WO2020263000A1 - Novel compound and organic light emitting device using same - Google Patents

Novel compound and organic light emitting device using same Download PDF

Info

Publication number
WO2020263000A1
WO2020263000A1 PCT/KR2020/008315 KR2020008315W WO2020263000A1 WO 2020263000 A1 WO2020263000 A1 WO 2020263000A1 KR 2020008315 W KR2020008315 W KR 2020008315W WO 2020263000 A1 WO2020263000 A1 WO 2020263000A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
group
formula
reduced pressure
Prior art date
Application number
PCT/KR2020/008315
Other languages
French (fr)
Korean (ko)
Inventor
이다정
김민준
이동훈
서상덕
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200077220A external-priority patent/KR102415264B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005461.1A priority Critical patent/CN112805276B/en
Publication of WO2020263000A1 publication Critical patent/WO2020263000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc.
  • a voltage when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula 1:
  • Each X is independently N or CH, provided that at least two of X are N,
  • L is a trivalent or higher C 6-10 aromatic ring
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S,
  • Ar 3 is substituted or unsubstituted C 6-60 aryl
  • R is all hydrogen, or two adjacent R are combined to form a benzene ring
  • n is an integer of 1 ⁇ n ⁇ 10.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
  • the compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device.
  • the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows an example of an organic light-emitting device composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4 I did it.
  • the present invention provides a compound represented by Chemical Formula 1.
  • substituted or unsubstituted refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means a substituted or unsubstituted substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S atoms, or linked
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, and a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhex
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Car
  • the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group.
  • the description of the aforementioned heterocyclic group may be applied.
  • the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that two substituents are bonded to each other.
  • the present invention provides a compound represented by Chemical Formula 1.
  • the compound represented by Formula 1 is based on a structure in which 5H-benzo[b]carbazole or a derivative thereof; is bonded with a pyrimidine or triazine-based substituent.
  • the pyrimidine or triazine-based substituent group via the linking group (L) substituted with at least one aryl (Ar 3 ), the 5H-benzo[b]carbazole (5H-benzo[b]carbazole ) Or its derivative N.
  • Such a structure is 5H-benzo[b]carbazole or a derivative thereof, a pyrimidine or triazine-based substituent, and a linking group substituted with at least one aryl (Ar 3 ) (L )
  • the compound represented by Formula 1 when used as an organic material layer of an organic light-emitting device, particularly as a material for a light-emitting layer, low voltage, high efficiency, color reproducibility, life characteristics, etc. can be improved by synergistic effects of the substituents.
  • Formula 1 it may be represented by the following Formulas 1-1, 1-2, 1-3, or 1-4 according to R:
  • Each X is independently N or CH, provided that at least two of X are N.
  • all of X may be N.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-30 aryl; Or it may be a substituted or unsubstituted C 2-30 heteroaryl including any one or more selected from the group consisting of N, O and S.
  • Ar 1 and Ar 2 are each independently, phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H- It may be carbazolyl.
  • Ar 1 and Ar 2 may each independently be unsubstituted or substituted with one or more deuterium.
  • Ar 1 and Ar 2 are each independently unsubstituted phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl- Is 9H-carbazolyl; It may be phenyl or biphenylyl substituted with 5 deuterium.
  • At least one of Ar 1 and Ar 2 may be unsubstituted phenyl, but is not limited thereto.
  • L is a trivalent or higher C 6-10 aromatic ring, and the oxidation number may be determined according to the number of substituents (n) of L.
  • n may be an integer of 1 ⁇ n ⁇ 4, and thus L may have a 3 to hexavalent oxidation number.
  • L may be trivalent to hexavalent benzene or naphthalene.
  • the bonding position of Ar 3 to the L is not particularly limited.
  • Ar 3 may be substituted or unsubstituted C 6-30 aryl.
  • Ar 3 may be phenyl, biphenylyl, or naphthyl, and Ar 3 may be unsubstituted or substituted with one or more deuterium.
  • Ar 3 is unsubstituted phenyl, biphenylyl, or naphthyl; It may be phenyl substituted with 5 deuterium.
  • n is an integer of 2 ⁇ n ⁇ 4, Ar 3 may be the same or different.
  • the compound represented by Formula 1 may be prepared using the following Scheme 1.
  • the manufacturing method is an example, and may be more specific in the manufacturing example to be described later.
  • the present invention provides an organic light-emitting device including the compound represented by Chemical Formula 1.
  • the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include an emission layer, and the emission layer includes the compound represented by Chemical Formula 1.
  • the compound according to the present invention can be used as a dopant for a light emitting layer.
  • the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes the compound represented by Formula 1 above.
  • the electron transport layer, the electron injection layer, or the layer that simultaneously transports electrons and injects electrons includes the compound represented by Formula 1 above.
  • the organic material layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Formula 1 above.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the emission layer.
  • FIG. 2 shows an example of an organic light-emitting device composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4 I did it.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer that injects holes from an electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for a light emitting layer or a light emitting material.
  • a compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the light-emitting material is a material capable of emitting light in a visible light region by transporting and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer.
  • an electron transport material a material capable of receiving electrons from the cathode and transferring them to the emission layer is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metals Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,000 ⁇ was placed in distilled water dissolved in a detergent and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water.
  • ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 ⁇ , but the compound A-1 was p-doped at a concentration of 1.5%.
  • the following HT-1 compound was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • an electron blocking layer was formed by vacuum vapor deposition of the following EB-1 compound having a thickness of 150 ⁇ on the hole transport layer.
  • the following RH-1 compound and the following Dp-7 compound were vacuum-deposited at a weight ratio of 98:2 on the EB-1 vapor deposition film to form a red light emitting layer having a thickness of 400 ⁇ .
  • a hole blocking layer was formed by vacuum vapor deposition of the following HB-1 compound having a thickness of 30 ⁇ on the emission layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 ⁇ . Lithium fluoride (LiF) at a thickness of 12 ⁇ and aluminum at a thickness of 1,000 ⁇ were sequentially deposited on the electron injection and transport layer to form a negative electrode.
  • LiF lithium fluoride
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec, the deposition rate of lithium fluoride at the cathode was 0.3 ⁇ /sec, and the deposition rate of aluminum was 2 ⁇ /sec, and the vacuum degree during deposition was 2X10 -7 ⁇ Maintaining 5X10 -6 torr, an organic light emitting device was produced.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 below was used instead of RH-1 in the organic light-emitting device of Comparative Example 1.
  • An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 below was used instead of RH-1 in the organic light-emitting device of Comparative Example 1.
  • Life T95 refers to the time it takes for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • the compound represented by Formula 1 is 5H-benzo[b]carbazole or a derivative thereof, a pyrimidine or triazine-based substituent, and at least one aryl ( Ar 3 ) A structure lacking any one of the linking groups (L) substituted with; Alternatively, it can be seen that, in contrast to a structure in which any one has been replaced with another substituent, it is used as a material of the light emitting layer of an organic light emitting device, thereby improving low voltage, high efficiency, color reproducibility, and life characteristics.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light emitting device using same.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자Novel compound and organic light emitting device using the same
관련 출원(들)과의 상호 인용Cross-reference with related application(s)
본 출원은 2019년 6월 28일자 한국 특허 출원 제10-2019-0078375호 및 2020년 6월 24일자 한국 특허 출원 제10-2020-0077220호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0078375 filed June 28, 2019 and Korean Patent Application No. 10-2020-0077220 filed June 24, 2020. All contents disclosed in the literature are included as part of this specification.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다. In general, the organic light emission phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material. An organic light-emitting device using the organic light-emitting phenomenon has a wide viewing angle, excellent contrast, and fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. The organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. In the structure of such an organic light-emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.Development of new materials for organic materials used in organic light emitting devices as described above is continuously required.
[선행기술문헌][Prior technical literature]
[특허문헌](특허문헌 1) 한국특허 공개번호 제10-2000-0051826호[Patent Document] (Patent Document 1) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다. The present invention relates to a novel compound and an organic light emitting device comprising the same.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by the following formula 1:
[화학식 1][Formula 1]
Figure PCTKR2020008315-appb-img-000001
Figure PCTKR2020008315-appb-img-000001
상기 화학식 1에서, In Formula 1,
X는 각각 독립적으로, N 또는 CH이고, 단 X 중 적어도 두 개는 N이고, Each X is independently N or CH, provided that at least two of X are N,
L은 3가 이상의 C 6-10 방향족 고리이고, L is a trivalent or higher C 6-10 aromatic ring,
Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S,
Ar 3은 치환 또는 비치환된 C 6-60 아릴이고, Ar 3 is substituted or unsubstituted C 6-60 aryl,
R은 모두 수소이거나, 또는 인접한 두 개의 R이 결합하여 벤젠고리를 형성하고,R is all hydrogen, or two adjacent R are combined to form a benzene ring,
n은 1≤n≤10의 정수이다. n is an integer of 1≤n≤10.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 may be used as a material for an organic material layer of an organic light-emitting device, and may improve efficiency, low driving voltage, and/or lifetime characteristics in the organic light-emitting device. In particular, the compound represented by Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.FIG. 2 shows an example of an organic light-emitting device composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4 I did it.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, it will be described in more detail to aid in understanding the present invention.
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Chemical Formula 1.
본 명세서에서,
Figure PCTKR2020008315-appb-img-000002
또는
Figure PCTKR2020008315-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2020008315-appb-img-000002
or
Figure PCTKR2020008315-appb-img-000003
Means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.In the present specification, the term "substituted or unsubstituted" refers to deuterium; Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means a substituted or unsubstituted substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S atoms, or linked with two or more substituents among the above-exemplified substituents. . For example, "a substituent to which two or more substituents are connected" may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020008315-appb-img-000004
Figure PCTKR2020008315-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with an oxygen of the ester group with a straight chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2020008315-appb-img-000005
Figure PCTKR2020008315-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
Figure PCTKR2020008315-appb-img-000006
Figure PCTKR2020008315-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. In the present specification, the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, and a phenyl boron group, but is not limited thereto.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but are not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but is preferably 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but the monocyclic aryl group is not limited thereto. The polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020008315-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2020008315-appb-img-000007
Etc. However, it is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiiadia There may be a zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group among the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group and the alkylamine group is the same as the example of the aforementioned alkyl group. In the present specification, for heteroaryl among heteroarylamines, the description of the aforementioned heterocyclic group may be applied. In the present specification, the alkenyl group of the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, the description of the aryl group described above may be applied except that the arylene is a divalent group. In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents. In the present specification, the heterocycle is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that two substituents are bonded to each other.
화합물compound
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다. The present invention provides a compound represented by Chemical Formula 1.
상기 화학식 1로 표시되는 화합물은, 5H-벤조[b]카바졸(5H-benzo[b]carbazole) 또는 그 유도체;가, 피리미딘 또는 트리아진 계열의 치환기와 결합된 구조를 기반으로 한다.The compound represented by Formula 1 is based on a structure in which 5H-benzo[b]carbazole or a derivative thereof; is bonded with a pyrimidine or triazine-based substituent.
구체적으로, 상기 피리미딘 또는 트리아진 계열의 치환기는, 적어도 하나의 아릴(Ar 3)로 치환된 연결기(L)를 매개로, 상기 5H-벤조[b]카바졸(5H-benzo[b]carbazole) 또는 그 유도체의 N과 결합된다. Specifically, the pyrimidine or triazine-based substituent group, via the linking group (L) substituted with at least one aryl (Ar 3 ), the 5H-benzo[b]carbazole (5H-benzo[b]carbazole ) Or its derivative N.
