WO2021206313A1 - 복합 부직포 및 이를 포함하는 물품 - Google Patents

복합 부직포 및 이를 포함하는 물품 Download PDF

Info

Publication number
WO2021206313A1
WO2021206313A1 PCT/KR2021/003502 KR2021003502W WO2021206313A1 WO 2021206313 A1 WO2021206313 A1 WO 2021206313A1 KR 2021003502 W KR2021003502 W KR 2021003502W WO 2021206313 A1 WO2021206313 A1 WO 2021206313A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
layer
composite
fabric layer
spunbond
Prior art date
Application number
PCT/KR2021/003502
Other languages
English (en)
French (fr)
Inventor
윤도경
정긍식
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210030145A external-priority patent/KR102594148B1/ko
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of WO2021206313A1 publication Critical patent/WO2021206313A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters

Definitions

  • Composite nonwoven fabrics and articles comprising the same are disclosed.
  • a composite nonwoven fabric having excellent mechanical properties and a fine dust removal function and an article including the same are disclosed.
  • a mask for removing fine dust In the case of a mask for removing fine dust, it is composed of an inner and outer skin material and a filter material that filters fine dust in the center in multiple layers.
  • melt-blown nonwoven fabric As the filter layer, a melt-blown nonwoven fabric that has been treated is mainly used.
  • Meltblown nonwoven fabric has low shape stability due to low mechanical strength and high flexibility, so structural deformation easily occurs due to external impact or friction. Therefore, in order to protect the melt-blown non-woven fabric layer and provide shape stability, a mask is formed by laminating a non-woven fabric having high mechanical properties such as shape stability and tensile strength on both sides or one side of the melt-blown non-woven fabric layer, mainly spunbond.
  • the nonwoven fabric is laminated through a separate laminating process.
  • the spunbond nonwoven fabric which is generally applied as an inner and outer skin material on one or both sides of the electrostatically treated meltblown material, has only a function of imparting shape stability with little fine dust removal efficiency because the filaments are thick and the pores are large. Therefore, among the multi-layered mask nonwoven fabric composition, since fine dust is filtered only in the filter layer located in the central part, there is a problem in that the fine dust is intensively stacked on the filter layer, so that the filtering efficiency decreases with time of use. In some countries, these issues may also affect the respiratory safety of users.
  • the nonwoven fabric used as the inner and outer skin layer is mainly laminated by ultrasonic welding along the outline of the mask, the structure of the meltblown nonwoven fabric charged with the inner layer during the fusion process is changed, so that the filtering performance may be deteriorated.
  • One embodiment of the present invention provides a composite nonwoven fabric having excellent mechanical properties and fine dust removal function.
  • Another embodiment of the present invention provides an article comprising the composite nonwoven fabric.
  • One aspect of the present invention is
  • the spunbond nonwoven layer provides a composite nonwoven fabric including an electrostatic performance preservative.
  • the content of the electrostatic performance preservative may be 0.6 to 6.0 wt% based on the total weight of the spunbond nonwoven fabric layer.
  • the electrostatic performance preservative may include at least one of a light stabilizer, a thermal stabilizer, and a crystal control agent.
  • the content of the light stabilizer, the content of the heat stabilizer, and the content of the crystal control agent may each be 0.2 to 2.0 wt% based on the total weight of the spunbond nonwoven fabric layer.
  • the light stabilizer may include a hindered amine light stabilizer.
  • the thermal stabilizer may include an antioxidant.
  • the crystal control agent may include a metal salt of a fatty acid.
  • the composite nonwoven fabric may include a first spunbond nonwoven fabric layer, the electrostatically treated meltblown nonwoven fabric layer, and a second spunbond nonwoven fabric layer in this order.
  • the melt-blown non-woven fabric layer may include at least one pre-treated melt-blown non-woven sub-layer.
  • the meltblown nonwoven layer may include at least one precharged meltblown nonwoven sublayer and at least one uncharged meltblown nonwoven sublayer.
  • the composite nonwoven fabric may further include at least one additional layer.
  • Another aspect of the present invention is
  • An article comprising the composite nonwoven fabric is provided.
  • the article may be a mask for removing fine dust, a filter for an air purifier, or a filter for an air conditioner.
  • the composite nonwoven fabric according to an embodiment of the present invention has excellent stain resistance and morphological stability, as well as an extended lifespan, and improved performance and removal efficiency stability of the entire mask due to the multilayered filter layer.
  • the composite nonwoven fabric may be used for the purpose of removing various kinds of dust, fine dust, bacteria, etc., and may be used as a medical or health mask.
  • FIG. 1 is a view schematically showing a composite nonwoven fabric according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an apparatus for manufacturing a composite nonwoven used to continuously manufacture a composite nonwoven according to an embodiment of the present invention.
  • non-woven fabric composite is not a non-woven fabric laminate manufactured through a separate lamination (lamination) post-process after two or more kinds of non-woven fabrics are individually prepared, but two or more kinds of non-woven fabrics are one It refers to a nonwoven fabric manufactured by a continuous process and integrated. Therefore, in this specification, “composite non-woven fabric” may also be referred to as “monolithic non-woven fabric”. The composite nonwoven fabric has a strong interlayer bonding and excellent morphological stability and filtration performance compared to the nonwoven fabric laminate.
  • the "charged nonwoven fabric layer” or the “charged nonwoven fabric sub-layer” may be manufactured by a continuous process.
  • the “charged nonwoven fabric layer” or “charged nonwoven sublayer” may be manufactured by sequentially or simultaneously performing "preparation of nonwoven fabric” and “charge treatment” in a continuous process.
  • charged means a state in which electric charges are semi-permanently applied to the non-woven fabric fibers to form an electrostatic field between adjacent fibers, and the charged non-woven fabric has a charge compared to the non-electrostatically-treated non-woven fabric. It has high density and fine dust removal efficiency.
  • At least partially charged means that when only one layer is composed, the entire layer is charged, and when composed of a plurality of sub-layers, some sub-layers are charged and the rest Sub-layer means either uncharged or all sub-layers are charged.
  • charge increasing agent means a material that increases the charge density
  • Measurement device TSI-8130 model of TSI was used.
  • Aerosol Formation The measuring device evaporated the water of the sodium chloride aqueous solution mist generated by the fine aerosol generating device to form a sodium chloride aerosol dispersed in the air.
  • the average particle diameter of sodium chloride particles in the formed sodium chloride aerosol is 0.3 ⁇ m, and the concentration of sodium chloride in the aerosol is 18.5 mg/m 3 .
  • the aerosol removal efficiency may be expressed by Equation 1 below.
  • the aerosol removal efficiency was recorded as the fine dust removal efficiency.
  • Aerosol Removal Efficiency 100 - Aerosol Permeability (%)
  • the composite nonwoven fabric according to an embodiment of the present invention includes a melt-blown nonwoven fabric layer that has been electrostatically treated and a spunbond nonwoven fabric layer disposed on one or both surfaces thereof.
  • the spunbond nonwoven layer includes an electrostatic performance preservative.
  • the electrostatic performance preservative serves to preserve the electrostatic performance of the electrostatically treated melt blown nonwoven fabric layer, and to maintain the tensile strength of the composite nonwoven fabric at a high level for a long time.
  • each layer in which spunbond nonwoven fabric and electrostatically treated meltblown nonwoven fabric are mainly used, is fused and laminated by means such as ultrasonic waves after each nonwoven fabric is manufactured separately. Any one nonwoven layer does not significantly affect the physical properties of the other nonwoven layer adjacent thereto.
  • each nonwoven fabric layer is closely attached to each other.
  • Physicochemical changes in one nonwoven layer may affect other adjacent nonwoven layers.
  • ionic substances such as electric charges or radicals are transferred to the internally charged melt blown nonwoven layer due to the physicochemical change of the inner and outer skin layers
  • the electrostatic performance of the electrostatically treated melt blown nonwoven layer is reduced to remove fine dust. Efficiency may be reduced.
  • the physical and chemical structural change of the spunbond nonwoven fabric layer due to external exposure or long-term storage by adding an “electrostatic performance preservative” to the spunbond nonwoven fabric layer used as the inner and outer skin layer, and the electrostatically treated meltblown nonwoven fabric caused by this is possible to reduce the performance change of the layer.
  • the content of the electrostatic performance preservative may be 0.6 to 6.0 wt% based on the total weight of the spunbond nonwoven fabric layer (including the weight of the electrostatic performance preservative).
  • the electrostatic performance preservative may include at least one of a light stabilizer, a thermal stabilizer, and a crystal control agent.
  • the content of the light stabilizer, the content of the heat stabilizer, and the content of the crystal control agent may each be 0.2 to 2.0 wt% based on the total weight of the spunbond nonwoven fabric layer.
  • the physical properties of at least one of the fine dust removal performance retention rate, tensile strength retention rate, and radiation stability may be reduced.
  • the light stabilizer may include a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • the hindered amine light stabilizer is Uvinul® 5050 H (alpha-alkenes (C20-C24) maleic anhydride-4-amino-2,2,6,6-tetramethylpiperidine), Chimassorb 944 (poly[[6-[(1, 1,3,3-tetramethyl butyl)amino]-1,3,5-triazine-2,4-diyl]-[(2,2,6,6-tetramethyl-4-piperidinyl)imino ]-1,6 hexanediyl [(2,2,6,6-tetramethyl-4-piperidinyl)imino]]), Chimassorb 2020 (N,N'-Bis(2,2,6,6- tetramethyl-4-piperidinyl)-1,6-hexanediamine polymer with 2,4,6-trichloro-1,3,5-triazine reaction products with N-butyl-1-butanamine and N-butyl-2,2,6, 6-tetra
  • the thermal stabilizer may include an antioxidant.
  • the antioxidant may include a primary antioxidant or a secondary antioxidant and combinations thereof.
  • Representative primary antioxidants are Irganox® 3114 (1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H, 3H, 5H)-trione), Irganox® 1010 (pentaerythritol tetrakis[3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate]), and the secondary antioxidant is Irgafos®126 (bis-( 2,4-di-tert-butylphenol)pentaerythritol diphosphite) Irgafos® 168 (tris(2,4-di-tert-butylphenyl)phosphite) or a combination thereof.
  • the crystallization control agent may include a metal salt of a fatty acid or a sorbitol-based crystallizer.
  • the metal salt of the fatty acid is a fatty acid including lauric acid, palmitic acid, stearic acid, oleic acid, or a combination thereof; and metals including magnesium, zinc, aluminum, calcium, or combinations thereof; or a combination thereof.
  • Sorbitol-based crystallizers include dibenzylidene sorbitol (DBS), 1,3,2,4-di (p-hydroxyl) benzylidene sorbitol (DHDBS), 1,3,2,4-di para methyl benzylidene sorbitol (MDBS), 1, 3,4-di para ethyl benzylidene sorbitol (EDBS) or a combination thereof.
  • DBS dibenzylidene sorbitol
  • DHDBS 1,3,2,4-di (p-hydroxyl) benzylidene sorbitol
  • MDBS 1,3,2,4-di para methyl benzylidene sorbitol
  • EDBS 1, 3,4-di para ethyl benzylidene sorbitol
  • NA 11 sodium 2,2'-methylene bis-(4,6-di-tert-butylphenyl) phosphate
  • NU100 N,N'-dicyclo-hexyl-2,6-naphthalene-dicarbox-amide
  • the composite nonwoven fabric may include a first spunbond nonwoven fabric layer, the electrostatically treated meltblown nonwoven fabric layer, and a second spunbond nonwoven fabric layer in this order.
  • the first spunbond nonwoven fabric layer and the second spunbond nonwoven fabric layer may be non-electrostatically treated.
  • the composite nonwoven fabric may include an at least partially charged melt blown nonwoven layer and an at least partially charged spunbond nonwoven layer, thereby having an excellent fine particle collecting function.
  • the melt blown nonwoven fabric layer may include a charge increasing agent to be described later.
  • At least one of the first spunbond nonwoven layer and the second spunbond nonwoven layer may include at least one pre-treated spunbond nonwoven sublayer.
  • at least one of the first spunbond nonwoven fabric layer and the second spunbond nonwoven fabric layer may include a plurality of pre-treated spunbond nonwoven fabric sub-layers manufactured by a continuous process and integrated with each other.
  • At least one of the first spunbond nonwoven layer and the second spunbond nonwoven layer may include at least one electrified spunbond nonwoven sublayer and at least one uncharged spunbond nonwoven sublayer.
  • at least one of the first spunbond nonwoven layer and the second spunbond nonwoven layer is manufactured by a continuous process and integrated with each other, at least one charged spunbond nonwoven sublayer and at least one uncharged spunbond nonwoven fabric A bond nonwoven sub-layer may be included.
  • the melt-blown non-woven fabric layer may include at least one pre-treated melt-blown non-woven sub-layer.
  • the melt-blown non-woven fabric layer may include a plurality of pre-treated melt-blown non-woven fabric sub-layers that are each manufactured by a continuous process and integrated with each other.
