WO2021208457A1 - 电池供电装置 - Google Patents

电池供电装置 Download PDF

Info

Publication number
WO2021208457A1
WO2021208457A1 PCT/CN2020/134058 CN2020134058W WO2021208457A1 WO 2021208457 A1 WO2021208457 A1 WO 2021208457A1 CN 2020134058 W CN2020134058 W CN 2020134058W WO 2021208457 A1 WO2021208457 A1 WO 2021208457A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
circuit
switch
terminal
switch circuit
Prior art date
Application number
PCT/CN2020/134058
Other languages
English (en)
French (fr)
Inventor
王冰
沈剑
江旭峰
黄嘉曦
Original Assignee
深圳易马达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳易马达科技有限公司 filed Critical 深圳易马达科技有限公司
Publication of WO2021208457A1 publication Critical patent/WO2021208457A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits

Definitions

  • This application belongs to the field of battery technology, and in particular relates to a battery power supply device.
  • the traditional battery pack is outputted in series through the battery pack and the supporting BMS protection board to provide power supply for the load, but the switch tube of the BMS protection board has limited withstand voltage, and the individual single battery or BMS protection board is abnormal during the power supply process. When it is closed, the voltage applied to the switch tube of the BMS protection board is too high, and the switch tube of the BMS protection board is in danger of high-voltage burnout.
  • the purpose of this application is to provide a battery-powered device, which aims to solve the problem of high-voltage burnout of the traditional BMS protection board.
  • the embodiment of the present application provides a battery-powered device, which aims to solve the problem of high-voltage burnout of the traditional BMS protection board.
  • the first aspect of the embodiments of the present application provides a battery power supply device.
  • the battery power supply device includes a battery pack, a first switch circuit, a second switch circuit, a first switch detection circuit, a second switch detection circuit, and a control circuit;
  • the first end of the battery pack is connected to the input end of the load, the output end of the load, the input end of the second switch circuit, and the signal input end of the second switch detection circuit are interconnected, and the second The output terminal of the switch circuit, the input terminal of the first switch circuit, and the signal input terminal of the first switch detection circuit are interconnected, and the output terminal of the first switch circuit is connected to the second terminal of the battery pack. Grounded, the controlled terminal of the first switch circuit, the controlled terminal of the second switch circuit, the signal output terminal of the first switch detection circuit, and the signal output terminal of the second switch detection circuit are connected to each other, respectively.
  • the signal terminal of the control circuit is connected, the battery pack includes a plurality of BMS protection boards and a plurality of single cells, the plurality of BMS protection boards are connected in series in sequence, and each of the BMS protection boards is connected to at least one single battery, each A controlled end of the BMS protection board is also connected to the signal end of the control circuit;
  • the control circuit is set to:
  • each of the BMS protection boards Before controlling each of the BMS protection boards to discharge, respectively output a turn-on signal and a turn-off signal to the first switch circuit, and respectively output a turn-on signal and a turn-off signal to the second switch circuit, and according to the first
  • the level signals fed back by a switch detection circuit and the second switch detection circuit determine the working state of the first switch circuit and the second switch circuit;
  • control each of the BMS protection boards When it is determined that the working states of the first switch circuit and the second switch circuit are both normal, control each of the BMS protection boards to discharge, control the first switch circuit to be normally on, and control the second switch circuit to be turned on and off. Performing output control on the power supply output by the battery pack, and controlling the on and off of the first switch circuit when the second switch circuit is short-circuited, so as to perform output control on the power supply output by the battery pack;
  • the embodiment of the present application outputs a turn-on signal or a turn-off signal to the first switch circuit and the second switch circuit respectively before discharging, and determines the first switch circuit and the second switch circuit according to the first switch detection circuit and the second switch detection circuit
  • the battery pack is controlled to discharge and the first switch circuit and the second switch circuit are controlled to be correspondingly turned on.
  • the first switch circuit and the second switch circuit are each other as a backup switch Circuit, when one of the switching circuits is short-circuited due to overvoltage or overcurrent, the other switching circuit controls the output of the power supply.
  • the battery pack is controlled Stop the discharge and report the fault to the background.
  • the first switch circuit and the second switch circuit are used as external switch circuits to achieve over-voltage and over-current protection.
  • the first action is taken during the discharge process to protect the switch tube of the BMS protection board against high voltage. This improves the overall safety of the battery pack.
  • FIG. 1 is a schematic diagram of the first module structure of a battery power supply device provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of the circuit structure of a battery power supply device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a first circuit structure of a first switch detection circuit provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a first circuit structure of a second switch detection circuit provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a second circuit structure of the first switch detection circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a second circuit structure of a second switch detection circuit provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a third circuit structure of the first switch detection circuit provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a third circuit structure of a second switch detection circuit provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a module structure of a battery pack provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a second module structure of a battery power supply device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the first aspect of the embodiments of the present application provides a battery-powered device.
  • FIG. 1 is a schematic diagram of the first module structure of a battery power supply device provided by an embodiment of this application
  • Figure 2 is a schematic diagram of a circuit structure of the battery power supply device provided by an embodiment of this application.
  • the battery power supply device includes a battery pack 10, a first switch circuit 20, a second switch circuit 30, a first switch detection circuit 40, a second switch detection circuit 50, and a control circuit 60;
  • the first terminal of the battery pack 10 is connected to the input terminal of the load, the output terminal of the load, the input terminal of the second switch circuit 30 and the signal input terminal of the second switch detection circuit 50 are interconnected, and the output terminal of the second switch circuit 30,
  • the input terminal of the first switch circuit 20 and the signal input terminal of the first switch detection circuit 40 are interconnected, and the output terminal of the first switch circuit 20 is connected to and grounded to the second terminal of the battery pack 10, and the control of the first switch circuit 20 is Terminal, the controlled terminal of the second switch circuit 30, the signal output terminal of the first switch detection circuit 40, and the signal output terminal of the second switch detection circuit 50 are respectively connected to the signal terminal of the control circuit 60
  • the battery pack 10 includes a plurality of BMSs A protection board and a plurality of single cells, a plurality of BMS protection boards are connected in series, each BMS protection board is connected to at least one single battery, and the controlled end of each BMS protection board is also connected to the signal end of the control circuit 60;
  • the control circuit 60 is set to:
  • the turn-on signal and turn-off signal are respectively output to the first switch circuit 20, and the turn-on signal and the turn-off signal are respectively output to the second switch circuit 30, and according to the first switch detection circuit 40 and The level signal fed back by the second switch detection circuit 50 determines the working state of the first switch circuit 20 and the second switch circuit 30;
  • each BMS protection board is controlled to stop discharging and report the fault to the background.
  • the BMS protection board is set to control the discharge or charging of at least one single battery.
  • the number of single batteries connected to each BMS protection board can be set according to requirements.
  • Multiple BMS protection boards are connected in series and connected to the load and The second switch circuit 30 and the first switch circuit 20 form a power circuit, and each BMS protection board outputs a power supply to the load correspondingly according to the control signal of the control circuit 60.
  • the first switch circuit 20 and the second switch circuit 30 are external switching devices, which are set to be turned on or off according to the switching signal of the control circuit 60 to cut off the power circuit when an overcurrent or overvoltage occurs in the power circuit to avoid The load and the switch tube in the BMS protection board are damaged.
  • the first switch circuit 20 serves as a backup switch.
  • the first switch circuit 20 maintains a normally closed state
  • the second switch circuit 30 serves as a power switch to connect the power circuit or Turn off control.
