WO2021208782A1 - 一种液晶显示面板驱动装置及液晶显示装置 - Google Patents

一种液晶显示面板驱动装置及液晶显示装置 Download PDF

Info

Publication number
WO2021208782A1
WO2021208782A1 PCT/CN2021/085768 CN2021085768W WO2021208782A1 WO 2021208782 A1 WO2021208782 A1 WO 2021208782A1 CN 2021085768 W CN2021085768 W CN 2021085768W WO 2021208782 A1 WO2021208782 A1 WO 2021208782A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display panel
unit
timing control
Prior art date
Application number
PCT/CN2021/085768
Other languages
English (en)
French (fr)
Inventor
师俊
陈宥烨
Original Assignee
咸阳彩虹光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 咸阳彩虹光电科技有限公司 filed Critical 咸阳彩虹光电科技有限公司
Publication of WO2021208782A1 publication Critical patent/WO2021208782A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the utility model belongs to the technical field of displays, in particular to a liquid crystal display panel driving device and a liquid crystal display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the liquid crystal display panel is usually composed of a color filter (CF), a thin film transistor array substrate (TFT Array Substrate), and a liquid crystal layer filled between the two substrates.
  • the working principle is A series of driving signals, such as scan signals, data signals, common voltage signals, etc., apply driving voltages on the color filter substrate and the array substrate to control the rotation of the liquid crystal molecules in the liquid crystal layer, and control the light output to produce a display screen.
  • the traditional drive circuit architecture is composed of a control board (CB) and a source driver board (X-Board, XB), that is, each display panel is equipped with a CB and multiple panels connected to the panel XB, specifically the number of XB depends on the panel size.
  • CB control board
  • X-Board source driver board
  • the CB contains the voltage output and control signals required for driving the entire panel.
  • the load of the drive circuit becomes higher and higher, which leads to higher and higher operating temperatures of voltage output ICs.
  • the traditional The commonality of the CB+XB drive architecture is also getting worse.
  • the present invention provides a liquid crystal display panel driving device and a liquid crystal display device.
  • the technical problem to be solved by the utility model is realized through the following technical solutions:
  • An embodiment of the utility model provides a driving device for a liquid crystal display panel, including:
  • the first power management unit is arranged in the control module and is used to provide a first power voltage signal
  • the second power management unit is provided in the source drive module connected to the control module, and is used to provide a second power voltage signal
  • the timing control unit is provided in the control module and connected to the first power management unit, and is used to receive the first power supply voltage signal and provide a first timing control signal and a second timing control signal to the liquid crystal display panel ;
  • the gamma correction circuit unit is arranged in the source driving module and is connected to the second power management unit, and is configured to receive the second power supply voltage signal and provide a gamma signal to the liquid crystal display panel.
  • the source driving module includes a plurality of source driving submodules arranged in parallel; the second power management unit is arranged in any one of the plurality of source driving submodules;
  • the gamma correction circuit unit is arranged in any one of the several source driving sub-modules.
  • the liquid crystal display panel is a Gate COF liquid crystal display panel.
  • the Gate COF type liquid crystal display panel includes:
  • the panel data driving unit is connected to the second power management unit, the timing control unit, and the gamma correction circuit unit, and is configured to receive the second power supply voltage signal, the first timing control signal, and the Gamma signal to drive the panel unit;
  • the scan driving circuit unit is connected to the second power management unit and the timing control unit, and is configured to receive the second power supply voltage signal and the second timing control signal to drive the panel unit.
  • the liquid crystal display panel is a GOA liquid crystal display panel.
  • it further includes:
  • the level conversion unit is arranged in the source drive module, and is connected to the second power management unit and the timing control unit, and is configured to receive the second power supply voltage signal and the second timing control signal , And provide the array substrate row drive timing signal to the GOA liquid crystal display panel.
  • the level conversion unit is arranged in any one of the several source driver submodules.
  • the GOA liquid crystal display panel includes:
  • the panel data driving unit is connected to the second power management unit, the timing control unit, and the gamma correction circuit unit, and is configured to receive the second power supply voltage signal, the first timing control signal, and the Gamma signal to drive the panel unit;
  • the array substrate row drive unit is connected to the level conversion unit and is used for receiving the array substrate row drive timing signal to drive the panel unit.
  • Another embodiment of the present invention provides a liquid crystal display device, including:
  • the driving device is connected to the liquid crystal display panel and adopts the liquid crystal display panel driving device described in any one of the above embodiments.
  • the liquid crystal display panel is a Gate COF liquid crystal display panel or a GOA liquid crystal display panel.
  • the first power management module and the second power management module are arranged in the LCD panel driving device of the present invention, and the voltage output module is designed separately, and the voltage output structure can be flexibly adjusted according to the load on the panel of different sizes and resolutions. With different designs, the operating temperature of the voltage output IC can be effectively reduced.
  • the liquid crystal display panel drive device of the present invention can improve the versatility of product design by placing the voltage output designs that can be shared by different models and different sizes on the control module.
