WO2021207929A1 - 信号处理方法和装置 - Google Patents

信号处理方法和装置 Download PDF

Info

Publication number
WO2021207929A1
WO2021207929A1 PCT/CN2020/084699 CN2020084699W WO2021207929A1 WO 2021207929 A1 WO2021207929 A1 WO 2021207929A1 CN 2020084699 W CN2020084699 W CN 2020084699W WO 2021207929 A1 WO2021207929 A1 WO 2021207929A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrograms
spectrogram
phase compensation
channel
signals
Prior art date
Application number
PCT/CN2020/084699
Other languages
English (en)
French (fr)
Other versions
WO2021207929A9 (zh
Inventor
朱金台
劳大鹏
李德建
杨晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080005168.5A priority Critical patent/CN112740068B/zh
Priority to PCT/CN2020/084699 priority patent/WO2021207929A1/zh
Publication of WO2021207929A1 publication Critical patent/WO2021207929A1/zh
Publication of WO2021207929A9 publication Critical patent/WO2021207929A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target

Definitions

  • This application relates to the field of communications, and in particular to signal processing methods and devices.
  • the aforementioned communication systems may include: multiple input multiple output (MIMO) systems, simple input multiple output (SIMO) systems, multiple input simple output (MISO) systems, etc. .
  • MIMO multiple input multiple output
  • SIMO simple input multiple output
  • MISO multiple input simple output
  • the receiving end After receiving signals through multiple channels, the receiving end needs to perform spectral analysis on the signals obtained through different channels to obtain multiple spectrograms.
  • the above-mentioned spectrum analysis includes, for example, a distance-dimensional fast Fourier transform (FFT), a Doppler-dimensional FFT, an angle-dimensional FFT, and the like.
  • the receiving end can accumulate spectrograms corresponding to different paths, obtain the accumulated spectrograms, and continue subsequent signal processing. For example, follow-up processing such as constant false alarm detection (constant false alarm rate detection, CFAR), direction of arrival (DOA) and tracking.
  • constant false alarm detection constant false alarm rate detection, CFAR
  • DOA direction of arrival
  • a coherent accumulation method when performing accumulation processing on multiple spectrograms, there are multiple accumulation methods. For example, a coherent accumulation method, a non-coherent accumulation method, or a partially coherent accumulation method may be adopted. Among them, the coherent accumulation or partial coherent accumulation method can increase the accumulation gain of the signal, but it is necessary to use the spectral analysis method for correlation accumulation, which has high computational complexity and consumes more computational resources.
  • the present application provides a method and device for signal processing, which can improve the efficiency of signal processing.
  • a signal processing method including: acquiring M ⁇ N sets of signals, the M ⁇ N sets of signals correspond to M ⁇ N channel combinations one-to-one, and the M ⁇ N channel combinations are M A channel combination formed by two transmitting channels and N receiving channels, where M and N are positive integers; perform spectral analysis on the M ⁇ N group of signals to obtain multiple first spectrograms; and perform spectral analysis on the multiple first spectrograms;
  • the complex signal of the figure performs phase compensation to obtain a plurality of second spectrograms, and the plurality of first spectrograms correspond to the plurality of second spectrograms one-to-one, wherein the phase compensation includes at least one of the following: The phase compensation of the receiving channel and the phase compensation of the transmitting channel.
  • the phase compensation of the receiving channel is used to compensate the phase difference of the complex signal due to different receiving channels
  • the phase compensation of the transmitting channel is used to compensate the complex signal due to the different transmitting channels.
  • the receiving end may perform phase compensation of the receiving channel or phase compensation of the transmitting channel for the multiple first spectrograms, and obtain multiple second spectrograms.
  • the second spectrogram after phase compensation can eliminate the phase difference of the complex signal due to different receiving channels or different transmitting channels. Therefore, the accumulation of the spectrogram obtained after accumulating the complex signals in multiple second spectrograms Greater gain can improve the efficiency of signal processing.
  • the method before performing phase compensation on the complex signals of the multiple first spectrograms, the method further includes: performing phase compensation on the complex signals in the multiple first spectrograms The complex signal performs amplitude normalization.
  • the amplitude normalization is performed before the phase compensation is performed on the complex signals of the multiple first spectrograms, so as to improve the accuracy of the phase compensation, thereby improving the signal processing efficiency.
  • performing phase compensation on the complex signals of the plurality of first spectrograms includes: performing phase compensation on at least part of the first spectrograms in the plurality of first spectrograms.
  • a spectrogram performs phase compensation of the receiving channel, so that at least two second spectrograms in the plurality of second spectrograms have the same phase of the complex signal at the same position; or, for the plurality of first spectrograms At least part of the first spectrogram performs phase compensation of the transmission channel, so that at least two second spectrograms in the plurality of second spectrograms have the same phase of the complex signal at the same position.
  • performing phase compensation on the complex signals of the multiple first spectrograms includes: dividing the multiple first spectrograms into at least one first spectrogram A spectrogram group, the first spectrogram included in each first spectrogram group corresponds to the same transmitting channel; the phase compensation of the receiving channel is performed on the first spectrogram in each first spectrogram group, so that each The first spectrogram in the first spectrogram group and the first target spectrogram in the same position have the same phase of the complex signal, wherein the at least one spectrogram group corresponds to at least one of the first target spectrogram in a one-to-one correspondence, The at least one first target spectrogram corresponds to the same receiving channel; the multiple second spectrograms are determined according to the multiple first spectrograms after performing phase compensation of the receiving channel.
  • the phase compensation of the receiving channel makes the first spectrogram of each first spectrogram group the same phase as the complex signal of the first target spectrogram, and at least one first spectrogram group is at least One first target spectrogram corresponds to one by one, and at least one first target spectrogram corresponds to the same receiving channel, so that the phase difference caused by the different receiving channels in the first spectrogram in the at least one first spectrogram group can be eliminated, so as to Increase the accumulation gain when the signal is accumulated.
  • the determining the multiple second spectrograms according to the multiple first spectrograms after performing the phase compensation of the receiving channel includes: Determine the multiple first spectrograms after the phase compensation of the receiving channel is performed as the multiple second spectrograms; or determine the multiple first spectrograms after the phase compensation of the receiving channel is performed as multiple A third spectrogram; the phase compensation of the transmission channel is performed on the plurality of third spectrograms, so that the phase of the complex signal of the plurality of third spectrograms is the same as the phase of the complex signal of the second target spectrogram, wherein ,
  • the second target spectrogram is any spectrogram of the plurality of third spectrograms; the plurality of third spectrograms after performing the phase compensation of the transmission channel are determined as the plurality of second spectra picture.
  • the phase compensation of the transmission channel makes the phases of the complex signals of the multiple third spectrograms and the second target spectrogram the same, so that the multiple third spectrograms can be eliminated due to different reception channels and transmission channels.
  • the phase difference caused by the difference to increase the accumulation gain when the signal is accumulated.
  • performing phase compensation on the complex signals of the multiple first spectrograms includes: dividing the multiple first spectrograms into at least one first spectrogram Two spectrogram groups, the first spectrogram included in each second spectrogram group corresponds to the same receiving channel; the phase compensation of the transmitting channel is performed on the first spectrogram in each second spectrogram group, so that each The first spectrogram in the second spectrogram group and the third target spectrogram in the same position have the same phase of the complex signal, wherein the at least one second spectrogram group and the at least one third target spectrogram are one-to-one Correspondingly, the at least one third target spectrogram corresponds to the same transmission channel; and the multiple second spectrograms are determined according to the multiple first spectrograms after performing the phase compensation of the transmission channel.
  • the phase compensation of the transmission channel makes the first spectrogram of each second spectrogram group the same phase as the complex signal of the third target spectrogram group, and at least one second spectrogram group is at least One third target spectrogram corresponds to one-to-one, and at least one third target spectrogram corresponds to the same transmission channel, so that the phase difference caused by the different transmission channels in the first spectrogram in the at least one second spectrogram group can be eliminated, so as to Increase the accumulation gain when the signal is accumulated.
  • the determining the multiple second spectrograms according to the multiple first spectrograms after performing the phase compensation of the transmit channel includes: Determine the multiple first spectrograms after the phase compensation of the transmission channel is performed as the multiple second spectrograms; or determine the multiple first spectrograms after the phase compensation of the transmission channel is performed as multiple A fourth spectrogram; performing phase compensation of the receiving channel on the plurality of fourth spectrograms so that the phases of the complex signals of the plurality of fourth spectrograms are the same as the phases of the complex signals of the fourth target spectrogram, wherein ,
  • the fourth target spectrogram is any spectrogram in the multiple fourth spectrograms; multiple fourth spectrograms after performing phase compensation of the receiving channel are determined as the multiple second spectrograms picture.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing a spectrum analysis on the M ⁇ N group of signals At least one of the following types of spectrum analysis is used to obtain the multiple first spectrograms: distance-dimensional FFT, Doppler-dimensional FFT, and angle-dimensional FFT.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing a spectrum analysis on the M ⁇ N group of signals
  • the distance dimension FFT is to obtain M ⁇ N distance FFT spectrograms
  • the Doppler dimension FFT is performed on the distance spectrogram to obtain M ⁇ N distance-Doppler FFT spectrograms
  • the multiple first spectrograms are The M ⁇ N distance-Doppler FFT spectrograms.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing a spectrum analysis on the M ⁇ N group of signals The distance dimension FFT is transformed to obtain M ⁇ N distance FFT spectrograms, and the first spectrogram is the M ⁇ N distance FFT spectrograms.
  • the performing complex addition of complex signals based on the multiple second spectrograms to obtain the accumulated spectrogram includes: Perform Doppler FFT on the second spectrogram to obtain multiple range-Doppler FFT spectrograms; perform complex addition on the multiple range-Doppler FFT spectrograms to obtain the accumulated spectrum picture.
  • the method further It includes: performing Doppler-dimensional FFT on the accumulated spectrogram to obtain a range-Doppler FFT spectrogram.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing a spectrum analysis on the M ⁇ N group of signals Spectrum analysis to obtain M ⁇ N fifth spectrograms; divide the M ⁇ N fifth spectrograms into M spectrogram groups, and the N fifth spectrograms included in each spectrogram group correspond to the same Transmitting channel; using spectrum analysis to perform coherent accumulation on each of the M spectrogram groups to obtain M spectrograms, the M spectrograms being the multiple first spectrograms.
  • performing phase compensation on the multiple first spectrograms to obtain multiple second spectrograms includes: performing phase compensation on the multiple first spectrograms The figure performs phase compensation of the transmission channel, so that the phases of the complex signals at the same position of the multiple second spectrograms obtained after the phase compensation are the same.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain M ⁇ N fifth spectrograms includes: performing a spectrum analysis on the M ⁇ N group of signals.
  • the signal performs range-dimensional FFT transformation to obtain M ⁇ N distance FFT spectrograms; performs Doppler-dimensional FFT transformation on the M ⁇ N distance FFT spectrograms to obtain M ⁇ N distance-Doppler FFT spectrograms,
  • the M ⁇ N fifth spectrograms are the M ⁇ N range-Doppler FFT spectrograms.
  • a device for signal processing including: an acquisition unit configured to acquire M ⁇ N groups of signals, the M ⁇ N groups of signals are in one-to-one correspondence with M ⁇ N channel combinations, and the M ⁇ N channel combination is a channel combination formed by M transmitting channels and N receiving channels, M and N are positive integers; the processing unit is used to perform spectral analysis on the M ⁇ N group of signals to obtain multiple A spectrogram; the processing unit is further configured to perform phase compensation on the complex signals of the plurality of first spectrograms to obtain a plurality of second spectrograms, the plurality of first spectrograms and the plurality of first spectrograms One-to-one correspondence between the two spectrograms, wherein the phase compensation includes at least one of the following: phase compensation of the receiving channel and phase compensation of the transmitting channel.
  • the phase compensation of the receiving channel is used to compensate the phase of the complex signal due to different receiving channels.
  • the phase compensation of the transmission channel is used to compensate the phase difference of the complex signal due to the different transmission channels;
  • the processing unit is also used to perform complex addition based on the complex signals of the multiple second spectrograms to obtain the accumulated Spectrogram.
  • the receiving end may perform phase compensation of the receiving channel or phase compensation of the transmitting channel for the multiple first spectrograms, and obtain multiple second spectrograms.
  • the second spectrogram after phase compensation can eliminate the phase difference of the complex signal due to different receiving channels or different transmitting channels. Therefore, the accumulation of the spectrogram obtained after accumulating the complex signals in multiple second spectrograms Greater gain can improve the efficiency of signal processing.
  • the processing unit is further configured to perform amplitude normalization on the complex signals in the multiple first spectrograms.
  • the processing unit is specifically configured to perform phase compensation of the receiving channel on at least part of the first spectrogram in the plurality of first spectrograms, so that At least two second spectrograms in the plurality of second spectrograms have the same phase of the complex signal at the same position; or, performing transmission channel detection on at least part of the first spectrogram in the plurality of first spectrograms
  • the phase compensation makes the phase of the complex signal at the same position of at least two second spectrograms in the plurality of second spectrograms the same.
  • the processing unit is specifically configured to: divide the multiple first spectrograms into at least one first spectrogram group, and each first spectrogram group The first spectrogram included in the graph group corresponds to the same transmitting channel; the phase compensation of the receiving channel is performed on the first spectrogram in each first spectrogram group, so that the first spectrogram in each first spectrogram group The phase of the complex signal at the same position of the graph and the first target spectrogram is the same, wherein the at least one spectrogram group corresponds to at least one first target spectrogram, and the at least one first target spectrogram corresponds to The same receiving channel; and determining the multiple second spectrograms according to the multiple first spectrograms after performing the phase compensation of the receiving channel.
  • the processing unit is specifically configured to: determine multiple first spectrograms after performing phase compensation of the receiving channel as the multiple first spectrograms Second spectrogram; or, determining the multiple first spectrograms after performing the phase compensation of the receiving channel as multiple third spectrograms; performing the phase compensation of the transmitting channel on the multiple third spectrograms, so that all The phases of the complex signals of the plurality of third spectrograms are the same as the phases of the complex signals of the second target spectrogram, wherein the second target spectrogram is any spectrogram in the plurality of third spectrograms; The multiple third spectrograms after performing the phase compensation of the transmission channel are determined as the multiple second spectrograms.
  • the processing unit is specifically configured to: divide the multiple first spectrograms into at least one second spectrogram group, and each second spectrogram group
  • the first spectrogram included in the graph group corresponds to the same receiving channel; the phase compensation of the transmitting channel is performed on the first spectrogram in each second spectrogram group, so that the first spectrogram in each second spectrogram group
  • the phase of the complex signal at the same position of the graph and the third target spectrogram is the same, wherein the at least one second spectrogram group corresponds to at least one third target spectrogram in a one-to-one correspondence, and the at least one third target spectrogram has a one-to-one correspondence.
  • the graphs correspond to the same transmission channel; the multiple second spectrograms are determined according to the multiple first spectrograms after performing the phase compensation of the transmission channel.
  • the processing unit is specifically configured to: determine multiple first spectrograms after performing phase compensation of the transmit channel as the multiple first spectrograms Second spectrogram; or, determining the multiple first spectrograms after performing the phase compensation of the transmitting channel as multiple fourth spectrograms; performing the phase compensation of the receiving channel on the multiple fourth spectrograms, so that all The phases of the complex signals of the plurality of fourth spectrograms are the same as the phases of the complex signals of the fourth target spectrogram, wherein the fourth target spectrogram is any spectrogram in the plurality of fourth spectrograms; Determine multiple fourth spectrograms after performing phase compensation of the receiving channel as the multiple second spectrograms.
  • the processing unit is specifically configured to: perform at least one of the following types of spectrum analysis on the M ⁇ N group of signals to obtain the multiple The first spectrogram: distance dimension FFT, Doppler dimension FFT, angle dimension FFT.
  • the processing unit is specifically configured to: perform range-dimensional FFT on the M ⁇ N group of signals to obtain M ⁇ N range FFT spectra;
  • the distance spectrogram performs Doppler FFT to obtain M ⁇ N distance-Doppler FFT spectrograms, and the plurality of first spectrograms are the M ⁇ N distance-Doppler FFT spectrograms.
  • the processing unit is specifically configured to: perform range-dimensional FFT transformation on the M ⁇ N group of signals to obtain M ⁇ N range FFT spectrograms,
  • the first spectrogram is the M ⁇ N distance FFT spectrogram.
  • the processing unit is specifically configured to: perform Doppler-dimensional FFT on the multiple second spectrograms to obtain multiple distance-Doppler Le FFT spectrogram; performing complex addition on the multiple range-Doppler FFT spectrograms to obtain the accumulated spectrogram.
  • the processing unit is specifically configured to: perform Doppler-dimensional FFT on the accumulated spectrogram to obtain a range-Doppler FFT spectrum picture.
  • the processing unit is specifically configured to: perform spectrum analysis on the M ⁇ N group of signals to obtain M ⁇ N fifth spectrograms;
  • the M ⁇ N fifth spectrograms are divided into M spectrogram groups, and the N fifth spectrograms included in each spectrogram group correspond to the same transmission channel; spectrum analysis is used to analyze the M spectrogram groups
  • Each spectrogram group of performs coherent accumulation to obtain M spectrograms, and the M spectrograms are the multiple first spectrograms.
  • the processing unit is specifically configured to: perform phase compensation of the transmission channel on the plurality of first spectrograms, so that all the results obtained after the phase compensation are The complex signals of the multiple second spectrograms at the same position have the same phase.
  • the processing unit is specifically configured to: perform range-dimensional FFT transformation on the M ⁇ N group of signals to obtain M ⁇ N range FFT spectrograms; Perform Doppler-dimensional FFT transformation on the M ⁇ N distance FFT spectrograms to obtain M ⁇ N distance-Doppler FFT spectrograms, where the M ⁇ N fifth spectrograms are the M ⁇ N Range-Doppler FFT spectrogram.
  • a device which has the function of implementing the method of the first aspect.
  • These functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • a device in a fourth aspect, includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled with the memory and the communication interface. When the processor executes the computer program Or when instructed, the device executes the method of the first aspect described above.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the method of the first aspect.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method of the first aspect described above is implemented.