이와 같은 구조는, 5H-벤조[b]카바졸(5H-benzo[b]carbazole) 또는 그 유도체, 피리미딘 또는 트리아진 계열의 치환기, 및 적어도 하나의 아릴(Ar 3)로 치환된 연결기(L) 중 어느 하나가 결여된 구조; 또는 어느 하나가 다른 치환기로 대체된 구조 등에 대비하여, 내열성, 높은 융점 등을 가질 수 있다.Such a structure is 5H-benzo[b]carbazole or a derivative thereof, a pyrimidine or triazine-based substituent, and a linking group substituted with at least one aryl (Ar 3 ) (L ) A structure lacking any one of; Alternatively, it may have heat resistance, high melting point, etc., in contrast to a structure in which any one is replaced with another substituent.
따라서, 상기 화학식 1로 표시되는 화합물이 유기 발광 소자의 유기물 층, 특히 발광층의 재료로 사용될 경우, 상기 치환기들의 시너지 효과에 의해 저전압, 고효율, 색 재현성, 수명 특성 등을 향상시킬 수 있다. Therefore, when the compound represented by Formula 1 is used as an organic material layer of an organic light-emitting device, particularly as a material for a light-emitting layer, low voltage, high efficiency, color reproducibility, life characteristics, etc. can be improved by synergistic effects of the substituents.
이하, 상기 화학식 1 및 이 화학식으로 표시되는 화합물을 상세히 설명하면 다음과 같다. Hereinafter, the formula 1 and the compound represented by the formula will be described in detail as follows.
상기 화학식 1에서, R에 따라 하기 화학식 1-1, 1-2, 1-3, 또는 1-4로 표시될 수 있다:In Formula 1, it may be represented by the following Formulas 1-1, 1-2, 1-3, or 1-4 according to R:
[화학식 1-1][Formula 1-1]
Figure PCTKR2020008315-appb-img-000008
Figure PCTKR2020008315-appb-img-000008
[화학식 1-2][Formula 1-2]
Figure PCTKR2020008315-appb-img-000009
Figure PCTKR2020008315-appb-img-000009
[화학식 1-3][Formula 1-3]
Figure PCTKR2020008315-appb-img-000010
Figure PCTKR2020008315-appb-img-000010
[화학식 1-4][Formula 1-4]
Figure PCTKR2020008315-appb-img-000011
Figure PCTKR2020008315-appb-img-000011
상기 화학식 1-1 내지 1-4에서, X, L, Ar 1, Ar 2, Ar 3, 및 n은 앞서 정의한 바와 같다. In Formulas 1-1 to 1-4, X, L, Ar 1 , Ar 2, Ar 3 , and n are as defined above.
X는 각각 독립적으로, N 또는 CH이고, 단 X 중 적어도 두 개는 N이다.Each X is independently N or CH, provided that at least two of X are N.
예컨대, X는 모두 N일 수 있다.For example, all of X may be N.
Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-30 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-30 헤테로아릴일 수 있다. Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-30 aryl; Or it may be a substituted or unsubstituted C 2-30 heteroaryl including any one or more selected from the group consisting of N, O and S.
구체적으로, Ar 1 및 Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 나프틸페닐,디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴일 수 있다. 여기서, 상기 Ar 1 및 Ar 2는 각각 독립적으로, 비치환되거나, 하나 이상의 중수소로 치환된 것일 수 있다. Specifically, Ar 1 and Ar 2 are each independently, phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H- It may be carbazolyl. Here, Ar 1 and Ar 2 may each independently be unsubstituted or substituted with one or more deuterium.
예컨대, Ar 1 및 Ar 2는 각각 독립적으로, 비치환된 페닐, 비페닐릴, 나프틸, 나프틸페닐,디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이거나; 5개의 중수소로 치환된 페닐 또는 비페닐릴일 수 있다.For example, Ar 1 and Ar 2 are each independently unsubstituted phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl- Is 9H-carbazolyl; It may be phenyl or biphenylyl substituted with 5 deuterium.
여기서, Ar 1 및 Ar 2 중 적어도 하나는 비치환된 페닐일 수 있지만, 이에 제한되지 않는다.Here, at least one of Ar 1 and Ar 2 may be unsubstituted phenyl, but is not limited thereto.
L은 3가 이상의 C 6-10 방향족 고리이고, 상기 L의 치환기 수(n)에 따라 산화수가 결정될 수 있다.L is a trivalent or higher C 6-10 aromatic ring, and the oxidation number may be determined according to the number of substituents (n) of L.
구체적으로, n은 1≤n≤4의 정수일 수 있고, 이에 따른 L은 3 내지 6가의 산화수를 가질 수 있다.Specifically, n may be an integer of 1≦n≦4, and thus L may have a 3 to hexavalent oxidation number.
예컨대, L은 3 내지 6가의 벤젠 또는 나프탈렌일 수 있다. 상기 L에 대한 Ar 3의 결합 위치는 특별히 한정되지 않는다. For example, L may be trivalent to hexavalent benzene or naphthalene. The bonding position of Ar 3 to the L is not particularly limited.
Ar 3은 치환 또는 비치환된 C 6-30 아릴일 수 있다.Ar 3 may be substituted or unsubstituted C 6-30 aryl.
구체적으로, Ar 3은 페닐, 비페닐릴, 또는 나프틸일 수 있고, 상기 Ar 3은 비치환되거나, 하나 이상의 중수소로 치환된 것일 수 있다.Specifically, Ar 3 may be phenyl, biphenylyl, or naphthyl, and Ar 3 may be unsubstituted or substituted with one or more deuterium.
예컨대, Ar 3은 비치환된 페닐, 비페닐릴, 또는 나프틸이거나; 5개의 중수소로 치환된 페닐일 수 있다. n이 2≤n≤4의 정수일 경우, Ar 3은 동일하거나 상이할 수 있다.For example, Ar 3 is unsubstituted phenyl, biphenylyl, or naphthyl; It may be phenyl substituted with 5 deuterium. When n is an integer of 2≤n≤4, Ar 3 may be the same or different.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:Representative examples of the compound represented by Formula 1 are as follows:
Figure PCTKR2020008315-appb-img-000012
Figure PCTKR2020008315-appb-img-000012
Figure PCTKR2020008315-appb-img-000013
Figure PCTKR2020008315-appb-img-000013
Figure PCTKR2020008315-appb-img-000014
Figure PCTKR2020008315-appb-img-000014
Figure PCTKR2020008315-appb-img-000015
Figure PCTKR2020008315-appb-img-000015
Figure PCTKR2020008315-appb-img-000016
Figure PCTKR2020008315-appb-img-000016
Figure PCTKR2020008315-appb-img-000017
Figure PCTKR2020008315-appb-img-000017
Figure PCTKR2020008315-appb-img-000018
Figure PCTKR2020008315-appb-img-000018
Figure PCTKR2020008315-appb-img-000019
Figure PCTKR2020008315-appb-img-000019
Figure PCTKR2020008315-appb-img-000020
Figure PCTKR2020008315-appb-img-000020
Figure PCTKR2020008315-appb-img-000021
Figure PCTKR2020008315-appb-img-000021
Figure PCTKR2020008315-appb-img-000022
Figure PCTKR2020008315-appb-img-000022
Figure PCTKR2020008315-appb-img-000023
Figure PCTKR2020008315-appb-img-000023
Figure PCTKR2020008315-appb-img-000024
Figure PCTKR2020008315-appb-img-000024
Figure PCTKR2020008315-appb-img-000025
Figure PCTKR2020008315-appb-img-000025
Figure PCTKR2020008315-appb-img-000026
Figure PCTKR2020008315-appb-img-000026
Figure PCTKR2020008315-appb-img-000027
Figure PCTKR2020008315-appb-img-000027
Figure PCTKR2020008315-appb-img-000028
Figure PCTKR2020008315-appb-img-000028
Figure PCTKR2020008315-appb-img-000029
Figure PCTKR2020008315-appb-img-000029
Figure PCTKR2020008315-appb-img-000030
Figure PCTKR2020008315-appb-img-000030
Figure PCTKR2020008315-appb-img-000031
Figure PCTKR2020008315-appb-img-000031
Figure PCTKR2020008315-appb-img-000032
Figure PCTKR2020008315-appb-img-000032
Figure PCTKR2020008315-appb-img-000033
Figure PCTKR2020008315-appb-img-000033
Figure PCTKR2020008315-appb-img-000034
Figure PCTKR2020008315-appb-img-000034
Figure PCTKR2020008315-appb-img-000035
Figure PCTKR2020008315-appb-img-000035
Figure PCTKR2020008315-appb-img-000036
Figure PCTKR2020008315-appb-img-000036
Figure PCTKR2020008315-appb-img-000037
Figure PCTKR2020008315-appb-img-000037
Figure PCTKR2020008315-appb-img-000038
Figure PCTKR2020008315-appb-img-000038
Figure PCTKR2020008315-appb-img-000039
Figure PCTKR2020008315-appb-img-000039
Figure PCTKR2020008315-appb-img-000040
Figure PCTKR2020008315-appb-img-000040
Figure PCTKR2020008315-appb-img-000041
Figure PCTKR2020008315-appb-img-000041
Figure PCTKR2020008315-appb-img-000042
Figure PCTKR2020008315-appb-img-000042
Figure PCTKR2020008315-appb-img-000043
Figure PCTKR2020008315-appb-img-000043
Figure PCTKR2020008315-appb-img-000044
Figure PCTKR2020008315-appb-img-000044
Figure PCTKR2020008315-appb-img-000045
Figure PCTKR2020008315-appb-img-000045
Figure PCTKR2020008315-appb-img-000046
Figure PCTKR2020008315-appb-img-000046
Figure PCTKR2020008315-appb-img-000047
Figure PCTKR2020008315-appb-img-000047
Figure PCTKR2020008315-appb-img-000048
Figure PCTKR2020008315-appb-img-000048
Figure PCTKR2020008315-appb-img-000049
Figure PCTKR2020008315-appb-img-000049
Figure PCTKR2020008315-appb-img-000050
Figure PCTKR2020008315-appb-img-000050
Figure PCTKR2020008315-appb-img-000051
Figure PCTKR2020008315-appb-img-000051
Figure PCTKR2020008315-appb-img-000052
Figure PCTKR2020008315-appb-img-000052
Figure PCTKR2020008315-appb-img-000053
Figure PCTKR2020008315-appb-img-000053
Figure PCTKR2020008315-appb-img-000054
Figure PCTKR2020008315-appb-img-000054
Figure PCTKR2020008315-appb-img-000055
Figure PCTKR2020008315-appb-img-000055
Figure PCTKR2020008315-appb-img-000056
Figure PCTKR2020008315-appb-img-000056
Figure PCTKR2020008315-appb-img-000057
Figure PCTKR2020008315-appb-img-000057
Figure PCTKR2020008315-appb-img-000058
Figure PCTKR2020008315-appb-img-000058
Figure PCTKR2020008315-appb-img-000059
Figure PCTKR2020008315-appb-img-000059
Figure PCTKR2020008315-appb-img-000060
Figure PCTKR2020008315-appb-img-000060
Figure PCTKR2020008315-appb-img-000061
Figure PCTKR2020008315-appb-img-000061
Figure PCTKR2020008315-appb-img-000062
Figure PCTKR2020008315-appb-img-000062
Figure PCTKR2020008315-appb-img-000063
Figure PCTKR2020008315-appb-img-000063
Figure PCTKR2020008315-appb-img-000064
Figure PCTKR2020008315-appb-img-000064
Figure PCTKR2020008315-appb-img-000065
Figure PCTKR2020008315-appb-img-000065
Figure PCTKR2020008315-appb-img-000066
Figure PCTKR2020008315-appb-img-000066
Figure PCTKR2020008315-appb-img-000067
Figure PCTKR2020008315-appb-img-000067
Figure PCTKR2020008315-appb-img-000068
Figure PCTKR2020008315-appb-img-000068
Figure PCTKR2020008315-appb-img-000069
Figure PCTKR2020008315-appb-img-000069
Figure PCTKR2020008315-appb-img-000070
Figure PCTKR2020008315-appb-img-000070
Figure PCTKR2020008315-appb-img-000071
Figure PCTKR2020008315-appb-img-000071
Figure PCTKR2020008315-appb-img-000072
Figure PCTKR2020008315-appb-img-000072
Figure PCTKR2020008315-appb-img-000073
Figure PCTKR2020008315-appb-img-000073
Figure PCTKR2020008315-appb-img-000074
Figure PCTKR2020008315-appb-img-000074
Figure PCTKR2020008315-appb-img-000075
Figure PCTKR2020008315-appb-img-000075
Figure PCTKR2020008315-appb-img-000076
Figure PCTKR2020008315-appb-img-000076
Figure PCTKR2020008315-appb-img-000077
Figure PCTKR2020008315-appb-img-000077
Figure PCTKR2020008315-appb-img-000078
Figure PCTKR2020008315-appb-img-000078
Figure PCTKR2020008315-appb-img-000079
Figure PCTKR2020008315-appb-img-000079
Figure PCTKR2020008315-appb-img-000080
Figure PCTKR2020008315-appb-img-000080
Figure PCTKR2020008315-appb-img-000081
Figure PCTKR2020008315-appb-img-000081
Figure PCTKR2020008315-appb-img-000082
Figure PCTKR2020008315-appb-img-000082
Figure PCTKR2020008315-appb-img-000083
Figure PCTKR2020008315-appb-img-000083
Figure PCTKR2020008315-appb-img-000084
Figure PCTKR2020008315-appb-img-000084
Figure PCTKR2020008315-appb-img-000085
Figure PCTKR2020008315-appb-img-000085
Figure PCTKR2020008315-appb-img-000086
Figure PCTKR2020008315-appb-img-000086
Figure PCTKR2020008315-appb-img-000087
Figure PCTKR2020008315-appb-img-000087
Figure PCTKR2020008315-appb-img-000088
Figure PCTKR2020008315-appb-img-000088
Figure PCTKR2020008315-appb-img-000089
Figure PCTKR2020008315-appb-img-000089
Figure PCTKR2020008315-appb-img-000090
Figure PCTKR2020008315-appb-img-000090
Figure PCTKR2020008315-appb-img-000091
Figure PCTKR2020008315-appb-img-000091
Figure PCTKR2020008315-appb-img-000092
