WO2021208117A1 - 保持高性能等离子体的装置和方法 - Google Patents

保持高性能等离子体的装置和方法 Download PDF

Info

Publication number
WO2021208117A1
WO2021208117A1 PCT/CN2020/085806 CN2020085806W WO2021208117A1 WO 2021208117 A1 WO2021208117 A1 WO 2021208117A1 CN 2020085806 W CN2020085806 W CN 2020085806W WO 2021208117 A1 WO2021208117 A1 WO 2021208117A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
thermionic
energy
vacuum container
plasma
Prior art date
Application number
PCT/CN2020/085806
Other languages
English (en)
French (fr)
Inventor
彭元凯
Original Assignee
新奥科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥科技发展有限公司 filed Critical 新奥科技发展有限公司
Publication of WO2021208117A1 publication Critical patent/WO2021208117A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/057Tokamaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/12Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel forms a closed or nearly closed loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • This application belongs to the technical field of plasma confinement, and in particular relates to a device and method for maintaining high-performance plasma.
  • Tokamak uses a magnetic field to confine high-temperature plasma and is considered to be the most promising device for achieving controlled nuclear fusion. It has achieved remarkable results in scientific and engineering research.
  • the tokamak device itself has some shortcomings related to the high-efficiency fusion core.
  • the more prominent ones are: very low toroidal magnetic specific pressure ⁇ (the ratio of plasma thermal energy to magnetic energy), overly complex structure, Various instabilities during operation and large plasma rupture are prone to occur; at the same time, the continuous increase in the scale of the traditional tokamak device has made its construction and maintenance costs and construction period increasingly higher.
  • the fusion reactor core should have the highest possible high-temperature plasma energy confinement efficiency and specific pressure ⁇ to reduce construction and operating costs.
  • the Spherical Tokamak device provides a new way.
  • the spherical tokamak Compared with the traditional tokamak, the spherical tokamak has a more compact structure, a higher confinement efficiency and specific pressure of the magnetic field, and a natural D-shaped toroidal cross section, so it has better magnetohydrodynamics (MHD ) Stability, can achieve better energy confinement and specific pressure on the same scale plasma, and achieve higher plasma energy density with lower structure and equipment cost.
  • MHD magnetohydrodynamics
  • NTM Neoclassical Tearing Mode
  • ELMs Instability boundary local mode
  • the MHD instability limits the highest plasma parameters available for plasma in the tokamak. For example, it limits the plasma maximum circular current, the highest plasma pressure gradient and specific pressure, and the highest plasma density, etc., thereby limiting the technical parameter range of the Tokamak plasma operation.
  • the purpose of the present application is to provide a device and method for maintaining high-performance plasma, which can effectively improve the energy confinement capability and stability of the plasma.
  • an embodiment of the present application provides a device for maintaining high-performance plasma, including:
  • a vacuum container which is arranged around the central column, and the vacuum container is used to contain the formed plasma
  • the plasma magnetic confinement system uses a magnetic field to confine, shape, and control the plasma in a vacuum container to make the plasma form a configuration with multiple fluids; wherein multiple fluids form multiple layers from the inside to the outside, and are located
  • the fluid in the outer layer surrounds the fluid in the inner layer, and adjacent fluids at least partially overlap.
  • the multiple fluids include:
  • the plurality of fluids further include a high-energy ionic fluid containing high-energy ions distributed outside the outermost enclosed magnetic surface of the thermionic fluid and the thermionic fluid, and located inside the outermost boundary of the high-energy electron fluid.
  • the high-energy ionic fluid at least partially overlaps the thermionic fluid, the thermionic fluid, and the high-energy electronic fluid.
  • the cross-section of each fluid is substantially D-shaped.
  • the section here is essentially a section in the vertical direction of the device.
  • the at least one fluid forms a three-dimensional spherical ring shape.
  • the device further includes a plurality of limiters, the plurality of limiters are arranged inside the vacuum container and on the surface of the central column, and the limiters intercept the thermionic electrons escaping from the thermionic fluid and the high-energy electron fluid. With the high-energy electrons, the wall of the vacuum container intercepts the thermionic and high-energy ions lost from the thermionic fluid and the high-energy ionic fluid.
  • the limiter is insulated from the inner wall of the vacuum container, the limiter is negatively charged, the wall of the vacuum container is positively charged, and the limiter and the wall of the vacuum container form different voltages to output direct current.
  • the inner wall of the vacuum container is provided with a reflection surface for electromagnetic waves and photons with a frequency higher than the electromagnetic wave.
  • the outer wall of the vacuum container is provided with a shielding structure, and the shielding structure absorbs high-energy bremsstrahlung radiation generated by high-energy electrons to output thermal energy.
  • the diameter of the central column is 0.1-0.15W; where W is the width of the internal space of the vacuum container.
  • the height of the high-energy electronic fluid is 0.8-0.9H; the width of the high-energy electronic fluid is 0.8-0.9W; where H is the height of the inner space of the vacuum container, and W is the width of the inner space of the vacuum container.
  • the heights of the thermionic fluid and the thermionic fluid are both 0.6-0.7H, and the widths of the thermionic fluid and thermionic fluid are both 0.6-0.7W; where H is the height of the inner space of the vacuum container, and W Is the width of the internal space of the vacuum container.
  • the temperature of the thermionic fluid and thermionic fluid is 150-300 KeV.
  • the temperature of the high-energy electrons is 15-30 MeV.
  • the density of the thermionic fluid and thermionic fluid is (0.5-5) ⁇ 10 19 m -3 .
  • the density of the high-energy electronic fluid is (0.5-5) ⁇ 10 17 m -3 .
  • the configuration shape is a spherical ring.
  • an embodiment of the present application provides a method for maintaining high-performance plasma, including:
  • Plasma is formed and started in the annular vacuum container arranged around the central column;
  • the plasma in the vacuum container is confined, shaped and controlled by the magnetic field, so that the plasmon forms a configuration with multiple fluids; wherein the multiple fluids form multiple layers from the inside to the outside, and the fluid located in the outer layer is surrounded by the inside. Layer of fluid, the plurality of fluids at least partially overlap each other.
  • the multiple fluids include:
  • the plurality of fluids further include a high-energy ionic fluid containing high-energy ions distributed outside the outermost enclosed magnetic surface of the thermionic fluid and the thermionic fluid, and located inside the outermost boundary of the high-energy electron fluid.
  • the high-energy ionic fluid at least partially overlaps the thermionic fluid, the thermionic fluid, and the high-energy electronic fluid.
  • the cross-section of each fluid is substantially D-shaped.
  • the at least one fluid forms a three-dimensional spherical ring shape.
  • the restrictor intercepts the hot electrons and the high-energy electrons that escape from the thermionic fluid and the high-energy electron fluid, and the wall of the vacuum container intercepts the hot electrons and the high-energy electrons.
  • the electromagnetic wave and the reflection surface of photons with a frequency higher than the electromagnetic wave are provided on the inner wall of the vacuum container to reduce the heating and driving loss of the electromagnetic wave.
  • the high-energy bremsstrahlung radiation generated by the high-energy electrons is absorbed by the shielding structure provided on the outer wall of the vacuum container to output heat.
  • the diameter of the central column is 0.1-0.15W; where W is the width of the internal space of the vacuum container.
  • the height of the high-energy electronic fluid is 0.8-0.9H; the width of the high-energy electronic fluid is 0.8-0.9W; where H is the height of the inner space of the vacuum container, and W is the width of the inner space of the vacuum container.
  • the heights of the thermionic fluid and the thermionic fluid are both 0.6-0.7H, and the widths of the thermionic fluid and thermionic fluid are both 0.6-0.7W; where H is the height of the inner space of the vacuum container, and W Is the width of the internal space of the vacuum container.
  • the temperature of the thermionic fluid and thermionic fluid is 150-300 KeV.
  • the temperature of the high-energy electronic fluid is 15-30 MeV.
  • the density of the thermionic fluid and thermionic fluid is (0.5-5) ⁇ 10 19 m -3 .
  • the density of the high-energy electronic fluid is (0.5-5) ⁇ 10 17 m -3 .
  • the configuration shape is a spherical ring.
  • the embodiments of the present application provide various neutron-free fusion reactor cores, which include the device for maintaining high-performance plasma of the above-mentioned embodiments.
  • an embodiment of the present application provides a power station, which includes the device for maintaining high-performance plasma of the foregoing embodiment.
  • an embodiment of the present application provides a heat-generating power station, which includes the device for maintaining high-performance plasma as described in the foregoing embodiment.
  • an embodiment of the present application provides an extremely powerful high-energy broad-spectrum photon source, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • an embodiment of the present application provides a space high-energy broad-spectrum photon thruster, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • an embodiment of the present application provides a high-energy broad-spectrum positron source, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • an embodiment of the present application provides an isotope production station, which includes the device for maintaining high-performance plasma of the foregoing embodiment.
  • the plasma is formed into a configuration with multiple fluids, wherein the multiple fluids form multiple layers from the inside to the outside, and the high-energy electron fluid surrounds the thermionic fluid.
  • the high-energy electronic fluid maintains the hoop current not only inside the outermost enclosed magnetic surface, but also has a large hoop current outside the outermost enclosed magnetic surface.
  • the hoop current generates the polar magnetic field and the magnet system.
  • the magnetic field superimposes to form a closed magnetic surface.
  • the closed magnetic surface balances and stably confines high-density, high-temperature thermal electrons and thermionic ions, effectively avoids plasma turbulence and energy diffusion, and reduces possible recirculation of particles on the outermost closed magnetic surface. , Thereby effectively improving the energy confinement capacity and stability of thermionic and thermionic in the closed magnetic plane.
  • the device of the present application can realize steady-state or long-pulse operation.
  • Fig. 1 shows a half cross-sectional view of a device for maintaining high-performance plasma according to an embodiment of the present application, and the figure shows a configuration with three fluids.
  • Fig. 2 shows a half cross-sectional view of the device for maintaining high-performance plasma according to an embodiment of the present application, and the figure shows a configuration with four fluids.
