obtain the n-th corrected digital drive signal;
  • the driving current supply module is used for converting the n-th corrected digital driving signal into an n-th analog driving current, and outputting the n-th analog driving current through the driving current output terminal.
  • the driving unit in the mth row and the nth column may include a current mirror in the mth row and nth column, a switch module in the mth row and nth column, and an energy storage module in the mth row and nth column, wherein,
  • the current mirror in the mth row and the nth column includes input branches in the mth row and nth column and P output branches in the mth row and nth column; P is a positive integer;
  • the input branch of the mth row and the nth column is electrically connected to the nth drive current output terminal;
  • the control ends of the P output branches in the mth row and the nth column are electrically connected to each other;
  • the control terminal of the switch module in the mth row and the nth column is electrically connected to the mth row switch control line, and the first terminal of the mth row and nth column switch module is electrically connected to the nth drive current output terminal ,
  • the second end of the switch module in the mth row and the nth column is electrically connected to the control terminals of the P output branches in the mth row and the nth column.
  • the switch module in the mth row and the nth column is used for Under the control of the switch control signal on the m-row switch control line, control to turn on or disconnect the connection between the n-th drive current output terminal and the control terminal of the m-th row and n-th column output branch;
  • the energy storage module in the mth row and nth column is electrically connected to the control terminal of the output branch in the mth row and nth column, and is used to maintain the potential of the control terminal of the output branch in the mth row and nth column;
  • the p-th m-th row and n-th column output branch is electrically connected to the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit, and is configured to output branches in the p-th m-th column and n-th row.
  • the n-th driving current is controlled to be amplified to obtain the p-th and n-th amplified driving current, and the p-th and n-th amplified driving current is provided to the m-th row and n-th column
  • the p-th light-emitting module included in the light-emitting unit drives the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit to emit light.
  • the mth row and nth column input branch receives the nth driving current
  • the mth row and nth column switch module turns on the nth driving current
  • the output terminal is connected to the control terminal of each m-th row and n-th column output branch
  • the n-th drive current is provided to the control terminal of each m-th row and n-th column output branch.
  • the n-th column output branch respectively amplifies the n-th drive current
  • the m-th row and n-th column energy storage module maintains the potential of the control terminal of each m-th row and n-th column output branch so that the m-th row
  • the current mirror in the nth column continuously outputs each of the nth amplified drive currents.
  • the potential of the control terminal of each output branch in the m-th row and the n-th column can be maintained by the energy storage module in the m-th row and the n-th column, so that the current mirror in the m-th row and the n-th column continuously outputs each of the n-th amplification
  • the driving current can realize that the light-emitting modules included in the light-emitting unit in the m-th row and the n-th column are always on during each frame of display time, avoiding the problem of high-frequency flicker of the picture caused by time-sharing display, thereby providing display quality.
  • the m-th row and n-th column input branch may include the m-th row and n-th column input transistor
  • the p-th m-th row and n-th column output branch may include the p-th m-th row and n-th column.
  • control electrode and the first electrode of the input transistor in the mth row and the nth column are electrically connected to the nth drive current output terminal, and the second electrode of the input transistor in the mth row and the nth column is electrically connected to the first voltage terminal. connect;
  • the control terminal of the p-th m-th row and n-th column output transistor is the control terminal of the p-th m-th row and n-th column output branch, and the first p-th m-th row and n-th column output transistor
  • the pole is electrically connected to the p-th light-emitting module included in the m-th row and n-th column of the light-emitting unit, and the second pole of the p-th m-th row and n-th column output transistor is electrically connected to the first voltage terminal.
  • the switch module in the mth row and the nth column may include a switch transistor in the mth row and the nth column;
  • the control electrode of the switching transistor of the mth row and the nth column is electrically connected to the mth row switch control line, and the first electrode of the mth row and nth column of the switching transistor is electrically connected to the nth drive current output terminal ,
  • the second pole of the switching transistor in the mth row and the nth column is electrically connected to the control terminal of the output branch of the mth row and the nth column;
  • the energy storage module in the mth row and the nth column includes a sample-and-hold capacitor in the mth row and the nth column;
  • the first end of the sample and hold capacitor in the mth row and nth column is electrically connected to the control end of the output branch in the mth row and nth column, and the second end of the sample and hold capacitor in the mth row and nth column is electrically connected to the A voltage terminal is electrically connected.
  • the mth row and nth column output branch includes the mth row and nth column output transistors, and the mth row and nth column output transistors
  • the column switch module may include switching transistors in the mth row and nth column, and when the mth row and nth column energy storage module includes the mth row and nth column sample-and-hold capacitors, when the driving unit in the mth row and nth column is in operation, The gate of the input transistor in the m row and the nth column and the drain of the input transistor in the m row and the nth column are connected to the nth drive current.
  • the transistor in the mth row and the nth column is turned on to connect the nth driving current to the gate of the output transistor in the mth row and nth column.
  • the current mirror in the mth row and nth column amplifies the nth driving current to obtain the nth amplification Drive current, and provide the n-th amplified drive current to the light-emitting unit in the m-th row and the n-th column; then, the m-th switch control signal provided by Sm becomes a low voltage signal to control the switching transistor in the m-th row and n-th column to turn off.
  • the sample-and-hold capacitor in the mth row and the nth column maintains the potential of the gate of the output transistor in the mth row and the nth column, so that the nth row and nth column light-emitting unit can be continuously provided Amplify the drive current.
  • the backlight module can control the light-emitting unit in the light-emitting circuit to keep on during each frame of display time, avoid high-frequency flicker of the picture caused by time-sharing display, thereby improving the display quality.
  • the light-emitting unit in the m-th row and the n-th column may include sub-millimeter light-emitting diodes, but is not limited to this.
  • the switch control signal providing circuit may include a gate control circuit and a gate drive circuit
  • the gate control circuit is used to receive a digital control signal and convert the digital control signal into a plurality of logic signals
  • the gate driving circuit is configured to generate M switch control signals according to the logic signal, and provide the M switch control signals to the M rows of switch control lines in a time-sharing manner.
  • an embodiment of the switch control signal providing circuit includes a gate control circuit 81 and a gate drive circuit 82;
  • the gate control circuit 81 is configured to receive a digital control signal Dc, and convert the digital control signal Dc into a plurality of logic signals;
  • the gate driving circuit 82 is configured to generate M switch control signals according to the logic signal, and provide the M switch control signals to the M rows of switch control lines respectively.
  • the gate control circuit 81 can convert the digital control signal Dc into multiple logic signals, and then the gate drive circuit 82 generates M switch control signals according to the logic signals, and the number of switch control signals Can be greater than the number of logic signals.
  • the backlight driving method according to the embodiment of the present disclosure is applied to the above-mentioned backlight module, and the driving period includes M driving stages arranged in sequence; the backlight driving method includes:
  • the switch control signal supply circuit provides an effective m-th switch control signal to the m-th row switch control line, and the drive current supply unit generates the n-th drive current according to the n-th digital drive signal, and outputs it through the n-th drive current
  • the terminal outputs the n-th drive current to the drive unit in the m-th row and the n-th column.
  • the m-th column drive unit controls the amplification of the n-th drive current under the control of the m-th switch control signal to obtain n amplify the driving current, and provide the n-th amplified driving current to the light-emitting unit in the m-th row and n-th column to drive the light-emitting unit in the m-th row and n-th column to emit light.
  • the driving current supply unit generates the nth driving current independent of temperature and related to the display screen according to the nth digital driving signal, and provides the nth driving current to all
  • the driving unit in the m-th row and the n-th column the driving unit in the m-th row and the n-th column amplifies the n-th driving current under the control of the m-th switch control signal, and drives the m-th row by the n-th amplified driving current
  • the light-emitting unit in the n-th column emits light
  • the n-th driving current for driving the light-emitting unit in the m-th row and the n-th column to emit light can be precisely adjusted while avoiding the influence of temperature, process deviation, environmental noise, and the like.
  • the effective m-th switch control signal may refer to a signal capable of controlling the driving unit located in the m-th row to amplify the corresponding driving current.
  • the effective mth switch refers to a switch control capable of controlling the switch module in the mth row and nth column to turn on the connection between the nth drive current output terminal and the control terminal of the mth row and nth column output branch Signal;
  • the effective switching control signal may be a high voltage signal; when the switching transistor included in the mth row and nth column of the switch module is In the case of a p-type transistor, the effective switching control signal may be a low voltage signal.
  • the display device includes the above-mentioned backlight module.
  • the display device includes a display panel, the light-emitting circuit included in the backlight module and the driving circuit included in the backlight module are both disposed in the display panel, and the driving circuit and the light-emitting circuit are closer to each other.
  • the connection between the driving circuit and the light-emitting circuit is simple, and it is easy to implement in terms of technology.
