WO2021208282A1 - 条纹管场曲测量方法、装置、计算机设备和可读存储介质 - Google Patents

条纹管场曲测量方法、装置、计算机设备和可读存储介质 Download PDF

Info

Publication number
WO2021208282A1
WO2021208282A1 PCT/CN2020/102691 CN2020102691W WO2021208282A1 WO 2021208282 A1 WO2021208282 A1 WO 2021208282A1 CN 2020102691 W CN2020102691 W CN 2020102691W WO 2021208282 A1 WO2021208282 A1 WO 2021208282A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor screen
tube
axis height
curvature
beam spot
Prior art date
Application number
PCT/CN2020/102691
Other languages
English (en)
French (fr)
Inventor
张敬金
宗方轲
杨勤劳
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2021208282A1 publication Critical patent/WO2021208282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection

Definitions

  • This application relates to the technical field of striped tubes, such as a method, device, computer equipment and readable storage medium for measuring field curvature of striped tubes.
  • the streak camera is an ultra-fast imaging device that can provide high spatial resolution. It is widely used in many fields, such as laser scanning radar using streak tubes, plant photosynthesis, fluorescence lifetime decay analysis of biological samples, and through the use of digital micromirrors
  • the combination of array and image reconstruction methods detects superluminal propagation in the material.
  • the imaging performance of a streak camera depends on its core component, the streak tube. As a wide-beam imaging device, the streak tube is similar to a geometric imaging system. The increase in the detection area of the streak tube will result in a sharp increase in field curvature. Because the refractive index inside the stripe tube changes continuously, the stripe tube cannot use lens groups to correct field curvature like a geometric optical system. Therefore, the field curvature of the stripe tube needs to be considered when selecting the stripe tube.
  • This application provides a method, a device, a computer device, and a readable storage medium for measuring field curvature of a fringe tube, so as to effectively measure the field curvature of a fringe tube and generate an expression of the field curvature.
  • a method for measuring field curvature of a striped tube is applied to a static test scene of a striped tube.
  • the static test scene includes a replaceable first spherical phosphor screen, a second spherical phosphor screen and a flat phosphor screen; the method for measuring field curvature of the striped tube include:
  • first off-axis height and second off-axis height of the beam spot formed by the electron beams emitted by the stripe tube at the same height on the cathode after striking the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen.
  • the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, the curvature of the first spherical phosphor screen and the curvature of the second spherical phosphor screen calculate Obtain the field curvature expression of the striped tube.
  • the present application also provides a striped tube field curvature measuring device, which is applied to a static test scene of a striped tube.
  • the static test scene includes a replaceable first spherical phosphor screen, a second spherical phosphor screen, and a flat phosphor screen;
  • the striped tube Field curvature measuring devices include:
  • the off-axis height acquisition module is configured to acquire the electron beams emitted by the stripe tube at the same height on the cathode tube and respectively hit the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen to form beam spots The first off-axis height, the second off-axis height, and the third off-axis height;
  • the beam spot diameter calculation module is configured to impinge on the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen according to the electron beams emitted by the stripe tube at the same height of the cathode tube. And the first preset algorithm to calculate and obtain the beam spot diameter of the electron beam emitted by the stripe tube at the same height on the cathode to form a beam spot on the field surface of the stripe tube;
  • the curvature of field calculation module is configured to calculate according to the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, the curvature of the first spherical phosphor screen, and the The curvature of the second spherical phosphor screen is calculated to obtain the field curvature expression of the fringe tube.
  • the present application also provides a computer device, including a memory and a processor, the memory stores a computer program, and the processor runs the computer program to cause the computer device to execute the fringe tube curvature measurement method.
  • the present application also provides a readable storage medium, the readable storage medium stores a computer program, and when the computer program runs on a processor, the method for measuring the fringe pipe field curvature is executed.
  • FIG. 1 is a flowchart of a method for measuring field curvature of a fringe tube provided by Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of a static test scene of a stripe tube provided in Embodiment 1 of the present application;
  • FIG. 3 is a flow chart for calculating off-axis height provided by Embodiment 2 of the present application.
  • FIG. 4 is a flow chart for calculating curvature of field provided by Embodiment 3 of the present application.
  • FIG. 5 is a schematic structural diagram of a fringe tube field curvature measuring device provided in Embodiment 1 of the present application.
  • Fig. 1 is a flowchart of a method for measuring field curvature of a striped tube provided in Embodiment 1 of the present application.
  • the method is applied to a static test scene of a striped tube.
  • the static test scene of the striped tube includes a replaceable first spherical phosphor screen.
  • the second spherical fluorescent screen and flat fluorescent screen including the following steps:
  • Step S11 Obtain the first off-axis height, the second off-axis height of the beam spot formed after the electron beams emitted from the same height of the stripe tube hit the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen, and The third off-axis height.