  • FIG. 1 is a schematic structural diagram of a driving device for a liquid crystal display panel provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another liquid crystal display panel driving device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of signal transmission between the liquid crystal display panel driving device in FIG. 2 and the Gate COF liquid crystal display panel;
  • FIG. 4 is a schematic structural diagram of a liquid crystal display device provided by an embodiment of the utility model
  • FIG. 5 is a schematic structural diagram of another liquid crystal display panel driving device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of signal transmission between the liquid crystal display panel driving device in FIG. 5 and the GOA liquid crystal display panel;
  • FIG. 7 is a schematic structural diagram of another liquid crystal display device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a driving device for a liquid crystal display panel provided by an embodiment of the present invention.
  • the liquid crystal display panel adopts the drive structure of the control module CB + the source drive module XB, where the control module CB can be a control board, the source drive module XB can be a source drive board, and the control module CB is between the source drive module XB
  • the connection can be made through a flexible flat cable (Flexible Flat Cable, FFC) or a flexible printed circuit (FPC).
  • the driving device includes a first power management unit PMU1 and a second power management unit PMU2.
  • the first power management unit PMU1 and the second power management unit PMU2 may both use power management chips, but this embodiment is not limited to this.
  • the first power management unit PMU1 is arranged in the control module CB and is used to provide a first power supply voltage signal; specifically, the first power management unit PMU1 is mainly used to provide voltage output to each circuit unit in the control module CB, that is to say , Set the shareable voltage output unit on the CB.
  • the second power management unit PMU2 is arranged in the source drive module XB, and is used to provide a second power supply voltage signal; specifically, the second power management unit PMU2 is mainly used to provide various circuit units and liquid crystal displays in the source drive module XB.
  • the panel provides voltage output, that is, the drive circuit on the XB and the voltage output unit required by each IC are set on the XB.
  • the input terminals of the first power management unit PMU1 and the second power management unit PMU2 can be connected to the same power output terminal and input the same power supply voltage, such as 12V input voltage VIN; or they can be connected to different power output terminals , Input different power supply voltages; the specific input voltage depends on the voltage required by different circuit modules.
  • the source driving module XB includes several source driving submodules, that is, the source driving module XB may include two source driving submodules, such as a first source driving submodule XL and a second source driving submodule.
  • the driver submodule XR may also include three source driver submodules, such as a first source driver submodule XL, a second source driver submodule XR, and a third source driver submodule XM.
  • several source driving submodules are arranged in parallel and the source driving submodules are connected to the control board CB. Specifically, one or two of the several source driving submodules are connected to the CB through FFC or FPC.
  • the second power management unit PMU2 is set on any one of several source driver sub-modules.
  • PMU2 can be set on XL, XR, XM, and so on.
  • control module CB and the source driver module XB can also be respectively provided with other units driving the liquid crystal display panel, including but not limited to unit A and unit B in FIG. 1, PMU1 is on CB Unit A of XB provides power supply voltage, and PMU2 provides power supply voltage for Unit B on XB.
  • the unit A may be a timing control unit TCON IC
  • the unit B may be a gamma correction circuit unit Gamma IC
  • the timing control unit TCON IC is arranged in the control module CB, and is connected to the first power management unit PMU1, and is configured to receive the first power supply voltage signal and provide the first timing control signal and the second timing control signal to the liquid crystal display panel.
  • the gamma correction circuit unit Gamma IC is arranged in the source driving module XB, and is connected to the second power management unit PMU2, and is used for receiving the second power voltage signal and providing the gamma signal to the liquid crystal display panel.
  • the IC used in the circuit design of each module can be a separate type or an integrated type; that is, the PMU2 can be integrated with one or more other units on the XB, for example: PMU2 can be Integrate an IC with the gamma correction circuit unit Gamma IC on XB, or integrate an IC with the level conversion unit Level Shifter on XB, or integrate an IC with PMU2, Gamma IC, and Level Shifter.
  • PMU2 can be Integrate an IC with the gamma correction circuit unit Gamma IC on XB, or integrate an IC with the level conversion unit Level Shifter on XB, or integrate an IC with PMU2, Gamma IC, and Level Shifter.
  • the first power management module PMU1 and the second power management module PMU2 are provided in the liquid crystal display panel driving device of this embodiment, and the voltage output modules are designed separately, and the voltage output structure can be flexibly adjusted according to the load on the panel of different sizes and resolutions. With different designs, it can effectively reduce the operating temperature of the voltage output IC. At the same time, it can also reduce PCB area and cost, that is, increase the cost advantage of XB+CB architecture design for system factories. In addition, the common voltage output design of different models and different sizes can be placed on the CB to improve the versatility of product design.
  • FIG. 2 is a schematic structural diagram of another liquid crystal display panel driving device provided by an embodiment of the present invention.
  • the liquid crystal display panel driving device is used to drive a Gate COF type liquid crystal display panel.
  • the liquid crystal display panel drive device adopts a drive structure of a control module CB + a source drive module XB, where the source drive module XB includes but is not limited to a first source drive submodule XR and a second source drive submodule