  • each module is only a division of logical functions, and can be fully or partially integrated into a physical entity during actual implementation, or can be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • it may also be stored in the memory of the above-mentioned device in the form of program code, which is determined by a certain processing element of the above-mentioned device.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the backlight module provided by the embodiments of the present disclosure may be any product or component with display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开提供一种背光源、背光模组、背光驱动方法和显示装置。所述背光源包括发光单元、驱动电流提供单元、驱动单元和开关控制线,其中,所述驱动电流提供单元用于根据数字驱动信号生成驱动电流,并通过驱动电流输出端输出所述驱动电流;所述驱动单元分别与所述开关控制线、所述驱动电流输出端和所述发光单元电连接,用于在所述开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至所述发光单元,以驱动所述发光单元发光。

Description

背光源、背光模组、背光驱动方法和显示装置
相关申请的交叉引用
本申请主张在2020年4月17日在中国提交的中国专利申请号No.202010307107.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种背光源、背光模组、背光驱动方法和显示装置。
背景技术
传统的LCD(液晶显示)面板背光源是由发光二极管加上导光板提供。整个面板显示区域的亮度由统一背光源调节,这使得LCD面板无法实现高对比度、高动态范围显示。针对LCD面板的上述显示控制缺点,逐渐出现一些改进的方案,比如分区显示技术、mini-LED(次毫米发光二极管)背光显示技术。其中mini-LED背光显示技术因在显示质量的提升、技术难度的突破等方面具有明显的优势而逐渐成为主流趋势。由于mini-LED的发光亮度与流过其的电流成正比,且具有高线性度,所以控制min-LED的发光亮度将通过精确控制流过min-LED的电流来实现。
在相关技术中的min-LED背光显示技术中,控制芯片采用将电压转换为电流的方式控制电流精度,由于制造工艺的偏差、电流电压转换比的非线性、不同区域温度的变化等因素,都会造成驱动电流(所述驱动电流为驱动mini-LED发光的电流)的偏差,从而造成亮度的偏差。
发明内容
本公开的主要目的在于提供一种背光源、背光模组、背光驱动方法和显示装置,解决相关技术中采用将电压转换为电流的方式控制电流精度,由于制造工艺的偏差、电流电压转换比的非线性、不同区域温度的变化等因素,都会造成驱动发光二极管的驱动电流的偏差,从而造成亮度的偏差的问题。
为了达到上述目的,本公开提供了一种背光源,包括发光单元、驱动电流提供单元、驱动单元和开关控制线,其中,
所述驱动电流提供单元用于根据数字驱动信号生成驱动电流,并通过驱动电流输出端输出所述驱动电流;
所述驱动单元分别与所述开关控制线、所述驱动电流输出端和所述发光单元电连接,用于在所述开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至所述发光单元,以驱动所述发光单元发光。
可选的,所述驱动电流为模拟驱动电流,所述数字驱动信号为校正后数字驱动信号;所述驱动电流提供单元包括驱动信号提供模块、伽马校正模块和驱动电流提供模块,其中,
所述驱动信号提供模块用于提供原始数字驱动信号至所述伽马校正模块;
所述伽马校正模块用于对所述原始数字驱动信号进行伽马校正,得到校正后数字驱动信号;
所述驱动电流提供模块用于将所述校正后数字驱动信号转换为模拟驱动电流,并通过所述驱动电流输出端输出所述模拟驱动电流。
可选的,所述驱动单元包括电流镜、开关模块和储能模块,其中,
所述发光单元包括P个发光模块,P为正整数;
所述电流镜包括输入支路和P个输出支路;所述P个输出支路的控制端相互电连接;
所述输入支路与所述驱动电流输出端电连接;
所述开关模块的控制端与所述开关控制线电连接,所述开关模块的第一端与所述驱动电流输出端电连接,所述开关模块的第二端与所述输出支路的控制端电连接,所述开关模块用于在所述开关控制线上的开关控制信号的控制下,控制导通或断开所述驱动电流输出端与所述输出支路的控制端之间的连接;
所述储能模块与所述输出支路的控制端电连接,用于维持所述输出支路的控制端的电位;
第p输出支路与所述发光单元中的第p发光模块电连接,用于在所述控 制端的电位的信号下,控制对所述驱动电流进行放大,得到第p放大驱动电流,并将所述第p放大驱动电流提供至所述第p发光模块,以驱动所述第p发光模块发光;
p为小于或等于P的正整数。
可选的,所述输入支路包括输入晶体管,所述第p输出支路包括第p输出晶体管;
所述输入晶体管的控制极和第一极都与所述驱动电流输出端电连接,所述输入晶体管的第二极与第一电压端电连接;
所述第p输出晶体管的控制极为所述第p输出支路的控制端,所述第p输出晶体管的第一极与所述第p发光模块电连接,所述第p输出晶体管的第二极与所述第一电压端电连接。
可选的,所述开关模块包括开关晶体管;
所述开关晶体管的控制极与所述开关控制线电连接,所述开关晶体管的第一极与所述驱动电流输出端电连接,所述开关晶体管的第二极与所述输出支路的控制端电连接;
所述储能模块包括采样保持电容;
所述采样保持电容的第一端与所述输出支路的控制端电连接,所述采样保持电容的第二端与第一电压端电连接。
可选的,所述发光模块包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
所述发光单元电路包括发光二极管,所述发光二极管的阳极与第二电压端电连接;所述发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极用于接收所述放大驱动电流。
可选的,所述发光模块包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
所述发光单元电路包括A个相互串联的发光二极管;
第一发光二极管的阳极与第二电压端电连接,第a-1发光二极管的阴极与第a发光二极管的阳极电连接;
第A发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极 用于接收所述放大驱动电流;
A为大于1的整数,a为小于或等于A的正整数,并a不等于1。
本公开还提供一种背光驱动方法,应用于上述的背光源,所述背光驱动方法包括:
驱动电流提供单元根据数字驱动信号生成驱动电流,并通过驱动电流输出端输出所述驱动电流;
所述驱动单元在开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至发光单元,以驱动所述发光单元发光。
本公开还提供了一种背光模组,应用于显示装置,所述背光模组包括M行开关控制线、开关控制信号提供电路、驱动电路,驱动电流提供电路和发光电路,其中,所述驱动电路包括M行N列驱动单元,所述发光电路包括M行N列发光单元;M和N为大于1的整数;
所述驱动电流提供电路包括至少一个驱动电流提供单元;所述驱动电流提供单元包括N个驱动电流输出端;
所述驱动电流提供单元用于根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端输出第n驱动电流;n为小于或等于N的正整数;
所述开关控制信号提供电路用于分时向所述M行开关控制线提供相应的开关控制信号;
第m行第n列驱动单元分别与第m行第n列发光单元、第m行开关控制线和一所述驱动电流提供单元的第n驱动电流输出端电连接,用于在所述第m行开关控制线上的第m开关控制信号的控制下,控制对该驱动电流提供单元的第n驱动电流输出端输出的第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光;
m为小于或等于M的正整数。
可选的,所述驱动电路和所述发光电路都设置于所述显示装置包括的显示面板中。
可选的,所述第m行第n列发光单元包括P个发光模块,所述第m行第 n列驱动单元用于得到P个第n放大驱动电流;P为正整数;
所述第m行第n列驱动单元用于将第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第p发光模块发光;p为小于或等于P的正整数。
可选的,所述第n数字驱动信号为第n校正后数字驱动信号;所述第n驱动电流为模拟驱动电流;所述驱动电流提供单元包括驱动信号提供模块、伽马校正模块和驱动电流提供模块,其中,
所述驱动信号提供模块用于提供第n原始数字驱动信号至所述伽马校正模块;
所述伽马校正模块对所述第n原始数字驱动信号进行伽马校正,得到第n校正后数字驱动信号;
所述驱动电流提供模块用于将所述第n校正后数字驱动信号转换为第n模拟驱动电流,并通过所述驱动电流输出端输出所述第n模拟驱动电流。
可选的,所述第m行第n列驱动单元包括第m行第n列电流镜、第m行第n列开关模块和第m行第n列储能模块,其中,
所述第m行第n列电流镜包括第m行第n列输入支路和P个第m行第n列输出支路;P为正整数;
所述第m行第n列输入支路与所述第n驱动电流输出端电连接;
所述P个第m行第n列输出支路的控制端相互电连接;
所述第m行第n列开关模块的控制端与所述第m行开关控制线电连接,所述第m行第n列开关模块的第一端与所述第n驱动电流输出端电连接,所述第m行第n列开关模块的第二端分别与所述P个第m行第n列输出支路的控制端电连接,所述第m行第n列开关模块用于在所述第m行开关控制线上的开关控制信号的控制下,控制导通或断开所述第n驱动电流输出端与所述第m行第n列输出支路的控制端之间的连接;