  • Fig. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • Figure 2 is a flow chart of signal processing.
  • FIG. 3 is a schematic flowchart of a signal processing method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of signal accumulation in a receiving end including multiple receiving channels according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of different receiving channels receiving the same transmission signal according to an embodiment of the present application.
  • Fig. 6 is a spectrum diagram corresponding to signals obtained through different channel combinations in the MIMO system.
  • FIG. 7 is a schematic diagram of a signal processing method according to a specific embodiment of the present application.
  • FIG. 8 is a schematic diagram of a signal processing method according to a specific embodiment of the present application.
  • Fig. 9 is a schematic diagram of a signal processing method according to a specific embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for signal processing according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an apparatus for signal processing according to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new wireless
  • the technical solutions of the embodiments of the present application may be applied to MIMO systems, simple input multiple output (SIMO) systems, multiple input simple output (MISO) systems, and the like.
  • SIMO simple input multiple output
  • MISO multiple input simple output
  • a MIMO system is taken as an example to describe the technical solutions of the embodiments of the present application.
  • the technical solutions of the embodiments of the present application may be applied to radar measurement scenarios, and may also be applied to other communication scenarios.
  • Fig. 1 is a schematic diagram of a communication system in an embodiment of the present application.
  • the communication system includes a receiving end 100 and a transmitting end 200.
  • the receiving end 100 may include N receiving antennas, and each receiving antenna corresponds to a receiving channel.
  • the transmitting terminal 200 includes M transmitting antennas, and each transmitting antenna corresponds to a transmitting channel.
  • M and N are integers greater than or equal to 1, respectively.
  • M transmitting channels and N receiving channels constitute a combination of M ⁇ N transmitting channels and receiving channels.
  • the transmitting terminal 200 transmits a group of signals through M transmitting channels, for the receiving terminal 100, it can receive M ⁇ N groups of signals through N receiving channels.
  • the receiving end 100 also includes a processor 110.
  • the processor 110 can perform signal processing on the M ⁇ N group of signals. For example, it can sample the M ⁇ N group of signals and perform sampling data. Perform spectrum analysis, accumulation and other processing.
  • the processor 110 may include a central processor unit (CPU), a field programmable gate array (FPGA), or an application specific integrated circuit (ASIC), or may also be other types of processing chip.
  • CPU central processor unit
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the receiving end 100 and the transmitting end 200 may be located in different devices, or may be located in the same device.
  • the receiving terminal 100 and the transmitting terminal 200 may be located in the same device, the signal transmitted by the receiving terminal 100 is reflected after encountering a target object, and then the transmitting terminal 200 receives the reflected signal.
  • Figure 2 is a flow chart of signal processing, which takes a radar measurement scenario as an example to show the signal processing flow at the receiving end.
  • the steps in FIG. 2 may be executed by the processor 110 in FIG. 1.
  • the receiving end can perform spectral analysis on the multiple sets of signals to obtain spectrograms corresponding to the multiple sets of signals.
  • the above-mentioned spectrum analysis may include, but is not limited to, at least one of the following types: discrete Fourier transform (DFT), FFT, multiple signal classify (MUSIC), digital beam forming (DBF) )
  • DFT discrete Fourier transform
  • FFT may include distance-dimensional FFT, Doppler-dimensional FFT, or angle-dimensional FFT.
  • the processor 110 may perform accumulation processing on the complex signals in the multiple spectrograms to obtain an accumulated spectrogram.
  • the processor 110 may perform accumulation processing on the complex signals in the multiple spectrograms to obtain an accumulated spectrogram.
  • the accumulation gain of the signal can be increased, and the signal-to-noise ratio of the signal can be improved.
  • the processor 110 may continue to perform subsequent signal processing, for example, CFAR processing, DOA estimation, tracking and other subsequent processing.
  • subsequent signal processing for example, CFAR processing, DOA estimation, tracking and other subsequent processing.
  • the spectrogram is used to represent the representation form of the signal in the time domain in the frequency domain, which can be obtained by performing spectrum analysis on the signal.
  • Spectrogram can be used to show the relationship between the amplitude or phase of a signal and the frequency spectrum.
  • the spectrogram can also indicate the difference between the amplitude or phase of the signal and the distance, speed, or angle of the observation target. Relationship between.
  • the spectrogram is obtained by FFT, it can be called distance FFT spectrogram, Doppler FFT spectrogram, angle FFT spectrogram, distance-Doppler FFT spectrogram, etc., distance-angle FFT spectrogram and so on.
  • the spectrogram can be represented by multiple complex signals, and each complex signal includes phase information, amplitude information, and frequency information of the signal.
  • coherent accumulation or partial coherent accumulation can usually be adopted.
  • coherent accumulation or partial coherent accumulation usually requires the use of spectrum analysis for correlation accumulation, which has high computational complexity and consumes more computational resources.
  • the embodiment of the present application proposes a signal processing method, which can further reduce the computational complexity of signal processing, save computational resources, and make it suitable for high real-time requirements while using the coherent accumulation method for the signal. , Systems with limited power consumption and computing power.
  • FIG. 3 is a schematic flowchart of a signal processing method according to an embodiment of the present application.
  • the method in FIG. 3 may be executed by the receiving end 100 in FIG. 1, for example, may be executed by the processor 110 in the receiving end 100.
  • the method includes:
  • the M ⁇ N groups of signals correspond to M ⁇ N channel combinations one-to-one.
  • the M ⁇ N channel combinations are a channel combination formed by M transmitting channels and N receiving channels, where M and N are Positive integer.
  • each group of signals in the foregoing M ⁇ N group of signals may include K signals, and K is an integer greater than or equal to 1.
  • the signal in each group of signals in the M ⁇ N group of signals may be a chirp signal.
  • the signals in each group of signals in the M ⁇ N group of signals may also be signals measured in other units.
  • N receiving channels may correspond to N receiving antennas
  • M transmitting channels may correspond to M transmitting antennas
  • S302 Perform spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms.
  • spectral analysis refers to estimating the characteristics of the target or signal by measuring the frequency spectrum of the signal. For example, in radar measurement, spectral analysis can be used to estimate the distance, speed, or angle of a signal or target.
  • the foregoing execution spectrum analysis may include but is not limited to at least one of the following: DFT, FFT, DFT, MUSIC, DBF.
  • the aforementioned FFT may include, but is not limited to, at least one of the following: distance-dimensional FFT, Doppler-dimensional FFT, and angle-dimensional FFT.
  • performing spectrum analysis on M ⁇ N groups of signals to obtain multiple first spectrograms includes: performing range-dimensional FFT on M ⁇ N groups of signals to obtain M ⁇ N distance FFT spectrograms; ⁇ N distance FFT spectrograms perform Doppler FFT to obtain M ⁇ N distance-Doppler FFT spectrograms, and the multiple first spectrograms are M ⁇ N distance-Doppler FFT spectrograms.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing range-dimensional FFT transformation on the M ⁇ N group of signals to obtain M ⁇ N distance FFT spectrograms, and more The first spectrograms are M ⁇ N distance FFT spectrograms.
  • the above-mentioned performing spectrum analysis further includes: obtaining multiple spectrograms using spectrum analysis, grouping the multiple spectrograms, and performing coherent accumulation on the complex signals in each group of spectrograms to obtain multiple accumulated spectra picture.
  • spectral analysis can be used to perform coherent accumulation of receiving channels on each group of spectrograms, where coherent accumulation of receiving channels refers to coherent accumulation of complex signals in spectrograms corresponding to the same transmitting channel and different receiving channels.
  • performing spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms includes: performing spectrum analysis on the M ⁇ N group of signals to obtain M ⁇ N fifth spectrograms;
  • the N fifth spectrograms are divided into M spectrogram groups, and the N fifth spectrograms included in each spectrogram group correspond to the same emission channel; use spectrum analysis to analyze each of the M spectrogram groups Perform coherent accumulation to obtain M spectrograms, and the M spectrograms are multiple first spectrograms.
  • the above-mentioned phase compensation refers to estimating and compensating for the phase difference between signals caused by different receiving channels, different transmitting channels, or different signal transmission times, so as to achieve the purpose of approximately the same phase of signals obtained through different channels.
  • the phase compensation includes at least one of the following: the phase compensation of the receiving channel and the phase compensation of the transmitting channel, the phase compensation of the receiving channel is used to compensate the phase difference of the complex signal due to the different receiving channels, and the phase compensation of the transmitting channel is used To compensate for the phase difference of the complex signal due to different transmission channels.
  • a formula may be used to calculate the phase difference caused by different receiving channels, different transmitting channels, or signal transmission time, and to compensate the phase of the complex signal.
  • FIGS. 4 to 6 and formulas (1)-(9) the method of phase compensation of the receiving channel or the transmitting channel of the embodiment of the present application will be described.
  • performing phase compensation on the multiple first spectrograms includes: performing phase compensation of the receiving channel on at least part of the first spectrograms in the multiple first spectrograms, so that the phase compensation in the multiple second spectrograms The phases of the complex signals at the same position of at least two second spectrograms are the same.
  • performing the phase compensation on the multiple first spectrograms includes: performing phase compensation of the transmission channel on at least part of the first spectrograms in the multiple first spectrograms, so that the phase compensation in the multiple second spectrograms The phases of the complex signals at the same position of at least two second spectrograms are the same.
  • phase compensation the phases of complex signals at the same position in different second spectrograms are the same.
  • phase compensation there may be a certain deviation between the phases of the complex signals at the same position in the spectrogram.
  • performing phase compensation on the multiple first spectrograms may include performing phase compensation on all of the multiple first spectrograms, or may include performing phase compensation on partial spectrograms in the multiple first spectrograms.
  • the foregoing performing phase compensation on the multiple first spectrograms may include: performing only the phase compensation of the receiving channel; performing only the phase compensation of the transmitting channel; or performing the phase compensation of the receiving channel and the phase compensation of the transmitting channel.
  • the multiple first spectrograms may be divided into at least one first spectrogram group. At least one first spectrogram group corresponds to at least one transmission channel one-to-one, and the first spectrograms in each first spectrogram group correspond to the same transmission channel.
  • the foregoing performing phase compensation on the plurality of first spectrograms includes: performing phase compensation of the receiving channel on the first spectrogram in each first spectrogram group, so that the first spectrogram in each first spectrogram group and The phases of the complex signals in the same position of the first target spectrogram are the same, wherein at least one spectrogram group corresponds to at least one first target spectrogram one-to-one, and at least one first target spectrogram corresponds to the same receiving channel.
  • a group of first spectrograms corresponding to the same transmission channel may be subjected to phase compensation of the receiving channel, so that the phases of the complex signals at the same position in the group of first spectrograms after phase compensation are the same.
  • the first target spectrogram may be any first spectrogram in each first spectrogram group.
  • multiple first spectrograms after performing the phase compensation of the receiving channel may be determined as multiple second spectrograms.
  • the multiple first spectrograms after performing the phase compensation of the receiving channel can be determined as multiple third spectrograms; the phase compensation of the transmitting channel is performed on the multiple third spectrograms, so that the complex signals of the multiple third spectrograms
  • the phase of the second target spectrogram is the same as the phase of the complex signal of the second target spectrogram, where the second target spectrogram is any spectrogram of the plurality of third spectrograms; after performing the phase compensation of the transmit channel
  • the multiple third spectrograms are determined as the multiple second spectrograms.
  • the plurality of second spectrograms may be divided into at least one second spectrogram group, and the first spectrogram included in each second spectrogram group
  • the graphs correspond to the same receiving channel; the phase compensation of the transmitting channel is performed on the first spectrogram in each second spectrogram group, so that the first spectrogram and the third target spectrogram in each second spectrogram group are in
  • the phases of the complex signals at the same position are the same, wherein the at least one second spectrogram group corresponds to the at least one third target spectrogram in a one-to-one correspondence, and the at least one third target spectrogram corresponds to the same transmission channel.
  • the multiple first spectrograms after performing the phase compensation of the transmission channel may be determined as multiple second spectrograms.
  • the multiple first spectrograms after performing the phase compensation of the transmitting channel can be determined as multiple fourth spectrograms; the phase compensation of the receiving channel is performed on the multiple fourth spectrograms , So that the phases of the complex signals of the multiple fourth spectrograms are the same as the phases of the complex signals of the fourth target spectrogram, where the fourth target spectrogram is any spectrogram of the multiple fourth spectrograms; the reception will be performed
  • the multiple fourth spectrograms after the phase compensation of the channel are determined to be multiple second spectrograms.
  • S304 Perform complex addition based on the complex signals of the multiple second spectrograms to obtain an accumulated spectrogram.
  • the foregoing complex addition based on the complex signals of multiple second spectrograms may refer to adding the complex signals at the same position of the multiple second spectrograms to obtain an accumulated spectrogram.
  • accumulation may also be referred to as accumulation or superposition.
  • the receiving end may perform phase compensation of the receiving channel or phase compensation of the transmitting channel for the multiple first spectrograms, and obtain multiple second spectrograms.
  • the second spectrogram after phase compensation can eliminate the phase difference of the complex signal due to different receiving channels or different transmitting channels. Therefore, the accumulation of the spectrogram obtained after accumulating the complex signals in multiple second spectrograms Greater gain can improve the efficiency of signal processing.
  • FIG. 4 is a schematic diagram of signal accumulation in a receiving end including multiple receiving channels according to an embodiment of the present application.
  • the N receiving channels are represented as RX 1 , RX 2 ,..., RX N
  • each receiving channel receives a group of signals
  • each group of signals includes K Signal.
  • each signal can be a chirp signal.
  • the influencing factors of the phase difference between different signals received on the same receiving channel include: the Doppler frequency caused by relative motion and the time difference of transmitting different signals.
  • the above-mentioned relative movement may include: the movement of the receiving end, the movement of the transmitting end, and the movement of the target.
  • the target can refer to the object to be measured.
  • phase difference between any two signals received by the same receiving channel from the same transmitting channel can be expressed as formula (1):
  • FIG. 5 is a schematic diagram of different receiving channels receiving the same transmission signal according to an embodiment of the present application.
  • RX1 and RX2 represent different receiving channels.
  • the influencing factors of the phase difference of the signals obtained by different receiving channels include: the position of the receiving channel and the phase of the observation target.
  • the phase difference of the same signal received by any two receiving channels can be Expressed as:
  • represents the wavelength of the transmitted signal
  • d n is the distance of the two receiving channels.
  • the distance between the receiving channels may refer to the distance between the antenna phase centers corresponding to the receiving channels.
  • represents the angle of the connection between the receiving end and the transmitting end relative to the normal of the transmitting end.
  • can also refer to the angle of arrival of the target.
  • the influencing factors of the phase difference of signals from different transmission channels received through the same reception channel include: the position of the transmission channel and the time difference between the transmission signal.
  • the phase difference between the signals received by the same receiving channel can be expressed by formula (3) as
  • d n indicates a distance between the two emission channels.
  • the distance between the transmitting channels may refer to the distance between the antenna phase centers corresponding to the transmitting channels.
  • represents the wavelength of the signal.
  • represents the angle of the connection between the receiving end and the transmitting end relative to the normal of the receiving end.
  • f D represents the Doppler frequency due to motion
  • ⁇ n represents the time difference between transmitting two signals.
  • Fig. 6 is a spectrum diagram corresponding to signals obtained through different channel combinations in the MIMO system.
  • the MIMO system includes M transmit channels and N receive channels, and each receive channel receives a group of signals.
  • a group of signals includes, for example, K signals, and K is an integer greater than or equal to 1.
  • the M transmission channels may be referred to as the first transmission channel (TX 1 ), the second transmission channel (TX 2 ), ..., the Mth transmission channel (TX M ), respectively.
  • the N receiving channels can be referred to as the first receiving channel (RX 1 ), the second receiving channel (RX 2 ), ..., the Nth receiving channel (RX N ), respectively. It should be understood that the above ordering of receiving channels and transmitting channels is only for distinguishing different transmitting channels or receiving channels.
  • the M ⁇ N spectrograms in Fig. 6 correspond one-to-one with the M ⁇ N group of signals, and each spectrogram corresponds to a combination of a transmitting channel and a receiving channel. Specifically, each spectrogram represents a spectrogram obtained after performing spectrum analysis on a group of signals.
  • the above-mentioned spectrum analysis may include, for example, DFT, Doppler-dimensional FFT, distance-dimensional FFT, angle-dimensional FFT, and the like.
  • the spectrogram in Figure 6 includes multiple complex signals, and a small square can represent one complex signal. Alternatively, a small square can also be called a point.
  • the complex signal of the signal received through the m-th transmitting channel and the n-th receiving channel after spectral analysis is expressed as z m,n (x,y), 1 ⁇ m ⁇ M, 1 ⁇ n ⁇ N.
  • z m, n (x, y) is a complex signal
  • (x, y) represents the coordinates of any point in the spectrogram.
  • the normalized form of the amplitude of z m,n (x,y) is expressed as Norm(z m,n (x,y)).
  • z m, n (x, y ) represents the complex conjugate of z m, n (x, y ) *.
  • the multiple first spectrograms in FIG. 3 may include, but are not limited to, the spectrogram shown in FIG. 6.
  • phase compensation may be performed on the multiple first spectrograms to eliminate the multiple obtained after compensation.
  • the second spectrogram has a phase difference caused by different receiving channels or different transmitting channels, so that a larger accumulation gain can be obtained by coherently accumulating multiple second spectrograms.
  • phase compensation method of the receiving channel and the phase compensation method of the transmitting channel of the embodiment of the present application will be introduced respectively. It should be understood that, in the embodiment of the present application, the phase compensation of the receiving channel and the phase compensation of the transmitting channel may be sequentially performed on multiple first spectrograms, and the execution order of the two is not limited. Or, it is also possible to perform only one of the two for multiple first spectrograms.