  • the static test scene of the striped tube includes Spherical Screen-R64mm (spherical screen with curvature of 64mm), Spherical Screen-R83mm (curvature) It is 83mm spherical screen), Planar Screen (flat screen) and Petzval Image Plane (Petzval surface), among which the above-mentioned screens can be disassembled and replaced.
  • the beam spot and corresponding data on each phosphor screen can be obtained by replacing the phosphor screen.
  • the Petzval surface is the ideal surface of the striped tube, that is, the field curvature.
  • Point O refers to the original image point
  • point A is the intersection of the electron beam and the axis
  • L s is the length of the entire tube of the striped tube
  • the electron beam converges on the ideal point I on the Petzval surface
  • the beam spot diameter is R o
  • the beam spot diameters of the electron beam on the spherical phosphor screen and the flat phosphor screen are R 64 , R 83 , R s respectively
  • the distance between the intersection point of the electron beam and the Bezval surface and the spherical phosphor screen and the flat phosphor screen is d
  • D 1 , d 2 and off-axis heights are r 0 , r 1 , and r 2 respectively .
  • the spherical phosphor screen with a curvature of 64 mm and the spherical phosphor screen with a curvature of 83 mm are one of the implementation scenarios, and phosphor screens with other curvatures may also be selected.
  • the flat fluorescent screen, the first spherical fluorescent screen, and the second spherical fluorescent screen can be replaced in the static test scene of the striped tube to receive the electron beam , Make the electron beam collide on different fluorescent screens to generate beam spots, and then the CCD image sensor (CCD, Charge Coupled Device) set after the fluorescent screen converts the light signal of the beam spot into electrical signals, which are analyzed and calculated by computer equipment Then obtain the off-axis height of the beam spot on each phosphor screen.
  • the calculation and equipment can be provided with an application program for calculating the off-axis height of the beam spot on each phosphor screen.
  • the electrical signal is used to calculate the electron beam emitted by the same object height The off-axis height of the beam spot on different screens.
  • Step S12 According to the intensity curve of the electron beams emitted by the same object height hitting the phosphor screen and the first preset algorithm, the electron beams emitted by the same object height are calculated to form a beam spot on the field curved surface of the stripe tube The beam spot diameter.
  • the intensity curve of the beam spot on different phosphor screens can also be generated.
  • an application program or algorithm for generating an intensity curve may also be provided in the computer device, and a corresponding intensity curve may be generated according to the electric signal after receiving the electric signal.
  • the beam spot diameter of the beam spot formed on the field surface of the stripe tube can be calculated, where the intensity curve can be taken from the first spherical phosphor screen or the second spherical phosphor screen or the flat phosphor screen. Intensity curve.
  • the formula of the first preset algorithm includes:
  • Ro is the beam spot diameter
  • I max , I min and Inos are the peak value, adjacent valley value and background noise of the intensity curve respectively
  • f is the spatial resolution.
  • Step S13 According to the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, and the curvature of each spherical phosphor screen, the field curvature expression of the stripe tube is calculated and obtained Mode.
  • the beam spot diameter on the field surface is calculated, and the corresponding first off-axis height, the second off-axis height, the third off-axis height, and the beam spot diameter are obtained.
  • the curvature of each spherical phosphor screen, the field of the stripe tube can be calculated by the relationship between the parameters.
  • the curvature of field is a relational expression, which is generated by obtaining the above-mentioned parameters and fitting the beam spots generated after a plurality of different electron beams hit each phosphor screen. Therefore, the field curvature measurement method of the fringe tube according to the embodiment of the present application can effectively measure the field curvature of the fringe tube and generate the expression of the field curvature to facilitate subsequent applications of the fringe tube.
  • Fig. 3 is a flow chart for calculating off-axis height provided in Embodiment 2 of the present application, including the following steps:
  • Step S31 Use a preset CCD sensor to read the first intensity curve, the second intensity curve, and the third intensity curve of the beam spot formed by the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen.
  • Step S32 Calculate and obtain the first off-axis height, the second off-axis height, and the third off-axis height respectively according to the first intensity curve, the second intensity curve, and the third intensity curve .
  • the off-axis height of the beam spot can also be obtained through an intensity curve, and the above-mentioned process of calculating the off-axis height by using the intensity curve can be implemented in a computer device using an algorithm or an application program, for example, in a computer device An application program for calculating the off-axis height using the intensity curve is provided. After obtaining the intensity curve of the beam spot formed by the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen, the intensity curve can be input to the In the application, to obtain the corresponding off-axis height.
  • Fig. 4 is a flow chart for calculating curvature of field provided in Embodiment 3 of the present application, including the following steps:
  • Step S41 According to the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, the curvature of each spherical phosphor screen, and a second preset algorithm, calculate and obtain the The distance between the field curved surface and the flat phosphor screen of the beam spot of the electron beam emitted by the same object height.
  • the calculation formula of the second preset algorithm includes:
  • d is the distance between the beam spot of the electron beam emitted by the same object height and the flat phosphor screen; the R 1 , R 2 , R P and R o are respectively emitted by the same object height