Figure PCTKR2020008315-appb-img-000092
Figure PCTKR2020008315-appb-img-000093
Figure PCTKR2020008315-appb-img-000093
Figure PCTKR2020008315-appb-img-000094
Figure PCTKR2020008315-appb-img-000094
Figure PCTKR2020008315-appb-img-000095
Figure PCTKR2020008315-appb-img-000095
Figure PCTKR2020008315-appb-img-000096
Figure PCTKR2020008315-appb-img-000096
Figure PCTKR2020008315-appb-img-000097
Figure PCTKR2020008315-appb-img-000097
Figure PCTKR2020008315-appb-img-000098
Figure PCTKR2020008315-appb-img-000098
Figure PCTKR2020008315-appb-img-000099
Figure PCTKR2020008315-appb-img-000099
Figure PCTKR2020008315-appb-img-000100
Figure PCTKR2020008315-appb-img-000100
Figure PCTKR2020008315-appb-img-000101
Figure PCTKR2020008315-appb-img-000101
Figure PCTKR2020008315-appb-img-000102
Figure PCTKR2020008315-appb-img-000102
Figure PCTKR2020008315-appb-img-000103
Figure PCTKR2020008315-appb-img-000103
Figure PCTKR2020008315-appb-img-000104
Figure PCTKR2020008315-appb-img-000104
Figure PCTKR2020008315-appb-img-000105
Figure PCTKR2020008315-appb-img-000105
Figure PCTKR2020008315-appb-img-000106
Figure PCTKR2020008315-appb-img-000106
Figure PCTKR2020008315-appb-img-000107
Figure PCTKR2020008315-appb-img-000107
Figure PCTKR2020008315-appb-img-000108
Figure PCTKR2020008315-appb-img-000108
Figure PCTKR2020008315-appb-img-000109
Figure PCTKR2020008315-appb-img-000109
Figure PCTKR2020008315-appb-img-000110
Figure PCTKR2020008315-appb-img-000110
Figure PCTKR2020008315-appb-img-000111
Figure PCTKR2020008315-appb-img-000111
Figure PCTKR2020008315-appb-img-000112
Figure PCTKR2020008315-appb-img-000112
Figure PCTKR2020008315-appb-img-000113
Figure PCTKR2020008315-appb-img-000113
Figure PCTKR2020008315-appb-img-000114
Figure PCTKR2020008315-appb-img-000114
Figure PCTKR2020008315-appb-img-000115
Figure PCTKR2020008315-appb-img-000115
Figure PCTKR2020008315-appb-img-000116
Figure PCTKR2020008315-appb-img-000116
Figure PCTKR2020008315-appb-img-000117
Figure PCTKR2020008315-appb-img-000117
Figure PCTKR2020008315-appb-img-000118
.
Figure PCTKR2020008315-appb-img-000118
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1을 이용하여 제조할 수 있다. The compound represented by Formula 1 may be prepared using the following Scheme 1.
[반응식 1][Scheme 1]
Figure PCTKR2020008315-appb-img-000119
Figure PCTKR2020008315-appb-img-000119
(상기 반응식에서, 치환기의 정의는 전술한 바와 같다.)(In the above reaction formula, the definition of the substituent is as described above.)
다만, 상기 제조 방법은 일 예시이고, 후술할 제조예에서 보다 구체화될 수 있다.However, the manufacturing method is an example, and may be more specific in the manufacturing example to be described later.
유기 발광 소자Organic light emitting element
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. In addition, the present invention provides an organic light-emitting device including the compound represented by Chemical Formula 1. For example, the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다. In addition, the organic material layer may include an emission layer, and the emission layer includes the compound represented by Chemical Formula 1. In particular, the compound according to the present invention can be used as a dopant for a light emitting layer.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the organic material layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes the compound represented by Formula 1 above.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다. In addition, the electron transport layer, the electron injection layer, or the layer that simultaneously transports electrons and injects electrons includes the compound represented by Formula 1 above.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. In addition, the organic material layer may include a light emitting layer and an electron transport layer, and the electron transport layer may include a compound represented by Formula 1 above.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention may be an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In such a structure, the compound represented by Formula 1 may be included in the emission layer.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다. FIG. 2 shows an example of an organic light-emitting device composed of a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light-emitting layer 7, an electron transport layer 8, and a cathode 4 I did it. In such a structure, the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다. The organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1. In addition, when the organic light-emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate. And, after forming an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon, it can be prepared by depositing a material that can be used as a cathode thereon. In addition to this method, an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device. Here, the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다. In addition to such a method, an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.For example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode, and the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. As the anode material, a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer. Specific examples of the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multilayered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. The hole injection layer is a layer that injects holes from an electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for a light emitting layer or a light emitting material. A compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable. It is preferable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances. Organic substances, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. The hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.As a hole transport material, a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable. Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. The light-emitting material is a material capable of emitting light in a visible light region by transporting and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable. Specific examples of 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole-based compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole, and benzimidazole-based compounds; Poly(p-phenylenevinylene) (PPV)-based polymer; Spiro compounds; Polyfluorene, rubrene, and the like, but are not limited thereto.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. The emission layer may include a host material and a dopant material. Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds. Specifically, condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives and the like, but are not limited thereto.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes. Specifically, the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group, and the styrylamine compound is substituted or unsubstituted As a compound in which at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting of an aryl group, silyl group, alkyl group, cycloalkyl group, and arylamino group are substituted or unsubstituted. Specifically, there are styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like, but are not limited thereto. In addition, the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer. As an electron transport material, a material capable of receiving electrons from the cathode and transferring them to the emission layer is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. The electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metals Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include lithium 8-hydroxyquinolinato, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato)beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( o-cresolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtholato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtholato)gallium, etc. It is not limited to this.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention, and the scope of the invention is not limited to any meaning.
합성예 1Synthesis Example 1
Figure PCTKR2020008315-appb-img-000120
Figure PCTKR2020008315-appb-img-000120
질소 분위기에서 sub 1 (10 g, 23.8mmol), 화학식a (5.7g, 26.2 mmol), sodium tert-butoxide (4.6 g, 47.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물1 10g 을 얻었다. (수율 70%, MS: [M+H]+= 601)In a nitrogen atmosphere, sub 1 (10 g, 23.8 mmol), formula a (5.7 g, 26.2 mmol), and sodium tert-butoxide (4.6 g, 47.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10 g of compound 1. (Yield 70%, MS: [M+H]+= 601)
합성예 2Synthesis Example 2
Figure PCTKR2020008315-appb-img-000121
Figure PCTKR2020008315-appb-img-000121
질소 분위기에서 sub 2 (10 g, 21.3mmol), 화학식a (5.1g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물2 8.6g 을 얻었다. (수율 62%, MS: [M+H]+= 651)In a nitrogen atmosphere, sub 2 (10 g, 21.3 mmol), formula a (5.1 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.6 g of compound 2. (Yield 62%, MS: [M+H]+= 651)
합성예 3Synthesis Example 3
Figure PCTKR2020008315-appb-img-000122
Figure PCTKR2020008315-appb-img-000122
질소 분위기에서 sub 3 (10 g, 19.2mmol), 화학식a (4.6g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물3 7.5g 을 얻었다. (수율 56%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 3 (10 g, 19.2 mmol), formula a (4.6 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.5 g of compound 3. (Yield 56%, MS: [M+H]+= 701)
합성예 4Synthesis Example 4
Figure PCTKR2020008315-appb-img-000123
Figure PCTKR2020008315-appb-img-000123
질소 분위기에서 sub 4 (10 g, 21.3mmol), 화학식a (5.1g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물4 9.7g 을 얻었다. (수율 70%, MS: [M+H]+= 651)In a nitrogen atmosphere, sub 4 (10 g, 21.3 mmol), formula a (5.1 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.7 g of compound 4. (Yield 70%, MS: [M+H]+= 651)
합성예 5Synthesis Example 5
Figure PCTKR2020008315-appb-img-000124
Figure PCTKR2020008315-appb-img-000124
질소 분위기에서 sub 5 (10 g, 19.2mmol), 화학식a (4.6g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물5 6.9g 을 얻었다. (수율 51%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 5 (10 g, 19.2 mmol), formula a (4.6 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.9 g of compound 5. (Yield 51%, MS: [M+H]+= 701)
합성예 6Synthesis Example 6
Figure PCTKR2020008315-appb-img-000125
Figure PCTKR2020008315-appb-img-000125
질소 분위기에서 sub 6 (10 g, 19.6mmol), 화학식a (4.7g, 21.6 mmol), sodium tert-butoxide (3.8 g, 39.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물6 7.4g 을 얻었다. (수율 55%, MS: [M+H]+= 691)In a nitrogen atmosphere, sub 6 (10 g, 19.6 mmol), formula a (4.7 g, 21.6 mmol), sodium tert-butoxide (3.8 g, 39.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.4 g of compound 6. (Yield 55%, MS: [M+H]+= 691)
합성예 7Synthesis Example 7
Figure PCTKR2020008315-appb-img-000126
Figure PCTKR2020008315-appb-img-000126
