WO2021207884A1 - 数据传输方法、装置及通信设备 - Google Patents

数据传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2021207884A1
WO2021207884A1 PCT/CN2020/084516 CN2020084516W WO2021207884A1 WO 2021207884 A1 WO2021207884 A1 WO 2021207884A1 CN 2020084516 W CN2020084516 W CN 2020084516W WO 2021207884 A1 WO2021207884 A1 WO 2021207884A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
amd pdu
rlc sdu
data
user equipment
Prior art date
Application number
PCT/CN2020/084516
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/996,057 priority Critical patent/US20230209637A1/en
Priority to PCT/CN2020/084516 priority patent/WO2021207884A1/zh
Priority to CN202080000718.4A priority patent/CN113812201B/zh
Publication of WO2021207884A1 publication Critical patent/WO2021207884A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management

Definitions

  • This application relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to data transmission methods, devices and communication equipment.
  • the user equipment transitions from the radio resource control (RRC, Radio Resource Control) idle state or the RRC inactive state to the RRC connected state, which requires a lot of signaling overhead, which is larger than the small data of the user equipment. data)
  • RRC Radio Resource Control
  • the transmission overhead is not conducive to the power saving of user equipment.
  • the random access channel (RACH, Random Access Channel) can be used to implement small data transmission in a four-step random access mechanism or a two-step random access mechanism
  • the transmission of small data can be implemented in step 103.
  • the transmission of small data can be implemented in step 203.
  • the embodiments of the present disclosure provide a data transmission method, device, and communication equipment.
  • a data transmission method wherein, when applied to a user equipment, the method includes:
  • ASD PDU Acknowledged Mode Data Protocol Data Unit
  • bit length of the sequence number field of the first type AMD PDU is less than Used for the bit length of the sequence number field of the second type of AMD PDU in the connected state.
  • a data transmission method wherein, when applied to a base station, the method includes:
  • a data transmission device which is applied to user equipment, and the device includes: a sending module, wherein:
  • the sending module is configured to send the first type of confirmation mode data protocol data unit AMD PDU in response to the user equipment being in the inactive state, and the bit length of the sequence number field of the first type of AMD PDU is less than that used for The bit length of the sequence number field of the second type of AMD PDU in the connected state.
  • a data transmission device which is applied to a base station, and the device includes: a first receiving module, wherein:
  • the first receiving module is configured to receive a first type of confirmation mode data protocol data unit AMD PDU, where the first type of AMD PDU is sent by the user equipment in an inactive state, and bits of the first type of AMD PDU The length is less than the bit length of the sequence number field used for the second type of AMD PDU in the connected state.
  • a communication device including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, and the processor runs the When the program is executed, the steps of the data transmission method described in the first aspect are executed.
  • a communication device including a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being run by the processor, and the processor runs the When the program is executed, the steps of the data transmission method described in the second aspect are executed.
  • the user equipment transmits the first type of confirmation mode data protocol data unit AMD PDU in response to the user equipment being in an inactive state, and the sequence of the first type of AMD PDU
  • the bit length of the number field is less than the bit length of the sequence number field used for the second type of AMD PDU in the connected state.
  • the first type of AMD PDU is transmitted in the inactive state, and a sequence number field with a smaller bit length is set in the first type of AMD PDU, so that the first type of AMD PDU with the same bit length can carry wireless link layer control protocol service data
  • the data volume of the unit (RLC SDU, Radio Link Control Protocol Data Unit) is larger, which reduces the bit overhead of the sequence number.
  • Fig. 1 is a schematic flow chart showing specific steps of a random access mechanism according to an exemplary embodiment
  • Fig. 2 is a schematic flowchart showing specific steps of another random access mechanism according to an exemplary embodiment
  • Fig. 3 is a schematic structural diagram showing a wireless communication system according to an exemplary embodiment
  • Fig. 4 is a schematic diagram showing a frame structure of a transparent mode data protocol data unit according to an exemplary embodiment
  • Fig. 5a is a schematic diagram showing a frame structure of a data protocol data unit in an unacknowledged mode according to an exemplary embodiment
  • Fig. 5b is a schematic diagram showing a frame structure of another data protocol data unit in an unacknowledged mode according to an exemplary embodiment
  • Fig. 5c is a schematic diagram showing another frame structure of a data protocol data unit in an unacknowledged mode according to an exemplary embodiment
  • Fig. 6a is a schematic diagram showing a frame structure of an acknowledge mode data protocol data unit according to an exemplary embodiment
  • Fig. 6b is a schematic diagram showing a frame structure of another confirmation mode data protocol data unit according to an exemplary embodiment
  • Fig. 7 is a schematic flowchart of a data transmission method according to an exemplary embodiment
  • Fig. 8 is a schematic diagram showing a frame structure of an acknowledge mode data protocol data unit according to an exemplary embodiment
  • Fig. 9 is a schematic flowchart showing another data transmission method according to an exemplary embodiment.
  • Fig. 10 is a schematic flowchart showing a data transmission method according to an exemplary embodiment
  • Fig. 11 is a schematic flowchart showing another data transmission method according to an exemplary embodiment
  • Fig. 12 is a block diagram showing a data transmission device according to an exemplary embodiment
  • Fig. 13 is a block diagram showing another data transmission device according to an exemplary embodiment
  • Fig. 14 is a block diagram showing a device for data transmission according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
  • FIG. 3 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include several terminals 11 and several base stations 12.
  • the terminal 11 may be a device that provides voice and/or data connectivity to the user.
  • the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
  • the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
  • station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
  • the terminal 11 may also be a device of an unmanned aerial vehicle.
  • the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
  • the base station 12 may be a network side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be the next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
  • the base station 12 may be an evolved base station (eNB) used in a 4G system.
  • the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
  • a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
  • an E2E (End to End) connection may also be established between the terminals 11.
  • V2V vehicle to vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to pedestrian
  • the above-mentioned wireless communication system may further include a network management device 13.
  • the network management device 13 may be a core network device in a wireless communication system.
  • the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules function unit Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • the executive bodies involved in the embodiments of the present disclosure include, but are not limited to: user equipment (UE, User Equipment) such as terminals that support cellular mobile communication technology, and base stations.
  • UE user equipment
  • User Equipment User Equipment
  • the application scenario of the embodiment of the present disclosure is that when the user equipment in the RRC inactive state transmits small data, since the amount of transmitted data is small, the form of RRC recovery request (RRCResumeRequest) plus small data is generally adopted.
  • the RRCResumeRequest uses the SRB0 bearer to use Common Control Channel (CCCH, Common Control Channel) resources for transmission.
  • CCCH Common Control Channel
  • the CCCH may include: a two-way control channel in cellular communication, usually in the access phase, to transmit control signaling and information required for link connection.
  • the definition of the transmission of small data in the CCCH can exceed the size of the existing CCCH by 64 or 48 bits.
  • the user equipment in the RRC inactive state uses the signaling of the initial access network to carry small data for the purpose of reducing time delay and saving power of the user equipment. Therefore, it is necessary to transmit as much small data as possible.
  • the data transmitted using the common control channel CCCH resource is not encapsulated at the Packet Data Convergence Protocol (PDCP) layer, but at the Radio Link Control Protocol (RLC, Radio Link Control) layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • the RLC protocol data unit (PDU, Protocol Data Unit) is divided into three types: transparent mode data (TMD Transparent Mode Data) PDU, unacknowledged mode data (UMD, Unacknowledged Mode Data) PDU, and acknowledged mode data (AMD). , Acknowledged Mode Data) PDU.
  • the frame formats of the three PDUs are shown in Figure 4 to Figure 6.
  • the TMD PDU frame format is shown in Figure 4; the UMD PDU frame format with a complete RLC SDU is shown in Figure 5a, and the SN field occupies 6 bits.
  • the frame format of the UMD PDU is shown in Figure 5b.
  • the frame format of the UMD PDU with the SN field occupying 12 bits is shown in Figure 5c; the frame format of the AMD PDU with the SN field occupying 12 bits is shown in Figure 6a.
  • the frame format of the AMD PDU with the SN field occupying 18 bits is shown in Figure 6b.
  • TMD PDU of the three types of PDUs at the RLC layer can be transmitted using CCCH resources. But the RLC header that the TMD PDU does not have. During the transmission of small data, retransmission of the RLC layer may be required. The TMD PDU without an RLC header lacks corresponding retransmission information, so retransmission is prone to errors.
