WO2021206504A1 - Organic light-emitting device - Google Patents

Organic light-emitting device Download PDF

Info

Publication number
WO2021206504A1
WO2021206504A1 PCT/KR2021/004492 KR2021004492W WO2021206504A1 WO 2021206504 A1 WO2021206504 A1 WO 2021206504A1 KR 2021004492 W KR2021004492 W KR 2021004492W WO 2021206504 A1 WO2021206504 A1 WO 2021206504A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
red
added
group
Prior art date
Application number
PCT/KR2021/004492
Other languages
French (fr)
Korean (ko)
Inventor
김민준
이동훈
차용범
서상덕
김영석
오중석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210046081A external-priority patent/KR102573176B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180004501.5A priority Critical patent/CN114144901A/en
Publication of WO2021206504A1 publication Critical patent/WO2021206504A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency, and lifetime.
  • the present invention provides the following organic light emitting device:
  • anode anode
  • cathode anode
  • a light emitting layer between the anode and the cathode
  • the light emitting layer comprises a compound represented by the following formula (1) and a compound represented by the following formula (2),
  • L 1 is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • L 2 and L 3 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 5-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
  • R is hydrogen, deuterium, or substituted or unsubstituted C 6-60 aryl
  • L 4 and L 5 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • Ar 3 To Ar 6 are each independently substituted or unsubstituted C 6-60 aryl; or C 5-60 heteroaryl including at least one selected from the group consisting of substituted or unsubstituted N, O and S.
  • the organic light emitting device described above has excellent driving voltage, efficiency, and lifetime.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (3), an electron transport layer (7), an electron injection layer (8) and a cathode (4) It shows an example of the organic light emitting device made up.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among heteroarylamines the description of the above-described heterocyclic group may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • the anode and cathode used in the present invention mean electrodes used in an organic light emitting device.
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the light emitting layer used in the present invention refers to a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode.
  • the emission layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
  • Chemical Formula 1 is represented by any one of Chemical Formulas 1-1 to 1-4.
  • L 1 to L 3 , Ar 1 , Ar 2 and R are as defined above.
  • L 1 is a single bond, phenylene, or naphthylene. More preferably, L 1 is a single bond, , or am.
  • L 2 and L 3 are each independently a single bond, phenylene, or naphthylene.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthylphenyl, phenylnaphthyl, dimethylfluorenyl, dibenzofu ranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H-carbazolyl;
  • the Ar 1 and Ar 2 are each independently unsubstituted or substituted with one or more deuterium.
  • R is hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.
  • the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 1 below.
  • Each of the above reactions is a Suzuki coupling reaction, and preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • L 4 and L 5 are each independently a single bond; or phenylene.
  • Ar 3 To Ar 6 are each independently phenyl, biphenylyl, naphthyl, phenylnaphthyl, naphthylphenyl, dimethylfluorenyl, dibenzofuranyl, (dibenzofuranyl)phenyl, dibenzo thiophenyl, or (dibenzothiophenyl)phenyl.
  • the present invention provides a method for preparing a compound represented by Formula 2 as shown in Scheme 2 below.
  • the reaction is a Suzuki coupling reaction, and it is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • -L 5 -B(OH) 2 and -L 6 -B(OH) 2 may be -H, respectively, in this case amine substitution carried out by reaction.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the weight ratio of the compound represented by Formula 1 to the compound represented by Formula 2 is 1:99 to 99:1, 5:95 to 95:5, or 10:90 to 90:10.
  • the dopant material is not particularly limited as long as it is a material used in an organic light emitting device.
  • Examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is a substituted or unsubstituted derivative.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the organic light emitting diode according to the present invention may include a hole transport layer between the electron blocking layer and the anode.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the organic light emitting diode according to the present invention may further include a hole injection layer between the anode and the hole transport layer, if necessary.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect with respect to the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the organic light emitting device may include an electron transport layer between the light emitting layer and the cathode.
  • the electron transport layer is a layer that receives electrons from the electron injection layer formed on the cathode or the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer.
  • an electron transport material electrons are well injected from the cathode
  • a material that can receive and transfer to the light emitting layer a material with high electron mobility is suitable.
  • the electron transport material include an Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the organic light emitting diode according to the present invention may further include an electron injection layer between the electron transport layer and the cathode, if necessary.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. It is preferable to use a compound which prevents movement to a layer and is excellent in the ability to form a thin film.
  • the material that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preole nylidene methane, anthrone, and the like, derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 shows the substrate 1, the anode 2, the hole injection layer 5, the hole transport layer 6, the light emitting layer 3, the electron transport layer 7, the electron injection layer 8 and the cathode 4 ) shows an example of an organic light emitting device made of
  • the organic light emitting device may be manufactured by sequentially stacking the above-described components. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. And, after forming each of the above-mentioned layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing the anode material on the substrate in the reverse order of the above-described configuration from the cathode material (WO 2003/012890).
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method for the host and dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • the organic light emitting device may be a top emission type, a back emission type, or a double-sided emission type depending on the material used.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed as a hole injection layer to a thickness of 1150 ⁇ , but the following A-1 compound was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • the following EB-1 compound was vacuum-deposited to a thickness of 150 ⁇ on the hole transport layer to form an electron blocking layer.
  • the previously prepared compound 1-2, compound 2-2 (above, host), and the following Dp-7 compound (red dopant) were vacuum co-deposited at a weight ratio of 49:49:2.
  • a red light emitting layer having a thickness of 400 ⁇ was formed.
  • a hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 ⁇ on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited in a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2 ⁇ 10 -
  • An organic light-emitting device was manufactured by maintaining 7 to 5 ⁇ 10 -6 torr.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 1 to 4 were used instead of Compound 1-2 and Compound 2-2, respectively.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 5 to 8 were used instead of Compound 1-2 and Compound 2-2, respectively.
  • the compounds shown in Tables 5 to 8 are as follows.
  • the lifetime T95 means the time it takes for the luminance to decrease from the initial luminance (6,000 nits) to 95%.
  • the combination of the compound of Formula 1, which is the first host, and the compound of Formula 2, which is the second host, of the present invention transfers energy to the red dopant in the red light emitting layer well, and thus the voltage is improved, and the efficiency and lifespan are improved. rise can be seen. It is confirmed that the combination of the compound of Formula 1 and the compound of Formula 2 of the present invention, rather than the combination with the compound of Comparative Example, increases the efficiency and lifespan by combining electrons and holes through a more stable balance in the light emitting layer to form excitons. could Therefore, it can be confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved when the compound of Formula 1 and the compound of Formula 2 are combined and used as a host for the red light emitting layer by co-evaporation.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides an organic light-emitting device.