질소 분위기에서 sub 7 (10 g, 19mmol), 화학식a (4.5g, 20.9 mmol), sodium tert-butoxide (3.7 g, 38 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물7 7.9g 을 얻었다. (수율 59%, MS: [M+H]+= 707)In a nitrogen atmosphere, sub 7 (10 g, 19 mmol), formula a (4.5 g, 20.9 mmol), sodium tert-butoxide (3.7 g, 38 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.9 g of compound 7. (Yield 59%, MS: [M+H]+= 707)
합성예 8Synthesis Example 8
Figure PCTKR2020008315-appb-img-000127
Figure PCTKR2020008315-appb-img-000127
질소 분위기에서 sub 8 (10 g, 17.4mmol), 화학식a (4.1g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물8 9.1g 을 얻었다. (수율 69%, MS: [M+H]+= 757)In a nitrogen atmosphere, sub 8 (10 g, 17.4 mmol), formula a (4.1 g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.1 g of compound 8. (Yield 69%, MS: [M+H]+= 757)
합성예 9Synthesis Example 9
Figure PCTKR2020008315-appb-img-000128
Figure PCTKR2020008315-appb-img-000128
질소 분위기에서 sub 9 (10 g, 17.1mmol), 화학식a (4.1g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물9 7.8g 을 얻었다. (수율 60%, MS: [M+H]+= 766)In a nitrogen atmosphere, sub 9 (10 g, 17.1 mmol), formula a (4.1 g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.8 g of compound 9. (Yield 60%, MS: [M+H]+= 766)
합성예 10Synthesis Example 10
Figure PCTKR2020008315-appb-img-000129
Figure PCTKR2020008315-appb-img-000129
질소 분위기에서 sub 10 (10 g, 15.7mmol), 화학식a (3.8g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물10 7.2g 을 얻었다. (수율 56%, MS: [M+H]+= 816)In a nitrogen atmosphere, sub 10 (10 g, 15.7 mmol), formula a (3.8 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.2 g of compound 10. (Yield 56%, MS: [M+H]+= 816)
합성예 11Synthesis Example 11
Figure PCTKR2020008315-appb-img-000130
Figure PCTKR2020008315-appb-img-000130
질소 분위기에서 sub 11 (10 g, 18.3mmol), 화학식a (4.4g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물11 7.7g 을 얻었다. (수율 58%, MS: [M+H]+= 727)In a nitrogen atmosphere, sub 11 (10 g, 18.3 mmol), formula a (4.4 g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.7 g of compound 11. (Yield 58%, MS: [M+H]+= 727)
합성예 12Synthesis Example 12
Figure PCTKR2020008315-appb-img-000131
Figure PCTKR2020008315-appb-img-000131
질소 분위기에서 sub 12 (10 g, 17.5mmol), 화학식a (4.2g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물12 8.9g 을 얻었다. (수율 68%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 12 (10 g, 17.5 mmol), formula a (4.2 g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.9 g of compound 12. (Yield 68%, MS: [M+H]+= 751)
합성예 13Synthesis Example 13
Figure PCTKR2020008315-appb-img-000132
Figure PCTKR2020008315-appb-img-000132
질소 분위기에서 sub 13 (10 g, 17.5mmol), 화학식a (4.2g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물13 8g 을 얻었다. (수율 61%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 13 (10 g, 17.5 mmol), formula a (4.2 g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8 g of compound 13. (Yield 61%, MS: [M+H]+= 751)
합성예 14Synthesis Example 14
Figure PCTKR2020008315-appb-img-000133
Figure PCTKR2020008315-appb-img-000133
질소 분위기에서 sub 14 (10 g, 16.4mmol), 화학식a (3.9g, 18 mmol), sodium tert-butoxide (3.2 g, 32.8 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물14 6.9g 을 얻었다. (수율 53%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 14 (10 g, 16.4 mmol), formula a (3.9 g, 18 mmol), sodium tert-butoxide (3.2 g, 32.8 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.9 g of compound 14. (Yield 53%, MS: [M+H]+= 791)
합성예 15Synthesis Example 15
Figure PCTKR2020008315-appb-img-000134
Figure PCTKR2020008315-appb-img-000134
질소 분위기에서 sub 15 (10 g, 18.3mmol), 화학식a (4.4g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물15 8.5g 을 얻었다. (수율 64%, MS: [M+H]+= 727)In a nitrogen atmosphere, sub 15 (10 g, 18.3 mmol), formula a (4.4 g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.5 g of compound 15. (Yield 64%, MS: [M+H]+= 727)
합성예 16Synthesis Example 16
Figure PCTKR2020008315-appb-img-000135
Figure PCTKR2020008315-appb-img-000135
질소 분위기에서 sub 16 (10 g, 18.3mmol), 화학식a (4.4g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물16 7.3g 을 얻었다. (수율 55%, MS: [M+H]+= 727)In a nitrogen atmosphere, sub 16 (10 g, 18.3 mmol), formula a (4.4 g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.3 g of compound 16. (Yield 55%, MS: [M+H]+= 727)
합성예 17Synthesis Example 17
Figure PCTKR2020008315-appb-img-000136
Figure PCTKR2020008315-appb-img-000136
질소 분위기에서 sub 17 (10 g, 15.7mmol), 화학식a (3.8g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물17 6.7g 을 얻었다. (수율 52%, MS: [M+H]+= 817)In a nitrogen atmosphere, sub 17 (10 g, 15.7 mmol), formula a (3.8 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.7 g of compound 17. (Yield 52%, MS: [M+H]+= 817)
합성예 18Synthesis Example 18
Figure PCTKR2020008315-appb-img-000137
Figure PCTKR2020008315-appb-img-000137
질소 분위기에서 sub 18 (10 g, 15.1mmol), 화학식a (3.6g, 16.6 mmol), sodium tert-butoxide (2.9 g, 30.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물18 8.4g 을 얻었다. (수율 66%, MS: [M+H]+= 842)In a nitrogen atmosphere, sub 18 (10 g, 15.1 mmol), formula a (3.6 g, 16.6 mmol), sodium tert-butoxide (2.9 g, 30.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.4 g of compound 18. (Yield 66%, MS: [M+H]+= 842)
합성예 19Synthesis Example 19
Figure PCTKR2020008315-appb-img-000138
Figure PCTKR2020008315-appb-img-000138
질소 분위기에서 sub 19 (10 g, 23.3mmol), 화학식a (5.6g, 25.6 mmol), sodium tert-butoxide (4.5 g, 46.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물19 7.5g 을 얻었다. (수율 53%, MS: [M+H]+= 611)In a nitrogen atmosphere, sub 19 (10 g, 23.3 mmol), formula a (5.6 g, 25.6 mmol), sodium tert-butoxide (4.5 g, 46.5 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.5 g of compound 19. (Yield 53%, MS: [M+H]+= 611)
합성예 20Synthesis Example 20
Figure PCTKR2020008315-appb-img-000139
Figure PCTKR2020008315-appb-img-000139
질소 분위기에서 sub 20 (10 g, 21.1mmol), 화학식a (5g, 23.2 mmol), sodium tert-butoxide (4 g, 42.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물20 7.2g 을 얻었다. (수율 52%, MS: [M+H]+= 656)In a nitrogen atmosphere, sub 20 (10 g, 21.1 mmol), formula a (5 g, 23.2 mmol), sodium tert-butoxide (4 g, 42.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.2 g of compound 20. (Yield 52%, MS: [M+H]+= 656)
합성예 21Synthesis Example 21
Figure PCTKR2020008315-appb-img-000140
Figure PCTKR2020008315-appb-img-000140
질소 분위기에서 sub 21 (10 g, 23.8mmol), 화학식d (7g, 26.2 mmol), sodium tert-butoxide (4.6 g, 47.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물21 10.1g 을 얻었다. (수율 65%, MS: [M+H]+= 651)In a nitrogen atmosphere, sub 21 (10 g, 23.8 mmol), formula d (7 g, 26.2 mmol), sodium tert-butoxide (4.6 g, 47.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 10.1 g of compound 21. (Yield 65%, MS: [M+H]+= 651)
합성예 22Synthesis Example 22
Figure PCTKR2020008315-appb-img-000141
Figure PCTKR2020008315-appb-img-000141
질소 분위기에서 sub 22 (10 g, 19.2mmol), 화학식d (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물22 9.4g 을 얻었다. (수율 65%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 22 (10 g, 19.2 mmol), formula d (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.4 g of compound 22. (Yield 65%, MS: [M+H]+= 751)
합성예 23Synthesis Example 23
Figure PCTKR2020008315-appb-img-000142
Figure PCTKR2020008315-appb-img-000142
질소 분위기에서 sub 23 (10 g, 19.2mmol), 화학식d (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물23 9.4g 을 얻었다. (수율 65%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 23 (10 g, 19.2 mmol), formula d (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.4 g of compound 23. (Yield 65%, MS: [M+H]+= 751)
합성예 24Synthesis Example 24
Figure PCTKR2020008315-appb-img-000143
Figure PCTKR2020008315-appb-img-000143
질소 분위기에서 sub 24 (10 g, 19.2mmol), 화학식d (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물24 7.2g 을 얻었다. (수율 50%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 24 (10 g, 19.2 mmol), formula d (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.2 g of compound 24. (Yield 50%, MS: [M+H]+= 751)
합성예 25Synthesis Example 25
Figure PCTKR2020008315-appb-img-000144
Figure PCTKR2020008315-appb-img-000144
질소 분위기에서 sub 25 (10 g, 17.9mmol), 화학식d (5.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물25 7.9g 을 얻었다. (수율 56%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 25 (10 g, 17.9 mmol), formula d (5.3 g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.9 g of compound 25. (Yield 56%, MS: [M+H]+= 791)
합성예 26Synthesis Example 26
Figure PCTKR2020008315-appb-img-000145
Figure PCTKR2020008315-appb-img-000145
질소 분위기에서 sub 26 (10 g, 16.6mmol), 화학식d (4.9g, 18.3 mmol), sodium tert-butoxide (3.2 g, 33.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물26 9.3g 을 얻었다. (수율 67%, MS: [M+H]+= 833)In a nitrogen atmosphere, sub 26 (10 g, 16.6 mmol), formula d (4.9 g, 18.3 mmol), sodium tert-butoxide (3.2 g, 33.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.3 g of compound 26. (Yield 67%, MS: [M+H]+= 833)
합성예 27Synthesis Example 27
Figure PCTKR2020008315-appb-img-000146
Figure PCTKR2020008315-appb-img-000146
질소 분위기에서 sub 27 (10 g, 14.1mmol), 화학식d (4.1g, 15.5 mmol), sodium tert-butoxide (2.7 g, 28.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물27 7.1g 을 얻었다. (수율 54%, MS: [M+H]+= 942)In a nitrogen atmosphere, sub 27 (10 g, 14.1 mmol), formula d (4.1 g, 15.5 mmol), sodium tert-butoxide (2.7 g, 28.1 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.1 g of compound 27. (Yield 54%, MS: [M+H]+= 942)
합성예 28Synthesis Example 28
Figure PCTKR2020008315-appb-img-000147
Figure PCTKR2020008315-appb-img-000147
질소 분위기에서 sub 28 (10 g, 15.7mmol), 화학식d (4.6g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물28 6.8g 을 얻었다. (수율 50%, MS: [M+H]+= 866)In a nitrogen atmosphere, sub 28 (10 g, 15.7 mmol), formula d (4.6 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 6.8 g of compound 28. (Yield 50%, MS: [M+H]+= 866)
합성예 29Synthesis Example 29
Figure PCTKR2020008315-appb-img-000148
Figure PCTKR2020008315-appb-img-000148
질소 분위기에서 sub 29 (10 g, 19.2mmol), 화학식d (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물29 8.7g 을 얻었다. (수율 60%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 29 (10 g, 19.2 mmol), formula d (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.7 g of compound 29. (Yield 60%, MS: [M+H]+= 751)
합성예 30Synthesis Example 30
Figure PCTKR2020008315-appb-img-000149
Figure PCTKR2020008315-appb-img-000149
질소 분위기에서 sub 30 (10 g, 16.8mmol), 화학식d (4.9g, 18.5 mmol), sodium tert-butoxide (3.2 g, 33.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물30 7.3g 을 얻었다. (수율 53%, MS: [M+H]+= 827)In a nitrogen atmosphere, sub 30 (10 g, 16.8 mmol), formula d (4.9 g, 18.5 mmol), sodium tert-butoxide (3.2 g, 33.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.3 g of compound 30. (Yield 53%, MS: [M+H]+= 827)
합성예 31Synthesis Example 31
Figure PCTKR2020008315-appb-img-000150
Figure PCTKR2020008315-appb-img-000150