  • the meltblown nonwoven layer may include at least one precharged meltblown nonwoven sublayer and at least one uncharged meltblown nonwoven sublayer.
  • the melt-blown non-woven fabric layer may include at least one precharged melt-blown non-woven fabric sub-layer and at least one non-electrostatically-treated melt blown non-woven fabric sub-layer, each of which is manufactured by a continuous process and integrated with each other. .
  • the nonwoven fabrics may each independently include a non-conductive polymer.
  • the non-conductive polymer may include polyolefin, polystyrene, polycarbonate, polyester, polyamide, a copolymer thereof, or a combination thereof.
  • the polyolefin may include polyethylene, polypropylene, poly-4-methyl-1-pentene, polyvinyl chloride, or a combination thereof.
  • the polyester may include polyethylene terephthalate, polylactic acid, or a combination thereof.
  • Each of said uncharged spunbond nonwovens, each of said charged spunbond nonwovens, said each of said charged meltblown nonwovens and/or said respective uncharged meltblown nonwovens are each independently from each other. It may further include additives.
  • the additives may include pigments, metal deactivators, hindered amines, hindered phenols, triesters phosphites, phosphates, fluorine-containing compounds, nucleating agents, or combinations thereof.
  • charge increasing agents for improving charging characteristics are disclosed in US Patent Nos. 6,268,495, 5,976,208, 5,968,635, 5,919,847, and 5,908,598.
  • the charge increasing agent may include a hindered amine-based additive, a triazine additive, or a combination thereof.
  • the content of the charge-increasing agent may be 0.25 to 5 parts by weight based on 100 parts by weight of the total weight of each of the charged spunbond nonwovens or the total weight of each of the electrically charged melt blown nonwovens. If the content of the charge increasing agent is within the above range, it is possible to obtain a high level of charging performance targeted by the present invention, as well as good spinnability, high strength of the nonwoven fabric, and advantageous in terms of cost.
  • the total content of the electrostatically treated melt blown nonwoven fabric in the composite nonwoven fabric may be 3 to 50 parts by weight based on 100 parts by weight of the total weight of the composite nonwoven fabric.
  • a composite nonwoven fabric having excellent filtration performance, shape stability and durability may be obtained.
  • the composite nonwoven fabric may have a basis weight (mass per unit area) of 10 to 500 g/m 2 , for example, 20 to 100 g/m 2 .
  • a plurality of nonwoven fabrics included in the composite nonwoven fabric may be integrated (ie, bonded) to each other by thermal fusion rather than ultrasonic fusion.
  • the composite nonwoven fabric may further include at least one additional layer.
  • each of the additional layers may include at least one separate nonwoven fabric that is neither a spunbond nonwoven fabric nor a meltblown nonwoven fabric.
  • each of the additional layers may include one or more layers made of a material other than the non-woven fabric.
  • a method for manufacturing a composite nonwoven fabric according to an embodiment of the present invention includes the steps of continuously forming a spunbonded nonwoven layer (S10) and continuously forming a melt blown nonwoven layer on the spunbonded nonwoven layer (S20) do.
  • the continuous forming step (S10) of the spunbond non-woven fabric layer is formed by melt-extruding, cooling, and stretching a thermoplastic non-conductive polymer (including an antistatic performance preservative) to form a fiber yarn, and then laminating the fiber yarn on a screen belt to form a web. (web forming) may be.
  • the continuous formation of the spunbond nonwoven layer includes the steps of continuously forming free fibers with a non-conductive polymer (including an electrostatic performance preservative) (S10-1), and continuously spinning the free fibers (S10-2), continuously spraying a polar solvent (eg, water) to the free fibers to continuously charge the free fibers (S10-3) and continuously integrating the free fibers to form a spunbond nonwoven fabric It may include the step of continuously forming (S10-4).
  • a polar solvent eg, water
  • the free fiber continuous charging step (S10-3) may be performed by continuously spraying the polar solvent together with a gas (eg, air).
  • a gas eg, air
  • the free fiber continuous charging step (S10-3) was attempted by the present inventors for the first time, and there has been no case in which charging treatment was performed on a spunbond nonwoven fabric in the past.
  • the nonwoven fabric obtained by electrostatically treating the spunbond nonwoven fabric is continuously polarized so that negative and positive charges exist semi-permanently.
  • the free fiber continuous charging step ( S10 - 3 ) may be omitted.
  • thermoplastic non-conductive polymer including a charge increasing agent
  • the fiber yarn is formed into the spunbond nonwoven fabric.
  • the continuous layer formation step (S10) it may be laminated on the web-formed spunbond to form a web.
  • the continuous forming step (S20) of the melt blown nonwoven fabric layer comprises the steps of continuously forming free fibers with a non-conductive polymer (including a charge increasing agent) (S20-1), continuously spinning the free fibers Step (S20-2), continuously spraying a polar solvent (eg, water) to the free fibers to continuously charge the free fibers (S20-3), and continuously integrating the free fibers to melt the free fibers It may include the step of continuously forming a new nonwoven fabric (S20-4).
  • the free fiber continuous charging step (S20-3) may be performed by continuously spraying the polar solvent together with a gas (eg, air).
  • a gas eg, air
  • the free fiber continuous charging step (S20-3) has a heterogeneous or significant effect compared to the prior art.
  • U.S. Patent No. 5,227,172 discloses a method in which a high potential difference is applied between a melt blown die and a collector so that the melt-spun resin is filamentized and inductively charged by the surrounding electric field.
  • a melt-blown nonwoven fabric that has been electrostatically treated can be obtained without a separate post-processing treatment.
  • the non-woven fabric that has been inductively charged by the potential difference has a phenomenon that the charging efficiency is rapidly reduced depending on heat or the surrounding environment, it requires long-term storage in the sales process, such as a mask for removing fine dust, or with an air purifier filter. It has a disadvantage that it is difficult to apply it to a purpose where a long service life is guaranteed.
  • U.S. Patent No. 5,227,172 is incorporated herein by reference in its entirety.
  • the present inventors spray a polar solvent together with air on the melt-blown nonwoven fabric layer in the form of a two-fluid body, and friction the polar solvent particles with sufficient kinetic energy with a small injection amount to the filament being melt-spun to have a high-efficiency triboelectric effect.
  • a pretreatment device to do this, and it is characterized by not requiring a separate drying facility because it is sufficiently heated and evaporated by the heated air within the DCD (Die to collector distance) section due to a small injection amount. Due to these characteristics, it has the advantage of being able to compound the nonwoven fabric by continuous lamination in combination with the nonwoven fabric manufacturing process.
  • the nonwoven fabric obtained by electrostatically treating the melt blown nonwoven fabric is continuously polarized so that negative and positive charges exist semi-permanently, and this nonwoven fabric is referred to as an electret nonwoven fabric.
  • the manufacturing method of the composite nonwoven fabric may not include a separate drying step for removing the polar solvent sprayed in the free fiber continuous charging step (S10-3, S20-3).
  • the polar solvent continuously sprayed in the free fiber continuous charging step (S10-3, S20-3) is heated in the DCD (Die to collector distance) section of the composite nonwoven fabric manufacturing apparatus by the heated air. It can be continuously heated and evaporated.
  • the manufacturing method of the composite nonwoven fabric may further include a step (S30) of continuously forming another spunbond nonwoven fabric layer on the melt blown nonwoven fabric layer in the same manner as the continuous forming step (S10) of the spunbonded nonwoven fabric layer. .
  • the manufacturing method of the composite nonwoven fabric is the melt blown nonwoven fabric layer continuous forming step (S20) or the other spunbond nonwoven fabric layer continuous forming step (S30) on one or both sides of the melt blown nonwoven fabric layer after each spunbond layer
  • the step of continuously thermocompressing the nonwoven layer (S40) may be further included.
  • FIG. 1 is a view schematically showing a composite nonwoven fabric 10 according to an embodiment of the present invention.
  • the composite nonwoven fabric 10 includes a first spunbonded nonwoven fabric layer 11 , an at least partially charged melt blown nonwoven fabric layer 12 , and a second spunbonded nonwoven fabric layer 13 . do.
  • a composite nonwoven fabric having various structures and/or configurations may be manufactured.
  • An article according to an embodiment of the present invention includes the above-described composite nonwoven fabric.
  • the article may be a mask for removing fine dust, a filter for an air purifier, or a filter for an air conditioner.
  • a propylene homopolymer (LG Chem, H7900) having a melt index (MI) of 34 g/10 min was used as the polymer for forming the spunbond non-woven fabric layer (SB), and melt flow was used as the polymer for forming the melt-blown non-woven fabric layer (MB).
  • a resin (LG Chem, H7910) having an index (MFR) of 1000 g/10 min was used.
  • Chimasorb 944, a hindered amine light stabilizer was added to the polymer for forming the melt blown nonwoven fabric layer (MB) in an amount of 0.5 wt%.
  • a light stabilizer (Uvinul® 5050H (alpha-alkenes (C22) maleic anhydride-4-amino-2,2,6,6-tetramethylpiperidine), Basf) as an electrostatic performance preservative 1.1wt%, a heat stabilizer (Irganox® 3114, Basf) 1.1wt%, and a crystal control agent (aluminum stearate, Sigma-Aldrich) 1.1wt% were added in a content ratio.
  • a composite nonwoven fabric in the form of spunbond-meltblown-spunbond (SMS) was continuously manufactured using an apparatus for manufacturing a composite nonwoven fabric as shown in FIG. 2 .
  • the melt blown nonwoven fabric layer (MB) is continuously charged by contacting with water (that is, a mixture of air and water) with air through a two-fluid nozzle in the apparatus for manufacturing the composite nonwoven fabric, and then the spunbonded nonwoven fabric layer ( SB), and another spunbond nonwoven fabric layer SB is stacked on top of the melt blown nonwoven fabric layer MB.
  • water that is, a mixture of air and water
  • the SMS nonwoven fabric laminate was manufactured in the form of a single composite nonwoven fabric through a thermocompression bonding process between a roll having an embossed pattern and a roll having no irregularities.
  • the total basis weight of the SMS composite nonwoven fabric was adjusted to 100 gsm (g/m 2 ), and the basis weight of the melt blown nonwoven fabric layer (MB) was adjusted to 22 gsm.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 0.2 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 2.0 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 1.1 wt%.
  • an SMS composite nonwoven fabric was prepared in the same manner as in Example 1, except that it was added at a content ratio of 2.5 wt%.
  • Measurement device TSI-8130 model of TSI was used.
  • the measuring device evaporated water after contacting the aqueous sodium chloride solution with air to form an aerosol containing sodium chloride dispersed in air with an average particle diameter of 0.3 ⁇ m and a sodium chloride particle concentration of 18.5 mg/m 3 . .
  • the aerosol removal efficiency may be expressed by Equation 1 below.
  • the aerosol removal efficiency was recorded as the fine dust removal efficiency.
  • Aerosol Removal Efficiency 100 - Aerosol Permeability (%)
  • Aerosol removal efficiency and pressure loss were evaluated before and after accelerated aging treatment.
  • the fine dust is an aerosol containing sodium chloride dispersed in the air
  • the accelerated aging treatment means that the composite nonwoven fabric is stored at a temperature of 70° C. for 3 days.
  • Tensile strength retention (%) (tensile strength after accelerated aging treatment)/(tensile strength before accelerated aging treatment) ⁇ 100
  • the tensile strength is obtained by pulling a test piece with a width of 5 cm through a tensile strength elongator (Instron) according to KSK 0520 under the conditions of an interval between grips of 10 cm and a tensile speed of 500 mm/min in the MD direction. and tensile strength in the CD direction, respectively.
  • the tensile strength in the MD direction and the CD direction was measured after accelerated aging in which the nonwoven fabric specimen was treated for 500 hours under QUV UV accelerated weather resistance test conditions (0.89 W/m 2 ).
  • the composite nonwoven fabrics prepared in Examples 1 to 7 exhibited a fine dust removal performance retention of 85% or more, a tensile strength retention of 50% or more, and good spinning stability.
  • the composite nonwoven fabrics prepared in Comparative Examples 1 and 4 showed good spinning stability, but maintained fine dust removal performance of less than 85% and tensile strength retention of less than 50%.
  • the composite nonwoven fabric prepared in Comparative Examples 2 and 6 had a fine dust removal performance retention rate of 85% or more and a tensile strength retention rate of 50% or more, but showed poor spinning stability.
  • the composite nonwoven fabric prepared in Comparative Example 3 had a tensile strength retention of 50% or more and a good spinning stability, but showed that the fine dust removal performance retention ratio was less than 85%.
  • the composite nonwoven fabric prepared in Comparative Example 5 had a fine dust removal performance retention of 85% or more, and had good spinning stability, but had a tensile strength retention of less than 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Filtering Materials (AREA)