Description

유기 발광 소자organic light emitting device
관련 출원(들)과의 상호 인용Cross-Citation with Related Application(s)
본 출원은 2020년 4월 9일자 한국 특허 출원 제10-2020-0043573호 및 2021년 4월 8일자 한국 특허 출원 제10-2021-0046081호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2020-0043573 on April 9, 2020 and Korean Patent Application No. 10-2021-0046081 on April 8, 2021, and All content disclosed in the literature is incorporated as a part of this specification.
본 발명은 유기 발광 소자에 관한 것이다.The present invention relates to an organic light emitting device.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode. The organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like. In the structure of the organic light emitting device, when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons When it falls back to the ground state, it lights up.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.The development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호(Patent Document 0001) Korean Patent Publication No. 10-2000-0051826
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다. The present invention relates to an organic light emitting device having improved driving voltage, efficiency, and lifetime.
상기 과제를 해결하기 위하여, 본 발명은 하기의 유기 발광 소자를 제공한다:In order to solve the above problems, the present invention provides the following organic light emitting device:
양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,anode; cathode; and a light emitting layer between the anode and the cathode,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,The light emitting layer comprises a compound represented by the following formula (1) and a compound represented by the following formula (2),
유기 발광 소자:Organic light emitting device:
[화학식 1][Formula 1]
Figure PCTKR2021004492-appb-img-000001
Figure PCTKR2021004492-appb-img-000001
상기 화학식 1에서, In Formula 1,
L 1은 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 1 is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
L 2 및 L 3는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 2 and L 3 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 5-60 헤테로아릴이고,Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 5-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
R는 수소, 중수소, 또는 치환 또는 비치환된 C 6-60 아릴이고, R is hydrogen, deuterium, or substituted or unsubstituted C 6-60 aryl;
[화학식 2][Formula 2]
Figure PCTKR2021004492-appb-img-000002
Figure PCTKR2021004492-appb-img-000002
상기 화학식 2에서, In Formula 2,
L 4 및 L 5는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 4 and L 5 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
Ar 3 내지 Ar 6는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 5-60 헤테로아릴이다.Ar 3 To Ar 6 are each independently substituted or unsubstituted C 6-60 aryl; or C 5-60 heteroaryl including at least one selected from the group consisting of substituted or unsubstituted N, O and S.
상술한 유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다. The organic light emitting device described above has excellent driving voltage, efficiency, and lifetime.
도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), a light emitting layer (3), an electron transport layer (7), an electron injection layer (8) and a cathode (4) It shows an example of the organic light emitting device made up.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to help the understanding of the present invention.
본 명세서에서,
Figure PCTKR2021004492-appb-img-000003
또는
Figure PCTKR2021004492-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2021004492-appb-img-000003
or
Figure PCTKR2021004492-appb-img-000004
means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term "substituted or unsubstituted" refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more atoms, or substituted or unsubstituted with two or more substituents connected among the above-exemplified substituents . For example, "a substituent in which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2021004492-appb-img-000005
Figure PCTKR2021004492-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, in the ester group, the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2021004492-appb-img-000006
Figure PCTKR2021004492-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2021004492-appb-img-000007
Figure PCTKR2021004492-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. However, the present invention is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20. The aryl group may be a monocyclic aryl group such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021004492-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2021004492-appb-img-000008
etc. can be However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms. Examples of the heterocyclic group include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia and a jolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but is not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group. In the present specification, as for heteroaryl among heteroarylamines, the description of the above-described heterocyclic group may be applied. In the present specification, the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group. In the present specification, the description of the above-described aryl group may be applied except that arylene is a divalent group. In the present specification, the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents. In the present specification, the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
이하, 각 구성 별로 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail for each configuration.
양극 및 음극positive and negative
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다. The anode and cathode used in the present invention mean electrodes used in an organic light emitting device.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer. Specific examples of the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. The cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
발광층light emitting layer
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다. The light emitting layer used in the present invention refers to a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode. In general, the emission layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-4 중 어느 하나로 표시된다.Preferably, Chemical Formula 1 is represented by any one of Chemical Formulas 1-1 to 1-4.
[화학식 1-1][Formula 1-1]
Figure PCTKR2021004492-appb-img-000009
Figure PCTKR2021004492-appb-img-000009
[화학식 1-2][Formula 1-2]
Figure PCTKR2021004492-appb-img-000010
Figure PCTKR2021004492-appb-img-000010
[화학식 1-3][Formula 1-3]
Figure PCTKR2021004492-appb-img-000011
Figure PCTKR2021004492-appb-img-000011
[화학식 1-4][Formula 1-4]
Figure PCTKR2021004492-appb-img-000012
Figure PCTKR2021004492-appb-img-000012
상기 화학식 1-1 내지 1-4에서, L 1 내지 L 3, Ar 1, Ar 2 및 R은 앞서 정의한 바와 같다. In Formulas 1-1 to 1-4, L 1 to L 3 , Ar 1 , Ar 2 and R are as defined above.
바람직하게는, L 1은 단일 결합, 페닐렌, 또는 나프틸렌이다. 보다 바람직하게는, L 1은 단일 결합,
Figure PCTKR2021004492-appb-img-000013
, 또는
Figure PCTKR2021004492-appb-img-000014
이다.
Preferably, L 1 is a single bond, phenylene, or naphthylene. More preferably, L 1 is a single bond,
Figure PCTKR2021004492-appb-img-000013
, or
Figure PCTKR2021004492-appb-img-000014
am.
바람직하게는, L 2 및 L 3는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌이다. Preferably, L 2 and L 3 are each independently a single bond, phenylene, or naphthylene.
바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 트리페닐레닐, 나프틸페닐, 페닐나프틸, 디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이고; 상기 Ar 1 및 Ar 2는 각각 독립적으로 비치환되거나, 또는 하나 이상의 중수소로 치환된다. Preferably, Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthylphenyl, phenylnaphthyl, dimethylfluorenyl, dibenzofu ranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H-carbazolyl; The Ar 1 and Ar 2 are each independently unsubstituted or substituted with one or more deuterium.
바람직하게는, R는 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐이다. Preferably, R is hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 1 are as follows.
Figure PCTKR2021004492-appb-img-000015
Figure PCTKR2021004492-appb-img-000015
Figure PCTKR2021004492-appb-img-000016
Figure PCTKR2021004492-appb-img-000016
Figure PCTKR2021004492-appb-img-000017
Figure PCTKR2021004492-appb-img-000017
Figure PCTKR2021004492-appb-img-000018
Figure PCTKR2021004492-appb-img-000018
Figure PCTKR2021004492-appb-img-000019
Figure PCTKR2021004492-appb-img-000019
Figure PCTKR2021004492-appb-img-000020
Figure PCTKR2021004492-appb-img-000020
Figure PCTKR2021004492-appb-img-000021
Figure PCTKR2021004492-appb-img-000021
Figure PCTKR2021004492-appb-img-000022
Figure PCTKR2021004492-appb-img-000022
Figure PCTKR2021004492-appb-img-000023
Figure PCTKR2021004492-appb-img-000023
Figure PCTKR2021004492-appb-img-000024
Figure PCTKR2021004492-appb-img-000024
Figure PCTKR2021004492-appb-img-000025
Figure PCTKR2021004492-appb-img-000025
Figure PCTKR2021004492-appb-img-000026
Figure PCTKR2021004492-appb-img-000026
Figure PCTKR2021004492-appb-img-000027
Figure PCTKR2021004492-appb-img-000027
Figure PCTKR2021004492-appb-img-000028
Figure PCTKR2021004492-appb-img-000028
Figure PCTKR2021004492-appb-img-000029
Figure PCTKR2021004492-appb-img-000029
Figure PCTKR2021004492-appb-img-000030
Figure PCTKR2021004492-appb-img-000030
Figure PCTKR2021004492-appb-img-000031
Figure PCTKR2021004492-appb-img-000031
Figure PCTKR2021004492-appb-img-000032
Figure PCTKR2021004492-appb-img-000032
Figure PCTKR2021004492-appb-img-000033
Figure PCTKR2021004492-appb-img-000033
Figure PCTKR2021004492-appb-img-000034
Figure PCTKR2021004492-appb-img-000034
Figure PCTKR2021004492-appb-img-000035
Figure PCTKR2021004492-appb-img-000035
Figure PCTKR2021004492-appb-img-000036
Figure PCTKR2021004492-appb-img-000036
Figure PCTKR2021004492-appb-img-000037
Figure PCTKR2021004492-appb-img-000037
Figure PCTKR2021004492-appb-img-000038
Figure PCTKR2021004492-appb-img-000038
Figure PCTKR2021004492-appb-img-000039
Figure PCTKR2021004492-appb-img-000039
Figure PCTKR2021004492-appb-img-000040
Figure PCTKR2021004492-appb-img-000040
Figure PCTKR2021004492-appb-img-000041
Figure PCTKR2021004492-appb-img-000041
Figure PCTKR2021004492-appb-img-000042
Figure PCTKR2021004492-appb-img-000042
Figure PCTKR2021004492-appb-img-000043
Figure PCTKR2021004492-appb-img-000043
Figure PCTKR2021004492-appb-img-000044
Figure PCTKR2021004492-appb-img-000044
Figure PCTKR2021004492-appb-img-000045
Figure PCTKR2021004492-appb-img-000045
Figure PCTKR2021004492-appb-img-000046
Figure PCTKR2021004492-appb-img-000046
Figure PCTKR2021004492-appb-img-000047
Figure PCTKR2021004492-appb-img-000047
Figure PCTKR2021004492-appb-img-000048
Figure PCTKR2021004492-appb-img-000048
Figure PCTKR2021004492-appb-img-000049
Figure PCTKR2021004492-appb-img-000049
Figure PCTKR2021004492-appb-img-000050
Figure PCTKR2021004492-appb-img-000050
Figure PCTKR2021004492-appb-img-000051
Figure PCTKR2021004492-appb-img-000051
Figure PCTKR2021004492-appb-img-000052
Figure PCTKR2021004492-appb-img-000052
Figure PCTKR2021004492-appb-img-000053
Figure PCTKR2021004492-appb-img-000053
Figure PCTKR2021004492-appb-img-000054
Figure PCTKR2021004492-appb-img-000054
Figure PCTKR2021004492-appb-img-000055
Figure PCTKR2021004492-appb-img-000055
Figure PCTKR2021004492-appb-img-000056
Figure PCTKR2021004492-appb-img-000056
Figure PCTKR2021004492-appb-img-000057
Figure PCTKR2021004492-appb-img-000057
Figure PCTKR2021004492-appb-img-000058
Figure PCTKR2021004492-appb-img-000058
Figure PCTKR2021004492-appb-img-000059
Figure PCTKR2021004492-appb-img-000059
Figure PCTKR2021004492-appb-img-000060
Figure PCTKR2021004492-appb-img-000060
Figure PCTKR2021004492-appb-img-000061
Figure PCTKR2021004492-appb-img-000061
Figure PCTKR2021004492-appb-img-000062
Figure PCTKR2021004492-appb-img-000062
또한, 본 발명은 하기 반응식 1과 같이 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.In addition, the present invention provides a method for preparing a compound represented by Formula 1 as shown in Scheme 1 below.
[반응식 1][Scheme 1]
Figure PCTKR2021004492-appb-img-000063
Figure PCTKR2021004492-appb-img-000063
상기 반응식 1에서, X를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X는 할로겐이고 보다 바람직하게는 각각 독립적으로 플루오로, 클로로, 또는 브로모이다. In Scheme 1, definitions other than X are the same as defined above, and X is halogen, and more preferably, each independently represents fluoro, chloro, or bromo.
상기 각 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.Each of the above reactions is a Suzuki coupling reaction, and preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.
상기 화학식 2에서, 바람직하게는, L 4 및 L 5는 각각 독립적으로 단일 결합; 또는 페닐렌이다. In Formula 2, preferably, L 4 and L 5 are each independently a single bond; or phenylene.
바람직하게는, Ar 3 내지 Ar 6는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페닐나프틸, 나프틸페닐, 디메틸플루오레닐, 디벤조퓨라닐, (디벤조퓨라닐)페닐, 디벤조티오페닐, 또는 (디벤조티오페닐)페닐이다. Preferably, Ar 3 To Ar 6 are each independently phenyl, biphenylyl, naphthyl, phenylnaphthyl, naphthylphenyl, dimethylfluorenyl, dibenzofuranyl, (dibenzofuranyl)phenyl, dibenzo thiophenyl, or (dibenzothiophenyl)phenyl.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다.Representative examples of the compound represented by Formula 2 are as follows.
Figure PCTKR2021004492-appb-img-000064
Figure PCTKR2021004492-appb-img-000064
Figure PCTKR2021004492-appb-img-000065
Figure PCTKR2021004492-appb-img-000065
Figure PCTKR2021004492-appb-img-000066
Figure PCTKR2021004492-appb-img-000066
Figure PCTKR2021004492-appb-img-000067
Figure PCTKR2021004492-appb-img-000067
Figure PCTKR2021004492-appb-img-000068
Figure PCTKR2021004492-appb-img-000068
Figure PCTKR2021004492-appb-img-000069
Figure PCTKR2021004492-appb-img-000069
Figure PCTKR2021004492-appb-img-000070
Figure PCTKR2021004492-appb-img-000070
Figure PCTKR2021004492-appb-img-000071
Figure PCTKR2021004492-appb-img-000071
Figure PCTKR2021004492-appb-img-000072
Figure PCTKR2021004492-appb-img-000072
Figure PCTKR2021004492-appb-img-000073
Figure PCTKR2021004492-appb-img-000073
또한, 본 발명은 하기 반응식 2와 같이 상기 화학식 2로 표시되는 화합물의 제조 방법을 제공한다.In addition, the present invention provides a method for preparing a compound represented by Formula 2 as shown in Scheme 2 below.
[반응식 2][Scheme 2]
Figure PCTKR2021004492-appb-img-000074
Figure PCTKR2021004492-appb-img-000074
상기 반응식 2에서, 각 정의는 앞서 정의한 바와 같다. In Scheme 2, each definition is as defined above.
상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 또한, 상기 반응식 2에서, L 5 또는 L 6가 단일 결합인 경우에는, 각각 -L 5-B(OH) 2 및 -L 6-B(OH) 2가 -H일 수 있으며, 이 경우 아민 치환 반응으로 수행한다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.The reaction is a Suzuki coupling reaction, and it is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art. In addition, in Scheme 2, when L 5 or L 6 is a single bond, -L 5 -B(OH) 2 and -L 6 -B(OH) 2 may be -H, respectively, in this case amine substitution carried out by reaction. The manufacturing method may be more specific in Preparation Examples to be described later.
상기 발광층에서, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 또는 10:90 내지 90:10이다. In the light emitting layer, the weight ratio of the compound represented by Formula 1 to the compound represented by Formula 2 is 1:99 to 99:1, 5:95 to 95:5, or 10:90 to 90:10.
상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.The dopant material is not particularly limited as long as it is a material used in an organic light emitting device. Examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group, and the styrylamine compound is a substituted or unsubstituted derivative. It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but is not limited thereto. In addition, the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
정공수송층hole transport layer
본 발명에 따른 유기 발광 소자는, 상기 전자억제층과 양극 사이에 정공수송층을 포함할 수 있다. The organic light emitting diode according to the present invention may include a hole transport layer between the electron blocking layer and the anode.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. The hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer. A material capable of transporting holes from the anode or hole injection layer to the light emitting layer as a hole transport material. This is suitable.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. Specific examples of the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
정공주입층hole injection layer