  • the curvature of the first spherical phosphor screen is smaller than the curvature of the second spherical phosphor screen.
  • an application program based on the second preset algorithm may be set in the computer device to calculate and obtain the distance between the beam spot of the electron beam emitted by the same object height and the flat phosphor screen, for example, after obtaining After the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, and the curvature of each spherical phosphor screen, they can be input into the application program to calculate the beam spot’s presence surface The distance from the flat screen.
  • the distance between the beam spot on the field surface and the flat phosphor screen that is, the relationship expression between the field curvature and each parameter, is calculated by the expression that the beam spot of a large number of arbitrary electron beams is on the field surface and the plane surface. After the distance between the phosphor screens, the field curvature of the stripe tube can be found by fitting.
  • Step S42 using the distances of a plurality of different electron beams and a third preset algorithm, fitting calculation to obtain the curvature of field.
  • the calculation formula of the third preset algorithm includes:
  • C is the curvature of field
  • D i is the i-th electron beam spot distance between the field surface and the flat screen
  • r 1_i and r 2_i are the i-th beam spot of an electron beam The first off-axis height and the second off-axis height
  • w is a weighting factor
  • x is the image height of any electron beam spot.
  • an application program based on the above-mentioned third preset algorithm can be set in the computer device to fit the expression of the field song.
  • a threshold value may also be set in the computer device, and the field curvature fitting is performed only after the number of the obtained distances exceeds the high threshold value, so as to ensure the accuracy of the field curvature fitting by the number of distance values.
  • the step S42 is to use the distances of a plurality of different electron beams emitted by the stripe tube at different heights on the cathode and a third preset algorithm to obtain the field by fitting calculation. song.
  • FIG. 5 is a schematic structural diagram of a fringe tube field curvature measuring device provided in Embodiment 1 of the present application.
  • the fringe tube field curvature measuring device 500 includes:
  • the off-axis height obtaining module 510 is configured to obtain the first off-axis height of the beam spot formed after the electron beams emitted by the same object height of the stripe tube hit the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen , The second off-axis height and the third off-axis height;
  • the beam spot diameter calculation module 520 is configured to calculate and obtain the electron beam emitted by the same object height in the stripe tube according to the intensity curve of the electron beam emitted by the same object height and the first preset algorithm.
  • the field curvature calculation module 530 is configured to calculate and obtain the first off-axis height, the second off-axis height, the third off-axis height, the beam spot diameter, and the curvature of each spherical phosphor screen.
  • this application also provides a computer device, which may include a smart phone, a tablet computer, a vehicle-mounted computer, a smart wearable device, and the like.
  • the computer device includes a memory and a processor, and the memory can be used to store a computer program.
  • the processor runs the computer program so that the computer device executes the above method or the functions of each module in the above-mentioned striped tube curvature measuring device.
  • the memory may include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Use the created data (such as audio data, phone book, etc.) and so on.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • This embodiment also provides a readable storage medium for storing the computer program used in the above-mentioned computer device.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings.
  • each block in the structure diagram and/or flowchart, and the combination of the blocks in the structure diagram and/or flowchart can be used as a dedicated hardware-based system that performs the specified functions or actions. It can be implemented, or can be implemented by a combination of dedicated hardware and computer instructions.
  • the functional modules or units in the various embodiments of the present application may be integrated together to form an independent part, or each module may exist alone, or two or more modules may be integrated to form an independent part.
  • the function is implemented in the form of a software function module and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which can be a smart phone, a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the method for measuring field curvature of the striped tube is applied to a static test scene of a striped tube.
  • the static test scene of the striped tube includes a replaceable first spherical phosphor screen, a second spherical phosphor screen, and a flat phosphor screen; the striped tube
  • the field curvature measurement method includes: obtaining the first off-axis height of the beam spot formed after the electron beam emitted by the stripe tube at the same height on the cathode of the striped tube hits the first spherical phosphor screen, the second spherical phosphor screen, and the flat phosphor screen; The second off-axis height and the third off-axis height; according to the intensity curve of the electron beam emitted by the stripe tube at the same height on the cathode and hitting the phosphor screen and the first preset algorithm, the calculation of the stripe tube at all The electron beam emitted at the same height on the cathode forms a beam spot diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种条纹管场曲测量方法、装置(500)、计算机设备和可读存储介质,该方法包括:获取条纹管在阴极上同一物高处所发射的电子束分别撞击第一球面荧光屏、第二球面荧光屏以及平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;计算获得电子束在条纹管的场曲面上形成束斑的束斑直径;根据第一离轴高度、第二离轴高度、第三离轴高度、束斑直径、第一球面荧光屏的曲率和第二球面荧光屏的曲率,计算获得条纹管的场曲表达式。