  • the module XL, the first source driving submodule XR and the second source driving submodule XL are respectively connected to the control module CB.
  • the liquid crystal display panel driving device includes: a first power management unit PMU1, a second power management unit PMU2, a timing control unit TCON IC, and a gamma correction circuit unit Gamma IC.
  • the timing control unit TCON IC may use a timing control chip
  • the gamma correction circuit unit Gamma IC may use a gamma correction circuit chip.
  • the first power management unit PMU1 and the timing control unit TCON IC are arranged on the control module CB, and the second power management unit PMU2 and the gamma correction circuit unit Gamma IC are arranged on the source driving module XB.
  • the second power management unit PMU2 and the gamma correction circuit unit Gamma IC may both be arranged on the first source driver submodule XR; may also be arranged on the second source driver submodule XL; or PMU2 may be arranged On XR, Gamma IC is set on XL; PMU2 can also be set on XL, and Gamma IC is set on XR; in Figure 2, both PMU2 and Gamma IC are set on XR.
  • FIG. 3 is a schematic diagram of signal transmission between the liquid crystal display panel driving device in FIG. 2 and the Gate COF liquid crystal display panel.
  • the timing control unit TCON IC is connected to the first power management unit PMU1, and is used to receive the first power voltage signal provided by the first power management unit PMU1, and provide the first timing control signal and The second timing control signal.
  • the first power management unit PMU1 outputs the first power supply voltage signal Power1, including VDD, Vcore, etc., to the timing control unit TCON IC.
  • the timing control unit TCON IC receives the first power supply voltage signal Power1, and generates a first timing control signal and a second timing control signal to provide to the Gate COF type liquid crystal display panel; wherein, the first timing control signal may be a Source timing control signal , Including TP, POL, etc.; the second timing control signal may be a Gate timing control signal, including STV, CPV, OE, etc.
  • control module CB and the source driver module XB perform data transmission through a preset communication protocol; specifically, the preset communication protocol includes one or more of mini-LVDS, IIC, and SPI; it is understandable that ,
  • the control module CB and the source driver module XB can transmit image data through mini-LVDS or other protocols; each module on the CB and each module on the XB can also communicate through communication protocols such as IIC and SPI.
  • the second power management unit PMU2 outputs the second power supply voltage signal Power2, including VDD, VAA, etc., to the gamma correction circuit unit Gamma IC.
  • the gamma correction circuit unit Gamma IC receives the second power supply voltage signal Power2, and generates a gamma signal GMx to provide to the Gate COF type liquid crystal display panel.
  • the Gate COF type liquid crystal display panel includes: a panel data drive unit S/D and a scan drive unit G/D. Among them, the panel data drive unit S/D and the scan drive unit G/D are both connected to the panel unit LCD for driving the panel unit LCD.
  • the panel data driving unit S/D is connected to the gamma correction circuit unit Gamma IC, the second power management unit PMU2, and the timing control unit TCON IC, and is configured to receive the second power supply voltage signal Power2 output by the second power management unit PMU2 , Including VDD, VAA, HVAA, etc., receive the first timing control signal (Source timing control signal) output by the timing control unit TCON IC, and receive the gamma signal GMx output by the gamma correction circuit unit Gamma IC, thereby driving the panel unit LCD . Further, the timing control unit TCON IC transmits the panel display image data to the panel data driving unit S/D through the mini-LVDS protocol.
  • the scan driving unit G/D is connected to the second power management unit PMU2 and the timing control unit TCON IC, and is used to receive the second power supply voltage signal Power2 output by the second power management unit PMU2, including VDD, VGH, VSS, etc., and receive timing
  • the second timing control signal (Gate timing control signal) output by the control unit TCON IC drives the panel unit LCD.
  • the first power management unit PMU1 provides voltage for the timing control unit TCON IC
  • the second power management unit PMU2 provides the gamma correction circuit unit Gamma IC, the panel data drive unit S/D, and the scan drive unit G/D.
  • Voltage, the traditional single voltage output module DC-DC is designed separately, and different designs can be matched according to the load on the panel of different sizes and resolutions, and the voltage output structure can be flexibly adjusted, which can effectively reduce the operating temperature of the voltage output IC; at the same time; Separate the design of the voltage output module, and also place the voltage output designs that can be shared by different models and different sizes on the CB, which can improve the versatility of product design.
  • the PCB area can be reduced and the cost can be reduced.
  • FIG. 4 is a schematic structural diagram of a liquid crystal display device provided by an embodiment of the present invention.
  • the liquid crystal display device includes: a Gate COF liquid crystal display panel and a driving device; wherein the driving device adopts the driving device in the second embodiment, and the gate COF liquid crystal display panel adopts the liquid crystal display panel described in the second embodiment.
  • the driving device is connected to the panel unit LCD through the panel data driving unit S/D, and the scanning driving unit G/D is connected to XB through the wiring on the panel unit LCD.
  • FIG. 5 is a schematic structural diagram of another liquid crystal display panel driving device provided by an embodiment of the present invention.
  • the liquid crystal display panel driving device is used to drive the GOA liquid crystal display panel.
  • the liquid crystal display panel driving device adopts a driving structure of a control module CB + a source driving module XB, where the source driving module XB includes but not limited to a first source driving submodule XR and a second source driving submodule XL, the first source driver submodule XR and the second source driver submodule XL are respectively connected to the control module CB.