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극과 정공수송층 사이에 정공주입층을 추가로 포함할 수 있다. The organic light emitting diode according to the present invention may further include a hole injection layer between the anode and the hole transport layer, if necessary.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. The hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect with respect to the light emitting layer or the light emitting material, and is produced in the light emitting layer A compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. In addition, it is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
전자수송층electron transport layer
본 발명에 따른 유기 발광 소자는, 상기 발광층과 음극 사이에 전자수송층을 포함할 수 있다. The organic light emitting device according to the present invention may include an electron transport layer between the light emitting layer and the cathode.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.The electron transport layer is a layer that receives electrons from the electron injection layer formed on the cathode or the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer. As an electron transport material, electrons are well injected from the cathode As a material that can receive and transfer to the light emitting layer, a material with high electron mobility is suitable.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.Specific examples of the electron transport material include an Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto. The electron transport layer may be used with any desired cathode material as used in accordance with the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
전자주입층electron injection layer
본 발명에 따른 유기 발광 소자는 필요에 따라 상기 전자수송층과 음극 사이에 전자주입층을 추가로 포함할 수 있다. The organic light emitting diode according to the present invention may further include an electron injection layer between the electron transport layer and the cathode, if necessary.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. It is preferable to use a compound which prevents movement to a layer and is excellent in the ability to form a thin film.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. Specific examples of the material that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preole nylidene methane, anthrone, and the like, derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc. However, the present invention is not limited thereto.
유기 발광 소자organic light emitting device
본 발명에 따른 유기 발광 소자의 구조를 도 1에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 또한, 도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. The structure of the organic light emitting device according to the present invention is illustrated in FIG. 1 . FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 . In addition, FIG. 2 shows the substrate 1, the anode 2, the hole injection layer 5, the hole transport layer 6, the light emitting layer 3, the electron transport layer 7, the electron injection layer 8 and the cathode 4 ) shows an example of an organic light emitting device made of
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. The organic light emitting device according to the present invention may be manufactured by sequentially stacking the above-described components. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode. And, after forming each of the above-mentioned layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition to this method, an organic light emitting device may be manufactured by sequentially depositing the anode material on the substrate in the reverse order of the above-described configuration from the cathode material (WO 2003/012890). In addition, the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method for the host and dopant. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.On the other hand, the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double-sided emission type depending on the material used.
본 발명에 따른 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.Fabrication of the organic light emitting device according to the present invention will be described in detail in the following examples. However, the following examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
[제조예][Production Example]
제조예 1-1Preparation 1-1
Figure PCTKR2021004492-appb-img-000075
Figure PCTKR2021004492-appb-img-000075
질소 분위기에서 화합물 Trz1(15 g, 40.8 mmol)와 화합물 A(11.2 g, 42.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.9 g, 122.3 mmol)를 물(51 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1를 15.9 g 제조하였다. (수율 71%, MS: [M+H] += 550)In a nitrogen atmosphere, compound Trz1 (15 g, 40.8 mmol) and compound A (11.2 g, 42.8 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (16.9 g, 122.3 mmol) was dissolved in water (51 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.9 g of compound 1-1. (Yield 71%, MS: [M+H] + = 550)
제조예 1-2Preparation 1-2
Figure PCTKR2021004492-appb-img-000076
Figure PCTKR2021004492-appb-img-000076
질소 분위기에서 화합물 Trz2(15 g, 35.9 mmol)와 화합물 A(9.9 g, 37.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.9 g, 107.7 mmol)를 물(45 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2를 13.1 g 제조하였다. (수율 61%, MS: [M+H] += 600)Compound Trz2 (15 g, 35.9 mmol) and Compound A (9.9 g, 37.7 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in water (45 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.1 g of compound 1-2. (Yield 61%, MS: [M+H] + = 600)
제조예 1-3Preparation 1-3
Figure PCTKR2021004492-appb-img-000077
Figure PCTKR2021004492-appb-img-000077
질소 분위기에서 화합물 Trz3(15 g, 35.7 mmol)와 화합물 A(9.8 g, 37.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물(44 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3를 15.7 g 제조하였다. (수율 73%, MS: [M+H] += 602)Compound Trz3 (15 g, 35.7 mmol) and Compound A (9.8 g, 37.5 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in water (44 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.7 g of compound 1-3. (Yield 73%, MS: [M+H] + = 602)
제조예 1-4Preparation Example 1-4
Figure PCTKR2021004492-appb-img-000078
Figure PCTKR2021004492-appb-img-000078
질소 분위기에서 화합물 Trz4(15 g, 38.1 mmol)와 화합물 A(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 13.8 g 제조하였다. (수율 63%, MS: [M+H] += 576)In a nitrogen atmosphere, compound Trz4 (15 g, 38.1 mmol) and compound A (10.5 g, 40 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 1-4. (Yield 63%, MS: [M+H] + = 576)
제조예 1-5Preparation 1-5
Figure PCTKR2021004492-appb-img-000079
Figure PCTKR2021004492-appb-img-000079
질소 분위기에서 화합물 Trz5(15 g, 38.1 mmol)와 화합물 A(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 13.6 g 제조하였다. (수율 62%, MS: [M+H] += 576)In a nitrogen atmosphere, compound Trz5 (15 g, 38.1 mmol) and compound A (10.5 g, 40 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of compound 1-5. (Yield 62%, MS: [M+H] + = 576)
제조예 1-6Preparation 1-6
Figure PCTKR2021004492-appb-img-000080
Figure PCTKR2021004492-appb-img-000080
질소 분위기에서 화합물 Trz6(15 g, 41.9 mmol)와 화합물 A(11.5 g, 44 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6를 14 g 제조하였다. (수율 62%, MS: [M+H] += 540)Compound Trz6 (15 g, 41.9 mmol) and Compound A (11.5 g, 44 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in water (52 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of compound 1-6. (Yield 62%, MS: [M+H] + = 540)
제조예 1-7Preparation 1-7
Figure PCTKR2021004492-appb-img-000081
Figure PCTKR2021004492-appb-img-000081
질소 분위기에서 화합물 Trz7(15 g, 39.1 mmol)와 화합물 A(10.8 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.2 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7를 14.1 g 제조하였다. (수율 64%, MS: [M+H] += 566)Compound Trz7 (15 g, 39.1 mmol) and Compound A (10.8 g, 41 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (16.2 g, 117.2 mmol) was dissolved in water (49 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.1 g of Compound 1-7. (Yield 64%, MS: [M+H] + = 566)
제조예 1-8Preparation 1-8
Figure PCTKR2021004492-appb-img-000082
Figure PCTKR2021004492-appb-img-000082
질소 분위기에서 화합물 Trz8(15 g, 34.6 mmol)와 화합물 A(9.5 g, 36.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.4 g, 103.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8를 14.5 g 제조하였다. (수율 68%, MS: [M+H] += 615)In a nitrogen atmosphere, compound Trz8 (15 g, 34.6 mmol) and compound A (9.5 g, 36.4 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.4 g, 103.9 mmol) was dissolved in water (43 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound 1-8. (Yield 68%, MS: [M+H] + = 615)
제조예 1-9Preparation 1-9
Figure PCTKR2021004492-appb-img-000083
Figure PCTKR2021004492-appb-img-000083
질소 분위기에서 화합물 Trz9(15 g, 38.1 mmol)와 화합물 A(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 17.5 g 제조하였다. (수율 80%, MS: [M+H] += 576)In a nitrogen atmosphere, compound Trz9 (15 g, 38.1 mmol) and compound A (10.5 g, 40 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.5 g of compound 1-9. (yield 80%, MS: [M+H] + = 576)
제조예 1-10Preparation Example 1-10
Figure PCTKR2021004492-appb-img-000084
Figure PCTKR2021004492-appb-img-000084
질소 분위기에서 화합물 Trz10(15 g, 34.6 mmol)와 화합물 A(9.5 g, 36.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.3 g, 103.7 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10를 14 g 제조하였다. (수율 65%, MS: [M+H] += 626)Compound Trz10 (15 g, 34.6 mmol) and Compound A (9.5 g, 36.3 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, stirred and refluxed. After that, potassium carbonate (14.3 g, 103.7 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of compound 1-10. (Yield 65%, MS: [M+H] + = 626)
제조예 1-11Preparation Example 1-11
Figure PCTKR2021004492-appb-img-000085
Figure PCTKR2021004492-appb-img-000085
질소 분위기에서 화합물 Trz11(15 g, 56 mmol)와 화합물 B(16.6 g, 56 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.5 g, 112.1 mmol)를 물(46 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-1를 19.5 g 제조하였다. (수율 72%, MS: [M+H] += 484)Compound Trz11 (15 g, 56 mmol) and Compound B (16.6 g, 56 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (15.5 g, 112.1 mmol) was dissolved in water (46 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.6 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 19.5 g of compound subB-1. (Yield 72%, MS: [M+H] + = 484)
질소 분위기에서 화합물 subB-1(15 g, 31 mmol)와 화합물 sub1(5.6 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.9 g, 93 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11를 14.3 g 제조하였다. (수율 80%, MS: [M+H] += 576)Compound subB-1 (15 g, 31 mmol) and compound sub1 (5.6 g, 32.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.9 g, 93 mmol) was dissolved in water (39 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.3 g of compound 1-11. (yield 80%, MS: [M+H] + = 576)
제조예 1-12Preparation Example 1-12
Figure PCTKR2021004492-appb-img-000086
Figure PCTKR2021004492-appb-img-000086
질소 분위기에서 화합물 Trz9(15 g, 38.1 mmol)와 화합물 B(11.3 g, 38.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(10.5 g, 76.2 mmol)를 물(32 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-2를 16.7 g 제조하였다. (수율 72%, MS: [M+H] += 610)In a nitrogen atmosphere, compound Trz9 (15 g, 38.1 mmol) and compound B (11.3 g, 38.1 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (10.5 g, 76.2 mmol) was dissolved in water (32 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.7 g of compound subB-2. (Yield 72%, MS: [M+H] + = 610)
질소 분위기에서 화합물 subB-2(15 g, 24.6 mmol)와 화합물 sub2(3.1 g, 25.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(10.2 g, 73.8 mmol)를 물(31 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 11.7 g 제조하였다. (수율 73%, MS: [M+H] += 652)Compound subB-2 (15 g, 24.6 mmol) and compound sub2 (3.1 g, 25.8 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.2 g, 73.8 mmol) was dissolved in water (31 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 11.7 g of compound 1-12. (Yield 73%, MS: [M+H] + = 652)
제조예 1-13Preparation 1-13
Figure PCTKR2021004492-appb-img-000087
Figure PCTKR2021004492-appb-img-000087
질소 분위기에서 화합물 subB-1(15 g, 31 mmol)와 화합물 sub3(6.9 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.9 g, 93 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13를 13.7 g 제조하였다. (수율 72%, MS: [M+H] += 616)Compound subB-1 (15 g, 31 mmol) and compound sub3 (6.9 g, 32.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.9 g, 93 mmol) was dissolved in water (39 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.7 g of compound 1-13. (Yield 72%, MS: [M+H] + = 616)
제조예 1-14Preparation 1-14
Figure PCTKR2021004492-appb-img-000088
Figure PCTKR2021004492-appb-img-000088
질소 분위기에서 화합물 subB-1(15 g, 31 mmol)와 화합물 sub4(7.4 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.9 g, 93 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 13.9 g 제조하였다. (수율 71%, MS: [M+H] += 633)Compound subB-1 (15 g, 31 mmol) and compound sub4 (7.4 g, 32.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.9 g, 93 mmol) was dissolved in water (39 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.9 g of compound 1-14. (Yield 71%, MS: [M+H] + = 633)
제조예 1-15Preparation Example 1-15
Figure PCTKR2021004492-appb-img-000089
Figure PCTKR2021004492-appb-img-000089
질소 분위기에서 화합물 Trz11(15 g, 56 mmol)와 화합물 C(16.6 g, 56 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.5 g, 112.1 mmol)를 물(46 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subC-1를 16.2 g 제조하였다. (수율 60%, MS: [M+H] += 484)Compound Trz11 (15 g, 56 mmol) and compound C (16.6 g, 56 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (15.5 g, 112.1 mmol) was dissolved in water (46 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.6 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.2 g of compound subC-1. (Yield 60%, MS: [M+H] + = 484)
질소 분위기에서 화합물 subC-1(15 g, 31 mmol)와 화합물 sub5(6.9 g, 32.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.9 g, 93 mmol)를 물(39 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 12.8 g 제조하였다. (수율 67%, MS: [M+H] += 616)Compound subC-1 (15 g, 31 mmol) and compound sub5 (6.9 g, 32.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (12.9 g, 93 mmol) was dissolved in water (39 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.3 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 12.8 g of compound 1-15. (Yield 67%, MS: [M+H] + = 616)
제조예 1-16Preparation 1-16
Figure PCTKR2021004492-appb-img-000090
Figure PCTKR2021004492-appb-img-000090
질소 분위기에서 화합물 Trz12(15 g, 40.1 mmol)와 화합물 B(11.9 g, 40.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(11.1 g, 80.2 mmol)를 물(33 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subB-3를 14.7 g 제조하였다. (수율 62%, MS: [M+H] += 590)In a nitrogen atmosphere, compound Trz12 (15 g, 40.1 mmol) and compound B (11.9 g, 40.1 mmol) were added to THF (300 ml), stirred and refluxed. After that, potassium carbonate (11.1 g, 80.2 mmol) was dissolved in water (33 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.7 g of compound subB-3. (Yield 62%, MS: [M+H] + = 590)
질소 분위기에서 화합물 subB-3(15 g, 25.4 mmol)와 화합물 sub6(5.3 g, 26.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(10.5 g, 76.3 mmol)를 물(32 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16를 10.8 g 제조하였다. (수율 60%, MS: [M+H] += 708)Compound subB-3 (15 g, 25.4 mmol) and compound sub6 (5.3 g, 26.7 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.5 g, 76.3 mmol) was dissolved in water (32 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.8 g of compound 1-16. (Yield 60%, MS: [M+H] + = 708)
제조예 1-17Preparation 1-17
Figure PCTKR2021004492-appb-img-000091
Figure PCTKR2021004492-appb-img-000091
질소 분위기에서 화합물 Trz13(15 g, 43.6 mmol)와 화합물 C(12.9 g, 43.6 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(12.1 g, 87.3 mmol)를 물 36ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subC-2를 16.8 g 제조하였다. (수율 69%, MS: [M+H] += 560)In a nitrogen atmosphere, compound Trz13 (15 g, 43.6 mmol) and compound C (12.9 g, 43.6 mmol) were added to THF (300 ml), stirred and refluxed. After that, potassium carbonate (12.1 g, 87.3 mmol) was dissolved in 36 ml of water, stirred sufficiently, and then bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.8 g of compound subC-2. (yield 69%, MS: [M+H] + = 560)
질소 분위기에서 화합물 subC-2(15 g, 26.8 mmol)와 화합물 sub1(4.8 g, 28.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(11.1 g, 80.3 mmol)를 물(33 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17를 14 g 제조하였다. (수율 80%, MS: [M+H] += 652)Compound subC-2 (15 g, 26.8 mmol) and compound sub1 (4.8 g, 28.1 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in water (33 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of compound 1-17. (yield 80%, MS: [M+H] + = 652)
제조예 1-18Preparation Example 1-18
Figure PCTKR2021004492-appb-img-000092
Figure PCTKR2021004492-appb-img-000092