Abstract

복합 부직포 및 이를 포함하는 물품이 개시된다. 개시된 복합 부직포는 적어도 부분적으로 대전처리된 멜트블로운 부직포층 및 이의 일면 또는 양면에 배치된 것으로 적어도 부분적으로 대전처리된 스펀본드 부직포층을 포함하고, 상기 스펀본드 부직포층은 정전성능 보존제를 포함한다.

Description

복합 부직포 및 이를 포함하는 물품
복합 부직포 및 이를 포함하는 물품이 개시된다. 보다 상세하게는 기계적 물성 및 미세먼지 제거기능이 우수한 복합 부직포 및 이를 포함하는 물품이 개시된다.
미세먼지 제거용 마스크의 경우 내외피 소재와 중앙부의 미세먼지를 걸러주는 필터소재가 다층으로 복합화되어 구성되어 있다.
필터층으로는 주로 대전처리된 멜트블로운(Meltblown) 부직포가 사용되고 있다. 멜트블로운 부직포는 낮은 기계적 강도와 높은 유연성으로 인해 형태 안정성이 낮아 외부 충격이나 마찰에 의해 쉽게 구조 변형이 발생한다. 따라서, 멜트블로운 부직포층을 보호하고 형태 안정성을 부여하기 위해 멜트블로운 부직포층의 양면 또는 일면에 형태 안정성과 인장강도 등의 기계적 물성이 높은 부직포를 적층하여 마스크를 구성하게 되며, 주로 스펀본드 부직포가 별도의 라미네이팅 공정을 거쳐 적층된다.
또한, 일반적으로 대전처리된 멜트블로운 소재의 일면이나 양면에 내외피용 소재로 적용되고 있는 스펀본드 부직포는 필라멘트가 굵고 기공이 크기 때문에 미세먼지 제거효율이 거의 없이 형태 안정성을 부여하는 기능만을 갖는다. 따라서, 다층의 마스크 부직포 구성 중 중앙부에 위치한 필터층에서만 미세먼지를 걸러주기 때문에 미세먼지가 필터층에 집중적으로 적층되어 필터링 효율이 사용시간에 따라 감소하는 문제점이 있으며, 특히 장시간 마스크를 착용해야 하는 산업현장에서는 이러한 문제가 사용자의 호흡기 안전에도 영향을 미칠 수 있다.
또한, 내외피층으로 사용되는 부직포는 주로 마스크의 외형을 따라 초음파 융착에 의해 합지되기 때문에, 융착 공정시 내층의 대전처리된 멜트블로운 부직포의 구조가 변경되어 필터링 성능이 저하될 수 있다.
본 발명의 일 구현예는 기계적 물성 및 미세먼지 제거기능이 우수한 복합 부직포를 제공한다.
본 발명의 다른 구현예는 상기 복합 부직포를 포함하는 물품을 제공한다.
본 발명의 일 측면은,
대전처리된 멜트블로운 부직포층 및 이의 일면 또는 양면에 배치된 스펀본드 부직포층을 포함하고,
상기 스펀본드 부직포층은 정전성능 보존제를 포함하는 복합 부직포를 제공한다.
상기 정전성능 보존제의 함량은 상기 스펀본드 부직포층의 총중량을 기준으로 0.6~6.0wt%일 수 있다.
상기 정전성능 보존제는 광안정제, 열안정제 및 결정제어제 중 적어도 하나를 포함할 수 있다.
상기 광안정제의 함량, 상기 열안정제의 함량 및 상기 결정제어제의 함량은 각각 상기 스펀본드 부직포층의 총중량을 기준으로 0.2~2.0wt%일 수 있다.
상기 광안정제는 힌더드 아민 광안정제를 포함할 수 있다.
상기 열안정제는 산화방지제를 포함할 수 있다.
상기 결정제어제는 지방산의 금속염을 포함할 수 있다.
상기 복합 부직포는 제1 스펀본드 부직포층, 상기 대전처리된 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 이 순서대로 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 및 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 포함할 수 있다.
상기 복합 부직포는 적어도 하나의 추가층을 더 포함할 수 있다.
본 발명의 다른 측면은,
상기 복합 부직포를 포함하는 물품을 제공한다.
상기 물품은 미세먼지 제거용 마스크, 공기청정기용 필터 또는 에어컨용 필터일 수 있다.
본 발명의 일 구현예에 따른 복합 부직포는 내오염성 및 형태 안정성이 우수할뿐만 아니라 수명이 연장될 수 있으며, 필터층의 다층화로 마스크 전체의 성능 향상 및 제거효율 안정성이 향상될 수 있다.
또한, 상기 복합 부직포는 각종 먼지, 미세먼지, 세균 등의 제거 목적으로 활용될 수 있으며, 의료용 또는 보건용 마스크로 사용될 수 있다.
도 1은 본 발명의 일 구현예에 따른 복합 부직포를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 구현예에 따른 복합 부직포를 연속적으로 제조하기 위해 사용되는 복합 부직포의 제조장치를 개략적으로 나타낸 도면이다.
이하, 본 발명의 일 구현예에 따른 복합 부직포를 상세히 설명한다.
본 명세서에서, "복합 부직포(non-woven fabric composite)"는 2종 이상의 부직포가 개별적으로 제조된 후 별도의 라미네이팅(합지) 후공정을 거쳐 제조된 부직포 적층체가 아니라, 2종 이상의 부직포가 하나의 연속공정으로 제조되어 일체화된 부직포를 의미한다. 따라서 본 명세서에서,"복합 부직포"는 "모놀리식 부직포(monolithic non-woven fabric)"로도 지칭될 수 있다. 상기 복합 부직포는 상기 부직포 적층체에 비해 층간 결합이 강하고, 형태 안정성 및 여과성능이 우수하다는 특징을 갖는다.
또한 본 명세서에서, "대전처리된 부직포층" 또는 "대전처리된 부직포 서브층"은 연속공정으로 제조된 것일 수 있다. 구체적으로, "대전처리된 부직포층" 또는 "대전처리된 부직포 서브층"은 연속공정으로 "부직포의 제조"와 "대전처리"를 순차적으로 또는 동시에 실시함으로써 제조된 것일 수 있다.
또한 본 명세서에서, "대전처리되었다"는 것은 부직포 섬유상에 전하가 반영구적으로 부여되어 인접한 섬유들간에 정전기장을 형성할 수 있는 상태를 의미하며, 대전처리된 부직포는 대전처리되지 않은 부직포에 비해 전하밀도 및 미세먼지 제거효율이 높은 특징이 있다.
또한 본 명세서에서, "적어도 부분적으로 대전처리되었다"는 것은 오직 하나의 층으로만 구성된 경우에는 당해 층 전체가 대전처리되었음을 의미하고, 복수개의 서브층으로 구성된 경우에는 일부 서브층은 대전처리되고 나머지 서브층은 대전처리되지 않았거나 모든 서브층이 대전처리되었음을 의미한다.
또한 본 명세서에서, "전하 증가제"는 전하밀도를 증가시켜주는 물질을 의미한다.
또한 본 명세서에서, "미세먼지 투과율" 및 "미세먼지 제거효율"은 제작후 사용전 복합 부직포에 대하여 하기 방법으로 평가하였다:
(1) 측정 장치: TSI사의 TSI-8130 모델을 사용하였다.
(2) 에어로졸 형성: 상기 측정 장치는 미세 에어로졸 생성장치에서 발생한 염화나트륨 수용액 미스트의 물을 증발시켜 공기 중에 분산된 염화나트륨 에어로졸을 형성하였다. 상기 형성된 염화나트륨 에어로졸 중 염화나트륨 입자의 평균입경이 0.3㎛이고, 에어로졸 내 염화나트륨의 농도는 18.5mg/m3이다.
(3) 에어로졸 투과율 평가: 에어로졸의 투과 면속도는 16cm/sec이고, 부직포의 평가면적은 100cm2이었다. 상기 에어로졸 투과율을 미세먼지 투과율로 기록하였다.
(4) 에어로졸 제거효율 평가: 에어로졸 제거효율은 하기 수학식 1로 표현될 수 있다. 상기 에어로졸 제거효율 미세먼지 제거효율로 기록하였다.
[수학식 1]
에어로졸 제거효율 (%) = 100 - 에어로졸 투과율(%)
본 발명의 일 구현예에 따른 복합 부직포는 대전처리된 멜트블로운 부직포층 및 이의 일면 또는 양면에 배치된 스펀본드 부직포층을 포함한다.
상기 스펀본드 부직포층은 정전성능 보존제를 포함한다.
상기 정전성능 보존제는 상기 대전처리된 멜트블로운 부직포층의 정전성능을 보존하고, 상기 복합 부직포 전체의 인장강도를 장시간 높은 수준으로 유지시켜주는 역할을 수행한다. 일반적인 마스크 생산시 스펀본드 부직포와 대전처리된 멜트블로운 부직포가 주로 사용되는 각 층은 각각의 부직포가 별도로 제조된 후 초음파 등의 수단으로 융착되어 합지되기 때문에 실제로는 부직포들이 서로 소정 간격 떨어져 있게 되어 어느 하나의 부직포층이 이에 인접한 다른 부직포층의 물성에 크게 영향을 미치지 않는다. 그러나, 본 발명의 일 구현예에 따른 복합 부직포는 내외피층(스펀본드 부직포층)과 필터층(멜트블로운 부직포층)이 하나의 단일 복합층으로 구성되어 있기 때문에 각 부직포층이 서로 밀접하게 붙어 있어서 어느 하나의 부직포층의 물리화학적 변화가 인접한 다른 부직포층에 영향을 줄 수 있다. 특히, 내외피층의 물리화학적 변화에 의해서 전하나 라디칼과 같은 이온성 물질이 내부의 대전처리된 멜트블로운 부직포층으로 전이되면 상기 대전처리된 멜트블로운 부직포층의 정전성능이 감소하여 미세먼지 제거효율이 저하될 수 있다. 따라서, 본 발명의 일 구현예에 따른 복합 부직포에 있어서, 대전처리된 멜트블로운 부직포층의 정전 성능을 장기간 보존하여 필터링 기능의 장기간 안정적 유지를 위해서는 상기 대전처리된 멜트블로운 부직포층의 일면 또는 양면에 접합되어 있는 스펀본드 부직포층의 물리화학적 변화가 발생하지 않도록 하는 것이 중요하다. 이러한 기술적 측면에서 내외피층으로 사용되는 스펀본드 부직포층에 “정전성능 보존제”를 투입하여 외부노출이나 장기보존에 따른 스펀본드 부직포층의 물리화학적 구조변화 및 이로 인해 야기되는 대전처리된 멜트블로운 부직포층의 성능 변화를 감소시킬 수 있다.