  • the sequence number (SN, Sequence Number) field of AMD PDU can occupy up to 18 bits.
  • the amount of data transmitted is small (that is, The number of data frames is small), so there is no need to divide into so many sequences. Too many bits occupied by the SN field will reduce the amount of small data carried in the AMD PDU.
  • this exemplary embodiment provides a data transmission method.
  • the data transmission method may include:
  • Step 701 In response to the user equipment being in the inactive state, send the first type of confirmation mode data protocol data unit AMD PDU.
  • the first type of AMD PDU may be an AMD PDU for sending and receiving data from a UE in an inactive state.
  • the first type of AMD PDU and the second type of AMD PDU have at least the following differences:
  • the bit length of the sequence number field of the first type of AMD PDU is less than the bit length of the sequence number field of the second type of AMD PDU in the connected state.
  • the second AMD PDU may be an AMD PDU for the UE in the connected state.
  • the wireless communication system may include, but is not limited to, a wireless communication system based on 5G cellular mobile communication technology.
  • the inactive state can be the RRC inactive state.
  • the non-access stratum (NAS) layer is still in the connected state, and the behavior of the RRC layer is similar to the RRC idle state.
  • the connected state can be the RRC connected state.
  • the user equipment establishes an RRC connection with the base station, and the user equipment can perform data transmission with the base station.
  • the user equipment is in the RRC idle state, it cannot communicate with the base station because the RRC connection is not established. transmission.
  • AMD PDU can be RLC SDU in confirmed mode.
  • the RLC entity of the user equipment receives the RLC SDU from the upper layer such as the Packet Data Convergence Protocol (PDCP, Packet Data Convergence Protocol) layer, and encapsulates the received RLC SDU into the RLC PDU, and sends it to the RLC entity of the base station through the lower layer, and the RLC of the base station
  • the entity receives the RLC PDU through the lower layer, and submits the RLC SDU in it to the upper layer of the base station.
  • PDCP Packet Data Convergence Protocol
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • the AMD PDU frame structure can be shown in Figure 8.
  • the sequence number (SN, Sequence Number) field can be located at the head of the AMD PDU PDU frame.
  • the user equipment in the inactive state can receive the RLC SDU from the higher layer.
  • the RLC layer can be located at Add a PDU frame header to the RLC SDU, encapsulate the RLC SDU into the first type AMD PDU, and send the first type AMD PDU to the base station.
  • the RLC SDU may be small data with a small amount of data.
  • the bits occupied by the RLC SDU may be less than or equal to 4 bytes.
  • the bit length of the first type of AMD PDU may be less than the bit length of the second type of AMD PDU.
  • the first type of AMD PDU can be used to carry small data when the user equipment is in an inactive state.
  • the first-type AMD PDU can use a sequence number field with a smaller bit length.
  • the second-type AMD PDU can use a sequence number field with a larger bit length.
  • the sequence number field of the first type of AMD PDU may occupy 2 bits.
  • the sequence number field of the first type of AMD PDU can occupy 18 bits.
  • the first type of AMD PDU uses a sequence number field with a smaller bit length, and the first type of AMD PDU with the same bit length can carry a larger amount of RLC SDU data.
  • the user equipment sends the first type of AMD PDU, and the PDU frame header of the first type of AMD PDU can carry the identification information of the first type of AMD PDU through the SN field, etc.
  • the user equipment can retransmit the first type of AMD PDU that failed to be received.
  • the base station can sort the data of the received end according to the sequence number field and other carrying identification information of the first type of AMD PDU, etc. Then the reception is completed, and the data retransmission in the inactive state is realized.
  • the first type of AMD PDU is transmitted in the inactive state, and a sequence number field with a smaller bit length is set in the first type of AMD PDU, so that the first type of AMD PDU with the same bit length can carry a larger amount of RLC SDU data. Reduce the bit overhead of the serial number.
  • sending the first type of AMD PDU includes: using the common control channel CCCH resource to send the first type of AMD PDU.
  • the form of RRC recovery request (RRCResumeRequest) plus small data may be adopted.
  • the user equipment may use the common control channel (CCCH, Common Control Channel) resources to transmit both the RRRResumeRequest and the first-type AMD PDU.
  • the small data may be RLC SDU data with a number of bits less than or equal to 4 bytes.
  • using CCCH resources to send the first type of AMD PDU includes:
  • SRB0 can be used to carry RRC information on CCCH, and SRB0 in the inactive state is only used to carry TMD PDU.
  • the first type AMD PDU carried by SRB0 is used and sent on the CCCH. In this way, the data types carried by SRB0 are increased, and the utilization efficiency of SRB0 is improved
  • the number of bits occupied by the sequence number field of the first type AMD PDU is less than or equal to 3.
  • the amount of data transmitted by the user equipment is small, and the number of AMD PDUs of the first type is small.
  • the sequence number field used to characterize the sequence number of the first type AMD PDU can occupy less bit length.
  • the bit length of the sequence number field can be determined based on the bit length of the PDU frame header of the first type of AMD PDU.
  • the sequence number field is located in the PDU frame header, and the bit length of the PDU frame header can be limited to one byte. In this way, more RLC SDU data can be carried in the first type of AMD PDU with the same bit length.
  • the number of bits occupied by the sequence number field can be less than or equal to 3, for example, two bits can be occupied.
  • the first type of AMD PDU further includes: a data control field, which is used to indicate the type of the radio link layer control protocol service data unit RLC SDU in the first type of AMD PDU.
  • the data control (D/C, Data/Control) field can be set in the PDU frame header of the first type AMD PDU, which is used to indicate the type of RLC SDU carried in the first type AMD PDU.
  • the type of RLC SDU may include data RLC SDU and control RLC SDU.
  • the data RLC SDU can be used to carry data content.
  • the control RLC SDU can be used to carry control instructions and so on.
  • the data control field can occupy one bit or two bits, and use different values to indicate the data RLC SDU and the control RLC SDU respectively.
  • "00" can be used to indicate that the RLC SDU in the first type of AMD PDU is the data RLC SDU
  • "11” can be used to indicate the RLC SDU in the first type of AMD PDU is the control RLC.
  • SDU; "11” may also be used to indicate that the RLC SDU in the first type of AMD PDU is a data RLC SDU
  • "00" may be used to indicate that the RLC SDU in the first type of AMD PDU is a control RLC SDU.
  • the base station may determine the type of RLC SDU in the first type of AMD PDU according to the data control field.
  • the RLC SDU includes: data RLC SDU carrying data;
  • the data RLC SDU carries identification information of the user equipment.
  • the identification information of the user equipment can include (I-RNTI, Inactive Radio Network Temporary Identifier) and message authentication code (MAC-I, Message Authentication Code-Integrity), etc.; the identification information can be carried in the data RLC SDU .
  • MAC-I may be MAC-I, which is generated by the user equipment and the base station by using keys, security algorithms, bearer information, etc. under the base station, and is used for mutual authentication.
  • I-RNTI can occupy 40 bits or 24 bits.
  • the base station After receiving the data RLC SDU, the base station can obtain the identification information carried therein. It can also determine whether to receive the data RLC SDU based on the identification information carried in the data RLC SDU.
  • the data transmission method may further include:
  • Step 702 Cache the RLC SDU at the RLC layer of the user equipment, where the cached RLC SDU is used for retransmission when the first type of AMD PDU transmission fails.
  • the user equipment may buffer the RLC SDU in the first type of AMD PDU at the RLC layer when sending the first type of AMD PDU.
  • the base station When the base station receives the first type of AMD PDU, it can feedback to the user equipment whether the first type of AMD PDU is successfully received by returning confirmation information or other methods.
  • the user equipment can retransmit the buffered RLC SDU.
  • the user equipment may delete the buffered RLC SDU, or may use a subsequent RLC SDU to overwrite the previously buffered RLC SDU. In this way, the situation of buffer overflow can be reduced.
  • the RLC layer directly retransmits the buffered data, and no longer needs to obtain the retransmitted data from the upper layer, which can improve the retransmission efficiency.
  • the first type of AMD PDU further includes: a segment information field, and the segment information field is used to indicate the number of bytes occupied by the RLC SDU.
  • the PDU frame header part of the first type of AMD PDU may also include: a segmentation information (SI, segmentation Information) field, and the segmentation information field may be used to indicate the number of bytes occupied by the RLC SDU.
  • SI segmentation Information
  • the base station can determine the number of bytes occupied by the RLC SDU in the first type of AMD PDU according to the segment information field.