  • Figures 3a-3d show schematic diagrams of the three-fluid configuration in an embodiment of the present application;
  • Figure 3a is a schematic diagram of the pole-direction magnetic flux surface distribution;
  • Figure 3b is a schematic diagram of the total ring current distribution;
  • Figure 3c is the thermal electron,
  • Figure 3d is a schematic diagram of the ring current distribution carried by high-energy electrons.
  • Fig. 4 shows an experimental result diagram with three fluid configurations in an embodiment of the present application.
  • an embodiment of the present application discloses a device for maintaining high-performance plasma.
  • the device includes:
  • the vacuum container 1 is arranged around the central column 2, and the vacuum container 1 is used to contain the formed plasma;
  • the plasma magnetic confinement system 7 uses a magnetic field to confine, shape and control the plasma in the vacuum vessel 1 so that the plasma can form a configuration with multiple fluids; wherein, in the configuration, multiple fluids
  • the outer layer forms multiple layers, the fluid located in the outer layer surrounds the fluid located in the inner layer, and the adjacent fluids are at least partially overlapped.
  • At least partial overlap may include partial overlap or complete overlap.
  • the plasmon in the vacuum container forms a configuration with multiple fluids, and the shape can be, but is not limited to, a spherical ring.
  • the spherical ring here can be understood as the shape formed after the middle part of the ball is penetrated. Penetration means that the middle part is a hollow structure, and the direction of penetration can be from top to bottom, or from left to right, which is not specifically limited here.
  • the plasma forms a spherical ring configuration with multiple fluids so that the ring current is not only inside the outermost closed magnetic surface, but also at the outermost closed magnetic surface.
  • There is also a large circular current on the outside which in turn creates a larger space between the outermost enclosed magnetic surface 10 of the plasma and the inner wall and internal structure of the vacuum vessel 1, reducing the possible recirculation phenomenon of particles on the outermost enclosed magnetic surface.
  • the stability of the plasma is improved, which is beneficial to improve the energy confinement ability and stability of thermionic and thermionic in the closed magnetic plane.
  • the device of the present application can realize steady-state or long-pulse operation.
  • the high-performance plasma formed by the device for maintaining high-performance plasma includes at least three different particles of high-energy electrons, thermionic electrons, and thermionic ions. Each particle forms a different fluid, and multiple different fluids further form a configuration with a certain positional relationship.
  • the fluid located in the outer layer among the plurality of fluids surrounds the fluid located in the inner layer.
  • Each fluid contains one of the particles of the plasma.
  • the particles contained in one layer of fluid in the overlapping area can be partially distributed in the other layer of fluid, that is, the particles are mixed and distributed.
  • the particles contained in the two fluids will be mixed and distributed in the overlapping area.
  • the substantially complete overlap means that the shape and position are basically the same.
  • the multiple fluids include:
  • the same reference numeral 8 can be used to indicate;
  • the high-energy electron fluid 9 containing high-energy electrons distributed on the outside of the thermionic fluid and the thermionic fluid 8 and surrounding the thermionic fluid and the thermionic fluid 8.
  • the inclusion here means that the corresponding particles are distributed in the fluid, that is, the thermionic fluid 8 is distributed with thermionic particles; the thermionic fluid 8 is distributed with thermionic particles; the high-energy electron fluid 9 is distributed with high-energy electron particles.
  • the high-energy electronic fluid 9 surrounds the thermionic fluid and the thermionic fluid 8.
  • the maintenance of the high-energy electronic fluid 9 makes the hoop current not only inside the outermost enclosed magnetic surface 10, but also has a large hoop current outside the outermost enclosed magnetic surface 10. In turn, a larger space is formed between the outermost enclosed magnetic surface 10 of the plasma and the inner wall and internal structure of the vacuum vessel 1. Reduce the possible recirculation phenomenon of particles on the outermost closed magnetic surface.
  • the multiple fluids further include a high-energy ionic fluid 12 containing high-energy ions distributed between the thermionic fluid and the thermionic fluid 8 and the high-energy electronic fluid 9.
  • the high-energy ionic fluid 12 is distributed outside the outermost enclosed magnetic surface 10 of the thermionic fluid and the thermionic fluid 8, and is located inside the outermost boundary 11 of the high-energy electron fluid 9.
  • the high-energy ionic fluid at least partially overlaps the thermionic fluid, thermionic fluid, and the high-energy electron fluid.
  • each fluid is substantially D-shaped.
  • Each fluid forms a spherical ring.
  • “basically” means that the limited content is not absolute.
  • the basic D-shape means that its formation is not an absolute standard D-shape, but includes an approximate D-shape.
  • At least one of the plurality of fluids forms a three-dimensional spherical ring shape.
  • the vacuum container 1 is provided with a plurality of vacuum chamber windows 6.
  • the vacuum chamber window 6 is used to access the plasma heating and current driving system 7, the plasma feeding system, and the plasma measurement system, etc., to realize heating, driving, and measuring the plasma formed in the vacuum chamber.
  • the vacuum container 1 may be, but not limited to, the shape of a circular ring structure cylinder. There may be a central column 2 near the central axis of the ring structure.
  • the vacuum container 1 has a single-layer structure. In other embodiments, the vacuum container 1 may also have a double-layer structure, which is not specifically limited.
  • the material of the vacuum container 1 can be, but is not limited to, stainless steel.
  • the wall of the vacuum container 1 has a sufficient thickness (for example, 0.5 cm to 10 cm) to maintain safe and stable operation.
  • the vacuum vessel 1 can be cleaned by induction discharge or radio frequency/microwave discharge to remove the gas and impurities adsorbed on the inner surface of the vacuum vessel 1. Then the surface impurities can be removed by boronization, silicidation or beryllization treatment.
  • the vacuum vessel 1 can be pumped to an ultra-high vacuum (for example, 10 -6 Pa) with an oil-free vacuum pumping system.
  • the inner wall of the vacuum vessel 1 is simple and clean, with as few parts as possible, so that most of the electron cyclotron radiation generated during the fusion process can be reflected into the plasma, and the electron cyclotron radiation during the plasma electromagnetic wave heating and driving process (also called synchrotron radiation) can be reduced. ) Loss, thereby improving current drive efficiency.
  • the center column 2 can form a closed loop with the toroidal field coil 71.
  • the device for maintaining plasma further includes a plurality of limiters 3, and the plurality of limiters 3 are arranged inside the vacuum container 1 and on the surface of the center column 2.
  • the limiter 3 is insulated from the inner wall of the vacuum container 1, and the limiter 3 A voltage different from the inner wall of the vacuum container 1 is formed to output direct current.
  • the limiter 3 can intercept or trap the thermionic electrons contained in the thermionic fluid 8 and the high-energy electrons contained in the high-energy electron fluid, and the wall of the vacuum container 1 can intercept or trap the thermionic ions contained in the thermionic fluid 8.
  • the wall of the vacuum container 1 can also intercept or capture the high-energy ions contained in the high-energy particle fluid.
  • the limiter 3 and the inner wall of the vacuum container 1 form different voltages to output direct current.
  • a plurality of limiters 3 are provided inside the vacuum container 1 and on the surface of the center column 2 to limit the boundary of the plasma, so as to prevent the plasma from contacting the wall of the vacuum container 1 and damaging the wall of the vacuum container 1.
  • the limiter 3 can be made of high temperature resistant materials such as molybdenum and tungsten.
  • the limiter on the center column 2 can cooperate with the gas source (fuel) probe and other mechanisms.
  • the limiter 3 and the wall of the vacuum vessel 1 are insulated to design, and the two will form different voltages to achieve the output of fusion energy.
  • the limiter 3 can intercept the lost thermionic, high-energy electrons and part of the thermionic escaping from the plasma.
  • the wall and other devices of the vacuum container 1 intercept most of the missing thermionic and high-energy ions. Therefore, the limiter 3 and the vacuum container
  • the wall of 1 is insulated, the limiter 3 is negatively charged, and the wall of the vacuum container 1 is positively charged. A relatively high potential is formed between the two, which can be used to directly generate direct current.
  • the inner wall of the vacuum container 1 is provided with a reflection surface 4 for electromagnetic waves and photons with a frequency higher than the electromagnetic wave, and the reflection surface 4 is used to reduce the heating and driving loss of the electromagnetic waves.
  • the setting position of the reflecting surface 4 can be the vacuum chamber window and the inlet of the vacuum pump installed in all the diagnostic systems.
  • the outer wall of the vacuum container 1 is provided with a shielding structure 5, and the shielding structure 5 is used to absorb high-energy bremsstrahlung radiation generated by high-energy electrons to realize heat collection and output.
  • the bremsstrahlung radiation generated by high-energy electrons includes high-energy bremsstrahlung radiation, that is, hard X-rays, and low-energy bremsstrahlung radiation, that is, soft X-rays. Low-energy bremsstrahlung can be reflected by the wall of the vacuum container and then confined, and high-energy bremsstrahlung is used to output energy.
  • the heat output can be, but is not limited to, generating steam by heating water to generate electricity.
  • the shielding structure 5 may use heavy metal materials such as lead, for example.
  • the thickness of the shielding structure is about but not limited to 30 cm.
  • the plasma magnetic confinement system 7 includes: a toroidal field coil (TF) 71, which is used to generate a toroidal magnetic field and a polar magnetic field generated by the plasma current to form a spiral magnetic field structure with magnetic surface nesting. Confine the plasma; Pole Field Coil (PF) 72, which is used to generate a vertical magnetic field and a horizontal magnetic field to maintain the plasma position balance and plasma cross-sectional shape.
  • the toroidal field coil (TF) 71 and the polar field coil (PF) 72 are arranged outside or inside the vacuum vessel 1.
  • the poloidal field coil 72 is inside or outside the toroidal field coil 71, but is not limited to this form.
  • the materials of the toroidal field coil 71 and the poloidal field coil 72 can be ordinary conductors at room temperature, ordinary conductors at low temperature, and various superconductors.
  • the toroidal field coil 71 is usually composed of 12 to 32 circular or non-circular coils.
  • the poloidal field coil 72 is usually composed of 6-10 approximately circular coils. Each coil is composed of 1 or more turns.
  • the shape includes, but is not limited to, a D shape.
  • a supporting and limiting structure, a cooling structure, and a coil power supply system are provided on the outer side of the toroidal field coil 71 and the poloidal field coil 72.