  • the multiple first spectrograms may be divided into at least one first spectrogram group, and the first spectrogram group in each first spectrogram group The spectrogram corresponds to the same transmit channel.
  • the phase compensation of the receiving channel is performed separately for each first spectrogram group.
  • the first spectrograms in each first spectrogram group correspond to the same transmitting channel and different receiving channels.
  • the foregoing multiple first spectrograms may include M ⁇ N first spectrograms, and the multiple first spectrograms may be divided into M first spectrogram groups, M first spectrogram groups, and M emission channels.
  • Each first spectrogram group may include N first spectrograms, and the N first spectrograms have a one-to-one correspondence with the N receiving channels.
  • the foregoing method of dividing the first spectrogram group is merely an example.
  • the number of the plurality of first spectrograms may also be less than M ⁇ N, and the foregoing method of dividing the first spectrogram group may also be Different, as long as it meets the condition that the first spectrogram in each first spectrogram group corresponds to the same transmission channel.
  • phase compensation of the receiving channel only on part of the first spectrograms in the plurality of first spectrograms.
  • multiple first spectrograms after performing the phase compensation of the transmitting channel may be determined as multiple fourth spectrograms. Since after performing the phase compensation of the transmission channel, it can be considered that the phase difference caused by the different transmission channels of the complex signals of the multiple fourth spectrograms has been eliminated, and then it is considered that the transmission channels corresponding to the multiple fourth spectrograms are the same. Therefore, there is no need to group multiple fourth spectrograms according to different transmission channels.
  • phase compensation of the receiving channel only on part of the fourth spectrogram in the plurality of fourth spectrograms.
  • phase compensation of the receiving channel will be executed before the phase compensation of the transmitting channel as an example.
  • the compensation of the receiving channel can be obtained in the phase compensation of the transmitting channel.
  • the following solutions will not be repeated here.
  • the phase compensation of the receiving channel can be performed on the first spectrogram in each first spectrogram group to compensate for the phase difference of the complex signal of the first spectrogram in each first spectrogram group due to different receiving channels.
  • the same phase may be referred to as the first reference phase.
  • the first reference phase may be the phase of the complex signal of the first target spectrogram.
  • at least one first spectrogram group has a one-to-one correspondence with at least one first target spectrogram, and at least one target spectrogram corresponds to the same receiving channel.
  • the same receiving channel may be referred to as a target receiving channel, and the target receiving channel may be any one of the N receiving channels.
  • the first target spectrogram is any first spectrogram in the first spectrogram group. Next, an example will be described with the target receiving channel as the first receiving channel.
  • the phase compensation of the receiving channel makes the first spectrogram of each first spectrogram group the same phase as the complex signal of the first target spectrogram, and at least one first spectrogram group is at least One first target spectrogram corresponds to one by one, and at least one first target spectrogram corresponds to the same receiving channel, so that the phase difference caused by different receiving channels in the first spectrogram in at least one spectrogram group can be eliminated to improve the signal The accumulation gain during accumulation.
  • the first spectrogram for phase compensation of the receiving channel corresponds to the m-th transmitting channel and the n-th receiving channel.
  • the m-th transmission channel can be any transmission channel among the M transmission channels.
  • the nth receiving channel may be any receiving channel except the first receiving channel among the N receiving channels.
  • phase difference between the n-th receiving channel and the n-1th receiving channel can be expressed as the following formula (4):
  • ⁇ z m,(n,n-1) represents the phase difference between the nth receiving channel and the n-1th receiving channel
  • z m,n (x,y) means passing through the mth transmitting channel and The signal obtained by n receiving channels corresponds to the complex signal in the first spectrogram
  • z m,n-1 (x,y) means that the signal obtained through the mth transmitting channel and the n-1th receiving channel corresponds to the A complex signal in a spectrogram
  • z m,n-1 (x,y) * represents the complex conjugate of z m,n-1 (x,y).
  • Norm(z m,n (x,y)) represents the normalized form of the amplitude of the complex signal z m,n (x,y);
  • Norm(z m,n-1 (x,y) * ) represents the complex signal z The normalized form of m,n-1 (x,y) *.
  • phase difference between the first receiving channel and the second receiving channel can be expressed as the following formula (5):
  • z m,1 (x,y) indicates that the signal obtained through the m-th transmitting channel and the first receiving channel corresponds to the first spectrogram
  • Z m,2 (x,y) means that the signal obtained through the m-th transmitting channel and the first receiving channel corresponds to the complex signal in the first spectrogram
  • z m,2 (x,y) * Represents the complex conjugate of z m,2 (x,y);
  • Norm(z m,1 (x,y)) represents the normalized form of the complex signal z m,1 (x,y);
  • Norm(z m,2 (x,y) * ) represents the complex signal z m,2 The normalized form of (x,y).
  • z m,n (x,y) means that the signal obtained through the m-th transmitting channel and the n-th receiving channel corresponds to the complex signal in the first spectrogram;
  • z m,n-1 (x,y) means The signal obtained through the m-th transmitting channel and the n-1th receiving channel corresponds to the complex signal in the first spectrogram;
  • z m,1 (x,y) means passing through the m-th transmitting channel and the first receiving channel The acquired signal corresponds to the complex signal in the first spectrogram;
  • Norm(z m,n-1 (x,y)) represents the complex signal z m,n-1 (x, The normalized form of y);
  • Norm(z m,1 (x,y)) represents the normalized form of the complex signal z m,1 (x,y);
  • the formula (6) needs to meet the following conditions: in order to realize the phase compensation of the receiving channel, when the complex signal is noise, ⁇ 1 and ⁇ 2 are random terms. When the complex signal is a signal, ⁇ 1 and ⁇ 2 are equal. Therefore, in formula (6), when the complex signal is a signal, the magnitudes of ⁇ 1 and ⁇ 2 are approximately equal, so that The value of can be approximated to 1, so there is no need to obtain specific values of ⁇ 1 and ⁇ 2. In order to meet this condition, the distance between the nth receiving channel and the n-1th receiving channel can be approximately equal to the distance between the first receiving channel and the second receiving channel, which makes ⁇ 1 and ⁇ The value of 2 can be approximately equal.
  • the multiple first spectrograms can be divided into multiple second spectrogram groups, and the first spectrogram group in each second spectrogram group The spectrogram corresponds to the same receiving channel. It can be understood that the second spectrograms in each second spectrogram group correspond to different transmitting channels and the same receiving channel.
  • the multiple first spectrograms may include M ⁇ N first spectrograms, the M ⁇ N first spectrograms are divided into N second spectrogram groups, N second spectrogram groups and N receivers
  • the channels have a one-to-one correspondence
  • each second spectrogram group may include M first spectrograms, and the M first spectrograms have a one-to-one correspondence with the M transmission channels. It should be understood that the foregoing method of dividing the second spectrogram group is merely an example.
  • the number of the plurality of first spectrograms may be less than M ⁇ N, and the foregoing method of dividing the second spectrogram group may also be Different, as long as it meets the condition that the first spectrogram in each second spectrogram group corresponds to the same receiving channel.
  • phase compensation of the transmit channel only on part of the first spectrogram.
  • multiple first spectrograms after performing the phase compensation of the receiving channel may be determined as multiple third spectrograms. After the phase compensation of the receiving channel is performed, it can be considered that the phase difference caused by the different receiving channels of the complex signals of the multiple third spectrograms has been eliminated, and then the receiving channels corresponding to the multiple third spectrograms are considered to be the same, so There is no need to group multiple third spectrograms according to different receiving channels.
  • phase compensation of the transmit channel only on part of the third spectrogram.
  • phase compensation of the transmitting channel is executed before the phase compensation of the receiving channel as an example.
  • the phase compensation of the transmitting channel can be obtained in the receiving channel.
  • the scheme executed before the phase compensation will not be repeated here.
  • the phase compensation of the transmission channel may be performed on the plurality of third spectrograms to compensate for the phase difference caused by the different transmission channels of the plurality of third spectrograms, so that the phases of the plurality of third spectrograms are the same.
  • the same phase may be referred to as the second reference phase.
  • the second reference phase may be the phase of the complex signal of the second target spectrogram.
  • the second target spectrogram may be any spectrogram among a plurality of third spectrograms.
  • the second target spectrogram corresponds to a target transmission channel, and the target transmission channel may be any transmission channel of the M transmission channels.
  • the description will be given by taking the target transmission channel as the first transmission channel as an example.
  • the phases of the third spectrograms in each first spectrogram group are considered to be the same. Therefore, the phases of all third spectrograms in the first spectrogram group to which the second target spectrogram belongs are the same, so that the third spectrograms in the first spectrogram group do not need to perform phase compensation of the transmission channel.
  • the phase compensation of the transmission channel makes the phases of the complex signals of the multiple third spectrograms and the second target spectrogram the same, so that the multiple third spectrograms can be eliminated due to different reception channels and transmission channels.
  • the phase difference caused by the difference to increase the accumulation gain when the signal is accumulated.
  • the third spectrogram for which phase compensation of the transmitting channel is to be performed corresponds to the m-th transmitting channel and the n-th receiving channel.
  • the m-th transmitting channel may be any transmitting channel except the first transmitting channel.
  • the nth receiving channel is any receiving channel.
  • the phase difference between the mth transmitting channel and the m-1th transmitting channel can be expressed as the following formula (7):
  • z m,n (x,y) indicates that the signal obtained through the m-th transmitting channel and the n-th receiving channel corresponds to the complex signal in the first spectrogram; Represents the complex signal obtained after the phase compensation of the receiving channel is performed on the complex signal z m,n (x,y); Represents a complex signal The complex signal obtained after performing the phase compensation of the transmitting channel; Represents the complex signal obtained after the phase compensation of the receiving channel is performed on the complex signal z m-1,n (x,y); Represents the complex signal obtained after the phase compensation of the receiving channel is performed on the complex signal z 1,n (x,y).
  • formula (9) needs to meet the following conditions: In order to achieve phase compensation of the transmit channel, in the case where the complex signal is noise, with It is a random item. In the case that the complex signal is a signal, with Are equal. Thus, in formula (9), in the case where the complex signal is a signal, with Are approximately equal in size, making The value of can be approximated to 1, so there is no need to obtain it. In order to meet this condition, the distance between the m-th receiving channel and the m-1th receiving channel can be approximately equal, which makes with The values of can be approximately equal.
  • the multiple complex signals at the same position in the second spectrogram are superimposed, and then the accumulated spectrogram can be obtained.
  • the complex signal to be superimposed as
  • the complex signal z(x,y) in the superimposed spectrogram can be expressed as formula (10):
  • M represents the number of transmitting channels
  • N represents the number of receiving channels
  • z(x,y) represents the superimposed complex signal, Indicates the complex signal to be superimposed.
  • Equation (10) takes the detector at the receiving end as the square rate detection as an example, so the square form is used in the superposition of the complex signal. It should be understood that the formula (10) is merely an example and not a limitation. In the embodiment of the present application, other methods may also be used to implement the coherent accumulation of signals. For example, the form of absolute value or logarithm may also be adopted in the superposition of complex signals.
  • the above formula is used to perform the phase compensation of the transmitting channel and the receiving channel, which can simplify the calculation complexity of the phase compensation and save calculation resources.
  • using the above formula can eliminate the phase difference caused by different transmitting channels or different receiving channels without iterating and accumulating noise, thereby improving the quality of signal processing.
  • FIG. 7 is a schematic diagram of a signal processing method according to a specific embodiment of the present application. As shown in Figure 7, the method can be executed by the receiving end and includes the following steps.
  • analog to digital may be performed on the M ⁇ N group of signals.
  • M ⁇ N distance-Doppler FFT spectrograms can be used as multiple first spectrograms.
  • angle-dimensional FFT can also be performed.
  • M ⁇ N RDMap 1 can perform amplitude normalization and phase compensation for the received data of a certain receiving channel.
  • phase compensation of the receiving channel please refer to the foregoing content (for example, FIG. 4 to FIG. 6 and related descriptions), which will not be repeated here.
  • M ⁇ N RDMap 2 can perform amplitude normalization and phase compensation for the received data of a certain transmission channel.
  • phase compensation of the transmitting channel please refer to the foregoing content (for example, FIG. 4 and FIG. 6 and related descriptions), which will not be repeated here.
  • FIG. 8 is a schematic diagram of a signal processing method according to a specific embodiment of the present application. As shown in Figure 8, the method can be executed by the receiving end and includes the following steps.
  • the M ⁇ N distance FFT spectrograms can be used as multiple first spectrograms.
  • M ⁇ N RMap 0 can perform amplitude normalization and phase compensation for the received data of a certain receiving channel.
  • phase compensation of the receiving channel please refer to the previous content (for example, Figure 4 and Figure 6 and related descriptions), which will not be repeated here.
  • M ⁇ N RMap 1 can perform phase amplitude normalization and phase compensation for the received data of a certain transmission channel.
  • phase compensation of the transmitting channel please refer to the foregoing content (for example, FIG. 4 to FIG. 6 and related descriptions), which will not be repeated here.
  • Doppler FFT can also be performed on M ⁇ N RMap 2 respectively to obtain M ⁇ N range-Doppler FFT spectrograms (denoted as RDMap 3). Then, the complex number of M ⁇ N RDMap3 is added, and the superimposed spectrogram (denoted as RDMap) is also obtained.
  • S706 Based on the RDMap, continue to execute subsequent signal processing procedures (for example, CFAR, etc.).
  • subsequent signal processing procedures for example, CFAR, etc.
  • Fig. 9 is a schematic diagram of a signal processing method according to a specific embodiment of the present application. As shown in Figure 9, the method can be executed by the receiving end and includes the following steps.
  • S801 Obtain M ⁇ N groups of signals, and perform distance dimension FFT to obtain M ⁇ N distance FFT spectrograms (represented as RMap 0).
  • M ⁇ N distance-Doppler FFT spectrograms can be used as multiple first spectrograms.
  • angle-dimensional FFT can also be performed.
  • S803 Perform coherent superposition of receiving channels in M ⁇ N RDMap 1, where coherent superposition of receiving channels refers to performing coherent superposition of RDMap 1 corresponding to the same transmission channel to obtain M spectrograms (denoted as RDMap2).
  • the foregoing M spectrograms may be used as multiple first spectrograms.
  • the M ⁇ N RDMap 1 may be divided into M spectrogram groups, and the N RDMap1 included in each spectrogram group correspond to the same transmission channel.
  • the complex signals at the same position in N RDMap 1 can be superimposed based on spectral analysis (for example, FFT or DBF) to obtain M ⁇ NFFT spectrograms, where NFFT means coherent RDMap1 The number of points for spectrum analysis when superimposed.
  • NFFT means coherent RDMap1
  • M RDMap2 M RDMap2 are obtained.
  • M RDMap 2 can perform amplitude normalization and phase compensation for the received data of a certain transmission channel.
  • phase compensation of the receiving channel please refer to the foregoing content (for example, FIG. 4 to FIG. 6 and related descriptions), which will not be repeated here.
  • RDMap1 corresponding to the same transmitting channel and different receiving channels are coherently superimposed to obtain M RDMap2, and the M RDMap2 respectively correspond to different transmitting channels. It can be considered that the effect of the phase difference of the complex signals of the M RDMap2 due to the different receiving channels has been eliminated, therefore, only the phase compensation of the M RDMap2 needs to be performed on the transmitting channels.
  • S806 Based on the RDMap, continue to execute subsequent signal processing procedures (for example, CFAR, etc.).
  • subsequent signal processing procedures for example, CFAR, etc.
  • FIG. 10 is a schematic block diagram of an apparatus 900 for signal processing according to an embodiment of the present application.
  • the device 1000 can execute each step executed by the receiving end in the method embodiment of the present application, and in order to avoid repetition, the details are not described herein again.
  • the device 1000 includes:
  • the acquiring unit 1010 is used to acquire M ⁇ N groups of signals, the M ⁇ N groups of signals correspond to M ⁇ N channel combinations one-to-one, and the M ⁇ N channel combinations are a channel combination formed by M transmitting channels and N receiving channels. , M and N are positive integers.
  • the processing unit 1020 is configured to perform spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms.
  • the processing unit 1020 is further configured to perform phase compensation on the complex signals of the multiple first spectrograms to obtain multiple second spectrograms, and the multiple first spectrograms correspond to the multiple second spectrograms one-to-one.
  • the phase compensation includes at least one of the following: the phase compensation of the receiving channel and the phase compensation of the transmitting channel, the phase compensation of the receiving channel is used to compensate the phase difference of the complex signal due to the different receiving channels, and the phase compensation of the transmitting channel is used To compensate for the phase difference of the complex signal due to different transmission channels.
  • the processing unit 1020 is further configured to perform complex addition based on the complex signals of the multiple second spectrograms to obtain the accumulated spectrogram.
  • FIG. 11 is a schematic block diagram of an apparatus 1100 for signal processing according to an embodiment of the present application.
  • the device 1100 can execute each step executed by the receiving end in the method embodiment of the present application, and in order to avoid repetition, details are not described herein again.
  • the device 1100 includes:
  • the memory 1110 (there may be one or more) is used to store programs.
  • the processor 1130 (there may be one or more) is used to execute the program in the memory 1110.
  • the processor 1130 is used to obtain the M ⁇ N group of signals through the communication interface 1120, and the M ⁇ N group of signals and M ⁇ N channel combinations have a one-to-one correspondence, M ⁇ N channel combinations are channel combinations formed by M transmitting channels and N receiving channels, and M and N are positive integers.
  • the processor 1130 is also used to perform spectrum analysis on the M ⁇ N group of signals to obtain multiple first spectrograms; the processor 1130 is also used to perform phase compensation on the complex signals of the multiple first spectrograms to obtain multiple first spectrograms Two spectrograms, multiple first spectrograms correspond to multiple second spectrograms one-to-one, wherein the phase compensation includes at least one of the following: phase compensation of the receiving channel and phase compensation of the transmitting channel, and the phase compensation of the receiving channel is used for Compensate the phase difference of the complex signal due to the different receiving channels, and the phase compensation of the transmitting channel is used to compensate the phase difference of the complex signal due to the different transmitting channels; the processor 1130 is also used to perform the complex phase based on the complex signals of the multiple second spectrograms. Add to obtain the accumulated spectrogram.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种信号处理的方法和装置,能够提高处理信号的效率。该方法包括:获取M×N组信号,M×N组信号与M×N个通道组合一一对应,M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合;对M×N组信号执行谱分析,以获取多个第一频谱图;对多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,多个第一频谱图与多个第二频谱图一一对应,相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;基于多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。