상기 정전성능 보존제의 함량은 상기 스펀본드 부직포층의 총중량(이는 상기 정전성능 보존제의 중량을 포함함)을 기준으로 0.6~6.0wt%일 수 있다.
상기 정전성능 보존제는 광안정제, 열안정제 및 결정제어제 중 적어도 하나를 포함할 수 있다.
상기 광안정제의 함량, 상기 열안정제의 함량 및 상기 결정제어제의 함량은 각각 상기 스펀본드 부직포층의 총중량을 기준으로 0.2~2.0wt%일 수 있다. 상기 광안정제의 함량, 상기 열안정제의 함량 및 상기 결정제어제의 함량 중 적어도 하나가 상기 각 수치범위를 벗어나게 되면, 미세먼지 제거 성능 유지율, 인장강도 유지율 및 방사 안정성 중 적어도 하나의 물성이 저하될 수 있다.
상기 광안정제는 힌더드 아민 광안정제(HALS)를 포함할 수 있다.
상기 힌더드 아민 광안정제는 Uvinul® 5050 H(alpha-alkenes(C20-C24) maleic anhydride-4-amino-2,2,6,6-tetramethylpiperidine), Chimassorb 944(폴리[[6-[(1,1,3,3- 테트라 메틸 부틸)아미노]-1,3,5-트리아진-2,4-디일]-[(2,2,6,6-테트라메틸-4-피페리디닐)이미노]-1,6 헥산디일 [(2,2,6,6-테트라메틸-4-피페리디닐)이미노]]), Chimassorb 2020(N,N'-Bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine polymer with 2,4,6-trichloro-1,3,5-triazine reaction products with N-butyl-1-butanamine and N-butyl-2,2,6,6-tetramethyl-4-piperidinamine), Tinuvin® 770 DF(Bis(2,2,6,6,-tetramethyl-4-piperidyl) sebaceate), Tinuvin® 622 SF(Butanedioc acid, dimethylester, polymer with 4-hydroxy-2,2,6,6-tetramethyl-1-piperidine ethanol), 2-(2-하이드록시 페닐)-벤조트리아졸 UVA와 염기성 HALS의 블렌드 또는 이들의 조합을 포함할 수 있다.
상기 열안정제는 산화방지제를 포함할 수 있다.
상기 산화방지제는 일차 산화방지제 또는 이차 산화방지제와 이들의 조합을 포함할 수 있다. 대표적인 일차 산화방지제는 Irganox® 3114 (1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2,4,6(1H, 3H, 5H)-trione), Irganox® 1010(pentaerythritol tetrakis[3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionate])를 포함할 수 있으며, 이차 산화방지제는 Irgafos®126(bis-(2,4-di-tert-butylphenol)pentaerythritol diphosphite) Irgafos®168(트리스(2,4-디-tert-부틸페닐)포스파이트) 또는 이들의 조합을 포함할 수 있다.
상기 결정제어제는 지방산의 금속염 또는 sorbitol계 결정화제를 포함할 수 있다.
상기 지방산의 금속염은 라우르산, 팔미트산, 스테아르산, 올레산 또는 이들의 조합을 포함하는 지방산; 및 마그네슘, 아연, 알루미늄, 칼슘 또는 이들의 조합을 포함하는 금속; 또는 이들의 조합을 포함할 수 있다.
Sorbitol계 결정화제는 dibenzylidene sorbitol(DBS), 1,3,2,4-di (p-hydroxyl) benzylidene sorbitol(DHDBS), 1,3,2,4-di para methyl benzylidene sorbitol(MDBS), 1,3,2,4-di para ethyl benzylidene sorbitol(EDBS) 또는 이들의 조합을 포함할 수 있다.
또한 sodium 2,2'-methylene bis-(4,6-di-tert-butylphenyl) phosphate(NA 11), N,N'-dicyclo-hexyl- 2,6-naphthalene-dicarbox-amide (NU100)가 결정화제로 포함될 수 있다.
상기 복합 부직포는 제1 스펀본드 부직포층, 상기 대전처리된 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 이 순서대로 포함할 수 있다.
일례로서, 상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층은 대전처리되지 않은 것일 수 있다.
다른 예로서, 상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층 중 적어도 하나는 적어도 부분적으로 대전처리되고, 상기 멜트블로운 부직포층은 적어도 부분적으로 대전처리된 것일 수 있다. 이 경우, 상기 복합 부직포는 적어도 부분적으로 대전처리된 멜트블로운 부직포층 및 적어도 부분적으로 대전처리된 스펀본드 부직포층을 포함함으로써, 우수한 미세입자 포집 기능을 가질 수 있다.
상기 멜트블로운 부직포층은 후술하는 전하 증가제를 포함할 수 있다.
상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층 중 적어도 하나는 적어도 하나의 대전처리된 스펀본드 부직포 서브층을 포함할 수 있다. 예를 들어, 상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층 중 적어도 하나는 연속 공정으로 제조되어 서로 일체화된 복수의 대전처리된 스펀본드 부직포 서브층을 포함할 수 있다.
상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층 중 적어도 하나는 적어도 하나의 대전처리된 스펀본드 부직포 서브층 및 적어도 하나의 대전처리되지 않은 스펀본드 부직포 서브층을 포함할 수 있다. 구체적으로, 상기 제1 스펀본드 부직포층 및 상기 제2 스펀본드 부직포층 중 적어도 하나는 연속 공정으로 제조되어 서로 일체화된 적어도 하나의 대전처리된 스펀본드 부직포 서브층 및 적어도 하나의 대전처리되지 않은 스펀본드 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층을 포함할 수 있다. 예를 들어, 상기 멜트블로운 부직포층은 각각 연속 공정으로 제조되어 서로 일체화된 복수의 대전처리된 멜트블로운 부직포 서브층을 포함할 수 있다.
상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 및 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 포함할 수 있다. 구체적으로, 상기 멜트블로운 부직포층은 각각 연속 공정으로 제조되어 서로 일체화된 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 및 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 포함할 수 있다.
상기 복합 부직포에 포함된 적어도 하나의 대전처리되지 않은 스펀본드 부직포, 적어도 하나의 대전처리된 스펀본드 부직포, 적어도 하나의 대전처리된 멜트블로운 부직포 및/또는 적어도 하나의 대전처리되지 않은 멜트블로운 부직포는 각각 서로 독립적으로 비전도성 중합체를 포함할 수 있다.
상기 비전도성 중합체는 폴리올레핀, 폴리스티렌, 폴리카보네이트, 폴리에스테르, 폴리아미드, 이들의 공중합체 또는 이들의 조합을 포함할 수 있다.
상기 폴리올레핀은 폴리에틸렌, 폴리프로필렌, 폴리-4-메틸-1-펜텐, 폴리비닐 클로라이드 또는 이들의 조합을 포함할 수 있다.
상기 폴리에스테르는 폴리에틸렌테레프탈레이트, 폴리락트산 또는 이들의 조합을 포함할 수 있다.
상기 각각의 대전처리되지 않은 스펀본드 부직포, 상기 각각의 대전처리된 스펀본드 부직포, 상기 각각의 대전처리된 멜트블로운 부직포 및/또는 상기 각각의 대전처리되지 않은 멜트블로운 부직포는 각각 서로 독립적으로 첨가제를 더 포함할 수 있다.
상기 첨가제는 안료, 금속 불활성화제, 장애 아민, 장애 페놀, 트리에스테르 포스파이트, 인산염, 불소-함유 화합물, 핵화제 또는 이들의 조합을 포함할 수 있다.
예를 들어, 대전 특성 향상 목적의 전하 증가제는 미국등록특허 제6,268,495호, 제5,976,208호, 제5,968,635호, 제5,919,847호 및 제5,908,598호에 개시되어 있다. 예를 들어, 상기 전하 증가제는 힌더드아민계 첨가제(hindered amine-based additive), 트리아진계 첨가제(triazine additive) 또는 이들의 조합을 포함할 수 있다.