Description

条纹管场曲测量方法、装置、计算机设备和可读存储介质
本公开要求在2020年04月13日提交中国专利局、申请号为202010287032.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及条纹管技术领域,例如涉及一种条纹管场曲测量方法、装置、计算机设备和可读存储介质。
背景技术
条纹相机是一种能提供高空间分辨率的超快成像设备,广泛应用于许多领域,例如利用条纹管的激光扫描雷达、植物光合作用、生物样品的荧光寿命衰减分析,以及通过与数字微镜阵列和图像重建方法的组合检测到的物质中发生的超光速传播。条纹相机的成像性能取决于其核心部件条纹管,而条纹管作为一种宽束成像器件,与几何成像系统相似,条纹管的探测面积的增加将导致场曲的急剧增大。由于条纹管内部的折射率是连续变化的,因而条纹管无法像几何光学系统一样采用透镜组的方式进行场曲校正,因此在选择条纹管时需要考虑其场曲。
发明内容
本申请提供了一种条纹管场曲测量方法、装置、计算机设备和可读存储介质,以有效测量出条纹管的场曲,并生成场曲的表达式。
本申请采用如下的技术方案:
一种条纹管场曲测量方法,应用于条纹管的静态测试场景,所述静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏;所述条纹管场曲测量方法包括:
获取所述条纹管在阴极上同一物高处所发射的电子束分别撞击所述第一球 面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;
根据所述条纹管在所述阴极上所述同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏的强度曲线以及第一预设算法,计算获得所述条纹管在所述阴极上所述同一物高处所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;
根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率和所述第二球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
本申请还提供一种条纹管场曲测量装置,应用于条纹管的静态测试场景,所述静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏;所述条纹管场曲测量装置包括:
离轴高度获取模块,被配置为获取所述条纹管在阴极管上同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;
束斑直径计算模块,被配置为根据所述条纹管在所述阴极管上所述同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏的强度曲线以及第一预设算法,计算获得所述条纹管在所述阴极上所述同一物高处所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;
场曲计算模块,被配置为根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率和所述第二球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
本申请还提供一种计算机设备,包括存储器以及处理器,所述存储器存储有计算机程序,所述处理器运行所述计算机程序以使所述计算机设备执行所述的条纹管场曲测量方法。
本申请还提供一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机程序在处理器上运行时执行所述的条纹管场曲测量方法。
附图说明
下面将对实施例中所需要使用的附图作简单地介绍。在各个附图中,类似的构成部分采用类似的编号。
图1是本申请实施例1提供的一种条纹管场曲测量方法的流程图;
图2是本申请实施例1提供的一种条纹管的静态测试场景示意图;
图3是本申请实施例2提供的一种计算离轴高度的流程图;
图4是本申请实施例3提供的一种计算场曲的流程图;
图5是本申请实施例1提供的一种条纹管场曲测量装置的结构示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
在下文中,可在本申请的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本申请的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本申请的各种实施例中被清楚地限定。
实施例1
图1是本申请实施例1提供的一种条纹管场曲测量方法的流程图,该方法应用于条纹管的静态测试场景,该条纹管的静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏,包括如下步骤:
步骤S11:获取条纹管同一物高所发射的电子束撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度。