  • the device for maintaining high-performance plasma further includes a plasma heating and current drive system.
  • the plasma heating and current drive system is connected to the vacuum container 1 in a vacuum and hermetically through the vacuum chamber window 6.
  • the plasma heating and current drive system is used to heat the plasma and drive the plasma current.
  • Plasma heating and current drive systems include electromagnetic wave heating and current drive systems, ion heating and current drive systems, or neutral beam heating and current drive systems.
  • Electromagnetic waves include but are not limited to electron cyclotron waves, low clutter waves, and so on. Electromagnetic waves can efficiently drive electrons, including high-energy electrons. A large number of high-energy electrons are constrained by the magnetic field and can exist in the vacuum chamber for a long time and stably, and a large number of circular currents are formed in the vacuum chamber. The polar magnetic field generated by the ring current and the magnetic field generated by the magnet system are superimposed to form a closed magnetic surface. The closed magnetic surface balances and stably restrains high-density, high-temperature thermionics and thermionics. Therefore, a transcendent plasma confinement capability is obtained.
  • the electronic cyclotron wave heating and current drive system can use a radio frequency system composed of a microwave source (gyrotron), a transmission system and a transmitting antenna; and auxiliary subsystems such as control, microwave parameter measurement, power supply and cooling.
  • the system emits radio frequency waves whose frequencies can be the fundamental or harmonics of the electron cyclotron frequency range into the vacuum chamber, and through the interaction of the waves with the plasma in the vacuum chamber, the plasma is heated or driven by current without spiral coil induction.
  • all the windows of the diagnostic system and the inlet of the vacuum pump of the device of the embodiment of the application can use the electron cyclotron radiation barrier structure, so that the electron cyclotron wave is frequently reflected in the vacuum chamber until All absorbed by the plasma. Therefore, the efficiency of the entire electron cyclotron wave current drive is estimated to exceed 1A/W, which will far exceed the current drive efficiency of the existing tokamak or spherical tokamak device by 10-100 times.
  • the millimeter wave in the electronic cyclotron heating system can be injected into the vacuum chamber through the waveguide and the control system, and its injection angle and position can be adjusted to achieve the purpose of efficient heating and current driving.
  • ion heating or neutral beam heating can also be used, which is not specifically limited here.
  • the height of the internal space of the vacuum container 1 is H, and the width of the internal space of the vacuum container 1 is W.
  • the height of the internal space is substantially the maximum height in the vertical direction; the width of the internal space is substantially the maximum width in the horizontal direction.
  • the diameter of the central column is 0.1-0.15W.
  • the height H eh of the high-energy electronic fluid is 0.8-0.9H.
  • H eh 0.85H.
  • the width W eh of the high-energy electronic fluid is 0.8-0.9W.
  • W eh 0.85W.
  • the height of the thermionic thermal fluid and the thermionic fluid 8 is 0.6-0.7H.
  • the height of the thermionic thermal fluid and the thermionic fluid 8 is 0.6-0.7H of the internal space of the vacuum container, the distance between the outermost enclosed magnetic surface 10 of the thermionic thermal fluid and the thermionic fluid 8 and the inner wall of the vacuum container 1 It is 0.3-0.4H, which further reflects that a larger space is formed between the outermost enclosed magnetic surface 10 and the inner wall and internal structure of the vacuum container.
  • the width of the thermionic thermal fluid and the thermionic fluid 8 is 0.6-0.7W of the internal space of the vacuum vessel, it means that the outermost enclosed magnetic surface 10 of the thermionic thermal fluid and the thermionic fluid 8 is away from the vacuum vessel 1
  • the distance between the inner wall of ⁇ is 0.3-0.4W, which further reflects that a larger space is formed between the outermost enclosed magnetic surface 10 of the plasma and the inner wall and internal structure of the vacuum vessel.
  • the distance between the inner wall of the vacuum container 1 and the outermost closed magnetic surface 10 is several times to more than an order of magnitude larger than the equivalent distance of the general tokamak and spherical tokamak.
  • the distance between the inner wall of the vacuum vessel 1 and the outermost closed magnetic surface of the configuration formed by the plasma is longer than that of the existing tokamak device and spherical holder.
  • the Carmack device is several times larger or even more than an order of magnitude.
  • the traditional Tokamak commonly used limiter directly contacts the outermost closed magnetic surface at the upper, lower, inner and outer (optional or any combination of the four) of the outermost interface of the closed magnetic surface.
  • the device of the embodiment of the present application maintains a relatively large distance between the upper part and the lower part of the outermost closed magnetic surface and the outside.
  • the maintenance of the high-energy electronic fluid makes the ring current not only inside the outermost closed magnetic surface, but also has a large ring current outside the outermost closed magnetic surface, and then A large space is formed between the outermost enclosed magnetic surface of the plasma and the inner wall and internal structure of the vacuum container, and the distance between the wall and the outermost enclosed magnetic surface of the traditional Tokamak is several times or even more than an order of magnitude. For example, 2 times, 5 times, 10 times, 20 times, 50 times, etc. are not limited thereto.
  • the device for maintaining high-performance plasma further includes a plasma feeding system.
  • the plasma feeding system is used to feed or supplement the plasma in the vacuum chamber.
  • the gas generally sent into the vacuum chamber is hydrogen, helium, etc. Different gases are used due to different cleaning methods and purposes.
  • the fuel used in borohydride plasma discharge is hydrogen, boron powder or diborane.
  • the feeding method can be gas puffing, pellet injection, supersonic molecular beam injection, etc.
  • the plasma measurement and control system of the device for maintaining high-performance plasma completes the control of plasma current, waveform, position, cross-sectional shape, density, temperature, current density distribution or safety factor (q) value distribution, and plasma rupture.
  • the device for maintaining high-performance plasma in the embodiments of the present application forms a high-performance plasma, which includes at least three different particles of high-energy electrons, thermionic electrons, and thermionic ions. These particles respectively form different fluids, and multiple different fluids further form a spherical ring configuration, which has the characteristics of multi-fluid balance.
  • the multi-fluid may be three-fluid or four-fluid.
  • the three fluids include thermionic fluids, thermionic fluids, and high-energy electronic fluids.
  • the four fluids include thermionic fluids, thermionic fluids, high-energy electronic fluids, and high-energy ionic fluids.
  • the high-energy ionic fluids contain high-energy ion particles, and the high-energy ions can be burned by fusion. The particles produced.
  • Figures 3a to 3d show schematic diagrams of a spherical ring with three fluids.
  • Figure 3a is a schematic diagram of the pole-direction magnetic flux distribution
  • Figure 3b is a schematic diagram of the total hoop current distribution
  • Figure 3c is a diagram of the hoop current distribution carried by thermionic and thermionic
  • Figure 3d is the hoop current distribution carried by high-energy electrons Schematic. The outermost black border in each figure indicates the limiter.
  • the closed solid line in Figure 3a represents the closed magnetic flux surface, and the dashed line represents the unclosed magnetic flux surface; in Figure 3b, Figure 3c, and Figure 3d, the dashed line represents different circular current equivalent surfaces (current lines) ;
  • the solid line 10 represents the outermost closed magnetic surface (flux surface), and the solid line 11 represents the outermost boundary of the high-energy electronic fluid (ie, the toroidal current boundary).
  • the high-performance plasma includes: high-energy electrons, thermionics, and thermionics. These particles form different fluids respectively.
  • thermionics form a thermionic fluid
  • thermionics form a thermionic fluid 8
  • high-energy electrons form high-energy electrons.
  • fluid 9 see Fig. 3d
  • each fluid forms spherical rings with a different size and approximately "D-shaped" cross-section, and these spherical rings are partially overlapped.
  • Thermionic, thermionic and energetic electrons all carry hoop currents.
  • the total hoop current is shown in Figure 3b, which together with the external magnetic field forms a closed magnetic surface (see Figure 3a).
  • the high-energy electronic fluid 9 is formed with an outermost boundary 11.
  • the thermionic fluid and thermionic fluid 8 are distributed inside the outermost closed magnetic surface 10, and the high-energy electronic fluid 9 is maintained both inside and outside the outermost closed magnetic surface 10 at the same time.
  • the boundary of the outermost enclosed magnetic surface 10 and the outermost boundary 11 of the high-energy electronic fluid (that is, the boundary of the toroidal current) is controlled by the polar field coil current.
  • W represents the width of the columnar vacuum chamber 1
  • H represents the height of the columnar vacuum chamber 1.
  • the diameter of the central column 2 is about 0.1-0.15W.
  • the width W of high-energy electrons eh spherical annular fluid but not limited to about 0.8-0.9W.
  • W eh 0.85W.
  • the large radius r11 of the high-energy electronic fluid spherical ring is about 0.25W
  • the small radius r12 is about 0.175W
  • the height of the high-energy ionic fluid 12 (that is, the fluid formed by alpha particles) is slightly larger than the heights Hel and H il of the thermionic fluid and the thermionic fluid 8, and is significantly smaller than the height H eh of the high-energy electronic fluid 9.
  • the temperature of the thermionic fluid and the thermionic fluid 8 is about, but not limited to, 150-300 KeV.
  • it can specifically be 160KeV, 180KeV, 190KeV, 210KeV, 250KeV, 270KeV, 290KeV, etc.
  • the temperature of the high-energy electronic fluid 9 is about but not limited to 15-30 MeV.
  • it can specifically be 16MeV, 18MeV, 19MeV, 21MeV, 25MeV, 27MeV, 29MeV, etc.
  • the temperature of the energetic ions produced by fusion shows a slowing down distribution, and the peak temperature is about but not limited to 3MeV.
  • the density of the thermionic fluid and the thermionic fluid 8 is about but not limited to (0.5-5) ⁇ 10 19 m -3 .
  • the density of the high-energy electronic fluid is about but not limited to (0.5-5) ⁇ 10 17 m -3 .
  • Force balance includes: Lorentz force (j ⁇ B), pressure gradient (grad P), centrifugal force and electric field (E) forces.
  • j ⁇ B Lorentz force
  • grad P pressure gradient
  • E centrifugal force
  • the flow rate of electrons and ions generated by E ⁇ B is perpendicular to B, and the direction of E is radial, so this flow rate has polar flow rate and circular flow rate.
  • electromagnetic waves (Electromagnetic Wave, EMW) enter the vacuum chamber from the outside to heat the high-energy electronic fluid at the boundary, and the ring carried by the high-energy electronic fluid
  • EMW Electromagnetic Wave
  • the magnetic field generated by the current and the magnetic field generated by the external magnet system are superimposed to form a closed magnetic surface, which confines the plasma.