  • the liquid crystal display panel driving device includes: a first power management unit PMU1, a second power management unit PMU2, a timing control unit TCON IC, a gamma correction circuit unit Gamma IC, and a level shifter unit Level Shifter.
  • the timing control unit TCON IC may use a timing control chip
  • the gamma correction circuit unit Gamma IC may use a gamma correction circuit chip
  • the level conversion unit Level Shifter may use a level conversion shift chip.
  • the first power management unit PMU1 and the timing control unit TCON IC are arranged on the control module CB, and the second power management unit PMU2, the gamma correction circuit unit Gamma IC, and the level shifter unit Level Shifter are arranged on the source drive module XB. superior.
  • the second power management unit PMU2, the gamma correction circuit unit Gamma IC, and the level shifter unit Level Shifter may all be arranged on the first source driver sub-module XR; or all may be arranged on the second source driver sub-module XL; part of it can be set on XR, and the other part on XL; in Figure 5, PMU2, Gamma IC, and Level Shifter are all set on XR.
  • FIG. 6 is a schematic diagram of signal transmission between the liquid crystal display panel driving device in FIG. 5 and the GOA liquid crystal display panel.
  • the timing control unit TCON IC is connected to the first power management unit PMU1, and is configured to receive the first power voltage signal provided by the first power management unit PMU1, and provide the first timing control signal and the second timing control signal to the GOA liquid crystal display panel. Timing control signal.
  • the first power management unit PMU1 outputs the first power supply voltage signal Power1, including VDD, Vcore, etc., to the timing control unit TCON IC.
  • the timing control unit TCON IC receives the first power supply voltage signal Power1, and generates a first timing control signal and a second timing control signal to provide to the GOA liquid crystal display panel; wherein the first timing control signal may be a Source timing control signal, including TP , POL, etc.; the second timing control signal may be a timing control signal required by the level shifter Level Shifter, including STV, CKV, LC, etc.
  • TCON IC can use communication protocols such as IIC and SPI to transmit data with other ICs, and use mini-LVDS or other protocols to transmit panel display image data.
  • the second power management unit PMU2 outputs the second power supply voltage signal Power2, including VDD, VAA, etc., to the gamma correction circuit unit Gamma IC.
  • the gamma correction circuit unit Gamma IC receives the second power supply voltage signal Power2, and generates a gamma signal GMx to provide to the GOA liquid crystal display panel.
  • the second power management unit PMU2 outputs the second power supply voltage signal Power2, including VDD, VGH, VSS1, VSS2, etc., to the level shifter Level Shifter.
  • the level shifter unit Level Shifter receives the second power supply voltage signal Power2 and the second timing control signal output by the timing control unit TCON IC, and generates a row drive timing signal of the array substrate to provide to the GOA liquid crystal display panel.
  • the GOA liquid crystal display panel in FIG. 6 includes: a panel data driving unit S/D and an array substrate row driving unit GOA.
  • the panel data drive unit S/D is connected to the panel unit LCD
  • the array substrate row drive unit GOA is arranged in the panel unit LCD
  • the panel data drive unit S/D and the array substrate row drive unit GOA are both used to drive the panel unit LCD.
  • the panel data driving unit S/D is connected to the gamma correction circuit unit Gamma IC, the second power management unit PMU2, and the timing control unit TCON IC, and is configured to receive the second power supply voltage signal Power2 output by the second power management unit PMU2 , Including VDD, VAA, HVAA, etc., receive the first timing control signal (Source timing control signal) output by the timing control unit TCON IC, and receive the gamma signal GMx output by the gamma correction circuit unit Gamma IC.
  • the first timing control signal Source timing control signal
  • the array substrate row drive unit GOA and the level shifter unit Level Shifter are connected by wires, and are used to receive the array substrate row drive timing signal output by the level shifter unit Level Shifter.
  • the first power management unit PMU1 provides voltage for the timing control unit TCON IC
  • the second power management unit PMU2 provides the gamma correction circuit unit Gamma IC, the panel data drive unit S/D, and the level shifter unit Level Shifter.
  • Voltage the traditional single voltage output module DC-DC is designed separately, and different designs can be matched according to the load on the panel of different sizes and resolutions, and the voltage output structure can be flexibly adjusted, which can effectively reduce the operating temperature of the voltage output IC; at the same time; Separate the design of the voltage output module, and also place the voltage output designs that can be shared by different models and different sizes on the CB, which can improve the versatility of product design.
  • the PCB area can be reduced and the cost can be reduced.
  • FIG. 7 is a schematic structural diagram of another liquid crystal display device provided by an embodiment of the present invention.
  • the liquid crystal display device includes: a GOA liquid crystal display panel and a driving device; wherein the driving device adopts the driving device in the fourth embodiment, and the GOA liquid crystal display panel adopts the liquid crystal display panel described in the fourth embodiment.
  • the driving device is connected to the panel unit LCD through the panel data driving unit S/D, and the array substrate row driving unit GOA is connected to the level shifter unit through wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种液晶显示面板驱动装置及液晶显示装置,液晶显示面板驱动装置包括:第一电源管理单元(PMU1),设置在控制模块(CB)中,用于提供第一电源电压信号;第二电源管理单元(PMU2),设置在与控制模块(CB)连接的源极驱动模块(XB)中,用于提供第二电源电压信号;时序控制单元(TCON IC),设置在控制模块(CB)中,且与第一电源管理单元(PMU1)连接,用于接收第一电源电压信号并向液晶显示面板提供第一时序控制信号和第二时序控制信号;伽玛矫正电路单元(Gamma IC),设置在源极驱动模块(XB)中,且与第二电源管理单元(PMU2)连接,用于接收第二电源电压信号并向液晶显示面板提供伽玛信号。液晶显示面板驱动装置将电压输出模块进行分离设计,有效降低电压输出IC的工作温度。