  • the RLC SDU is a first type RLC SDU, wherein the bit length of the first type RLC SDU is less than the bit length of the second type RLC SDU.
  • the RLC SDU in the first type AMD PDU may be the first type RLC SDU.
  • the first type of RLC SDU may be an SDU with a small amount of data.
  • the bit length of the first type RLC SDU may be less than or equal to 4 bytes.
  • the bit length of the second type of RLC SDU can be greater than 4 bytes.
  • this exemplary embodiment provides a data transmission method.
  • the data transmission method may include:
  • Step 1001 Receive the first type of confirmation mode data protocol data unit AMD PDU, where the first type of AMD PDU is sent by the user equipment in the inactive state, and the bit length of the first type of AMD PDU is less than that used in the connected state. The bit length of the sequence number field of the second type of AMD PDU.
  • the first type of AMD PDU may be an AMD PDU for sending and receiving data from a UE in an inactive state.
  • the first type of AMD PDU and the second type of AMD PDU have at least the following differences:
  • the bit length of the sequence number field of the first type of AMD PDU is less than the bit length of the sequence number field of the second type of AMD PDU in the connected state.
  • the second AMD PDU may be an AMD PDU for the UE in the connected state.
  • the wireless communication system may include, but is not limited to, a wireless communication system based on 5G cellular mobile communication technology.
  • the inactive state can be the RRC inactive state.
  • the non-access stratum (NAS) layer is still in the connected state, and the behavior of the RRC layer is similar to the RRC idle state.
  • the connected state can be the RRC connected state.
  • the user equipment establishes an RRC connection with the base station, and the user equipment can perform data transmission with the base station.
  • the user equipment is in the RRC idle state, it cannot communicate with the base station because the RRC connection is not established. transmission.
  • AMD PDU can be RLC SDU in confirmed mode.
  • the RLC entity of the user equipment receives the RLC SDU from the upper layer such as the Packet Data Convergence Protocol (PDCP, Packet Data Convergence Protocol) layer, and encapsulates the received RLC SDU into the RLC PDU, and sends it to the RLC entity of the base station through the lower layer, and the RLC of the base station
  • the entity receives the RLC PDU through the lower layer, and submits the RLC SDU in it to the upper layer of the base station.
  • PDCP Packet Data Convergence Protocol
  • Packet Data Convergence Protocol Packet Data Convergence Protocol
  • the AMD PDU frame structure can be shown in Figure 8.
  • the sequence number field can be located in the PDU frame header of the AMD PDU.
  • the user equipment in the inactive state can receive the RLC SDU from the higher layer, and the RLC layer can add the PDU frame to the RLC SDU. Header, encapsulate the RLC SDU into the first type AMD PDU, and send the first type AMD PDU to the base station.
  • the RLC SDU may be small data with a small amount of data. For example, the bits occupied by the RLC SDU may be less than or equal to 4 bytes.
  • the bit length of the first type of AMD PDU may be less than the bit length of the second type of AMD PDU.
  • the first type of AMD PDU can be used to carry small data when the user equipment is in an inactive state.
  • the first-type AMD PDU can use a sequence number field with a smaller bit length.
  • the second-type AMD PDU can use a sequence number field with a larger bit length.
  • the sequence number field of the first type of AMD PDU may occupy 2 bits.
  • the sequence number field of the first type of AMD PDU can occupy 18 bits.
  • the first type of AMD PDU uses a sequence number field with a smaller bit length, and the first type of AMD PDU with the same bit length can carry a larger amount of RLC SDU data.
  • the user equipment sends the first type of AMD PDU, and the PDU frame header of the first type of AMD PDU can carry the identification information of the first type of AMD PDU through the SN field, etc.
  • the user equipment can retransmit the first type of AMD PDU that failed to be received.
  • the base station can sort the data of the received end according to the sequence number field and other carrying identification information of the first type of AMD PDU, etc. Then the reception is completed, and the data retransmission in the inactive state is realized.
  • the first type of AMD PDU is transmitted in the inactive state, and a sequence number field with a smaller bit length is set in the first type of AMD PDU, so that the first type of AMD PDU with the same bit length can carry a larger amount of RLC SDU data. Reduce the bit overhead of the serial number.
  • step 901 may include: using a common control channel CCCH resource to receive the first type of AMD PDU.
  • the form of RRC recovery request (RRCResumeRequest) plus small data may be adopted.
  • the user equipment may use the common control channel (CCCH, Common Control Channel) resources to transmit both the RRRResumeRequest and the first-type AMD PDU.
  • the small data may be RLC SDU data with a number of bits less than or equal to 4 bytes.
  • using the CCCH resource to receive the first type of AMD PDU includes: using the CCCH resource to receive the first type of AMD PDU carried by the SRB0.
  • SRB0 can be used to carry RRC information on CCCH, and SRB0 in the inactive state is only used to carry TMD PDU.
  • the first type AMD PDU carried by SRB0 is used and sent on the CCCH. In this way, the data types carried by SRB0 are increased, and the utilization efficiency of SRB0 is improved.
  • the number of bits occupied by the sequence number field of the first type AMD PDU is less than or equal to 3.
  • the amount of data transmitted by the user equipment is small, and the number of AMD PDUs of the first type is small.
  • the sequence number field used to characterize the sequence number of the first type AMD PDU can occupy less bit length.
  • the bit length of the sequence number field can be determined based on the bit length of the PDU frame header of the first type of AMD PDU.
  • the sequence number field is located in the PDU frame header, and the bit length of the PDU frame header can be limited to one byte. In this way, more RLC SDU data can be carried in the first type of AMD PDU with the same bit length.
  • the number of bits occupied by the sequence number field can be less than or equal to 3, for example, two bits can be occupied.
  • the first type of AMD PDU further includes: a data control field
  • the data transmission method may further include: according to the data control field, determining the type of the radio link layer control protocol service data unit RLC SDU in the first type of AMD PDU.
  • the data control (D/C, Data/Control) field can be set in the PDU frame header of the first type AMD PDU, which is used to indicate the type of RLC SDU carried in the first type AMD PDU.
  • the type of RLC SDU may include data RLC SDU and control RLC SDU.
  • the data RLC SDU can be used to carry data content.
  • the control RLC SDU can be used to carry control instructions and so on.
  • the data control field can occupy one bit or two bits, and use different values to indicate the data RLC SDU and the control RLC SDU respectively.
  • "00" can be used to indicate that the RLC SDU in the first type of AMD PDU is the data RLC SDU
  • "11” can be used to indicate the RLC SDU in the first type of AMD PDU is the control RLC SDU
  • “11” may also be used to indicate that the RLC SDU in the first type of AMD PDU is a data RLC SDU
  • "00" may be used to indicate that the RLC SDU in the first type of AMD PDU is a control RLC SDU.
  • the base station may determine the type of RLC SDU in the first type of AMD PDU according to the data control field.
  • the data transmission method may further include: when the RLC SDU is a data RLC SDU type carrying data, acquiring the identification information of the user equipment carried in the data RLC SDU.
  • the identification information of the user equipment can include (I-RNTI, Inactive Radio Network Temporary Identifier) and message authentication code (MAC-I, Message Authentication Code-Integrity), etc.; the identification information can be carried in the data RLC SDU .
  • MAC-I may be MAC-I, which is generated by the user equipment and the base station by using keys, security algorithms, bearer information, etc. under the base station, and is used for mutual authentication.
  • I-RNTI can occupy 40 bits or 24 bits.
  • the base station After receiving the data RLC SDU, the base station can obtain the identification information carried therein. It can also determine whether to receive the data RLC SDU based on the identification information carried in the data RLC SDU.
  • the data transmission method may further include:
  • Step 1002 When the first type of AMD PDU transmission fails, receive the RLC SDU retransmitted by the user equipment and buffered in the RLC layer of the user equipment.
  • the user equipment may buffer the RLC SDU in the first type of AMD PDU at the RLC layer when sending the first type of AMD PDU.
  • the base station When the base station receives the first type of AMD PDU, it can feedback to the user equipment whether the first type of AMD PDU is successfully received by returning confirmation information or other methods.
  • the user equipment can retransmit the buffered RLC SDU.
  • the user equipment may delete the buffered RLC SDU, or may use a subsequent RLC SDU to overwrite the previously buffered RLC SDU. In this way, the situation of buffer overflow can be reduced.
  • the RLC layer directly retransmits the buffered data, and no longer needs to obtain the retransmitted data from the upper layer, which can improve the retransmission efficiency.