  • the electromagnetic wave is converted into an electron Bernstein wave (EBW) and absorbed by the plasma, thereby heating the plasma and increasing the plasma current.
  • EBW electron Bernstein wave
  • the high-energy ions of fusion energy produced by fusion combustion can heat and maintain the temperature and density of the thermal plasma, and produce high-density electrons in the outermost enclosed magnetic surface EBW radiation, EBW is partially converted into EMW and leaves the closed magnetic surface, heating the high-energy electronic fluid, maintaining the temperature, density, rotation speed and toroidal current of the high-energy electronic fluid, and then maintaining the closed magnetic surface, confining the thermal plasma, and maintaining the balance of multiple fluids. Therefore, fusion combustion is maintained.
  • the above-mentioned physical mechanism is exactly the opposite of the mechanism of forming a spherical ring configuration with multi-fluid balance characteristics by heating and driving with external electromagnetic waves.
  • the high-density plasma part will generate bootstrap current and high-speed rotation of electrons and ions (the direction of electron rotation and ion rotation is opposite, and the two currents are added together), which constitute an important part of the plasma current.
  • Fig. 4 is a graph of the experimental results of the three-fluid configuration in the embodiment of the application. It can be seen from Fig. 4 that the three-fluid configuration of the embodiment of the present application has been verified through experiments.
  • the spherical ring configuration with multi-fluid equilibrium characteristics formed by the above-mentioned fusion system also has the following advantages:
  • the configuration of the plasma fluid in the embodiment of the present application has the characteristics of the configuration of the natural deflection magnetic field, which is beneficial to reduce the burden of the interaction between the plasma and the material.
  • a considerable part of the fusion energy will be converted into the energy output of photon radiation (electron synchrotron radiation, electron bremsstrahlung radiation), which is also conducive to reducing the burden of plasma and material interaction.
  • the outermost closed magnetic surface and the upper and lower outer limiters can maintain a large distance, which reduces the possible recirculation phenomenon of particles on the outermost closed magnetic surface. Therefore, it is beneficial to improve the energy confinement ability of thermionic and thermionic in the closed magnetic surface.
  • the safety factor q tends to be infinite at the outermost closed magnetic surface, and the current density gradient is relatively low at the outermost closed magnetic surface, which increases the stability of the tear film, thereby improving the sealing The stability of the plasma in the magnetic plane.
  • the high-energy electronic fluid has a very high temperature and a very low density. Since the driving efficiency is proportional to the temperature and inversely proportional to the density, it is beneficial to improve the efficiency of current driving.
  • the device of the present application can realize steady-state or long-pulse operation.
  • the configuration and the mechanism of heat output and direct power generation described in the embodiments of the present application can reduce the parameter requirements of the Lawson criterion of fusion combustion.
  • the fusion reaction is relatively easy to implement, and the device is relatively small. Therefore, the device of the embodiment of the present application can be used as a small-scale distributed fusion energy source.
  • the device for maintaining high-performance plasma in the embodiments of the present application is an efficient and compact spherical Tokamak (ST) or spherical ring (Spherical Torus, ST) fusion reaction system, which is used in a vacuum chamber
  • the system includes: vacuum container, plasma confinement system, plasma heating and current driving system, plasma feeding system, plasma measurement and control system.
  • the space in the vacuum container is used for plasma formation.
  • the plasma is confined by the external magnetic field and the magnetic field formed by the plasma itself.
  • the plasma temperature and current are heated and driven by the power generated by the high-frequency electromagnetic wave equipment.
  • the density is maintained by the feeding system injecting fuel, the physical parameters and functions of the plasma are obtained by the measurement system, and the physical parameters and functions of the plasma can also be adjusted and maintained through the control system.
  • the device of the embodiment of the present application can form a configuration with multiple fluids, and the high-energy electronic fluid surrounds the thermionic fluid and thermionic fluid.
  • the maintenance of the high-energy electronic fluid makes the hoop current not only Inside the outermost closed magnetic surface, there is also a large ring current outside the outermost closed magnetic surface.
  • the polar magnetic field generated by the ring current and the magnetic field generated by the magnet system are superimposed to form a closed magnetic surface.
  • the closed magnetic surface is balanced and stable.
  • the embodiment of the present application provides a method for maintaining high-performance plasma.
  • This method can be implemented by the device of the above-mentioned embodiment. Therefore, the description of the above device embodiments can be used to understand and explain the following embodiments of the method for maintaining high-performance plasma. The following embodiments of the method for maintaining high-performance plasma can also be used to understand and explain the above-mentioned device embodiments.
  • the plasma in the vacuum vessel 1 is confined, shaped and controlled by the magnetic field, so that the plasma is formed into a configuration with multiple fluids; wherein the multiple fluids form multiple layers from the inside to the outside, and the fluid located in the outer layer is surrounded by The fluid in the inner layer at least partially overlaps between the multiple fluids.
  • the configuration includes:
  • the plasma further includes a high-energy ion fluid containing high-energy ions distributed outside the outermost enclosed magnetic surface 10 of the thermionic fluid and the thermionic fluid 8 and located inside the outermost boundary 11 of the high-energy electron fluid 9 12.
  • the high-energy ionic fluid at least partially overlaps the thermionic fluid, thermionic fluid, and the high-energy electron fluid.
  • the cross-section of each fluid is substantially D-shaped.
  • At least one fluid forms a three-dimensional spherical ring shape.
  • the limiter 3 intercepts the thermionic and high-energy electrons escaping from the thermionic fluid and the high-energy electron fluid, and the wall of the vacuum container 1 intercepts the thermal Thermionic fluid lost by the ionic fluid.
  • the wall of the vacuum container 1 can also intercept or capture the high-energy ions contained in the high-energy particle fluid.
  • the limiter 3 is negatively charged, the wall of the vacuum container 1 is positively charged, and the limiter 3 and the wall of the vacuum container 1 form different voltages to output direct current.
  • the heating and driving losses of the electromagnetic waves are reduced.
  • the shielding structure 5 arranged on the outer wall of the vacuum container absorbs high-energy bremsstrahlung radiation generated by high-energy electrons to output heat.
  • the diameter of the central column 2 is 0.1-0.15W; where W is the width of the inner space of the vacuum container.
  • the embodiments of the present application provide a variety of neutron-free fusion reactor cores, which include the device for maintaining high-performance plasma of the above-mentioned embodiments.
  • An embodiment of the present application provides a power station, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • the power station can realize a variety of energy output methods, of which it is estimated that 40% becomes direct current, 30% thermal power, the total energy output efficiency reaches an efficiency higher than 50%, and the output power is relatively high.
  • the embodiment of the present application provides a heat-generating energy station, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • Fusion energy is converted into photon radiation, including electron synchrotron radiation and electronic bremsstrahlung radiation.
  • the bremsstrahlung radiation produced by high-energy electrons includes hard X-rays, which are high-energy bremsstrahlung radiation; soft X-rays, which are low-energy bremsstrahlung radiation. Wait. Synchrotron radiation and low-energy bremsstrahlung can be reflected by the wall of the vacuum container and then be constrained, and high-energy bremsstrahlung is used to output energy.
  • a shielding layer such as heavy metals such as lead, with a thickness of about but not limited to 30 cm, can be provided between the vacuum container wall and the limiter. The shielding layer absorbs high-energy bremsstrahlung radiation and converts it into heat output.
  • the heat output can use but is not limited to traditional methods, such as heating, or generating steam through water heating to generate electricity and hot water.
  • Energy output mode 2 direct power generation
  • thermionics and thermions have very different trajectories at the boundary of the high-energy electron fluid.
  • Most of the lost thermionics are intercepted by the restrictor, and most of the escaping thermionics are intercepted by the vacuum container wall and other parts. Therefore, the limiter is insulated from the wall of the vacuum container.
  • the limiter is negatively charged and the vacuum container wall is positively charged.
  • a relatively high potential is formed between the two, which can be used to directly generate direct current.
  • the above-mentioned electric potential is estimated to be proportional to the temperature of the hot electron.
  • the configuration of the plasma fluid in the embodiments of the present application has excellent plasma confinement capabilities and stability, it has a wide range of uses. In addition to commercial power generation, it can also be used as a source of positrons or space propulsion light. , Including but not limited to the above uses.
  • the embodiments of the present application provide an extremely powerful high-energy broad-spectrum photon source, which includes the device for maintaining high-performance plasma of the above-mentioned embodiments.
  • the embodiment of the application provides a space high-energy broad-spectrum photon thruster, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • the embodiment of the present application provides a high-energy broad-spectrum positron source, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.
  • the hard X-rays generated by high-energy electrons will produce electron-positron pairs in lead or heavy metals, namely positrons and negative electrons.
  • Some positrons hit the wall of the vacuum container and combine with the negative electrons to become two 0.511MeV photons.
  • Some positrons return to the vacuum container and are constrained, and are even accelerated by electromagnetic waves to form a positron current.
  • the lifetime of positrons is estimated to be relatively long. Therefore, the content of positrons in the plasma of the embodiment of the present application is relatively high, which can be as high as nearly 1 million times that of positron sources in the world. Therefore, it can be called a positron source with extremely high positron content in the world.
  • the amount of positron source is related to the size of the device and the parameters of the plasma.
  • the embodiment of the present application provides an isotope production station, which includes the device for maintaining high-performance plasma of the above-mentioned embodiment.

