WO2021206094A1 - 排尿予測システム、排尿予測方法及び排尿予測プログラム - Google Patents

排尿予測システム、排尿予測方法及び排尿予測プログラム Download PDF

Info

Publication number
WO2021206094A1
WO2021206094A1 PCT/JP2021/014654 JP2021014654W WO2021206094A1 WO 2021206094 A1 WO2021206094 A1 WO 2021206094A1 JP 2021014654 W JP2021014654 W JP 2021014654W WO 2021206094 A1 WO2021206094 A1 WO 2021206094A1
Authority
WO
WIPO (PCT)
Prior art keywords
urination
posture
urine
subject
urine volume
Prior art date
Application number
PCT/JP2021/014654
Other languages
English (en)
French (fr)
Inventor
悠気 上杉
良輔 正森
Original Assignee
トリプル・ダブリュー・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トリプル・ダブリュー・ジャパン株式会社 filed Critical トリプル・ダブリュー・ジャパン株式会社
Priority to JP2022514089A priority Critical patent/JPWO2021206094A1/ja
Publication of WO2021206094A1 publication Critical patent/WO2021206094A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/20Measuring for diagnostic purposes; Identification of persons for measuring urological functions restricted to the evaluation of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • the technology disclosed here relates to a urination prediction system, a urination prediction method and a urination prediction program.
  • Patent Document 1 transmits ultrasonic waves into the body and estimates the urine volume of the bladder based on the reflected wave from the bladder. Then, this device determines that there was urination when the amount of urine decreased.
  • the subject equipped with the ultrasonic sensor of the system as described above is not always stationary but active. Therefore, depending on the condition of the subject, the reflected wave from the bladder may not be properly received or the urine volume may not be accurately evaluated.
  • the technology disclosed here was made in view of this point, and the purpose is to improve the accuracy of determining the presence or absence of urination.
  • the urination prediction system disclosed here includes an ultrasonic sensor that transmits ultrasonic waves into the body of the subject and receives reflected waves, a posture sensor that detects the posture of the subject, and a bladder received by the ultrasonic sensor.
  • the subject is based on the urination determination unit that continuously estimates the urine volume of the bladder based on the reflected wave from the urine and determines the presence or absence of urination based on the decrease in urine volume, and the posture detected by the posture sensor.
  • the urination determination unit is provided with a posture determination unit for determining whether the urine volume can be estimated or a urine volume cannot be estimated, and the urination determination unit has the subject's urination determination position and the urine volume is reduced. On the other hand, if the subject's posture is the above-mentioned difficult-to-estimate posture, it is not determined that urination has occurred even if the amount of urine decreases.
  • the urination prediction method disclosed herein transmits ultrasonic waves into the subject's body and continuously estimates the urine volume of the bladder based on the reflected waves from the bladder received by the ultrasonic sensor that receives the reflected waves.
  • the step of determining urination it is determined that urination has occurred when the subject's posture is the presumable posture and the amount of urine decreases, while the subject's posture is difficult to estimate. In the case of posture, it is not determined that there was urination even if the amount of urine decreased.
  • the urination prediction program disclosed here is a urination prediction program for realizing a function of determining the presence or absence of urination of a subject in a computer, and transmits ultrasonic waves into the body of the subject and receives reflected waves.
  • the function to continuously estimate the urine volume of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor and to judge urination based on the decrease in urine volume, and the posture of the subject detected by the posture sensor.
  • the computer realizes a function of determining whether the posture of the subject is an estimable posture of urine volume or a difficult posture of estimating urine volume, and the function of determining urination is such that the posture of the subject is the presumable posture.
  • the urine volume decreases it is determined that urination has occurred, while when the subject's posture is the above-mentioned difficult-to-estimate posture, it is not determined that urination has occurred even if the urine volume decreases.
  • the accuracy of determining the presence or absence of urination can be improved.
  • the accuracy of determining the presence or absence of urination can be improved.
  • the accuracy of determining the presence or absence of urination can be improved.
  • FIG. 1 is a schematic view of a urination prediction system.
  • FIG. 2 is a schematic perspective view of the probe.