상기 전하 증가제의 함량은 각각의 대전처리된 스펀본드 부직포의 충중량 또는 각각의 대전처리된 멜트블로운 부직포의 충중량 100중량부에 대하여 0.25~5중량부일 수 있다. 상기 전하 증가제의 함량이 상기 범위이내이면, 본 발명이 목표로 하는 높은 수준의 대전 성능을 얻을 수 있을 뿐만 아니라 방사성이 양호하고 부직포의 강도가 높게 유지되며 비용 측면에서도 유리하다.
상기 복합 부직포에서 대전처리된 멜트블로운 부직포의 총 함량은 상기 복합 부직포의 총중량 100중량부에 대하여 3~50중량부일 수 있다. 상기 대전처리된 멜트블로운 부직포의 총 함량이 상기 범위이내이면, 여과 성능, 형태 안정성 및 내구성이 우수한 복합 부직포를 얻을 수 있다.
상기 복합 부직포는 평량(단위 면적당 질량)이 10~500g/m2, 예를 들어, 20~100 g/m2의 범위일 수 있다.
상기 복합 부직포에 포함된 복수의 부직포들은 초음파 융착이 아닌 열융착에 의해 서로 일체화(즉, 결합)된 것일 수 있다.
상기 복합 부직포는 적어도 하나의 추가층을 더 포함할 수 있다.
일례로서, 상기 각 추가층은 스펀본드 부직포도 아니고 멜트블로운 부직포도 아닌 별개의 부직포를 1개 이상 포함할 수 있다.
다른 예로서, 상기 각 추가층은 부직포가 아닌 다른 재질의 층을 1개 이상 포함할 수 있다.
이하, 본 발명의 일 구현예에 따른 복합 부직포의 제조방법을 상세히 설명한다.
본 발명의 일 구현예에 따른 복합 부직포의 제조방법은 스펀본드 부직포층을 연속적으로 형성하는 단계(S10) 및 상기 스펀본드 부직포층상에 멜트블로운 부직포층을 연속적으로 형성하는 단계(S20)를 포함한다.
상기 스펀본드 부직포층 연속 형성단계(S10)는 열가소성인 비전도성 중합체(정전성능 보전제 포함)를 용융압출, 냉각 및 연신하여 섬유 원사를 형성한 후, 상기 섬유 원사를 스크린벨트 상에 적층하여 웹화(web forming)하는 것일 수 있다.
구체적으로, 상기 스펀본드 부직포층 연속 형성단계(S10)는 비전도성 중합체(정전성능 보존제를 포함함)로 자유 섬유를 연속적으로 형성하는 단계(S10-1), 상기 자유 섬유를 연속적으로 방사하는 단계(S10-2), 상기 자유 섬유에 극성용매(예를 들어, 물)를 연속적으로 분사하여 상기 자유 섬유를 연속적으로 대전시키는 단계(S10-3) 및 상기 자유 섬유를 연속적으로 집적하여 스펀본드 부직포를 연속적으로 형성하는 단계(S10-4)를 포함할 수 있다.
상기 자유 섬유 연속 대전 단계(S10-3)는 상기 극성용매를 기체(예를 들어, 공기)와 함께 연속적으로 분사함으로써 수행될 수 있다.
상기 자유 섬유 연속 대전 단계(S10-3)는 본 발명자들이 최초로 시도한 것으로서, 기존에는 스펀본드 부직포에 대전처리를 실시한 사례가 전무하였다.
상기 스펀본드 부직포를 대전처리하여 얻어진 부직포는 음전하와 양전하가 반영구적으로 존재하도록 지속적으로 분극된 상태가 된다.
상기 자유 섬유 연속 대전 단계(S10-3)는 생략될 수 있다.
상기 멜트블로운 부직포층 연속 형성단계(S20)는 열가소성인 비전도성 중합체(전하 증가제를 포함함)를 용융 압출, 열풍 연신 및 냉각하여 섬유 원사를 형성한 후, 상기 섬유 원사를 상기 스펀본드 부직포층 연속 형성단계(S10)에서 웹화된 스펀본드 상에 적층하여 웹화하는 것일 수 있다.
구체적으로, 상기 멜트블로운 부직포층 연속 형성단계(S20)는 비전도성 중합체(전하 증가제를 포함함)로 자유 섬유를 연속적으로 형성하는 단계(S20-1), 상기 자유 섬유를 연속적으로 방사하는 단계(S20-2), 상기 자유 섬유에 극성용매(예를 들어, 물)를 연속적으로 분사하여 상기 자유 섬유를 연속적으로 대전시키는 단계(S20-3) 및 상기 자유 섬유를 연속적으로 집적하여 멜트블로운 부직포를 연속적으로 형성하는 단계(S20-4)를 포함할 수 있다.
상기 자유 섬유 연속 대전 단계(S20-3)는 상기 극성용매를 기체(예를 들어, 공기)와 함께 연속적으로 분사함으로써 수행될 수 있다.
이하, 상기 자유 섬유 연속 대전 단계(S20-3)가 종래기술에 비해 이질적이거나 현저한 효과를 가짐을 상세히 설명한다.
(1) 일반적으로 멜트블로운 공정 중에 대전처리할 수 있는 방법으로는 미국등록특허 제6,375,886호와 같이 극성용매와 용융 방사중인 필라멘트와의 마찰을 통해 대전처리하는 것과 미국등록특허 제6,969,484호와 같이 멜트블로운 부직포를 극성용매에 침지시키고 석션(suction) 장치로 부직포 사이로 물이 투과되면서 물과 부직포 사이의 마찰을 통해 대전처리하는 방법이 산업계에서 주로 적용되어 대전처리된 멜트블로운 부직포를 제조하였다. 이와 같이 극성용매를 이용한 대전처리 방법은 대전처리후 극성용매를 건조시키는 후공정이 별도로 필요하며, 따라서 연속공정으로 부직포를 적층하거나 복합화하는 것이 원천적으로 불가능하다. 미국등록특허 제6,375,886호 및 미국등록특허 제6,969,484호는 그 전체가 인용에 의하여 본 명세서에 통합된다.
(2) 미국등록특허 제5,227,172호는 멜트블로운 구금(Die)과 포집체(Collector) 사이에 높은 전위차를 인가하여, 용융 방사되는 수지가 필라멘트화되면서 주위 전기장에 의해서 유도대전처리되도록 하는 방법을 개시하고 있는데, 이 방법은 별도의 후가공처리 없이 대전처리된 멜트블로운 부직포를 수득할 수 있다. 그러나, 이렇게 전위차에 의해 유도대전처리된 부직포는 열이나 주위 환경에 따라 대전 처리 효율이 급격이 감소하는 현상이 나타나기 때문에 미세먼지 제거용 마스크와 같이 판매 과정에서 장기 보관이 필요하거나 공기청정기용 필터와 같이 장시간 사용 수명이 보장되어야 하는 용도로는 적용하기 어려운 단점이 있다. 미국등록특허 제5,227,172호는 그 전체가 인용에 의하여 본 명세서에 통합된다.
본 발명자들은 멜트블로운 부직포층에 극성용매를 공기와 함께 이류체의 형태로 분사하여 적은 분사량으로 충분한 운동에너지를 가진 극성용매 입자를 용융방사 중인 필라멘트에 마찰시켜 높은 효율의 마찰대전 효과를 가질 수 있도록 대전처리 장치를 개발하였으며, 적은 분사량으로 인하여 DCD(Die to collector distance) 구간내에서 가열된 공기에 의해 충분히 가열 증발되기 때문에 별도의 건조설비가 필요 없는 것이 그 특징이다. 이러한 특징으로 인하여 부직포 제조공정과 결합하여 연속 적층에 의해 부직포를 복합화할 수 있는 이점을 갖는다.
상기 멜트블로운 부직포를 대전처리하여 얻어진 부직포는 음전하와 양전하가 반영구적으로 존재하도록 지속적으로 분극된 상태가 되며 이러한 부직포를 일렉트렛(electret) 부직포라 한다.
상술한 바와 같이, 상기 복합 부직포의 제조방법은 상기 자유 섬유 연속 대전 단계(S10-3, S20-3)에서 분사된 상기 극성용매를 제거하기 위한 별도의 건조단계를 포함하지 않을 수 있다.
또한 상술한 바와 같이, 상기 자유 섬유 연속 대전 단계(S10-3, S20-3)에서 연속적으로 분사된 상기 극성용매는 복합 부직포 제조장치의 DCD(Die to collector distance) 구간내에서 가열된 공기에 의해 연속적으로 가열되어 증발될 수 있다.
상기 복합 부직포의 제조방법은 상기 스펀본드 부직포층 연속 형성단계(S10)와 동일한 방식으로 상기 멜트블로운 부직포층상에 또 다른 스펀본드 부직포층을 연속적으로 형성하는 단계(S30)를 더 포함할 수 있다.
상기 복합 부직포의 제조방법은 상기 멜트블로운 부직포층 연속 형성단계(S20) 또는 상기 또 다른 스펀본드 부직포층 연속 형성단계(S30) 이후에 상기 멜트블로운 부직포층의 일면 또는 양면에 상기 각 스펀본드 부직포층을 연속적으로 열압착하는 단계(S40)를 더 포함할 수 있다.
도 1은 본 발명의 일 구현예에 따른 복합 부직포(10)를 개략적으로 나타낸 도면이다.
본 발명의 일 구현예에 따른 복합 부직포(10)는 제1 스펀본드 부직포층(11), 적어도 부분적으로 대전처리된 멜트블로운 부직포층(12) 및 제2 스펀본드 부직포층(13)을 포함한다.
또한, 상기 복합 부직포의 제조방법을 변형함으로써 다양한 구조 및/또는 구성을 갖는 복합 부직포가 제조될 수 있다.
이하, 본 발명의 일 구현예에 따른 물품을 상세히 설명한다.
본 발명의 일 구현예에 따른 물품은 상술한 복합 부직포를 포함한다.
상기 물품은 미세먼지 제거용 마스크, 공기청정기용 필터 또는 에어컨용 필터일 수 있다.