所述第m行第n列储能模块与所述第m行第n列输出支路的控制端电连接,用于维持所述第m行第n列输出支路的控制端的电位;
第p个第m行第n列输出支路与所述第m行第n列发光单元包括的第p发光模块电连接,用于在所述第p个第m行第n列输出支路的控制端的电位 的信号下,控制对所述第n驱动电流进行放大,得到第p个第n放大驱动电流,并将第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第m行第n列发光单元包括的第p发光模块发光。
可选的,所述第m行第n列输入支路包括第m行第n列输入晶体管,所述第p个第m行第n列输出支路包括第p个第m行第n列输出晶体管;
所述第m行第n列输入晶体管的控制极和第一极都与所述第n驱动电流输出端电连接,所述第m行第n列输入晶体管的第二极与第一电压端电连接;
所述第p个第m行第n列输出晶体管的控制极为所述第p个第m行第n列输出支路的控制端,所述第p个第m行第n列输出晶体管的第一极与所述第m行第n列发光单元包括的第p发光模块电连接,所述第p个第m行第n列输出晶体管的第二极与所述第一电压端电连接。
可选的,所述第m行第n列开关模块包括第m行第n列开关晶体管;
所述第m行第n列开关晶体管的控制极与所述第m行开关控制线电连接,所述第m行第n列开关晶体管的第一极与所述第n驱动电流输出端电连接,所述第m行第n列开关晶体管的第二极与所述第m行第n列输出支路的控制端电连接;
所述第m行第n列储能模块包括第m行第n列采样保持电容;
所述第m行第n列采样保持电容的第一端与所述第m行第n列输出支路的控制端电连接,所述第m行第n列采样保持电容的第二端与第一电压端电连接。
可选的,所述开关控制信号提供电路包括栅极控制电路和栅极驱动电路;
所述栅极控制电路用于接收数字控制信号,并将所述数字控制信号转换为多个逻辑信号;
所述栅极驱动电路用于根据所述逻辑信号生成M个开关控制信号,并将所述M个开关控制信号分别提供至所述M行开关控制线。
本公开还提供了一种背光驱动方法,应用于上述的背光模组,驱动周期包括依次设置的M个驱动阶段;所述背光驱动方法包括:
在第m驱动阶段,开关控制信号提供电路向第m行开关控制线提供有效的第m开关控制信号,驱动电流提供单元根据第n数字驱动信号生成第n驱 动电流,并通过第n驱动电流输出端输出第n驱动电流至第m行第n列驱动单元,所述第m第n列驱动单元在所述第m开关控制信号的控制下,控制对所述第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光;
M和N为大于1的整数,m为小于或等于M的正整数,n为小于或等于N的正整数。
本公开还提供了一种显示装置,包括上述的背光模组。
可选的,本公开实施例所述的显示装置还包括显示面板;
所述背光模组包括的驱动电路和所述背光模组包括的发光电路都设置于所述显示面板中。
与相关技术相比,本公开所述的背光源、背光模组、背光驱动方法和显示装置可以在对驱动发光单元发光的电流进行精确调节的同时,避免受温度、工艺偏差、环境噪声等的影响。
附图说明
图1是本公开实施例所述的背光源的结构图;
图2是本公开实施例所述的背光源中的驱动电流提供单元的一实施例的结构图;
图3A是本公开实施例所述的背光源中的驱动单元的一实施例的结构图;
图3B本公开实施例所述的背光源中的驱动单元的另一实施例的结构图;
图4A是所述驱动单元的一具体实施例的电路图;
图4B是所述驱动单元的另一具体实施例的电路图;
图5A是本公开实施例所述的背光源中的发光模块的一实施例的电路图;
图5B是所述发光模块的另一实施例的电路图;
图6是本公开实施例所述的背光模组的结构图;
图7是本公开另一实施例所述的背光模组的结构图;
图8是本公开所述的背光模组中的开关控制信号提供电路的一实施例的结构图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开所有实施例中采用的晶体管均可以为三极管、薄膜晶体管或场效应管或其他特性相同的器件。在本公开实施例中,为区分晶体管除控制极之外的两极,将其中一极称为第一极,另一极称为第二极。
在实际操作时,当所述晶体管为三极管时,所述控制极可以为基极,所述第一极可以为集电极,所述第二极可以发射极。或者,所述控制极可以为基极,所述第一极可以为发射极,所述第二极可以集电极。
在实际操作时,当所述晶体管为薄膜晶体管或场效应管时,所述控制极可以为栅极,所述第一极可以为漏极,所述第二极可以为源极。或者,所述控制极可以为栅极,所述第一极可以为源极,所述第二极可以为漏极。
如图1所示,本公开实施例所述的背光源包括发光单元10、驱动电流提供单元11、驱动单元12和开关控制线S0,其中,
所述驱动电流提供单元11用于根据数字驱动信号生成驱动电流,并通过驱动电流输出端IC0输出所述驱动电流;
所述驱动单元12分别与所述开关控制线S0、所述驱动电流输出端IC0和所述发光单元10电连接,用于在所述开关控制线S0上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至所述发光单元10,以驱动所述发光单元10发光。
本公开实施例所述的背光源在工作时,驱动电流提供单元11根据数字驱动信号,产生与温度无关,与显示画面相关的驱动电流,并将所述驱动电流提供至所述驱动单元12,所述驱动单元12对所述驱动电流进行放大,并通过放大驱动电流驱动发光单元10发光,可以在对驱动发光单元发光的电流进行精确调节的同时,避免受温度、工艺偏差、环境噪声等的影响。
在具体实施时,所述驱动电流可以为模拟驱动电流,所述数字驱动信号可以为校正后数字驱动信号。
如图2所示,所述驱动电流提供单元可以包括驱动信号提供模块21、伽马校正模块22和驱动电流提供模块23,其中,
所述驱动信号提供模块21用于提供原始数字驱动信号至所述伽马校正模块22;
所述伽马校正模块22用于对所述原始数字驱动信号进行伽马校正,得到校正后数字驱动信号;
所述驱动电流提供模块23用于将所述校正后数字驱动信号转换为模拟驱动电流,并通过所述驱动电流输出端IC0输出所述模拟驱动电流。
由于mini-LED(次毫米发光二极管)的发光亮度与流过其的电流成正比,且具有高线性度,所以控制mini-LED的发光亮度将通过精确控制流过其的电流来实现。本公开实施例通过驱动信号提供模块提供原始数字驱动信号至伽马校正模块,所述伽马校正模块根据预先设定的伽马曲线对所述原始数字驱动信号进行伽马校正,得到校正后数字驱动信号,然后通过驱动电流提供模块23将校正后数字驱动信号转换为相应的模拟驱动电流,通过驱动电流输出端IC0输出所述模拟驱动电流。
根据一种具体实施方式,所述驱动电流提供模块23在工作时,假设当校正后数字驱动信号对应的十进制数为0时,驱动电流为0,当校正数字驱动信号对应的十进制数为255时,驱动电流的电流为预定电流值I0,则当校正数字驱动信号对应的十进制数为C时,驱动电流的电流值可以为I0×(C/255),但不以此为限。其中,C为0与255之间的十进制数。
在具体实施时,所述驱动单元可以包括电流镜、开关模块和储能模块,其中,
所述发光单元包括P个发光模块,P为正整数;
所述电流镜包括输入支路和P个输出支路;所述P个输出支路的控制端相互电连接;所述输入支路与所述驱动电流输出端电连接;
所述开关模块的控制端与所述开关控制线电连接,所述开关模块的第一端与所述驱动电流输出端电连接,所述开关模块的第二端与所述输出支路的控制端电连接,所述开关模块用于在所述开关控制线上的开关控制信号的控制下,控制导通或断开所述驱动电流输出端与所述输出支路的控制端之间的 连接;
所述储能模块与所述输出支路的控制端电连接,用于维持所述输出支路的控制端的电位;
第p输出支路与所述发光单元中的第p发光模块电连接,用于在所述控制端的电位的信号下,控制对所述驱动电流进行放大,得到第p放大驱动电流,并将所述第p放大驱动电流提供至所述第p发光模块,以驱动所述第p发光模块发光;
p为小于或等于P的正整数。
在本公开实施例中,所述第p输出支路对所述驱动电流进行放大,而得到第p放大驱动电流。
下面以P等于1和P等于2分别举例说明驱动单元的结构。
在本公开实施例中,如图3A所示,当P等于1时,所述驱动单元的一实施例可以包括电流镜、开关模块31和储能模块32。
如图3A所示,所述电流镜包括输入支路301和输出支路302;
所述输入支路301与所述驱动电流输出端IC0电连接;
所述开关模块31的控制端与所述开关控制线S0电连接,所述开关模块31的第一端与所述驱动电流输出端IC0电连接,所述开关模块31的第二端与所述输出支路302的控制端电连接,所述开关模块31用于在所述开关控制线S0上的开关控制信号的控制下,控制导通或断开所述驱动电流输出端IC0与所述输出支路302的控制端之间的连接;
所述储能模块32与所述输出支路302的控制端电连接,用于维持所述输出支路302的控制端的电位;
所述输出支路302通过输出信号端D0与所述发光单元(图3A中未示出)电连接,用于在所述控制端的电位的信号下,控制对所述驱动电流进行放大,得到放大驱动电流,并通过所述输出信号端D0将所述放大驱动电流提供至所述发光单元,以驱动所述发光单元发光。
本公开如图3A所示的驱动单元的实施例在工作时,输入支路301接收驱动电流,并当开关模块31导通驱动电流输出端IC0与输出支路302的控制端之间的连接时,将所述驱动电流提供至输出支路302的控制端,输出支路 302将所述驱动电流进行放大,所述储能模块32通过维持输出支路302的控制端的电位,使得所述电流镜通过所述输出信号端D0持续输出所述放大驱动电流。
本公开实施例所述的驱动单元的实施例可以通过储能模块32维持输出支路302的控制端的电位,使得所述电流镜通过所述输出信号端D0持续输出所述放大驱动电流,可实现发光单元在每一帧显示时间保持常亮,避免因分时显示造成的画面高频闪烁的问题,从而能够提供显示质量。
在本公开实施例中,如图3B所示,当P等于2时,所述驱动单元的一实施例可以包括电流镜、开关模块31和储能模块32。
如图3B中所示,所述发光单元可以包括第一发光模块101和第二发光模块102;
所述输出信号端包括第一输出信号端D01和第二输出信号端D02;
所述电流镜包括输入支路301、第一输出支路3021和第二输出支路3022;
所述第一输出支路3021的控制端与所述第二输出支路3022的控制端相互电连接;
所述输入支路301与所述驱动电流输出端IC0电连接;