  • the second switch circuit 30 is short-circuited, the first switch circuit 20 is activated, and is turned on or off correspondingly according to the switching signal of the control circuit 60 to control the power loop on or off.
  • the control circuit 60 In order to ensure the normal operation of the load, before discharging, the control circuit 60 outputs a turn-on signal or a turn-off signal to the first switch circuit 20 and the second switch circuit 30, and according to the first switch detection circuit 40 and the second switch detection circuit 50
  • the feedback level signal determines the working state of the first switch circuit 20 and the second switch circuit 30 before starting, so as to improve the stability and reliability of the subsequent discharge.
  • the first switch circuit 20 and the second switch circuit 30 may use switch tubes or switch components with controlled functions, such as triodes, MOS tubes, etc., as shown in FIG. 2.
  • the first switch circuit 20 It includes a first electronic switch tube Q1
  • the second switch circuit 30 includes a second electronic switch tube Q2
  • the first switch detection circuit 40 is connected to the input end of the first electronic switch tube Q1
  • the second switch detection circuit 50 is connected to the second electronic switch.
  • the input end of the tube Q2 is connected, and according to the level of the input ends of the first electronic switch tube Q1 and the second electronic switch tube Q2, the feedback signal is output to the control circuit 60, and then the first electronic switch tube Q1 and the second electronic switch tube Q1 are determined.
  • the working state of the switch tube Q2 is normally on or off, or in a short circuit or open state, assuming that the low level of the feedback signal output by the switch detection circuit indicates that the switch circuit is on, and the high level indicates that the switch circuit is off, it can be based on
  • the detection steps in Table 1 to Table 6 are respectively analyzed, wherein the first electronic switch tube Q1 and the second electronic switch tube Q2 are kept off in the initial state, and H Means high level, L Means low level, * means unable to judge or irrelevant.
  • the detection is confirmed according to the turn-on sequence of the two electronic switch tubes.
  • the following examples are the detection of 6 groups, and each group is executed from top to bottom.
  • the first switch detection circuit 40 and the second switch detection circuit 50 can adopt structures such as level conversion modules, optocoupler modules, etc., which can be selected according to specific needs.
  • the control circuit 60 can adopt a controller 62, such as a CPU, MCU, etc. 62.
  • the load can be a fan, a motor, etc.
  • the specific structure can be designed according to requirements, and there is no specific restriction here.
  • the embodiment of the application adopts the battery pack 10, the first switch circuit 20, the second switch circuit 30, the first switch detection circuit 40, the second switch detection circuit 50, and the control circuit 60 to form a battery power supply device, which respectively output leads before discharging.
  • the on or off signal is sent to the first switch circuit 20 and the second switch circuit 30, and the working state of the first switch circuit 20 and the second switch circuit 30 is determined according to the first switch detection circuit 40 and the second switch detection circuit 50,
  • the battery pack 10 is controlled to discharge and the first switch circuit 20 and the second switch circuit 30 are controlled to be turned on accordingly, and the first switch circuit 20 and the second switch circuit 30 are mutually
  • the main and standby switching circuits when one of the switching circuits is short-circuited due to overvoltage or overcurrent, the other switching circuit controls the output of the power supply, and before discharging, when the abnormal state of the first switching circuit 20 and the second switching circuit 30 is detected ,
  • the battery pack 10 is controlled to stop discharging and report the fault to
  • the first switch circuit 20 and the second switch circuit 30 are used as external switch circuits to achieve overvoltage and overcurrent protection, and act first during the discharge process to protect the BMS board.
  • the switch tube of the power supply is protected against high voltage, which improves the overall safety of the battery pack 10.
  • the first switch detection circuit 40 includes a first resistor R1, a second resistor R2, a third resistor R3, a first diode D1, and a second diode D2. And the first optocoupler U1;
  • the anode of the first diode D1 is connected to the first positive power terminal, the cathode of the first diode D1 is connected to the first end of the first resistor R1, and the second end of the first resistor R1 is connected to the first optocoupler U1.
  • the anode is connected, the cathode of the first optocoupler U1 is connected to the anode of the second diode D2, the cathode of the second diode D2 is the signal input terminal of the first switch detection circuit 40, the collector of the first optocoupler U1,
  • the first end of the second resistor R2 and the first end of the third resistor R3 are interconnected, the second end of the second resistor R2 is connected to the second positive power terminal, and the second end of the third resistor R3 is the first switch detection circuit
  • the signal output terminal of 40, the emitter of the first optocoupler U1 is grounded;
  • the second switch detection circuit 50 includes a fourth resistor R4, a fifth resistor R5, a sixth resistor R6, a third diode D3, a fourth diode D4, and a second optocoupler;
  • the anode of the third diode D3 is connected to the first positive power supply terminal, the cathode of the third diode D3 is connected to the first end of the fourth resistor R4, and the second end of the fourth resistor R4 is connected to the anode of the second optocoupler Connected, the cathode of the second optocoupler is connected to the anode of the fourth diode D4, the cathode of the fourth diode D4 is the signal input terminal of the second switch detection circuit 50, the collector of the second optocoupler, the fifth resistor The first end of R5 and the first end of the sixth resistor R6 are interconnected, the second end of the fifth resistor R5 is connected to the second positive power terminal, and the second end of the sixth resistor R6 is the signal of the second switch detection circuit 50 At the output end, the emitter of the second optocoupler is grounded.
  • the first switch detection circuit 40 and the second switch detection circuit 50 use the photocoupler to conduct and determine whether the first switch circuit 20 and the second switch circuit 30 are normal according to the level of the photocoupler collector.
  • the cathode of the diode D2 is connected with the input terminal of the first switch circuit 20 as the signal input terminal of the first switch detection circuit 40
  • the cathode of the fourth diode D4 is connected with the input terminal of the second switch circuit 30 as the second switch
  • the signal input terminal of the detection circuit 50, and the third resistor R3 and the sixth resistor R6 output high and low levels to the control circuit 60.
  • the control circuit 60 When the control circuit 60 outputs a conduction signal to the first switch circuit 20, when the first switch circuit 20 is turned on When the anode of the optocoupler is connected to the cathode, the collector is connected to the emitter.
  • the third resistor R3 outputs a low level, indicating that the first switch circuit 20 is turned on.
  • the control circuit 60 When the control circuit 60 outputs a turn-off signal to the first switch circuit At 20 o’clock, when the first switch circuit 20 is turned off, the anode and cathode of the optocoupler are not connected, and the photocoupler is not painful.
  • the third resistor R3 outputs a high level, which means that the first switch circuit 20 is not turned on.
  • the second switch circuit 30 performs control judgment in the same way as the first switch circuit 20.
  • the control circuit 60 can judge the first switch circuit 20 and the second switch circuit according to the high and low level signals fed back by the third resistor R3 and the sixth resistor R6. 30 in the working state, wherein the first diode D1, the second diode D2, the third diode D3, and the fourth diode D4 are used to realize unidirectional conduction to connect the first optocoupler U1 and the The two optocouplers protect the power supply to prevent the power supply from flowing back.
  • the first switch detection circuit 40 includes a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, a fifth diode D5, and a first Six diodes D6;
  • the anode of the fifth diode D5 is connected to the first positive power terminal
  • the cathode of the fifth diode D5 is connected to the first end of the seventh resistor R7
  • the second end of the seventh resistor R7 and the second end of the eighth resistor R8 are One end, the first end of the ninth resistor R9, and the first end of the tenth resistor R10 are interconnected
  • the second end of the eighth resistor R8 is connected to the anode of the sixth diode D6, and the cathode of the sixth diode D6 Is the signal input terminal of the first switch detection circuit 40
  • the second terminal of the ninth resistor R9 is grounded
  • the second terminal of the tenth resistor R10 is the signal output terminal of the first switch detection circuit 40;
  • the second switch detection circuit 50 includes an eleventh resistor R11, a twelfth resistor R12, a thirteenth resistor R13, a fourteenth resistor R14, a seventh diode D7, and an eighth diode D8;
  • the anode of the seventh diode D7 is connected to the first positive power supply terminal, the cathode of the seventh diode D7 is connected to the first end of the eleventh resistor R11, the second end of the eleventh resistor R11, the twelfth resistor The first end of R12, the first end of the thirteenth resistor R13, and the first end of the fourteenth resistor R14 are interconnected. The second end of the twelfth resistor R12 is connected to the anode of the eighth diode D8.
  • the cathode of the diode D8 is the signal input end of the second switch detection circuit 50, the second end of the thirteenth resistor R13 is grounded, and the second end of the fourteenth resistor R14 is the signal output end of the second switch detection circuit 50.