图2是本申请实施例1提供的一种条纹管的静态测试场景示意图,其中,该条纹管的静态测试场景包括有Spherical Screen-R64mm(曲率为64mm的球面荧光屏)、Spherical Screen-R83mm(曲率为83mm的球面荧光屏)、Planar Screen(平面荧光屏)以及Petzval Image Plane(匹兹伐尔面),其中,上述荧光屏都可以拆卸后进行替换。在利用条纹管进行电子束撞击的过程中,通过替换荧光屏可以获得各荧光屏上的束斑以及相应的数据。匹兹伐尔面则为该条纹管的理想面,也即为场曲。O点是指原始像点,点A为电子束与轴的交叉点,L s为条纹管整管长度;电子束会聚于该匹兹伐尔面上的I ideal点,束斑直径大小为R o,电子束在球面荧光屏以及平面荧光屏上的束斑直径大小分别为R 64,R 83,R s;电子束与贝兹伐尔面、球面荧光屏的交点和平面荧光屏之间的距离分别为d, d 1,d 2,离轴高度分别为r 0,r 1,r 2。其中,上述曲率为64mm的球面荧光屏以及曲率为83mm的球面荧光屏均为其中一种实施场景,还可以选择其它曲率的荧光屏。
本申请实施例中,在使用条纹管发出同一物高所发射的电子束后,在该条纹管的静态测试场景中可以替换平面荧光屏、第一球面荧光屏以及第二球面荧光屏,以接收该电子束,使电子束在不同的荧光屏上撞击产生束斑,再经过荧光屏后设置的CCD图像传感器(CCD,Charge Coupled Device,电荷耦合)将束斑的光信号转换为电信号,由计算机设备进行分析运算后得出束斑在各个荧光屏上的离轴高度。其中,该计算及设备中可以设置有用于计算各荧光屏上束斑的离轴高度的应用程序,在接收到CCD图像传感器的电信号后,利用该电信号计算获得同一物高所发射的电子束在不同荧光屏上束斑的离轴高度。
步骤S12:根据所述同一物高所发射的电子束撞击荧光屏的强度曲线以及第一预设算法,计算获得所述同一物高所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径。
本申请实施例中,根据CCD图像传感器获得的电信号,还可以生成束斑在不同的荧光屏上的强度曲线。例如在计算机设备中还可以设置有用于生成强度曲线的应用程序或算法,在接收到电信号后根据该电信号生成相应的强度曲线。而根据强度曲线以及第一预设算法则可以计算得出该条纹管的场曲面上形成束斑的束斑直径,其中,该强度曲线可以取第一球面荧光屏或第二球面荧光屏或平面荧光屏的强度曲线。
本申请实施例中,
所述第一预设算法的算式包括:
Figure PCTCN2020102691-appb-000001
式中,R o为所述束斑直径;I max、I min以及I nos分别为强度曲线的峰值、相邻谷值以及背景噪声;f为空间分辨率。其中,在计算机设备中可以设置有基于上述第一预设算法的应用程序,在获取到强度曲线后,可以将强度曲线输入至该应用程序中,以计算出相应的场曲面上的束斑直径。
步骤S13:根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
本申请实施例中,在计算获得场曲面上的束斑直径,以及获得相应的所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率,即可通过各参数之间的关系计算出条纹管的场。其中,该场曲为一个关系表达式,是由多个不同的电子束撞击各个荧光屏后产生的束斑后获取上述参数进行拟合生成的。因此,通过本申请实施例的条纹管场曲测量方法,可以有效测量出条纹管的场曲,并生成场曲的表达式,以便于条纹管的后续应用。
实施例2
图3是本申请实施例2提供的一种计算离轴高度的流程图,包括如下步骤:
步骤S31:利用预设CCD传感器读取所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏形成束斑的第一强度曲线、第二强度曲线以及第三强度曲线。
步骤S32:根据所述第一强度曲线、所述第二强度曲线以及所述第三强度曲线分别计算获取所述第一离轴高度、所述第二离轴高度以及所述第三离轴高度。
本申请实施例中,束斑的离轴高度也可以通过强度曲线来获得,而上述利用强度曲线计算获得离轴高度的过程可以在计算机设备中利用算法或应用程序来实现,例如可以在计算机设备中设置有利用强度曲线计算离轴高度的应用程序,在获取到所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏 形成束斑的强度曲线后,可以将强度曲线输入至该应用程序中,以获得相应的离轴高度。
实施例3
图4是本申请实施例3提供的一种计算场曲的流程图,包括如下步骤:
步骤S41:根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率以及第二预设算法,计算获得所述同一物高所发射的电子束的束斑在场曲面与所述平面荧光屏之间的距离。
本申请实施例中,所述第二预设算法的算式包括:
Figure PCTCN2020102691-appb-000002