질소 분위기에서 sub 31 (10 g, 15.7mmol), 화학식d (4.6g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물31 9.4g 을 얻었다. (수율 69%, MS: [M+H]+= 867)In a nitrogen atmosphere, sub 31 (10 g, 15.7 mmol), formula d (4.6 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.4 g of compound 31. (Yield 69%, MS: [M+H]+= 867)
합성예 32Synthesis Example 32
Figure PCTKR2020008315-appb-img-000151
Figure PCTKR2020008315-appb-img-000151
질소 분위기에서 sub 32 (10 g, 21.1mmol), 화학식d (6.2g, 23.2 mmol), sodium tert-butoxide (4 g, 42.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물32 8.7g 을 얻었다. (수율 59%, MS: [M+H]+= 703)In a nitrogen atmosphere, sub 32 (10 g, 21.1 mmol), formula d (6.2 g, 23.2 mmol), sodium tert-butoxide (4 g, 42.1 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.7 g of compound 32. (Yield 59%, MS: [M+H]+= 703)
합성예 33Synthesis Example 33
Figure PCTKR2020008315-appb-img-000152
Figure PCTKR2020008315-appb-img-000152
질소 분위기에서 sub 33 (10 g, 21.3mmol), 화학식c (6.3g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물33 8.9g 을 얻었다. (수율 60%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 33 (10 g, 21.3 mmol), formula c (6.3 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.9 g of compound 33. (Yield 60%, MS: [M+H]+= 701)
합성예 34Synthesis Example 34
Figure PCTKR2020008315-appb-img-000153
Figure PCTKR2020008315-appb-img-000153
질소 분위기에서 sub 34 (10 g, 21.3mmol), 화학식c (6.3g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물34 8.9g 을 얻었다. (수율 60%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 34 (10 g, 21.3 mmol), formula c (6.3 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.9 g of compound 34. (Yield 60%, MS: [M+H]+= 701)
합성예 35Synthesis Example 35
Figure PCTKR2020008315-appb-img-000154
Figure PCTKR2020008315-appb-img-000154
질소 분위기에서 sub 35 (10 g, 21.3mmol), 화학식c (6.3g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물35 8.6g 을 얻었다. (수율 58%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 35 (10 g, 21.3 mmol), formula c (6.3 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.6 g of compound 35. (Yield 58%, MS: [M+H]+= 701)
합성예 36Synthesis Example 36
Figure PCTKR2020008315-appb-img-000155
Figure PCTKR2020008315-appb-img-000155
질소 분위기에서 sub 36 (10 g, 17.5mmol), 화학식c (5.2g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물36 9.3g 을 얻었다. (수율 66%, MS: [M+H]+= 801)In a nitrogen atmosphere, sub 36 (10 g, 17.5 mmol), formula c (5.2 g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) were added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.3 g of compound 36. (Yield 66%, MS: [M+H]+= 801)
합성예 37Synthesis Example 37
Figure PCTKR2020008315-appb-img-000156
Figure PCTKR2020008315-appb-img-000156
질소 분위기에서 sub 37 (10 g, 17.9mmol), 화학식c (5.3g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물37 8.2g 을 얻었다. (수율 58%, MS: [M+H]+= 791)In a nitrogen atmosphere, sub 37 (10 g, 17.9 mmol), formula c (5.3 g, 19.6 mmol), sodium tert-butoxide (3.4 g, 35.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.2 g of compound 37. (Yield 58%, MS: [M+H]+= 791)
합성예 38Synthesis Example 38
Figure PCTKR2020008315-appb-img-000157
Figure PCTKR2020008315-appb-img-000157
질소 분위기에서 sub 38 (10 g, 16.6mmol), 화학식c (4.9g, 18.3 mmol), sodium tert-butoxide (3.2 g, 33.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물38 7.5g 을 얻었다. (수율 54%, MS: [M+H]+= 833)In a nitrogen atmosphere, sub 38 (10 g, 16.6 mmol), formula c (4.9 g, 18.3 mmol), sodium tert-butoxide (3.2 g, 33.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.5 g of compound 38. (Yield 54%, MS: [M+H]+= 833)
합성예 39Synthesis Example 39
Figure PCTKR2020008315-appb-img-000158
Figure PCTKR2020008315-appb-img-000158
질소 분위기에서 sub 39 (10 g, 15.7mmol), 화학식c (4.6g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물39 7.5g 을 얻었다. (수율 55%, MS: [M+H]+= 866)In a nitrogen atmosphere, sub 39 (10 g, 15.7 mmol), formula c (4.6 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.5 g of compound 39. (Yield 55%, MS: [M+H]+= 866)
합성예 40Synthesis Example 40
Figure PCTKR2020008315-appb-img-000159
Figure PCTKR2020008315-appb-img-000159
질소 분위기에서 sub 40 (10 g, 16.8mmol), 화학식c (4.9g, 18.5 mmol), sodium tert-butoxide (3.2 g, 33.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물40 8.6g 을 얻었다. (수율 62%, MS: [M+H]+= 827)In a nitrogen atmosphere, sub 40 (10 g, 16.8 mmol), formula c (4.9 g, 18.5 mmol), sodium tert-butoxide (3.2 g, 33.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.6 g of compound 40. (Yield 62%, MS: [M+H]+= 827)
합성예 41Synthesis Example 41
Figure PCTKR2020008315-appb-img-000160
Figure PCTKR2020008315-appb-img-000160
질소 분위기에서 sub 41 (10 g, 20.2mmol), 화학식c (5.9g, 22.2 mmol), sodium tert-butoxide (3.9 g, 40.3 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물41 8.1g 을 얻었다. (수율 55%, MS: [M+H]+= 727)In a nitrogen atmosphere, sub 41 (10 g, 20.2 mmol), formula c (5.9 g, 22.2 mmol), sodium tert-butoxide (3.9 g, 40.3 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.1 g of compound 41. (Yield 55%, MS: [M+H]+= 727)
합성예 42Synthesis Example 42
Figure PCTKR2020008315-appb-img-000161
Figure PCTKR2020008315-appb-img-000161
질소 분위기에서 sub 42 (10 g, 15.7mmol), 화학식c (4.6g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물42 9.4g 을 얻었다. (수율 69%, MS: [M+H]+= 867)In a nitrogen atmosphere, sub 42 (10 g, 15.7 mmol), formula c (4.6 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.4 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.4 g of compound 42. (Yield 69%, MS: [M+H]+= 867)
합성예 43Synthesis Example 43
Figure PCTKR2020008315-appb-img-000162
Figure PCTKR2020008315-appb-img-000162
질소 분위기에서 sub 43 (10 g, 23.3mmol), 화학식c (6.8g, 25.6 mmol), sodium tert-butoxide (4.5 g, 46.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물43 8.6g 을 얻었다. (수율 56%, MS: [M+H]+= 661)In a nitrogen atmosphere, sub 43 (10 g, 23.3 mmol), formula c (6.8 g, 25.6 mmol), sodium tert-butoxide (4.5 g, 46.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.5 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.6 g of compound 43. (Yield 56%, MS: [M+H]+= 661)
합성예 44Synthesis Example 44
Figure PCTKR2020008315-appb-img-000163
Figure PCTKR2020008315-appb-img-000163
질소 분위기에서 sub 44 (10 g, 17.5mmol), 화학식c (5.1g, 19.2 mmol), sodium tert-butoxide (3.4 g, 35 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물44 9.3g 을 얻었다. (수율 66%, MS: [M+H]+= 803)In a nitrogen atmosphere, sub 44 (10 g, 17.5 mmol), formula c (5.1 g, 19.2 mmol), sodium tert-butoxide (3.4 g, 35 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.3 g of compound 44. (Yield 66%, MS: [M+H]+= 803)
합성예 45Synthesis Example 45
Figure PCTKR2020008315-appb-img-000164
Figure PCTKR2020008315-appb-img-000164
질소 분위기에서 sub 45 (10 g, 21.3mmol), 화학식b (6.3g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물45 8.5g 을 얻었다. (수율 57%, MS: [M+H]+= 701)In a nitrogen atmosphere, sub 45 (10 g, 21.3 mmol), formula b (6.3 g, 23.4 mmol), sodium tert-butoxide (4.1 g, 42.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.5 g of compound 45. (Yield 57%, MS: [M+H]+= 701)
합성예 46Synthesis Example 46
Figure PCTKR2020008315-appb-img-000165
Figure PCTKR2020008315-appb-img-000165
질소 분위기에서 sub 46 (10 g, 18.3mmol), 화학식b (5.4g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물46 7.3g 을 얻었다. (수율 51%, MS: [M+H]+= 777)In a nitrogen atmosphere, sub 46 (10 g, 18.3 mmol), formula b (5.4 g, 20.1 mmol), sodium tert-butoxide (3.5 g, 36.6 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.3 g of compound 46. (Yield 51%, MS: [M+H]+= 777)
합성예 47Synthesis Example 47
Figure PCTKR2020008315-appb-img-000166
Figure PCTKR2020008315-appb-img-000166
질소 분위기에서 sub 47 (10 g, 19.2mmol), 화학식b (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물47 8.2g 을 얻었다. (수율 57%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 47 (10 g, 19.2 mmol), formula b (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.2 g of compound 47. (Yield 57%, MS: [M+H]+= 751)
합성예 48Synthesis Example 48
Figure PCTKR2020008315-appb-img-000167
Figure PCTKR2020008315-appb-img-000167
질소 분위기에서 sub 48 (10 g, 19.2mmol), 화학식b (5.7g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물48 7.6g 을 얻었다. (수율 53%, MS: [M+H]+= 751)In a nitrogen atmosphere, sub 48 (10 g, 19.2 mmol), formula b (5.7 g, 21.2 mmol), sodium tert-butoxide (3.7 g, 38.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.6 g of compound 48. (Yield 53%, MS: [M+H]+= 751)
합성예 49Synthesis Example 49
Figure PCTKR2020008315-appb-img-000168
Figure PCTKR2020008315-appb-img-000168
질소 분위기에서 sub 49 (10 g, 17.4mmol), 화학식b (5.1g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물49 9.1g 을 얻었다. (수율 65%, MS: [M+H]+= 807)In a nitrogen atmosphere, sub 49 (10 g, 17.4 mmol), formula b (5.1 g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.1 g of compound 49. (Yield 65%, MS: [M+H]+= 807)
합성예 50Synthesis Example 50
Figure PCTKR2020008315-appb-img-000169
Figure PCTKR2020008315-appb-img-000169
질소 분위기에서 sub 50 (10 g, 17.4mmol), 화학식b (5.1g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물50 8.4g 을 얻었다. (수율 60%, MS: [M+H]+= 807)In a nitrogen atmosphere, sub 50 (10 g, 17.4 mmol), formula b (5.1 g, 19.1 mmol), sodium tert-butoxide (3.3 g, 34.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 8.4 g of compound 50. (Yield 60%, MS: [M+H]+= 807)
합성예 51Synthesis Example 51
Figure PCTKR2020008315-appb-img-000170
Figure PCTKR2020008315-appb-img-000170
질소 분위기에서 sub 51 (10 g, 15.7mmol), 화학식b (4.6g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물51 7.8g 을 얻었다. (수율 57%, MS: [M+H]+= 866)In a nitrogen atmosphere, sub 51 (10 g, 15.7 mmol), formula b (4.6 g, 17.3 mmol), sodium tert-butoxide (3 g, 31.5 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.8 g of compound 51. (Yield 57%, MS: [M+H]+= 866)
합성예 52Synthesis Example 52
Figure PCTKR2020008315-appb-img-000171
Figure PCTKR2020008315-appb-img-000171
질소 분위기에서 sub 52 (10 g, 17.5mmol), 화학식b (5.2g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물52 9.5g 을 얻었다. (수율 68%, MS: [M+H]+= 801)In a nitrogen atmosphere, sub 52 (10 g, 17.5 mmol), formula b (5.2 g, 19.3 mmol), sodium tert-butoxide (3.4 g, 35.1 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 9.5 g of compound 52. (Yield 68%, MS: [M+H]+= 801)
합성예 53Synthesis Example 53
Figure PCTKR2020008315-appb-img-000172
Figure PCTKR2020008315-appb-img-000172
질소 분위기에서 sub 53 (10 g, 15.5mmol), 화학식b (4.6g, 17 mmol), sodium tert-butoxide (3 g, 31 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물53 7.6g 을 얻었다. (수율 56%, MS: [M+H]+= 877)In a nitrogen atmosphere, sub 53 (10 g, 15.5 mmol), formula b (4.6 g, 17 mmol), sodium tert-butoxide (3 g, 31 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.6 g of compound 53. (Yield 56%, MS: [M+H]+= 877)
합성예 54Synthesis Example 54
Figure PCTKR2020008315-appb-img-000173
Figure PCTKR2020008315-appb-img-000173
질소 분위기에서 sub 54 (10 g, 17.1mmol), 화학식b (5g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.1 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물54 7.9g 을 얻었다. (수율 57%, MS: [M+H]+= 817)In a nitrogen atmosphere, sub 54 (10 g, 17.1 mmol), formula b (5 g, 18.8 mmol), sodium tert-butoxide (3.3 g, 34.1 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.9 g of compound 54. (Yield 57%, MS: [M+H]+= 817)