Description

一种液晶显示面板驱动装置及液晶显示装置 技术领域
本实用新型属于显示器技术领域,具体涉及一种液晶显示面板驱动装置及液晶显示装置。
背景技术
薄膜晶体管液晶显示面板(Thin Film Transistor Liquid Crystal Display,TFT-LCD)是当前平板显示的主要品种之一,已经成为了现代IT、视讯产品中重要的显示平台。
液晶显示面板通常由一彩膜基板(Color Filter,CF)、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一填充于两基板间的液晶层所构成,其工作原理是通过一系列的驱动信号,如扫描信号、数据信号、公共电压信号等,在彩膜基板和阵列基板上施加驱动电压来控制液晶层的液晶分子的旋转,控制光的输出量,从而产生显示画面。
在TFT-LCD中,传统的驱动电路架构是由控制板(Control Board,CB)和源极驱动板(X-Board,XB)组成,即每块显示面板搭配一块CB和与面板相连的多块XB,具体地XB数量由面板尺寸而定。
目前的TFT-LCD液晶显示系统中,CB上包含整个面板驱动所需的电压输出以及控制信号。然而,随着液晶面板尺寸和分辨率的持续提升,使得驱动电路的负载变得越来越高,从而导致电压输出IC的工作温度越来越高;同时,由于面板尺寸的多样化,传统的CB+XB驱动架构的共用性也越来越差。
实用新型内容
为了解决现有技术中存在的上述问题,本实用新型提供了一种液晶显示面板驱动装置及液晶显示装置。本实用新型要解决的技术问题通过以下技术方案实现:
本实用新型实施例提供了一种液晶显示面板驱动装置,包括:
第一电源管理单元,设置在控制模块中,用于提供第一电源电压信号;
第二电源管理单元,设置在与所述控制模块连接的源极驱动模块中,用于提供第二电源电压信号;
时序控制单元,设置在所述控制模块中,且与所述第一电源管理单元连接,用于接收所述第一电源电压信号并向液晶显示面板提供第一时序控制信号和第二时序控制信号;
伽玛矫正电路单元,设置在所述源极驱动模块中,且与所述第二电源管理单元连接,用于接收所述第二电源电压信号并向所述液晶显示面板提供伽玛信号。
在本实用新型的一个实施例中,所述源极驱动模块包括并列设置的若干源极驱动子模块;所述第二电源管理单元设置在若干所述源极驱动子模块中的任一个中;
所述伽玛矫正电路单元设置在若干所述源极驱动子模块中的任一个中。
在本实用新型的一个实施例中,所述液晶显示面板为Gate COF型液晶显示面板。
在本实用新型的一个实施例中,所述Gate COF型液晶显示面板包括:
面板数据驱动单元,与所述第二电源管理单元、所述时序控制单元和所述伽玛矫正电路单元连接,用于接收所述第二电源电压信号、所述第一 时序控制信号和所述伽玛信号以驱动面板单元;
扫描驱动电路单元,与所述第二电源管理单元、所述时序控制单元连接,用于接收所述第二电源电压信号和所述第二时序控制信号以驱动面板单元。
在本实用新型的一个实施例中,所述液晶显示面板为GOA液晶显示面板。
在本实用新型的一个实施例中,还包括:
电平转换单元,设置在所述源极驱动模块中,且与所述第二电源管理单元、所述时序控制单元连接,用于接收所述第二电源电压信号和所述第二时序控制信号,并向所述GOA液晶显示面板提供阵列基板行驱动时序信号。
在本实用新型的一个实施例中,所述电平转换单元设置在若干所述源极驱动子模块中的任一个中。
在本实用新型的一个实施例中,所述GOA液晶显示面板包括:
面板数据驱动单元,与所述第二电源管理单元和所述时序控制单元、所述伽玛矫正电路单元连接,用于接收所述第二电源电压信号、所述第一时序控制信号和所述伽玛信号以驱动面板单元;
阵列基板行驱动单元,与所述电平转换单元连接,用于接收所述阵列基板行驱动时序信号以驱动面板单元。
本实用新型的另一个实施例提供了一种液晶显示装置,包括:
液晶显示面板;
驱动装置,与所述液晶显示面板连接,采用上述任一项实施例所述的液晶显示面板驱动装置。
在本实用新型的一个实施例中,所述液晶显示面板为Gate COF型液晶显示面板或GOA液晶显示面板。
与现有技术相比,本实用新型的有益效果:
1、本实用新型的液晶显示面板驱动装置中设置第一电源管理模块和第二电源管理模块,将电压输出模块进行分离设计,可以灵活调整电压输出架构,根据不同尺寸和分辨率面板上的负载搭配不同的设计,从而有效降低电压输出IC的工作温度。
2、本实用新型的液晶显示面板驱动装置通过将不同机种、不同尺寸可共用的电压输出设计均放置在控制模块上,可提高产品设计的通用性。
附图说明
图1为本实用新型实施例提供的一种液晶显示面板驱动装置的结构示意图;
图2为本实用新型实施例提供的又一种液晶显示面板驱动装置的结构示意图;
图3为图2中的液晶显示面板驱动装置与Gate COF型液晶显示面板之间的信号传输示意图;
图4为本实用新型实施例提供的一种液晶显示装置的结构示意图;
图5为本实用新型实施例提供的另一种液晶显示面板驱动装置的结构示意图;
图6为图5中的液晶显示面板驱动装置与GOA液晶显示面板之间的信号传输示意图;
图7为本实用新型实施例提供的另一种液晶显示装置的结构示意图。
具体实施方式
下面结合具体实施例对本实用新型做进一步详细的描述,但本实用新型的实施方式不限于此。
实施例一
请参见图1,图1为本实用新型实施例提供的一种液晶显示面板驱动装置的结构示意图。
该液晶显示面板采用控制模块CB+源极驱动模块XB的驱动架构,其中,控制模块CB可以为控制板,源极驱动模块XB可以为源极驱动板,控制模块CB和源极驱动模块XB之间可以通过柔性扁平电缆(Flexible Flat Cable,FFC)或者柔性印制线路(flexible print circuit,FPC)进行连接。
该驱动装置包括第一电源管理单元PMU1和第二电源管理单元PMU2。其中,第一电源管理单元PMU1和第二电源管理单元PMU2可以均采用电源管理芯片,但是本实施例不限于此。
第一电源管理单元PMU1设置在控制模块CB中,用于提供第一电源电压信号;具体地,第一电源管理单元PMU1主要用于向控制模块CB中的各个电路单元提供电压输出,也就是说,将可共用的电压输出单元设置在CB上。
第二电源管理单元PMU2设置在源极驱动模块XB中,用于提供第二电源电压信号;具体地,第二电源管理单元PMU2主要用于向源极驱动模块XB中的各个电路单元以及液晶显示面板提供电压输出,也就是说,将XB上的驱动电路和各个IC所需要的电压输出单元设置在XB上。