所述开关模块31的控制端与所述开关控制线S0电连接,所述开关模块31的第一端与所述驱动电流输出端IC0电连接,所述开关模块31的第二端分与所述第一输出支路3021的控制端和所述第二输出支路3022的控制端电连接,所述开关模块31用于在所述开关控制线S0上的开关控制信号的控制下,控制导通或断开所述驱动电流输出端IC0与所述控制端之间的连接;
所述储能模块32分别与所述第一输出支路3021的控制端和所述第二输出支路3022的控制端电连接,用于维持所述第一输出支路3021的控制端的电位和所述第二输出支路3022的控制端的电位。
如图3B所示,所述第一输出支路3021通过第一输出信号端D01与所述第一发光模块101电连接,用于在所述控制端的电位的信号下,控制对所述驱动电流进行放大,得到第一放大驱动电流,并通过所述第一输出信号端D01将所述第一放大驱动电流提供至所述第一发光模块101,以驱动所述第一发光模块101发光;
所述第二输出支路3022通过第二输出信号端D02与所述第二发光模块102电连接,用于在所述控制端的电位的信号下,控制对所述驱动电流进行放大,得到第二放大驱动电流,并通过所述第二输出信号端D02将所述第二放大驱动电流提供至所述第二发光模块102,以驱动所述第二发光模块102发光。
在图3B所示的实施例中,所述第一放大驱动电流的电流值可以与第二放大驱动电流的电流值相等,但不以此为限。
在具体实施时,P也可以为3或4等其他的正整数。
本公开如图3B所示的驱动单元的实施例在工作时,输入支路301接收驱动电流,并当开关模块31导通驱动电流输出端IC0与两输出支路的控制端之间的连接时,将所述驱动电流提供至第一输出支路3021的控制端和第二输出支路3022的控制端,第一输出支路3021将所述驱动电流进行放大以得到第一放大驱动电流,第二输出支路3022将所述驱动电流进行放大以得到第二放大驱动电流,所述储能模块32通过维持输出支路302的控制端的电位,使得所述电流镜通过所述第一输出信号端D01持续输出所述第一放大驱动电流,并使得所述电流镜通过所述第二输出信号端D02持续输出所述第二放大驱动电流。
本公开实施例所述的驱动单元的实施例可以通过储能模块32维持两个输出支路的控制端的电位,使得所述电流镜通过两个输出信号端分别持续输出相应的放大驱动电流,可实现发光单元中的发光模块在每一帧显示时间保持常亮,避免因分时显示造成的画面高频闪烁的问题,从而能够提供显示质量。
具体的,所述输入支路可以包括输入晶体管,所述第p输出支路可以包括第p输出晶体管;
所述输入晶体管的控制极和第一极都与所述驱动电流输出端电连接,所述输入晶体管的第二极与第一电压端电连接;
所述第p输出晶体管的控制极为所述第p输出支路的控制端,所述第p输出晶体管的第一极与第p发光模块电连接,所述第p输出晶体管的第二极与所述第一电压端电连接。
在本公开实施例中,所述第一电压端可以为地端,或者低电压端,但不以此为限。
具体的,所述开关模块可以包括开关晶体管;
所述开关晶体管的控制极与所述开关控制线电连接,所述开关晶体管的第一极与所述驱动电流输出端电连接,所述开关晶体管的第二极与所述输出支路的控制端电连接。
具体的,所述储能模块可以包括采样保持电容;
所述采样保持电容的第一端与所述输出支路的控制端电连接,所述采样保持电容的第二端与第一电压端电连接。
在实际操作时,所述输入晶体管、所述输出晶体管和所述开关晶体管可以为薄膜晶体管或场效应晶体管。所述控制极可以为栅极,所述第一极可以为源极或漏极,所述第二极可以为漏极或源极。
如图4A所示,在图3A所示的驱动单元的实施例的基础上,所述输入支路可以包括输入晶体管T1,所述输出支路可以包括输出晶体管T2;所述开关模块可以包括开关晶体管Tg,所述储能模块可以包括采样保持电容C。
如图4A所示,所述输入晶体管T1的栅极和所述输入晶体管T1的漏极都与所述驱动电流输出端IC0电连接,所述输入晶体管T1的源极与地端GND电连接;
所述输出晶体管T2的栅极为所述输出支路的控制端,所述输出晶体管T2的漏极与所述输出信号端D0电连接,所述输出晶体管T2的源极与地端GND电连接。
如图4A所示,所述开关晶体管Tg的栅极与所述开关控制线S0电连接,所述开关晶体管Tg的漏极与所述驱动电流输出端IC0电连接,所述开关晶体管Tg的源极与所述输出晶体管T2的栅极电连接;
所述采样保持电容C的第一端与T2的栅极电连接,所述采样保持电容C的第二端与地端GND电连接。
在图4A中,T1、T2和Tg都为n型薄膜晶体管,但不以此为限。
如图4A所示的驱动单元的实施例在工作时,T1的栅极和T1的漏极通过IC0接入驱动电流,当S0提供的开关控制信号为高电压信号时,Tg打开,以 将驱动电流接入T2的栅极,电流镜将驱动电流进行放大,得到放大驱动电流,并通过D0将所述放大驱动电流提供至发光单元;之后,S0提供的开关控制信号变为低电压信号,以控制Tg关闭,当Tg关闭时,采样保持电容C维持T2的栅极的电位,使得持续通过D0向发光单元提供放大驱动电流。
如图4A所示的驱动单元的实施例在工作时,驱动单元对驱动电流的放大倍数等于T2的宽长比与T1的宽长比的比值。本公开实施例可以在Tg打开时,将驱动电流按比例放大,得到放大驱动电流,并将所述放大驱动电流提供至发光单元,以驱动发光单元发光,并由在Tg关闭后,由采样保持电容C控制持续向发光单元提供所述放大驱动电流,直至在下一帧显示时间,Tg再次打开,以写入新的驱动电流。
如图4B所示,在图3B所示的驱动单元的实施例的基础上,所述输入支路可以包括输入晶体管T1,所述第一输出支路可以包括第一输出晶体管T21,所述第二输出支路可以包括第二输出晶体管T22;所述开关模块可以包括开关晶体管Tg,所述储能模块可以包括采样保持电容C。
如图4B所示,所述输入晶体管T1的栅极和所述输入晶体管T1的漏极都与所述驱动电流输出端IC0电连接,所述输入晶体管T1的源极与地端GND电连接;
所述第一输出晶体管T21的栅极为所述第一输出支路的控制端,所述第一输出晶体管T21的漏极与所述第一输出信号端D01电连接,所述第一输出晶体管T21的源极与地端GND电连接;
所述第二输出晶体管T22的栅极为所述第二输出支路的控制端,所述第二输出晶体管T22的漏极与所述第二输出信号端D02电连接,所述第二输出晶体管T22的源极与地端GND电连接。
如图4B所示,所述开关晶体管Tg的栅极与所述开关控制线S0电连接,所述开关晶体管Tg的漏极与所述驱动电流输出端IC0电连接,所述开关晶体管Tg的源极分别与所述第一输出晶体管T21的栅极和所述第二输出晶体管T22的栅极电连接;
所述采样保持电容C的第一端分别与T21的栅极和T22的栅极电连接,所述采样保持电容C的第二端与地端GND电连接。
在图4B中,T1、T21、T22和Tg都为n型薄膜晶体管,但不以此为限。
如图4B所示的驱动单元的实施例在工作时,T1的栅极和T1的漏极通过IC0接入驱动电流,当S0提供的开关控制信号为高电压信号时,Tg打开,以将驱动电流接入T21的栅极和T22的栅极,电流镜将驱动电流进行放大,得到第一放大驱动电流和第二放大驱动电流,并通过D01将第一放大驱动电流提供至第一发光模块101,通过D02将第二放大驱动电流提供至第二发光模块102;之后,S0提供的开关控制信号变为低电压信号,以控制Tg关闭,当Tg关闭时,采样保持电容C维持T21的栅极的电位和T22的栅极的电位,使得持续通过D01向第一发光模块101提供第一放大驱动电流,并使得持续通过D02向第二发光模块102提供第二放大驱动电流。
在图4B所示的实施例中,T21的宽长比可以与T22的宽长比相等,但不以此为限。
根据一种具体实施方式,所述发光模块可以包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
所述发光单元电路包括发光二极管,所述发光二极管的阳极与第二电压端电连接;所述发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极用于接收所述放大驱动电流。
在本公开实施例中,所述第二电压端可以为电源电压端,但不以此为限。
在具体实施时,所述发光单元电路可以包括相互并联的多个发光二极管。
根据另一种具体实施方式,所述发光模块可以包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
所述发光单元电路包括A个相互串联的发光二极管;
第一发光二极管的阳极与第二电压端电连接,第a-1发光二极管的阴极与第a发光二极管的阳极电连接;
第A发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极用于接收所述放大驱动电流;
A为大于1的整数,a为小于或等于A的正整数,并a不等于1。
在具体实施时,所述发光单元电路可以包括相互串联的至少两个发光二极管,所述发光单元可以仅包括一个发光单元电路,或者,所述发光单元也 可以包括相互并联的多个发光单元电路。
在本公开实施例中,所述发光二极管可以为次毫米发光二极管,但不以此为限。
在实际操作时,所述发光二极管也可以为其他类型的发光二极管,在此并不对发光二极管的类型加以限定。
如5A所示,所述发光模块的一实施例可以包括相互串联的第一发光二极管Md1、第二发光二极管Md2、第三发光二极管Md3、第四发光二极管Md4、第五发光二极管Md5、第六发光二极管Md6、第七发光二极管Md7、第八发光二极管Md8和第九发光二极管Md9。
如图5A所示,Md1的阳极与电源电压端PVDD电连接,Md1的阴极与Md2的阳极电连接;
Md2的阴极与Md3的阳极电连接,Md3的阴极与Md4的阳极电连接,Md4的阴极与Md5的阳极电连接,Md5的阴极与Md6的阳极电连接,Md6的阴极与Md7的阳极电连接,Md7的阴极与Md8的阳极电连接,Md8的阴极与Md9的阳极电连接,Md9的阴极可以接入放大驱动电流。
如图5B所示,所述发光模块的一实施例可以包括相互并联的第一发光单元电路和第二发光单元电路。
如图5B所示,所述第一发光单元电路可以包括相互串联的第一发光二极管Md1、第二发光二极管Md2、第三发光二极管Md3、第四发光二极管Md4、第五发光二极管Md5、第六发光二极管Md6、第七发光二极管Md7、第八发光二极管Md8和第九发光二极管Md9;
Md1的阳极与电源电压端PVDD电连接,Md1的阴极与Md2的阳极电连接;
Md2的阴极与Md3的阳极电连接,Md3的阴极与Md4的阳极电连接,Md4的阴极与Md5的阳极电连接,Md5的阴极与Md6的阳极电连接,Md6的阴极与Md7的阳极电连接,Md7的阴极与Md8的阳极电连接,Md8的阴极与Md9的阳极电连接,Md9的阴极可以接入放大驱动电流。