합성예 55Synthesis Example 55
Figure PCTKR2020008315-appb-img-000174
Figure PCTKR2020008315-appb-img-000174
질소 분위기에서 sub 55 (10 g, 15.3mmol), 화학식b (4.5g, 16.9 mmol), sodium tert-butoxide (2.9 g, 30.7 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 3시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물55 7.4g 을 얻었다. (수율 55%, MS: [M+H]+= 883)In a nitrogen atmosphere, sub 55 (10 g, 15.3 mmol), formula b (4.5 g, 16.9 mmol), sodium tert-butoxide (2.9 g, 30.7 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 3 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.4 g of compound 55. (Yield 55%, MS: [M+H]+= 883)
합성예 56Synthesis Example 56
Figure PCTKR2020008315-appb-img-000175
Figure PCTKR2020008315-appb-img-000175
질소 분위기에서 sub 56 (10 g, 15.1mmol), 화학식b (4.4g, 16.6 mmol), sodium tert-butoxide (2.9 g, 30.2 mmol) 을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol)을 투입했다. 2시간 후 반응이 종결 되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물56 7.1g 을 얻었다. (수율 53%, MS: [M+H]+= 892)In a nitrogen atmosphere, sub 56 (10 g, 15.1 mmol), formula b (4.4 g, 16.6 mmol), sodium tert-butoxide (2.9 g, 30.2 mmol) was added to 200 ml of Xylene, and stirred and refluxed. After this, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After 2 hours, the reaction was terminated, cooled to room temperature, and reduced pressure to remove the solvent. Thereafter, the compound was completely dissolved in chloroform again, washed twice with water, and the organic layer was separated, treated with anhydrous magnesium sulfate, filtered, and the filtrate was distilled under reduced pressure. The concentrated compound was purified by silica gel column chromatography to obtain 7.1 g of compound 56. (Yield 53%, MS: [M+H]+= 892)
비교예 1Comparative Example 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,000Å was placed in distilled water dissolved in a detergent and washed with ultrasonic waves. At this time, a product made by Fischer Co. was used as a detergent, and distilled water secondarily filtered with a filter manufactured by Millipore Co. was used as distilled water. After washing the ITO for 30 minutes, it was repeated twice with distilled water to perform ultrasonic cleaning for 10 minutes. After washing with distilled water, ultrasonic cleaning was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner. In addition, after cleaning the substrate for 5 minutes using oxygen plasma, the substrate was transported to a vacuum evaporator.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-도핑(p-doping)했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å 의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자저지층을 형성했다. 이어서, 상기 EB-1 증착막 위에 하기 RH-1 화합물과 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다. The HI-1 compound was formed as a hole injection layer on the prepared ITO transparent electrode to a thickness of 1150 Å, but the compound A-1 was p-doped at a concentration of 1.5%. The following HT-1 compound was vacuum deposited on the hole injection layer to form a hole transport layer having a thickness of 800 Å. Subsequently, an electron blocking layer was formed by vacuum vapor deposition of the following EB-1 compound having a thickness of 150 Å on the hole transport layer. Subsequently, the following RH-1 compound and the following Dp-7 compound were vacuum-deposited at a weight ratio of 98:2 on the EB-1 vapor deposition film to form a red light emitting layer having a thickness of 400 Å. A hole blocking layer was formed by vacuum vapor deposition of the following HB-1 compound having a thickness of 30 Å on the emission layer. Subsequently, the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 on the hole blocking layer to form an electron injection and transport layer with a thickness of 300 Å. Lithium fluoride (LiF) at a thickness of 12 Å and aluminum at a thickness of 1,000 Å were sequentially deposited on the electron injection and transport layer to form a negative electrode.
Figure PCTKR2020008315-appb-img-000176
Figure PCTKR2020008315-appb-img-000176
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2X10 -7 ~ 5X10 -6 torr를 유지하여, 유기 발광 소자를 제작했다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7Å/sec, the deposition rate of lithium fluoride at the cathode was 0.3Å/sec, and the deposition rate of aluminum was 2Å/sec, and the vacuum degree during deposition was 2X10 -7 ~ Maintaining 5X10 -6 torr, an organic light emitting device was produced.
Figure PCTKR2020008315-appb-img-000177
Figure PCTKR2020008315-appb-img-000177
실시예 1 내지 실시예 56Examples 1 to 56
비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 below was used instead of RH-1 in the organic light-emitting device of Comparative Example 1.
비교예 1 내지 비교예 9Comparative Examples 1 to 9
비교예 1의 유기 발광 소자에서 RH-1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조했다. An organic light-emitting device was manufactured in the same manner as in Comparative Example 1, except that the compound shown in Table 1 below was used instead of RH-1 in the organic light-emitting device of Comparative Example 1.
상기 실시예 1 내지 실시예 56 및 비교예 1 내지 비교예 9에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 수명을 측정(6000 nit 기준)하고 그 결과를 하기 표 1에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다. When a current was applied to the organic light-emitting devices prepared in Examples 1 to 56 and Comparative Examples 1 to 9, voltage, efficiency, and lifetime were measured (based on 6000 nit), and the results are shown in Table 1 below. . Life T95 refers to the time it takes for the luminance to decrease from the initial luminance (6000 nit) to 95%.
구분division 물질matter 구동전압(V)Driving voltage (V) 효율(cd/A)Efficiency (cd/A) 수명 T95(hr)Life T95(hr) 발광색Luminous color
비교예 1Comparative Example 1 RH-1RH-1 4.324.32 37.637.6 187187 적색Red
비교예 2Comparative Example 2 AA 4.554.55 33.333.3 125125 적색Red
비교예 3Comparative Example 3 BB 3.953.95 36.136.1 121121 적색Red
비교예 4Comparative Example 4 CC 4.634.63 32.432.4 9090 적색Red
비교예 5Comparative Example 5 DD 4.444.44 29.829.8 8888 적색Red
비교예 6Comparative Example 6 EE 5.005.00 31.031.0 9191 적색Red
비교예 7Comparative Example 7 FF 4.134.13 38.238.2 130130 적색Red
비교예 8Comparative Example 8 GG 4.994.99 32.032.0 111111 적색Red
비교예 9Comparative Example 9 HH 4.634.63 29.429.4 107107 적색Red
실시예 1Example 1 화합물 1Compound 1 2.52.5 48.348.3 331331 적색Red
실시예 2Example 2 화합물 2Compound 2 2.72.7 45.545.5 333333 적색Red
실시예 3Example 3 화합물 3Compound 3 2.952.95 47.147.1 280280 적색Red
실시예 4Example 4 화합물 4Compound 4 3.013.01 49.149.1 300300 적색Red
실시예 5Example 5 화합물 5Compound 5 3.323.32 46.546.5 288288 적색Red
실시예 6Example 6 화합물 6Compound 6 3.413.41 44.444.4 318318 적색Red
실시예 7Example 7 화합물 7Compound 7 3.433.43 43.543.5 279279 적색Red
실시예 8Example 8 화합물 8Compound 8 3.343.34 45.145.1 289289 적색Red
실시예 9Example 9 화합물 9Compound 9 3.283.28 43.743.7 311311 적색Red
실시예 10Example 10 화합물 10Compound 10 3.383.38 47.347.3 315315 적색Red
실시예 11Example 11 화합물 11Compound 11 3.353.35 49.349.3 302302 적색Red
실시예 12Example 12 화합물 12Compound 12 3.463.46 48.148.1 340340 적색Red
실시예 13Example 13 화합물 13Compound 13 3.453.45 49.149.1 324324 적색Red
실시예 14Example 14 화합물 14Compound 14 3.293.29 47.347.3 318318 적색Red
실시예 15Example 15 화합물 15Compound 15 3.753.75 44.644.6 324324 적색Red
실시예 16Example 16 화합물 16Compound 16 3.563.56 47.947.9 329329 적색Red
실시예 17Example 17 화합물 17Compound 17 3.613.61 43.143.1 308308 적색Red
실시예 18Example 18 화합물 18Compound 18 3.583.58 42.242.2 298298 적색Red
실시예 19Example 19 화합물 19Compound 19 2.992.99 50.650.6 350350 적색Red
실시예 20Example 20 화합물 20Compound 20 3.003.00 48.848.8 348348 적색Red
실시예 21Example 21 화합물 21Compound 21 3.263.26 47.647.6 303303 적색Red
실시예 22Example 22 화합물 22Compound 22 3.553.55 48.148.1 307307 적색Red
실시예 23Example 23 화합물 23Compound 23 3.523.52 49.249.2 318318 적색Red
실시예 24Example 24 화합물 24Compound 24 3.403.40 48.548.5 333333 적색Red
실시예 25Example 25 화합물 25Compound 25 3.433.43 45.345.3 326326 적색Red
실시예 26Example 26 화합물 26Compound 26 3.683.68 42.742.7 301301 적색Red
실시예 27Example 27 화합물 27Compound 27 3.533.53 44.444.4 336336 적색Red
실시예 28Example 28 화합물 28Compound 28 3.673.67 49.049.0 311311 적색Red
실시예 29Example 29 화합물 29Compound 29 3.333.33 48.048.0 363363 적색Red
실시예 30Example 30 화합물 30Compound 30 3.633.63 45.845.8 350350 적색Red
실시예 31Example 31 화합물 31Compound 31 3.593.59 48.848.8 321321 적색Red
실시예 32Example 32 화합물 32Compound 32 3.003.00 49.649.6 348348 적색Red
실시예 33Example 33 화합물 33Compound 33 3.253.25 48.948.9 338338 적색Red
실시예 34Example 34 화합물 34Compound 34 3.233.23 49.149.1 336336 적색Red
실시예 35Example 35 화합물 35Compound 35 3.213.21 49.349.3 321321 적색Red
실시예 36Example 36 화합물 36Compound 36 3.433.43 47.647.6 318318 적색Red
실시예 37Example 37 화합물 37Compound 37 3.383.38 45.545.5 301301 적색Red
실시예 38Example 38 화합물 38Compound 38 3.543.54 47.047.0 288288 적색Red
실시예 39Example 39 화합물 39Compound 39 3.353.35 47.247.2 295295 적색Red
실시예 40Example 40 화합물 40Compound 40 3.423.42 46.646.6 311311 적색Red
실시예 41Example 41 화합물 41Compound 41 3.443.44 47.047.0 310310 적색Red
실시예 42Example 42 화합물 42Compound 42 3.583.58 47.947.9 320320 적색Red
실시예 43Example 43 화합물 43Compound 43 3.033.03 49.149.1 344344 적색Red
실시예 44Example 44 화합물 44Compound 44 3.553.55 43.643.6 300300 적색Red
실시예 45Example 45 화합물 45Compound 45 3.333.33 49.549.5 330330 적색Red
실시예 46Example 46 화합물 46Compound 46 3.413.41 48.648.6 309309 적색Red
실시예 47Example 47 화합물 47Compound 47 3.283.28 49.749.7 327327 적색Red
실시예 48Example 48 화합물 48Compound 48 3.333.33 48.448.4 331331 적색Red
실시예 49Example 49 화합물 49Compound 49 3.613.61 47.147.1 312312 적색Red
실시예 50Example 50 화합물 50Compound 50 3.583.58 46.246.2 319319 적색Red
실시예 51Example 51 화합물 51Compound 51 3.483.48 47.747.7 335335 적색Red
실시예 52Example 52 화합물 52Compound 52 3.343.34 49.549.5 310310 적색Red
실시예 53Example 53 화합물 53Compound 53 3.373.37 46.846.8 296296 적색Red
실시예 54Example 54 화합물 54Compound 54 3.413.41 47.647.6 289289 적색Red
실시예 55Example 55 화합물 55Compound 55 3.533.53 45.145.1 287287 적색Red
실시예 56Example 56 화합물 56Compound 56 3.393.39 47.847.8 313313 적색Red
상기 표 1로부터, 상기 화학식 1로 표시되는 화합물은, 5H-벤조[b]카바졸(5H-benzo[b]carbazole) 또는 그 유도체, 피리미딘 또는 트리아진 계열의 치환기, 및 적어도 하나의 아릴(Ar 3)로 치환된 연결기(L) 중 어느 하나가 결여된 구조; 또는 어느 하나가 다른 치환기로 대체된 구조 등에 대비하여, 유기 발광 소자의 발광층의 재료로 사용되어 저전압, 고효율, 색 재현성, 수명 특성 등을 향상시킬 수 있음을 알 수 있다. From Table 1, the compound represented by Formula 1 is 5H-benzo[b]carbazole or a derivative thereof, a pyrimidine or triazine-based substituent, and at least one aryl ( Ar 3 ) A structure lacking any one of the linking groups (L) substituted with; Alternatively, it can be seen that, in contrast to a structure in which any one has been replaced with another substituent, it is used as a material of the light emitting layer of an organic light emitting device, thereby improving low voltage, high efficiency, color reproducibility, and life characteristics.