  • FIG. 3 is a schematic side view of the probe.
  • FIG. 4 is a diagram showing a mounted state of the probe.
  • FIG. 5 is a schematic cross-sectional view of the lower abdomen of the human body with the probe attached.
  • FIG. 6 is a block diagram of the terminal device.
  • FIG. 7 is a block diagram showing a hardware configuration of the first server.
  • FIG. 8 is a block diagram showing a functional configuration of the control unit.
  • FIG. 9 is a flowchart of processing of the processing device.
  • FIG. 10 is a flowchart of processing of the first server.
  • FIG. 11 is a flowchart of a subroutine for determining urination.
  • FIG. 12 is a diagram showing an example of urination determination, in which (A) the urine level, (B) is the posture flag, (C) is the body movement flag, (D) is the notification of the urination timing, and (E). Indicates a urination notification.
  • FIG. 13 is a diagram showing another example of urination determination, in which (A) the urine level, (B) is the posture flag, (C) is the body movement flag, and (D) is the notification of the urination timing. E) indicates a urination notification.
  • FIG. 14 is a schematic cross-sectional view of the lower abdomen of the human body when the urine volume is medium.
  • FIG. 15 is a received signal of the first ultrasonic sensor in the state of FIG.
  • FIG. 16 is a received signal of the second ultrasonic sensor in the state of FIG.
  • FIG. 17 is a received signal of the third ultrasonic sensor in the state of FIG.
  • FIG. 18 is a received signal of the fourth
  • FIG. 1 is a schematic view of the urination prediction system 100.
  • the urination prediction system 100 estimates the amount of urine in the bladder of the subject using ultrasonic waves and determines the presence or absence of urination.
  • the target person includes not only a healthy person but also a person requiring long-term care such as an elderly person or a physically handicapped person, or a person who is not a person requiring long-term care but is physically handicapped and takes time to go to the toilet.
  • the target audience is not limited to this.
  • the urination prediction system 100 transmits ultrasonic waves into the body of the subject and receives the reflected waves from the ultrasonic sensor 11, the posture sensor 12 that detects the posture of the subject, and the bladder received by the ultrasonic sensor 11.
  • the subject's urine volume is continuously estimated based on the reflected wave, and the urination determination unit 52 that determines the presence or absence of urination based on the decrease in urine volume and the posture detected by the posture sensor 12 are used. It is provided with a posture determination unit 53 for determining whether the posture is a posture in which the urine volume can be estimated or a posture in which the urine volume cannot be estimated.
  • the urination determination unit 52 determines the presence or absence of urination in consideration of the determination result of the posture determination unit 53. Specifically, the urination determination unit 52 determines that the subject has urination when the posture of the subject is an estimable posture and the amount of urine decreases, while the posture of the subject is a posture that is difficult to estimate. It is not determined that there was urination even if the amount of urine decreased.
  • the urination prediction system 100 accommodates the ultrasonic sensor 11 and the posture sensor 12, and receives the probe 1 mounted in contact with the body surface of the subject, the reception signal of the ultrasonic sensor 11, and the acceleration signal of the posture sensor 12.
  • a processing device 2 for processing may be further provided.
  • the probe 1 is always worn by the subject.
  • the processing device 2, the ultrasonic sensor 11, and the attitude sensor 12 are connected by wire.
  • the urination prediction system 100 may further include a server group 3 that analyzes a signal from the processing device 2.
  • the processing device 2 wirelessly communicates with the server group 3.
  • the server group 3 functions as a urination determination unit 52 and a posture determination unit 53.
  • FIG. 2 is a schematic perspective view of the probe 1.
  • FIG. 3 is a schematic side view of the probe 1.
  • the probe 1 has a casing 13 that houses an ultrasonic sensor 11 and an attitude sensor 12.
  • each of the four ultrasonic sensors 11 is provided.
  • the basic configuration of each of the four ultrasonic sensors 11 is the same.
  • they are referred to as a first ultrasonic sensor 11A, a second ultrasonic sensor 11B, a third ultrasonic sensor 11C, and a fourth ultrasonic sensor 11D.
  • the ultrasonic sensor 11 transmits and receives ultrasonic waves.