如图5B所示,所述第二发光单元电路可以包括相互串联的第十发光二极管Md10、第十一发光二极管Md11、第十二发光二极管Md12、第十三发光 二极管Md13、第十四发光二极管Md14、第十五发光二极管Md15、第十六发光二极管Md16、第十七发光二极管Md17和第十八发光二极管Md18;
Md10的阳极与电源电压端PVDD电连接,Md10的阴极与Md11的阳极电连接;Md11的阴极与Md12的阳极电连接,Md12的阴极与Md13的阳极电连接,Md13的阴极与Md14的阳极电连接,Md14的阴极与Md15的阳极电连接,Md15的阴极与Md16的阳极电连接,Md16的阴极与Md17的阳极电连接,Md17的阴极与Md18的阳极电连接,Md18的阴极可以接入所述放大驱动电流;Md9的阴极与Md18的阴极相互电连接。
在本公开实施例中,所述电源电压端PVDD可以提供30V直流电压,但不以此为限;所述电源电压可以由PMIC(电源管理集成电路)提供。
在本公开实施例中,所述发光模块可以包括多个相互并联的发光单元电路,每一发光单元电路可以包括相互串联的多个发光二极管,但不以此为限。
本公开实施例所述的背光驱动方法,应用于上述的背光源,所述背光驱动方法包括:
驱动电流提供单元根据数字驱动信号生成相应的驱动电流,并通过驱动电流输出端输出所述驱动电流;
所述驱动单元在开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至发光单元,以驱动所述发光单元发光。
在本公开实施例所述的背光驱动方法中,驱动电流提供单元根据数字驱动信号,产生与温度无关,与显示画面相关的驱动电流,并将所述驱动电流提供至所述驱动单元,所述驱动单元对所述驱动电流进行放大,并通过放大驱动电流驱动发光单元发光,可以在对驱动发光单元发光的电流进行精确调节的同时,避免受温度、工艺偏差、环境噪声等的影响。
本公开实施例所述的背光模组应用于显示装置,所述背光模组包括M行开关控制线、开关控制信号提供电路、驱动电路,驱动电流提供电路和发光电路,其中,所述驱动电路包括M行N列驱动单元,所述发光电路包括M行N列发光单元;M和N为大于1的整数;
所述驱动电流提供电路包括至少一个驱动电流提供单元;所述驱动电流 提供单元包括N个驱动电流输出端;
所述驱动电流提供单元用于根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端输出第n驱动电流;n为小于或等于N的正整数;
所述开关控制信号提供电路用于分时向所述M行开关控制线提供相应的开关控制信号;
第m行第n列驱动单元分别与第m行第n列发光单元、第m行开关控制线和一所述驱动电流提供单元的第n驱动电流输出端电连接,用于在所述第m行开关控制线上的第m开关控制信号的控制下,控制对该驱动电流提供单元的第n驱动电流输出端输出的第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光;
m为小于或等于M的正整数。
在本公开实施例所述的背光模组中,驱动电路可以包括多行多列驱动单元,发光电路可以包括多行多列发光单元,第m行第n列驱动单元与第m开关控制线电连接,所述驱动电流提供单元可以包括N个驱动电流输出端,所述驱动电流提供单元根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端提供第n驱动电流,所述驱动电流提供单元的第n驱动电流输出端可以与第m行第n列驱动单元电连接,用于为所述第m行第n列驱动单元提供第n驱动电流,所述开关控制信号提供电路分时向M行开关控制线提供相应的开关控制信号,以控制相应的驱动单元对接收到的驱动电流进行放大,以得到放大驱动电流,并通过所述放大驱动电流驱动相应的发光单元发光。
本公开实施例所述的背光模组在工作时,驱动电流提供单元根据数字驱动信号,产生与温度无关,与显示画面相关的驱动电流,并将所述驱动电流提供至相应的驱动单元,所述驱动单元对所述驱动电流进行放大,以得到放大驱动电流,并通过所述放大驱动电流驱动相应的发光单元发光,可以在对驱动发光单元发光的电流进行精确调节的同时,避免受温度、工艺偏差、环境噪声等的影响。
在本公开实施例中,所述显示装置包括显示面板,所述驱动电路和所述 发光电路都设置于所述显示面板中。
在相关技术中,发光电路设置于显示面板中,用于驱动发光电路发光的驱动电路设置于显示面板外部,发光电路与驱动电路之间的连接线较长,并且设置于显示面板中的发光电路需要与设置于显示面板外部的驱动电路相互电连接,连线复杂,在工艺上难以实现。基于此,本公开实施例将驱动电路和发光电路设置为都位于显示面板中,驱动电路与发光电路距离较近,并且由于驱动电路和发光电路都设置于显示面板中,驱动电路与发光电路之间的连线简单,在工艺上易于实现。
在具体实施时,所述第m行第n列发光单元可以包括P个发光模块,所述第m行第n列驱动单元用于得到P个第n放大驱动电流;P为正整数;
所述第m行第n列驱动单元用于将第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第p发光模块发光;p为小于或等于P的正整数。
在本公开实施例中,每一发光单元可以包括至少一个发光模块,对应的驱动单元可以包括至少一个输出端子,用于分别提供相应的放大驱动电流相应的发光模块。
如图6所示,本公开实施例所述的背光模组应用于显示装置,所述背光模组包括M行开关控制线、开关控制信号提供电路60、驱动电路,驱动电流提供电路和发光电路,其中,所述驱动电路包括M行N列驱动单元,所述发光电路包括M行N列发光单元;M和N为大于1的整数。
如图6所示,所述驱动电流提供电路包括第一驱动电流提供单元711和第二驱动电流提供单元712;所述第一驱动电流提供单元711包括N个驱动电流输出端,所述第二驱动电流提供单元712包括N个驱动电流输出端。
如图6所示,所述开关控制信号提供电路60用于分时向所述M行开关控制线提供相应的开关控制信号;
第m行第n列驱动单元Dmn分别与第m行第n列发光单元Emn、第m行开关控制线Sm和第一驱动电流提供单元711的第n驱动电流输出端电连接,用于在所述第m行开关控制线Sm上的第m开关控制信号的控制下,控制对该第一驱动电流提供单元711的第n驱动电流输出端输出的第n驱动电 流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元Emn,以驱动所述第m行第n列发光单元Emn发光;
m为小于或等于M的正整数。
在图6中,标号为D11的为第一行第一列驱动单元,标号为D12的为第一行第二列驱动单元,标号为D1n的为第一行第n列驱动单元,标号为D1N的为第一行第N列驱动单元;标号为E11的为第一行第一列发光单元,标号为E12的为第一行第二列发光单元,标号为E1n的为第一行第n列发光单元,标号为E1N的为第一行第N列发光单元;E11与第一行第一列驱动单元D11电连接,E12与第一行第二列驱动单元D12电连接,E1n与第一行第n列驱动单元D1n电连接,E1N与第一行第N列驱动单元D1N电连接。
在图6中,标号为D21的为第二行第一列驱动单元,标号为D22的为第二行第二列驱动单元,标号为D2n的为第二行第n列驱动单元,标号为D2N的为第二行第N列驱动单元;标号为E21的为第二行第一列发光单元,标号为E22的为第二行第二列发光单元,标号为E2n的为第二行第n列发光单元,标号为E2N的为第二行第N列发光单元;E21与第二行第一列驱动单元D21电连接,E22与第二行第二列驱动单元D22电连接,E2n与第二行第n列驱动单元D2n电连接,E2N与第二行第N列驱动单元D2N电连接。
在图6中,标号为Dm1的为第m行第一列驱动单元,标号为Dm2的为第m行第二列驱动单元,标号为Dmn的为第m行第n列驱动单元,标号为DmN的为第m行第N列驱动单元;标号为Em1的为第m行第一列发光单元,标号为Em2的为第m行第二列发光单元,标号为Emn的为第m行第n列发光单元,标号为EmN的为第m行第N列发光单元;Em1与第m行第一列驱动单元Dm1电连接,Em2与第m行第二列驱动单元Dm2电连接,Emn与第m行第n列驱动单元Dmn电连接,EmN与第m行第N列驱动单元DmN电连接。
在图6中,标号为DM1的为第M行第一列驱动单元,标号为DM2的为第M行第二列驱动单元,标号为DMn的为第M行第n列驱动单元,标号为DMN的为第M行第N列驱动单元;标号为EM1的为第M行第一列发光单元,标号为EM2的为第M行第二列发光单元,标号为EMn的为第M行第n 列发光单元,标号为EMN的为第M行第N列发光单元;EM1与第M行第一列驱动单元DM1电连接,EM2与第M行第二列驱动单元DM2电连接,EMn与第M行第n列驱动单元DMn电连接,EMN与第M行第N列驱动单元DMN电连接。
在图6中,标号为S1的为第一开关控制线,标号为S2的为第二开关控制线,标号为Sm的为第m行开关控制线,标号为SM的为第M行开关控制线。
如图6所示,所述开关控制信号提供电路60分别与所述第一开关控制线S1、所述第二开关控制线S2、所述第m开关控制线Sm和所述第M开关控制线SM电连接,用于分时向所述第一开关控制线S1、所述第二开关控制线S2、所述第m开关控制线Sm和所述第M开关控制线SM提供相应的开关控制信号。
如图6所示,第一驱动电流提供单元711的第一驱动电流输出端分别与第一行第一列驱动单元D11、第二行第一列驱动单元D21和第m行第一列驱动单元Dm1电连接;第一驱动电流提供单元711的第二驱动电流输出端分别与第一行第二列驱动单元D12、第二行第二列驱动单元D22和第m行第二列驱动单元Dm2电连接;第一驱动电流提供单元711的第n驱动电流输出端分别与第一行第n列驱动单元D1n、第二行第n列驱动单元D2n和第m行第n列驱动单元Dmn电连接;第一驱动电流提供单元711的第N驱动电流输出端分别与第一行第N列驱动单元D1N、第二行第N列驱动单元D2N和第m行第N列驱动单元DmN电连接。
如图6所示,第二驱动电流提供单元712的第一驱动电流输出端与第M行第一列驱动单元DM1电连接;第二驱动电流提供单元711的第一驱动电流输出端分别与位于第m+1行至第M行的第一列驱动单元电连接;第二驱动电流提供单元712的第二驱动电流输出端与第M行第二列驱动单元DM2电连接;第二驱动电流提供单元712的第二驱动电流输出端分别与位于第m+1行至第M行的第二列驱动单元电连接;第二驱动电流提供单元712的第n驱动电流输出端与第M行第n列驱动单元DMn电连接;第二驱动电流提供单元712的第n驱动电流输出端分别与位于第m+1行至第M行的第n列驱动 单元电连接;第二驱动电流提供单元712的第N驱动电流输出端与第M行第N列驱动单元DMN电连接;第二驱动电流提供单元712的第N驱动电流输出端分别与位于第m+1行至第M行的第N列驱动单元电连接。