Abstract

一种保持高性能等离子体的装置和方法,装置包括:中心柱(2);真空容器(1),环绕中心柱(2)设置,真空容器(1)用于容纳形成的等离子体;等离子体磁约束系统(7),通过磁场限制、成形和控制真空容器(1)内的等离子体,以使等离体子形成具有多个流体的位形;其中,多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,相邻流体之间至少部分重叠。通过形成具有多个流体的位形,高能电子流体(9)包围热电子流体(8)与热离子流体(8),高能电子流体(9)的维持使得环向电流在最外封闭磁面(10)的外部也有很大的环向电流,从而有效避免等离子体湍流及能量扩散,降低粒子在最外封闭磁面(10)的再循环现象,有效提升封闭磁面内热离子与热电子的能量约束能力与稳定性。

Description

保持高性能等离子体的装置和方法 技术领域
本申请属于等离子体约束技术领域,尤其涉及一种保持高性能等离子体的装置和方法。
背景技术
实现受控核聚变将有可能从根本上解决人类的能源问题,因此受到众多国家的广泛关注。实现受控核聚变的途径主要有两种,惯性约束聚变和磁约束聚变。托卡马克(Tokamak)利用磁场约束高温等离子体,被认为是目前最有希望实现受控核聚变的装置,在科学和工程技术的研究上已取得显著成果。然而托卡马克装置自身存在着一些相关成为高效聚变堆芯上的不足,比较突出的有:很低的环向磁比压值β(等离子体的热能与磁能之比)、过于复杂的结构、运行时的各种不稳定性以及容易发生等离子体大破裂等;同时,传统托卡马克装置规模的不断增大,使它的建设和维护成本及工期日益增高。
将来的商用聚变堆要求聚变堆芯应具有尽可能高的高温等离子体能量约束效率及比压β,以减小构造和运行费用。约束效率及比压β越高,意味着能够产生聚变能的等离子体所需的外加结构与磁场就越小。在获得高约束效率及比压β的研究历程中,球形托卡马克(Spherical Tokamak)装置提供了一条新的途径。
球形托卡马克与传统的托卡马克相比,结构更加紧凑,磁场的约束效率及比压更高,同时具有天然的D形环形体的极向截面,因此具有更好的磁流体力学(MHD)稳定性,能够在相同规模的等离子体上实现更好的能量约束及比压,用较低的结构设备花费实现较高的等离子体能量密度。
虽然球形托卡马克比常规的托卡马克显示出更好的MHD稳定性,然而仍然存在各种不稳定性,比如托卡马克装置中常见的新经典撕裂膜(Neoclassical Tearing Mode或NTM),不稳定性边界局域模(ELMs)不稳定性等。
MHD不稳定性限制了托卡马克中等离子体可获得的最高等离子体参数。例如,限制了等离子体最大环向电流、最高等离子体压强梯度和比压和最高等离子体密度等,进而限制了托卡马克等离子体运行的技术参数区间。
发明内容
本申请的目的在于提供一种保持高性能等离子体的装置和方法,能够有效提高等离子体的能量约束能力与稳定性。
一方面,本申请实施例提供一种保持高性能等离子体的装置,包括:
中心柱;
真空容器,其环绕中心柱设置,真空容器用于容纳形成的等离子体;
等离子体磁约束系统,其通过磁场限制、成形和控制真空容器内的等离子体,以使等离体子形成具有多个流体的位形;其中,多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,相邻流体之间至少部分重叠。
可选实施例中,多个流体包括:
分布在位形最内层的包含热电子的热电子流体与包含热离子的热离子流体,热电子流体与热离子流体完全重叠。
包围热电子流体与热离子流体的、包含高能电子的高能电子流体。
可选实施例中,多个流体还包括分布在热电子流体与热离子流体的最外封闭磁面的外侧,且位于高能电子流体的最外边界的内侧的包含高能离子的高能离子流体。
可选实施例中,所述高能离子流体与所述热电子流体、所述热离子流体和所述高能电子流体至少部分重叠。
可选实施例中,每一种流体的截面基本为D形。具体的,此处的截面实质为本装置垂直方向上的剖面。
可选实施例中,至少一个流体形成三维的球形环形状。
可选实施例中,装置还包括多个限制器,多个限制器设置于真空容器的内部以及中心柱表面,限制器拦截从所述热电子流体与所述高 能电子流体逃逸的所述热电子与所述高能电子,真空容器的壁拦截从所述热离子流体与所述高能离子流体遗失的所述热离子与所述高能离子。
可选实施例中,限制器与真空容器的内壁绝缘,限制器带负电,真空容器的壁带正电,限制器与真空容器的壁形成不同的电压,以输出直流电。
可选实施例中,真空容器的内壁设置有电磁波及高于电磁波频率的光子的反射面。
可选实施例中,真空容器的外壁设置有屏蔽结构,屏蔽结构吸收高能电子产生的高能量韧致辐射,以输出热能。
可选实施例中,中心柱的直径为0.1-0.15W;其中,W为真空容器内部空间的宽度。
可选实施例中,高能电子流体的高度为0.8-0.9H;高能电子流体的宽度为0.8-0.9W;其中,H为真空容器内部空间的高度,W为真空容器内部空间的宽度。
可选实施例中,热电子流体与热离子流体的高度均为0.6-0.7H,热电子流体与热离子流体的宽度均为0.6-0.7W;其中,H为真空容器内部空间的高度,W为真空容器内部空间的宽度。
可选实施例中,热电子流体与热离子流体的温度为150-300KeV。
可选实施例中,高能电子的温度为15-30MeV。
可选实施例中,热电子流体与热离子流体的密度为(0.5-5)x10 19m -3
可选实施例中,高能电子流体的密度为(0.5-5)x10 17m -3
可选实施例中,位形的形状为球形环。
第二方面,本申请实施例提供一种保持高性能等离子体的方法,包括:
在环绕中心柱设置的环形真空容器内形成并启动等离子体;
通过磁场限制、成形和控制真空容器内的等离子体,以使等离体子形成具有多个流体的位形;其中,多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,所述多个流体之间至少部分重叠。
可选实施例中,多个流体包括:
分布在位形的最内层的包含热电子的热电子流体和包含热离子的热离子流体,热电子流体与热离子流体基本完全重叠;
包围热电子流体与热离子流体的、包含高能电子的高能电子流体。
可选实施例中,多个流体还包括分布在热电子流体与热离子流体的最外封闭磁面的外侧,且位于高能电子流体的最外边界的内侧的包含高能离子的高能离子流体。
可选实施例中,所述高能离子流体与所述热电子流体、所述热离子流体和所述高能电子流体至少部分重叠。
可选实施例中,每一种流体的截面基本为D形。
可选实施例中,至少一个流体形成三维的球形环形状。
可选实施例中,通过在真空容器的内部设置多个限制器,限制器拦截从所述热电子流体与所述高能电子流体逃逸的所述热电子与所述高能电子,真空容器的壁拦截从所述热离子流体与所述高能离子流体遗失的所述热离子与所述高能离子,限制器带负电,真空容器的壁带正电,限制器与真空容器的壁形成不同的电压,以输出直流电。
可选实施例中,通过在真空容器的内壁设置电磁波及高于电磁波频率的光子的反射面,减少电磁波加热和驱动的损失。
可选实施例中,通过设置在真空容器的外壁的屏蔽结构吸收高能电子产生的高能量韧致辐射,以输出热量。
可选实施例中,中心柱的直径为0.1-0.15W;其中,W为真空容器内部空间的宽度。
可选实施例中,高能电子流体的高度为0.8-0.9H;高能电子流体的宽度为0.8-0.9W;其中,H为真空容器内部空间的高度,W为真空容器内部空间的宽度。
可选实施例中,热电子流体与热离子流体的高度均为0.6-0.7H,热电子流体与热离子流体的宽度均为0.6-0.7W;其中,H为真空容器内部空间的高度,W为真空容器内部空间的宽度。
可选实施例中,热电子流体与热离子流体的温度为150-300KeV。
可选实施例中,高能电子流体的温度为15-30MeV。
可选实施例中,热电子流体与热离子流体的密度为(0.5-5)x10 19m -3
可选实施例中,高能电子流体的密度为(0.5-5)x10 17m -3
可选实施例中,位形的形状为球形环。
第三方面,本申请实施例提供了一种各种无中子聚变反应堆芯,其包括上述实施例的保持高性能等离子体的装置。
第四方面,本申请实施例提供一种发电站,其包括上述实施例的保持高性能等离子体的装置。
第五方面,本申请实施例提供一种发热能站,其包括上述实施例所述的保持高性能等离子体的装置。
第六方面,本申请实施例提供了一种极强高能宽谱光子源,其包括上述实施例的保持高性能等离子体的装置。
第七方面,本申请实施例提供一种太空高能宽谱光子推进器,其包括上述实施例的保持高性能等离子体的装置。
第八方面,本申请实施例提供一种高能宽谱正电子源,其包括上述实施例的保持高性能等离子体的装置。
第九方面,本申请实施例提供了一种同位素生产站,其包括上述实施例的保持高性能等离子体的装置。
本申请实施例提供的一种保持高性能等离子体的装置和方法中,等离子体形成具有多个流体的位形,其中多个流体由内至外形成多层,且高能电子流体包围热电子流体与热离子流体,高能电子流体的维持使得环向电流不只在最外封闭磁面内部,在最外封闭磁面的外部也有很大的环向电流,环向电流产生极向磁场与磁体系统产生的磁场叠加形成封闭磁面,封闭磁面平衡稳定地约束高密度、高温度的热电子与热离子,有效避免等离子体湍流及能量扩散,降低粒子在最外封闭磁面可能产生的再循环现象,进而有效提升封闭磁面内热离子、热电子的能量约束能力与稳定性。相比于现有聚变装置,本申请的装置能够实现稳态或者长脉冲运行。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本申请。
本申请中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
在不一定按比例绘制的附图中,相同的附图标记可以在不同的视图中描述相似的部件。具有字母后缀或不同字母后缀的相同附图标记可以表示相似部件的不同实例。附图大体上通过举例而不是限制的方式示出各种实施例,并且与说明书以及权利要求书一起用于对本申请的实施例进行说明。在适当的时候,在所有附图中使用相同的附图标记指代同一或相似的部分。这样的实施例是例证性的,而并非旨在作为本装置或方法的穷尽或排他实施例。
图1示出了本申请实施例的保持高性能等离子体的装置的二分之一剖视图,图中显示具有三流体的位形。
图2示出了本申请实施例的保持高性能等离子体的装置的二分之一剖视图,图中显示具有四流体的位形。
图3a-图3d示出了本申请实施例中具有三流体的位形的示意图;其中图3a为极向磁通面分布示意图;图3b为总环向电流分布示意图;图3c为热电子、热离子携带的环向电流分布示意图;图3d为高能电子携带的环向电流分布示意图。
图4示出了本申请实施例中具有三流体的位形的实验结果图。
图中标号说明
1-真空容器;2-中心柱;3-限制器;4-反射面;5-屏蔽结构;6-真空室窗口;7-等离子体磁约束系统;71-环向场线圈(TF线圈);72-极向场线圈(PF线圈);8-热电子流体、热离子流体;9-高能电子流体;10-热电子流体、热离子流体的最外封闭磁面;11-高能电子流体的最外边界;12-高能离子流体。
具体实施方式
为了使得本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本申请中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本申请实施例的以下说明清楚且简明,本申请省略了已知功能和已知部件的详细说明。
参见图1-2,本申请实施例公开了一种保持高性能等离子体的装置。该装置包括:
中心柱2;
真空容器1,其环绕中心柱2设置,真空容器1用于容纳形成的等离子体;
等离子体磁约束系统7,其通过磁场限制、成形和控制真空容器1内的等离子体,以使等离体子形成具有多个流体的位形;其中,该位形中,多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,相邻流体之间至少部分重叠。
需要说明的是至少部分重叠可以包括部分重叠,也可以包括完全重叠。
一些实施例中,真空容器内的等离体子形成具有多个流体的位形,其形状可以但不限于球形环。这里的球形环可以理解为球的中间部位被贯通后形成的形状。贯通是指该中间部位为中空结构,贯通的方向可以为从上到下,也可以为从左到右,在此不做具体限定。
本申请实施例提供的一种保持高性能等离子体的装置和方法中,等离子体形成具有多个流体的球形环位形使得环向电流不只在最外封闭磁面内部,在最外封闭磁面外部也有很大的环向电流,进而使得等离子体的最外封闭磁面10与真空容器1内壁及内部结构之间形成较大 空间,降低粒子在最外封闭磁面可能产生的再循环现象,提高了等离子体的稳定性,有利于提升封闭磁面内热离子、热电子的能量约束能力与稳定性。相比于现有聚变装置,本申请的装置能够实现稳态或者长脉冲运行。