질소 분위기에서 화합물 Trz6(15 g, 41.9 mmol)와 화합물 D(12.4 g, 41.9 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(11.6 g, 83.8 mmol)를 물 35ml에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subD-1를 17.3 g 제조하였다. (수율 72%, MS: [M+H] += 574)Compound Trz6 (15 g, 41.9 mmol) and compound D (12.4 g, 41.9 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (11.6 g, 83.8 mmol) was dissolved in 35 ml of water, and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.3 g of compound subD-1. (Yield 72%, MS: [M+H] + = 574)
질소 분위기에서 화합물 subD-1(15 g, 26.1 mmol)와 화합물 sub2(3.3 g, 27.4 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(10.8 g, 78.4 mmol)를 물(33 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18를 10.5 g 제조하였다. (수율 62%, MS: [M+H] += 652)Compound subD-1 (15 g, 26.1 mmol) and compound sub2 (3.3 g, 27.4 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (10.8 g, 78.4 mmol) was dissolved in water (33 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.5 g of compound 1-18. (Yield 62%, MS: [M+H] + = 652)
제조예 1-19Preparation 1-19
Figure PCTKR2021004492-appb-img-000093
Figure PCTKR2021004492-appb-img-000093
질소 분위기에서 화합물 Trz14(15 g, 31 mmol)와 화합물 C(9.2 g, 31 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(8.6 g, 62 mmol)를 물(26 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subC-3를 13.2 g 제조하였다. (수율 61%, MS: [M+H] += 700)Compound Trz14 (15 g, 31 mmol) and compound C (9.2 g, 31 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.6 g, 62 mmol) was dissolved in water (26 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.2 g of compound subC-3. (Yield 61%, MS: [M+H] + = 700)
질소 분위기에서 화합물 subC-3(15 g, 21.4 mmol)와 화합물 sub2(2.7 g, 22.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(8.9 g, 64.3 mmol)를 물(27 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19를 10.3 g 제조하였다. (수율 65%, MS: [M+H] += 742)Compound subC-3 (15 g, 21.4 mmol) and compound sub2 (2.7 g, 22.5 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (8.9 g, 64.3 mmol) was dissolved in water (27 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 10.3 g of compound 1-19. (Yield 65%, MS: [M+H] + = 742)
제조예 1-20Preparation 1-20
Figure PCTKR2021004492-appb-img-000094
Figure PCTKR2021004492-appb-img-000094
질소 분위기에서 화합물 Trz15(15 g, 35.7 mmol)와 화합물 E(9.8 g, 37.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물(44 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20를 15.7 g 제조하였다. (수율 73%, MS: [M+H] += 602)Compound Trz15 (15 g, 35.7 mmol) and Compound E (9.8 g, 37.5 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in water (44 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.7 g of compound 1-20. (Yield 73%, MS: [M+H] + = 602)
제조예 1-21Preparation 1-21
Figure PCTKR2021004492-appb-img-000095
Figure PCTKR2021004492-appb-img-000095
질소 분위기에서 화합물 Trz16(15 g, 35.7 mmol)와 화합물 E(9.8 g, 37.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.8 g, 107.2 mmol)를 물(44 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21를 14 g 제조하였다. (수율 65%, MS: [M+H] += 602)In a nitrogen atmosphere, compound Trz16 (15 g, 35.7 mmol) and compound E (9.8 g, 37.5 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.8 g, 107.2 mmol) was dissolved in water (44 ml), and after stirring sufficiently, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14 g of compound 1-21. (Yield 65%, MS: [M+H] + = 602)
제조예 1-22Preparation 1-22
Figure PCTKR2021004492-appb-img-000096
Figure PCTKR2021004492-appb-img-000096
질소 분위기에서 화합물 Trz17(15 g, 38.1 mmol)와 화합물 E(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22를 13.6 g 제조하였다. (수율 62%, MS: [M+H] += 576)In a nitrogen atmosphere, compound Trz17 (15 g, 38.1 mmol) and compound E (10.5 g, 40 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.6 g of compound 1-22. (Yield 62%, MS: [M+H] + = 576)
제조예 1-23Preparation 1-23
Figure PCTKR2021004492-appb-img-000097
Figure PCTKR2021004492-appb-img-000097
질소 분위기에서 화합물 Trz18(15 g, 39.1 mmol)와 화합물 E(10.8 g, 41 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(16.2 g, 117.2 mmol)를 물(49 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23를 13.9 g 제조하였다. (수율 63%, MS: [M+H] += 566)In a nitrogen atmosphere, compound Trz18 (15 g, 39.1 mmol) and compound E (10.8 g, 41 mmol) were added to THF (300 ml), stirred and refluxed. After that, potassium carbonate (16.2 g, 117.2 mmol) was dissolved in water (49 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.9 g of compound 1-23. (Yield 63%, MS: [M+H] + = 566)
제조예 1-24Preparation 1-24
Figure PCTKR2021004492-appb-img-000098
Figure PCTKR2021004492-appb-img-000098
질소 분위기에서 화합물 Trz19(15 g, 35.9 mmol)와 화합물 F(9.9 g, 37.7 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.9 g, 107.7 mmol)를 물(45 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24를 13.8 g 제조하였다. (수율 64%, MS: [M+H] += 600)In a nitrogen atmosphere, compound Trz19 (15 g, 35.9 mmol) and compound F (9.9 g, 37.7 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.9 g, 107.7 mmol) was dissolved in water (45 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.8 g of compound 1-24. (Yield 64%, MS: [M+H] + = 600)
제조예 1-25Preparation 1-25
Figure PCTKR2021004492-appb-img-000099
Figure PCTKR2021004492-appb-img-000099
질소 분위기에서 화합물 Trz20(15 g, 38.1 mmol)와 화합물 F(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25를 13.4 g 제조하였다. (수율 61%, MS: [M+H] += 576)In a nitrogen atmosphere, compound Trz20 (15 g, 38.1 mmol) and compound F (10.5 g, 40 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.4 g of compound 1-25. (Yield 61%, MS: [M+H] + = 576)
제조예 1-26Preparation 1-26
Figure PCTKR2021004492-appb-img-000100
Figure PCTKR2021004492-appb-img-000100
질소 분위기에서 화합물 Trz21(15 g, 41.9 mmol)와 화합물 F(11.5 g, 44 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.4 g, 125.8 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26를 15.1 g 제조하였다. (수율 67%, MS: [M+H] += 540)In a nitrogen atmosphere, compound Trz21 (15 g, 41.9 mmol) and compound F (11.5 g, 44 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (17.4 g, 125.8 mmol) was dissolved in water (52 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.1 g of compound 1-26. (Yield 67%, MS: [M+H] + = 540)
제조예 1-27Preparation Example 1-27
Figure PCTKR2021004492-appb-img-000101
Figure PCTKR2021004492-appb-img-000101
질소 분위기에서 화합물 Trz22(15 g, 42 mmol)와 화합물 F(11.6 g, 44.1 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.4 g, 126.1 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27를 15.2 g 제조하였다. (수율 67%, MS: [M+H] += 539)In a nitrogen atmosphere, compound Trz22 (15 g, 42 mmol) and compound F (11.6 g, 44.1 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (17.4 g, 126.1 mmol) was dissolved in water (52 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.2 g of compound 1-27. (Yield 67%, MS: [M+H] + = 539)
제조예 1-28Preparation 1-28
Figure PCTKR2021004492-appb-img-000102
Figure PCTKR2021004492-appb-img-000102
질소 분위기에서 화합물 Trz23(15 g, 38.1 mmol)와 화합물 G(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28를 16.9 g 제조하였다. (수율 77%, MS: [M+H] += 576)Compound Trz23 (15 g, 38.1 mmol) and compound G (10.5 g, 40 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.9 g of compound 1-28. (Yield 77%, MS: [M+H] + = 576)
제조예 1-29Preparation 1-29
Figure PCTKR2021004492-appb-img-000103
Figure PCTKR2021004492-appb-img-000103
질소 분위기에서 화합물 Trz24(15 g, 38.1 mmol)와 화합물 G(10.5 g, 40 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(15.8 g, 114.3 mmol)를 물(47 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-29를 15.3 g 제조하였다. (수율 70%, MS: [M+H] += 576)Compound Trz24 (15 g, 38.1 mmol) and compound G (10.5 g, 40 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, stirred and refluxed. Thereafter, potassium carbonate (15.8 g, 114.3 mmol) was dissolved in water (47 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.3 g of compound 1-29. (Yield 70%, MS: [M+H] + = 576)
제조예 1-30Preparation 1-30
Figure PCTKR2021004492-appb-img-000104
Figure PCTKR2021004492-appb-img-000104
질소 분위기에서 화합물 Trz25(15 g, 35.4 mmol)와 화합물 G(9.7 g, 37.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.7 g, 106.2 mmol)를 물(44 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30를 13.3 g 제조하였다. (수율 62%, MS: [M+H] += 606)In a nitrogen atmosphere, compound Trz25 (15 g, 35.4 mmol) and compound G (9.7 g, 37.2 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.7 g, 106.2 mmol) was dissolved in water (44 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.2 g, 0.4 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 13.3 g of compound 1-30. (Yield 62%, MS: [M+H] + = 606)
제조예 2-1Preparation 2-1
Figure PCTKR2021004492-appb-img-000105
Figure PCTKR2021004492-appb-img-000105
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub7(19 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-1를 21.6 g 제조하였다. (수율 79%, MS: [M+H] += 532)In a nitrogen atmosphere, compound H (15 g, 51.4 mmol) and compound sub7 (19 g, 52 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.6 g of compound subH-1. (yield 79%, MS: [M+H] + = 532)
질소 분위기에서 화합물 subH-1(10 g, 18.8 mmol), 화합물 amine 1(3.3 g, 19.7 mmol), 소디움 터트-부톡사이드(2.3 g, 24.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1을 7.9 g 얻었다. (수율 63%, MS: [M+H] += 665)Compound subH-1 (10 g, 18.8 mmol), compound amine 1 (3.3 g, 19.7 mmol), sodium tert-butoxide (2.3 g, 24.4 mmol) in xylene (200 ml) in a nitrogen atmosphere, stirred and refluxed did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.9 g of compound 2-1. (Yield 63%, MS: [M+H] + = 665)
제조예 2-2Preparation Example 2-2
Figure PCTKR2021004492-appb-img-000106
Figure PCTKR2021004492-appb-img-000106
질소 분위기에서 화합물 subH-1(10 g, 18.8 mmol), 화합물 amine 2(4.8 g, 19.7 mmol), 소디움 터트-부톡사이드(2.3 g, 24.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2를 8.6 g 얻었다. (수율 62%, MS: [M+H] += 741)Compound subH-1 (10 g, 18.8 mmol), compound amine 2 (4.8 g, 19.7 mmol), sodium tert-butoxide (2.3 g, 24.4 mmol) in xylene (200 ml) in a nitrogen atmosphere, stirred and refluxed did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.6 g of compound 2-2. (Yield 62%, MS: [M+H] + = 741)
제조예 2-3Preparation 2-3
Figure PCTKR2021004492-appb-img-000107
Figure PCTKR2021004492-appb-img-000107
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub8(21.6 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-2를 20.9 g 제조하였다. (수율 70%, MS: [M+H] += 582)In a nitrogen atmosphere, compound H (15 g, 51.4 mmol) and compound sub8 (21.6 g, 52 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.9 g of compound subH-2. (Yield 70%, MS: [M+H] + = 582)
질소 분위기에서 화합물 subH-2(10 g, 17.2 mmol), 화합물 amine 1(3.1 g, 18 mmol), 소디움 터트-부톡사이드(2.1 g, 22.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3을 6.3 g 얻었다. (수율 51%, MS: [M+H] += 715)In a nitrogen atmosphere, compound subH-2 (10 g, 17.2 mmol), compound amine 1 (3.1 g, 18 mmol), sodium tert-butoxide (2.1 g, 22.3 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.3 g of compound 2-3. (Yield 51%, MS: [M+H] + = 715)
제조예 2-4Preparation 2-4
Figure PCTKR2021004492-appb-img-000108
Figure PCTKR2021004492-appb-img-000108
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub9(17.6 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-3를 17.7 g 제조하였다. (수율 68%, MS: [M+H] += 506)Compound H (15 g, 51.4 mmol) and compound sub9 (17.6 g, 52 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 17.7 g of compound subH-3. (Yield 68%, MS: [M+H] + = 506)
질소 분위기에서 화합물 subH-3(10 g, 19.8 mmol), 화합물 amine 3(4.6 g, 20.7 mmol), 소디움 터트-부톡사이드(2.5 g, 25.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4를 6.8 g 얻었다. (수율 50%, MS: [M+H] += 689)In a nitrogen atmosphere, compound subH-3 (10 g, 19.8 mmol), compound amine 3 (4.6 g, 20.7 mmol), sodium tert-butoxide (2.5 g, 25.7 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.8 g of compound 2-4. (Yield 50%, MS: [M+H] + = 689)
제조예 2-5Preparation Example 2-5
Figure PCTKR2021004492-appb-img-000109
Figure PCTKR2021004492-appb-img-000109
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub10(21.6 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-4를 18.2 g 제조하였다. (수율 61%, MS: [M+H] += 582)Compound H (15 g, 51.4 mmol) and compound sub10 (21.6 g, 52 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 18.2 g of compound subH-4. (Yield 61%, MS: [M+H] + = 582)
질소 분위기에서 화합물 subH-4(10 g, 17.2 mmol), 화합물 amine 4(4.4 g, 18 mmol), 소디움 터트-부톡사이드(2.1 g, 22.3 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5를 7.1 g 얻었다. (수율 52%, MS: [M+H] += 791)Compound subH-4 (10 g, 17.2 mmol), compound amine 4 (4.4 g, 18 mmol), and sodium tert-butoxide (2.1 g, 22.3 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.1 g of compound 2-5. (Yield 52%, MS: [M+H] + = 791)
제조예 2-6Preparation 2-6
Figure PCTKR2021004492-appb-img-000110
Figure PCTKR2021004492-appb-img-000110
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub11(15 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-5를 14.5 g 제조하였다. (수율 62%, MS: [M+H] += 456)Compound H (15 g, 51.4 mmol) and compound sub11 (15 g, 52 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 14.5 g of compound subH-5. (Yield 62%, MS: [M+H] + = 456)
질소 분위기에서 화합물 subH-5(10 g, 21.9 mmol), 화합물 amine 5(6 g, 23 mmol), 소디움 터트-부톡사이드(2.7 g, 28.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6을 8 g 얻었다. (수율 54%, MS: [M+H] += 679)In a nitrogen atmosphere, compound subH-5 (10 g, 21.9 mmol), compound amine 5 (6 g, 23 mmol), sodium tert-butoxide (2.7 g, 28.5 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8 g of compound 2-6. (Yield 54%, MS: [M+H] + = 679)
제조예 2-7Preparation 2-7
Figure PCTKR2021004492-appb-img-000111
Figure PCTKR2021004492-appb-img-000111
질소 분위기에서 화합물 subH-5(10 g, 21.9 mmol), 화합물 amine 6(8.1 g, 23 mmol), 소디움 터트-부톡사이드(2.7 g, 28.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7을 10.6 g 얻었다. (수율 63%, MS: [M+H] += 772)In a nitrogen atmosphere, compound subH-5 (10 g, 21.9 mmol), compound amine 6 (8.1 g, 23 mmol), sodium tert-butoxide (2.7 g, 28.5 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.6 g of compound 2-7. (Yield 63%, MS: [M+H] + = 772)
제조예 2-8Preparation 2-8
Figure PCTKR2021004492-appb-img-000112
Figure PCTKR2021004492-appb-img-000112
질소 분위기에서 화합물 subH-5(10 g, 21.9 mmol), 화합물 amine 7(7.7 g, 23 mmol), 소디움 터트-부톡사이드(2.7 g, 28.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8을 8.3 g 얻었다. (수율 50%, MS: [M+H] += 755)In a nitrogen atmosphere, compound subH-5 (10 g, 21.9 mmol), compound amine 7 (7.7 g, 23 mmol), sodium tert-butoxide (2.7 g, 28.5 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.3 g of compound 2-8. (Yield 50%, MS: [M+H] + = 755)
제조예 2-9Preparation Example 2-9
Figure PCTKR2021004492-appb-img-000113
Figure PCTKR2021004492-appb-img-000113
질소 분위기에서 화합물 subH-1(10 g, 18.8 mmol), 화합물 amine 8(5.1 g, 19.7 mmol), 소디움 터트-부톡사이드(2.3 g, 24.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9를 7.7 g 얻었다. (수율 54%, MS: [M+H] += 755)Compound subH-1 (10 g, 18.8 mmol), compound amine 8 (5.1 g, 19.7 mmol), sodium tert-butoxide (2.3 g, 24.4 mmol) in xylene (200 ml) in a nitrogen atmosphere, stirred and refluxed did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.7 g of compound 2-9. (Yield 54%, MS: [M+H] + = 755)
제조예 2-10Preparation Example 2-10
Figure PCTKR2021004492-appb-img-000114
Figure PCTKR2021004492-appb-img-000114
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub12(19 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-6를 20.8 g 제조하였다. (수율 76%, MS: [M+H] += 532)In a nitrogen atmosphere, compound H (15 g, 51.4 mmol) and compound sub12 (19 g, 52 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 20.8 g of compound subH-6. (Yield 76%, MS: [M+H] + = 532)
질소 분위기에서 화합물 subH-6(10 g, 18.8 mmol), 화합물 amine 9(6.6 g, 19.7 mmol), 소디움 터트-부톡사이드(2.3 g, 24.4 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10을 10.8 g 얻었다. (수율 69%, MS: [M+H] += 830)Compound subH-6 (10 g, 18.8 mmol), compound amine 9 (6.6 g, 19.7 mmol), and sodium tert-butoxide (2.3 g, 24.4 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.8 g of compound 2-10. (yield 69%, MS: [M+H] + = 830)
제조예 2-11Preparation Example 2-11
Figure PCTKR2021004492-appb-img-000115
Figure PCTKR2021004492-appb-img-000115
질소 분위기에서 화합물 subH-5(10 g, 21.9 mmol), 화합물 amine 10(7.7 g, 23 mmol), 소디움 터트-부톡사이드(2.7 g, 28.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11을 10.1 g 얻었다. (수율 61%, MS: [M+H] += 754)In a nitrogen atmosphere, compound subH-5 (10 g, 21.9 mmol), compound amine 10 (7.7 g, 23 mmol), sodium tert-butoxide (2.7 g, 28.5 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.1 g of compound 2-11. (Yield 61%, MS: [M+H] + = 754)
제조예 2-12Preparation Example 2-12
Figure PCTKR2021004492-appb-img-000116
Figure PCTKR2021004492-appb-img-000116