[부호의 설명][Explanation of code]
1: 기판 2: 양극1: substrate 2: anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 발광층 8: 전자수송층7: light emitting layer 8: electron transport layer

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:Compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2020008315-appb-img-000178
    Figure PCTKR2020008315-appb-img-000178
    상기 화학식 1에서, In Formula 1,
    X는 각각 독립적으로, N 또는 CH이고, 단 X 중 적어도 두 개는 N이고, Each X is independently N or CH, provided that at least two of X are N,
    L은 3가 이상의 C 6-10 방향족 고리이고, L is a trivalent or higher C 6-10 aromatic ring,
    Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고, Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl including any one or more selected from the group consisting of N, O and S,
    Ar 3은 치환 또는 비치환된 C 6-60 아릴이고, Ar 3 is substituted or unsubstituted C 6-60 aryl,
    R은 모두 수소이거나, 또는 인접한 두 개의 R이 결합하여 벤젠고리를 형성하고,R is all hydrogen, or two adjacent R are combined to form a benzene ring,
    n은 1≤n≤10의 정수이다. n is an integer of 1≤n≤10.
  2. 제1항에 있어서, The method of claim 1,
    상기 화학식 1은 하기 화학식 1-1, 1-2, 1-3, 또는 1-4로 표시되는,Formula 1 is represented by the following Formula 1-1, 1-2, 1-3, or 1-4,
    화합물:compound:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2020008315-appb-img-000179
    Figure PCTKR2020008315-appb-img-000179
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2020008315-appb-img-000180
    Figure PCTKR2020008315-appb-img-000180
    [화학식 1-3][Formula 1-3]
    Figure PCTKR2020008315-appb-img-000181
    Figure PCTKR2020008315-appb-img-000181
    [화학식 1-4][Formula 1-4]
    Figure PCTKR2020008315-appb-img-000182
    Figure PCTKR2020008315-appb-img-000182
    상기 화학식 1-1 내지 1-4에서, In Formulas 1-1 to 1-4,
    X, L, Ar 1, Ar 2, Ar 3, 및 n은 제1항에서 정의한 바와 같다. X, L, Ar 1 , Ar 2, Ar 3 , and n are as defined in claim 1.
  3. 제1항에 있어서, The method of claim 1,
    X는 모두 N인, X is all N,
    화합물.compound.
  4. 제1항에 있어서, The method of claim 1,
    L은 3가 내지 6가의 페닐 또는 나프틸인, L is trivalent to hexavalent phenyl or naphthyl,
    화합물.compound.
  5. 제1항에 있어서,The method of claim 1,
    n은 1≤n≤4의 정수인,n is an integer of 1≤n≤4,
    화합물.compound.
  6. 제1항에 있어서, The method of claim 1,
    Ar 1 및 Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 나프틸, 나프틸페닐,디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이고,Ar 1 and Ar 2 are each independently phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H-carbazolyl ,
    상기 Ar 1 및 Ar 2는 각각 독립적으로, 비치환되거나, 하나 이상의 중수소로 치환된 것인,The Ar 1 and Ar 2 are each independently, unsubstituted or substituted with one or more deuterium,
    화합물.compound.
  7. 제1항에 있어서, The method of claim 1,
    Ar 1 및 Ar 2는 각각 독립적으로, 비치환된 페닐, 비페닐릴, 나프틸, 나프틸페닐,디벤조퓨라닐, 디벤조티오페닐, 카바졸-9-일, 또는 9-페닐-9H-카바졸릴이거나; 5개의 중수소로 치환된 페닐 또는 비페닐릴인 것인, Ar 1 and Ar 2 are each independently unsubstituted phenyl, biphenylyl, naphthyl, naphthylphenyl, dibenzofuranyl, dibenzothiophenyl, carbazol-9-yl, or 9-phenyl-9H- Is carbazolyl; Phenyl or biphenylyl substituted with 5 deuterium
    화합물.compound.
  8. 제6항에 있어서, The method of claim 6,
    Ar 1 및 Ar 2 중 적어도 하나는 페닐인, At least one of Ar 1 and Ar 2 is phenyl,
    화합물.compound.
  9. 제1항에 있어서, The method of claim 1,
    Ar 3은 페닐, 비페닐릴, 또는 나프틸이고, Ar 3 is phenyl, biphenylyl, or naphthyl,
    상기 Ar 3은 비치환되거나, 하나 이상의 중수소로 치환된 것인, Ar 3 is unsubstituted or substituted with one or more deuterium,
    화합물.compound.
  10. 제1항에 있어서, The method of claim 1,
    Ar 3은 비치환된 페닐, 비페닐릴, 또는 나프틸이거나; 5개의 중수소로 치환된 페닐인 것인,Ar 3 is unsubstituted phenyl, biphenylyl, or naphthyl; Which is phenyl substituted with 5 deuterium,
    화합물.compound.
  11. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인, The compound represented by Formula 1 is any one selected from the group consisting of,
    화합물:compound:
    Figure PCTKR2020008315-appb-img-000183
    Figure PCTKR2020008315-appb-img-000183
    Figure PCTKR2020008315-appb-img-000184
    Figure PCTKR2020008315-appb-img-000184
    Figure PCTKR2020008315-appb-img-000185
    Figure PCTKR2020008315-appb-img-000185
    Figure PCTKR2020008315-appb-img-000186
    Figure PCTKR2020008315-appb-img-000186
    Figure PCTKR2020008315-appb-img-000187
    Figure PCTKR2020008315-appb-img-000187
    Figure PCTKR2020008315-appb-img-000188
    Figure PCTKR2020008315-appb-img-000188
    Figure PCTKR2020008315-appb-img-000189
    Figure PCTKR2020008315-appb-img-000189
    Figure PCTKR2020008315-appb-img-000190
    Figure PCTKR2020008315-appb-img-000190
    Figure PCTKR2020008315-appb-img-000191
    Figure PCTKR2020008315-appb-img-000191
    Figure PCTKR2020008315-appb-img-000192
    Figure PCTKR2020008315-appb-img-000192
    Figure PCTKR2020008315-appb-img-000193
    Figure PCTKR2020008315-appb-img-000193
    Figure PCTKR2020008315-appb-img-000194
    Figure PCTKR2020008315-appb-img-000194
    Figure PCTKR2020008315-appb-img-000195
    Figure PCTKR2020008315-appb-img-000195
    Figure PCTKR2020008315-appb-img-000196
    Figure PCTKR2020008315-appb-img-000196
    Figure PCTKR2020008315-appb-img-000197
    Figure PCTKR2020008315-appb-img-000197
    Figure PCTKR2020008315-appb-img-000198
    Figure PCTKR2020008315-appb-img-000198
    Figure PCTKR2020008315-appb-img-000199
    Figure PCTKR2020008315-appb-img-000199
    Figure PCTKR2020008315-appb-img-000200
    Figure PCTKR2020008315-appb-img-000200
    Figure PCTKR2020008315-appb-img-000201
    Figure PCTKR2020008315-appb-img-000201
    Figure PCTKR2020008315-appb-img-000202
    Figure PCTKR2020008315-appb-img-000202
    Figure PCTKR2020008315-appb-img-000203
    Figure PCTKR2020008315-appb-img-000203
    Figure PCTKR2020008315-appb-img-000204
    Figure PCTKR2020008315-appb-img-000204
    Figure PCTKR2020008315-appb-img-000205
    Figure PCTKR2020008315-appb-img-000205
    Figure PCTKR2020008315-appb-img-000206
    Figure PCTKR2020008315-appb-img-000206
    Figure PCTKR2020008315-appb-img-000207
    Figure PCTKR2020008315-appb-img-000207
    Figure PCTKR2020008315-appb-img-000208
    Figure PCTKR2020008315-appb-img-000208
    Figure PCTKR2020008315-appb-img-000209
    Figure PCTKR2020008315-appb-img-000209
    Figure PCTKR2020008315-appb-img-000210
    Figure PCTKR2020008315-appb-img-000210
    Figure PCTKR2020008315-appb-img-000211
    Figure PCTKR2020008315-appb-img-000211
    Figure PCTKR2020008315-appb-img-000212
    Figure PCTKR2020008315-appb-img-000212
    Figure PCTKR2020008315-appb-img-000213
    Figure PCTKR2020008315-appb-img-000213
    Figure PCTKR2020008315-appb-img-000214
    Figure PCTKR2020008315-appb-img-000214
    Figure PCTKR2020008315-appb-img-000215
    Figure PCTKR2020008315-appb-img-000215
    Figure PCTKR2020008315-appb-img-000216
    Figure PCTKR2020008315-appb-img-000216
    Figure PCTKR2020008315-appb-img-000217
    Figure PCTKR2020008315-appb-img-000217
    Figure PCTKR2020008315-appb-img-000218
    Figure PCTKR2020008315-appb-img-000218
    Figure PCTKR2020008315-appb-img-000219
    Figure PCTKR2020008315-appb-img-000219
    Figure PCTKR2020008315-appb-img-000220
    Figure PCTKR2020008315-appb-img-000220
    Figure PCTKR2020008315-appb-img-000221
    Figure PCTKR2020008315-appb-img-000221
    Figure PCTKR2020008315-appb-img-000222
    Figure PCTKR2020008315-appb-img-000222
    Figure PCTKR2020008315-appb-img-000223
    Figure PCTKR2020008315-appb-img-000223
    Figure PCTKR2020008315-appb-img-000224
    Figure PCTKR2020008315-appb-img-000224
    Figure PCTKR2020008315-appb-img-000225
    Figure PCTKR2020008315-appb-img-000225
    Figure PCTKR2020008315-appb-img-000226
    Figure PCTKR2020008315-appb-img-000226
    Figure PCTKR2020008315-appb-img-000227
    Figure PCTKR2020008315-appb-img-000227
    Figure PCTKR2020008315-appb-img-000228
    Figure PCTKR2020008315-appb-img-000228
    Figure PCTKR2020008315-appb-img-000229
    Figure PCTKR2020008315-appb-img-000229
    Figure PCTKR2020008315-appb-img-000230
    Figure PCTKR2020008315-appb-img-000230
    Figure PCTKR2020008315-appb-img-000231
    Figure PCTKR2020008315-appb-img-000231
    Figure PCTKR2020008315-appb-img-000232
    Figure PCTKR2020008315-appb-img-000232
    Figure PCTKR2020008315-appb-img-000233
    Figure PCTKR2020008315-appb-img-000233
    Figure PCTKR2020008315-appb-img-000234
    Figure PCTKR2020008315-appb-img-000234
    Figure PCTKR2020008315-appb-img-000235
    Figure PCTKR2020008315-appb-img-000235
    Figure PCTKR2020008315-appb-img-000236
    Figure PCTKR2020008315-appb-img-000236
    Figure PCTKR2020008315-appb-img-000237
    Figure PCTKR2020008315-appb-img-000237
    Figure PCTKR2020008315-appb-img-000238
    Figure PCTKR2020008315-appb-img-000238
    Figure PCTKR2020008315-appb-img-000239
    Figure PCTKR2020008315-appb-img-000239
    Figure PCTKR2020008315-appb-img-000240