Description

信号处理方法和装置 技术领域
本申请涉及通信领域,尤其涉及信号处理方法和装置。
背景技术
在一些通信系统中,发射端和接收端之间存在多个发射通道或多个接收通道,以形成多个信号传输途径。例如,上述通信系统可包括:多输入多输出(multiple input multiple output,MIMO)系统、单输入多输出(simple input multiple output,SIMO)系统、多输入单输出(multiple input simple output,MISO)系统等。
在基于这些通信系统进行信号传输的场景中,接收端在通过多个途径接收信号之后,需要对不同途径获取的信号分别进行谱分析,以得到多个频谱图。上述谱分析例如包括距离维快速傅里叶变换(fast fourier transform,FFT)、多普勒维FFT、角度维FFT等。接收端可以将对应于不同途径的频谱图进行累加处理,获取累加后的频谱图,并继续进行后续的信号处理。例如恒虚警检测(constant false alarm rate detection,CFAR)、波达方向(direction of arrival,DOA)和跟踪等后续处理。
其中,在对多个频谱图进行累加处理时,存在多种累加方式。例如,可以采用相干累加的方式、非相干累加的方式、或者部分相干累加的方式。其中,相干累加或部分相干累加的方式可以提高信号的积累增益,但是需要利用谱分析的方式进行相关累加,计算复杂度高,对计算资源的消耗较大。
发明内容
本申请提供一种信号处理的方法和装置,能够提高处理信号的效率。
第一方面,提供了一种信号处理的方法,包括:获取M×N组信号,所述M×N组信号与M×N个通道组合一一对应,所述M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数;对所述M×N组信号执行谱分析,以获取多个第一频谱图;对所述多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,所述多个第一频谱图与所述多个第二频谱图一一对应,其中,所述相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,所述接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,所述发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
在本申请实施例中,接收端在获取多个第一频谱图后,可以对多个第一频谱图进行接收通道的相位补偿或者发射通道的相位补偿,并得到多个第二频谱图。进行相位补偿后的第二频谱图可以消除复信号由于接收通道不同或发射通道不同而导致的相位差,因此,在对多个第二频谱图中的复信号进行累加后得到的频谱图的积累增益更大,能够提高处理信 号的效率。
结合第一方面,在第一方面的一种可能的实现方式中,在对所述多个第一频谱图的复信号执行相位补偿之前,还包括:对所述多个第一频谱图中的复信号执行幅度归一化。
在本申请实施例中,在对所述多个第一频谱图的复信号执行相位补偿之前执行幅度归一化,以便于提高相位补偿的精度,从而提高信号处理效率。
结合第一方面,在第一方面的一种可能的实现方式中,对所述多个第一频谱图的复信号执行相位补偿,包括:对所述多个第一频谱图中的至少部分第一频谱图执行接收通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同;或,对所述多个第一频谱图中的至少部分第一频谱图执行发射通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
结合第一方面,在第一方面的一种可能的实现方式中,对所述多个第一频谱图的复信号执行相位补偿,包括:将所述多个第一频谱图划分为至少一个第一谱图组,每个第一谱图组中包括的第一频谱图对应于相同的发射通道;对每个第一谱图组中的第一频谱图执行接收通道的相位补偿,使得每个第一谱图组中的第一频谱图和第一目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个谱图组与至少一个所述第一目标频谱图一一对应,所述至少一个第一目标频谱图对应相同的接收通道;根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
在本申请实施例中,通过接收通道的相位补偿,使得每个第一谱图组的第一频谱图与第一目标频谱图的复信号的相位相同,并且至少一个第一谱图组与至少一个第一目标频谱图一一对应,至少一个第一目标频谱图对应于相同的接收通道,从而能够消除至少一个第一谱图组中的第一频谱图由于接收通道不同导致的相位差,以提高信号累加时的积累增益。
结合第一方面,在第一方面的一种可能的实现方式中,所述根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图,包括:将执行所述接收通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图;对所述多个第三频谱图执行发射通道的相位补偿,使得所述多个第三频谱图的复信号的相位与第二目标频谱图的复信号的相位相同,其中,所述第二目标频谱图为所述多个第三频谱图中的任一频谱图;将执行所述发射通道的相位补偿之后的多个第三频谱图确定为所述多个第二频谱图。
在本申请实施例中,通过发射通道的相位补偿,使得多个第三频谱图与第二目标频谱图的复信号的相位相同,从而能够消除多个第三频谱图由于接收通道不同以及发射通道不同导致的相位差,以提高信号累加时的积累增益。
结合第一方面,在第一方面的一种可能的实现方式中,对所述多个第一频谱图的复信号执行相位补偿,包括:将所述多个第一频谱图划分为至少一个第二谱图组,每个第二谱图组中包括的第一频谱图对应于相同的接收通道;对每个第二谱图组中的第一频谱图执行发射通道的相位补偿,使得每个第二谱图组中的第一频谱图与第三目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个第二谱图组与至少一个所述第三目标频谱图一一对应,所述至少一个第三目标频谱图对应相同的发射通道;根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
在本申请实施例中,通过发射通道的相位补偿,使得每个第二谱图组的第一频谱图与第三目标频谱图的复信号的相位相同,并且至少一个第二谱图组与至少一个第三目标频谱图一一对应,至少一个第三目标频谱图对应于相同的发射通道,从而能够消除至少一个第二谱图组中的第一频谱图由于发射通道不同导致的相位差,以提高信号累加时的积累增益。
结合第一方面,在第一方面的一种可能的实现方式中,所述根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图,包括:将执行所述发射通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图;对所述多个第四频谱图执行接收通道的相位补偿,使得所述多个第四频谱图的复信号的相位与第四目标频谱图的复信号的相位相同,其中,所述第四目标频谱图为所述多个第四频谱图中的任一频谱图;将执行所述接收通道的相位补偿之后的多个第四频谱图确定为所述多个第二频谱图。
结合第一方面,在第一方面的一种可能的实现方式中,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:对所述M×N组信号执行以下至少一种类型的谱分析,以获取所述多个第一频谱图:距离维FFT、多普勒维FFT、角度维FFT。
结合第一方面,在第一方面的一种可能的实现方式中,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:对所述M×N组信号执行距离维FFT,获取M×N个距离FFT谱图;对所述距离频谱图执行多普勒维FFT,获取M×N个距离-多普勒FFT谱图,所述多个第一频谱图为所述M×N个距离-多普勒FFT谱图。
结合第一方面,在第一方面的一种可能的实现方式中,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图,所述第一频谱图为所述M×N个距离FFT谱图。
结合第一方面,在第一方面的一种可能的实现方式中,所述基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图,包括:对所述多个第二频谱图执行多普勒维FFT,以得到多个距离-多普勒FFT谱图;对所述多个距离-多普勒FFT谱图执行复数相加,得到所述累加后的频谱图。
结合第一方面,在第一方面的一种可能的实现方式中,在所述基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图之后,所述方法还包括:对所述累加后的频谱图执行多普勒维FFT,以得到距离-多普勒FFT谱图。
结合第一方面,在第一方面的一种可能的实现方式中,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:对所述M×N组信号执行谱分析,以获取M×N个第五频谱图;将所述M×N个第五频谱图划分为M个谱图组,每个谱图组包括的N个第五频谱图对应于相同的发射通道;利用谱分析对所述M个谱图组中的每个谱图组执行相干累加,以得到M个频谱图,所述M个频谱图为所述多个第一频谱图。
结合第一方面,在第一方面的一种可能的实现方式中,对所述多个第一频谱图执行相位补偿,以得到多个第二频谱图,包括:对所述多个第一频谱图执行发射通道的相位补偿,以使得相位补偿后得到的所述多个第二频谱图在相同位置的复信号的相位相同。
结合第一方面,在第一方面的一种可能的实现方式中,对所述M×N组信号执行谱分析,以获取M×N个第五频谱图,包括:对所述M×N组信号执行距离维FFT变换,获 取M×N个距离FFT谱图;对所述M×N个距离FFT谱图执行多普勒维FFT变换,获取M×N个距离-多普勒FFT谱图,所述M×N个第五频谱图为所述M×N个距离-多普勒FFT谱图。
第二方面,提供了一种用于信号处理的设备,包括:获取单元,用于获取M×N组信号,所述M×N组信号与M×N个通道组合一一对应,所述M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数;处理单元,用于对所述M×N组信号执行谱分析,以获取多个第一频谱图;所述处理单元还用于对所述多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,所述多个第一频谱图与所述多个第二频谱图一一对应,其中,所述相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,所述接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,所述发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;所述处理单元还用于基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
在本申请实施例中,接收端在获取多个第一频谱图后,可以对多个第一频谱图进行接收通道的相位补偿或者发射通道的相位补偿,并得到多个第二频谱图。进行相位补偿后的第二频谱图可以消除复信号由于接收通道不同或发射通道不同而导致的相位差,因此,在对多个第二频谱图中的复信号进行累加后得到的频谱图的积累增益更大,能够提高处理信号的效率。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元还用于对所述多个第一频谱图中的复信号执行幅度归一化。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于对所述多个第一频谱图中的至少部分第一频谱图执行接收通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同;或,对所述多个第一频谱图中的至少部分第一频谱图执行发射通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:将所述多个第一频谱图划分为至少一个第一谱图组,每个第一谱图组中包括的第一频谱图对应于相同的发射通道;对每个第一谱图组中的第一频谱图执行接收通道的相位补偿,使得每个第一谱图组中的第一频谱图和第一目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个谱图组与至少一个所述第一目标频谱图一一对应,所述至少一个第一目标频谱图对应相同的接收通道;根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:将执行所述接收通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图;对所述多个第三频谱图执行发射通道的相位补偿,使得所述多个第三频谱图的复信号的相位与第二目标频谱图的复信号的相位相同,其中,所述第二目标频谱图为所述多个第三频谱图中的任一频谱图;将执行所述发射通道的相位补偿之后的多个第三频谱图确定为所述多个第二频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:将所 述多个第一频谱图划分为至少一个第二谱图组,每个第二谱图组中包括的第一频谱图对应于相同的接收通道;对每个第二谱图组中的第一频谱图执行发射通道的相位补偿,使得每个第二谱图组中的第一频谱图与第三目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个第二谱图组与至少一个所述第三目标频谱图一一对应,所述至少一个第三目标频谱图对应相同的发射通道;根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:将执行所述发射通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图;对所述多个第四频谱图执行接收通道的相位补偿,使得所述多个第四频谱图的复信号的相位与第四目标频谱图的复信号的相位相同,其中,所述第四目标频谱图为所述多个第四频谱图中的任一频谱图;将执行所述接收通道的相位补偿之后的多个第四频谱图确定为所述多个第二频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述M×N组信号执行以下至少一种类型的谱分析,以获取所述多个第一频谱图:距离维FFT、多普勒维FFT、角度维FFT。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述M×N组信号执行距离维FFT,获取M×N个距离FFT谱图;对所述距离频谱图执行多普勒维FFT,获取M×N个距离-多普勒FFT谱图,所述多个第一频谱图为所述M×N个距离-多普勒FFT谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图,所述第一频谱图为所述M×N个距离FFT谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述多个第二频谱图执行多普勒维FFT,以得到多个距离-多普勒FFT谱图;对所述多个距离-多普勒FFT谱图执行复数相加,得到所述累加后的频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述累加后的频谱图执行多普勒维FFT,以得到距离-多普勒FFT谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述M×N组信号执行谱分析,以获取M×N个第五频谱图;将所述M×N个第五频谱图划分为M个谱图组,每个谱图组包括的N个第五频谱图对应于相同的发射通道;利用谱分析对所述M个谱图组中的每个谱图组执行相干累加,以得到M个频谱图,所述M个频谱图为所述多个第一频谱图。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述多个第一频谱图执行发射通道的相位补偿,以使得相位补偿后得到的所述多个第二频谱图在相同位置的复信号的相位相同。
结合第二方面,在第二方面的一种可能的实现方式中,所述处理单元具体用于:对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图;对所述M×N个距离FFT谱图执行多普勒维FFT变换,获取M×N个距离-多普勒FFT谱图,所述M×N个 第五频谱图为所述M×N个距离-多普勒FFT谱图。
第三方面,提供了一种装置,该装置具有实现上述第一方面的方法的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种装置,该装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使该装置执行上述第一方面的方法。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面的方法。
第六方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面的方法。
附图说明
图1是本申请一实施例中的通信系统的示意图。
图2是信号处理的流程图。
图3是本申请一实施例的信号处理方法的流程示意图。
图4是本申请一实施例的接收端包括多个接收通道的信号积累示意图。
图5是本申请一实施例的不同接收通道接收同一发射信号的示意图。
图6是MIMO系统中通过不同通道组合获取的信号所对应的频谱图。
图7是本申请一具体实施例的信号处理方法的示意图。
图8是本申请一具体实施例的信号处理方法的示意图。
图9是本申请一具体实施例的信号处理方法的示意图。
图10是本申请一实施例的用于信号处理的装置的结构示意图。
图11是本申请一实施例的用于信号处理的装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
可选地,本申请实施例的技术方案可以应用于MIMO系统、单输入多输出(simple input multiple output,SIMO)系统、多输入单输出(multiple input simple output,MISO)系统等。下文中以MIMO系统为例对本申请实施例的技术方案进行说明。