本申请实施例中,保持高性能等离子体的装置形成的具有高性能的等离子体,其至少包括高能电子、热电子、热离子三种不同的粒子。每种粒子分别形成不同的流体,多个不同的流体又进一步形成具有一定位置关系的位形。
其中,多个流体中位于外层的流体包围位于内层的流体。每一个流体包含等离子体的其中一种粒子。当两个流体部分重叠时,在重叠区域其中一层流体包含的粒子可部分分布在另外一层流体中,也即粒子混合分布。当两个流体完全重叠时,两个流体中分别包含的粒子会混合分布在重叠区域。其中基本完全重叠是指形状与位置基本完全相同。
下面将结合具体例子进行说明。
一些实施例中,参见图1和图3,多个流体包括:
分布在上述位形最内层的包含热电子的热电子流体8和包含热离子的热离子流体8,在图中由于上述两个流体基本完全重叠,可使用同一个附图标记8来示意;
分布在热电子流体与热离子流体8的外侧、包围热电子流体与热离子流体8的、包含高能电子的高能电子流体9。
这里的包含是指流体内分布相应粒子的意思,也即热电子流体8内分布着热电子粒子;热离子流体8内分布着热离子粒子;高能电子流体9内分布着高能电子粒子。
高能电子流体9包围热电子流体与热离子流体8,高能电子流体9的维持使得环向电流不只在最外封闭磁面10内部,在最外封闭磁面10外部也有很大的环向电流,进而使得等离子体的最外封闭磁面10与真空容器1内壁及内部结构之间形成较大空间。降低粒子在最外封闭磁面可能产生的再循环现象。
一些实施例中,参见图2,多个流体还包括分布在热电子流体与热离子流体8、高能电子流体9之间的包含高能离子的高能离子流体12。
具体的,高能离子流体12分布在热电子流体与所述热离子流体8的最外封闭磁面10的外侧,且位于高能电子流体9的最外边界11的内侧。
一些实施例中,高能离子流体与热电子流体、热离子流体和高能电子流体至少部分重叠。
一些实施例中,每一种流体的截面基本为D形。每一种流体形成球形环。本申请实施例中,“基本”是指其限定的内容并非绝对。例如,基本为D形,是指其形成并非为绝对标准的D形,而是包括近似的D形。
一些实施例中,多个流体中,至少一个流体形成三维的球形环形状。
本申请实施例中,真空容器1设置有多个真空室窗口6。真空室窗口6用于接入等离子体加热与电流驱动系统7、等离子体加料系统以及等离子体测量系统等,实现对真空室内形成的等离子体的加热、驱动、测量等。
本申请实施例中,真空容器1可以为但不限于圆环形结构筒的形状。环形结构的中心轴附近可有中心柱2。
一些实施例中,真空容器1为单层结构。另外一些实施例中,真空容器1也可能为双层结构,不做具体限定。真空容器1的材质可为但不限于不锈钢。真空容器1的壁有足够的厚度(例如可为0.5cm~10cm)来维持运行的安全与稳定。投入运行前,真空容器1可用感应放电或射频/微波放电作表面清洗,清除真空容器1内表面吸附的气体和杂质。然后可经过硼化、硅化或铍化处理清除表面杂质。真空容器1并可用无油真空抽气系统抽至超高真空(例如,10 -6Pa,)。
真空容器1的内壁简单干净,部件尽量少,这样可以将聚变过程中产生的电子回旋辐射绝大部分反射进入等离子体中,降低等离子体电磁波加热与驱动过程中的电子回旋辐射(又叫同步辐射)损失,进而提高电流驱动效率。
中心柱2可与环向场线圈71形成闭合回路。
一些实施例中,保持等离子体的装置还包括多个限制器3,多个限制器3设置于真空容器1的内部以及中心柱2表面,限制器3与真空 容器1的内壁绝缘,限制器3与真空容器1的内壁形成不同的电压,以输出直流电。限制器3能够拦截或捕获热电子流体8包含的热电子以及高能电子流体包含的高能电子,真空容器1的壁能够拦截或捕获热离子流体8包含的热离子。当多个流体包括高能离子流体时,真空容器1的壁还能拦截或捕获高能粒子流体包含的高能离子。限制器3与真空容器1的内壁形成不同的电压,以输出直流电。
真空容器1的内部以及中心柱2表面设置多个限制器3(又称孔栏),用来限制等离子体的边界,以避免等离子体与真空容器1的壁接触,损坏真空容器1的壁。限制器3可用钼、钨等耐高温材料做成。中心柱2上的限制器,可以与气源(燃料)探针等机制配合。
限制器3与真空容器1的壁之间进行绝缘设计,二者会形成不同的电压,实现聚变能量的输出。限制器3能够拦截遗失的热电子、高能电子和一部分从等离子体逃逸的热离子,真空容器1的壁及其他器件拦截大部分遗失的热离子和高能离子,因此,把限制器3和真空容器1的壁绝缘,限制器3带负电,真空容器1的壁带正电,两者之间形成相对较高的电势,可以用来直接产生直流电。
一些实施例中,真空容器1的内壁设置有电磁波及高于电磁波频率的光子的反射面4,反射面4用于减少电磁波加热和驱动的损失。反射面4的设置位置可以为所有诊断系统安装的真空室窗口及真空泵的进口。
一些实施例中,真空容器1的外壁设置有屏蔽结构5,屏蔽结构5用于吸收高能电子产生的高能量韧致辐射,以实现热量收集与输出。
由于高能电子产生的韧致辐射,包含高能量的韧致辐射,即硬X射线;低能量的韧致辐射,即软X射线等。低能量的韧致辐射可以被真空容器壁反射进而被约束,高能量的韧致辐射用来输出能量。
输出的热量可以但不限于通过加热水产生蒸汽发电。屏蔽结构5例如可以采用铅等重金属材料。屏蔽结构的厚度约为但不限于30cm。
一些实施例中,等离子体磁约束系统7包括:环向场线圈(TF)71,其用于产生环向磁场与等离子体电流产生的极向磁场一起构成磁面嵌套的螺旋形磁场结构来约束等离子体;极向场线圈(PF)72,其用于产生垂直磁场和水平磁场来维持等离子体位置平衡和等离子体的 截面形状。环向场线圈(TF)71与极向场线圈(PF)72设置于真空容器1外侧或内侧。极向场线圈72在环向场线圈71的内部或者外部,但不限制于这种形式。
环向场线圈71与极向场线圈72的材质可为常温普通导体、低温普通导体和各种超导体。环向场线圈71通常由12~32个圆形或非圆形线圈组成。极向场线圈72通常由6-10个近似圆形线圈组成。每个线圈又是由1匝或多匝组成。形状包括但不限于为D形。
此外,环形场线圈71的与极向场线圈72的线圈外侧设置有支撑限位结构、冷却结构以及线圈电源系统(图中均未示出)。
一些实施例中,保持高性能等离子体的装置还包括等离子体加热与电流驱动系统。等离子体加热与电流驱动系统通过真空室窗口6真空地、密封地接入真空容器1。等离子体加热与电流驱动系统用于加热等离子体以及驱动等离子体电流。等离子体加热与电流驱动系统包括电磁波加热与电流驱动系统、离子加热与电流驱动系统或者中性束加热与电流驱动系统。
电磁波包括但是不限于电子回旋波、低杂波等。电磁波能够高效驱动电子,其中包括高能电子。大量高能电子受磁场约束,可以长时间地、稳定地存在于真空室内,并在真空室内形成大量的环向电流。环向电流产生极向磁场与磁体系统产生的磁场叠加形成封闭磁面,封闭磁面平衡稳定地约束高密度、高温度的热电子与热离子。因此,获得超越性的等离子体约束能力。
以电子回旋波为例,电子回旋波加热和电流驱动系统可使用微波源(回旋管)、传输系统和发射天线组成的射频系统;以及控制、微波参数测量、电源及冷却等辅助子系统组成。该系统将频率可为电子回旋频率范围的基波或谐波的射频波发射到真空室内,通过波与真空室内的等离子体相互作用,对等离子体进行加热或无螺旋线圈感应的电流驱动。为了减少电子回旋波加热和驱动的损失,本申请实施例的装置的所有诊断系统的窗口及真空泵的进口等都可使用电子回旋辐射的屏障结构,让电子回旋波在真空室内被频繁反射,直到被等离子体全部吸收。因此整个电子回旋波电流驱动的效率估计会超过1A/W,会远远超过现有托卡马克或球形托卡马克装置中电流驱动效率的10-100倍。
电子回旋加热系统中的毫米波可通过波导管及控制系统注入真空室中,可调整其注入角度与位置,达到高效加热及电流驱动的目的。
此外,还可以采用离子加热或者中性束加热的方式,在此不做具体限定。
本申请实施例中,真空容器1内部空间的高度为H,真空容器1内部空间的宽度为W。其中,对于内部空间为不规则结构或形状时,内部空间的高度实质上为垂直方向上的最大高度;内部空间的宽度实质上为水平方向上的最大宽度。
一些实施例中,中心柱的直径为0.1-0.15W。
一些实施例中,高能电子流体的高度H eh为0.8-0.9H。例如,H eh=0.85H。高能电子流体的宽度W eh为0.8-0.9W。例如,W eh=0.85W。
一些实施例中,热电子热流体与热离子流体8的高度为0.6-0.7H。热电子热流体与热离子流体的宽度为0.6-0.7W。由于热电子和热离子混合分布在最外封闭磁面10内,因此热电子热流体与热离子流体8的高度即为热电子流体球形环的高度H el和热离子流体球形环的高度H il。即H el=H il=0.6-0.7H。同样,热电子热流体与热离子流体8的宽度即为热电子流体球形环的宽度W el和热离子流体球形环的宽度W il。即W el=W il=0.6-0.7W。
由于热电子热流体与热离子流体8的高度为真空容器内部空间的0.6-0.7H,反过来说明热电子热流体与热离子流体8的最外封闭磁面10距离真空容器1的内壁的距离为0.3-0.4H,进而反映出最外封闭磁面10与真空容器内壁及内部结构之间形成较大空间。
同理的,由于热电子热流体与热离子流体8的宽度为真空容器内部空间的0.6-0.7W,反过来说明热电子热流体与热离子流体8的最外封闭磁面10距离真空容器1的内壁的距离为0.3-0.4W,进而反映出等离子体的最外封闭磁面10与真空容器内壁及内部结构之间形成较大空间。
一些实施例中,真空容器1的内壁与最外封闭磁面10的距离比一般的托卡马克及球形托卡马克相当的距离大数倍到大一个数量级以上。
本申请实施例中,由于等离子体的最外层具有高能电子流体,因 此真空容器1的内壁与等离子体形成的位形的最外封闭磁面的距离比现有的托卡马克装置和球形托卡马克装置大数倍甚至到一个数量级以上。传统Tokamak常用限制器在封闭磁面的最外界面的上部、下部、内部与外部(四者任选或者任意组合)与最外封闭磁面直接接触。本申请实施例的装置在最外封闭磁面的上部、下部与外部维持较大的距离。由于本申请形成的球形环位形中形成有高能电子流体,高能电子流体的维持使得环向电流不只在最外封闭磁面内部,在最外封闭磁面外部也有很大的环向电流,进而使得等离子体的最外封闭磁面与真空容器内壁及内部结构之间形成较大空间,与传统的Tokamak的壁与最外封闭磁面之间的距离大数倍甚至到一个数量级以上。例如2倍、5倍、10倍、20倍、50倍等,不限于此。
一些实施例中,保持高性能等离子体的装置还包括等离子体加料系统。等离子体加料系统用来为真空室内的等离子体加料或者补充加料。放电清洗时,一般送入真空室内的气体是氢、氦等。因清洗方法和目的不同而使用不同气体。氢硼等离子体放电使用的燃料是氢气、硼粉或乙硼烷等。加料的方法可用喷气(gas puffing)、弹丸注入(pellet injection)、超声分子束注入(supersonic molecular beam injection)等方式。
保持高性能等离子体的装置的等离子体测量与控制系统完成对等离子体电流、波形、位置、截面形状、密度、温度、电流密度分布或安全因子(q)值分布和等离子体破裂等控制。
本申请实施例的保持高性能等离子体的装置形成具有高性能等离子体,其至少包括高能电子、热电子、热离子三种不同的粒子。这些粒子分别形成不同的流体,多个不同的流体进一步形成球形环位形,其具有多流体平衡的特征。其中,该多流体可以为三流体,也可以为四流体。三流体包括热电子流体、热离子流体、高能电子流体,四流体包括热电子流体、热离子流体、高能电子流体以及高能离子流体,其中高能离子流体包含高能离子粒子,高能离子可以是由聚变燃烧产生的粒子。
下面将以具有三流体的球形环位形为例来介绍位形的结构特征、形成过程与机制以及具有的优势。
图3a至图3d示出的是具有三流体的球形环位形示意图。其中,图3a为极向磁通面分布示意图;图3b为总环向电流分布示意图;图3c为热电子、热离子携带的环向电流分布示意图;图3d为高能电子携带的环向电流分布示意图。每个图中的最外黑色边界示意限制器。其中,图3a中的闭合实线代表封闭的磁通面,虚线代表未封闭的磁通面;图3b、图3c、图3d中的,虚线代表不同的环向电流等值面(电流线);实线10代表最外封闭磁面(磁通面),实线11代表高能电子流体最外边界(即环向电流边界)。该高性能等离子体包括:高能电子、热电子、热离子,这些粒子分别形成不同的流体,例如热电子形成热电子流体,热离子形成热离子流体8(见图3c)、高能电子形成高能电子流体9(见图3d),每一种流体分别形成不同尺寸的近似“D形”截面的球形环,这些球形环部分重叠。热电子、热离子与高能电子均携带环向电流,总环向电流见图3b,与外加磁场共同形成有封闭磁面(见图3a)。高能电子流体9形成有最外边界11。热电子流体与热离子流体8分布在最外封闭磁面10内部,高能电子流体9同时维持在最外封闭磁面10的内部与外部。最外封闭磁面10的边界与高能电子流体的最外边界11(即环向电流的边界)受极向场线圈电流的控制。