式中,d为所述同一物高所发射的电子束的束斑在场曲面与所述平面荧光屏之间的距离;所述R 1、R 2、R P以及R o分别为同一物高所发射的电子束在所述第一球面荧光屏、所述第二球面荧光屏、所述平面荧光屏以及所述场曲面上束斑的直径;ρ 1和ρ 2分别为所述第一球面荧光屏和所述第二球面荧光屏的曲率;r 1和r 2所述第一离轴高度和所述第二离轴高度。其中,所述第一球面荧光屏的曲率小于所述第二球面荧光屏的曲率。其中,可以在计算机设备中设置有基于第二预设算法的应用程序,以计算获得所述同一物高所发射的电子束的束斑在场曲面与所述平面荧光屏之间的距离,例如在获得第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率后,可以输入至应用程序中,从而计算出该束斑在场曲面与所述平面荧光屏之间的距离。其中,该束斑在场曲面与所述平面荧光屏之间的距离,也即场曲与各个参数之间的关系表达式,在通过表达式计算到大量任意电子束的束斑在场曲面与所述平面荧光屏之间的距离后,即可通过拟合的方式找出该条纹管的场曲。
步骤S42:利用多个不同的电子束的所述距离以及第三预设算法,拟合计算 获得所述场曲。
本申请实施例中,
所述第三预设算法的算式包括:
Figure PCTCN2020102691-appb-000003
式中,C为所述场曲;d i为第i个电子束的束斑在场曲面与所述平面荧光屏之间的距离;r 1_i和r 2_i分别为所述第i个电子束的束斑的所述第一离轴高度和所述第二离轴高度;w为加权系数;x为任意电子束的束斑的像高。同样地,在计算机设备中可以设置有基于上述第三预设算法的应用程序,以拟合出场曲表达式。而在计算机设备中还可以设置有一个阈值,在获取的上述距离的数量超过高阈值后,才进行场曲的拟合,从而以距离值的数量来保证场曲拟合的准确性。
在一些实施例中,所述步骤S42为,利用所述条纹管在阴极上不同物高处所发射的多个不同的电子束的所述距离以及第三预设算法,拟合计算获得所述场曲。
实施例4
图5是本申请实施例1提供的一种条纹管场曲测量装置的结构示意图。
该条纹管场曲测量装置500包括:
离轴高度获取模块510,被配置为获取条纹管同一物高所发射的电子束撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;
束斑直径计算模块520,被配置为根据所述同一物高所发射的电子束撞击荧光屏的强度曲线以及第一预设算法,计算获得所述同一物高所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;
场曲计算模块530,被配置为根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
本申请实施例中,上述各个模块更加详细的功能描述可以参考前述实施例中相应部分的内容,在此不再赘述。
此外,本申请还提供了一种计算机设备,该计算机设备可以包括智能电话、平板电脑、车载电脑、智能穿戴设备等。该计算机设备包括存储器和处理器,存储器可用于存储计算机程序,处理器通过运行所述计算机程序,从而使计算机设备执行上述方法或者上述条纹管场曲测量装置中的各个模块的功能。
存储器可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据计算机设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
本实施例还提供了一种可读存储介质,用于储存上述计算机设备中使用的计算机程序。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,执行顺序可以依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方 案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是智能手机、个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请提供的条纹管场曲测量方法,应用于条纹管的静态测试场景,该条纹管的静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏;所述条纹管场曲测量方法包括:获取条纹管在阴极上同一物高处所发射的电子束撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;根据所述条纹管在所述阴极上同一物高处所发射的电子束撞击荧光屏的强度曲线以及第一预设算法,计算获得所述条纹管在所述阴极上同一物高处所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、各球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。通过本申请实施例的条纹管场曲测量方法,可以有效测量出条纹管的场曲,并生成场曲的表达式,以便于条纹管的后续应用。