可选地,本申请实施例的技术方案可以应用于雷达测量场景,也可以应用于其它通信场景。
图1是本申请一实施例中的通信系统的示意图。如图1所示,该通信系统包括接收端 100和发射端200。接收端100可包括N个接收天线,每个接收天线对应一个接收通道。发射端200包括M个发射天线,每个发射天线对应一个发射通道。M,N分别为大于或等于1的整数。M个发射通道和N个接收通道构成M×N个发射通道和接收通道的组合。当发射端200分别通过M个发射通道发射一组信号,对于接收端100来说,其可以通过N个接收通道接收到M×N组信号。
接收端100还包括处理器110,处理器110之后在接收到M×N组信号之后,可以对M×N组信号进行信号处理,例如,可以对M×N组信号进行采样,并对采样数据进行谱分析、累加等处理。
处理器110可以包括中央处理器(central processor unit,CPU)、现场可编程门阵列(field programmable gate array,FPGA)或专用集成电路(application specific integrated circuit,ASIC),或者也可以为其它类型的处理芯片。
应理解,在本申请实施例中,接收端100和发射端200可以位于不同的设备中,也可以位于相同的设备中。例如,在一些雷达测距场景中,接收端100和发射端200可以位于同一设备中,接收端100发射的信号在遇到目标物体之后被反射,然后由发射端200接收反射信号。
图2是信号处理的流程图,其以雷达测量场景为例,示出了接收端的信号处理流程。图2中的步骤可以由图1中处理器110执行。如图2所示,接收端在通过多种通道组合获取多组信号之后,可以对多组信号分别进行谱分析,以得到多组信号对应的频谱图。上述谱分析例如可以包括且不限于以下至少一种类型:离散傅里叶变换(discrete fourier transform,DFT)、FFT、多重信号分类(multiple signal classify,MUSIC)、数字波束合成(digital beam forming,DBF)作为示例,FFT可以包括距离维FFT、多普勒维FFT或角度维FFT。
在经过谱分析之后,处理器110可以对多个频谱图中的复信号进行累加处理,以得到累加后的频谱图。通过对多个频谱图进行累加处理,能够提高信号的积累增益,改善信号信噪比。
在获取累加后的频谱图之后,处理器110可以继续进行后续的信号处理,例如,CFAR处理、DOA估计、跟踪等后续处理。
其中,频谱图用于表示时域的信号在频域的表示形式,可以通过针对信号进行谱分析得到。频谱图可以用于表示信号的幅度或相位与频谱之间的变化关系。在一些情况下,由于信号频谱和观测目标的距离、速度或角度之间存在对应关系,因此,通过适当的变换,频谱图也可以表示信号的幅度或相位与观测目标的距离、速度或角度之间的关系。例如,若频谱图通过FFT获取,则根据其表征的信息不同,可以称为距离FFT谱图、多普勒FFT谱图、角度FFT谱图、距离-多普勒FFT谱图等、距离-角度FFT谱图等。
其中,频谱图可以由多个复信号表示,每个复信号包括信号的相位信息、幅度信息以及频率信息。
在对多个频谱图中的复信号进行累加处理时,通常可以采取相干累加或者部分相干累加的方式。但是相干累加或部分相干累加通常需要利用谱分析的方式进行相关积累,计算复杂度高,对计算资源的消耗较大。
为了解决上述问题,本申请实施例提出了一种信号处理方法,能够在对信号使用相干 累加的方法的同时,进一步降低信号处理的计算复杂度,节约计算资源,使其适用于高实时性要求、功耗和计算力受限的系统。
图3是本申请一实施例的信号处理方法的流程示意图。图3的方法可以由图1中的接收端100执行,例如可以由接收端100中的处理器110执行。如图3所示,该方法包括:
S301、获取M×N组信号,M×N组信号与M×N个通道组合一一对应,M×N个通道组合为M个发射通道和N个接收通道形成的通道组合,M、N为正整数。
可选地,上述M×N组信号中的每组信号可以包括K个信号,K为大于或等于1的整数。可选地,M×N组信号中的每组信号中的信号可以是叽叽(chirp)信号。或者,M×N组信号中的每组信号中的信号也可以是使用其它单位计量的信号。
可选地,N个接收通道可以对应N个接收天线,M个发射通道可以对应于M个发射天线。
S302、对M×N组信号执行谱分析,以获取多个第一频谱图。
其中,谱分析是指通过测量信号的频谱,来估计目标或信号的特性。例如,在雷达测量中,谱分析可以用于估计信号或目标的距离、速度或角度。
可选地,上述执行谱分析可以包括但不限于以下至少一项:DFT、FFT、DFT、MUSIC、DBF。上述FFT可以包括但不限于以下至少一项:距离维FFT、多普勒维FFT、角度维FFT。
在一些示例中,上述对M×N组信号执行谱分析,以获取多个第一频谱图,包括:对M×N组信号执行距离维FFT,获取M×N个距离FFT谱图;对M×N个距离FFT谱图执行多普勒维FFT,获取M×N个距离-多普勒FFT谱图,多个第一频谱图为M×N个距离-多普勒FFT谱图。
在一些示例中,上述对M×N组信号执行谱分析,以获取多个第一频谱图,包括:对M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图,多个第一频谱图为M×N个距离FFT谱图。
可选地,上述执行谱分析还包括:利用谱分析获取多个频谱图,并将多个频谱图进行分组,对每组频谱图中的复信号进行相干累加,以得到多个累加后的频谱图。例如,可以利用谱分析对每组频谱图进行接收通道的相干累加,其中接收通道的相干累加是指将对应于相同发射通道和不同接收通道的频谱图中的复信号进行相干累加。
在一些示例中,对M×N组信号执行谱分析,以获取多个第一频谱图,包括:对M×N组信号执行谱分析,以获取M×N个第五频谱图;将M×N个第五频谱图划分为M个谱图组,每个谱图组包括的N个第五频谱图对应于相同的发射通道;利用谱分析对M个谱图组中的每个谱图组执行相干累加,以得到M个频谱图,M个频谱图为多个第一频谱图。
S303、对多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,多个第一频谱图与多个第二频谱图一一对应。
其中,上述相位补偿是指估计并补偿由于接收通道不同、发射通道不同或者信号发射时间不同而导致的信号之间的相位差,以达到通过不同途径获取的信号的相位近似一致的目的。
在一些示例中,相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相 位补偿,接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差。
在本申请实施例中,可以利用公式计算由于接收通道不同、发射通道不同或者信号发射时间导致的相位差,并对复信号的相位进行补偿。后文中将结合图4至图6以及公式(1)-(9),继续描述本申请实施例的接收通道或发射通道相位补偿的方式。
在一些示例中,上述对多个第一频谱图执行相位补偿,包括:对多个第一频谱图中的至少部分第一频谱图执行接收通道的相位补偿,使得多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
在一些示例中,上述对多个第一频谱图执行相位补偿,包括:对多个第一频谱图中的至少部分第一频谱图执行发射通道的相位补偿,使得多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
应理解,上述至少两个第二频谱图的相位相同,是指在理想情况下,经过相位补偿之后,不同第二频谱图中的相同位置的复信号的相位相同。本领域技术人员能够理解,在实践中,在执行相位补偿之后,频谱图中的相同位置的复信号的相位之间可以存在一定的偏差。
其中,S303部分中,上述对多个第一频谱图执行相位补偿可以包括对多个第一频谱图均进行相位补偿,也可以包括对多个第一频谱图中的部分频谱图进行相位补偿。上述对多个第一频谱图执行相位补偿可以包括:只执行接收通道的相位补偿;只执行发射通道的相位补偿;或者执行接收通道的相位补偿和发射通道的相位补偿。
在一些示例中,若执行接收通道的相位补偿,则可以将多个第一频谱图划分为至少一个第一谱图组。至少一个第一谱图组与至少一个发射通道一一对应,每个第一谱图组中的第一频谱图对应于相同的发射通道。上述对多个第一频谱图执行相位补偿,包括:对每个第一谱图组中的第一频谱图执行接收通道的相位补偿,使得每个第一谱图组中的第一频谱图和第一目标频谱图在相同位置的复信号的相位相同,其中,至少一个谱图组与至少一个第一目标频谱图一一对应,至少一个第一目标频谱图对应相同的接收通道。换句话说,可以将对应于相同发射通道的一组第一频谱图执行接收通道的相位补偿,使得相位补偿后的该组第一频谱图中相同位置的复信号的相位相同。其中,第一目标频谱图可以是每个第一谱图组中的任一第一频谱图。
进一步地,若只执行接收通道的相位补偿,则可以将执行接收通道的相位补偿之后的多个第一频谱图确定为多个第二频谱图。
或者,若继续执行发射通道的相位补偿。则可以将执行接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图;对多个第三频谱图执行发射通道的相位补偿,使得多个第三频谱图的复信号的相位与第二目标频谱图的复信号的相位相同,其中,所述第二目标频谱图为所述多个第三频谱图中的任一频谱图;将执行所述发射通道的相位补偿之后的多个第三频谱图确定为所述多个第二频谱图。
类似地,在一些示例中,若执行发射通道的相位补偿,则可以将所述多个第二频谱图划分为至少一个第二谱图组,每个第二谱图组中包括的第一频谱图对应于相同的接收通道;对每个第二谱图组中的第一频谱图执行发射通道的相位补偿,使得每个第二谱图组中的第一频谱图与第三目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个第 二谱图组与至少一个所述第三目标频谱图一一对应,所述至少一个第三目标频谱图对应相同的发射通道。
进一步地,若只执行发射通道的相位补偿,则可以将执行发射通道的相位补偿之后的多个第一频谱图确定为多个第二频谱图。
或者,若继续执行接收通道的相位补偿,则可以将执行发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图;对多个第四频谱图执行接收通道的相位补偿,使得多个第四频谱图的复信号的相位与第四目标频谱图的复信号的相位相同,其中,第四目标频谱图为多个第四频谱图中的任一频谱图;将执行接收通道的相位补偿之后的多个第四频谱图确定为多个第二频谱图。
S304、基于多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
可选地,上述基于多个第二频谱图的复信号进行复数相加,可以指将多个第二频谱图的相同位置处的复信号进行相加,以得到一个累加后的频谱图。在本申请实施例中,累加也可以称为积累或叠加。
在本申请实施例中,接收端在获取多个第一频谱图后,可以对多个第一频谱图进行接收通道的相位补偿或者发射通道的相位补偿,并得到多个第二频谱图。进行相位补偿后的第二频谱图可以消除复信号由于接收通道不同或发射通道不同而导致的相位差,因此,在对多个第二频谱图中的复信号进行累加后得到的频谱图的积累增益更大,能够提高处理信号的效率。
接下来结合图4介绍通过不同接收通道和发射通道组合获取的信号的相位差的计算方式,并结合图6介绍本申请实施例的对复信号进行相位补偿的方式。
图4是本申请一实施例的接收端包括多个接收通道的信号积累示意图。如图4所示,假设接收端包括N个接收通道,N个接收通道分别表示为RX 1、RX 2,...,RX N,每个接收通道接收一组信号,每组信号包括K个信号。作为示例,每个信号可以为一个chirp信号。在同一个接收通道接收的不同信号之间的相位差的影响因素包括:相对运动带来的多普勒频率和发射不同信号的时间差。其中,上述相对运动可以包括:接收端的运动、发射端的运动以及目标的运动。在雷达测量系统中,目标可以指待测量的物体。
作为示例,同一接收通道接收的来自同一发射通道的任意两个信号之间的相位差可以表示为公式(1):
Figure PCTCN2020084699-appb-000001
其中,
Figure PCTCN2020084699-appb-000002
表示信号之间的相位差,f D表示运动带来的多普勒频率,τ n表示同一发射通道发射两个信号的时间差。
图5是本申请一实施例的不同接收通道接收同一发射信号的示意图。其中RX1、RX2表示不同的接收通道。作为示例,对于同一个发射信号,不同接收通道获得的信号的相位差的影响因素包括:接收通道的位置和观测目标的相位,例如,任意两个接收通道接收到的同一个信号的相位差可以表示为:
Figure PCTCN2020084699-appb-000003
其中,
Figure PCTCN2020084699-appb-000004
表示发射信号之间的相位差,λ表示发射信号的波长,d n表示两个接收通道的距离。其中,接收通道之间的距离可以指接收通道对应的天线相位中心之间的距离。θ表示接收端和发射端之间的连线相对于发射端法线的夹角。其中,在存在观测目标的情况下,θ也可以指目标的到达角。
作为示例,在MIMO系统中,通过相同接收通道接收的来自不同发射通道的信号的相位差的影响因素包括:发射通道的位置和发射信号之间的时间差。例如,针对任意两个不同发射通道发送的信号,同一接收通道接收到的信号之间的相位差可以用公式(3)表示为
Figure PCTCN2020084699-appb-000005
其中,
Figure PCTCN2020084699-appb-000006
表示信号之间的相位差。d n表示两个发射通道之间的距离。其中,发射通道之间的距离可以指发射通道对应的天线相位中心之间的距离。λ表示信号的波长。θ表示接收端和发射端之间的连线相对于接收端法线的夹角。其中,在存在观测目标的情况下,θ也可以指目标的到达角。f D表示由于运动带来的多普勒频率,τ n表示发射两个信号的时间差。
图6是MIMO系统中通过不同通道组合获取的信号所对应的频谱图。其中,假设MIMO系统中包括M个发射通道和N个接收通道,每个接收通道接收一组信号,一组信号例如包括K个信号,K为大于等于1的整数。为了便于描述,可以将M个发射通道分别称为第一发射通道(TX 1)、第二发射通道(TX 2)、……、第M发射通道(TX M)。可以将N个接收通道分别称为第一接收通道(RX 1)、第二接收通道(RX 2)、……、第N接收通道(RX N)。应理解,上述接收通道和发射通道的排序只是为了区分不同的发射通道或接收通道。
图6中的M×N个频谱图与M×N组信号一一对应,每个频谱图对应一个发射通道和接收通道的组合。具体地,每个频谱图表示了对一组信号进行了谱分析之后获取的频谱图。上述谱分析例如可以包括DFT、多普勒维FFT、距离维FFT、角度维FFT等。
图6中的频谱图中包括多个复信号,一个小方格可以表示一个复信号。或者,一个小方格也可以被称为一个点。通过第m个发射通道、第n个接收通道接收到的信号在经过谱分析之后得到的复信号表示为z m,n(x,y),1≤m≤M,1≤n≤N。其中,z m,n(x,y)为复信号,(x,y)表示频谱图中的任意一点的坐标。z m,n(x,y)的幅度归一化形式表示为Norm(z m,n(x,y))。z m,n(x,y)的复共轭表示为z m,n(x,y) *
应理解,图3中的多个第一频谱图可以包括但不限于图6中所示的频谱图。
在本申请实施例中,在对通过不同发射通道和接收通道获取的信号对应的第一频谱图进行相干积累前,可以对多个第一频谱图进行相位补偿,以消除补偿后得到的多个第二频谱图由于接收通道不同或发射通道不同所导致的相位差,从而对多个第二频谱图进行相干积累能获得更大的积累增益。
接下来将分别介绍本申请实施例的接收通道的相位补偿以及发射通道的相位补偿的方式。应理解,在本申请实施例中,可以对多个第一频谱图先后执行接收通道的相位补偿和发射通道的相位补偿,并且不限制两者的执行顺序。或者,也可以对多个第一频谱图只 执行两者之一。
(1)接收通道的相位补偿。
在一些示例中,若接收通道的相位补偿在发射通道的相位补偿之前执行,则可以将多个第一频谱图划分为至少一个第一谱图组,每个第一谱图组中的第一频谱图对应于相同的发射通道。针对每个第一谱图组分别执行接收通道的相位补偿。可以理解为,每个第一谱图组中的第一频谱图对应于相同的发射通道以及不同的接收通道。例如,上述多个第一频谱图可以包括M×N个第一频谱图,可以将多个第一频谱图划分为M个第一谱图组,M个第一谱图组与M个发射通道一一对应。每个第一谱图组可以包括N个第一频谱图,N个第一频谱图与N个接收通道一一对应。
应理解,上述划分第一谱图组的方式仅仅作为示例,在一些情况下,上述多个第一频谱图的数目也可以少于M×N个,上述划分第一谱图组的方式也可以不同,只要其符合每个第一谱图组中的第一频谱图对应于相同的发射通道的条件即可。
在一些示例中,也可以只对多个第一频谱图中的部分第一频谱图执行接收通道的相位补偿。
在一些示例中,若上述接收通道的相位补偿在发射通道的相位补偿之后执行,则可以将执行发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图。由于在执行发射通道的相位补偿之后,可认为多个第四频谱图的复信号由于发射通道不同而导致的相位差已经被消除,继而认为多个第四频谱图对应的发射通道是相同的,因此无需根据不同的发射通道对多个第四频谱图进行分组。
在一些示例中,也可以只对多个第四频谱图中的部分第四频谱图执行接收通道的相位补偿。
下文中将以接收通道的相位补偿在发射通道的相位补偿之前执行为例进行说明,本领域人员能够理解,通过对相关公式和描述进行适当变形,可以得到接收通道的补偿在发射通道的相位补偿之后的方案,为了简洁,此处不再赘述。
针对每个第一谱图组,由于其对应的发射通道相同,因此,可以认为其包括的多个第一频谱图的复信号不存在由于发射通道不同而导致的相位差,而存在由于接收通道不同而导致的相位差。因此,可以对每个第一谱图组中的第一频谱图进行接收通道的相位补偿,以补偿每个第一谱图组中的第一频谱图的复信号由于接收通道不同导致的相位差,使得每个第一谱图组中的第一频谱图中相同位置的复信号的相位相同。
在本申请实施例中,该相同的相位可以称为第一参考相位。例如,第一参考相位可以是第一目标频谱图的复信号的相位。其中,至少一个第一谱图组与至少一个第一目标频谱图一一对应,至少一个目标频谱图对应于相同的接收通道。该相同的接收通道可以称为目标接收通道,该目标接收通道可以是N个接收通道中的任一接收通道。该第一目标频谱图是第一谱图组中的任一第一频谱图。接下来,将以该目标接收通道为第一接收通道例进行说明。