  • the first switch circuit 20 and the second switch circuit 30 are judged by the principle of resistance voltage division.
  • the sixth diode D6 When the first switch circuit 20 is not conducting, the sixth diode D6 is not connected to the ground, and the tenth resistor R10 The feedback voltage value is close to the voltage value of the first positive power supply terminal, indicating that the first switch circuit 20 is not turned on.
  • the sixth diode D6 When the first switch circuit 20 is turned on, the sixth diode D6 is connected to the ground, and the voltage fed back by the tenth resistor R10 The value is close to half of the voltage value of a positive power supply terminal, which means that the first switch circuit 20 is turned on, and the principle of the second switch detection circuit 50 and the first switch detection circuit 40 are the same, which will not be described in detail here.
  • the first switch detection circuit 40 includes a fifteenth resistor R15, a sixteenth resistor R16, a seventeenth resistor R17, and a third optocoupler U3;
  • the first end of the fifteenth resistor R15 is the signal input end of the first switch detection circuit 40, the second end of the fifteenth resistor R15 is connected to the anode of the third optocoupler U3, and the cathode of the third optocoupler U3 is connected to the third optocoupler U3.
  • the emitter of the optocoupler U3 is grounded, the collector of the third optocoupler U3, the first end of the sixteenth resistor R16 and the first end of the seventeenth resistor R17 are interconnected, and the second end of the sixteenth resistor R16 is connected to the The first positive power terminal is connected, and the second terminal of the seventeenth resistor R17 is the signal output terminal of the first switch detection circuit 40;
  • the second switch detection circuit 50 includes an eighteenth resistor R18, a nineteenth resistor R19, a twentieth resistor R20, and a fourth optocoupler U4;
  • the first end of the eighteenth resistor R18 is the signal input end of the second switch detection circuit 50, the second end of the eighteenth resistor R18 is connected to the anode of the fourth optocoupler U4, and the cathode of the fourth optocoupler U4 is connected to the fourth optocoupler U4.
  • the emitter of the optocoupler U4 is grounded, the collector of the fourth optocoupler U4, the first end of the nineteenth resistor R19 and the first end of the twentieth resistor R20 are interconnected, and the second end of the nineteenth resistor R19 is connected to the The first positive power terminal is connected, and the second terminal of the twentieth resistor R20 is the signal output terminal of the second switch detection circuit 50.
  • the operating state of the first switch circuit 20 and the second switch circuit 30 is also determined by the principle of optocoupler conduction.
  • the third optocoupler U3 When the fifteenth resistor R15 has no output, the third optocoupler U3 is not conducting, and the seventeenth resistor The feedback level of R17 is high, which means that the first switch circuit 20 is not turned on.
  • the fifteenth resistor R15 has a signal output, the third optocoupler U3 is turned on, and the feedback level of the seventeenth resistor R17 is low. , Means that the first switch circuit 20 is turned on.
  • the second switch detection circuit 50 has the same principle as the first switch detection circuit 40, and will not be described in detail here.
  • control circuit 60 includes a power supply module 61 and a controller 62;
  • the power terminal of the power module 61 is connected to the power terminal of the controller 62, and the signal terminal of the controller 62 is the signal terminal of the control circuit 60;
  • the controller 62 is set to:
  • the turn-on signal and turn-off signal are respectively output to the first switch circuit 20, and the turn-on signal and the turn-off signal are respectively output to the second switch circuit 30, and according to the first switch detection circuit 40 and The level signal fed back by the second switch detection circuit 50 determines the working state of the first switch circuit 20 and the second switch circuit 30;
  • each BMS protection board is controlled to stop discharging and report the fault to the background.
  • the so-called controller 62 may be a central processing unit (Central Processing Unit, CPU), it can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), ASIC (Application Specific Integrated Circuit, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the power module 61 is configured to provide power to the controller 62.
  • the power of the first switch detection circuit 40 and the second switch detection circuit 50 can be provided by the controller 62 or the power module 61.
  • the power module 61 can It is a battery or a power adapter. When the power module 61 is a battery, the battery can be charged through the battery pack 10, and the specific structure is not limited.
  • the controller 62 is responsible for the discharge control of the battery pack 10 and the detection of the first switch circuit 20 and the second switch circuit 30, that is, before controlling the discharge of each BMS protection board, it outputs a turn-on signal and a turn-off signal to the first switch circuit 20. , And respectively output the turn-on signal and turn-off signal to the second switch circuit 30, and determine the first switch circuit 20 and the second switch circuit 30 according to the level signals fed back by the first switch detection circuit 40 and the second switch detection circuit 50 When it is determined that the working states of the first switch circuit 20 and the second switch circuit 30 are normal, control each BMS protection board to discharge and control the first switch circuit 20 to be normally on and control the second switch circuit 30 to be turned on and off.
  • the power supply output from the battery pack 10 performs output control, and when the second switch circuit 30 is short-circuited, the first switch circuit 20 is controlled to turn on and off to control the power supply output from the battery pack 10, and the first switch circuit 20 and/ Or when the second switch circuit 30 is in a short-circuit state or an open-circuit state, each BMS protection board is controlled to stop discharging and report the fault to the background to notify the maintenance personnel to perform repairs.
  • the battery pack 10 further includes a plurality of plug-in detection devices and a plurality of near-field communication modules, and each near-field communication module is electrically connected to each plug-in detection device. Connection, each near field communication module is wirelessly connected to the control circuit 60;
  • Each insertion detection device is set on the battery installation position and outputs a feedback signal when the single battery is installed in place;
  • the near-field communication module is configured to convert the feedback signal into a near-field feedback signal and output it to the control circuit 60, so that the control circuit 60 determines the installation state of each single battery.
  • the insertion detection device is in a seat barrel structure, with a travel switch or a micro switch at the bottom, and the single battery is fixed in the seat barrel structure.
  • the switch state of the travel switch or the micro switch detects whether the single battery is in place.
  • insert the detection device to output the feedback signal to the near field communication module, and then inform the control circuit 60 of the installation status of each unit battery.
  • the control circuit 60 performs the first switch circuit 20 and the second switch circuit 20. State detection of the switch circuit 30 and output control of the BMS protection board.
  • the battery-powered device further includes a power feedback circuit 70 configured to feed back energy.
  • the power feedback circuit 70 includes a ninth diode D9, and the anode of the ninth diode D9 It is connected to the output terminal of the first switch circuit 20, and the cathode of the ninth diode D9 is connected to the input terminal of the first switch circuit 20.
  • the load when the load is a motor, when the motor brakes or stops, the power feeds back.
  • the current flows through the ninth diode D9. Flow into the second end of the load to realize brake feedback protection.
  • the battery power supply device further includes a current sampling circuit 80, the sampling circuit includes a sampling resistor, the first end of the sampling resistor is connected to the output end of the first switch circuit 20, and the second end of the sampling resistor Terminal is connected to the second terminal of the battery pack 10, and both ends of the sampling resistor are respectively connected to the signal terminal of the control circuit 60;
  • the control circuit 60 is also configured to determine the current flowing through the load according to the voltage across the sampling resistor, and correspondingly control the BMS protection board, the first switch circuit 20 and the second switch circuit 30 to work or stop working according to the magnitude of the current.
  • control circuit 60 can determine the current of the power supply loop according to the voltage across the sampling resistor and the resistance value of the sampling resistor, thereby realizing current regulation and protection, so that the load, the first switch circuit 20, and the second switch circuit 30 Reliable operation.
  • the battery power supply device further includes an overcurrent protection circuit 90.
  • the overcurrent protection circuit 90 includes a fuse. The fuse is connected between the battery pack 10 and the load. When the control circuit 60 does not have time to turn off the first switch circuit 20 or the second switch circuit 30, the fuse will blow by itself and cut off the power circuit to realize circuit protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池供电装置,电池供电装置包括电池组(10)、第一开关电路(20)、第二开关电路(30)、第一开关检测电路(40)、第二开关检测电路(50)和控制电路(60),在放电前确定第一开关电路(20)和第二开关电路(30)的工作状态,均正常时控制电池组(10)放电并控制第一开关电路(20)和第二开关电路(30)对应导通,异常状态时,则控制电池组(10)停止放电,并上报故障至后台,第一开关电路(20)和第二开关电路(30)作为外部开关电路以对BMS保护板的开关管进行高压保护,提高了电池组(10)的整体安全性。