실시예 1: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체로는 용융지수(MI)가 34g/10min인 프로필렌 단독 중합체(LG화학, H7900)를 사용하였고, 멜트블로운 부직포층(MB) 형성용 중합체로는 용융흐름지수(MFR)가 1000g/10min인 수지(LG화학, H7910)를 사용하였다. 또한, 멜트블로운 부직포층(MB) 형성용 중합체에는 힌더드 아민 광안정제인 Chimasorb 944를 0.5wt%의 함량으로 첨가하였다. 또한, 스펀본드 부직포층(SB) 형성용 중합체에는 정전성능 보존제로서 광안정제(Uvinul® 5050H(alpha-alkenes(C22) maleic anhydride-4-amino-2,2,6,6-tetramethylpiperidine), Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가하였다. 이후, 도 2에 도시된 것과 같은 복합 부직포의 제조장치를 이용하여 스펀본드-멜트블로운-스펀본드(SMS) 형태의 복합 부직포를 연속적으로 제조하였다. 구체적으로, 멜트블로운 부직포층(MB)은 상기 복합 부직포의 제조장치에서 이류체 노즐을 통해 공기와 함께 물(즉, 공기와 물의 혼합물)과 접촉함으로써 연속적으로 대전처리된후 스펀본드 부직포층(SB)의 상부에 적층되고, 상기 멜트블로운 부직포층(MB)의 상부에 또 다른 스펀본드 부직포층(SB)이 적층된다. 결과로서 SMS 부직포 적층체를 얻었다. 이후, 상기 SMS 부직포 적층체는 엠보 패턴이 형성되어 있는 롤과 요철이 없는 롤 사이에서 열압착 공정을 거쳐 하나의 복합 부직포 형태로 제조되었다. 여기서, SMS 복합 부직포의 전체 평량은 100gsm(g/m2)으로 조절하였으며, 이 중 멜트블로운 부직포층(MB)의 평량은 22gsm으로 조절하였다.
실시예 2: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 0.2wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
실시예 3: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 2.0wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
실시예 4: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 0.2wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
실시예 5: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 2.0wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
실시예 6: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 0.2wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
실시예 7: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 2.0wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 1: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 0.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 2: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 2.5wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 3: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 0.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 4: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 2.5wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 1.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 5: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 0.1wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
비교예 6: 복합 부직포의 제조
스펀본드 부직포층(SB) 형성용 중합체에 정전성능 보존제로서 광안정제(Uvinul® 5050H, Basf) 1.1wt%, 열안정제(Irganox® 3114, Basf) 1.1wt% 및 결정제어제(aluminum stearate, Sigma-Aldrich) 2.5wt%의 함량비로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 SMS 복합 부직포를 제조하였다.
상기 실시예 1~7 및 비교예 1~6에서 사용된 정전성능 보존제의 종류 및 함량을 정리하여 하기 표 1에 나타내었다.
실시예
1 2 3 4 5 6 7
광안정제(wt%) 1.1 0.2 2.0 1.1 1.1 1.1 1.1
열안정제(wt%) 1.1 1.1 1.1 0.2 2.0 1.1 1.1
결정제어제(wt%) 1.1 1.1 1.1 1.1 1.1 0.2 2.0
비교예
1 2 3 4 5 6
광안정제(wt%) 0.1 2.5 1.1 1.1 1.1 1.1
열안정제(wt%) 1.1 1.1 0.1 2.5 1.1 1.1
결정제어제(wt%) 1.1 1.1 1.1 1.1 0.1 2.5
평가예: 부직포의 물성 평가
상기 실시예 1~7 및 비교예 1~6에서 제조된 각각의 부직포의 미세먼지 제거 성능 유지율과 인장강도 유지율을 하기와 같은 방법으로 평가하여, 그 결과를 하기 표 2에 나타내었다.
(1) 측정 장치: TSI사의 TSI-8130 모델을 사용하였다.
(2) 에어로졸 형성: 상기 측정 장치는 염화나트륨 수용액과 공기를 접촉시킨 후 물을 증발시켜 공기 중에 분산된 염화나트륨을 포함하는 평균입경이 0.3㎛이고 염화나트륨 입자 농도가 18.5mg/m3인 에어로졸을 형성하였다.
(3) 에어로졸 투과율 평가: 에어로졸의 투과 면속도는 16cm/sec이고, 부직포의 평가면적은 100cm2이었다. 상기 에어로졸 투과율을 미세먼지 투과율로 기록하였다.
(4) 에어로졸 제거효율 평가: 에어로졸 제거효율은 하기 수학식 1로 표현될 수 있다. 상기 에어로졸 제거효율 미세먼지 제거효율로 기록하였다.
[수학식 1]
에어로졸 제거효율 (%) = 100 - 에어로졸 투과율(%)
(5) 가속노화 처리: 부직포를 건조오븐(dry oven)에서 70℃의 온도로 3일 동안 보관하였다.
(6) 가속노화 처리 전과 후에 에어로졸 제거효율과 압력손실을 평가하였다.
(7) 하기 수학식 2에 따라 미세먼지 제거 성능 유지율을 계산하였다.
[수학식 2]
미세먼지 제거 성능 유지율(%)=(가속노화 처리후 미세먼지 제거효율)/(가속노화 처리전 미세먼지 제거효율)×100
상기 수학식 2에서, 상기 미세먼지는 공기 중에 분산된 염화나트륨을 포함하는 에어로졸이고, 상기 가속노화 처리는 상기 복합 부직포를 70℃의 온도 조건에서 3일 동안 보관한 것을 의미한다.
(8) 하기 수학식 3에 따라 미세먼지 인장강도 유지율을 계산하였다.
[수학식 3]
인장강도 유지율(%)=(가속노화 처리후 인장강도)/(가속노화 처리전 인장강도)×100
상기 수학식 3에서, 상기 인장강도는 인장강신도기(Instron)을 통해 KSK 0520에 의거하여 시험편의 폭 5㎝의 시험편을 그립간 간격 10㎝ 및 인장속도 500㎜/min의 조건으로 인장하여 MD 방향 및 CD 방향의 인장강도를 각각 측정하였다. 이때, MD 방향 및 CD 방향의 인장강도는 부직포 시험편을 QUV 자외선 촉진 내후성 시험 조건(0.89W/m2)하에서 500시간 처리한 가속노화 이후에 측정되었다.
(9) 방사 안정성: 단위 폭(m)당 단위 시간(hr) 당 사절이 2개 이상 발생할 경우 방사불량으로 판정하였다.
실시예
1 2 3 4 5 6 7
미세먼지 제거 성능 유지율(%) 94 87 96 93 94 89 91
인장강도 유지율(%) 75 65 85 73 77 74 70
방사 안정성 양호 양호 양호 양호 양호 양호 양호
비교예
1 2 3 4 5 6
미세먼지 제거 성능 유지율(%) 68 96 76 78 85 94
인장강도 유지율(%) 35 75 66 38 39 73
방사 안정성 양호 불량 양호 양호 양호 불량
상기 표 2를 참조하면, 실시예 1~7에서 제조된 복합 부직포는 미세먼지 제거 성능 유지율이 85% 이상이고, 인장강도 유지율도 50% 이상이고, 방사 안정성도 양호한 것으로 나타났다.
그러나, 비교예 1 및 4에서 제조된 복합 부직포는 방사 안정성은 양호하지만, 미세먼지 제거 성능 유지율이 85% 미만이고, 인장강도 유지율도 50% 미만인 것으로 나타났다.
또한, 비교예 2 및 6에서 제조된 복합 부직포는 미세먼지 제거 성능 유지율이 85% 이상이고, 인장강도 유지율도 50% 이상이지만, 방사 안정성이 불량인 것으로 나타났다.
또한, 비교예 3에서 제조된 복합 부직포는 인장강도 유지율이 50% 이상이고, 방사 안정성도 양호하지만, 미세먼지 제거 성능 유지율이 85% 미만인 것으로 나타났다.
또한, 비교예 5에서 제조된 복합 부직포는 미세먼지 제거 성능 유지율이 85% 이상이고, 방사 안정성도 양호하지만, 인장강도 유지율이 50% 미만인 것으로 나타났다.
본 발명은 도면 및 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 구현예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (13)