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub13(41.3 g, 113.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(35.6 g, 257.2 mmol)를 물(107 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-12를 31.5 g 제조하였다. (수율 75%, MS: [M+H] += 817)In a nitrogen atmosphere, compound H (15 g, 51.4 mmol) and compound sub13 (41.3 g, 113.2 mmol) were added to THF (300 ml), stirred and refluxed. Thereafter, potassium carbonate (35.6 g, 257.2 mmol) was dissolved in water (107 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1 mmol) was added. After the reaction for 8 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 31.5 g of compound 2-12. (yield 75%, MS: [M+H] + = 817)
제조예 2-13Preparation Example 2-13
Figure PCTKR2021004492-appb-img-000117
Figure PCTKR2021004492-appb-img-000117
질소 분위기에서 화합물 subH-5(15 g, 28.2 mmol)와 화합물 sub9(10.5 g, 31 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(11.7 g, 84.6 mmol)를 물(35 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-13를 16.3 g 제조하였다. (수율 73%, MS: [M+H] += 791)Compound subH-5 (15 g, 28.2 mmol) and compound sub9 (10.5 g, 31 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (11.7 g, 84.6 mmol) was dissolved in water (35 ml), and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 16.3 g of compound 2-13. (Yield 73%, MS: [M+H] + = 791)
제조예 2-14Preparation Example 2-14
Figure PCTKR2021004492-appb-img-000118
Figure PCTKR2021004492-appb-img-000118
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub11(32.7 g, 113.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(35.6 g, 257.2 mmol)를 물(107 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-14를 24.3 g 제조하였다. (수율 71%, MS: [M+H] += 665)Compound H (15 g, 51.4 mmol) and compound sub11 (32.7 g, 113.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (35.6 g, 257.2 mmol) was dissolved in water (107 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 24.3 g of compound 2-14. (Yield 71%, MS: [M+H] + = 665)
제조예 2-15Preparation Example 2-15
Figure PCTKR2021004492-appb-img-000119
Figure PCTKR2021004492-appb-img-000119
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub14(42.9 g, 113.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(35.6 g, 257.2 mmol)를 물(107 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-15를 34.7 g 제조하였다. (수율 80%, MS: [M+H] += 845)Compound H (15 g, 51.4 mmol) and compound sub14 (42.9 g, 113.2 mmol) were placed in THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (35.6 g, 257.2 mmol) was dissolved in water (107 ml), and after sufficient stirring, bis (tri-tert-butylphosphine) palladium (0) (0.5 g, 1 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 34.7 g of compound 2-15. (yield 80%, MS: [M+H] + = 845)
제조예 2-16Preparation Example 2-16
Figure PCTKR2021004492-appb-img-000120
Figure PCTKR2021004492-appb-img-000120
질소 분위기에서 화합물 H(15 g, 51.4 mmol)와 화합물 sub14(19.7 g, 52 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(14.2 g, 102.9 mmol)를 물(43 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.3 g, 0.5 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 subH-7를 21.6 g 제조하였다. (수율 77%, MS: [M+H] += 546)Compound H (15 g, 51.4 mmol) and compound sub14 (19.7 g, 52 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. Thereafter, potassium carbonate (14.2 g, 102.9 mmol) was dissolved in water (43 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.3 g, 0.5 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 21.6 g of compound subH-7. (Yield 77%, MS: [M+H] + = 546)
질소 분위기에서 화합물 subH-7(15 g, 27.5 mmol)와 화합물 sub15(11.9 g, 30.2 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(11.4 g, 82.4 mmol)를 물(34 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 2-16를 15.4 g 제조하였다. (수율 65%, MS: [M+H] += 861)Compound subH-7 (15 g, 27.5 mmol) and compound sub15 (11.9 g, 30.2 mmol) were added to THF (300 ml) in a nitrogen atmosphere, and the mixture was stirred and refluxed. After that, potassium carbonate (11.4 g, 82.4 mmol) was dissolved in water (34 ml), and after stirring sufficiently, bis (tri-tert-butylphosphine) palladium (0) (0.1 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled. This was again dissolved in chloroform, washed twice with water, the organic layer was separated, anhydrous magnesium sulfate was added, stirred, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to prepare 15.4 g of compound 2-16. (Yield 65%, MS: [M+H] + = 861)
제조예 2-17Preparation Example 2-17
Figure PCTKR2021004492-appb-img-000121
Figure PCTKR2021004492-appb-img-000121
질소 분위기에서 화합물 H(10 g, 34.3 mmol), 화합물 amine 2(17.7 g, 72 mmol), 소디움 터트-부톡사이드(8.2 g, 85.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17를 15.9 g 얻었다. (수율 70%, MS: [M+H] += 665)Compound H (10 g, 34.3 mmol), compound amine 2 (17.7 g, 72 mmol), sodium tert-butoxide (8.2 g, 85.7 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 15.9 g of compound 2-17. (Yield 70%, MS: [M+H] + = 665)
제조예 2-18Preparation Example 2-18
Figure PCTKR2021004492-appb-img-000122
Figure PCTKR2021004492-appb-img-000122
질소 분위기에서 화합물 H(10 g, 34.3 mmol), 화합물 amine 1(5.8 g, 34.3 mmol), 소디움 터트-부톡사이드(3.6 g, 37.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subH-8을 8.3 g 얻었다. (수율 64%, MS: [M+H] += 380)Compound H (10 g, 34.3 mmol), compound amine 1 (5.8 g, 34.3 mmol), and sodium tert-butoxide (3.6 g, 37.7 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.3 g of compound subH-8. (Yield 64%, MS: [M+H] + = 380)
질소 분위기에서 화합물 subH-8(10 g, 26.3 mmol), 화합물 amine 11(8.2 g, 27.6 mmol), 소디움 터트-부톡사이드(3.3 g, 34.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18을 9.4 g 얻었다. (수율 56%, MS: [M+H] += 639)In a nitrogen atmosphere, compound subH-8 (10 g, 26.3 mmol), compound amine 11 (8.2 g, 27.6 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.4 g of compound 2-18. (Yield 56%, MS: [M+H] + = 639)
제조예 2-19Preparation Example 2-19
Figure PCTKR2021004492-appb-img-000123
Figure PCTKR2021004492-appb-img-000123
질소 분위기에서 화합물 subH-8(10 g, 26.3 mmol), 화합물 amine 12(9.5 g, 27.6 mmol), 소디움 터트-부톡사이드(3.3 g, 34.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19를 9.1 g 얻었다. (수율 50%, MS: [M+H] += 689)In a nitrogen atmosphere, compound subH-8 (10 g, 26.3 mmol), compound amine 12 (9.5 g, 27.6 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.1 g of compound 2-19. (Yield 50%, MS: [M+H] + = 689)
제조예 2-20Preparation 2-20
Figure PCTKR2021004492-appb-img-000124
Figure PCTKR2021004492-appb-img-000124
질소 분위기에서 화합물 H(10 g, 34.3 mmol), 화합물 amine 2(8.4 g, 34.3 mmol), 소디움 터트-부톡사이드(3.6 g, 37.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.3 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subH-9를 9.5 g 얻었다. (수율 61%, MS: [M+H] += 456) Compound H (10 g, 34.3 mmol), compound amine 2 (8.4 g, 34.3 mmol), and sodium tert-butoxide (3.6 g, 37.7 mmol) were added to xylene (200 ml) in a nitrogen atmosphere, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.5 g of compound subH-9. (Yield 61%, MS: [M+H] + = 456)
질소 분위기에서 화합물 subH-9(10 g, 22 mmol), 화합물 amine 13(6.4 g, 23.1 mmol), 소디움 터트-부톡사이드(2.7 g, 28.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20을 7.6 g 얻었다. (수율 50%, MS: [M+H] += 695)In a nitrogen atmosphere, compound subH-9 (10 g, 22 mmol), compound amine 13 (6.4 g, 23.1 mmol), sodium tert-butoxide (2.7 g, 28.6 mmol) were added to xylene (200 ml), stirred and refluxed. did. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.6 g of Compound 2-20. (Yield 50%, MS: [M+H] + = 695)
제조예 2-21Preparation 2-21
Figure PCTKR2021004492-appb-img-000125
Figure PCTKR2021004492-appb-img-000125
질소 분위기에서 화합물 H(10 g, 34.3 mmol), 화합물 amine 14(18.7 g, 72 mmol), 소디움 터트-부톡사이드(8.2 g, 85.7 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.4 g, 0.7 mmol)을 투입했다. 5시간 후 반응이 종결되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21을 14.2 g 얻었다. (수율 60%, MS: [M+H] += 693)Compound H (10 g, 34.3 mmol), compound amine 14 (18.7 g, 72 mmol), sodium tert-butoxide (8.2 g, 85.7 mmol) in xylene (200 ml) in a nitrogen atmosphere were stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol) was added thereto. After 5 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reduced pressure. After that, the compound was completely dissolved in chloroform again, washed twice with water, the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 14.2 g of compound 2-21. (Yield 60%, MS: [M+H] + = 693)
[실시예][Example]
실시예 1Example 1
ITO(indium tin oxide)가 1,000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 Å was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves. In this case, a product manufactured by Fischer Co. was used as the detergent, and distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water. After washing ITO for 30 minutes, ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water. After washing with distilled water, ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150 Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 EB-1 화합물을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에, 앞서 제조한 화합물 1-2, 화합물 2-2(이상, 호스트) 및 하기 Dp-7 화합물(적색 도판트)을 49:49:2의 중량비로 진공 공증착하여 400Å 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다. On the prepared ITO transparent electrode, the following HI-1 compound was formed as a hole injection layer to a thickness of 1150 Å, but the following A-1 compound was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Then, the following EB-1 compound was vacuum-deposited to a thickness of 150 Å on the hole transport layer to form an electron blocking layer. Then, on the EB-1 deposited film, the previously prepared compound 1-2, compound 2-2 (above, host), and the following Dp-7 compound (red dopant) were vacuum co-deposited at a weight ratio of 49:49:2. A red light emitting layer having a thickness of 400 Å was formed. A hole blocking layer was formed by vacuum-depositing the following HB-1 compound to a thickness of 30 Å on the light emitting layer. Then, on the hole blocking layer, the following ET-1 compound and the following LiQ compound were vacuum-deposited in a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 Å. A cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 Å and aluminum to a thickness of 1,000 Å on the electron injection and transport layer.
Figure PCTKR2021004492-appb-img-000126
Figure PCTKR2021004492-appb-img-000126
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10 -7 ~ 5×10 -6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of organic material was maintained at 0.4~0.7Å/sec, the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3Å/sec, and the deposition rate of aluminum was maintained at 2Å/sec, and the vacuum degree during deposition was 2×10 - An organic light-emitting device was manufactured by maintaining 7 to 5×10 -6 torr.
실시예 2 내지 실시예 102Examples 2 to 102
실시예 1의 유기 발광 소자의 제조 방법과 동일한 방법으로 제조하되, 화합물 1-2 및 화합물 2-2 대신 각각 하기 표 1 내지 4에 기재된 화합물을 사용하여 유기 발광 소자를 제조하였다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 1 to 4 were used instead of Compound 1-2 and Compound 2-2, respectively.
비교예 1 내지 124Comparative Examples 1 to 124
실시예 1의 유기 발광 소자의 제조 방법과 동일한 방법으로 제조하되, 화합물 1-2 및 화합물 2-2 대신 각각 하기 표 5 내지 8에 기재된 화합물을 사용하여 유기 발광 소자를 제조하였다. 하기 표 5 내지 8에 기재된 화합물은 하기와 같다. An organic light emitting device was manufactured in the same manner as in Example 1, except that the compounds shown in Tables 5 to 8 were used instead of Compound 1-2 and Compound 2-2, respectively. The compounds shown in Tables 5 to 8 are as follows.
Figure PCTKR2021004492-appb-img-000127
Figure PCTKR2021004492-appb-img-000127
Figure PCTKR2021004492-appb-img-000128
Figure PCTKR2021004492-appb-img-000128
상기 실시예 1 내지 102 및 비교예 1 내지 124에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm 2 기준)하고 그 결과를 하기 표 1 내지 8에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.When a current was applied to the organic light emitting diodes prepared in Examples 1 to 102 and Comparative Examples 1 to 124, voltage and efficiency were measured (based on 15 mA/cm 2 ), and the results are shown in Tables 1 to 8 below. The lifetime T95 means the time it takes for the luminance to decrease from the initial luminance (6,000 nits) to 95%.
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실시예 1Example 1 화합물 1-2compound 1-2 화합물 2-2compound 2-2 3.583.58 20.720.7 247247 적색Red
실시예 2Example 2 화합물 2-5compound 2-5 3.643.64 21.321.3 250250 적색Red
실시예 3Example 3 화합물 2-9compound 2-9 3.603.60 21.021.0 218218 적색Red
실시예 4Example 4 화합물 2-11compound 2-11 3.633.63 20.820.8 223223 적색Red
실시예 5Example 5 화합물 2-14compound 2-14 3.653.65 20.620.6 235235 적색Red
실시예 6Example 6 화합물 2-19compound 2-19 3.613.61 21.521.5 229229 적색Red
실시예 7Example 7 화합물 1-3compound 1-3 화합물 2-3compound 2-3 3.763.76 20.520.5 208208 적색Red
실시예 8Example 8 화합물 2-4compound 2-4 3.823.82 19.419.4 211211 적색Red
실시예 9Example 9 화합물 2-7compound 2-7 3.793.79 19.619.6 203203 적색Red
실시예 10Example 10 화합물 2-10compound 2-10 3.783.78 19.119.1 216216 적색Red
실시예 11Example 11 화합물 2-16compound 2-16 3.823.82 20.320.3 220220 적색Red
실시예 12Example 12 화합물 2-21compound 2-21 3.743.74 20.020.0 205205 적색Red
실시예 13Example 13 화합물 1-4compound 1-4 화합물 2-2compound 2-2 3.533.53 19.319.3 253253 적색Red
실시예 14Example 14 화합물 2-5compound 2-5 3.603.60 19.719.7 240240 적색Red
실시예 15Example 15 화합물 2-9compound 2-9 3.543.54 19.019.0 257257 적색Red
실시예 16Example 16 화합물 2-11compound 2-11 3.693.69 18.618.6 241241 적색Red
실시예 17Example 17 화합물 2-14compound 2-14 3.563.56 19.219.2 235235 적색Red
실시예 18Example 18 화합물 2-19compound 2-19 3.553.55 19.519.5 254254 적색Red
실시예 19Example 19 화합물 1-8compounds 1-8 화합물 2-3compound 2-3 3.793.79 19.319.3 198198 적색Red
실시예 20Example 20 화합물 2-4compound 2-4 3.723.72 20.220.2 191191 적색Red
실시예 21Example 21 화합물 2-7compound 2-7 3.843.84 20.720.7 202202 적색Red
실시예 22Example 22 화합물 2-10compound 2-10 3.803.80 19.819.8 207207 적색Red
실시예 23Example 23 화합물 2-16compound 2-16 3.773.77 20.620.6 195195 적색Red
실시예 24Example 24 화합물 2-21compound 2-21 3.813.81 20.220.2 204204 적색Red
실시예 25Example 25 화합물 1-9compounds 1-9 화합물 2-2compound 2-2 3.563.56 22.222.2 263263 적색Red
실시예 26Example 26 화합물 2-5compound 2-5 3.603.60 21.921.9 251251 적색Red
실시예 27Example 27 화합물 2-9compound 2-9 3.643.64 22.022.0 277277 적색Red
실시예 28Example 28 화합물 2-11compound 2-11 3.593.59 21.821.8 258258 적색Red
실시예 29Example 29 화합물 2-14compound 2-14 3.543.54 21.521.5 270270 적색Red
실시예 30Example 30 화합물 2-19compound 2-19 3.513.51 21.421.4 262262 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실시예 31Example 31 화합물 1-10compounds 1-10 화합물 2-3compound 2-3 3.753.75 18.418.4 183183 적색Red
실시예 32Example 32 화합물 2-4compound 2-4 3.813.81 18.618.6 195195 적색Red
실시예 33Example 33 화합물 2-7compound 2-7 3.823.82 18.718.7 199199 적색Red
실시예 34Example 34 화합물 2-10compound 2-10 3.883.88 19.019.0 204204 적색Red
실시예 35Example 35 화합물 2-16compound 2-16 3.833.83 18.918.9 192192 적색Red
실시예 36Example 36 화합물 2-21compound 2-21 3.873.87 18.318.3 202202 적색Red
실시예 37Example 37 화합물 1-13compound 1-13 화합물 2-2compound 2-2 3.683.68 20.320.3 251251 적색Red
실시예 38Example 38 화합물 2-5compound 2-5 3.623.62 20.020.0 245245 적색Red
실시예 39Example 39 화합물 2-9compound 2-9 3.553.55 20.520.5 253253 적색Red
실시예 40Example 40 화합물 2-11compound 2-11 3.503.50 20.120.1 257257 적색Red
실시예 41Example 41 화합물 2-14compound 2-14 3.533.53 19.819.8 245245 적색Red
실시예 42Example 42 화합물 2-19compound 2-19 3.513.51 20.720.7 261261 적색Red
실시예 43Example 43 화합물 1-15compound 1-15 화합물 2-3compound 2-3 3.683.68 22.322.3 231231 적색Red
실시예 44Example 44 화합물 2-4compound 2-4 3.653.65 22.022.0 227227 적색Red
실시예 45Example 45 화합물 2-7compound 2-7 3.603.60 21.321.3 218218 적색Red
실시예 46Example 46 화합물 2-10compound 2-10 3.593.59 22.722.7 240240 적색Red
실시예 47Example 47 화합물 2-16compound 2-16 3.613.61 21.821.8 224224 적색Red
실시예 48Example 48 화합물 2-21compound 2-21 3.593.59 22.422.4 235235 적색Red
실시예 49Example 49 화합물 1-16compound 1-16 화합물 2-2compound 2-2 3.783.78 19.719.7 197197 적색Red
실시예 50Example 50 화합물 2-5compound 2-5 3.743.74 20.820.8 188188 적색Red
실시예 51Example 51 화합물 2-9compound 2-9 3.783.78 19.319.3 205205 적색Red
실시예 52Example 52 화합물 2-11compound 2-11 3.823.82 19.519.5 190190 적색Red
실시예 53Example 53 화합물 2-14compound 2-14 3.763.76 20.220.2 198198 적색Red
실시예 54Example 54 화합물 2-19compound 2-19 3.733.73 19.719.7 201201 적색Red
실시예 55Example 55 화합물 1-17compound 1-17 화합물 2-3compound 2-3 3.663.66 19.319.3 223223 적색Red
실시예 56Example 56 화합물 2-4compound 2-4 3.623.62 19.819.8 232232 적색Red
실시예 57Example 57 화합물 2-7compound 2-7 3.663.66 18.118.1 217217 적색Red
실시예 58Example 58 화합물 2-10compound 2-10 3.733.73 19.519.5 208208 적색Red
실시예 59Example 59 화합물 2-16compound 2-16 3.613.61 18.718.7 225225 적색Red
실시예 60Example 60 화합물 2-21compound 2-21 3.623.62 18.918.9 214214 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실시예 61Example 61 화합물 1-20compound 1-20 화합물 2-2compound 2-2 3.893.89 20.120.1 173173 적색Red
실시예 62Example 62 화합물 2-5compound 2-5 3.873.87 20.320.3 185185 적색Red
실시예 63Example 63 화합물 2-9compound 2-9 3.883.88 20.220.2 191191 적색Red