进一步地,第一电源管理单元PMU1和第二电源管理单元PMU2的输入端可以连接至同一个电源输出端,输入相同的电源电压,如12V的输入电压VIN;也可以连接至不同的电源输出端,输入不同的电源电压;具体 输入电压根据不同电路模块所需的电压而定。
在一个具体实施例中,源极驱动模块XB包括若干源极驱动子模块,即源极驱动模块XB可以包括2个源极驱动子模块,如第一源极驱动子模块XL和第二源极驱动子模块XR,也可以包括3个源极驱动子模块,如第一源极驱动子模块XL、第二源极驱动子模块XR和第三源极驱动子模块XM,等。进一步地,若干源极驱动子模块并列设置且源极驱动子模块与控制板CB连接,具体地,若干源极驱动子模块中的1个或者2个通过FFC或者FPC与CB连接。
此时,第二电源管理单元PMU2设置在若干源极驱动子模块中的任一个上,如:PMU2可以设置在XL上,也可以设置在XR上,也可以设置在XM上,等等。
进一步地,除了PMU1和PMU2,在控制模块CB上和源极驱动模块XB上还可以各自设置驱动液晶显示面板的其他单元,包括但不限于图1中的单元A和单元B,PMU1为CB上的单元A提供电源电压,PMU2为XB上的单元B提供电源电压。
在一个具体实施例中,单元A可以为时序控制单元TCON IC,单元B可以为伽玛矫正电路单元Gamma IC。其中,时序控制单元TCON IC设置在控制模块CB中,且与第一电源管理单元PMU1连接,用于接收第一电源电压信号并向液晶显示面板提供第一时序控制信号和第二时序控制信号。伽玛矫正电路单元Gamma IC设置在源极驱动模块XB中,且与第二电源管理单元PMU2连接,用于接收第二电源电压信号并向液晶显示面板提供伽玛信号。
更进一步,本实施例中,各模块电路设计采用的IC可以为分离型,也 可以为整合型;也就是说,PMU2可以和XB上的其他一个或多个单元集成在一起,例如:PMU2可以和XB上的伽玛矫正电路单元Gamma IC集成一个IC,也可以和XB上的电平转换单元Level Shifter集成一个IC,也可以PMU2、Gamma IC、电平转换单元Level Shifter三者集成一个IC,本实施例不做进一步限定。
本实施例的液晶显示面板驱动装置中设置第一电源管理模块PMU1和第二电源管理模块PMU2,将电压输出模块进行分离设计,可以灵活调整电压输出架构,根据不同尺寸和分辨率面板上的负载搭配不同的设计,从而可以有效降低电压输出IC的工作温度。同时,还可以降低PCB面积,降低成本,即提高XB+CB架构设计对于系统厂的成本优势。另外,还可以通过将不同机种、不同尺寸可共用的电压输出设计均放置在CB上,提高产品设计的通用性。
实施例二
在实施例一的基础上,请参见图2,图2为本实用新型实施例提供的又一种液晶显示面板驱动装置的结构示意图。该液晶显示面板驱动装置用于驱动Gate COF型液晶显示面板。
图2中,该液晶显示面板驱动装置采用控制模块CB+源极驱动模块XB的驱动构架,其中,源极驱动模块XB中包括但不限于第一源极驱动子模块XR和第二源极驱动子模块XL,第一源极驱动子模块XR和第二源极驱动子模块XL分别与控制模块CB连接。
该液晶显示面板驱动装置包括:第一电源管理单元PMU1、第二电源管理单元PMU2、时序控制单元TCON IC和伽玛矫正电路单元Gamma IC。其中,时序控制单元TCON IC可以采用时序控制芯片,伽玛矫正电路单元 Gamma IC可以采用伽玛矫正电路芯片。
具体地,第一电源管理单元PMU1和时序控制单元TCON IC设置在控制模块CB上,第二电源管理单元PMU2和伽玛矫正电路单元Gamma IC设置在源极驱动模块XB上。进一步地,第二电源管理单元PMU2和伽玛矫正电路单元Gamma IC可以均设置在第一源极驱动子模块XR上;也可以均设置在第二源极驱动子模块XL上;也可以PMU2设置在XR上,Gamma IC设置在XL上;也可以PMU2设置在XL上,Gamma IC设置在XR上;图2中,PMU2和Gamma IC均设置在XR上。
请参见图3,图3为图2中的液晶显示面板驱动装置与Gate COF型液晶显示面板之间的信号传输示意图。
图3中,时序控制单元TCON IC与第一电源管理单元PMU1连接,用于接收第一电源管理单元PMU1提供的第一电源电压信号,并且向Gate COF型液晶显示面板提供第一时序控制信号和第二时序控制信号。
具体地,第一电源管理单元PMU1向时序控制单元TCON IC输出第一电源电压信号Power1,包括VDD、Vcore等。时序控制单元TCON IC接收该第一电源电压信号Power1,并且产生第一时序控制信号和第二时序控制信号以提供给Gate COF型液晶显示面板;其中,第一时序控制信号可以为Source时序控制信号,包括TP、POL等;第二时序控制信号可以为Gate时序控制信号,包括STV、CPV、OE等。进一步地,控制模块CB和源极驱动模块XB之间通过预设通信协议进行数据传输;具体地,预设通信协议包括mini-LVDS、IIC、SPI中的一种或多种;可以理解的是,控制模块CB与源极驱动模块XB之间可以通过mini-LVDS或者其他协议来传输图像数据;CB上各模块与XB上各模块还可以通过IIC、SPI等通信协议进行沟通。
具体地,第二电源管理单元PMU2向伽玛矫正电路单元Gamma IC输出第二电源电压信号Power2,包括VDD、VAA等。伽玛矫正电路单元Gamma IC接收该第二电源电压信号Power2,并且产生伽玛信号GMx以提供给Gate COF型液晶显示面板。
请再次参见图3,图3中Gate COF型液晶显示面板包括:面板数据驱动单元S/D和扫描驱动单元G/D。其中,面板数据驱动单元S/D和扫描驱动单元G/D均与面板单元LCD连接,用于驱动面板单元LCD。
具体地,面板数据驱动单元S/D与伽玛矫正电路单元Gamma IC、第二电源管理单元PMU2和时序控制单元TCON IC连接,用于接收第二电源管理单元PMU2输出的第二电源电压信号Power2,包括VDD、VAA、HVAA等,接收时序控制单元TCON IC输出的第一时序控制信号(Source时序控制信号),并且接收伽玛矫正电路单元Gamma IC输出的伽玛信号GMx,从而驱动面板单元LCD。进一步地,时序控制单元TCON IC通过mini-LVDS协议将面板显示图像数据传输给面板数据驱动单元S/D。
扫描驱动单元G/D与第二电源管理单元PMU2和时序控制单元TCON IC连接,用于接收第二电源管理单元PMU2输出的第二电源电压信号Power2,包括VDD、VGH、VSS等,并且接收时序控制单元TCON IC输出的第二时序控制信号(Gate时序控制信号),从而驱动面板单元LCD。