Claims (10)

  1. 一种条纹管场曲测量方法,应用于条纹管的静态测试场景,所述静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏;所述条纹管场曲测量方法包括:
    获取所述条纹管在阴极上同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;
    根据所述条纹管在所述阴极上所述同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏的强度曲线以及第一预设算法,计算获得所述条纹管在所述阴极上所述同一物高处所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;
    根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率和所述第二球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
  2. 根据权利要求1所述的条纹管场曲测量方法,其中,所述获取所述条纹管在阴极上同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度,包括:
    利用预设的电荷耦合图像传感器读取所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏形成束斑的第一强度曲线、第二强度曲线以及第三强度曲线;
    根据所述第一强度曲线、所述第二强度曲线以及所述第三强度曲线分别计算获取第一离轴高度、第二离轴高度以及第三离轴高度。
  3. 根据权利要求1所述的条纹管场曲测量方法,其中,所述第一预设算法 的算式包括:
    Figure PCTCN2020102691-appb-100001
    式中,R o为所述束斑直径;I max、I min以及I nos分别为所述强度曲线的峰值、相邻谷值以及背景噪声;f为空间分辨率。
  4. 根据权利要求1所述的条纹管场曲测量方法,其中,所述根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率和所述第二球面荧光屏的曲率,计算获得所述条纹管的场曲表达式,包括:
    根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率、所述第二球面荧光屏的曲率以及第二预设算法,计算获得所述条纹管在所述阴极上所述同一物高处所发射的电子束的束斑在所述条纹管的场曲面与所述平面荧光屏之间的距离;
    利用所述条纹管所发射的多个不同的电子束的所述距离以及第三预设算法,拟合计算获得所述条纹管的场曲表达式。
  5. 根据权利要求4所述的条纹管场曲测量方法,其中,所述第二预设算法的算式包括:
    Figure PCTCN2020102691-appb-100002
    式中,d为所述条纹管在所述阴极上同一物高处所发射的电子束的束斑在所述条纹管的场曲面与所述平面荧光屏之间的距离;R 1、R 2、R P以及R o分别为所述条纹管在所述阴极上所述同一物高处所发射的电子束在所述第一球面荧光屏、所述第二球面荧光屏、所述平面荧光屏以及所述条纹管的场曲面上形成束斑的所述束斑直径;ρ 1和ρ 2分别为所述第一球面荧光屏和所述第二球面荧光屏的曲率;r 1和r 2所述第一离轴高度和所述第二离轴高度。
  6. 根据权利要求5所述的条纹管场曲测量方法,其中,所述第三预设算法 的算式包括:
    Figure PCTCN2020102691-appb-100003
    C mw mx m(m=1,2,3…),
    式中,C为所述条纹管的场曲表达式;d i为第i个电子束的束斑在所述条纹管的场曲面与所述平面荧光屏之间的距离;r 1_i和r 2_i分别为所述第i个电子束的束斑的所述第一离轴高度和所述第二离轴高度;w为加权系数;x为任意电子束的束斑的像高。
  7. 根据权利要求1所述的条纹管场曲测量方法,其中,所述第一球面荧光屏的曲率小于所述第二球面荧光屏的曲率。
  8. 一种条纹管场曲测量装置,应用于条纹管的静态测试场景,所述静态测试场景中包括有可替换的第一球面荧光屏、第二球面荧光屏以及平面荧光屏;所述条纹管场曲测量装置包括:
    离轴高度获取模块,被配置为获取所述条纹管在阴极上同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏后形成束斑的第一离轴高度、第二离轴高度以及第三离轴高度;
    束斑直径计算模块,被配置为根据所述条纹管在所述阴极上所述同一物高处所发射的电子束分别撞击所述第一球面荧光屏、所述第二球面荧光屏以及所述平面荧光屏的强度曲线以及第一预设算法,计算获得所述条纹管在所述阴极上所述同一物高处所发射的电子束在所述条纹管的场曲面上形成束斑的束斑直径;
    场曲计算模块,被配置为根据所述第一离轴高度、所述第二离轴高度、所述第三离轴高度、所述束斑直径、所述第一球面荧光屏的曲率和所述第二球面荧光屏的曲率,计算获得所述条纹管的场曲表达式。
  9. 一种计算机设备,包括存储器以及处理器,所述存储器存储有计算机程序,所述处理器运行所述计算机程序以使所述计算机设备执行根据权利要求1至7中任一项所述的条纹管场曲测量方法。
  10. 一种可读存储介质,所述可读存储介质存储有计算机程序,所述计算机 程序在处理器上运行时执行权利要求1至7中任一项所述的条纹管场曲测量方法。
PCT/CN2020/102691 2020-04-13 2020-07-17 条纹管场曲测量方法、装置、计算机设备和可读存储介质 WO2021208282A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010287032.XA CN111524105B (zh) 2020-04-13 2020-04-13 条纹管场曲测量方法、装置、计算机设备和可读存储介质
CN202010287032.X 2020-04-13

Publications (1)

Publication Number Publication Date
WO2021208282A1 true WO2021208282A1 (zh) 2021-10-21