실시예 64Example 64 화합물 2-11compound 2-11 3.863.86 19.519.5 187187 적색Red
실시예 65Example 65 화합물 2-14compound 2-14 3.863.86 20.420.4 170170 적색Red
실시예 66Example 66 화합물 2-19compound 2-19 3.923.92 19.819.8 183183 적색Red
실시예 67Example 67 화합물 1-21compound 1-21 화합물 2-3compound 2-3 3.903.90 20.920.9 194194 적색Red
실시예 68Example 68 화합물 2-4compound 2-4 3.913.91 20.520.5 181181 적색Red
실시예 69Example 69 화합물 2-7compound 2-7 3.973.97 19.919.9 176176 적색Red
실시예 70Example 70 화합물 2-10compound 2-10 3.963.96 20.620.6 184184 적색Red
실시예 71Example 71 화합물 2-16compound 2-16 3.933.93 20.420.4 175175 적색Red
실시예 72Example 72 화합물 2-21compound 2-21 3.913.91 19.719.7 190190 적색Red
실시예 73Example 73 화합물 1-23compound 1-23 화합물 2-2compound 2-2 3.863.86 19.919.9 191191 적색Red
실시예 74Example 74 화합물 2-5compound 2-5 3.883.88 20.320.3 206206 적색Red
실시예 75Example 75 화합물 2-9compound 2-9 3.843.84 20.120.1 200200 적색Red
실시예 76Example 76 화합물 2-11compound 2-11 3.893.89 20.620.6 198198 적색Red
실시예 77Example 77 화합물 2-14compound 2-14 3.823.82 20.420.4 185185 적색Red
실시예 78Example 78 화합물 2-19compound 2-19 3.793.79 19.719.7 199199 적색Red
실시예 79Example 79 화합물 1-25compounds 1-25 화합물 2-3compound 2-3 3.823.82 20.120.1 203203 적색Red
실시예 80Example 80 화합물 2-4compound 2-4 3.853.85 20.320.3 214214 적색Red
실시예 81Example 81 화합물 2-7compound 2-7 3.833.83 20.820.8 219219 적색Red
실시예 82Example 82 화합물 2-10compound 2-10 3.813.81 20.520.5 195195 적색Red
실시예 83Example 83 화합물 2-16compound 2-16 3.863.86 21.021.0 215215 적색Red
실시예 84Example 84 화합물 2-21compound 2-21 3.803.80 20.620.6 207207 적색Red
실시예 85Example 85 화합물 1-27compound 1-27 화합물 2-2compound 2-2 3.963.96 19.619.6 213213 적색Red
실시예 86Example 86 화합물 2-5compound 2-5 3.933.93 19.319.3 203203 적색Red
실시예 87Example 87 화합물 2-9compound 2-9 3.963.96 19.819.8 218218 적색Red
실시예 88Example 88 화합물 2-11compound 2-11 3.883.88 20.420.4 209209 적색Red
실시예 89Example 89 화합물 2-14compound 2-14 3.933.93 19.119.1 203203 적색Red
실시예 90Example 90 화합물 2-19compound 2-19 3.913.91 19.519.5 214214 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
실시예 91Example 91 화합물 1-28compound 1-28 화합물 2-3compound 2-3 3.733.73 19.319.3 188188 적색Red
실시예 92Example 92 화합물 2-4compound 2-4 3.703.70 20.020.0 207207 적색Red
실시예 93Example 93 화합물 2-7compound 2-7 3.823.82 20.620.6 203203 적색Red
실시예 94Example 94 화합물 2-10compound 2-10 3.783.78 19.719.7 184184 적색Red
실시예 95Example 95 화합물 2-16compound 2-16 3.763.76 20.020.0 197197 적색Red
실시예 96Example 96 화합물 2-21compound 2-21 3.813.81 19.519.5 202202 적색Red
실시예 97Example 97 화합물 1-30compounds 1-30 화합물 2-2compound 2-2 3.923.92 18.918.9 181181 적색Red
실시예 98Example 98 화합물 2-5compound 2-5 3.853.85 19.219.2 207207 적색Red
실시예 99Example 99 화합물 2-9compound 2-9 3.913.91 19.619.6 192192 적색Red
실시예 100Example 100 화합물 2-11compound 2-11 3.873.87 18.718.7 193193 적색Red
실시예 101Example 101 화합물 2-14compound 2-14 3.933.93 18.518.5 201201 적색Red
실시예 102Example 102 화합물 2-19compound 2-19 3.903.90 18.418.4 194194 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
비교예 1Comparative Example 1 화합물 B-1compound B-1 화합물 2-1compound 2-1 4.254.25 14.514.5 8484 적색Red
비교예 2Comparative Example 2 화합물 2-5compound 2-5 4.244.24 14.714.7 8282 적색Red
비교예 3Comparative Example 3 화합물 2-11compound 2-11 4.394.39 14.014.0 8686 적색Red
비교예 4Comparative Example 4 화합물 2-13compound 2-13 4.314.31 14.814.8 7171 적색Red
비교예 5Comparative Example 5 화합물 2-17compound 2-17 4.324.32 15.115.1 8484 적색Red
비교예 6Comparative Example 6 화합물 B-2compound B-2 화합물 2-3compound 2-3 4.174.17 16.016.0 137137 적색Red
비교예 7Comparative Example 7 화합물 2-7compound 2-7 4.134.13 15.515.5 122122 적색Red
비교예 8Comparative Example 8 화합물 2-12compound 2-12 4.024.02 16.316.3 134134 적색Red
비교예 9Comparative Example 9 화합물 2-16compound 2-16 4.104.10 15.715.7 130130 적색Red
비교예 10Comparative Example 10 화합물 2-20compound 2-20 4.124.12 15.415.4 1313 적색Red
비교예 11Comparative Example 11 화합물 B-3compound B-3 화합물 2-1compound 2-1 4.434.43 14.414.4 7373 적색Red
비교예 12Comparative Example 12 화합물 2-5compound 2-5 4.414.41 13.713.7 7878 적색Red
비교예 13Comparative Example 13 화합물 2-11compound 2-11 4.364.36 13.913.9 8484 적색Red
비교예 14Comparative Example 14 화합물 2-13compound 2-13 4.394.39 13.413.4 8080 적색Red
비교예 15Comparative Example 15 화합물 2-17compound 2-17 4.404.40 13.613.6 7979 적색Red
비교예 16Comparative Example 16 화합물 B-4compound B-4 화합물 2-3compound 2-3 4.144.14 16.616.6 122122 적색Red
비교예 17Comparative Example 17 화합물 2-7compound 2-7 4.274.27 15.315.3 1414 적색Red
비교예 18Comparative Example 18 화합물 2-12compound 2-12 4.234.23 15.115.1 118118 적색Red
비교예 19Comparative Example 19 화합물 2-16compound 2-16 4.304.30 13.513.5 122122 적색Red
비교예 20Comparative Example 20 화합물 2-20compound 2-20 4.244.24 14.214.2 118118 적색Red
비교예 21Comparative Example 21 화합물 B-5compound B-5 화합물 2-1compound 2-1 4.304.30 13.713.7 104104 적색Red
비교예 22Comparative Example 22 화합물 2-5compound 2-5 4.324.32 14.214.2 121121 적색Red
비교예 23Comparative Example 23 화합물 2-11compound 2-11 4.354.35 14.414.4 114114 적색Red
비교예 24Comparative Example 24 화합물 2-13compound 2-13 4.294.29 14.514.5 120120 적색Red
비교예 25Comparative Example 25 화합물 2-17compound 2-17 4.274.27 13.813.8 108108 적색Red
비교예 26Comparative Example 26 화합물 B-6compound B-6 화합물 2-3compound 2-3 4.254.25 14.314.3 131131 적색Red
비교예 27Comparative Example 27 화합물 2-7compound 2-7 4.324.32 14.214.2 133133 적색Red
비교예 28Comparative Example 28 화합물 2-12compound 2-12 4.334.33 14.514.5 118118 적색Red
비교예 29Comparative Example 29 화합물 2-16compound 2-16 4.374.37 15.115.1 125125 적색Red
비교예 30Comparative Example 30 화합물 2-20compound 2-20 4.354.35 14.914.9 139139 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
비교예 31Comparative Example 31 화합물 B-7compound B-7 화합물 2-1compound 2-1 4.244.24 15.215.2 141141 적색Red
비교예 32Comparative Example 32 화합물 2-5compound 2-5 4.264.26 15.515.5 146146 적색Red
비교예 33Comparative Example 33 화합물 2-11compound 2-11 4.234.23 15.315.3 140140 적색Red
비교예 34Comparative Example 34 화합물 2-13compound 2-13 4.194.19 16.216.2 138138 적색Red
비교예 35Comparative Example 35 화합물 2-17compound 2-17 4.204.20 16.116.1 145145 적색Red
비교예 36Comparative Example 36 화합물 B-8compound B-8 화합물 2-3compound 2-3 4.304.30 15.015.0 105105 적색Red
비교예 37Comparative Example 37 화합물 2-7compound 2-7 4.344.34 14.314.3 114114 적색Red
비교예 38Comparative Example 38 화합물 2-12compound 2-12 4.394.39 14.514.5 108108 적색Red
비교예 39Comparative Example 39 화합물 2-16compound 2-16 4.414.41 13.913.9 112112 적색Red
비교예 40Comparative Example 40 화합물 2-20compound 2-20 4.384.38 14.714.7 101101 적색Red
비교예 41Comparative Example 41 화합물 B-9compound B-9 화합물 2-1compound 2-1 4.104.10 15.315.3 116116 적색Red
비교예 42Comparative Example 42 화합물 2-5compound 2-5 4.234.23 15.815.8 108108 적색Red
비교예 43Comparative Example 43 화합물 2-11compound 2-11 4.204.20 15.115.1 112112 적색Red
비교예 44Comparative Example 44 화합물 2-13compound 2-13 4.174.17 15.615.6 117117 적색Red
비교예 45Comparative Example 45 화합물 2-17compound 2-17 4.244.24 14.914.9 122122 적색Red
비교예 46Comparative Example 46 화합물 B-10compound B-10 화합물 2-3compound 2-3 4.144.14 14.414.4 121121 적색Red
비교예 47Comparative Example 47 화합물 2-7compound 2-7 4.174.17 14.714.7 124124 적색Red
비교예 48Comparative Example 48 화합물 2-12compound 2-12 4.194.19 14.514.5 118118 적색Red
비교예 49Comparative Example 49 화합물 2-16compound 2-16 4.144.14 15.315.3 113113 적색Red
비교예 50Comparative Example 50 화합물 2-20compound 2-20 4.224.22 15.815.8 120120 적색Red
비교예 51Comparative Example 51 화합물 B-11compound B-11 화합물 2-1compound 2-1 4.244.24 14.914.9 110110 적색Red
비교예 52Comparative Example 52 화합물 2-5compound 2-5 4.234.23 14.614.6 115115 적색Red
비교예 53Comparative Example 53 화합물 2-11compound 2-11 4.304.30 15.115.1 119119 적색Red
비교예 54Comparative Example 54 화합물 2-13compound 2-13 4.214.21 15.015.0 101101 적색Red
비교예 55Comparative Example 55 화합물 2-17compound 2-17 4.204.20 15.315.3 118118 적색Red
비교예 56Comparative Example 56 화합물 B-12compound B-12 화합물 2-3compound 2-3 4.284.28 14.114.1 100100 적색Red
비교예 57Comparative Example 57 화합물 2-7compound 2-7 4.314.31 13.913.9 9797 적색Red
비교예 58Comparative Example 58 화합물 2-12compound 2-12 4.264.26 14.514.5 101101 적색Red
비교예 59Comparative Example 59 화합물 2-16compound 2-16 4.324.32 14.214.2 9494 적색Red
비교예 60Comparative Example 60 화합물 2-20compound 2-20 4.244.24 13.713.7 105105 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
비교예 61Comparative Example 61 화합물 1-2compound 1-2 화합물 C-1compound C-1 4.184.18 14.314.3 145145 적색Red
비교예 62Comparative Example 62 화합물 1-4compound 1-4 4.264.26 15.115.1 134134 적색Red
비교예 63Comparative Example 63 화합물 1-8compounds 1-8 4.204.20 14.714.7 150150 적색Red
비교예 64Comparative Example 64 화합물 1-13compound 1-13 4.124.12 14.014.0 145145 적색Red
비교예 65Comparative Example 65 화합물 1-16compound 1-16 4.174.17 16.916.9 134134 적색Red
비교예 66Comparative Example 66 화합물 1-21compound 1-21 4.244.24 15.115.1 142142 적색Red
비교예 67Comparative Example 67 화합물 1-25compounds 1-25 4.224.22 15.815.8 137137 적색Red
비교예 68Comparative Example 68 화합물 1-28compound 1-28 4.224.22 15.615.6 138138 적색Red
비교예 69Comparative Example 69 화합물 1-3compound 1-3 화합물 C-2compound C-2 4.314.31 15.015.0 105105 적색Red
비교예 70Comparative Example 70 화합물 1-8compounds 1-8 4.364.36 16.816.8 9494 적색Red
비교예 71Comparative Example 71 화합물 1-9compounds 1-9 4.274.27 15.315.3 100100 적색Red
비교예 72Comparative Example 72 화합물 1-15compound 1-15 4.354.35 16.916.9 8989 적색Red
비교예 73Comparative Example 73 화합물 1-19compound 1-19 4.264.26 14.714.7 9595 적색Red
비교예 74Comparative Example 74 화합물 1-20compound 1-20 4.334.33 16.316.3 7272 적색Red
비교예 75Comparative Example 75 화합물 1-27compound 1-27 4.304.30 15.815.8 9898 적색Red
비교예 76Comparative Example 76 화합물 1-30compounds 1-30 4.384.38 14.614.6 9696 적색Red
비교예 77Comparative Example 77 화합물 1-2compound 1-2 화합물 C-3compound C-3 4.304.30 14.014.0 114114 적색Red
비교예 78Comparative Example 78 화합물 1-4compound 1-4 4.364.36 14.814.8 115115 적색Red
비교예 79Comparative Example 79 화합물 1-8compounds 1-8 4.304.30 16.316.3 123123 적색Red
비교예 80Comparative Example 80 화합물 1-13compound 1-13 4.234.23 14.914.9 110110 적색Red
비교예 81Comparative Example 81 화합물 1-17compound 1-17 4.314.31 14.714.7 121121 적색Red
비교예 82Comparative Example 82 화합물 1-21compound 1-21 4.294.29 16.016.0 113113 적색Red
비교예 83Comparative Example 83 화합물 1-25compounds 1-25 4.324.32 15.415.4 109109 적색Red
비교예 84Comparative Example 84 화합물 1-28compound 1-28 4.414.41 14.114.1 111111 적색Red
비교예 85Comparative Example 85 화합물 1-3compound 1-3 화합물 C-4compound C-4 4.374.37 13.013.0 8989 적색Red
비교예 86Comparative Example 86 화합물 1-8compounds 1-8 4.344.34 13.913.9 7272 적색Red
비교예 87Comparative Example 87 화합물 1-9compounds 1-9 4.384.38 13.113.1 8181 적색Red
비교예 88Comparative Example 88 화합물 1-15compound 1-15 4.414.41 12.812.8 9393 적색Red
비교예 89Comparative Example 89 화합물 1-19compound 1-19 4.394.39 14.314.3 101101 적색Red
비교예 90Comparative Example 90 화합물 1-23compound 1-23 4.314.31 13.813.8 8484 적색Red
비교예 91Comparative Example 91 화합물 1-27compound 1-27 4.334.33 14.214.2 9595 적색Red
비교예 92Comparative Example 92 화합물 1-30compounds 1-30 4.344.34 13.013.0 9898 적색Red
제1호스트1st host 제2호스트2nd host 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95 (hr) 발광색luminous color
비교예 93Comparative Example 93 화합물 1-2compound 1-2 화합물 C-5compound C-5 4.214.21 14.114.1 104104 적색Red
비교예 94Comparative Example 94 화합물 1-4compound 1-4 4.104.10 14.414.4 109109 적색Red
비교예 95Comparative Example 95 화합물 1-8compounds 1-8 4.254.25 15.515.5 111111 적색Red
비교예 96Comparative Example 96 화합물 1-13compound 1-13 4.134.13 14.714.7 104104 적색Red
비교예 97Comparative Example 97 화합물 1-16compound 1-16 4.114.11 14.614.6 105105 적색Red
비교예 98Comparative Example 98 화합물 1-21compound 1-21 4.194.19 15.515.5 111111 적색Red
비교예 99Comparative Example 99 화합물 1-25compounds 1-25 4.124.12 14.814.8 107107 적색Red
비교예 100Comparative Example 100 화합물 1-28compound 1-28 4.204.20 15.315.3 113113 적색Red
비교예 101Comparative Example 101 화합물 1-3compound 1-3 화합물 C-6compound C-6 4.154.15 19.219.2 122122 적색Red
비교예 102Comparative Example 102 화합물 1-8compounds 1-8 4.134.13 18.418.4 119119 적색Red
비교예 103Comparative Example 103 화합물 1-9compounds 1-9 4.214.21 16.916.9 124124 적색Red
비교예 104Comparative Example 104 화합물 1-15compound 1-15 4.184.18 15.215.2 127127 적색Red
비교예 105Comparative Example 105 화합물 1-19compound 1-19 4.124.12 14.114.1 119119 적색Red
비교예 106Comparative Example 106 화합물 1-20compound 1-20 4.174.17 15.715.7 130130 적색Red
비교예 107Comparative Example 107 화합물 1-27compound 1-27 4.204.20 16.216.2 124124 적색Red
비교예 108Comparative Example 108 화합물 1-30compounds 1-30 4.194.19 14.514.5 132132 적색Red
비교예 109Comparative Example 109 화합물 1-2compound 1-2 화합물 C-7compound C-7 4.294.29 15.615.6 129129 적색Red
비교예 110Comparative Example 110 화합물 1-4compound 1-4 4.234.23 15.115.1 111111 적색Red
비교예 111Comparative Example 111 화합물 1-8compounds 1-8 4.274.27 17.517.5 124124 적색Red
비교예 112Comparative Example 112 화합물 1-13compound 1-13 4.284.28 16.816.8 130130 적색Red
비교예 113Comparative Example 113 화합물 1-17compound 1-17 4.204.20 14.914.9 127127 적색Red
비교예 114Comparative Example 114 화합물 1-21compound 1-21 4.294.29 15.315.3 123123 적색Red
비교예 115Comparative Example 115 화합물 1-25compounds 1-25 4.304.30 16.816.8 129129 적색Red
비교예 116Comparative Example 116 화합물 1-28compound 1-28 4.274.27 16.216.2 113113 적색Red
비교예 117Comparative Example 117 화합물 1-3compound 1-3 화합물 C-8compound C-8 4.594.59 13.013.0 6161 적색Red
비교예 118Comparative Example 118 화합물 1-8compounds 1-8 4.604.60 12.812.8 4545 적색Red
비교예 119Comparative Example 119 화합물 1-9compounds 1-9 4.514.51 13.713.7 5959 적색Red
비교예 120Comparative Example 120 화합물 1-15compound 1-15 4.464.46 12.912.9 3636 적색Red
비교예 121Comparative Example 121 화합물 1-19compound 1-19 4.514.51 11.311.3 4848 적색Red
비교예 122Comparative Example 122 화합물 1-23compound 1-23 4.474.47 12.412.4 3232 적색Red
비교예 123Comparative Example 123 화합물 1-27compound 1-27 4.594.59 13.813.8 4444 적색Red
비교예 124Comparative Example 124 화합물 1-30compounds 1-30 4.554.55 15.615.6 6161 적색Red
본 발명에 따라 화학식 1의 화합물과 화학식 2의 화합물을 공증착하여 적색 발광층으로 사용하였을 때 표 1 내지 4와 같이 비교예 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인할 수 있었다. 또한, 표 5 및 6과 같이, 비교예인 화합물 B-1 내지 B-12와 본 발명의 화학식 2의 화합물을 공증착하여 적색 발광층으로 사용하였을 때, 본 발명에 따른 조합보다 대체적으로 구동 전압은 상승하고 효율과 수명이 떨어지는 결과를 나타내었다. 또한, 표 7 및 8과 같이 비교예인 화합물 C-1 내지 C-12와 본 발명의 화학식 1의 화합물을 공증착하여 적색 발광층으로 사용하였을 때, 마찬가지로 본 발명에 따른 조합보다 구동 전압은 상승하고 효율과 수명이 떨어지는 결과를 나타내었다. According to the present invention, when the compound of Formula 1 and the compound of Formula 2 were co-deposited and used as a red light emitting layer, as shown in Tables 1 to 4, it was confirmed that the driving voltage decreased and the efficiency and lifespan increased compared to Comparative Examples. In addition, as shown in Tables 5 and 6, when the compounds of Comparative Examples B-1 to B-12 and the compound of Formula 2 of the present invention were co-deposited and used as a red light emitting layer, the driving voltage was generally higher than that of the combination according to the present invention. and showed a decrease in efficiency and lifespan. In addition, as shown in Tables 7 and 8, when the compounds of Comparative Examples C-1 to C-12 and the compound of Formula 1 of the present invention were co-deposited and used as a red light emitting layer, the driving voltage was increased compared to the combination according to the present invention and the efficiency was similarly increased. and decreased lifespan.
이로부터, 본 발명의 제1 호스트인 화학식 1의 화합물과 제2 호스트인 화학식 2의 화합물의 조합이 적색 발광층 내의 적색 도판트로의 에너지 전달이 잘 이루어지고, 이에 따라 전압이 개선되고 효율 및 수명이 상승함을 확인할 수 있다. 이는 비교예 화합물과의 조합 보다 본 발명의 화학식 1의 화합물과 화학식 2의 화합물의 조합이, 발광층 내에서 더 안정적인 균형을 통해 전자와 정공이 결합하여 엑시톤을 형성하여 효율과 수명을 상승시키는 것을 확인할 수 있었다. 따라서, 본 발명의 화학식 1의 화합물과 화학식 2의 화합물을 조합하고 공증착하여 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다. From this, the combination of the compound of Formula 1, which is the first host, and the compound of Formula 2, which is the second host, of the present invention transfers energy to the red dopant in the red light emitting layer well, and thus the voltage is improved, and the efficiency and lifespan are improved. rise can be seen. It is confirmed that the combination of the compound of Formula 1 and the compound of Formula 2 of the present invention, rather than the combination with the compound of Comparative Example, increases the efficiency and lifespan by combining electrons and holes through a more stable balance in the light emitting layer to form excitons. could Therefore, it can be confirmed that the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved when the compound of Formula 1 and the compound of Formula 2 are combined and used as a host for the red light emitting layer by co-evaporation.
[부호의 설명][Explanation of code]
1: 기판 2: 양극1: Substrate 2: Anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자수송층 8: 전자주입층7: electron transport layer 8: electron injection layer