  • the first type of AMD PDU further includes: a segment information field
  • the data transmission method may further include: determining the number of bytes occupied by the RLC SDU according to the segment information field.
  • the PDU frame header part of the first type of AMD PDU may also include: a segmentation information (SI, segmentation Information) field, and the segmentation information field may be used to indicate the number of bytes occupied by the RLC SDU.
  • SI segmentation Information
  • the base station can determine the number of bytes occupied by the RLC SDU in the first type of AMD PDU according to the segment information field.
  • the RLC SDU is a first type RLC SDU, wherein the bit length of the first type RLC SDU is less than the bit length of the second type RLC SDU.
  • the RLC SDU in the first type AMD PDU may be the first type RLC SDU.
  • the first type of RLC SDU may be an SDU with a small amount of data.
  • the bit length of the first type RLC SDU may be less than or equal to 4 bytes.
  • the bit length of the second type of RLC SDU can be greater than 4 bytes.
  • This example provides an AMD PDU
  • the AMD PDU format is shown in Figure 8, which can include:
  • D/C data/control domain
  • D stands for data
  • C stands for control.
  • the D/C field can be identified by two bits, for example, "00" can be used to indicate that the AMD PDU contains data RLC SDU.
  • the data RLC SDU may include UE ID (I-RNTI) and MAC-I.
  • SI Segmentation Info
  • the SI field identifies the number of bytes occupied by its RLC SDU.
  • SN domain can occupy 2 bits.
  • the SN field identifies the serial number of the AMD PDU.
  • AMD PDU can be carried by SRB0.
  • the user equipment may buffer the UE ID and small data in the RLC layer, where the small data may be the RLC SDU.
  • FIG. 12 is a schematic diagram of the structure of the data transmission device 100 provided by an embodiment of the present invention; as shown in FIG. 12, the device 100 includes: a sending module 110, in,
  • the sending module 110 is configured to send the first type of confirmation mode data protocol data unit AMD PDU in response to the user equipment being in the inactive state.
  • the bit length of the sequence number field of the first type of AMD PDU is less than the bit length of the serial number field used in the connected state.
  • the bit length of the sequence number field of the second type AMD PDU is less than the bit length of the sequence number field of the second type AMD PDU.
  • the sending module 110 includes:
  • the sending submodule 111 is configured to use the common control channel CCCH resource to send the first type of AMD PDU.
  • the sending submodule 111 includes:
  • the sending unit 1111 is configured to use CCCH resources to send the first type AMD PDU carried by SRB0.
  • the number of bits occupied by the sequence number field of the first type AMD PDU is less than or equal to 3.
  • the first type of AMD PDU further includes: a data control field, which is used to indicate the type of the RLC service data unit RLC SDU in the first type of AMD PDU.
  • the RLC SDU includes: data RLC SDU carrying data;
  • the data RLC SDU carries identification information of the user equipment.
  • the apparatus 100 further includes:
  • the storage module 120 is configured to buffer the RLC SDU at the RLC layer of the user equipment, where the buffered RLC SDU is used for retransmission when the first-type AMD PDU transmission fails.
  • the first type of AMD PDU further includes: a segment information field, and the segment information field is used to indicate the number of bytes occupied by the RLC SDU.
  • the RLC SDU is a first type RLC SDU, wherein the bit length of the first type RLC SDU is less than the bit length of the second type RLC SDU.
  • FIG. 13 is a schematic diagram of the composition structure of a data transmission device 200 provided by an embodiment of the present invention; as shown in FIG. 13, the device 200 includes: a first receiving module 210 ,in,
  • the first receiving module is configured to receive the first type of confirmation mode data protocol data unit AMD PDU, where the first type of AMD PDU is sent by the user equipment in an inactive state, and the bit length of the first type of AMD PDU is less than that used for The bit length of the sequence number field of the second type of AMD PDU in the connected state.
  • the first receiving module 210 includes:
  • the receiving submodule 211 is configured to use the common control channel CCCH resource to receive the first-type AMD PDU.
  • the receiving submodule 211 includes:
  • the receiving unit 2111 is configured to use CCCH resources to receive the first type AMD PDU carried by SRB0.
  • the number of bits occupied by the sequence number field of the first type of AMD PDU is less than or equal to three.
  • the first type of AMD PDU further includes: a data control field
  • the device 200 also includes:
  • the first determining module 220 is configured to determine the type of the radio link layer control protocol service data unit RLC and SDU in the first type of AMD PDU according to the data control field.
  • the apparatus 200 further includes:
  • the obtaining module 230 is configured to obtain the identification information of the user equipment carried in the data RLC SDU when the RLC SDU is of the data RLC SDU type carrying data.
  • the apparatus 200 further includes:
  • the second receiving module 240 is configured to receive the RLC SDU buffered in the RLC layer of the user equipment that is retransmitted by the user equipment when the first-type AMD PDU transmission fails.
  • the first type of AMD PDU further includes: a segment information field
  • the device 200 also includes:
  • the second determining module 250 is configured to determine the number of bytes occupied by the RLC SDU according to the segment information field.
  • the RLC SDU is a first type RLC SDU, wherein the bit length of the first type RLC SDU is less than the bit length of the second type RLC SDU.
  • the sending module 110, the storage module 120, the first receiving module 210, the first determining module 220, the acquiring module 230, the second receiving module 240, the second determining module 250, etc. may be controlled by one or more central Processor (CPU, Central Processing Unit), graphics processor (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application specific integrated circuit (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), Complex Programmable Logic Device (CPLD, Complex Programmable Logic Device), Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processors, controllers, microcontrollers (MCU, Micro Controller Unit, microprocessor (Microprocessor), or other electronic components can also be implemented in combination with one or more radio frequency (RF) antennas to perform the foregoing method.
  • CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • BP baseband processor
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic
  • Fig. 14 is a block diagram showing a device 3000 for data transmission according to an exemplary embodiment.
  • the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
  • the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 3006 provides power for various components of the device 3000.
  • the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
  • the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 3010 is configured to output and/or input audio signals.
  • the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
  • the audio component 3010 further includes a speaker for outputting audio signals.