在图6所示的背光模组的实施例中,各发光单元可以包括P个发光模块,P为正整数,与该发光单元电连接的驱动单元可以包括P个输出信号端,该驱动单元可以用于将相应的驱动电流放大,得到P个放大驱动电流,通过第p输出信号端输出第p放大驱动电流至该发光单元包括的第p发光模块,以驱动该第p发光模块发光;p为小于或等于P的正整数。
在图6所示的背光模组的实施例中,各驱动单元的结构可以如图3A或图3B所示,一驱动周期可以包括M个驱动阶段,在第m驱动阶段,开关控制信号提供电路60提供第m开关控制信号至第m开关控制线Sn,以控制位于第m行的各驱动单元中的开关模块打开,以使得位于第m行的各驱动单元中的电流镜可以对第一驱动电流提供单元711提供的相应的驱动电流进行放大,以得到放大驱动电流,并将所述放大驱动电流提供至相应的发光单元;在第m驱动阶段结束后,位于第m行的各驱动单元中的开关模块关闭,此时位于第m行的各驱动单元中的储能模块使得能够持续将所述放大驱动电流提供至相应的发光单元,以驱动相应的发光单元发光,直至下一驱动周期包括的第m驱动阶段,位于第m行的各驱动单元中的开关模块再次打开,第一驱动电流提供单元711提供的新的相应的驱动电流至位于第m行的各驱动单元。
在本公开实施例中,所述驱动周期可以为一帧画面显示时间,但不以此为限。
在图6所示的背光模组的实施例中,所述开关控制信号提供电路60和所述驱动电流提供电路可以设置于显示驱动芯片上,位于同一行的多个驱动单元可以设置于同一背光驱动芯片上。
如图7所示,所述开关控制信号提供电路60、所述第一驱动电流提供单元711和所述第二驱动电流提供单元712设置于显示驱动芯片Drv上。
如图7所示,第一行第一列驱动单元D11、第一行第二列驱动单元D12、第一行第n列驱动单元D1n,以及,第一行第N列驱动单元D1N可以设置于第一背光驱动芯片CI1上;第二行第一列驱动单元D21、第二行第二列驱动 单元D22、第二行第n列驱动单元D2n,以及,第二行第N列驱动单元D2N可以设置于第二背光驱动芯片CI2上;第m行第一列驱动单元Dm1、第m行第二列驱动单元Dm2、第m行第n列驱动单元Dmn,以及,第m行第N列驱动单元DmN可以设置于第m背光驱动芯片CIm上;第M行第一列驱动单元DM1、第M行第二列驱动单元DM2、第M行第n列驱动单元DMn,以及,第M行第N列驱动单元DMN可以设置于第M背光驱动芯片CIM上。
如图7所示,所述显示装置包括显示面板Pal,所述驱动电路和所述发光电路可以设置于显示面板Pal中;在本公开实施例中,驱动电路与发光电路距离较近,并且由于驱动电路和发光电路都设置于显示面板Pal中,驱动电路与发光电路之间的连线简单,在工艺上易于实现。
在具体实施时,所述第n驱动电流可以为模拟驱动电流;所述驱动电流提供单元可以包括驱动信号提供模块、伽马校正模块和驱动电流提供模块,其中,
所述驱动信号提供模块用于提供第n原始数字驱动信号至所述伽马校正模块;
所述伽马校正模块对所述第n原始数字驱动信号进行伽马校正,得到第n校正后数字驱动信号;
所述驱动电流提供模块用于将所述第n校正后数字驱动信号转换为第n模拟驱动电流,并通过所述驱动电流输出端输出所述第n模拟驱动电流。
在具体实施时,所述第m行第n列驱动单元可以包括第m行第n列电流镜、第m行第n列开关模块和第m行第n列储能模块,其中,
所述第m行第n列电流镜包括第m行第n列输入支路和P个第m行第n列输出支路;P为正整数;
所述第m行第n列输入支路与所述第n驱动电流输出端电连接;
所述P个第m行第n列输出支路的控制端相互电连接;
所述第m行第n列开关模块的控制端与所述第m行开关控制线电连接,所述第m行第n列开关模块的第一端与所述第n驱动电流输出端电连接,所述第m行第n列开关模块的第二端分别与P个第m行第n列输出支路的控制端电连接,所述第m行第n列开关模块用于在所述第m行开关控制线上的开 关控制信号的控制下,控制导通或断开所述第n驱动电流输出端与所述第m行第n列输出支路的控制端之间的连接;
所述第m行第n列储能模块与所述第m行第n列输出支路的控制端电连接,用于维持所述第m行第n列输出支路的控制端的电位;
第p个第m行第n列输出支路与所述第m行第n列发光单元包括的第p发光模块电连接,用于在所述第p个第m行第n列输出支路的控制端的电位的信号下,控制对所述第n驱动电流进行放大,得到第p个第n放大驱动电流,并将所述第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第m行第n列发光单元包括的第p发光模块发光。
在本公开实施例中,当第m行第n列驱动单元工作时,第m行第n列输入支路接收第n驱动电流,并当第m行第n列开关模块导通第n驱动电流输出端与各个第m行第n列输出支路的控制端之间的连接时,将所述第n驱动电流提供至各个第m行第n列输出支路的控制端,各个第m行第n列输出支路分别将所述第n驱动电流进行放大,所述第m行第n列储能模块通过维持各个第m行第n列输出支路的控制端的电位,使得所述第m行第n列电流镜持续输出各个所述第n放大驱动电流。
本公开实施例可以通过第m行第n列储能模块维持各个第m行第n列输出支路的控制端的电位,使得所述第m行第n列电流镜持续输出各个所述第n放大驱动电流,可实现第m行第n列发光单元包括的各发光模块在每一帧显示时间保持常亮,避免因分时显示造成的画面高频闪烁的问题,从而能够提供显示质量。
具体的,所述第m行第n列输入支路可以包括第m行第n列输入晶体管,所述第p个第m行第n列输出支路可以包括第p个第m行第n列输出晶体管;
所述第m行第n列输入晶体管的控制极和第一极都与所述第n驱动电流输出端电连接,所述第m行第n列输入晶体管的第二极与第一电压端电连接;
所述第p个第m行第n列输出晶体管的控制极为所述第p个第m行第n列输出支路的控制端,所述第p个第m行第n列输出晶体管的第一极与所述第m行第n列发光单元包括的第p发光模块电连接,所述第p个第m行第n 列输出晶体管的第二极与所述第一电压端电连接。
具体的,所述第m行第n列开关模块可以包括第m行第n列开关晶体管;
所述第m行第n列开关晶体管的控制极与所述第m行开关控制线电连接,所述第m行第n列开关晶体管的第一极与所述第n驱动电流输出端电连接,所述第m行第n列开关晶体管的第二极与所述第m行第n列输出支路的控制端电连接;
所述第m行第n列储能模块包括第m行第n列采样保持电容;
所述第m行第n列采样保持电容的第一端与所述第m行第n列输出支路的控制端电连接,所述第m行第n列采样保持电容的第二端与第一电压端电连接。
当所述第m行第n列输入支路包括第m行第n列输入晶体管,所述第m行第n列输出支路包括第m行第n列输出晶体管,所述第m行第n列开关模块可以包括第m行第n列开关晶体管,所述第m行第n列储能模块包括第m行第n列采样保持电容时,第m行第n列驱动单元在工作时,第m行第n列输入晶体管的栅极和第m行第n列输入晶体管的漏极接入第n驱动电流,当第m行开关控制线Sm上的第m开关控制信号为高电压信号时,第m行第n列开晶体管打开,以将第n驱动电流接入第m行第n列输出晶体管的栅极,第m行第n列电流镜将第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元;之后,Sm提供的第m开关控制信号变为低电压信号,以控制第m行第n列开关晶体管关闭,当第m行第n列开关晶体管关闭时,第m行第n列采样保持电容维持第m行第n列输出晶体管的栅极的电位,使得能够持续向第m行第n列发光单元提供第n放大驱动电流。
本公开实施例所述的背光模组可以控制发光电路中的发光单元在每一帧显示时间内保持常亮,避免因分时显示造成的画面高频闪烁,从而提高显示质量。
在本公开实施例中,所述第m行第n列发光单元可以包括次毫米发光二极管,但不以此为限。
在具体实施时,所述开关控制信号提供电路可以包括栅极控制电路和栅 极驱动电路;
所述栅极控制电路用于接收数字控制信号,并将所述数字控制信号转换为多个逻辑信号;
所述栅极驱动电路用于根据所述逻辑信号生成M个开关控制信号,并将所述M个开关控制信号分时提供至所述M行开关控制线。
如图8所示,所述开关控制信号提供电路的一实施例包括栅极控制电路81和栅极驱动电路82;
所述栅极控制电路81用于接收数字控制信号Dc,并将所述数字控制信号Dc转换为多个逻辑信号;
所述栅极驱动电路82用于根据所述逻辑信号生成M个开关控制信号,并将所述M个开关控制信号分别提供至所述M行开关控制线。
在具体实施时,所述栅极控制电路81可以将数字控制信号Dc转换为多个逻辑信号,再通过栅极驱动电路82根据所述逻辑信号生成M个开关控制信号,开关控制信号的个数可以大于逻辑信号的个数。
本公开实施例所述的背光驱动方法,应用于上述的背光模组,驱动周期包括依次设置的M个驱动阶段;所述背光驱动方法包括:
在第m驱动阶段,开关控制信号提供电路向第m行开关控制线提供有效的第m开关控制信号,驱动电流提供单元根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端输出第n驱动电流至第m行第n列驱动单元,所述第m第n列驱动单元在所述第m开关控制信号的控制下,控制对所述第n驱动电流进行放大,得到第n放大驱动电流,并将所述第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光。
在本公开实施例所述的背光驱动方法中,驱动电流提供单元根据第n数字驱动信号,产生与温度无关,与显示画面相关的第n驱动电流,并将所述第n驱动电流提供至所述第m行第n列驱动单元,所述m行第n列驱动单元在第m开关控制信号的控制下,对所述第n驱动电流进行放大,并通过第n放大驱动电流驱动第m行第n列发光单元发光,可以在对驱动第m行第n列发光单元发光的第n驱动电流进行精确调节的同时,避免受温度、工艺偏差、 环境噪声等的影响。
在本公开实施例中,有效的第m开关控制信号指的可以是:能够控制位于第m行的驱动单元对相应的驱动电流进行放大的信号。
例如,当所述第m行第n列驱动单元包括第m行第n列电流镜、第m行第n列开关模块和第m行第n列储能模块时,所述有效的第m开关控制信号指的是:能够控制所述第m行第n列开关模块导通所述第n驱动电流输出端与所述第m行第n列输出支路的控制端之间的连接的开关控制信号;