Description

电池供电装置
本申请要求于2020年04月17日在中国专利局提交的、申请号为202010303216.0、发明名称为“电池供电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池技术领域,尤其涉及一种电池供电装置。
背景技术
传统的电池组通过电池组以及配套的BMS保护板进行串联输出,以为负载提供供电电源,但是BMS保护板的开关管的耐压有限,在供电过程中因个别的单体电池或者BMS保护板异常关闭时,施加在该BMS保护板的开关管的电压过高,BMS保护板的开关管存在高压烧毁的危险。
技术问题
本申请的目的在于提供一种电池供电装置,旨在解决传统的BMS保护板存在高压烧毁的问题。
技术解决方案
为了解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例提供了一种电池供电装置,旨在解决传统的BMS保护板存在高压烧毁的问题。
本申请实施例的第一方面提了一种电池供电装置,电池供电装置包括电池组、第一开关电路、第二开关电路、第一开关检测电路、第二开关检测电路和控制电路;
所述电池组的第一端与负载的输入端连接,所述负载的输出端、所述第二开关电路的输入端和所述第二开关检测电路的信号输入端互连,所述第二开关电路的输出端、所述第一开关电路的输入端和所述第一开关检测电路的信号输入端互连,所述第一开关电路的输出端和所述电池组的第二端连接且接地,所述第一开关电路的受控端、所述第二开关电路的受控端、所述第一开关检测电路的信号输出端和所述第二开关检测电路的信号输出端分别与所述控制电路的信号端连接,所述电池组包括多个BMS保护板和多个单体电池,所述多个BMS保护板依次串联,每一所述BMS保护板连接至少一个单体电池,每一所述BMS保护板的受控端还与所述控制电路的信号端连接;
所述控制电路,设置为:
在控制各所述BMS保护板放电前分别输出导通信号和关断信号至所述第一开关电路,以及分别输出导通信号和关断信号至所述第二开关电路,并根据所述第一开关检测电路和所述第二开关检测电路反馈的电平信号确定所述第一开关电路和第二开关电路的工作状态;
在确定所述第一开关电路和第二开关电路的工作状态均正常时,控制各所述BMS保护板放电并控制所述第一开关电路常通以及控制所述第二开关电路通断以对所述电池组输出的供电电源进行输出控制,并在所述第二开关电路短路时控制所述第一开关电路通断以对所述电池组输出的供电电源进行输出控制;
在确定所述第一开关电路和/或所述第二开关电路处于短路状态或者断路状态时,控制各所述BMS保护板停止放电并上报故障至后台。
有益效果
本申请实施例在放电前分别输出导通信号或者关断信号至第一开关电路和第二开关电路,并根据第一开关检测电路和第二开关检测电路确定第一开关电路和第二开关电路的工作状态,在第一开关电路和第二开关电路均正常时控制电池组放电并控制第一开关电路和第二开关电路对应导通,第一开关电路和第二开关电路互为主备开关电路,在其中一个开关电路因过压或者过流短路时由另一开关电路进行供电电源的输出控制,同时放电前当检测到第一开关电路和第二开关电路异常状态时,则控制电池组停止放电,并上报故障至后台,第一开关电路和第二开关电路作为外部开关电路实现过压和过流保护,在放电过程中先行动作,以对BMS保护板的开关管进行高压保护,提高了电池组的整体安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电池供电装置的第一种模块结构示意图;
图2为本申请实施例提供的电池供电装置的电路结构示意图;
图3为本申请实施例提供的第一开关检测电路的第一种电路结构示意图;
图4为本申请实施例提供的第二开关检测电路的第一种电路结构示意图;
图5为本申请实施例提供的第一开关检测电路的第二种电路结构示意图;
图6为本申请实施例提供的第二开关检测电路的第二种电路结构示意图;
图7为本申请实施例提供的第一开关检测电路的第三种电路结构示意图;
图8为本申请实施例提供的第二开关检测电路的第三种电路结构示意图;
图9为本申请实施例提供的电池组的模块结构示意图;
图10为本申请实施例提供的电池供电装置的第二种模块结构示意图。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例的第一方面提了一种电池供电装置。
如图1和图2所示,图1为本申请实施例提供的电池供电装置的第一种模块结构示意图,图2为本申请实施例提供的电池供电装置的电路结构示意图,本实施例中,电池供电装置包括电池组10、第一开关电路20、第二开关电路30、第一开关检测电路40、第二开关检测电路50和控制电路60;
电池组10的第一端与负载的输入端连接,负载的输出端、第二开关电路30的输入端和第二开关检测电路50的信号输入端互连,第二开关电路30的输出端、第一开关电路20的输入端和第一开关检测电路40的信号输入端互连,第一开关电路20的输出端和电池组10的第二端连接且接地,第一开关电路20的受控端、第二开关电路30的受控端、第一开关检测电路40的信号输出端和第二开关检测电路50的信号输出端分别与控制电路60的信号端连接,电池组10包括多个BMS保护板和多个单体电池,多个BMS保护板依次串联,每一BMS保护板连接至少一个单体电池,每一BMS保护板的受控端还与控制电路60的信号端连接;
控制电路60,设置为:
在控制各BMS保护板放电前分别输出导通信号和关断信号至第一开关电路20,以及分别输出导通信号和关断信号至第二开关电路30,并根据第一开关检测电路40和第二开关检测电路50反馈的电平信号确定第一开关电路20和第二开关电路30的工作状态;
在确定第一开关电路20和第二开关电路30的工作状态均正常时,控制各BMS保护板放电并控制第一开关电路20常通以及控制第二开关电路30通断以对电池组10输出的供电电源进行输出控制,并在第二开关电路30短路时控制第一开关电路20通断以对电池组10输出的供电电源进行输出控制;
在确定第一开关电路20和/或第二开关电路30处于短路状态或者断路状态时,控制各BMS保护板停止放电并上报故障至后台。
本实施例中,BMS保护板设置为控制至少一个单体电池放电或者充电,每一BMS保护板连接的单体电池数量可根据需求进行设置,多个BMS保护板依次串联,并与负载、第二开关电路30、第一开关电路20组成电源回路,各BMS保护板根据控制电路60的控制信号对应输出供电电源至负载。
其中,第一开关电路20和第二开关电路30为外部开关器件,设置为根据控制电路60的开关信号对应导通或者关断,以在电源回路出现过流或者过压时切断电源回路,避免负载以及BMS保护板内的开关管损坏,第一开关电路20作为备用开关,在正常工作时,第一开关电路20保持常闭状态,第二开关电路30作为电源开关以对电源回路进行连通或者关断控制,在第二开关电路30短路时,第一开关电路20则启动,并根据控制电路60的开关信号对应导通或者关断,以对电源回路进行连通或者关断控制。
为了保证负载正常运行,在放电前,控制电路60先行输出导通信号或者关断信号至第一开关电路20以及第二开关电路30,并根据第一开关检测电路40和第二开关检测电路50反馈的电平信号确定第一开关电路20和第二开关电路30未启动前的工作状态,以提高后续放电的稳定性和可靠性,在确定第一开关电路20和第二开关电路30的工作状态均正常时,控制各BMS保护板放电并控制第一开关电路20常通以及控制第二开关电路30通断以对电池组10输出的供电电源进行输出控制,当第二开关电路30运行过程中因过流或者过压短路时则控制第一开关电路20通断以对电池组10输出的供电电源进行输出控制。