  1. 대전처리된 멜트블로운 부직포층 및 이의 일면 또는 양면에 배치된 스펀본드 부직포층을 포함하고,
    상기 스펀본드 부직포층은 정전성능 보존제를 포함하는 복합 부직포.
  2. 제1항에 있어서,
    상기 정전성능 보존제의 함량은 상기 스펀본드 부직포층의 총중량을 기준으로 0.6~6.0wt%인 복합 부직포.
  3. 제2항에 있어서,
    상기 정전성능 보존제는 광안정제, 열안정제 및 결정제어제 중 적어도 하나를 포함하는 복합 부직포.
  4. 제3항에 있어서,
    상기 광안정제의 함량, 상기 열안정제의 함량 및 상기 결정제어제의 함량은 각각 상기 스펀본드 부직포층의 총중량을 기준으로 0.2~2.0wt%인 복합 부직포.
  5. 제3항에 있어서,
    상기 광안정제는 힌더드 아민 광안정제를 포함하는 복합 부직포.
  6. 제3항에 있어서,
    상기 열안정제는 산화방지제를 포함하는 복합 부직포.
  7. 제3항에 있어서,
    상기 결정제어제는 지방산의 금속염을 포함하는 복합 부직포.
  8. 제1항에 있어서,
    상기 복합 부직포는 제1 스펀본드 부직포층, 상기 대전처리된 멜트블로운 부직포층 및 제2 스펀본드 부직포층을 이 순서대로 포함하는 복합 부직포.
  9. 제1항에 있어서,
    상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층을 포함하는 복합 부직포.
  10. 제9항에 있어서,
    상기 멜트블로운 부직포층은 적어도 하나의 대전처리된 멜트블로운 부직포 서브층 및 적어도 하나의 대전처리되지 않은 멜트블로운 부직포 서브층을 포함하는 복합 부직포.
  11. 제1항에 있어서,
    적어도 하나의 추가층을 더 포함하는 복합 부직포.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 복합 부직포를 포함하는 물품.
  13. 제12항에 있어서,
    상기 물품은 미세먼지 제거용 마스크, 공기청정기용 필터 또는 에어컨용 필터인 물품.
PCT/KR2021/003502 2020-04-09 2021-03-22 복합 부직포 및 이를 포함하는 물품 WO2021206313A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2020-0043510 2020-04-09
KR10-2020-0043512 2020-04-09
KR20200043512 2020-04-09
KR20200043510 2020-04-09
KR10-2021-0030145 2021-03-08
KR1020210030145A KR102594148B1 (ko) 2020-04-09 2021-03-08 복합 부직포 및 이를 포함하는 물품