Family

ID=71902978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102691 WO2021208282A1 (zh) 2020-04-13 2020-07-17 条纹管场曲测量方法、装置、计算机设备和可读存储介质

Country Status (2)

Country Link
CN (1) CN111524105B (zh)
WO (1) WO2021208282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101100A (en) * 1989-12-01 1992-03-31 Hamamatsu Photonics K.K. Streak camera operable with low deflection voltage
CN202886732U (zh) * 2012-10-24 2013-04-17 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN103077873A (zh) * 2012-12-29 2013-05-01 中国科学院西安光学精密机械研究所 一种条纹变像管装架工装及装架方法
CN206134645U (zh) * 2016-09-27 2017-04-26 中国科学院西安光学精密机械研究所 一种超小型条纹变像管
CN107039223A (zh) * 2017-04-26 2017-08-11 深圳大学 大物面x射线条纹变像管及电子光学成像系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353345B (zh) * 2011-06-14 2013-08-07 梁海锋 一种曲率半径的测量方法
CN104567721A (zh) * 2015-01-23 2015-04-29 清华大学 连续剪切干涉测量方法
CN107422336B (zh) * 2016-07-25 2020-10-16 北京理工大学 一种大视场大景深的变分辨率非扫描条纹管激光成像系统
CN108012144A (zh) * 2017-12-13 2018-05-08 深圳大学 一种x射线条纹相机成像性能测试系统及方法
CN110531578B (zh) * 2019-09-02 2021-04-13 深圳大学 多画幅分幅成像方法、装置和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101100A (en) * 1989-12-01 1992-03-31 Hamamatsu Photonics K.K. Streak camera operable with low deflection voltage
CN202886732U (zh) * 2012-10-24 2013-04-17 北京凯普林光电科技有限公司 补偿光源系统及列车运行故障动态图像检测设备
CN103077873A (zh) * 2012-12-29 2013-05-01 中国科学院西安光学精密机械研究所 一种条纹变像管装架工装及装架方法
CN206134645U (zh) * 2016-09-27 2017-04-26 中国科学院西安光学精密机械研究所 一种超小型条纹变像管
CN107039223A (zh) * 2017-04-26 2017-08-11 深圳大学 大物面x射线条纹变像管及电子光学成像系统

Also Published As

Publication number Publication date
CN111524105B (zh) 2023-04-25
CN111524105A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
CN103201648B (zh) 重叠关联成像术中探测的校准
US8620065B2 (en) Methods and systems for three dimensional optical imaging, sensing, particle localization and manipulation
US8436912B2 (en) Range measurement using multiple coded apertures
JP5986246B2 (ja) 光分布を利用する粒子画像生成デバイスにおける測定精度を向上するためのシステム及び方法
US20100046823A1 (en) System and method for tracking the movement of biological materials
CN110047107B (zh) 相机标定方法及图像配准方法、基因测序仪及系统
CN108801601B (zh) 菲涅尔透镜杂散光噪声的测试方法、设备及存储介质
CN108920869B (zh) 基于掠入射x射线光学仿真的mpo聚焦成像性能分析方法
CN106528706B (zh) 音乐检索方法及装置
US20220042914A1 (en) Method, computer program, and apparatus for adapting an estimator for use in a microscope
CN111932542B (zh) 一种基于多焦距的图像识别方法及装置、存储介质
JP2022534357A (ja) 位置スペクトルを識別するための方法、デバイス、及びコンピュータ記憶媒体
WO2021208282A1 (zh) 条纹管场曲测量方法、装置、计算机设备和可读存储介质
US20220260819A1 (en) System and method for generating an image
CN111008945A (zh) 基于机器学习的多像质参数自适应像差矫正方法及装置
US20210116380A1 (en) Systems and methods for robust background correction and/or emitter localization for super-resolution localization microscopy
US20190304127A1 (en) Foreign object inspection device and foreign object inspection method
CN114485930A (zh) 激光光斑图像处理系统
CN110111842A (zh) 图像清晰度分析及对焦方法、测序仪、系统与存储介质
JP2019128188A (ja) マススペクトル処理装置及び方法
Martens et al. Integrating engineered point spread functions into the phasor-based single-molecule localization microscopy framework
CN102428498A (zh) 样本中的动态细胞跟踪的方法
US10667693B1 (en) Systems, methods, and apparatus for interference filter correction based on angle of incidence
US11875880B2 (en) Systems and methods for calculating protein confidence values
US10303847B2 (en) Single molecule identification using intensity time sequencing, line charting and run-length coding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20930865

Country of ref document: EP

Kind code of ref document: A1