  • the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
  • the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
  • the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
  • the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as a memory 3004 including instructions, which may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开实施例是关于数据传输方法、装置和通信设备。响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元(AMD PDU),所述第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。

Description

数据传输方法、装置及通信设备 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及数据传输方法、装置及通信设备。
背景技术
用户设备(UE,Equipment)从无线资源控制(RRC,Radio Resource Control)空闲态或RRC非激活态转换为RRC连接态,需要很多的信令开销,这些信令开销大于用户设备进行小数据(small data)传输的开销,不利于用户设备省电。
在通信领域中,为了节省用户设备电量消耗,将定义处于RRC非激活态的用户设备传输小数据的方法。可以利用随机接入信道(RACH,Random Access Channel)的在四步随机接入机制或两步随机接入机制中实现小数据的传输
如图1所示的四步随机接入机制中,可以在步骤103中实现小数据的传输。如图2所示的两步随机接入机制中,可以在步骤203中实现小数据的传输。
发明内容
有鉴于此,本公开实施例提供了一种数据传输方法、装置及通信设备。
根据本公开实施例的第一方面,提供一种数据传输方法,其中,应用于用户设备,所述方法包括:
响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元(AMD PDU,Acknowledged Mode Data Protocol Data Unit),所述第 一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
根据本公开实施例的第二方面,提供一种数据传输方法,其中,应用于用基站,所述方法包括:
接收第一类确认模式数据协议数据单元AMD PDU,其中,所述第一类AMD PDU是用户设备处于非激活态发送的,所述第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
根据本公开实施例的第三方面,提供一种数据传输装置,其中,应用于用户设备,所述装置包括:发送模块,其中,
所述发送模块,配置为响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU,所述第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
根据本公开实施例的第四方面,提供一种数据传输装置,其中,应用于用基站,所述装置包括:第一接收模块,其中,
所述第一接收模块,配置为接收第一类确认模式数据协议数据单元AMD PDU,其中,所述第一类AMD PDU是用户设备处于非激活态发送的,所述第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
根据本公开实施例的第五方面,提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如第一方面所述数据传输方法的步骤。
根据本公开实施例的第六方面,提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序, 所述处理器运行所述可执行程序时执行如第二方面所述数据传输方法的步骤。
本公开实施例提供的数据传输方法、装置及通信设备,用户设备响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU,所述第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。如此,在非激活态传输第一类AMD PDU,在第一类AMD PDU中设置较少比特长度的序列号域,使得相同比特长度的第一类AMD PDU可以携带无线链路层控制协议业务数据单元(RLC SDU,Radio Link Control Protocol Data Unit)的数据量更大,减少序列号的比特开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种随机接入机制具体步骤的流程示意图;
图2是根据一示例性实施例示出的另一种随机接入机制具体步骤的流程示意图;
图3是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图4是根据一示例性实施例示出的透明模式数据协议数据单元帧结构示意图;
图5a是根据一示例性实施例示出的一种非确认模式数据协议数据单元帧结构示意图;
图5b是根据一示例性实施例示出的另一种非确认模式数据协议数据单 元帧结构示意图;
图5c是根据一示例性实施例示出的又一种非确认模式数据协议数据单元帧结构示意图;
图6a是根据一示例性实施例示出的一种确认模式数据协议数据单元帧结构示意图;
图6b是根据一示例性实施例示出的另一种确认模式数据协议数据单元帧结构示意图;
图7是根据一示例性实施例示出的一种数据传输方法的流程示意图;
图8是根据一示例性实施例示出的确认模式数据协议数据单元帧结构示意图;
图9是根据一示例性实施例示出的另一种数据传输方法的流程示意图;
图10是根据一示例性实施例示出的一种数据传输方法的流程示意图;
图11是根据一示例性实施例示出的另一种数据传输方法的流程示意图;
图12是根据一示例性实施例示出的一种数据传输装置的框图;
图13是根据一示例性实施例示出的另一种数据传输装置的框图;
图14是根据一示例性实施例示出的一种用于数据传输的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单 数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图3,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图3所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:支持蜂窝移动通信技术的终端等用户设备(UE,User Equipment),以及基站等。
本公开实施例的应用场景为,处于RRC非激活态的用户设备在传输小数据时,由于传输的数据量较小,一般会采用RRC恢复请求(RRCResumeRequest)加小数据的形式。RRCResumeRequest采用SRB0承载利用公共控制信道(CCCH,Common Control Channel)资源进行传输。这里,CCCH可包括:蜂窝通信中的双向控制信道,通常在接入阶段,传输链路连接所需要的控制信令与信息。
在小数据的工作定义(WID,Working DIentifier)中对于小数据在CCCH中的传输的定义是可以超过现有的CCCH的大小64个或48个比特位。处于RRC非激活态下的用户设备采用初始接入网络的信令承载小数据目的是为了减小时延以及节省用户设备电量。所以需尽量的传输更多的小数据。
利用公共控制信道CCCH资源进行传输的数据不在分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)层进行封装,而是在无线链路层控制协议(RLC,Radio Link Control)层进行封装。
RLC层中,RLC协议数据单元(PDU,Protocol Data Unit)分为三种: 透明模式数据(TMD Transparent Mode Data)PDU、非确认模式数据(UMD,Unacknowledged Mode Data)PDU,以及确认模式数据(AMD,Acknowledged Mode Data)PDU。
三种PDU的帧格式如图4至图6所示,其中,TMD PDU帧格式如图4所示;具有完整RLC SDU的UMD PDU的帧格式如图5a所示,SN域占用6个比特位的UMD PDU的帧格式如图5b所示,SN域占用12个比特位的UMD PDU的帧格式如图5c所示;SN域占用12个比特位的AMD PDU的帧格式如图6a所示,SN域占用18个比特位的AMD PDU的帧格式如图6b所示.
一方面,RLC层三种PDU中只有TMD PDU能够采用CCCH资源传输。但是TMD PDU不具有的RLC头。在小数据的传输过程中可能需要RLC层的重传。不具有RLC头的TMD PDU由于缺少相应的重传信息,因此,重传容易出错。
另一方面,AMD PDU的序列号(SN,Sequence Number)域所占的比特位可以达到18比特位,但对于采用初始接入信令传输的小数据,由于传输的数据量少(即传输的数据帧个数少),因此无需分成这么多序列,SN域占用的比特位过多会减少AMD PDU中携带的小数据的数据量。
如图7所示,本示例性实施例提供一种数据传输方法,无线通信系统的用户设备中,数据传输方法可以包括:
步骤701:响应于用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU。
此处的,第一类AMD PDU可为针对于非激活态的UE收发数据的AMD PDU。
在一些实施例中,第一类AMD PDU和第二类AMD PDU至少具有如下区别:
第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
在一些实施例中,第二AMD PDU可为针对连接态的UE的AMD PDU。
这里,无线通信系统可以包括但不限于基于5G蜂窝移动通信技术的无线通信系统。
步骤701中,非激活态可以是RRC非激活态,在非激活态,非接入层(Non-access stratum,NAS)层仍然处于连接状态,RRC层的行为类似RRC空闲态,当需要进入RRC连接态时,无需重新进行RRC连接建立过程,直接向网络发送恢复RRC连接请求即可。连接态可以是RRC连接态,在连接态下,用户设备与基站建立RRC连接,用户设备可以与基站进行数据传输,用户设备处于RRC空闲态时,由于没有建立RRC连接因此,不能与基站进行数据传输。AMD PDU可以是确认模式的RLC SDU。
用户设备的RLC实体从分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)层等高层接收RLC SDU,并将接收到的RLC SDU封装到RLC PDU中,通过下层向基站的RLC实体发送,基站的RLC实体通过下层接收RLC PDU,并将其中的RLC SDU提交给基站高层。
AMD PDU帧结构可以如图8所示,序列号(SN,Sequence Number)域可以位于AMD PDU的PDU帧头位置,处于非激活态的用户设备可以将从高层接收的RLC SDU,RLC层可以在RLC SDU上添加PDU帧头,将RLC SDU封装到第一类AMD PDU中,并将第一类AMD PDU发送给基站。这里,RLC SDU可以是数据量较小的小数据,例如,RLC SDU占用的比特位可以小于或等于4个字节。
第一类AMD PDU的比特长度可以少于第二类AMD PDU的比特长度。第一类AMD PDU可以在用户设备处于非激活态下用于携带小数据。