    Figure PCTKR2020008315-appb-img-000240
    Figure PCTKR2020008315-appb-img-000241
    Figure PCTKR2020008315-appb-img-000241
    Figure PCTKR2020008315-appb-img-000242
    Figure PCTKR2020008315-appb-img-000242
    Figure PCTKR2020008315-appb-img-000243
    Figure PCTKR2020008315-appb-img-000243
    Figure PCTKR2020008315-appb-img-000244
    Figure PCTKR2020008315-appb-img-000244
    Figure PCTKR2020008315-appb-img-000245
    Figure PCTKR2020008315-appb-img-000245
    Figure PCTKR2020008315-appb-img-000246
    Figure PCTKR2020008315-appb-img-000246
    Figure PCTKR2020008315-appb-img-000247
    Figure PCTKR2020008315-appb-img-000247
    Figure PCTKR2020008315-appb-img-000248
    Figure PCTKR2020008315-appb-img-000248
    Figure PCTKR2020008315-appb-img-000249
    Figure PCTKR2020008315-appb-img-000249
    Figure PCTKR2020008315-appb-img-000250
    Figure PCTKR2020008315-appb-img-000250
    Figure PCTKR2020008315-appb-img-000251
    Figure PCTKR2020008315-appb-img-000251
    Figure PCTKR2020008315-appb-img-000252
    Figure PCTKR2020008315-appb-img-000252
    Figure PCTKR2020008315-appb-img-000253
    Figure PCTKR2020008315-appb-img-000253
    Figure PCTKR2020008315-appb-img-000254
    Figure PCTKR2020008315-appb-img-000254
    Figure PCTKR2020008315-appb-img-000255
    Figure PCTKR2020008315-appb-img-000255
    Figure PCTKR2020008315-appb-img-000256
    Figure PCTKR2020008315-appb-img-000256
    Figure PCTKR2020008315-appb-img-000257
    Figure PCTKR2020008315-appb-img-000257
    Figure PCTKR2020008315-appb-img-000258
    Figure PCTKR2020008315-appb-img-000258
    Figure PCTKR2020008315-appb-img-000259
    Figure PCTKR2020008315-appb-img-000259
    Figure PCTKR2020008315-appb-img-000260
    Figure PCTKR2020008315-appb-img-000260
    Figure PCTKR2020008315-appb-img-000261
    Figure PCTKR2020008315-appb-img-000261
    Figure PCTKR2020008315-appb-img-000262
    Figure PCTKR2020008315-appb-img-000262
    Figure PCTKR2020008315-appb-img-000263
    Figure PCTKR2020008315-appb-img-000263
    Figure PCTKR2020008315-appb-img-000264
    Figure PCTKR2020008315-appb-img-000264
    Figure PCTKR2020008315-appb-img-000265
    Figure PCTKR2020008315-appb-img-000265
    Figure PCTKR2020008315-appb-img-000266
    Figure PCTKR2020008315-appb-img-000266
    Figure PCTKR2020008315-appb-img-000267
    Figure PCTKR2020008315-appb-img-000267
    Figure PCTKR2020008315-appb-img-000268
    Figure PCTKR2020008315-appb-img-000268
    Figure PCTKR2020008315-appb-img-000269
    Figure PCTKR2020008315-appb-img-000269
    Figure PCTKR2020008315-appb-img-000270
    Figure PCTKR2020008315-appb-img-000270
    Figure PCTKR2020008315-appb-img-000271
    Figure PCTKR2020008315-appb-img-000271
    Figure PCTKR2020008315-appb-img-000272
    Figure PCTKR2020008315-appb-img-000272
    Figure PCTKR2020008315-appb-img-000273
    Figure PCTKR2020008315-appb-img-000273
    Figure PCTKR2020008315-appb-img-000274
    Figure PCTKR2020008315-appb-img-000274
    Figure PCTKR2020008315-appb-img-000275
    Figure PCTKR2020008315-appb-img-000275
    Figure PCTKR2020008315-appb-img-000276
    Figure PCTKR2020008315-appb-img-000276
    Figure PCTKR2020008315-appb-img-000277
    Figure PCTKR2020008315-appb-img-000277
    Figure PCTKR2020008315-appb-img-000278
    Figure PCTKR2020008315-appb-img-000278
    Figure PCTKR2020008315-appb-img-000279
    Figure PCTKR2020008315-appb-img-000279
    Figure PCTKR2020008315-appb-img-000280
    Figure PCTKR2020008315-appb-img-000280
    Figure PCTKR2020008315-appb-img-000281
    Figure PCTKR2020008315-appb-img-000281
    Figure PCTKR2020008315-appb-img-000282
    Figure PCTKR2020008315-appb-img-000282
    Figure PCTKR2020008315-appb-img-000283
    Figure PCTKR2020008315-appb-img-000283
    Figure PCTKR2020008315-appb-img-000284
    Figure PCTKR2020008315-appb-img-000284
    Figure PCTKR2020008315-appb-img-000285
    Figure PCTKR2020008315-appb-img-000285
    Figure PCTKR2020008315-appb-img-000286
    Figure PCTKR2020008315-appb-img-000286
    Figure PCTKR2020008315-appb-img-000287
    Figure PCTKR2020008315-appb-img-000287
    Figure PCTKR2020008315-appb-img-000288
    Figure PCTKR2020008315-appb-img-000288
    Figure PCTKR2020008315-appb-img-000289
    .
    Figure PCTKR2020008315-appb-img-000289
    .
  12. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제11항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers contains the compound according to any one of claims 1 to 11 That is, an organic light-emitting device.
PCT/KR2020/008315 2019-06-28 2020-06-26 Novel compound and organic light emitting device using same WO2020263000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005461.1A CN112805276B (en) 2019-06-28 2020-06-26 Novel compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190078375 2019-06-28
KR10-2019-0078375 2019-06-28
KR1020200077220A KR102415264B1 (en) 2019-06-28 2020-06-24 Novel compound and organic light emitting device comprising the same
KR10-2020-0077220 2020-06-24

Publications (1)

Publication Number Publication Date
WO2020263000A1 true WO2020263000A1 (en) 2020-12-30

Family

ID=74061044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008315 WO2020263000A1 (en) 2019-06-28 2020-06-26 Novel compound and organic light emitting device using same

Country Status (1)

Country Link
WO (1) WO2020263000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029581A1 (en) * 2022-08-03 2024-02-08 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119291A (en) * 2016-04-18 2017-10-26 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
KR20170122023A (en) * 2016-04-26 2017-11-03 덕산네오룩스 주식회사 Delayed-fluorescence material, organic electric element comprising the same and electronic device thereof
KR20180066818A (en) * 2016-12-09 2018-06-19 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same
WO2019073077A1 (en) * 2017-10-13 2019-04-18 Cynora Gmbh Organic molecules for use in optoelectronic devices
KR20190047631A (en) * 2017-10-27 2019-05-08 주식회사 엘지화학 Organic light emitting device comprising hetero-cyclic compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119291A (en) * 2016-04-18 2017-10-26 롬엔드하스전자재료코리아유한회사 A plurality of host materials and organic electroluminescent device comprising the same
KR20170122023A (en) * 2016-04-26 2017-11-03 덕산네오룩스 주식회사 Delayed-fluorescence material, organic electric element comprising the same and electronic device thereof
KR20180066818A (en) * 2016-12-09 2018-06-19 롬엔드하스전자재료코리아유한회사 Organic Electroluminescent Compound and Organic Electroluminescent Device Comprising the Same
WO2019073077A1 (en) * 2017-10-13 2019-04-18 Cynora Gmbh Organic molecules for use in optoelectronic devices
KR20190047631A (en) * 2017-10-27 2019-05-08 주식회사 엘지화학 Organic light emitting device comprising hetero-cyclic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029581A1 (en) * 2022-08-03 2024-02-08 出光興産株式会社 Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device

Similar Documents

Publication Publication Date Title
WO2020153713A1 (en) Compound and organic light-emitting element comprising same
WO2021096228A1 (en) Organic light emitting device
WO2021029616A1 (en) Organic light-emitting device
WO2021210911A1 (en) Novel compound and organic light-emitting element comprising same
WO2021221475A1 (en) Organic light-emitting device
WO2020141949A1 (en) Novel compound and organic light emitting device using same
WO2022039520A1 (en) Novel compound and organic light-emitting device comprising same
WO2020159333A1 (en) Compound and organic light emitting device comprising same
WO2020159334A1 (en) Compound and organic light-emitting element comprising same
WO2021261977A1 (en) Organic light-emitting device
WO2021096331A1 (en) Organic light-emitting diode
WO2020222569A1 (en) Organic light-emitting device
WO2020159337A1 (en) Compound and organic light emitting device comprising same
WO2022231389A1 (en) Organic light emitting device
WO2022086171A1 (en) Organic light-emitting device
WO2020263000A1 (en) Novel compound and organic light emitting device using same
WO2021210910A1 (en) Novel compound and organic light emitting device using same
WO2021261962A1 (en) Organic light-emitting device
WO2022086296A1 (en) Organic light-emitting device
WO2021230715A1 (en) Organic light-emitting element
WO2020159336A1 (en) Compound and organic light-emitting device including same
WO2020159335A1 (en) Compound and organic light emitting diode comprising same
WO2020159332A1 (en) Compound and organic light emitting device comprising same
WO2020189984A1 (en) Organic light emitting diode
WO2022177288A1 (en) Novel compound and organic light emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831902

Country of ref document: EP

Kind code of ref document: A1