当所述第m行第n列开关模块包括的开关晶体管为n型晶体管时,所述有效的开关控制信号可以为高电压信号;当所述第m行第n列开关模块包括的开关晶体管为p型晶体管时,所述有效的开关控制信号可以为低电压信号。
本公开实施例所述的显示装置包括上述的背光模组。
在具体实施时,所述显示装置包括显示面板,所述背光模组包括的发光电路和所述背光模组包括的驱动电路都设置于所述显示面板中,驱动电路与发光电路距离较近,并且驱动电路与发光电路之间的连线简单,在工艺上易于实现。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor, DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
本公开实施例所提供的背光模组可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种背光源,包括发光单元、驱动电流提供单元、驱动单元和开关控制线,其中,
    所述驱动电流提供单元用于根据数字驱动信号生成驱动电流,并通过驱动电流输出端输出所述驱动电流;
    所述驱动单元分别与所述开关控制线、所述驱动电流输出端和所述发光单元电连接,用于在所述开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至所述发光单元,以驱动所述发光单元发光。
  2. 如权利要求1所述的背光源,其中,所述驱动电流为模拟驱动电流,所述数字驱动信号为校正后数字驱动信号;所述驱动电流提供单元包括驱动信号提供模块、伽马校正模块和驱动电流提供模块,其中,
    所述驱动信号提供模块用于提供原始数字驱动信号至所述伽马校正模块;
    所述伽马校正模块用于对所述原始数字驱动信号进行伽马校正,得到校正后数字驱动信号;
    所述驱动电流提供模块用于将所述校正后数字驱动信号转换为模拟驱动电流,并通过所述驱动电流输出端输出所述模拟驱动电流。
  3. 如权利要求1所述的背光源,其中,所述驱动单元包括电流镜、开关模块和储能模块,其中,
    所述发光单元包括P个发光模块,P为正整数;
    所述电流镜包括输入支路和P个输出支路;所述P个输出支路的控制端相互电连接;
    所述输入支路与所述驱动电流输出端电连接;
    所述开关模块的控制端与所述开关控制线电连接,所述开关模块的第一端与所述驱动电流输出端电连接,所述开关模块的第二端与所述输出支路的控制端电连接,所述开关模块用于在所述开关控制线上的开关控制信号的控制下,控制导通或断开所述驱动电流输出端与所述输出支路的控制端之间的连接;
    所述储能模块与所述输出支路的控制端电连接,用于维持所述输出支路的控制端的电位;
    第p输出支路与所述发光单元中的第p发光模块电连接,用于在所述控制端的电位的信号下,控制对所述驱动电流进行放大,得到第p放大驱动电流,并将所述第p放大驱动电流提供至所述第p发光模块,以驱动所述第p发光模块发光;
    p为小于或等于P的正整数。
  4. 如权利要求3所述的背光源,其中,所述输入支路包括输入晶体管,所述第p输出支路包括第p输出晶体管;
    所述输入晶体管的控制极和第一极都与所述驱动电流输出端电连接,所述输入晶体管的第二极与第一电压端电连接;
    所述第p输出晶体管的控制极为所述第p输出支路的控制端,所述第p输出晶体管的第一极与所述第p发光模块电连接,所述第p输出晶体管的第二极与所述第一电压端电连接。
  5. 如权利要求3所述的背光源,其中,所述开关模块包括开关晶体管;
    所述开关晶体管的控制极与所述开关控制线电连接,所述开关晶体管的第一极与所述驱动电流输出端电连接,所述开关晶体管的第二极与所述输出支路的控制端电连接;
    所述储能模块包括采样保持电容;
    所述采样保持电容的第一端与所述输出支路的控制端电连接,所述采样保持电容的第二端与第一电压端电连接。
  6. 如权利要求3所述的背光源,其中,所述发光模块包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
    所述发光单元电路包括发光二极管,所述发光二极管的阳极与第二电压端电连接;所述发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极用于接收所述放大驱动电流。
  7. 如权利要求3所述的背光源,其中,所述发光模块包括B个发光单元电路;B为正整数;当B大于1时,所述B个发光单元电路相互并联;
    所述发光单元电路包括A个相互串联的发光二极管;
    第一发光二极管的阳极与第二电压端电连接,第a-1发光二极管的阴极与第a发光二极管的阳极电连接;
    第A发光二极管的阴极与所述驱动单元电连接,所述发光二极管的阴极用于接收所述放大驱动电流;
    A为大于1的整数,a为小于或等于A的正整数,并a不等于1。
  8. 一种背光驱动方法,应用于如权利要求1至7中任一权利要求所述的背光源,所述背光驱动方法包括:
    驱动电流提供单元根据数字驱动信号生成驱动电流,并通过驱动电流输出端输出所述驱动电流;
    所述驱动单元在开关控制线上的开关控制信号的控制下,控制对所述驱动电流进行放大,得到放大驱动电流,并将所述放大驱动电流提供至发光单元,以驱动所述发光单元发光。
  9. 一种背光模组,应用于显示装置,所述背光模组包括M行开关控制线、开关控制信号提供电路、驱动电路,驱动电流提供电路和发光电路,其中,所述驱动电路包括M行N列驱动单元,所述发光电路包括M行N列发光单元;M和N为大于1的整数;
    所述驱动电流提供电路包括至少一个驱动电流提供单元;所述驱动电流提供单元包括N个驱动电流输出端;
    所述驱动电流提供单元用于根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端输出第n驱动电流;n为小于或等于N的正整数;
    所述开关控制信号提供电路用于分时向所述M行开关控制线提供相应的开关控制信号;
    第m行第n列驱动单元分别与第m行第n列发光单元、第m行开关控制线和一所述驱动电流提供单元的第n驱动电流输出端电连接,用于在所述第m行开关控制线上的第m开关控制信号的控制下,控制对该驱动电流提供单元的第n驱动电流输出端输出的第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光;
    m为小于或等于M的正整数。
  10. 如权利要求9所述的背光模组,其中,所述驱动电路和所述发光电路都设置于所述显示装置包括的显示面板中。
  11. 如权利要求9所述的背光模组,其中,所述第m行第n列发光单元包括P个发光模块,所述第m行第n列驱动单元用于得到P个第n放大驱动电流;P为正整数;
    所述第m行第n列驱动单元用于将第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第p发光模块发光;p为小于或等于P的正整数。
  12. 如权利要求9所述的背光模组,其中,所述第n数字驱动信号为第n校正后数字驱动信号;所述第n驱动电流为模拟驱动电流;所述驱动电流提供单元包括驱动信号提供模块、伽马校正模块和驱动电流提供模块,其中,
    所述驱动信号提供模块用于提供第n原始数字驱动信号至所述伽马校正模块;
    所述伽马校正模块对所述第n原始数字驱动信号进行伽马校正,得到第n校正后数字驱动信号;
    所述驱动电流提供模块用于将所述第n校正后数字驱动信号转换为第n模拟驱动电流,并通过所述驱动电流输出端输出所述第n模拟驱动电流。
  13. 如权利要求11所述的背光模组,其中,所述第m行第n列驱动单元包括第m行第n列电流镜、第m行第n列开关模块和第m行第n列储能模块,其中,
    所述第m行第n列电流镜包括第m行第n列输入支路和P个第m行第n列输出支路;P为正整数;
    所述第m行第n列输入支路与所述第n驱动电流输出端电连接;
    所述P个第m行第n列输出支路的控制端相互电连接;
    所述第m行第n列开关模块的控制端与所述第m行开关控制线电连接,所述第m行第n列开关模块的第一端与所述第n驱动电流输出端电连接,所述第m行第n列开关模块的第二端分别与所述P个第m行第n列输出支路的控制端电连接,所述第m行第n列开关模块用于在所述第m行开关控制线上的开关控制信号的控制下,控制导通或断开所述第n驱动电流输出端与所述 第m行第n列输出支路的控制端之间的连接;
    所述第m行第n列储能模块与所述第m行第n列输出支路的控制端电连接,用于维持所述第m行第n列输出支路的控制端的电位;
    第p个第m行第n列输出支路与所述第m行第n列发光单元包括的第p发光模块电连接,用于在所述第p个第m行第n列输出支路的控制端的电位的信号下,控制对所述第n驱动电流进行放大,得到第p个第n放大驱动电流,并将第p个第n放大驱动电流提供至所述第m行第n列发光单元包括的第p发光模块,以驱动所述第m行第n列发光单元包括的第p发光模块发光。
  14. 如权利要求13所述的背光模组,其中,所述第m行第n列输入支路包括第m行第n列输入晶体管,所述第p个第m行第n列输出支路包括第p个第m行第n列输出晶体管;
    所述第m行第n列输入晶体管的控制极和第一极都与所述第n驱动电流输出端电连接,所述第m行第n列输入晶体管的第二极与第一电压端电连接;
    所述第p个第m行第n列输出晶体管的控制极为所述第p个第m行第n列输出支路的控制端,所述第p个第m行第n列输出晶体管的第一极与所述第m行第n列发光单元包括的第p发光模块电连接,所述第p个第m行第n列输出晶体管的第二极与所述第一电压端电连接。
  15. 如权利要求13所述的背光模组,其中,所述第m行第n列开关模块包括第m行第n列开关晶体管;
    所述第m行第n列开关晶体管的控制极与所述第m行开关控制线电连接,所述第m行第n列开关晶体管的第一极与所述第n驱动电流输出端电连接,所述第m行第n列开关晶体管的第二极与所述第m行第n列输出支路的控制端电连接;
    所述第m行第n列储能模块包括第m行第n列采样保持电容;
    所述第m行第n列采样保持电容的第一端与所述第m行第n列输出支路的控制端电连接,所述第m行第n列采样保持电容的第二端与第一电压端电连接。
  16. 如权利要求9至15中任一权利要求所述的背光模组,其中,所述开关控制信号提供电路包括栅极控制电路和栅极驱动电路;
    所述栅极控制电路用于接收数字控制信号,并将所述数字控制信号转换为多个逻辑信号;