参见图1和图2,以下是本申请实施例的高性能等离子体中的热电子流体、热离子流体与高能电子流体、高能离子流体的尺寸、温度、密度均有相应的参数说明:
其中,用W代表柱状真空室1宽度,H代表柱状真空室1高度。中心柱2的直径约为0.1-0.15W。
高能电子流体9高度H eh约为但不限于0.8-0.9H。示例性实施例中,H eh=0.75H。
高能电子流体球形环的宽度W eh约为但不限于0.8-0.9W。示例性实施例中,W eh=0.85W。譬如,用上列参数高能电子流体球形环的大半径r11约为0.25W,小半径r12约为0.175W,环径比约为Aeh=1.43,具体位置可见图1。
热电子流体与热离子流体8球形环高度H el=H il约为但不限于0.6-0.7H。示例性实施例中,H el=H il=0.65H。宽度W el=W il约为但不限于0.6-0.7W。示例性实施例中,W el=W il=0.65W。譬如,用上列参数的热电 子流体与热离子流体球形环的大半径约为0.2W,小半径约0.125W,环径比约为A el=A il=1.6。
高能离子流体12(即α粒子形成的流体)的高度略大于热电子流体与热离子流体8的高度H el与H il,明显小于高能电子流体9的高度H eh
高性能等离子体的温度、密度的参数描述如下:
热电子流体与热离子流体8温度约为,但不限于150-300KeV。例如,具体可以是160KeV、180KeV、190KeV、210KeV、250KeV、270KeV、290KeV等。
高能电子流体9的温度约为但不限于15-30MeV。例如,具体可以是16MeV、18MeV、19MeV、21MeV、25MeV、27MeV、29MeV等。聚变产生的高能离子温度呈慢化分布(slowing down distribution),峰值温度约为但不限于3MeV。
热电子流体与热离子流体8的密度约为但不限于(0.5-5)x10 19m -3。高能电子流体的密度约为但不限于(0.5-5)x10 17m -3
每一种流体在每一个宏观位置(macroscopic model)对力平衡都有贡献。力平衡包括:洛伦兹力(j×B),压强梯度(grad P),向心力(centrifugal force)及电场力(electric field(E)forces)。E×B产生的电子、离子的流速与B垂直,E的方向为径向,所以这个流速有极向流速及环向流速。
以球形环位形的形成与维持的过程与机制为例,对本申请进一步说明如下:
(1)在点火阶段或等离子体启动阶段,外加电磁波加热驱动形成球形环位形的机制:电磁波(Electromagnetic wave,EMW)从外部进入真空腔室在边界加热高能电子流体,高能电子流体携带的环向电流产生的磁场与外加磁体系统产生的磁场叠加形成封闭磁面,约束等离子体。同时,在最外封闭磁面内部,即电子密度比较高的区域,电磁波转换成电子伯恩斯坦波(Electron Bernstein wave,EBW)被等离子体吸收,进而加热等离子体,提升等离子体电流。
(2)在聚变等离子体燃烧阶段(运行阶段),球形环位形的维持方法:氢硼聚变:p+ 11B→3 4He+8.68MeV;
聚变燃烧产生的聚变能的高能离子,比如由氢硼聚变产生的高能 α粒子,即 4He++离子,可加热并维持热等离子体的温度和密度,最外封闭磁面内密度较高的电子产生EBW辐射,EBW部分转换成EMW离开封闭磁面,加热高能电子流体,维持高能电子流体的温度、密度、旋转速度与环向电流,进而维持封闭磁面,约束热等离子体,维持多流体平衡,因而维持聚变燃烧。上述的物理机制正好与用外加电磁波加热驱动形成具有多流体平衡特征的球形环位形的机制是反向的。同时,密度较高的等离子体部分会产生自举电流以及电子、离子高速旋转的电流(电子旋转与离子旋转的方向相反,两者电流相加),构成等离子体电流的重要组成部分。
图4为本申请实施例中具有三流体的位形的实验结果图,由图4可知本申请实施例的三流体位形已经通过实验得到验证。
基于如述机理,上述聚变系统形成的具有多流体平衡特征的球形环位形,也具有如下优势:
本申请实施例中等离子流体的位形具有自然偏滤磁场位形的特征,有利于减少等离子体与材料相互作用的负担。此外,聚变发电时,相当大部分的聚变能会转换为光子辐射(电子同步辐射、电子韧致辐射)的能量产出,也有利于减少等离子体与材料的相互作用的负担。
本申请实施例中等离子形成的具有多个流体的位形中,最外封闭磁面与上下外部的限制器二者可以保持较大距离,降低粒子在最外封闭磁面可能产生的再循环现象,因此,有利于提升封闭磁面内热离子、热电子的能量约束能力。
本申请实施例中等离子流体的位形中,安全因子q在最外封闭磁面趋向与无穷大,电流密度的梯度在最外封闭磁面相对低,增加了撕裂膜的稳定性,进而提升封闭磁面内等离子体的稳定性。
本申请实施例描述的位形中,高能电子流体有极高的温度及很低的密度,由于驱动效率与温度成正比与密度成反比,因此有利于提升电流驱动的效率。
相比于现有聚变装置,本申请的装置能够实现稳态或者长脉冲运行。
本申请实施例描述的位形以及热量输出与直接发电的机制能够降低聚变燃烧的劳森判据的参数要求。聚变反应相对较容易实现,装置 相对较小。因此本申请实施例的装置可作为小型分布式的聚变能源。
综上,本申请实施例的用于保持高性能等离子体的装置,为高效紧凑型球形托卡马克(Spherical Tokamak,ST)或球形环(Spherical Torus,ST)聚变反应系统,用于在真空腔室内形成和保持具有高约束性能的低环径比球形环位形,该系统包括:真空容器、等离子体约束系统、等离子体加热与电流驱动系统、等离子体加料系统、等离子体测量与控制系统。真空容器内的空间用于等离子体形成,等离子体靠外加磁场及等离子体本身电流协同形成的磁场共同约束,等离子体温度与电流是经过高频电磁波设备产生的功率来加热及驱动形成,等离子体的密度由加料系统注入燃料来维持,等离子体的物理参数及功能由测量系统获得,也可以经过控制系统来调整并维持等离子体的物理参数和功能。
与常规的托卡马克装置相比,本申请实施例的装置能够形成具有多个流体的位形,且高能电子流体包围热电子流体与热离子流体,高能电子流体的维持使得环向电流不只在最外封闭磁面内部,在最外封闭磁面的外部也有很大的环向电流,环向电流产生极向磁场与磁体系统产生的磁场叠加形成封闭磁面,封闭磁面平衡稳定地约束高密度、高温度的热电子与热离子,从而有效避免等离子体湍流及能量扩散,降低粒子在最外封闭磁面可能产生的再循环现象,进而有效提升封闭磁面内热离子、热电子的能量约束能力与稳定性。
本申请实施例提供一种保持高性能等离子体的方法。该方法可由上述实施例的装置实现。因此上述装置实施例的描述可用于理解和解释下述保持高性能等离子体的方法的实施例。下述保持高性能等离子体的方法的实施例也可用于理解和解释上述装置实施例。
本申请实施例提供的保持高性能等离子体的方法包括:
在环绕中心柱2设置的环形真空容器1内启动等离子体;
通过磁场限制、成形和控制真空容器1内的等离子体,以使等离体子形成具有多个流体的位形;其中,多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,多个流体之间至少部分重叠。
一些实施例中,位形包括:
分布在位形最内层的包含热电子的热电子流体8和包含热离子的 热离子流体8,热电子流体与热离子流体基本完全重叠;
包围热电子流体与热离子流体8的、包含高能电子的高能电子流体9。
一些实施例中,等离子体还包括分布在热电子流体与热离子流体8的最外封闭磁面10的外侧,且位于高能电子流体9的最外边界11的内侧的包含高能离子的高能离子流体12。
一些实施例中,高能离子流体与热电子流体、热离子流体和高能电子流体至少部分重叠。
一些实施例中,每一种流体的截面基本为D形。
一些实施例中,至少一个流体形成三维的球形环形状。
一些实施例中,通过在真空容器1的内部设置相互绝缘的多个限制器3,限制器3拦截从热电子流体及高能电子流体逃逸的热电子及高能电子,真空容器1的壁拦截从热离子流体遗失的热离子。当多个流体包括高能离子流体时,真空容器1的壁还能拦截或捕获高能粒子流体包含的高能离子。限制器3带负电,真空容器1的壁带正电,限制器3与真空容器1的壁形成不同的电压,以输出直流电。
一些实施例中,通过在真空容器1的内壁设置电磁波及高于电磁波频率的光子的反射面4,减少电磁波加热和驱动的损失。
一些实施例中,通过设置在真空容器的外壁的屏蔽结构5吸收高能电子产生的高能量韧致辐射,以输出热量。
一些实施例中,中心柱2的直径为0.1-0.15W;其中,W为真空容器内部空间的宽度。
一些实施例中,高能电子流体9的高度H eh=0.8-0.9H;高能电子流体9的宽度W eh=0.8-0.9W;其中,H为真空容器1内部空间的高度,W为真空容器1内部空间的宽度。
一些实施例中,热电子流体与热离子流体8高度H el=H il=0.6-0.7H,热电子流体与热离子流体8的宽度W el=W il=0.6-0.7W;其中,H为真空容器1内部空间的高度,W为真空容器1内部空间的宽度。
本申请实施例提供了一种各种无中子聚变反应堆芯,其包括上述实施例的保持高性能等离子体的装置。
本申请实施例提供一种发电站,其包括上述实施例的保持高性能 等离子体的装置。
该发电站能够可实现多种能量输出方式,其中估计40%变成直流电,30%热工,总能量输出效率达到高于50%的效率,输出功率相对较高。
本申请实施例提供一种发热能站,其包括上述实施例的保持高性能等离子体的装置。
本申请实施例的保持高性能等离子体的装置能力输出的方式有多种。
能量输出方式一:热量输出
聚变能转换为光子辐射,包括电子同步辐射、电子韧致辐射,其中高能电子产生的韧致辐射,包含硬X射线,即高能量的韧致辐射;软X射线,即低能量的韧致辐射等。同步辐射与低能量的韧致辐射可以被真空容器壁反射进而被约束,高能量的韧致辐射用来输出能量。可以在真空容器壁与限制器之间设置屏蔽层,例如铅等重金属,厚度约为但不限于30em,屏蔽层吸收高能量的韧致辐射,转换成热量输出。热量输出可采用但不限于传统方法,例如用于供热,或通过水加热产生蒸汽发电及产生热水等。
能量输出方式二:直接发电
本申请实施例的位形中,热电子与热离子在高能电子流体边界有极不同的轨道,遗失的热电子大部分被限制器拦截,逃逸的热离子大部分被真空容器壁及其他部件拦截,因此,把限制器和真空容器壁绝缘,限制器带负电,真空容器壁带正电,两者之间形成相对较高的电势,可以用来直接产生直流电。上述电势估计与热电子温度成正比。
此外,由于本申请实施例中的等离子流体的位形具有优异的等离子约束能力与稳定性等优势,使其具有广泛的用途,除了商业发电外,还可以作为正电子源或者太空推进光之源,包括但不限于上述用途。
本申请实施例提供了一种极强高能宽谱光子源,其包括上述实施例的保持高性能等离子体的装置。
本申请实施例提供一种太空高能宽谱光子推进器,其包括上述实施例的保持高性能等离子体的装置。
聚变燃烧时会产生电磁波。在装置上设置一个开口,可以形成能量很高的波源,可以用来做高效率的太空推进。
本申请实施例提供一种高能宽谱正电子源,其包括上述实施例的保持高性能等离子体的装置。
高能电子产生的硬X射线会在铅或重金属内产生电子偶(electron-positron pair),即正电子、负电子。部分正电子打到真空容器壁内与负电子结合变成两个0.511MeV的光子,部分正电子回到真空容器内被约束,甚至被电磁波加速,形成正电子电流。正电子的存活时间(lifetime)估计较长,因此本申请实施例的等离子体内正电子的含量相对较高,可以高到全世界正电子源的近100万倍(1Million)。因此,可以称为世界上正电子含量极高的正电子源,正电子源的量与装置的大小及等离子体的参数有关。
本申请实施例提供了一种同位素生产站,其包括上述实施例的保持高性能等离子体的装置。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用,并且考虑这些实施例可以以各种组合或排列彼此组合。本申请的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。