Claims (10)

  1. 양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,anode; cathode; and a light emitting layer between the anode and the cathode,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,The light emitting layer comprises a compound represented by the following formula (1) and a compound represented by the following formula (2),
    유기 발광 소자:Organic light emitting device:
    [화학식 1][Formula 1]
    Figure PCTKR2021004492-appb-img-000129
    Figure PCTKR2021004492-appb-img-000129
    상기 화학식 1에서, In Formula 1,
    L 1은 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 1 is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
    L 2 및 L 3는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 2 and L 3 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
    Ar 1 및 Ar 2는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 5-60 헤테로아릴이고,Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 5-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
    R는 수소, 중수소, 또는 치환 또는 비치환된 C 6-60 아릴이고, R is hydrogen, deuterium, or substituted or unsubstituted C 6-60 aryl;
    [화학식 2][Formula 2]
    Figure PCTKR2021004492-appb-img-000130
    Figure PCTKR2021004492-appb-img-000130
    상기 화학식 2에서, In Formula 2,
    L 4 및 L 5는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고, L 4 and L 5 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
    Ar 3 내지 Ar 6는 각각 독립적으로 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 5-60 헤테로아릴이다.Ar 3 To Ar 6 are each independently substituted or unsubstituted C 6-60 aryl; or C 5-60 heteroaryl including at least one selected from the group consisting of substituted or unsubstituted N, O and S.
  2. 제1항에 있어서,According to claim 1,
    L 1은 단일 결합, 페닐렌, 또는 나프틸렌인,L 1 is a single bond, phenylene, or naphthylene;
    유기 발광 소자.organic light emitting device.
  3. 제1항에 있어서,According to claim 1,
    L 1은 단일 결합,
    Figure PCTKR2021004492-appb-img-000131
    , 또는
    Figure PCTKR2021004492-appb-img-000132
    인,
    L 1 is a single bond,
    Figure PCTKR2021004492-appb-img-000131
    , or
    Figure PCTKR2021004492-appb-img-000132
    sign,
    유기 발광 소자.organic light emitting device.
  4. 제1항에 있어서,According to claim 1,
    L 2 및 L 3는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌인,L 2 and L 3 are each independently a single bond, phenylene, or naphthylene,
    유기 발광 소자.organic light emitting device.
  5. 제1항에 있어서,According to claim 1,
    Ar 1 및 Ar 2는 각각 독립적으로 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 트리페닐레닐, 나프틸페닐, 페닐나프틸, 디메틸플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이고;Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, triphenylenyl, naphthylphenyl, phenylnaphthyl, dimethylfluorenyl, dibenzofuranyl, dibenzo thiophenyl, carbazol-9-yl, or 9-phenyl-9H-carbazolyl;
    상기 Ar 1 및 Ar 2는 각각 독립적으로 비치환되거나, 또는 하나 이상의 중수소로 치환되는,The Ar 1 and Ar 2 are each independently unsubstituted or substituted with one or more deuterium,
    유기 발광 소자.organic light emitting device.
  6. 제1항에 있어서,According to claim 1,
    R는 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,R is hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl;
    유기 발광 소자. organic light emitting device.
  7. 제1항에 있어서,According to claim 1,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인, The compound represented by Formula 1 is any one selected from the group consisting of
    유기 발광 소자:Organic light emitting device:
    Figure PCTKR2021004492-appb-img-000133
    Figure PCTKR2021004492-appb-img-000133
    Figure PCTKR2021004492-appb-img-000134
    Figure PCTKR2021004492-appb-img-000134
    Figure PCTKR2021004492-appb-img-000135
    Figure PCTKR2021004492-appb-img-000135
    Figure PCTKR2021004492-appb-img-000136
    Figure PCTKR2021004492-appb-img-000136
    Figure PCTKR2021004492-appb-img-000137
    Figure PCTKR2021004492-appb-img-000137
    Figure PCTKR2021004492-appb-img-000138
    Figure PCTKR2021004492-appb-img-000138
    Figure PCTKR2021004492-appb-img-000139
    Figure PCTKR2021004492-appb-img-000139
    Figure PCTKR2021004492-appb-img-000140
    Figure PCTKR2021004492-appb-img-000140
    Figure PCTKR2021004492-appb-img-000141
    Figure PCTKR2021004492-appb-img-000141
    Figure PCTKR2021004492-appb-img-000142
    Figure PCTKR2021004492-appb-img-000142
    Figure PCTKR2021004492-appb-img-000143
    Figure PCTKR2021004492-appb-img-000143
    Figure PCTKR2021004492-appb-img-000144
    Figure PCTKR2021004492-appb-img-000144
    Figure PCTKR2021004492-appb-img-000145
    Figure PCTKR2021004492-appb-img-000145
    Figure PCTKR2021004492-appb-img-000146
    Figure PCTKR2021004492-appb-img-000146
    Figure PCTKR2021004492-appb-img-000147
    Figure PCTKR2021004492-appb-img-000147
    Figure PCTKR2021004492-appb-img-000148
    Figure PCTKR2021004492-appb-img-000148
    Figure PCTKR2021004492-appb-img-000149
    Figure PCTKR2021004492-appb-img-000149
    Figure PCTKR2021004492-appb-img-000150
    Figure PCTKR2021004492-appb-img-000150
    Figure PCTKR2021004492-appb-img-000151
    Figure PCTKR2021004492-appb-img-000151
    Figure PCTKR2021004492-appb-img-000152
    Figure PCTKR2021004492-appb-img-000152
    Figure PCTKR2021004492-appb-img-000153
    Figure PCTKR2021004492-appb-img-000153
    Figure PCTKR2021004492-appb-img-000154
    Figure PCTKR2021004492-appb-img-000154
    Figure PCTKR2021004492-appb-img-000155
    Figure PCTKR2021004492-appb-img-000155
    Figure PCTKR2021004492-appb-img-000156
    Figure PCTKR2021004492-appb-img-000156
    Figure PCTKR2021004492-appb-img-000157
    Figure PCTKR2021004492-appb-img-000157
    Figure PCTKR2021004492-appb-img-000158
    Figure PCTKR2021004492-appb-img-000158
    Figure PCTKR2021004492-appb-img-000159
    Figure PCTKR2021004492-appb-img-000159
    Figure PCTKR2021004492-appb-img-000160
    Figure PCTKR2021004492-appb-img-000160
    Figure PCTKR2021004492-appb-img-000161
    Figure PCTKR2021004492-appb-img-000161
    Figure PCTKR2021004492-appb-img-000162
    Figure PCTKR2021004492-appb-img-000162
    Figure PCTKR2021004492-appb-img-000163
    Figure PCTKR2021004492-appb-img-000163
    Figure PCTKR2021004492-appb-img-000164
    Figure PCTKR2021004492-appb-img-000164
    Figure PCTKR2021004492-appb-img-000165
    Figure PCTKR2021004492-appb-img-000165
    Figure PCTKR2021004492-appb-img-000166
    Figure PCTKR2021004492-appb-img-000166
    Figure PCTKR2021004492-appb-img-000167
    Figure PCTKR2021004492-appb-img-000167
    Figure PCTKR2021004492-appb-img-000168
    Figure PCTKR2021004492-appb-img-000168
    Figure PCTKR2021004492-appb-img-000169
    Figure PCTKR2021004492-appb-img-000169
    Figure PCTKR2021004492-appb-img-000170
    Figure PCTKR2021004492-appb-img-000170
    Figure PCTKR2021004492-appb-img-000171
    Figure PCTKR2021004492-appb-img-000171
    Figure PCTKR2021004492-appb-img-000172
    Figure PCTKR2021004492-appb-img-000172
    Figure PCTKR2021004492-appb-img-000173
    Figure PCTKR2021004492-appb-img-000173
    Figure PCTKR2021004492-appb-img-000174
    Figure PCTKR2021004492-appb-img-000174
    Figure PCTKR2021004492-appb-img-000175
    Figure PCTKR2021004492-appb-img-000175
    Figure PCTKR2021004492-appb-img-000176
    Figure PCTKR2021004492-appb-img-000176
    Figure PCTKR2021004492-appb-img-000177
    Figure PCTKR2021004492-appb-img-000177
    Figure PCTKR2021004492-appb-img-000178
    Figure PCTKR2021004492-appb-img-000178
    Figure PCTKR2021004492-appb-img-000179
    Figure PCTKR2021004492-appb-img-000179
    Figure PCTKR2021004492-appb-img-000180
    Figure PCTKR2021004492-appb-img-000180
  8. 제1항에 있어서,According to claim 1,
    L 4 및 L 5는 각각 독립적으로 단일 결합; 또는 페닐렌인,L 4 and L 5 are each independently a single bond; or phenylene;
    유기 발광 소자.organic light emitting device.
  9. 제1항에 있어서,According to claim 1,
    Ar 3 내지 Ar 6는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페닐나프틸, 나프틸페닐, 디메틸플루오레닐, 디벤조퓨라닐, (디벤조퓨라닐)페닐, 디벤조티오페닐, 또는 (디벤조티오페닐)페닐인,Ar 3 To Ar 6 are each independently phenyl, biphenylyl, naphthyl, phenylnaphthyl, naphthylphenyl, dimethylfluorenyl, dibenzofuranyl, (dibenzofuranyl)phenyl, dibenzothiophenyl, or (dibenzothiophenyl)phenyl,
    유기 발광 소자.organic light emitting device.
  10. 제1항에 있어서,According to claim 1,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인, The compound represented by Formula 2 is any one selected from the group consisting of
    유기 발광 소자:Organic light emitting device:
    Figure PCTKR2021004492-appb-img-000181
    Figure PCTKR2021004492-appb-img-000181
    Figure PCTKR2021004492-appb-img-000182
    Figure PCTKR2021004492-appb-img-000182
    Figure PCTKR2021004492-appb-img-000183
    Figure PCTKR2021004492-appb-img-000183
    Figure PCTKR2021004492-appb-img-000184
    Figure PCTKR2021004492-appb-img-000184
    Figure PCTKR2021004492-appb-img-000185
    Figure PCTKR2021004492-appb-img-000185
    Figure PCTKR2021004492-appb-img-000186
    Figure PCTKR2021004492-appb-img-000186
    Figure PCTKR2021004492-appb-img-000187
    Figure PCTKR2021004492-appb-img-000187
    Figure PCTKR2021004492-appb-img-000188
    Figure PCTKR2021004492-appb-img-000188
    Figure PCTKR2021004492-appb-img-000189
    Figure PCTKR2021004492-appb-img-000189
    Figure PCTKR2021004492-appb-img-000190
    Figure PCTKR2021004492-appb-img-000190
PCT/KR2021/004492 2020-04-09 2021-04-09 Organic light-emitting device WO2021206504A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180004501.5A CN114144901A (en) 2020-04-09 2021-04-09 Organic light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200043573 2020-04-09
KR10-2020-0043573 2020-04-09
KR10-2021-0046081 2021-04-08
KR1020210046081A KR102573176B1 (en) 2020-04-09 2021-04-08 Organic light emitting device