在确定第一开关电路20和/或第二开关电路30处于短路状态或者断路状态时,即第一开关电路20和第二开关电路30工作异常时,控制各BMS保护板停止放电并上报故障至后台,以告知维护人员及时检修。
其中,第一开关电路20和第二开关电路30可采用具有受控功能的开关管或者开关组件,例如三极管、MOS管等,如图2所示,在一个实施例中,第一开关电路20包括第一电子开关管Q1,第二开关电路30包括第二电子开关管Q2,第一开关检测电路40与第一电子开关管Q1的输入端连接,第二开关检测电路50与第二电子开关管Q2的输入端连接,并根据第一电子开关管Q1和第二电子开关管Q2的输入端的电平大小对应输出反馈信号至控制电路60,进而判断出第一电子开关管Q1和第二电子开关管Q2的工作状态是处于正常导通或者关断,还是处于短路或者断路状态,假设开关检测电路输出的反馈信号低电平表示开关电路导通,高电平表示开关电路关断,可依据下表1至表6的检测步骤分别分析,其中,开始状态第一电子开关管Q1和第二电子开关管Q2保持关闭,H 表示高电平,L 表示低电平,*表示无法判断或是无关。检测按照两个电子开关管的开通顺序来确认,下面举例6 组情况的检测,且每组都是按照从上到下执行。
步骤 Q1 和 Q2 的驱动 信号 OFF/ON CHECK1 检 测 信号 H or L CHECK2 检 测 信号 H or L Q1 状态 Q2 状态
1 Ctr1 OFF Ctr2 OFF H H 正常 *
2 Ctr1 ON Ctr2 OFF L H 正常 正常
3 Ctr1 ON Ctr2 ON L L 正常 正常
表1
Figure dest_path_image001
表2
Figure dest_path_image002
表3
Figure dest_path_image003
表4
Figure dest_path_image004
表5
步骤 Q1 和 Q2 的驱动 信号 OFF/ON CHECK1 检 测 信号 H or L CHECK2 检 测 信号 H or L Q1 状态 Q2 状态
1 Ctr1 OFF Ctr2 OFF H H 正常 *
2 Ctr1 ON Ctr2 OFF L H 正常 正常
3 Ctr1 ON Ctr2 ON L H 正常 断路故障
表6
根据上述表1至表6检测步骤,可分别判断出第一开关电路20是处于正常、短路或者断路状态,以及判断出第二开关电路30是处于正常、短路或者断路状态,从而实现对放电前的开关检测,保证BMS保护板以及负载工作正常。
其中,第一开关检测电路40和第二开关检测电路50可采用电平转换模块、光耦模块等结构,具体根据需求进行选择,控制电路60可采用控制器62,例如CPU、MCU等控制器62,负载可为风机、电机等负载,具体结构可根据需求进行设计,在此不做具体限制。
本申请实施例通过采用电池组10、第一开关电路20、第二开关电路30、第一开关检测电路40、第二开关检测电路50和控制电路60组成电池供电装置,在放电前分别输出导通信号或者关断信号至第一开关电路20和第二开关电路30,并根据第一开关检测电路40和第二开关检测电路50确定第一开关电路20和第二开关电路30的工作状态,在第一开关电路20和第二开关电路30均正常时控制电池组10放电并控制第一开关电路20和第二开关电路30对应导通,第一开关电路20和第二开关电路30互为主备开关电路,在其中一个开关电路因过压或者过流短路时由另一开关电路进行供电电源的输出控制,同时放电前当检测到第一开关电路20和第二开关电路30异常状态时,则控制电池组10停止放电,并上报故障至后台,第一开关电路20和第二开关电路30作为外部开关电路实现过压和过流保护,在放电过程中先行动作,以对BMS保护板的开关管进行高压保护,提高了电池组10的整体安全性。
如图3和图4所示,在一个实施例中,第一开关检测电路40包括第一电阻R1、第二电阻R2、第三电阻R3、第一二极管D1、第二二极管D2和第一光耦U1;
第一二极管D1的阳极与第一正电源端连接,第一二极管D1的阴极与第一电阻R1的第一端连接,第一电阻R1的第二端与第一光耦U1的阳极连接,第一光耦U1的阴极与第二二极管D2的阳极连接,第二二极管D2的阴极为第一开关检测电路40的信号输入端,第一光耦U1的集电极、第二电阻R2的第一端和第三电阻R3的第一端互连,第二电阻R2的第二端与第二正电源端连接,第三电阻R3的第二端为第一开关检测电路40的信号输出端,第一光耦U1的发射极接地;
第二开关检测电路50包括第四电阻R4、第五电阻R5、第六电阻R6、第三二极管D3、第四二极管D4和第二光耦;
第三二极管D3的阳极与第一正电源端连接,第三二极管D3的阴极与第四电阻R4的第一端连接,第四电阻R4的第二端与第二光耦的阳极连接,第二光耦的阴极与第四二极管D4的阳极连接,第四二极管D4的阴极为第二开关检测电路50的信号输入端,第二光耦的集电极、第五电阻R5的第一端和第六电阻R6的第一端互连,第五电阻R5的第二端与第二正电源端连接,第六电阻R6的第二端为第二开关检测电路50的信号输出端,第二光耦的发射极接地。
本实施例中,第一开关检测电路40和第二开关检测电路50利用光耦导通并根据光耦集电极的电平大小确定第一开关电路20和第二开关电路30是否正常,第二二极管D2的阴极与第一开关电路20的输入端连接作为第一开关检测电路40的信号输入端,第四二极管D4的阴极与第二开关电路30的输入端连接作为第二开关检测电路50的信号输入端,同时第三电阻R3和第六电阻R6输出高低电平至控制电路60,控制电路60输出导通信号至第一开关电路20时,当第一开关电路20导通时,光耦的阳极与阴极连通,进而控制集电极与发射极连接,第三电阻R3输出低电平,表示第一开关电路20导通,当控制电路60输出关断信号至第一开关电路20时,第一开关电路20关断时,光耦的阳极与阴极未连通,光耦不到痛,第三电阻R3输出高电平,表示第一开关电路20未导通,同理,第二开关电路30与第一开关电路20以相同方式进行控制判断,控制电路60根据第三电阻R3和第六电阻R6反馈的高低电平信号即可判断出第一开关电路20和第二开关电路30的工作状态,其中,第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4用于实现单向导通,以对第一光耦U1和第二光耦进行电源保护,防止电源返灌。
如图5和图6所示,在一个实施例中,第一开关检测电路40包括第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第五二极管D5和第六二极管D6;
第五二极管D5的阳极与第一正电源端连接,第五二极管D5的阴极与第七电阻R7的第一端连接,第七电阻R7的第二端、第八电阻R8的第一端、第九电阻R9的第一端、第十电阻R10的第一端互连,第八电阻R8的第二端与第六二极管D6的阳极连接,第六二极管D6的阴极为第一开关检测电路40的信号输入端,第九电阻R9的第二端接地,第十电阻R10的第二端为第一开关检测电路40的信号输出端;
第二开关检测电路50包括第十一电阻R11、第十二电阻R12、第十三电阻R13、第十四电阻R14、第七二极管D7和第八二极管D8;
第七二极管D7的阳极与第一正电源端连接,第七二极管D7的阴极与第十一电阻R11的第一端连接,第十一电阻R11的第二端、第十二电阻R12的第一端、第十三电阻R13的第一端、第十四电阻R14的第一端互连,第十二电阻R12的第二端与第八二极管D8的阳极连接,第八二极管D8的阴极为第二开关检测电路50的信号输入端,第十三电阻R13的第二端接地,第十四电阻R14的第二端为第二开关检测电路50的信号输出端。