Claims (42)

  1. 一种保持高性能等离子体的装置,包括:
    中心柱;
    真空容器,其环绕所述中心柱设置,所述真空容器用于容纳形成的等离子体;
    等离子体磁约束系统,其通过磁场限制、成形和控制所述真空容器内的等离子体,以使所述等离体子形成具有多个流体的位形;其中,所述多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,相邻流体之间至少部分重叠。
  2. 根据权利要求1所述的装置,其特征在于,所述多个流体包括:
    分布在所述位形最内层的包含热电子的热电子流体与包含热离子的热离子流体,所述热电子流体与所述热离子流体完全重叠;
    包围所述热电子流体与所述热离子流体的、包含高能电子的高能电子流体。
  3. 根据权利要求2所述的装置,其特征在于,所述多个流体还包括分布在所述热电子流体与所述热离子流体的最外封闭磁面的外侧,且位于所述高能电子流体的最外边界的内侧的包含高能离子的高能离子流体。
  4. 根据权利要求3所述的装置,其特征在于,所述高能离子流体与所述热电子流体、所述热离子流体和所述高能电子流体至少部分重叠。
  5. 根据权利要求1-4中任意一项所述的装置,其特征在于,每一种流体的截面基本为D形。
  6. 根据权利要求1-4中任意一项所述的装置,其特征在于,至少一个流体形成三维的球形环形状。
  7. 根据权利要求2所述的装置,其特征在于,所述装置还包括多个限制器,多个所述限制器设置于所述真空容器的内部以及所述中心柱表面,所述限制器拦截从所述热电子流体与所述高能电子流体逃逸的所述热电子与所述高能电子,所述真空容器的壁拦截从所述热离子流体与所述高能离子流体遗失的所述热离子与所述高能离子。
  8. 根据权利要求7所述的装置,其特征在于,所述限制器与所述真空容器的内壁绝缘,所述限制器带负电,所述真空容器的壁带正电, 所述限制器与所述真空容器的壁形成不同的电压,以输出直流电。
  9. 根据权利要求1所述的装置,其特征在于,所述真空容器的内壁设置有电磁波及高于电磁波频率的光子的反射面。
  10. 根据权利要求2所述的装置,其特征在于,所述真空容器的外壁设置有屏蔽结构,所述屏蔽结构吸收所述高能电子产生的高能量韧致辐射,以输出热能。
  11. 根据权利要求1所述的装置,其特征在于,所述中心柱的直径为0.1-0.15W;其中,W为所述真空容器内部空间的宽度。
  12. 根据权利要求2所述的装置,其特征在于,所述高能电子流体的高度为0.8-0.9H;所述高能电子流体的宽度为0.8-0.9W;其中,H为所述真空容器内部空间的高度,W为所述真空容器内部空间的宽度。
  13. 根据权利要求2所述的装置,其特征在于,所述热电子流体与所述热离子流体的高度均为0.6-0.7H,所述热电子流体与所述热离子流体的宽度均为0.6-0.7W;其中,H为所述真空容器内部空间的高度,W为所述真空容器内部空间的宽度。
  14. 根据权利要求2所述的装置,其特征在于,所述热电子流体与所述热离子流体的温度为150-300KeV。
  15. 根据权利要求2所述的装置,其特征在于,所述高能电子流体的温度为15-30MeV。
  16. 根据权利要求2所述的装置,其特征在于,所述热电子流体与所述热离子流体的密度为(0.5-5)x10 19m -3
  17. 根据权利要求2所述的装置,其特征在于,所述高能电子流体的密度可为(0.5-5)x10 17m -3
  18. 根据权利要求1所述的装置,其特征在于,所述位形的形状为球形环。
  19. 一种保持高性能等离子体的方法,包括:
    在环绕中心柱设置的环形真空容器内形成并启动等离子体;
    通过磁场限制、成形和控制所述真空容器内的所述等离子体,以使所述等离体子形成具有多个流体的位形;其中,所述多个流体由内至外形成多层,位于外层的流体包围位于内层的流体,所述多个流体之间至少部分重叠。
  20. 根据权利要求19所述的方法,其特征在于,所述多个流体包括:
    分布在所述位形的最内层的包含热电子的热电子流体和包含热离子的热离子流体,所述热电子流体与所述热离子流体基本完全重叠;
    包围所述热电子流体与所述热离子流体的、包含高能电子的高能电子流体。
  21. 根据权利要求20所述的方法,其特征在于,所述多个流体还包括分布在所述热电子流体与所述热离子流体的最外封闭磁面的外侧,且位于所述高能电子流体的最外边界的内侧的包含高能离子的高能离子流体。
  22. 根据权利要求21所述的方法,其特征在于,所述高能离子流体与所述热电子流体、所述热离子流体和所述高能电子流体至少部分重叠。
  23. 根据权利要求19-22中任意一项所述的方法,其特征在于,每一种流体的截面基本为D形。
  24. 根据权利要求19-22中任意一项所述的方法,其特征在于,至少一个流体形成三维的球形环形状。
  25. 根据权利要求221所述的方法,其特征在于,通过在所述真空容器的内部设置多个限制器,所述限制器拦截从所述热电子流体与所述高能电子流体逃逸的所述热电子与所述高能电子,所述真空容器的壁拦截从所述热离子流体遗失的所述热离子与所述高能离子,所述限制器带负电,所述真空容器的壁带正电,所述限制器与所述真空容器的壁形成不同的电压,以输出直流电。
  26. 根据权利要求20所述的方法,其特征在于,通过在所述真空容器的内壁设置电磁波及高于电磁波频率的光子的反射面,减少电磁波加热和驱动的损失。
  27. 根据权利要求20所述的方法,其特征在于,通过设置在所述真空容器的外壁的屏蔽结构吸收所述高能电子产生的高能量韧致辐射,以输出热量。
  28. 根据权利要求19所述的方法,其特征在于,所述中心柱的直径为0.1-0.15W;其中,W为所述真空容器内部空间的宽度。
  29. 根据权利要求20所述的方法,其特征在于,所述高能电子流体的高度为0.8-0.9H;所述高能电子流体的宽度为0.8-0.9W;其中,H为所述真空容器内部空间的高度,W为所述真空容器内部空间的宽度。
  30. 根据权利要求20所述的方法,其特征在于,所述热电子流体与所述热离子流体的高度均为0.6-0.7H,所述热电子流体与所述热离子流体的宽度均为0.6-0.7W;其中,H为所述真空容器内部空间的高度,W为所述真空容器内部空间的宽度。
  31. 根据权利要求20所述的方法,其特征在于,所述热电子流体与所述热离子流体的温度为150-300KeV。
  32. 根据权利要求20所述的方法,其特征在于,所述高能电子流体的温度为15-30MeV。
  33. 根据权利要求20所述的方法,其特征在于,所述热电子流体与所述热离子流体的密度为(0.5-5)x10 19m -3
  34. 根据权利要求21所述的方法,其特征在于,所述高能电子流体的密度为(0.5-5)x10 17m -3
  35. 根据权利要求20所述的方法,其特征在于,所述位形的形状为球形环。
  36. 一种各种无中子聚变反应堆芯,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  37. 一种发电站,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  38. 一种发热能站,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  39. 一种极强高能宽谱光子源,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  40. 一种太空高能宽谱光子推进器,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  41. 一种高能宽谱正电子源,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
  42. 一种同位素生产站,其包括权利要求1-18任一项所述的保持高性能等离子体的装置。
PCT/CN2020/085806 2020-04-15 2020-04-21 保持高性能等离子体的装置和方法 WO2021208117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010292584.XA CN113539524B (zh) 2020-04-15 2020-04-15 保持高性能等离子体的装置和方法
CN202010292584.X 2020-04-15

Publications (1)

Publication Number Publication Date
WO2021208117A1 true WO2021208117A1 (zh) 2021-10-21

Family

ID=78083970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085806 WO2021208117A1 (zh) 2020-04-15 2020-04-21 保持高性能等离子体的装置和方法

Country Status (2)

Country Link
CN (1) CN113539524B (zh)
WO (1) WO2021208117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116189927A (zh) * 2023-04-25 2023-05-30 中国科学院合肥物质科学研究院 一种满足千秒等离子体运行的粒子再循环控制系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874646A (zh) * 2001-03-19 2006-12-06 加州大学评议会 场反转配置中的受控聚变和直接能量转换
CN103065761A (zh) * 2013-01-11 2013-04-24 哈尔滨工业大学 磁通密度连续可调的均匀径向磁场产生装置
CN103765999A (zh) * 2011-09-02 2014-04-30 托卡马克方案英国有限公司 高效紧凑型聚变反应堆
CN105723464A (zh) * 2013-09-24 2016-06-29 Tri 阿尔法能源公司 用于形成和保持高性能frc的系统和方法
CN106134294A (zh) * 2013-11-29 2016-11-16 首尔大学校产学协力团 能通过磁场控制使等离子体成形的等离子体处理设备
CN106463182A (zh) * 2014-04-10 2017-02-22 托卡马克能量有限公司 高效紧凑型聚变反应堆
WO2019150123A1 (en) * 2018-02-01 2019-08-08 Tokamak Energy Ltd Partially-insulated hts coils
CN110945599A (zh) * 2017-06-07 2020-03-31 华盛顿大学 等离子体约束系统及使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065351A (en) * 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US7482607B2 (en) * 2006-02-28 2009-01-27 Lawrenceville Plasma Physics, Inc. Method and apparatus for producing x-rays, ion beams and nuclear fusion energy
US20110127915A1 (en) * 2007-01-18 2011-06-02 Edwards W Farrell Plasma containment
CN104347123A (zh) * 2013-07-31 2015-02-11 王钢 冠醚配位模板效应冷核反应堆
CN107910074A (zh) * 2017-11-09 2018-04-13 新奥科技发展有限公司 一种用于静电约束核聚变的阴极装置及静电约束核聚变装置
CN209200131U (zh) * 2018-11-30 2019-08-02 新奥科技发展有限公司 天线支架、射频天线组件及聚变设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1874646A (zh) * 2001-03-19 2006-12-06 加州大学评议会 场反转配置中的受控聚变和直接能量转换
CN103765999A (zh) * 2011-09-02 2014-04-30 托卡马克方案英国有限公司 高效紧凑型聚变反应堆
CN103065761A (zh) * 2013-01-11 2013-04-24 哈尔滨工业大学 磁通密度连续可调的均匀径向磁场产生装置
CN105723464A (zh) * 2013-09-24 2016-06-29 Tri 阿尔法能源公司 用于形成和保持高性能frc的系统和方法
CN106134294A (zh) * 2013-11-29 2016-11-16 首尔大学校产学协力团 能通过磁场控制使等离子体成形的等离子体处理设备
CN106463182A (zh) * 2014-04-10 2017-02-22 托卡马克能量有限公司 高效紧凑型聚变反应堆
CN110945599A (zh) * 2017-06-07 2020-03-31 华盛顿大学 等离子体约束系统及使用方法
WO2019150123A1 (en) * 2018-02-01 2019-08-08 Tokamak Energy Ltd Partially-insulated hts coils

Also Published As

Publication number Publication date
CN113539524B (zh) 2023-05-02
CN113539524A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
US4267488A (en) Containment of plasmas at thermonuclear temperatures
Rapp et al. The development of the material plasma exposure experiment
US20210158977A1 (en) System and method for small, clean, steady-state fusion reactors
JP2018185321A (ja) 小規模な非汚染物質排出核反応炉内の中性子を低減する方法、装置およびシステム
KR20140074322A (ko) 효율적인 콤팩트 핵융합로
JP2013533473A (ja) コンパクト核融合炉
JP2017514120A (ja) 高効率コンパクト核融合炉
US5353314A (en) Electric field divertor plasma pump
WO2021208117A1 (zh) 保持高性能等离子体的装置和方法
US20240013932A1 (en) Magnetic mirror machine
US10580535B2 (en) Tokamak with poloidal field coil arrangement for double null merging ignition, method therefor and nuclear fusion reactor with the same
Moir et al. Axisymmetric magnetic mirror fusion-fission hybrid
Conn et al. Major design features of the conceptual D--T tokomak power reactor, UWMAK-II
Golovin et al. TOKAMAK AS A POSSIBLE FUSION REACTOR–COMPARISON WITH OTHER CTR DEVICES
Rutherford The tokamak: 1955–80
Sudan Particle ring fusion
US20240096509A1 (en) Electromagnetic confinement of plasma in a controlled fusion reactor
Wang Current status of research on magnetic confinement fusion and superconducting tokamak devices
US20240130029A1 (en) Edge current drive in magnetic fusion devices
Strelkov Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
Hirano et al. A DT fusion reactor design in field-reversed configuration using normal conductive coils
Fowler et al. Prospects for an axisymmetric advanced fuel tandem mirror
Chen et al. Introduction to Controlled Fusion
Campbell Magnetic confinement fusion
Rostagni Alternative Fusion Concepts (Report on the IAEA Technical Committee Meeting and Workshop, Erice, 1981)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930693

Country of ref document: EP

Kind code of ref document: A1