Publications (1)

Publication Number Publication Date
WO2021206313A1 true WO2021206313A1 (ko) 2021-10-14

Family

ID=78023502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003502 WO2021206313A1 (ko) 2020-04-09 2021-03-22 복합 부직포 및 이를 포함하는 물품

Country Status (1)

Country Link
WO (1) WO2021206313A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127132A1 (en) * 2002-10-23 2004-07-01 Bba Nonwovens Simpsonville, Inc. Nonwoven protective fabrics with conductive fiber layer
JP2011006810A (ja) * 2009-06-25 2011-01-13 Kurashiki Seni Kako Kk エアフィルタ用帯電不織布及びその製造方法
KR20150079118A (ko) * 2013-12-31 2015-07-08 도레이케미칼 주식회사 에어필터 및 그 제조방법
KR20150105649A (ko) * 2013-01-10 2015-09-17 쓰리엠 이노베이티브 프로퍼티즈 캄파니 수증기 통기성 층을 포함하는 안면 시일을 갖는 안면부 여과식 호흡기
KR20190085026A (ko) * 2016-11-21 2019-07-17 제이엔씨 주식회사 적층 부직포 시트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127132A1 (en) * 2002-10-23 2004-07-01 Bba Nonwovens Simpsonville, Inc. Nonwoven protective fabrics with conductive fiber layer
JP2011006810A (ja) * 2009-06-25 2011-01-13 Kurashiki Seni Kako Kk エアフィルタ用帯電不織布及びその製造方法
KR20150105649A (ko) * 2013-01-10 2015-09-17 쓰리엠 이노베이티브 프로퍼티즈 캄파니 수증기 통기성 층을 포함하는 안면 시일을 갖는 안면부 여과식 호흡기
KR20150079118A (ko) * 2013-12-31 2015-07-08 도레이케미칼 주식회사 에어필터 및 그 제조방법
KR20190085026A (ko) * 2016-11-21 2019-07-17 제이엔씨 주식회사 적층 부직포 시트

Similar Documents

Publication Publication Date Title
WO2012002754A2 (ko) 전기방사된 나노 섬유 웹을 이용한 액체 필터용 필터여재와 그 제조방법 및 이를 이용한 액체 필터
EP2609238B1 (en) Nonwoven web and fibers with electret properties, manufacturing processes thereof and their use
KR100697125B1 (ko) 자유 섬유 및 극성 액체로부터 부직 섬유상 일렉트리트웹의 제조 방법 및 장치
WO2021194248A1 (ko) 복합 부직포 및 이를 포함하는 물품
US20190336896A1 (en) Electret webs with charge-enhancing additives
WO2021206313A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021206312A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2022191398A1 (ko) 부직포용 방충제 마스터배치의 제조방법, 부직포용 방충제 마스터배치, 부직포 및 물품
WO2021206349A1 (ko) 복합 부직포 및 이를 포함하는 물품
KR20210125909A (ko) 복합 부직포 및 이를 포함하는 물품
WO2021206358A1 (ko) 복합 부직포 및 이를 포함하는 물품
WO2021194189A1 (ko) 복합 부직포의 제조방법, 복합 부직포 및 물품
WO2021206359A1 (ko) 친환경 부직포, 복합 부직포 및 이를 포함하는 물품
KR20210125917A (ko) 복합 부직포 및 이를 포함하는 물품
KR20210125904A (ko) 복합 부직포 및 이를 포함하는 물품
WO2021206348A1 (ko) 공기 필터용 복합 부직포 및 이를 포함하는 물품
KR20210125906A (ko) 복합 부직포 및 물품
WO2021206320A1 (ko) 의료용 복합 부직포와 그의 제조방법, 및 물품
WO2021006527A1 (ko) 권축형 복합섬유의 부직포와 그의 적층체, 및 물품
KR102576247B1 (ko) 복합 부직포의 제조방법, 복합 부직포 및 물품
KR20210125908A (ko) 부직포 적층체 및 이를 포함하는 물품
KR102571795B1 (ko) 피부 자극이 적은 복합 부직포, 및 이를 포함하는 물품
KR20210125905A (ko) 복합 부직포 및 이를 포함하는 물품
WO2023090913A1 (ko) 부직포, 부직포의 제조방법 및 물품
KR102584560B1 (ko) 공기 필터용 복합 부직포 및 이를 포함하는 물품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785255

Country of ref document: EP

Kind code of ref document: A1