本实施例中,利用电阻分压原理进行第一开关电路20和第二开关电路30判断,当第一开关电路20不导通时,第六二极管D6与地不连通,第十电阻R10反馈的电压值接近第一正电源端的电压值,表示第一开关电路20未导通,当第一开关电路20导通时,第六二极管D6与地连通,第十电阻R10反馈的电压值接近一正电源端的电压值的一半,表示第一开关电路20导通,第二开关检测电路50和第一开关检测电路40原理相同,此处不再详述。
如图7和图8所示,在一个实施例中,第一开关检测电路40包括第十五电阻R15、第十六电阻R16、第十七电阻R17和第三光耦U3;
第十五电阻R15的第一端为第一开关检测电路40的信号输入端,第十五电阻R15的第二端与第三光耦U3的阳极连接,第三光耦U3的阴极和第三光耦U3的发射极均接地,第三光耦U3的集电极、第十六电阻R16的第一端和第十七电阻R17的第一端互连,第十六电阻R16的第二端与第一正电源端连接,第十七电阻R17的第二端为第一开关检测电路40的信号输出端;
第二开关检测电路50包括第十八电阻R18、第十九电阻R19、第二十电阻R20和第四光耦U4;
第十八电阻R18的第一端为第二开关检测电路50的信号输入端,第十八电阻R18的第二端与第四光耦U4的阳极连接,第四光耦U4的阴极和第四光耦U4的发射极均接地,第四光耦U4的集电极、第十九电阻R19的第一端和第二十电阻R20的第一端互连,第十九电阻R19的第二端与第一正电源端连接,第二十电阻R20的第二端为第二开关检测电路50的信号输出端。
本实施例中,同样利用光耦导通原理确定第一开关电路20和第二开关电路30的工作状态,当第十五电阻R15无输出时第三光耦U3不导通,第十七电阻R17反馈电平为高电平,表示第一开关电路20未导通,当第十五电阻R15有信号输出时第三光耦U3导通,第十七电阻R17反馈的电平为低电平,表示第一开关电路20导通,同理,第二开关检测电路50与第一开关检测电路40原理相同,此处不再详述。
如图10所示,在一个实施例中,控制电路60包括电源模块61和控制器62;
电源模块61的电源端与控制器62的电源端连接,控制器62的信号端为控制电路60的信号端;
控制器62,设置为:
在控制各BMS保护板放电前分别输出导通信号和关断信号至第一开关电路20,以及分别输出导通信号和关断信号至第二开关电路30,并根据第一开关检测电路40和第二开关检测电路50反馈的电平信号确定第一开关电路20和第二开关电路30的工作状态;
在确定第一开关电路20和第二开关电路30的工作状态均正常时,控制各BMS保护板放电并控制第一开关电路20常通以及控制第二开关电路30通断以对电池组10输出的供电电源进行输出控制,并在第二开关电路30短路时控制第一开关电路20通断以对电池组10输出的供电电源进行输出控制;
在确定第一开关电路20和/或第二开关电路30处于短路状态或者断路状态时,控制各BMS保护板停止放电并上报故障至后台。
所称控制器62可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
电源模块61设置为为控制器62提供电源,第一开关检测电路40和第二开关检测电路50的电源可通过控制器62提供或者电源模块61提供,此处不做具体限制,电源模块61可为电池或者电源适配器,当电源模块61为电池时,电池可通过电池组10进行相应充电,具体结构不限。
控制器62负责电池组10的放电控制,以及第一开关电路20和第二开关电路30的检测,即在控制各BMS保护板放电前分别输出导通信号和关断信号至第一开关电路20,以及分别输出导通信号和关断信号至第二开关电路30,并根据第一开关检测电路40和第二开关检测电路50反馈的电平信号确定第一开关电路20和第二开关电路30的工作状态,在确定第一开关电路20和第二开关电路30的工作状态均正常时,控制各BMS保护板放电并控制第一开关电路20常通以及控制第二开关电路30通断以对电池组10输出的供电电源进行输出控制,并在第二开关电路30短路时控制第一开关电路20通断以对电池组10输出的供电电源进行输出控制,在确定第一开关电路20和/或第二开关电路30处于短路状态或者断路状态时,控制各BMS保护板停止放电并上报故障至后台以告知维护人员进行维修。
本实施例中,如图9所示,在一个实施例中,电池组10还包括多个插入检测装置和多个近场通讯模块,每一近场通讯模块分别与每一插入检测装置电性连接,各近场通讯模块与控制电路60无线连接;
每一插入检测装置设置在电池安装位上并在单体电池安装到位时输出反馈信号;
近场通讯模块,设置为将反馈信号转换成近场反馈信号输出至控制电路60,以使控制电路60确定每一单体电池的安装状态。
本实施例中,插入检测装置呈座桶结构,底部设置有行程开关或者微动开关,单体电池固定在座桶结构内,行程开关或者微动开关的开关状态检测单体电池是否在位,当电池到位时插入检测装置输出反馈信号至近场通讯模块,进而告知控制电路60各单体电池的安装状态,在确定各单体电池安装到位后,控制电路60再进行第一开关电路20和第二开关电路30的状态检测,以及BMS保护板的输出控制。
如图2和图10所示,在一个实施例中,电池供电装置还包括设置为回馈能量的电源回馈电路70,电源回馈电路70包括第九二极管D9,第九二极管D9的阳极与第一开关电路20的输出端连接,第九二极管D9的阴极与第一开关电路20的输入端连接。
本实施例中,当负载为电机时,当电机刹车或者停机时电源回馈,为了避免第一开关电路20和第二开关电路30受到电流冲击,在电源回馈时,电流经第九二极管D9流入负载的第二端,实现刹车回馈保护。
如图10所示,在一个实施例中,电池供电装置还包括电流采样电路80,采样电路包括采样电阻,采样电阻的第一端与第一开关电路20的输出端连接,采样电阻的第二端与电池组10的第二端连接,采样电阻的两端还分别与控制电路60的信号端连接;
控制电路60,还设置为根据采样电阻两端电压确定流经负载的电流,并根据电流大小对应控制BMS保护板、第一开关电路20和第二开关电路30工作或者停止工作。
本实施例中,控制电路60可根据采样电阻两端电压以及采样电阻的电阻值确定电源回路的电流大小,进而实现电流调节和保护,以使负载、第一开关电路20、第二开关电路30可靠运行。
如图10所示,在一个实施例中,电池供电装置还包括过流保护电路90,过流保护电路90包括保险丝,保险丝连接在电池组10和负载之间,在电流过大超过预设值时,控制电路60来不及关断第一开关电路20或者第二开关电路30时,保险丝自行熔断并切断电源回路,实现回路保护。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种电池供电装置,其特征在于,包括电池组、第一开关电路、第二开关电路、第一开关检测电路、第二开关检测电路和控制电路;
    所述电池组的第一端与负载的输入端连接,所述负载的输出端、所述第二开关电路的输入端和所述第二开关检测电路的信号输入端互连,所述第二开关电路的输出端、所述第一开关电路的输入端和所述第一开关检测电路的信号输入端互连,所述第一开关电路的输出端和所述电池组的第二端连接且接地,所述第一开关电路的受控端、所述第二开关电路的受控端、所述第一开关检测电路的信号输出端和所述第二开关检测电路的信号输出端分别与所述控制电路的信号端连接,所述电池组包括多个BMS保护板和多个单体电池,所述多个BMS保护板依次串联,每一所述BMS保护板连接至少一个单体电池,每一所述BMS保护板的受控端还与所述控制电路的信号端连接;
    所述控制电路,设置为:
    在控制各所述BMS保护板放电前分别输出导通信号和关断信号至所述第一开关电路,以及分别输出导通信号和关断信号至所述第二开关电路,并根据所述第一开关检测电路和所述第二开关检测电路反馈的电平信号确定所述第一开关电路和第二开关电路的工作状态;