本实施例中,第一电源管理单元PMU1为时序控制单元TCON IC提供电压,第二电源管理单元PMU2为伽玛矫正电路单元Gamma IC、面板数据驱动单元S/D、扫描驱动单元G/D提供电压,将传统的单个电压输出模块DC-DC进行分离设计,可以根据不同尺寸和分辨率面板上的负载搭配不同的设计,灵活调整电压输出架构,从而可以有效降低电压输出IC的工作温 度;同时将电压输出模块分离设计,还可以通过将不同机种、不同尺寸可共用的电压输出设计均放置在CB上,可提高产品设计的通用性。另外,还可以降低PCB面积,降低成本。
实施例三
在实施例二的基础上,请参见图4,图4为本实用新型实施例提供的一种液晶显示装置的结构示意图。该液晶显示装置包括:Gate COF型液晶显示面板和驱动装置;其中,驱动装置采用实施例二中的驱动装置,Gate COF型液晶显示面板采用实施例二中描述的液晶显示面板。具体地,驱动装置通过面板数据驱动单元S/D与面板单元LCD连接,扫描驱动单元G/D通过面板单元LCD上的走线与XB连接。
实施例四
在实施例一的基础上,请参见图5,图5为本实用新型实施例提供的另一种液晶显示面板驱动装置的结构示意图。该液晶显示面板驱动装置用于驱动GOA液晶显示面板。
图5中,液晶显示面板驱动装置采用控制模块CB+源极驱动模块XB的驱动构架,其中,源极驱动模块XB中包括但不限于第一源极驱动子模块XR和第二源极驱动子模块XL,第一源极驱动子模块XR和第二源极驱动子模块XL分别与控制模块CB连接。
该液晶显示面板驱动装置包括:第一电源管理单元PMU1、第二电源管理单元PMU2、时序控制单元TCON IC、伽玛矫正电路单元Gamma IC和电平转换单元Level Shifter。其中,时序控制单元TCON IC可以采用时序控制芯片,伽玛矫正电路单元Gamma IC可以采用伽玛矫正电路芯片,电平转换单元Level Shifter可以采用电平转换移位芯片。
具体地,第一电源管理单元PMU1和时序控制单元TCON IC设置在控制模块CB上,第二电源管理单元PMU2、伽玛矫正电路单元Gamma IC和电平转换单元Level Shifter设置在源极驱动模块XB上。进一步地,第二电源管理单元PMU2、伽玛矫正电路单元Gamma IC和电平转换单元Level Shifter可以均设置在第一源极驱动子模块XR上;也可以均设置在第二源极驱动子模块XL上;也可以一部分设置在XR上,另一部分设置在XL上;图5中,PMU2、Gamma IC和Level Shifter均设置在XR上。
请参见图6,图6为图5中的液晶显示面板驱动装置与GOA液晶显示面板之间的信号传输示意图。
图6中,时序控制单元TCON IC与第一电源管理单元PMU1连接,用于接收第一电源管理单元PMU1提供的第一电源电压信号,并且向GOA液晶显示面板提供第一时序控制信号和第二时序控制信号。
具体地,第一电源管理单元PMU1向时序控制单元TCON IC输出第一电源电压信号Power1,包括VDD、Vcore等。时序控制单元TCON IC接收该第一电源电压信号Power1,并且产生第一时序控制信号和第二时序控制信号提供给GOA液晶显示面板;其中,第一时序控制信号可以为Source时序控制信号,包括TP、POL等;第二时序控制信号可以为电平转换单元Level Shifter所需的时序控制信号,包括STV、CKV、LC等。进一步地,TCON IC可以采用IIC、SPI等通信协议与其他IC之间进行数据传输,采用mini-LVDS或其他协议来传输面板显示图像数据。
具体地,第二电源管理单元PMU2向伽玛矫正电路单元Gamma IC输出第二电源电压信号Power2,包括VDD、VAA等。伽玛矫正电路单元Gamma IC接收该第二电源电压信号Power2,并且产生伽玛信号GMx提供 给GOA液晶显示面板。
具体地,第二电源管理单元PMU2向电平转换单元Level Shifter输出第二电源电压信号Power2,包括VDD、VGH、VSS1、VSS2等。电平转换单元Level Shifter接收该第二电源电压信号Power2和时序控制单元TCON IC输出的第二时序控制信号,并且产生阵列基板行驱动时序信号提供给GOA液晶显示面板。
请再次参见图6,图6中的GOA液晶显示面板包括:面板数据驱动单元S/D和阵列基板行驱动单元GOA。其中,面板数据驱动单元S/D与面板单元LCD连接,阵列基板行驱动单元GOA设置在面板单元LCD内,面板数据驱动单元S/D和阵列基板行驱动单元GOA均用于驱动面板单元LCD。
具体地,面板数据驱动单元S/D与伽玛矫正电路单元Gamma IC、第二电源管理单元PMU2和时序控制单元TCON IC连接,用于接收第二电源管理单元PMU2输出的第二电源电压信号Power2,包括VDD、VAA、HVAA等,接收时序控制单元TCON IC输出的第一时序控制信号(Source时序控制信号),并且接收伽玛矫正电路单元Gamma IC输出的伽玛信号GMx。
阵列基板行驱动单元GOA与电平转换单元Level Shifter通过走线连接,用于接收电平转换单元Level Shifter输出的阵列基板行驱动时序信号。
本实施例中,第一电源管理单元PMU1为时序控制单元TCON IC提供电压,第二电源管理单元PMU2为伽玛矫正电路单元Gamma IC、面板数据驱动单元S/D、电平转换单元Level Shifter提供电压,将传统的单个电压输出模块DC-DC进行分离设计,可以根据不同尺寸和分辨率面板上的负载搭配不同的设计,灵活调整电压输出架构,从而可以有效降低电压输出IC的工作温度;同时将电压输出模块分离设计,还可以通过将不同机种、不同 尺寸可共用的电压输出设计均放置在CB上,可提高产品设计的通用性。另外,还可以降低PCB面积,降低成本。
实施例五
在实施例四的基础上,请参见图7,图7为本实用新型实施例提供的另一种液晶显示装置的结构示意图。该液晶显示装置包括:GOA液晶显示面板和驱动装置;其中,驱动装置采用实施例四中的驱动装置,GOA液晶显示面板采用实施例四中描述的液晶显示面板。具体地,驱动装置通过面板数据驱动单元S/D与面板单元LCD连接,阵列基板行驱动单元GOA通过走线与电平转换单元Level Shifter连接。
以上内容是结合具体的优选实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本实用新型的保护范围。