由于在非激活态下,传输的数据量较小,即传输的第一类AMD PDU 数量较少,因此,第一类AMD PDU可以采用比特长度较少的序列号域。在连接态,传输的数据量较大,即传输的第二类AMD PDU数量较多,因此,第二类AMD PDU可以采用比特长度较多的序列号域。示例性的,第一类AMD PDU的序列号域可以占用2个比特位。第一类AMD PDU的序列号域可以占用18个比特位。
第一类AMD PDU采用比特长度较少的序列号域,相同比特长度的第一类AMD PDU可以携带RLC SDU的数据量更大。
在非激活态,用户设备发送第一类AMD PDU,第一类AMD PDU的PDU帧头中可以通过SN域等携带第一类AMD PDU的标识信息。第一类AMD PDU没有基站成功接收时,用户设备可以重传接收失败的第一类AMD PDU,基站可以根据序列号域等携带第一类AMD PDU的标识信息对已经接收端的数据进行排序等,进而完成接收,实现在非激活态的数据重传。
如此,在非激活态传输第一类AMD PDU,在第一类AMD PDU中设置较少比特长度的序列号域,使得相同比特长度的第一类AMD PDU可以携带RLC SDU的数据量更大,减少序列号的比特开销。
在一个实施例中,发送第一类AMD PDU,包括:采用公共控制信道CCCH资源发送第一类AMD PDU。
处于RRC非激活态的用户设备在传输小数据时,由于传输的数据量较小,可以采用RRC恢复请求(RRCResumeRequest)加小数据的形式。用户设备可以将RRCResumeRequest和第一类AMD PDU均利用公共控制信道(CCCH,Common Control Channel)资源进行传输。这里,小数据可以是比特数小于或等于4个字节的RLC SDU数据。
如此,采用同一类型的资源传输RRCResumeRequest和第一类AMD PDU,简化资源配置,提高资源配置效率。
在一个实施例中,采用CCCH资源发送第一类AMD PDU,包括:
采用CCCH资源发送SRB0承载的第一类AMD PDU。
SRB0可以用于在CCCH上承载RRC信息,在非激活态SRB0只用于承载TMD PDU。这里,采用SRB0承载的第一类AMD PDU,在CCCH进行发送。如此,增加了SRB0承载的数据类型,提高SRB0的利用效率
在一个实施例中,第一类AMD PDU的序列号域占用的比特数小于或等于3。
在非激活态,用户设备传输的数据量较小,第一类AMD PDU的数量较小,用于表征第一类AMD PDU序列号的序列号域,可以占用较少的比特长度。
可以基于第一类AMD PDU的PDU帧头的比特长度,确定序列号域的比特长度。这里,序列号域位于PDU帧头中,可以限定PDU帧头的比特长度为一个字节,如此,可以在相同比特长度的第一类AMD PDU中,携带更多的RLC SDU数据。
序列号域占用的比特数可以小于或等于3,例如,可以占用两个比特位。
在一个实施例中,第一类AMD PDU还包括:数据控制域,数据控制域,用于指示第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
如图8所示,第一类AMD PDU的PDU帧头中可以设置数据控制(D/C,Data/Control)域,用于指示第一类AMD PDU中携带的RLC SDU的类型。
RLC SDU的类型可以包括数据RLC SDU和控制RLC SDU。数据RLC SDU可以用于携带数据内容。控制RLC SDU可以用于携带控制指令等。
数据控制域可以占用一个比特位或两个比特位,采用不同的值分别指示数据RLC SDU和控制RLC SDU。
以数据控制域可以占用两个比特位为例,可以用“00”指示第一类AMD  PDU中的RLC SDU为数据RLC SDU,用“11”指示第一类AMD PDU中的RLC SDU为控制RLC SDU;也可以用“11”指示第一类AMD PDU中的RLC SDU为数据RLC SDU,用“00”指示第一类AMD PDU中的RLC SDU为控制RLC SDU。
基站接收到第一类AMD PDU后,可以根据数据控制域,确定第一类AMD PDU中RLC SDU的类型。
在一个实施例中,RLC SDU包括:携带数据的数据RLC SDU;
数据RLC SDU携带有用户设备的标识信息。
在非激活状态,用户设备的标识信息可以包括(I-RNTI,Inactive Radio Network Temporary Identifier)和消息鉴权码(MAC-I,Message Authentication Code-Integrity)等;标识信息可以携带在数据RLC SDU中。其中,MAC-I可以MAC-I是用户设备与基站利用在基站下的密钥、安全算法、承载信息等生成的,用于相互验证的身份标识。I-RNTI可以占用40个比特位,也可以占用24个比特位。
基站接收到数据RLC SDU后,可以获取其中携带的标识信息。并可以基于数据RLC SDU中携带的标识信息确定是否接收该数据RLC SDU。
如此,可以实现对RLC SDU的安全验证,提高数据传输可靠性。
在一个实施例中,如图9所示:数据传输方法还可以包括:
步骤702:在用户设备的RLC层缓存RLC SDU,其中,缓存的RLC SDU,用于在第一类AMD PDU传输失败时进行重传。
这里,用户设备可以在发送第一类AMD PDU时,可以在RLC层缓存第一类AMD PDU中的RLC SDU。
基站接收第一类AMD PDU时,可以通过返回确认信息等方式向用户设备反馈第一类AMD PDU是否接收成功。
当基站反馈第一类AMD PDU接收失败时,用户设备可以重发缓存的 RLC SDU。
当基站发送的确认信息确认缓存的RLC SDU已经被接收成功时,用户设备可以删除缓存的RLC SDU,或者可以采用后续的RLC SDU覆盖之前缓存的RLC SDU。如此,可以减小缓存溢出的情况。
如此,RLC层直接重发缓存的数据,不再需要从上层获取重发的数据,可以提高重发效率。
在一个实施例中,第一类AMD PDU还包括:分段信息域,分段信息域用于指示RLC SDU所占用的字节数。
如图8所示,第一类AMD PDU的PDU帧头部分还可以包括:分段信息(SI,segmentation Information)域,分段信息域可以用于指示RLC SDU所占用的字节数。基站可以根据分段信息域确定第一类AMD PDU中RLC SDU所占的字节数。
在一个实施例中,RLC SDU为第一类RLC SDU,其中,第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
这里,第一类AMD PDU中的RLC SDU可以为第一类RLC SDU。第一类RLC SDU可以是具有较小数据量的SDU。例如,第一类RLC SDU的比特长度可以小于或等于4个字节。第二类RLC SDU比特长度可以大于4个字节。
如图10所示,本示例性实施例提供一种数据传输方法,无线通信系统的基站中,数据传输方法可以包括:
步骤1001:接收第一类确认模式数据协议数据单元AMD PDU,其中,第一类AMD PDU是用户设备处于非激活态发送的,第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
此处的,第一类AMD PDU可为针对于非激活态的UE收发数据的AMD PDU。
在一些实施例中,第一类AMD PDU和第二类AMD PDU至少具有如下区别:
第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
在一些实施例中,第二AMD PDU可为针对连接态的UE的AMD PDU。
这里,无线通信系统可以包括但不限于基于5G蜂窝移动通信技术的无线通信系统。
步骤1001中,非激活态可以是RRC非激活态,在非激活态,非接入层(Non-access stratum,NAS)层仍然处于连接状态,RRC层的行为类似RRC空闲态,当需要进入RRC连接态时,无需重新进行RRC连接建立过程,直接向网络发送恢复RRC连接请求即可。连接态可以是RRC连接态,在连接态下,用户设备与基站建立RRC连接,用户设备可以与基站进行数据传输,用户设备处于RRC空闲态时,由于没有建立RRC连接因此,不能与基站进行数据传输。AMD PDU可以是确认模式的RLC SDU。
用户设备的RLC实体从分组数据汇聚协议(PDCP,Packet Data Convergence Protocol)层等高层接收RLC SDU,并将接收到的RLC SDU封装到RLC PDU中,通过下层向基站的RLC实体发送,基站的RLC实体通过下层接收RLC PDU,并将其中的RLC SDU提交给基站高层。
AMD PDU帧结构可以如图8所示,序列号域可以位于AMD PDU的PDU帧头位置,处于非激活态的用户设备可以将从高层接收的RLC SDU,RLC层可以在RLC SDU上添加PDU帧头,将RLC SDU封装到第一类AMD PDU中,并将第一类AMD PDU发送给基站。这里,RLC SDU可以是数据量较小的小数据,例如,RLC SDU占用的比特位可以小于或等于4个字节。
第一类AMD PDU的比特长度可以少于第二类AMD PDU的比特长度。第一类AMD PDU可以在用户设备处于非激活态下用于携带小数据。
由于在非激活态下,传输的数据量较小,即传输的第一类AMD PDU数量较少,因此,第一类AMD PDU可以采用比特长度较少的序列号域。在连接态,传输的数据量较大,即传输的第二类AMD PDU数量较多,因此,第二类AMD PDU可以采用比特长度较多的序列号域。示例性的,第一类AMD PDU的序列号域可以占用2个比特位。第一类AMD PDU的序列号域可以占用18个比特位。
第一类AMD PDU采用比特长度较少的序列号域,相同比特长度的第一类AMD PDU可以携带RLC SDU的数据量更大。
在非激活态,用户设备发送第一类AMD PDU,第一类AMD PDU的PDU帧头中可以通过SN域等携带第一类AMD PDU的标识信息。第一类AMD PDU没有基站成功接收时,用户设备可以重传接收失败的第一类AMD PDU,基站可以根据序列号域等携带第一类AMD PDU的标识信息对已经接收端的数据进行排序等,进而完成接收,实现在非激活态的数据重传。
如此,在非激活态传输第一类AMD PDU,在第一类AMD PDU中设置较少比特长度的序列号域,使得相同比特长度的第一类AMD PDU可以携带RLC SDU的数据量更大,减少序列号的比特开销。
在一个实施例中,步骤901可以包括:采用公共控制信道CCCH资源接收第一类AMD PDU。
处于RRC非激活态的用户设备在传输小数据时,由于传输的数据量较小,可以采用RRC恢复请求(RRCResumeRequest)加小数据的形式。用户设备可以将RRCResumeRequest和第一类AMD PDU均利用公共控制信道(CCCH,Common Control Channel)资源进行传输。这里,小数据可以是比特数小于或等于4个字节的RLC SDU数据。
如此,采用同一类型的资源传输RRCResumeRequest和第一类AMD  PDU,简化资源配置,提高资源配置效率。
在一个实施例中,采用CCCH资源接收第一类AMD PDU,包括:采用CCCH资源接收SRB0承载的第一类AMD PDU。
采用CCCH资源发送SRB0承载的第一类AMD PDU。
SRB0可以用于在CCCH上承载RRC信息,在非激活态SRB0只用于承载TMD PDU。这里,采用SRB0承载的第一类AMD PDU,在CCCH进行发送。如此,增加了SRB0承载的数据类型,提高SRB0的利用效率。
在一个实施例中,第一类AMD PDU的序列号域占用的比特数小于或等于3。
在非激活态,用户设备传输的数据量较小,第一类AMD PDU的数量较小,用于表征第一类AMD PDU序列号的序列号域,可以占用较少的比特长度。
可以基于第一类AMD PDU的PDU帧头的比特长度,确定序列号域的比特长度。这里,序列号域位于PDU帧头中,可以限定PDU帧头的比特长度为一个字节,如此,可以在相同比特长度的第一类AMD PDU中,携带更多的RLC SDU数据。