    在确定所述第一开关电路和第二开关电路的工作状态均正常时,控制各所述BMS保护板放电并控制所述第一开关电路常通以及控制所述第二开关电路通断以对所述电池组输出的供电电源进行输出控制,并在所述第二开关电路短路时控制所述第一开关电路通断以对所述电池组输出的供电电源进行输出控制;
    在确定所述第一开关电路和/或所述第二开关电路处于短路状态或者断路状态时,控制各所述BMS保护板停止放电并上报故障至后台。
  2. 如权利要求1所述的电池供电装置,其特征在于,每一所述BMS保护板设置为控制至少一个单体电池放电或者充电。
  3. 如权利要求1所述的电池供电装置,其特征在于,所述第一开关电路包括第一电子开关管,所述第二开关电路包括第二电子开关管。
  4. 如权利要求1所述的电池供电装置,其特征在于,所述第一开关检测电路包括第一电阻、第二电阻、第三电阻、第一二极管、第二二极管和第一光耦;
    所述第一二极管的阳极与第一正电源端连接,所述第一二极管的阴极与所述第一电阻的第一端连接,所述第一电阻的第二端与所述第一光耦的阳极连接,所述第一光耦的阴极与所述第二二极管的阳极连接,所述第二二极管的阴极为所述第一开关检测电路的信号输入端,所述第一光耦的集电极、所述第二电阻的第一端和所述第三电阻的第一端互连,所述第二电阻的第二端与第二正电源端连接,所述第三电阻的第二端为所述第一开关检测电路的信号输出端,所述第一光耦的发射极接地;
    所述第二开关检测电路包括第四电阻、第五电阻、第六电阻、第三二极管、第四二极管和第二光耦;
    所述第三二极管的阳极与所述第一正电源端连接,所述第三二极管的阴极与所述第四电阻的第一端连接,所述第四电阻的第二端与所述第二光耦的阳极连接,所述第二光耦的阴极与所述第四二极管的阳极连接,所述第四二极管的阴极为所述第二开关检测电路的信号输入端,所述第二光耦的集电极、所述第五电阻的第一端和所述第六电阻的第一端互连,所述第五电阻的第二端与所述第二正电源端连接,所述第六电阻的第二端为所述第二开关检测电路的信号输出端,所述第二光耦的发射极接地。
  5. 如权利要求1所述的电池供电装置,其特征在于,所述第一开关检测电路包括第七电阻、第八电阻、第九电阻、第十电阻、第五二极管和第六二极管;
    所述第五二极管的阳极与第一正电源端连接,所述第五二极管的阴极与所述第七电阻的第一端连接,所述第七电阻的第二端、所述第八电阻的第一端、所述第九电阻的第一端、所述第十电阻的第一端互连,所述第八电阻的第二端与所述第六二极管的阳极连接,所述第六二极管的阴极为所述第一开关检测电路的信号输入端,所述第九电阻的第二端接地,所述第十电阻的第二端为所述第一开关检测电路的信号输出端;
    所述第二开关检测电路包括第十一电阻、第十二电阻、第十三电阻、第十四电阻、第七二极管和第八二极管;
    所述第七二极管的阳极与第一正电源端连接,所述第七二极管的阴极与所述第十一电阻的第一端连接,所述第十一电阻的第二端、所述第十二电阻的第一端、所述第十三电阻的第一端、所述第十四电阻的第一端互连,所述第十二电阻的第二端与所述第八二极管的阳极连接,所述第八二极管的阴极为所述第二开关检测电路的信号输入端,所述第十三电阻的第二端接地,所述第十四电阻的第二端为所述第二开关检测电路的信号输出端。
  6. 如权利要求1所述的电池供电装置,其特征在于,所述第一开关检测电路包括第十五电阻、第十六电阻、第十七电阻和第三光耦;
    所述第十五电阻的第一端为所述第一开关检测电路的信号输入端,所述第十五电阻的第二端与所述第三光耦的阳极连接,所述第三光耦的阴极和所述第三光耦的发射极均接地,所述第三光耦的集电极、所述第十六电阻的第一端和所述第十七电阻的第一端互连,所述第十六电阻的第二端与第一正电源端连接,所述第十七电阻的第二端为所述第一开关检测电路的信号输出端;
    所述第二开关检测电路包括第十八电阻、第十九电阻、第二十电阻和第四光耦;
    所述第十八电阻的第一端为所述第二开关检测电路的信号输入端,所述第十八电阻的第二端与所述第四光耦的阳极连接,所述第四光耦的阴极和所述第四光耦的发射极均接地,所述第四光耦的集电极、所述第十九电阻的第一端和所述第二十电阻的第一端互连,所述第十九电阻的第二端与第一正电源端连接,所述第二十电阻的第二端为所述第二开关检测电路的信号输出端。
  7. 如权利要求1所述的电池供电装置,其特征在于,所述控制电路包括电源模块和控制器;
    所述电源模块的电源端与所述控制器的电源端连接,所述控制器的信号端为所述控制电路的信号端;
    所述控制器,设置为:
    在控制各所述BMS保护板放电前分别输出导通信号和关断信号至所述第一开关电路,以及分别输出导通信号和关断信号至所述第二开关电路,并根据所述第一开关检测电路和所述第二开关检测电路反馈的电平信号确定所述第一开关电路和第二开关电路的工作状态;
    在确定所述第一开关电路和第二开关电路的工作状态均正常时,控制各所述BMS保护板放电并控制所述第一开关电路常通以及控制所述第二开关电路通断以对所述电池组输出的供电电源进行输出控制,并在所述第二开关电路短路时控制所述第一开关电路通断以对所述电池组输出的供电电源进行输出控制;
    在确定所述第一开关电路和/或所述第二开关电路处于短路状态或者断路状态时,控制各所述BMS保护板停止放电并上报故障至后台。
  8. 如权利要求1所述的电池供电装置,其特征在于,所述电池组还包括多个插入检测装置和多个近场通讯模块,每一所述近场通讯模块分别与每一所述插入检测装置电性连接,各所述近场通讯模块与所述控制电路无线连接;
    每一所述插入检测装置设置在电池安装位上并在所述单体电池安装到位时输出反馈信号;
    所述近场通讯模块,设置为将所述反馈信号转换成近场反馈信号输出至所述控制电路,以使所述控制电路确定每一所述单体电池的安装状态。
  9. 如权利要求8所述的电池供电装置,其特征在于,所述插入检测装置呈座桶结构。
  10. 如权利要求9所述的电池供电装置,其特征在于,所述座桶结构设置有设置为检测单体电池是否到位的行程开关或者微动开关。
  11. 如权利要求1所述的电池供电装置,其特征在于,所述电池供电装置还包括设置为回馈能量的电源回馈电路,所述电源回馈电路包括第九二极管,所述第九二极管的阳极与所述第一开关电路的输出端连接,所述第九二极管的阴极与所述第一开关电路的输入端连接。
  12. 如权利要求1所述的电池供电装置,其特征在于,所述电池供电装置还包括电流采样电路,所述采样电路包括采样电阻,所述采样电阻的第一端与所述第一开关电路的输出端连接,所述采样电阻的第二端与所述电池组的第二端连接,所述采样电阻的两端还分别与所述控制电路的信号端连接;
    所述控制电路,还设置为根据所述采样电阻两端电压确定流经所述负载的电流,并根据所述电流大小对应控制所述BMS保护板、所述第一开关电路和所述第二开关电路工作或者停止工作。
  13. 如权利要求1所述的电池供电装置,其特征在于,所述电池供电装置还包括过流保护电路,所述过流保护电路包括保险丝,所述保险丝连接在所述电池组和所述负载之间。
PCT/CN2020/134058 2020-04-17 2020-12-04 电池供电装置 WO2021208457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010303216.0 2020-04-17
CN202010303216.0A CN111446761A (zh) 2020-04-17 2020-04-17 电池供电装置