在本申请实施例中,通过接收通道的相位补偿,使得每个第一谱图组的第一频谱图与第一目标频谱图的复信号的相位相同,并且至少一个第一谱图组与至少一个第一目标频谱图一一对应,至少一个第一目标频谱图对应于相同的接收通道,从而能够消除至少一个谱图组中的第一频谱图由于接收通道不同导致的相位差,以提高信号累加时的积累增益。
(i)假设待进行接收通道的相位补偿的第一频谱图对应第m个发射通道和第n个接收通道。其中,第m个发射通道可以为M个发射通道中的任意发射通道。第n个接收通道可以为N个接收通道中除第一接收通道之外的任意接收通道。
针对第m个发射通道,第n个接收通道和第n-1个接收通道之间的相位差可表示为以下公式(4):
Figure PCTCN2020084699-appb-000007
其中,Δz m,(n,n-1)表示第n个接收通道和第n-1个接收通道之间的相位差;z m,n(x,y)表示通过第m个发射通道和第n个接收通道获取的信号对应在第一频谱图中的复信号;z m,n-1(x,y)表示通过第m个发射通道和第n-1个接收通道获取的信号对应在第一频谱图中的复信号;z m,n-1(x,y) *表示z m,n-1(x,y)的复共轭。
Norm(z m,n(x,y))表示复信号z m,n(x,y)的幅度归一化形式;Norm(z m,n-1(x,y) *)表示复信号z m,n-1(x,y) *的归一化形式。
(ii)针对第m个发射通道,第一个接收通道和第二个接收通道的之间的相位差可以表示为以下公式(5):
Figure PCTCN2020084699-appb-000008
其中,
Figure PCTCN2020084699-appb-000009
表示第一个接收通道和第二个接收通道之间的相位差;z m,1(x,y)表示通过第m个发射通道和第1个接收通道获取的信号对应在第一频谱图中的复信号;z m,2(x,y)表示通过第m个发射通道和第1个接收通道获取的信号对应在第一频谱图中的复信号;z m,2(x,y) *表示z m,2(x,y)的复共轭;
Norm(z m,1(x,y))表示复信号z m,1(x,y)的归一化形式;Norm(z m,2(x,y) *)表示复信号z m,2(x,y)的归一化形式。
(iii)对复信号z m,n(x,y)进行接收通道的相位补偿后的复信号
Figure PCTCN2020084699-appb-000010
可以表示为以下公式(6):
Figure PCTCN2020084699-appb-000011
其中,z m,n(x,y)表示通过第m个发射通道和第n个接收通道获取的信号对应在第 一频谱图中的复信号;z m,n-1(x,y)表示通过第m个发射通道和第n-1个接收通道获取的信号对应在第一频谱图中的复信号;z m,1(x,y)表示通过第m个发射通道和第1个接收通道获取的信号对应在第一频谱图中的复信号;
Figure PCTCN2020084699-appb-000012
表示对复信号z m,n(x,y)进行接收通道的相位补偿后的复信号;Norm(z m,n-1(x,y))表示复信号z m,n-1(x,y)的归一化形式;Norm(z m,1(x,y))表示复信号z m,1(x,y)的归一化形式;
Figure PCTCN2020084699-appb-000013
表示第一个接收通道和第二个接收通道之间的相位差。Δz m,(n,n-1)表示第n个接收通道和第n-1个接收通道之间的相位差,1≤m≤M,2≤n≤N。
在一些示例中,公式(6)需要满足以下条件:为了实现接收通道的相位补偿,在复信号是噪声的情况下,ω 1和ω 2是随机项。在复信号为信号的情况下,ω 1和ω 2是相等的。从而,在公式(6)中,在复信号为信号的情况下,ω 1和ω 2的大小近似相等,使得
Figure PCTCN2020084699-appb-000014
的取值可以近似为1,从而不需要获取ω 1和ω 2的具体值。为了满足这一条件,可以使得第n个接收通道和第n-1个接收通道之间的距离与第一个接收通道和第二个接收通道之间的距离近似相等,这使得ω 1和ω 2的取值可以近似相等。
(2)发射通道的相位补偿。
在一些示例中,若发射通道的相位补偿在接收通道的相位补偿之前执行,则可以将多个第一频谱图划分为多个第二谱图组,每个第二谱图组中的第一频谱图对应于相同的接收通道。可以理解为,每个第二谱图组中的第二频谱图对应于不同的发射通道以及相同的接收通道。例如,上述多个第一频谱图可以包括M×N个第一频谱图,将M×N个第一频谱图划分为N个第二谱图组,N个第二谱图组与N个接收通道一一对应,每个第二谱图组可以包括M个第一频谱图,M个第一频谱图与M个发射通道一一对应。应理解,上述划分第二谱图组的方式仅仅作为示例,在一些情况下,上述多个第一频谱图的数目也可以少于M×N个,上述划分第二谱图组的方式也可以不同,只要其符合每个第二谱图组中的第一频谱图对应于相同的接收通道的条件即可。
在一些示例中,为了减少计算负担,也可以只对部分第一频谱图执行发射通道的相位补偿。
在一些示例中,若发射通道的相位补偿在接收通道的相位补偿之后执行,则可以将执行接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图。由于在执行接收通道的相位补偿之后,可以认为多个第三频谱图的复信号由于接收通道不同导致的相位差已被消除,继而认为多个第三频谱图对应的接收通道是相同的,因此无需根据不同的接收通道对多个第三频谱图进行分组。
在一些示例中,也可以只对部分第三频谱图执行发射通道的相位补偿。
下文中将以发射通道的相位补偿在接收通道的相位补偿之前执行为例进行说明,本领域技术人员能够理解,通过对相关公式和描述进行适当变形,可以得到发射通道的相位补偿在接收通道的相位补偿之前执行的方案,为了简洁,此处不再赘述。
在经过接收通道的相位补偿之后,可以认为多个第三频谱图的复信号不存在由于接收通道不同而导致的相位差,而是存在由于发射通道不同而导致的相位差。因此,可以对多个第三频谱图进行发射通道的相位补偿,以补偿多个第三频谱图由于发射通道不同而导致 的相位差,使得多个第三频谱图的相位相同。
在本申请实施例中,该相同的相位可以称为第二参考相位。例如,第二参考相位可以是第二目标频谱图的复信号的相位。第二目标频谱图可以是多个第三频谱图中的任一频谱图。第二目标频谱图对应于目标发射通道,该目标发射通道可以是M个发射通道中的任一发射通道。接下来,将以目标发射通道为第一发射通道为例进行说明。
另外需要说明的是,假设多个第三频谱图沿用在接收通道的相位补偿过程的分组方式,则每个第一谱图组中的第三频谱图的相位被认为是相同的。因此,第二目标频谱图所属的第一谱图组中的所有第三频谱图的相位是相同的,从而该第一谱图组中的第三频谱图无需进行发射通道的相位补偿。
在本申请实施例中,通过发射通道的相位补偿,使得多个第三频谱图与第二目标频谱图的复信号的相位相同,从而能够消除多个第三频谱图由于接收通道不同以及发射通道不同导致的相位差,以提高信号累加时的积累增益。
(i)假设待进行发射通道的相位补偿的第三频谱图对应第m个发射通道和第n个接收通道。其中,第m个发射通道可以为除第一发射通道之外的任意发射通道。第n个接收通道为任意接收通道。
针对第n个接收通道,第m个发射通道和第m-1个发射通道之间的相位差可表示为以下公式(7):
Figure PCTCN2020084699-appb-000015
其中,
Figure PCTCN2020084699-appb-000016
表示第m个发射通道和第m-1个发射通道之间的相位差;
Figure PCTCN2020084699-appb-000017
表示通过第m个发射通道和第n个接收通道获取的信号对应在第三频谱图中的复信号;
Figure PCTCN2020084699-appb-000018
表示通过第m-1个发射通道和第n个接收通道获取的信号对应在第三频谱图中的复信号;
Figure PCTCN2020084699-appb-000019
表示复信号
Figure PCTCN2020084699-appb-000020
的复共轭。
Figure PCTCN2020084699-appb-000021
表示复信号
Figure PCTCN2020084699-appb-000022
的幅度归一化形式;
Figure PCTCN2020084699-appb-000023
表示复信号
Figure PCTCN2020084699-appb-000024
的归一化形式。
(ii)针对第n个接收通道,第一个发射通道与第二个发射通道之间的相位差表示为公式(8):
Figure PCTCN2020084699-appb-000025
其中,
Figure PCTCN2020084699-appb-000026
表示第一个发射通道和第二个发射通道之间的相位差;
Figure PCTCN2020084699-appb-000027
表示通过第一个发射通道和第n个接收通道获取的信号对应在第一频谱图中的复信号;
Figure PCTCN2020084699-appb-000028
表示通过第二个发射通道和第n个接收通道获取的信号对应在第一频谱图中的复信号。
Figure PCTCN2020084699-appb-000029
表示
Figure PCTCN2020084699-appb-000030
的复共轭。
Figure PCTCN2020084699-appb-000031
表示复信号
Figure PCTCN2020084699-appb-000032
的归一化形式;
Figure PCTCN2020084699-appb-000033
表示复信号
Figure PCTCN2020084699-appb-000034
的归一化形式。
(iii)对复信号
Figure PCTCN2020084699-appb-000035
进行发射通道的相位补偿后的复信号
Figure PCTCN2020084699-appb-000036
可以表示为以下公式(9):
Figure PCTCN2020084699-appb-000037
其中,z m,n(x,y)表示通过第m个发射通道和第n个接收通道获取的信号对应在第一频谱图中的复信号;
Figure PCTCN2020084699-appb-000038
表示对复信号z m,n(x,y)执行接收通道的相位补偿之后得到的复信号;
Figure PCTCN2020084699-appb-000039
表示对复信号
Figure PCTCN2020084699-appb-000040
执行发射通道的相位补偿之后得到的复信号;
Figure PCTCN2020084699-appb-000041
表示对复信号z m-1,n(x,y)执行接收通道的相位补偿之后得到的复信号;
Figure PCTCN2020084699-appb-000042
表示对复信号z 1,n(x,y)执行接收通道的相位补偿之后得到的复信号。
Figure PCTCN2020084699-appb-000043
表示复信号
Figure PCTCN2020084699-appb-000044
的归一化形式;
Figure PCTCN2020084699-appb-000045
表示复信号
Figure PCTCN2020084699-appb-000046
的归一化形式;
Figure PCTCN2020084699-appb-000047
表示复信号
Figure PCTCN2020084699-appb-000048
的归一化形式;
Figure PCTCN2020084699-appb-000049
表示第1个发射通道和第2个发射通道之间的相位差。
Figure PCTCN2020084699-appb-000050
表示第m个发射通道和第m-1个发射通道之间的相位差,2≤m≤M,1≤n≤N。
在一些示例中,,公式(9)需要满足以下条件:为了实现发射通道的相位补偿,在复信号是噪声的情况下,
Figure PCTCN2020084699-appb-000051
Figure PCTCN2020084699-appb-000052
是随机项。在复信号为信号的情况下,
Figure PCTCN2020084699-appb-000053
Figure PCTCN2020084699-appb-000054
是相等的。从而,在公式(9)中,在复信号为信号的情况下,
Figure PCTCN2020084699-appb-000055
Figure PCTCN2020084699-appb-000056
的大小近似相等,使得
Figure PCTCN2020084699-appb-000057
的取值可以近似为1,从而不需要获取。为了满足这一条件,可以使得第m个接收通道和第m-1个接收通道之间的距离近似相等,这使得
Figure PCTCN2020084699-appb-000058
Figure PCTCN2020084699-appb-000059
的取值可以近似相等。
(3)相干累加
在对执行相位补偿之后得到的多个第二频谱图中相同位置的复信号进行叠加,即可可以得到累加后的频谱图。作为示例,以待叠加的复信号为
Figure PCTCN2020084699-appb-000060
为例,该叠加后的频谱图中的复信号z(x,y)可以表示为公式(10):
Figure PCTCN2020084699-appb-000061
其中,M表示发射通道的数目,N表示接收通道的数目;z(x,y)表示叠加后的复信号,
Figure PCTCN2020084699-appb-000062
表示待叠加的复信号。
公式(10)中以接收端的检测器为平方率检波为例,因此在对复信号的叠加中采用了 平方的形式。应理解,公式(10)仅仅作为示例而非限定,在本申请实施例中,也可以采用其它方式实现信号的相干累加。例如,也可以在复信号叠加中采用绝对值的形式或者对数的形式。
在本申请实施例中,采用上述公式进行发射通道和接收通道的相位补偿,能够简化相位补偿的计算复杂度,节约计算资源。并且,采用上述公式,可以在消除不同发射通道或不同接收通道带来的相位差的同时,不对噪声进行迭代和积累,从而提高了信号的处理质量。
图7是本申请一具体实施例的信号处理方法的示意图。如图7所示,该方法可以由接收端执行,并包括如下步骤。
S601、获取M×N组信号,并执行距离维FFT,以得到M×N个距离FFT谱图(表示为RMap 0)。
可选地,在执行距离维FFT之前,可以对M×N组信号进行模数转换(analog to digital,ADC)。
S602、对M×N个RMap 0执行多普勒维FFT,以得到M×N个距离-多普勒FFT谱图(表示为RDMap 1)。
其中,M×N个距离-多普勒FFT谱图可以作为多个第一频谱图。或者,也可以基于M×N个距离-多普勒FFT谱图继续进行其它类型的谱分析,然后得到多个第一频谱图。例如,还可以进行角度维FFT。
S603、对M×N个RDMap 1执行接收通道的相位补偿,以获得M×N个第三频谱图(表示为RDMap 2)。
例如,M×N个RDMap 1可以针对某一接收通道的接收数据进行幅度归一化和相位补偿。关于接收通道的相位补偿的具体实现可以参见前文中的内容(例如,图4至图6及相关描述),此处不再赘述。
S604、对M×N个RDMap 2执行发射通道的相位补偿,以获取M×N个第二频谱图(表示为RDMap 3)。
例如,M×N个RDMap 2可以针对某一发射通道的接收数据进行幅度归一化和相位补偿。其中,关于发射通道的相位补偿的具体实现可以参见前文中的内容(例如,图4和图6及相关描述),此处不再赘述。
S605、对M×N个RDMap 3进行相干叠加,以得到叠加后的频谱图(表示为RDMap)。
S606、基于RDMap,继续执行后续的信号处理流程(例如,CFAR等)。
图8是本申请一具体实施例的信号处理方法的示意图。如图8所示,该方法可以由接收端执行,并包括如下步骤。
S701、获取M×N组信号,并执行距离维FFT,以得到M×N个距离FFT谱图(表示为RMap 0)。
M×N个距离FFT谱图可作为多个第一频谱图。
S702、对M×N个RMap 0执行接收通道的相位补偿,以获得M×N个第三频谱图(表示为RMap 1)。
例如,M×N个RMap 0可以针对某一接收通道的接收数据进行幅度归一化和相位补偿。关于接收通道的相位补偿的具体实现可以参见前文中的内容(例如,图4和图6及相 关描述),此处不再赘述。
S703、对M×N个RMap 1执行发射通道的相位补偿,以获取M×N个第二频谱图(表示为RMap 2)。
例如,M×N个RMap 1可以针对某一发射通道的接收数据进行相位幅度归一化和相位补偿。其中,关于发射通道的相位补偿的具体实现可以参见前文中的内容(例如,图4至图6及相关描述),此处不再赘述。
S704、对M×N个RMap 2进行相干叠加,以得到叠加后的频谱图(表示为RMap)。
S705、对RMap执行多普勒维FFT,以得到距离-多普勒FFT谱图(表示为RDMap)。
可选地,在S704和S705部分,也可以首先对M×N个RMap 2分别执行多普勒维FFT,以得到M×N个距离-多普勒FFT谱图(表示为RDMap 3)。然后对M×N个RDMap3进行复数相加,也得到叠加后的频谱图(表示为RDMap)。
S706、基于RDMap,继续执行后续的信号处理流程(例如,CFAR等)。
图9是本申请一具体实施例的信号处理方法的示意图。如图9所示,该方法可以由接收端执行,并包括如下步骤。
S801、获取M×N组信号,并执行距离维FFT,以得到M×N个距离FFT谱图(表示为RMap 0)。
S802、对M×N个RMap 0执行多普勒维FFT,以得到M×N个距离-多普勒FFT谱图(表示为RDMap 1)。
其中,M×N个距离-多普勒FFT谱图可以作为多个第一频谱图。或者,也可以基于M×N个距离-多普勒FFT谱图继续进行其它类型的谱分析,然后得到多个第一频谱图。例如,还可以进行角度维FFT。
S803、对M×N个RDMap 1中执行接收通道的相干叠加,其中接收通道的相干叠加是指将对应于相同发射通道的RDMap 1执行相干叠加,以得到M个频谱图(表示为RDMap2)。
其中,上述M个频谱图可以作为多个第一频谱图。
在一些示例中,可以将M×N个RDMap 1划分为M个谱图组,每个谱图组包括的N个RDMap1对应于相同的发射通道。针对每个谱图组,可以基于谱分析(例如,FFT或DBF)的方式对N个RDMap 1中的相同位置的复信号进行叠加,获得M×NFFT个频谱图,其中NFFT表示对RDMap1进行相干叠加时的谱分析的点数。针对每个发射通道,在NFFT个频谱图中,确定相同位置的复信号中的幅值最大值所对应的复数值为RDMap2中的复数值,最终获得M个RDMap 2。