序列号域占用的比特数可以小于或等于3,例如,可以占用两个比特位。
在一个实施例中,第一类AMD PDU还包括:数据控制域;
数据传输方法还可以包括:根据数据控制域,确定第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
如图8所示,第一类AMD PDU的PDU帧头中可以设置数据控制(D/C,Data/Control)域,用于指示第一类AMD PDU中携带的RLC SDU的类型。
RLC SDU的类型可以包括数据RLC SDU和控制RLC SDU。数据RLC SDU可以用于携带数据内容。控制RLC SDU可以用于携带控制指令等。
数据控制域可以占用一个比特位或两个比特位,采用不同的值分别指 示数据RLC SDU和控制RLC SDU。
以数据控制域可以占用两个比特位为例,可以用“00”指示第一类AMD PDU中的RLC SDU为数据RLC SDU,用“11”指示第一类AMD PDU中的RLC SDU为控制RLC SDU;也可以用“11”指示第一类AMD PDU中的RLC SDU为数据RLC SDU,用“00”指示第一类AMD PDU中的RLC SDU为控制RLC SDU。
基站接收到第一类AMD PDU后,可以根据数据控制域,确定第一类AMD PDU中RLC SDU的类型。
在一个实施例中,数据传输方法还可以包括:当RLC SDU为携带数据的数据RLC SDU类型时,获取数据RLC SDU携带的用户设备的标识信息。
在非激活状态,用户设备的标识信息可以包括(I-RNTI,Inactive Radio Network Temporary Identifier)和消息鉴权码(MAC-I,Message Authentication Code-Integrity)等;标识信息可以携带在数据RLC SDU中。其中,MAC-I可以MAC-I是用户设备与基站利用在基站下的密钥、安全算法、承载信息等生成的,用于相互验证的身份标识。I-RNTI可以占用40个比特位,也可以占用24个比特位。
基站接收到数据RLC SDU后,可以获取其中携带的标识信息。并可以基于数据RLC SDU中携带的标识信息确定是否接收该数据RLC SDU。
如此,可以实现对RLC SDU的安全验证,提高数据传输可靠性。
在一个实施例中,如图11所示:数据传输方法还可以包括:
步骤1002:在第一类AMD PDU传输失败时,接收用户设备重传的缓存在用户设备的RLC层的RLC SDU。
这里,用户设备可以在发送第一类AMD PDU时,可以在RLC层缓存第一类AMD PDU中的RLC SDU。
基站接收第一类AMD PDU时,可以通过返回确认信息等方式向用户 设备反馈第一类AMD PDU是否接收成功。
当基站反馈第一类AMD PDU接收失败时,用户设备可以重发缓存的RLC SDU。
当基站发送的确认信息确认缓存的RLC SDU已经被接收成功时,用户设备可以删除缓存的RLC SDU,或者可以采用后续的RLC SDU覆盖之前缓存的RLC SDU。如此,可以减小缓存溢出的情况。
如此,RLC层直接重发缓存的数据,不再需要从上层获取重发的数据,可以提高重发效率。
在一个实施例中,第一类AMD PDU还包括:分段信息域;
数据传输方法还可以包括:根据分段信息域,确定RLC SDU所占用的字节数。
如图8所示,第一类AMD PDU的PDU帧头部分还可以包括:分段信息(SI,segmentation Information)域,分段信息域可以用于指示RLC SDU所占用的字节数。基站可以根据分段信息域确定第一类AMD PDU中RLC SDU所占的字节数。
在一个实施例中,RLC SDU为第一类RLC SDU,其中,第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
这里,第一类AMD PDU中的RLC SDU可以为第一类RLC SDU。第一类RLC SDU可以是具有较小数据量的SDU。例如,第一类RLC SDU的比特长度可以小于或等于4个字节。第二类RLC SDU比特长度可以大于4个字节。
以下结合上述任意实施例提供一个具体示例:
本示例提供一种AMD PDU
1、AMD PDU格式如图8所示,可以包括:
a)D/C(数据/控制)域;可以占用2个比特位。D表示数据(data), C表示控制(Control)。D/C域可以用两个比特位标识,例如可以用“00”表示AMD PDU中包含数据RLC SDU。数据RLC SDU可以包含UE ID(I-RNTI)及MAC-I。
b)SI(segmentation Info)域;可以占用2个比特位。SI域标识其RLC SDU所占的字节数。
c)SN域;可以占用2个比特位。SN域标识AMD PDU的序列号。
2、允许AM RLC能够从CCCH中传输AMD PDU。AMD PDU可以采用SRB0进行承载。
3、用户设备可以在RLC层缓存UE ID和small data,这里,小数据可以是RLC SDU。
本发明实施例还提供了一种数据传输装置,应用于用户设备,图12为本发明实施例提供的数据传输装置100的组成结构示意图;如图12所示,装置100包括:发送模块110,其中,
发送模块110,配置为响应于用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU,第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
在一个实施例中,发送模块110,包括:
发送子模块111,配置为采用公共控制信道CCCH资源发送第一类AMD PDU。
在一个实施例中,发送子模块111,包括:
发送单元1111,配置为采用CCCH资源发送SRB0承载的第一类AMD PDU。
在一个实施例中,第一类AMD PDU的序列号域占用的比特数小于或等于3。
在一个实施例中,第一类AMD PDU还包括:数据控制域,数据控制 域,用于指示第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
在一个实施例中,RLC SDU包括:携带数据的数据RLC SDU;
数据RLC SDU携带有用户设备的标识信息。
在一个实施例中,装置100还包括:
存储模块120,配置为在用户设备的RLC层缓存RLC SDU,其中,缓存的RLC SDU,用于在第一类AMD PDU传输失败时进行重传。
在一个实施例中,第一类AMD PDU还包括:分段信息域,分段信息域用于指示RLC SDU所占用的字节数。
在一个实施例中,RLC SDU为第一类RLC SDU,其中,第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
本发明实施例还提供了一种数据传输装置,应用于基站,图13为本发明实施例提供的数据传输装置200的组成结构示意图;如图13所示,装置200包括:第一接收模块210,其中,
第一接收模块,配置为接收第一类确认模式数据协议数据单元AMD PDU,其中,第一类AMD PDU是用户设备处于非激活态发送的,第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
在一个实施例中,第一接收模块210,包括:
接收子模块211,配置为采用公共控制信道CCCH资源接收第一类AMD PDU。
在一个实施例中,接收子模块211,包括:
接收单元2111,配置为采用CCCH资源接收SRB0承载的第一类AMD PDU。
在一个实施例中,第一类AMD PDU的序列号域占用的比特数小于或 等于3。
在一个实施例中,第一类AMD PDU还包括:数据控制域;
装置200还包括:
第一确定模块220,配置为根据数据控制域,确定第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
在一个实施例中,装置200还包括:
获取模块230,配置为当RLC SDU为携带数据的数据RLC SDU类型时,获取数据RLC SDU携带的用户设备的标识信息。
在一个实施例中,装置200还包括:
第二接收模块240,配置为在第一类AMD PDU传输失败时,接收用户设备重传的缓存在用户设备的RLC层的RLC SDU。
在一个实施例中,第一类AMD PDU还包括:分段信息域;
装置200还包括:
第二确定模块250,配置为根据分段信息域,确定RLC SDU所占用的字节数。
在一个实施例中,RLC SDU为第一类RLC SDU,其中,第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
在示例性实施例中,发送模块110、存储模块120、第一接收模块210、第一确定模块220、获取模块230、第二接收模块240和第二确定模块250等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制 器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,也可以结合一个或多个射频(RF,radio frequency)天线实现,用于执行前述方法。
图14是根据一示例性实施例示出的一种用于数据传输的装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感 器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种数据传输方法,其中,应用于用户设备,所述方法包括:
    响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU,所述第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
  2. 根据权利要求1所述的方法,其中,所述发送第一类AMD PDU,包括:
    采用公共控制信道CCCH资源发送所述第一类AMD PDU。
  3. 根据权利要求2所述的方法,其中,所述采用CCCH资源发送所述第一类AMD PDU,包括:
    采用CCCH资源发送SRB0承载的所述第一类AMD PDU。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一类AMD PDU的序列号域占用的比特数小于或等于3。
  5. 根据权利要求1至3任一项所述的方法,其中,所述第一类AMD PDU还包括:数据控制域,所述数据控制域,用于指示所述第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
  6. 根据权利要求5所述的方法,其中,所述RLC SDU包括:携带数据的数据RLC SDU;
    所述数据RLC SDU携带有所述用户设备的标识信息。
  7. 根据权利要求5所述的方法,其中,所述方法还包括:
    在所述用户设备的RLC层缓存所述RLC SDU,其中,所述缓存的所述RLC SDU,用于在所述第一类AMD PDU传输失败时进行重传。
  8. 根据权利要求5所述的方法,其中,所述第一类AMD PDU还包括:分段信息域,所述分段信息域用于指示所述RLC SDU所占用的字节数。
  9. 根据权利要求5所述的方法,其中,所述RLC SDU为第一类RLC  SDU,其中,所述第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
  10. 一种数据传输方法,其中,应用于用基站,所述方法包括:
    接收第一类确认模式数据协议数据单元AMD PDU,其中,所述第一类AMD PDU是用户设备处于非激活态发送的,所述第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
  11. 根据权利要求10所述的方法,其中,所述接收第一类AMD PDU,包括:
    采用公共控制信道CCCH资源接收所述第一类AMD PDU。
  12. 根据权利要求11所述的方法,其中,所述采用CCCH资源接收所述第一类AMD PDU,包括:
    采用CCCH资源接收SRB0承载的所述第一类AMD PDU。
  13. 根据权利要求10至12任一项所述的方法,其中,所述第一类AMD PDU的序列号域占用的比特数小于或等于3。
  14. 根据权利要求10至12任一项所述的方法,其中,
    所述第一类AMD PDU还包括:数据控制域;
    所述方法还包括:根据所述数据控制域,确定所述第一类AMD PDU中的无线链路层控制协议业务数据单元RLC SDU的类型。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    当所述RLC SDU为携带数据的数据RLC SDU类型时,获取所述数据RLC SDU携带的用户设备的标识信息。
  16. 根据权利要求14所述的方法,其中,所述方法还包括:
    在所述第一类AMD PDU传输失败时,接收所述用户设备重传的缓存在所述用户设备的RLC层的所述RLC SDU。
  17. 根据权利要求14所述的方法,其中,
    所述第一类AMD PDU还包括:分段信息域;
    所述方法还包括:
    根据所述分段信息域,确定所述RLC SDU所占用的字节数。
  18. 根据权利要求14所述的方法,其中,所述RLC SDU为第一类RLC SDU,其中,所述第一类RLC SDU的比特长度少于第二类RLC SDU的比特长度。
  19. 一种数据传输装置,其中,应用于用户设备,所述装置包括:发送模块,其中,
    所述发送模块,配置为响应于所述用户设备处于非激活态,发送第一类确认模式数据协议数据单元AMD PDU,所述第一类AMD PDU的序列号域的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
  20. 一种数据传输装置,其中,应用于用基站,所述装置包括:第一接收模块,其中,
    所述第一接收模块,配置为接收第一类确认模式数据协议数据单元AMD PDU,其中,所述第一类AMD PDU是用户设备处于非激活态发送的,所述第一类AMD PDU的比特长度,少于用于连接态下的第二类AMD PDU的序列号域的比特长度。
  21. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如权利要求1至9任一项所述数据传输方法的步骤。
  22. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,所述处理器运行所述可执行程序时执行如权利要求10至18任一项所述数据传输方法的步骤。
PCT/CN2020/084516 2020-04-13 2020-04-13 数据传输方法、装置及通信设备 WO2021207884A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/996,057 US20230209637A1 (en) 2020-04-13 2020-04-13 Method, apparatus, and communication device for data transmission
PCT/CN2020/084516 WO2021207884A1 (zh) 2020-04-13 2020-04-13 数据传输方法、装置及通信设备
CN202080000718.4A CN113812201B (zh) 2020-04-13 2020-04-13 数据传输方法、装置及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084516 WO2021207884A1 (zh) 2020-04-13 2020-04-13 数据传输方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2021207884A1 true WO2021207884A1 (zh) 2021-10-21

Family

ID=78084692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084516 WO2021207884A1 (zh) 2020-04-13 2020-04-13 数据传输方法、装置及通信设备

Country Status (3)

Country Link
US (1) US20230209637A1 (zh)
CN (1) CN113812201B (zh)
WO (1) WO2021207884A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211312A (zh) * 2015-09-30 2017-09-26 华为技术有限公司 一种数据传输方法及装置
CN109756306A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 信息传输方法和通信设备
CN110612739A (zh) * 2017-04-28 2019-12-24 三星电子株式会社 用于无线通信系统中的通信的方法和装置
US20200077299A1 (en) * 2017-05-05 2020-03-05 Nokia Technologies Oy Radio link control status reporting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101578783A (zh) * 2007-01-10 2009-11-11 Lg电子株式会社 用于在移动通信中构造数据格式的方法及其终端
CN102611537B (zh) * 2011-01-25 2015-09-09 华为技术有限公司 一种数据包的重传方法及装置
EP2904850A1 (en) * 2012-10-05 2015-08-12 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing coverage of machine type communication (mtc) devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211312A (zh) * 2015-09-30 2017-09-26 华为技术有限公司 一种数据传输方法及装置
CN110612739A (zh) * 2017-04-28 2019-12-24 三星电子株式会社 用于无线通信系统中的通信的方法和装置
US20200077299A1 (en) * 2017-05-05 2020-03-05 Nokia Technologies Oy Radio link control status reporting
CN109756306A (zh) * 2017-11-03 2019-05-14 华为技术有限公司 信息传输方法和通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Radio Link Control (RLC) protocol specification (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.322, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V16.0.0, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 33, XP051893969 *
HUAWEI, HISILICON: "Data transmission in inactive state, option A vs. option B", 3GPP DRAFT; R2-1700188 DATA TRANSMISSION IN INACTIVE STATE OPTION A VS OPTION B, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane (WA), USA; 20161114 - 20161118, 7 January 2017 (2017-01-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051203894 *

Also Published As

Publication number Publication date
US20230209637A1 (en) 2023-06-29
CN113812201B (zh) 2023-07-28
CN113812201A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021196133A1 (zh) Rrc状态改变的方法、装置、通信设备及存储介质
WO2021223239A1 (zh) 发送寻呼消息的方法、装置、通信设备及存储介质
WO2021108966A1 (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2021026690A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
CN110999527B (zh) 无线链路失败的处理方法、装置及计算机存储介质
WO2021174494A1 (zh) 增强上行覆盖的处理方法、装置及存储介质
WO2021142796A1 (zh) 通信处理方法、装置及计算机存储介质
WO2021196139A1 (zh) 信息传输方法、装置、通信设备及存储介质
WO2021174510A1 (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2021163930A1 (zh) 信息处理方法、装置、基站、终端及存储介质
WO2021012131A1 (zh) 资源分配方法及装置、消息帧处理方法及装置、存储介质
WO2021207884A1 (zh) 数据传输方法、装置及通信设备
WO2023050362A1 (zh) 下行传输配置、接收方法及装置、通信设备及存储介质
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
WO2021163934A1 (zh) 通信处理方法、装置及计算机存储介质
US20230199896A1 (en) Method and apparatus for transferring service, communication device and storage medium
WO2022006759A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2021087906A1 (zh) 下行控制信息配置方法、装置、通信设备及存储介质
WO2021007791A1 (zh) 资源配置的方法及装置、通信设备及存储介质
US20220295447A1 (en) Network access method, apparatus, communication device, and storage medium
WO2021232281A1 (zh) 数据传输方法、装置、通信设备及存储介质
WO2021208046A1 (zh) 传输处理方法、装置、用户设备、基站及存储介质
WO2022198589A1 (zh) 降低干扰的方法及装置、通信设备和存储介质
WO2021159403A1 (zh) 数据传输的处理方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930941

Country of ref document: EP

Kind code of ref document: A1