Publications (1)

Publication Number Publication Date
WO2021208457A1 true WO2021208457A1 (zh) 2021-10-21

Family

ID=71653345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134058 WO2021208457A1 (zh) 2020-04-17 2020-12-04 电池供电装置

Country Status (2)

Country Link
CN (1) CN111446761A (zh)
WO (1) WO2021208457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500125A (zh) * 2022-01-21 2022-05-13 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446761A (zh) * 2020-04-17 2020-07-24 深圳易马达科技有限公司 电池供电装置
CN115133626A (zh) * 2022-08-09 2022-09-30 湖北亿纬动力有限公司 电池保护电路及其控制方法和电池管理系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205942306U (zh) * 2016-08-10 2017-02-08 深圳市沃特玛电池有限公司 保护电路
CN106771997A (zh) * 2016-11-16 2017-05-31 惠州市蓝微新源技术有限公司 一种储能系统接触器粘连检测装置
JP2018069814A (ja) * 2016-10-26 2018-05-10 いすゞ自動車株式会社 車両電装システム、及び車両、並びに車両電装システムの制御方法
CN207354057U (zh) * 2017-10-23 2018-05-11 广州极飞科技有限公司 一种开关驱动电路、电池控制电路、电池和无人机
CN109066798A (zh) * 2018-09-17 2018-12-21 阳光电源股份有限公司 一种光伏组件的关断装置
CN208548704U (zh) * 2018-07-19 2019-02-26 惠州拓邦电气技术有限公司 一种过流保护控制模块、过流保护电路、电池包及园林工具
KR20190143181A (ko) * 2018-06-20 2019-12-30 주식회사 엘지화학 배터리 자가방전 장치
CN111446761A (zh) * 2020-04-17 2020-07-24 深圳易马达科技有限公司 电池供电装置
CN212210526U (zh) * 2020-04-17 2020-12-22 深圳易马达科技有限公司 电池供电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204835697U (zh) * 2015-06-30 2015-12-02 安徽建筑大学 一种电压优选供电切换电路
CN205335823U (zh) * 2015-12-25 2016-06-22 深圳Tcl数字技术有限公司 开关电源电路及开关电源
CN209516658U (zh) * 2019-01-16 2019-10-18 国网新源张家口风光储示范电站有限公司 一种电池组的自适应充放电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205942306U (zh) * 2016-08-10 2017-02-08 深圳市沃特玛电池有限公司 保护电路
JP2018069814A (ja) * 2016-10-26 2018-05-10 いすゞ自動車株式会社 車両電装システム、及び車両、並びに車両電装システムの制御方法
CN106771997A (zh) * 2016-11-16 2017-05-31 惠州市蓝微新源技术有限公司 一种储能系统接触器粘连检测装置
CN207354057U (zh) * 2017-10-23 2018-05-11 广州极飞科技有限公司 一种开关驱动电路、电池控制电路、电池和无人机
KR20190143181A (ko) * 2018-06-20 2019-12-30 주식회사 엘지화학 배터리 자가방전 장치
CN208548704U (zh) * 2018-07-19 2019-02-26 惠州拓邦电气技术有限公司 一种过流保护控制模块、过流保护电路、电池包及园林工具
CN109066798A (zh) * 2018-09-17 2018-12-21 阳光电源股份有限公司 一种光伏组件的关断装置
CN111446761A (zh) * 2020-04-17 2020-07-24 深圳易马达科技有限公司 电池供电装置
CN212210526U (zh) * 2020-04-17 2020-12-22 深圳易马达科技有限公司 电池供电装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114500125A (zh) * 2022-01-21 2022-05-13 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备
CN114500125B (zh) * 2022-01-21 2022-12-16 珠海格力电器股份有限公司 供电及通信组件、系统、通信设备

Also Published As

Publication number Publication date
CN111446761A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2021208457A1 (zh) 电池供电装置
CN110224381B (zh) 一种光伏逆变器及其光伏发电系统
CN203056953U (zh) 一种驱动器及其母线电容放电电路
CN107845998A (zh) 一种电源并联冗余系统中输入供电健康检测及管理电路
CN109066829A (zh) 一种蓄电池组开路故障重组放电系统及蓄电池
WO2022022291A1 (zh) 电池充电电路、充电设备和电子设备
WO2021253155A1 (zh) 一种防输入端错接的保护电路及光伏发电系统
US10804721B1 (en) Emergency power control system
CN202513559U (zh) 一种电池短路保护电路
CN221127518U (zh) 全自动自恢复快速响应短路保护电路
CN215934520U (zh) 电源切换系统及双电源供电设备
CN214380064U (zh) 电池包保护电路、装置及电动设备
CN108899972A (zh) 一种充电器的充电控制电路及其控制方法
CN212210526U (zh) 电池供电装置
CN201918713U (zh) 一种太阳能充电控制器的防反接保护电路
CN209001614U (zh) 一种充电器的充电控制电路
CN102545198A (zh) 一种共正极结构的太阳能充电控制器的防反接保护电路
CN201918729U (zh) 一种共正极结构的太阳能充电控制器的防反接保护电路
CN206401879U (zh) 用于dc‑dc的输入欠压保护电路
CN109412466A (zh) 汽轮机危急直流润滑油泵复合型启停装置及控制方法
CN115459237A (zh) 一种光伏系统及控制方法
CN202374353U (zh) 一种电视机及其主板电源短路检测电路
CN207801568U (zh) 具有热插拔功能的电源系统
CN109039064A (zh) 一种航天器防单供电二极管短路的分流调节装置
CN111952953A (zh) 电池组防接错保护装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930816

Country of ref document: EP

Kind code of ref document: A1