S804、对M个RDMap 2执行发射通道的相位补偿,以获得M个第三频谱图(表示为RDMap 3)。
例如,M个RDMap 2可以针对某一发射通道的接收数据进行幅度归一化和相位补偿。关于接收通道的相位补偿的具体实现可以参见前文中的内容(例如,图4至图6及相关描述),此处不再赘述。
在本申请实施例中,在在S803部分中,对应相同发射通道、不同接收通道的RDMap1进行了相干叠加,以得到M个RDMap 2,M个RDMap 2在分别对应不同的发射通道。可以认为由于接收通道不同对M个RDMap2的复信号的相位差影响已经消除,因此,只 需对M个RDMap2执行发射通道的相位补偿。
S805、对M×N个RDMap 3进行复数相加,以得到叠加后的频谱图(表示为RDMap)。
S806、基于RDMap,继续执行后续的信号处理流程(例如,CFAR等)。
上文结合图1至图9介绍了本申请实施例的通信方法,下文将结合图10和图11,介绍本申请实施例中的装置。
图10是本申请实施例的用于信号处理的装置900的示意性框图。该装置1000能够执行本申请方法实施例中由接收端执行的各个步骤,为了避免重复,此处不再详述。装置1000包括:
获取单元1010,用于获取M×N组信号,M×N组信号与M×N个通道组合一一对应,M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数。
处理单元1020,用于对M×N组信号执行谱分析,以获取多个第一频谱图。
处理单元1020还用于对多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,多个第一频谱图与多个第二频谱图一一对应。
在一些示例中,相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差。
处理单元1020还用于基于多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
图11是本申请实施例的用于信号处理的装置1100的示意性框图。该装置1100能够执行本申请方法实施例中由接收端执行的各个步骤,为了避免重复,此处不再详述。装置1100包括:
存储器1110(可以有一个或多个),用于存储程序。
通信接口1120。
处理器1130(可以有一个或多个),用于执行存储器1110中的程序,当程序被执行时,处理器1130用于通过通信接口1120获取M×N组信号,M×N组信号与M×N个通道组合一一对应,M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数。处理器1130还用于对M×N组信号执行谱分析,以获取多个第一频谱图;处理器1130还用于对多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,多个第一频谱图与多个第二频谱图一一对应,其中,相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;处理器1130还用于基于多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
可以理解的,上述装置或设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及 算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种信号处理方法,其特征在于,包括:
    获取M×N组信号,所述M×N组信号与M×N个通道组合一一对应,所述M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数;
    对所述M×N组信号执行谱分析,以获取多个第一频谱图;
    对所述多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,所述多个第一频谱图与所述多个第二频谱图一一对应,其中,所述相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,所述接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,所述发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;
    基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
  2. 如权利要求1所述的方法,其特征在于,在对所述多个第一频谱图的复信号执行相位补偿之前,所述方法还包括:
    对所述多个第一频谱图中的复信号执行幅度归一化。
  3. 如权利要求1或2所述的方法,其特征在于,对所述多个第一频谱图的复信号执行相位补偿,包括:
    对所述多个第一频谱图中的至少部分第一频谱图执行接收通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同;或,
    对所述多个第一频谱图中的至少部分第一频谱图执行发射通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,对所述多个第一频谱图的复信号执行相位补偿,包括:
    将所述多个第一频谱图划分为至少一个第一谱图组,每个第一谱图组中包括的第一频谱图对应于相同的发射通道;
    对每个第一谱图组中的第一频谱图执行接收通道的相位补偿,使得每个第一谱图组中的第一频谱图和第一目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个谱图组与至少一个所述第一目标频谱图一一对应,所述至少一个第一目标频谱图对应相同的接收通道;
    根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
  5. 如权利要求4所述的方法,其特征在于,所述根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图,包括:
    将执行所述接收通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,
    将执行所述接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图;
    对所述多个第三频谱图执行发射通道的相位补偿,使得所述多个第三频谱图的复信号的相位与第二目标频谱图的复信号的相位相同,其中,所述第二目标频谱图为所述多个第三频谱图中的任一频谱图;
    将执行所述发射通道的相位补偿之后的多个第三频谱图确定为所述多个第二频谱图。
  6. 如权利要求1至3中任一项所述的方法,其特征在于,对所述多个第一频谱图的复信号执行相位补偿,包括:
    将所述多个第一频谱图划分为至少一个第二谱图组,每个第二谱图组中包括的第一频谱图对应于相同的接收通道;
    对每个第二谱图组中的第一频谱图执行发射通道的相位补偿,使得每个第二谱图组中的第一频谱图与第三目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个第二谱图组与至少一个所述第三目标频谱图一一对应,所述至少一个第三目标频谱图对应相同的发射通道;
    根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
  7. 如权利要求6所述的方法,其特征在于,所述根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图,包括:
    将执行所述发射通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,
    将执行所述发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图;
    对所述多个第四频谱图执行接收通道的相位补偿,使得所述多个第四频谱图的复信号的相位与第四目标频谱图的复信号的相位相同,其中,所述第四目标频谱图为所述多个第四频谱图中的任一频谱图;
    将执行所述接收通道的相位补偿之后的多个第四频谱图确定为所述多个第二频谱图。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:
    对所述M×N组信号执行以下至少一种类型的谱分析,以获取所述多个第一频谱图:距离维快速傅里叶变换FFT、多普勒维FFT、角度维FFT。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:
    对所述M×N组信号执行距离维FFT,获取M×N个距离FFT谱图;
    对所述距离频谱图执行多普勒维FFT,获取M×N个距离-多普勒FFT谱图,所述多个第一频谱图为所述M×N个距离-多普勒FFT谱图。
  10. 如权利要求1至8中任一项所述的方法,其特征在于,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:
    对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图,所述第一频谱图为所述M×N个距离FFT谱图。
  11. 如权利要求10所述的方法,其特征在于,所述基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图,包括:
    对所述多个第二频谱图执行多普勒维FFT,以得到多个距离-多普勒FFT谱图;
    对所述多个距离-多普勒FFT谱图执行复数相加,得到所述累加后的频谱图。
  12. 如权利要求10所述的方法,其特征在于,在所述基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图之后,所述方法还包括:
    对所述累加后的频谱图执行多普勒维FFT,以得到距离-多普勒FFT谱图。
  13. 如权利要求1至8中任一项中所述的方法,其特征在于,对所述M×N组信号执行谱分析,以获取多个第一频谱图,包括:
    对所述M×N组信号执行谱分析,以获取M×N个第五频谱图;
    将所述M×N个第五频谱图划分为M个谱图组,每个谱图组包括的N个第五频谱图对应于相同的发射通道;
    利用谱分析对所述M个谱图组中的每个谱图组执行相干累加,以得到M个频谱图,所述M个频谱图为所述多个第一频谱图。
  14. 如权利要求13所述的方法,其特征在于,对所述多个第一频谱图执行相位补偿,以得到多个第二频谱图,包括:
    对所述多个第一频谱图执行发射通道的相位补偿,以使得相位补偿后得到的所述多个第二频谱图在相同位置的复信号的相位相同。
  15. 如权利要求13或14所述的方法,其特征在于,对所述M×N组信号执行谱分析,以获取M×N个第五频谱图,包括:
    对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图;
    对所述M×N个距离FFT谱图执行多普勒维FFT变换,获取M×N个距离-多普勒FFT谱图,所述M×N个第五频谱图为所述M×N个距离-多普勒FFT谱图。
  16. 一种用于信号处理的设备,其特征在于,包括:
    获取单元,用于获取M×N组信号,所述M×N组信号与M×N个通道组合一一对应,所述M×N个通道组合为M个发射通道和N个接收通道分别形成的通道组合,M、N为正整数;
    处理单元,用于对所述M×N组信号执行谱分析,以获取多个第一频谱图;
    所述处理单元还用于对所述多个第一频谱图的复信号执行相位补偿,以得到多个第二频谱图,所述多个第一频谱图与所述多个第二频谱图一一对应,其中,所述相位补偿包括以下至少一种:接收通道的相位补偿以及发射通道的相位补偿,所述接收通道的相位补偿用于补偿复信号由于接收通道不同导致的相位差,所述发射通道的相位补偿用于补偿复信号由于发射通道不同导致的相位差;
    所述处理单元还用于基于所述多个第二频谱图的复信号进行复数相加,获取累加后的频谱图。
  17. 如权利要求16所述的设备,其特征在于,所述处理单元还用于对所述多个第一频谱图中的复信号执行幅度归一化。
  18. 如权利要求16或17所述的设备,其特征在于,所述处理单元具体用于对所述多个第一频谱图中的至少部分第一频谱图执行接收通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同;或,对所述多个第一频谱图中的至少部分第一频谱图执行发射通道的相位补偿,使得所述多个第二频谱图中的至少两个第二频谱图在相同位置的复信号的相位相同。
  19. 如权利要求16至18中任一项所述的设备,其特征在于,所述处理单元具体用于:将所述多个第一频谱图划分为至少一个第一谱图组,每个第一谱图组中包括的第一频谱图对应于相同的发射通道;对每个第一谱图组中的第一频谱图执行接收通道的相位补偿,使 得每个第一谱图组中的第一频谱图和第一目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个谱图组与至少一个所述第一目标频谱图一一对应,所述至少一个第一目标频谱图对应相同的接收通道;根据执行所述接收通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
  20. 如权利要求19所述的设备,其特征在于,所述处理单元具体用于:将执行所述接收通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述接收通道的相位补偿之后的多个第一频谱图确定为多个第三频谱图;对所述多个第三频谱图执行发射通道的相位补偿,使得所述多个第三频谱图的复信号的相位与第二目标频谱图的复信号的相位相同,其中,所述第二目标频谱图为所述多个第三频谱图中的任一频谱图;
    将执行所述发射通道的相位补偿之后的多个第三频谱图确定为所述多个第二频谱图。
  21. 如权利要求16至18中任一项所述的设备,其特征在于,所述处理单元具体用于:将所述多个第一频谱图划分为至少一个第二谱图组,每个第二谱图组中包括的第一频谱图对应于相同的接收通道;对每个第二谱图组中的第一频谱图执行发射通道的相位补偿,使得每个第二谱图组中的第一频谱图与第三目标频谱图在相同位置的复信号的相位相同,其中,所述至少一个第二谱图组与至少一个所述第三目标频谱图一一对应,所述至少一个第三目标频谱图对应相同的发射通道;根据执行所述发射通道的相位补偿之后的多个第一频谱图,确定所述多个第二频谱图。
  22. 如权利要求21所述的设备,其特征在于,所述处理单元具体用于:将执行所述发射通道的相位补偿之后的多个第一频谱图确定为所述多个第二频谱图;或,将执行所述发射通道的相位补偿之后的多个第一频谱图确定为多个第四频谱图;对所述多个第四频谱图执行接收通道的相位补偿,使得所述多个第四频谱图的复信号的相位与第四目标频谱图的复信号的相位相同,其中,所述第四目标频谱图为所述多个第四频谱图中的任一频谱图;将执行所述接收通道的相位补偿之后的多个第四频谱图确定为所述多个第二频谱图。
  23. 如权利要求16至22中任一项所述的设备,其特征在于,所述处理单元具体用于:对所述M×N组信号执行以下至少一种类型的谱分析,以获取所述多个第一频谱图:距离维FFT、多普勒维FFT、角度维FFT。
  24. 如权利要求16至23中任一项所述的设备,其特征在于,所述处理单元具体用于:对所述M×N组信号执行距离维FFT,获取M×N个距离FFT谱图;对所述距离频谱图执行多普勒维FFT,获取M×N个距离-多普勒FFT谱图,所述多个第一频谱图为所述M×N个距离-多普勒FFT谱图。
  25. 如权利要求16至23中任一项所述的设备,其特征在于,所述处理单元具体用于:对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图,所述第一频谱图为所述M×N个距离FFT谱图。
  26. 如权利要求25所述的设备,其特征在于,所述处理单元具体用于:对所述多个第二频谱图执行多普勒维FFT,以得到多个距离-多普勒FFT谱图;对所述多个距离-多普勒FFT谱图执行复数相加,得到所述累加后的频谱图。
  27. 如权利要求25所述的设备,其特征在于,所述处理单元具体用于:对所述累加后的频谱图执行多普勒维FFT,以得到距离-多普勒FFT谱图。
  28. 如权利要求16至23中任一项中所述的设备,其特征在于,所述处理单元具体用于:对所述M×N组信号执行谱分析,以获取M×N个第五频谱图;将所述M×N个第五频谱图划分为M个谱图组,每个谱图组包括的N个第五频谱图对应于相同的发射通道;利用谱分析对所述M个谱图组中的每个谱图组执行相干累加,以得到M个频谱图,所述M个频谱图为所述多个第一频谱图。
  29. 如权利要求28所述的设备,其特征在于,所述处理单元具体用于:对所述多个第一频谱图执行发射通道的相位补偿,以使得相位补偿后得到的所述多个第二频谱图在相同位置的复信号的相位相同。
  30. 如权利要求28或29所述的设备,其特征在于,所述处理单元具体用于:对所述M×N组信号执行距离维FFT变换,获取M×N个距离FFT谱图;对所述M×N个距离FFT谱图执行多普勒维FFT变换,获取M×N个距离-多普勒FFT谱图,所述M×N个第五频谱图为所述M×N个距离-多普勒FFT谱图。
PCT/CN2020/084699 2020-04-14 2020-04-14 信号处理方法和装置 WO2021207929A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080005168.5A CN112740068B (zh) 2020-04-14 2020-04-14 信号处理方法和装置
PCT/CN2020/084699 WO2021207929A1 (zh) 2020-04-14 2020-04-14 信号处理方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084699 WO2021207929A1 (zh) 2020-04-14 2020-04-14 信号处理方法和装置