    所述栅极驱动电路用于根据所述逻辑信号生成M个开关控制信号,并将所述M个开关控制信号分别提供至所述M行开关控制线。
  17. 一种背光驱动方法,应用于如权利要求9至16中任一权利要求所述的背光模组,驱动周期包括依次设置的M个驱动阶段;所述背光驱动方法包括:
    在第m驱动阶段,开关控制信号提供电路向第m行开关控制线提供有效的第m开关控制信号,驱动电流提供单元根据第n数字驱动信号生成第n驱动电流,并通过第n驱动电流输出端输出第n驱动电流至第m行第n列驱动单元,所述第m第n列驱动单元在所述第m开关控制信号的控制下,控制对所述第n驱动电流进行放大,得到第n放大驱动电流,并将第n放大驱动电流提供至第m行第n列发光单元,以驱动所述第m行第n列发光单元发光;
    M和N为大于1的整数,m为小于或等于M的正整数,n为小于或等于N的正整数。
  18. 一种显示装置,包括如权利要求9至16中任一权利要求所述的背光模组。
  19. 如权利要求18所述的显示装置,还包括显示面板;
    所述背光模组包括的驱动电路和所述背光模组包括的发光电路都设置于所述显示面板中。
PCT/CN2021/093846 2020-04-17 2021-05-14 背光源、背光模组、背光驱动方法和显示装置 WO2021209071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010307107.6A CN111833822B (zh) 2020-04-17 2020-04-17 背光源、背光模组、背光驱动方法和显示装置
CN202010307107.6 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021209071A1 true WO2021209071A1 (zh) 2021-10-21

Family

ID=72913643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093846 WO2021209071A1 (zh) 2020-04-17 2021-05-14 背光源、背光模组、背光驱动方法和显示装置

Country Status (2)

Country Link
CN (1) CN111833822B (zh)
WO (1) WO2021209071A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111833822B (zh) * 2020-04-17 2021-10-22 北京奕斯伟计算技术有限公司 背光源、背光模组、背光驱动方法和显示装置
CN113327542B (zh) * 2021-05-27 2023-03-31 Tcl华星光电技术有限公司 驱动电路及面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430456A (zh) * 2007-11-05 2009-05-13 乐金显示有限公司 背光单元及使用其的液晶显示器件
CN108399897A (zh) * 2018-05-04 2018-08-14 京东方科技集团股份有限公司 背光驱动电路及方法、背光模组、背光电路和显示装置
CN109637461A (zh) * 2018-12-20 2019-04-16 深圳创维-Rgb电子有限公司 一种mini LED电视控制系统及方法
CN209045138U (zh) * 2018-10-08 2019-06-28 Tcl集团股份有限公司 分立元件驱动的led背光单元、组件、电路以及显示装置
CN209787504U (zh) * 2018-10-08 2019-12-13 Tcl集团股份有限公司 分立元件驱动的led背光组件及显示装置
CN111833822A (zh) * 2020-04-17 2020-10-27 北京奕斯伟计算技术有限公司 背光源、背光模组、背光驱动方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442257B1 (ko) * 2002-01-09 2004-07-30 엘지전자 주식회사 전류기입형 amoel 패널의 데이터 구동회로
CN202976778U (zh) * 2012-12-01 2013-06-05 青岛坤显电子有限公司 一种led电视背光电路
CN109003574B (zh) * 2018-08-15 2021-01-22 京东方科技集团股份有限公司 像素单元、驱动方法、像素模组及其驱动方法和显示装置
CN110164371B (zh) * 2018-11-20 2021-01-26 京东方科技集团股份有限公司 显示模组的伽马校正方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430456A (zh) * 2007-11-05 2009-05-13 乐金显示有限公司 背光单元及使用其的液晶显示器件
CN108399897A (zh) * 2018-05-04 2018-08-14 京东方科技集团股份有限公司 背光驱动电路及方法、背光模组、背光电路和显示装置
CN209045138U (zh) * 2018-10-08 2019-06-28 Tcl集团股份有限公司 分立元件驱动的led背光单元、组件、电路以及显示装置
CN209787504U (zh) * 2018-10-08 2019-12-13 Tcl集团股份有限公司 分立元件驱动的led背光组件及显示装置
CN109637461A (zh) * 2018-12-20 2019-04-16 深圳创维-Rgb电子有限公司 一种mini LED电视控制系统及方法
CN111833822A (zh) * 2020-04-17 2020-10-27 北京奕斯伟计算技术有限公司 背光源、背光模组、背光驱动方法和显示装置

Also Published As

Publication number Publication date
CN111833822B (zh) 2021-10-22
CN111833822A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
US11043168B2 (en) Shift register and method for driving the same, gate driving circuit and display apparatus
WO2021209071A1 (zh) 背光源、背光模组、背光驱动方法和显示装置
US9881550B2 (en) Pixel circuit, driving method thereof, and display apparatus
US9105234B2 (en) Array substrate row driving unit, array substrate row driving circuit and display device
US10699643B2 (en) Pixel driving compensation circuit, driving compensation method therefor and display device
WO2016188367A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
US11270642B2 (en) Pixel unit, display panel, driving method thereof and compensation control method thereof
US20160035276A1 (en) Oled pixel circuit, driving method of the same, and display device
US11335224B2 (en) Pixel circuit, driving method thereof, and display device
US10186205B2 (en) Display panel, source driving circuit and device
CN102750903B (zh) 有机发光显示器系统及其消除亮度不均匀的方法
US11741888B2 (en) LED display device, driving method and chip thereof
US9231564B2 (en) Gate on array driver unit, gate on array driver circuit, and display device
WO2019095637A1 (zh) Amoled显示面板和图像显示装置
CN106128362B (zh) 一种像素电路及显示装置
JP6367327B2 (ja) 画素駆動電流抽出装置及び画素駆動電流抽出方法
CN203311819U (zh) 像素驱动电流提取装置
TWI269255B (en) Organic light-emitting diode (OLED) display and data driver output stage thereof
CN110570804B (zh) 一种显示面板的驱动装置、驱动方法及显示装置
US12013710B2 (en) Voltage stabilizing circuit and display panel
US10186202B2 (en) Power supply circuit, array substrate, and display device
WO2021249130A1 (zh) 复用电路、方法、复用模组和显示装置
US20240046863A1 (en) Light-emitting driving circuit, backlight module and display panel
CN203134328U (zh) 像素电路及其显示装置
WO2023151135A1 (zh) 驱动电路及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21789487

Country of ref document: EP

Kind code of ref document: A1