Claims (10)

  1. 一种液晶显示面板驱动装置,其特征在于,包括:
    第一电源管理单元,设置在控制模块中,用于提供第一电源电压信号;
    第二电源管理单元,设置在与所述控制模块连接的源极驱动模块中,用于提供第二电源电压信号;
    时序控制单元,设置在所述控制模块中,且与所述第一电源管理单元连接,用于接收所述第一电源电压信号并向液晶显示面板提供第一时序控制信号和第二时序控制信号;
    伽玛矫正电路单元,设置在所述源极驱动模块中,且与所述第二电源管理单元连接,用于接收所述第二电源电压信号并向所述液晶显示面板提供伽玛信号。
  2. 如权利要求1所述的液晶显示面板驱动装置,其特征在于,
    所述源极驱动模块包括并列设置的若干源极驱动子模块;
    所述第二电源管理单元设置在若干所述源极驱动子模块中的任一个中;
    所述伽玛矫正电路单元设置在若干所述源极驱动子模块中的任一个中。
  3. 如权利要求1所述的液晶显示面板驱动装置,其特征在于,所述液晶显示面板为Gate COF型液晶显示面板。
  4. 如权利要求3所述的液晶显示面板驱动装置,其特征在于,所述Gate COF型液晶显示面板包括:
    面板数据驱动单元,与所述第二电源管理单元、所述时序控制单元和所述伽玛矫正电路单元连接,用于接收所述第二电源电压信号、所述第一时序控制信号和所述伽玛信号以驱动面板单元;
    扫描驱动电路单元,与所述第二电源管理单元、所述时序控制单元连接,用于接收所述第二电源电压信号和所述第二时序控制信号以驱动面板 单元。
  5. 如权利要求2所述的液晶显示面板驱动装置,其特征在于,所述液晶显示面板为GOA液晶显示面板。
  6. 如权利要求5所述的液晶显示面板驱动装置,其特征在于,还包括:
    电平转换单元,设置在所述源极驱动模块中,且与所述第二电源管理单元、所述时序控制单元连接,用于接收所述第二电源电压信号和所述第二时序控制信号,并向所述GOA液晶显示面板提供阵列基板行驱动时序信号。
  7. 如权利要求6所述的液晶显示面板驱动装置,其特征在于,所述电平转换单元设置在若干所述源极驱动子模块中的任一个中。
  8. 如权利要求6所述的液晶显示面板驱动装置,其特征在于,所述GOA液晶显示面板包括:
    面板数据驱动单元,与所述第二电源管理单元、所述时序控制单元和所述伽玛矫正电路单元连接,用于接收所述第二电源电压信号、所述第一时序控制信号和所述伽玛信号以驱动面板单元;
    阵列基板行驱动单元,与所述电平转换单元连接,用于接收所述阵列基板行驱动时序信号以驱动面板单元。
  9. 一种液晶显示装置,其特征在于,包括:
    液晶显示面板;
    驱动装置,与所述液晶显示面板连接,采用如权利要求1~8任一项所述的液晶显示面板驱动装置。
  10. 如权利要求9所述的液晶显示装置,其特征在于,所述液晶显示面板为Gate COF型液晶显示面板或GOA液晶显示面板。
PCT/CN2021/085768 2020-04-14 2021-04-07 一种液晶显示面板驱动装置及液晶显示装置 WO2021208782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020552050.1 2020-04-14
CN202020552050.1U CN211788109U (zh) 2020-04-14 2020-04-14 一种液晶显示面板驱动装置及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2021208782A1 true WO2021208782A1 (zh) 2021-10-21

Family

ID=72959294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085768 WO2021208782A1 (zh) 2020-04-14 2021-04-07 一种液晶显示面板驱动装置及液晶显示装置

Country Status (2)

Country Link
CN (1) CN211788109U (zh)
WO (1) WO2021208782A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063924A (zh) * 2021-11-18 2022-02-18 惠州华星光电显示有限公司 电源管理芯片数据配置方法、配置架构及显示面板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211788109U (zh) * 2020-04-14 2020-10-27 咸阳彩虹光电科技有限公司 一种液晶显示面板驱动装置及液晶显示装置
CN114242010B (zh) * 2021-12-15 2023-03-10 惠州视维新技术有限公司 电平转换电路和显示装置
CN114299872B (zh) * 2022-01-04 2023-07-18 京东方科技集团股份有限公司 一种驱动电路及其驱动方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187317A1 (en) * 2013-12-30 2015-07-02 Samsung Display Co., Ltd. Method of controlling driving voltage of display panel and display apparatus performing the method
CN208157021U (zh) * 2018-05-29 2018-11-27 上海和辉光电有限公司 一种电源控制电路
CN109584814A (zh) * 2017-09-29 2019-04-05 硅工厂股份有限公司 面板驱动集成电路、显示装置及集成电路
CN109712555A (zh) * 2019-02-25 2019-05-03 合肥京东方显示技术有限公司 控制电路板、附加电路板及显示装置
CN208986673U (zh) * 2018-08-07 2019-06-14 昆山龙腾光电有限公司 电源管理电路以及显示装置
CN211788109U (zh) * 2020-04-14 2020-10-27 咸阳彩虹光电科技有限公司 一种液晶显示面板驱动装置及液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150187317A1 (en) * 2013-12-30 2015-07-02 Samsung Display Co., Ltd. Method of controlling driving voltage of display panel and display apparatus performing the method
CN109584814A (zh) * 2017-09-29 2019-04-05 硅工厂股份有限公司 面板驱动集成电路、显示装置及集成电路
CN208157021U (zh) * 2018-05-29 2018-11-27 上海和辉光电有限公司 一种电源控制电路
CN208986673U (zh) * 2018-08-07 2019-06-14 昆山龙腾光电有限公司 电源管理电路以及显示装置
CN109712555A (zh) * 2019-02-25 2019-05-03 合肥京东方显示技术有限公司 控制电路板、附加电路板及显示装置
CN211788109U (zh) * 2020-04-14 2020-10-27 咸阳彩虹光电科技有限公司 一种液晶显示面板驱动装置及液晶显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063924A (zh) * 2021-11-18 2022-02-18 惠州华星光电显示有限公司 电源管理芯片数据配置方法、配置架构及显示面板

Also Published As

Publication number Publication date
CN211788109U (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2021208782A1 (zh) 一种液晶显示面板驱动装置及液晶显示装置
JP5302292B2 (ja) 液晶表示装置
US7193623B2 (en) Liquid crystal display and driving method thereof
US8552945B2 (en) Liquid crystal display device and method for driving the same
US8345026B2 (en) Display apparatus
US8330687B2 (en) Liquid crystal display
US20040135757A1 (en) Liquid crystal display and driving method thereof
KR101549260B1 (ko) 액정표시장치
JP2008116964A (ja) 液晶表示装置及びその駆動方法
JPH10340070A (ja) 液晶表示装置
KR101351381B1 (ko) 액정표시장치와 그 구동방법
KR20080084389A (ko) 액정표시장치
US9633615B2 (en) Liquid crystal display device
WO2018076459A1 (zh) 液晶面板驱动电路及液晶显示装置
JP2008015464A (ja) 液晶表示装置及びその駆動方法
US8199084B2 (en) Driving circuit of flat panel display device
US8188951B2 (en) Chip on glass type display device
JP2001324962A (ja) 液晶表示装置
US10643559B2 (en) Display panel driving apparatus and driving method thereof
US20070229436A1 (en) Liquid crystal display device and method for driving the same
KR20040062148A (ko) 액정 표시장치
JP2010186136A (ja) 液晶表示装置
KR20020071569A (ko) 액정 표시 장치 및 그 구동 방법
KR20150003053A (ko) 액정표시장치
KR20060104710A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788186

Country of ref document: EP

Kind code of ref document: A1