Publications (2)

Publication Number Publication Date
WO2021207929A1 true WO2021207929A1 (zh) 2021-10-21
WO2021207929A9 WO2021207929A9 (zh) 2021-11-18

Family

ID=75609561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084699 WO2021207929A1 (zh) 2020-04-14 2020-04-14 信号处理方法和装置

Country Status (2)

Country Link
CN (1) CN112740068B (zh)
WO (1) WO2021207929A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852278A (zh) * 2006-04-24 2006-10-25 上海交通大学 与nr解码结合的相位跟踪环路
CN102483943A (zh) * 2009-08-18 2012-05-30 三星电子株式会社 多通道音频解码方法及其设备
CN108549048A (zh) * 2018-03-23 2018-09-18 武汉大学 一种多频WiFi外辐射源雷达相参处理方法
US20190004145A1 (en) * 2016-01-04 2019-01-03 Symeo Gmbh Method and system for reducing interference caused by phase noise in a radar system
US20200018840A1 (en) * 2017-03-02 2020-01-16 Friedrich-Alexander-Universität Erlangen-Nürnberg Radar system and method for operating a radar system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762816B (zh) * 2008-12-25 2011-12-28 清华大学 一种星载mimo-sar静态场景和运动目标联合处理方法和系统
CN102035076B (zh) * 2009-09-29 2014-06-04 电信科学技术研究院 天线校准系统和方法
CN103744080B (zh) * 2014-01-16 2016-02-03 中国科学院电子学研究所 一种星载多通道合成孔径雷达成像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1852278A (zh) * 2006-04-24 2006-10-25 上海交通大学 与nr解码结合的相位跟踪环路
CN102483943A (zh) * 2009-08-18 2012-05-30 三星电子株式会社 多通道音频解码方法及其设备
US20190004145A1 (en) * 2016-01-04 2019-01-03 Symeo Gmbh Method and system for reducing interference caused by phase noise in a radar system
US20200018840A1 (en) * 2017-03-02 2020-01-16 Friedrich-Alexander-Universität Erlangen-Nürnberg Radar system and method for operating a radar system
CN108549048A (zh) * 2018-03-23 2018-09-18 武汉大学 一种多频WiFi外辐射源雷达相参处理方法

Also Published As

Publication number Publication date
CN112740068B (zh) 2022-02-25
CN112740068A (zh) 2021-04-30
WO2021207929A9 (zh) 2021-11-18

Similar Documents

Publication Publication Date Title
EP2533069A1 (en) Signal processing unit and method
US7961147B1 (en) Long baseline phase interferometer ambiguity resolution using frequency differences
JP6556399B2 (ja) レーダ装置
WO2023142273A1 (zh) 运动目标速度解模糊方法、装置、电子设备及存储介质
JP2012103132A (ja) レーダ装置
CN113109781B (zh) 波达方向估计方法、雷达和可移动设备
US20230184886A1 (en) Signal processing method and apparatus
JP6279193B2 (ja) 物体検出装置及びセンサ装置
WO2020126050A1 (en) Coordination of wireless communication unit and radar unit in a wireless communication network
WO2021207929A1 (zh) 信号处理方法和装置
JP2010175457A (ja) レーダ装置
CN109782245B (zh) 波达方向估计方法及装置、雷达、可读存储介质
JP5705066B2 (ja) パッシブレーダ装置
Leigsnering et al. Multipath exploitation in sparse scene recovery using sensing-through-wall distributed radar sensor configurations
WO2023142272A1 (zh) 运动目标速度解模糊方法、装置、电子设备及存储介质
JP6164936B2 (ja) レーダ装置
Tian et al. Long-time coherent integration and motion parameters estimation of radar moving target with unknown entry/departure time based on SAF-WLVT
US20230066386A1 (en) Tdm fmcw radar apparatus and signal processing method of apparatus
JP2009204501A (ja) 波数推定装置
CN113938358B (zh) 时延确定方法和终端
CA3056557C (en) Radar device
JP7112765B2 (ja) 距離計測装置、距離計測方法、及びプログラム
KR20190134893A (ko) 안테나 어레이 외삽을 이용한 레이더 수신신호의 도착방향 추정 방법 및 장치
CN114690178A (zh) 目标跟踪方法、装置、设备及存储介质
CN111766559A (zh) 一种测向方法、装置、系统、计算机设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931221

Country of ref document: EP

Kind code of ref document: A1