Publications (1)

Publication Number Publication Date
WO2021206504A1 true WO2021206504A1 (en) 2021-10-14

Family

ID=78022560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004492 WO2021206504A1 (en) 2020-04-09 2021-04-09 Organic light-emitting device

Country Status (2)

Country Link
CN (1) CN114144901A (en)
WO (1) WO2021206504A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012229A (en) * 1998-06-29 2000-01-14 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using same
CN108003121A (en) * 2017-12-12 2018-05-08 上海道亦化工科技有限公司 A kind of phenanthrene class compound and application thereof and organic electroluminescence device
CN108003865A (en) * 2017-12-04 2018-05-08 吉林奥来德光电材料股份有限公司 Organic luminescent compounds and preparation method thereof and organic electroluminescence device
KR101857632B1 (en) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110272380A (en) * 2018-03-14 2019-09-24 江苏三月光电科技有限公司 It is a kind of using spiro fluorene as the compound of core, preparation method and its application in organic electroluminescence device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102110983B1 (en) * 2016-04-14 2020-05-14 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20190038254A (en) * 2017-09-29 2019-04-08 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102397215B1 (en) * 2018-12-20 2022-05-12 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012229A (en) * 1998-06-29 2000-01-14 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using same
CN108003865A (en) * 2017-12-04 2018-05-08 吉林奥来德光电材料股份有限公司 Organic luminescent compounds and preparation method thereof and organic electroluminescence device
CN108003121A (en) * 2017-12-12 2018-05-08 上海道亦化工科技有限公司 A kind of phenanthrene class compound and application thereof and organic electroluminescence device
KR101857632B1 (en) * 2018-02-02 2018-05-14 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN110272380A (en) * 2018-03-14 2019-09-24 江苏三月光电科技有限公司 It is a kind of using spiro fluorene as the compound of core, preparation method and its application in organic electroluminescence device

Also Published As

Publication number Publication date
CN114144901A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021182775A1 (en) Organic light-emitting device
WO2021096228A1 (en) Organic light emitting device
WO2021221475A1 (en) Organic light-emitting device
WO2021210911A1 (en) Novel compound and organic light-emitting element comprising same
WO2022039520A1 (en) Novel compound and organic light-emitting device comprising same
WO2021029616A1 (en) Organic light-emitting device
WO2022086168A1 (en) Organic light-emitting device
WO2022031036A1 (en) Organic light emitting device
WO2021066623A1 (en) Organic light emitting device
WO2020141949A1 (en) Novel compound and organic light emitting device using same
WO2022080715A1 (en) Novel compound and organic light-emitting device comprising same
WO2020222569A1 (en) Organic light-emitting device
WO2022250386A1 (en) Organic light-emitting device
WO2022231389A1 (en) Organic light emitting device
WO2022086171A1 (en) Organic light-emitting device
WO2022045743A1 (en) Novel compound and organic light-emitting device using same
WO2021210910A1 (en) Novel compound and organic light emitting device using same
WO2021261962A1 (en) Organic light-emitting device
WO2020263000A1 (en) Novel compound and organic light emitting device using same
WO2020231022A1 (en) Organic light emitting device
WO2021206504A1 (en) Organic light-emitting device
WO2021206502A1 (en) Organic light-emitting element
WO2022177288A1 (en) Novel compound and organic light emitting device comprising same
WO2023085833A1 (en) Novel compound and organic light emitting device comprising same
WO2021261907A1 (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21783834

Country of ref document: EP

Kind code of ref document: A1