  • the ultrasonic sensor 11 is formed of a piezoelectric element.
  • the piezoelectric element vibrates according to the driving voltage to generate ultrasonic waves, and when it receives ultrasonic waves, it generates an electric signal corresponding to the vibration.
  • the posture sensor 12 detects the acceleration.
  • the posture sensor 12 is an acceleration sensor that detects the acceleration of each of the three orthogonal axes.
  • An acceleration signal is output from the attitude sensor 12.
  • the casing 13 is formed in a flat shape.
  • the casing 13 has a relatively large area and has a pair of substantially rectangular surfaces facing each other, one of which is in contact with the abdomen of the subject (hereinafter referred to as "contact surface”). It becomes 14.
  • the first to fourth ultrasonic sensors 11A to 11D are arranged so as to transmit ultrasonic waves to different positions in the direction in which the bladder expands.
  • the first to fourth ultrasonic sensors 11A to 11D are arranged at different positions in the vertical direction of the casing 13 as shown in FIGS. 2 and 3.
  • the first ultrasonic sensor 11A, the second ultrasonic sensor 11B, the third ultrasonic sensor 11C, and the fourth ultrasonic sensor 11D are arranged in this order from the bottom.
  • the vertical direction of the casing 13 is the vertical direction when the probe 1 is attached to the subject.
  • the probe 1 is attached to the subject, for example, in a state in which the longitudinal directions of the substantially rectangular contact surfaces 14 coincide with each other in the vertical direction. That is, the vertical direction of the casing 13 is the longitudinal direction of the contact surface 14.
  • the positions of the first ultrasonic sensor 11A and the third ultrasonic sensor 11C in the left-right direction are the same, while the second ultrasonic sensor 11B and the fourth ultrasonic sensor 11D are the first ultrasonic sensor 11A and the third ultrasonic sensor. It is offset in the left-right direction with respect to the sensor 11C.
  • the positions of the second ultrasonic sensor 11B and the fourth ultrasonic sensor 11D in the left-right direction are the same. That is, the ultrasonic sensors 11A to 11D are arranged in a staggered pattern.
  • the transmission directions of the ultrasonic waves of the ultrasonic sensors 11A to 11D are not parallel.
  • the ultrasonic sensors 11A to 11D transmit ultrasonic waves radially in the vertical direction. That is, the ultrasonic sensors 11A to 11D have different emission angles of ultrasonic waves in the vertical direction.
  • the fourth ultrasonic sensor 11D transmits ultrasonic waves in the normal direction of the contact surface 14.
  • the third ultrasonic sensor 11C transmits ultrasonic waves obliquely downward from the fourth ultrasonic sensor 11A.
  • the second ultrasonic sensor 11B transmits ultrasonic waves obliquely downward from the third ultrasonic sensor 11C.
  • the first ultrasonic sensor 11A transmits ultrasonic waves obliquely downward from the second ultrasonic sensor 11B. That is, the first ultrasonic sensor 11A transmits ultrasonic waves most downward, and gradually transmits ultrasonic waves upward in the order of the second ultrasonic sensor 11B, the third ultrasonic sensor 11C, and the fourth ultrasonic sensor 11D. ..
  • FIG. 4 is a diagram showing a mounted state of the probe 1. As shown in FIG. 4, the probe 1 is always worn by the subject. The probe 1 is placed on the skin of the subject's abdomen and in a portion corresponding to the bladder (for example, the lower abdomen).
  • the probe 1 is attached to the abdomen by a belt or tape with the contact surface 14 in contact with the abdomen of the subject.
  • a gel or the like for improving the permeability of ultrasonic waves to the abdomen is applied between the contact surface 14 and the abdomen.
  • FIG. 5 is a schematic cross-sectional view of the lower abdomen of the human body to which the probe 1 is attached.
  • the example of FIG. 5 shows a state in which there is almost no urine volume.
  • subcutaneous fat 61, muscle 62, fat 63, bladder 64, seminal vesicles 65 or prostate 66 (for men) or vagina (for women), rectum 67, spine (sacrum) 68, etc. are lined up in order.
  • the small intestine 69 is located above the bladder 64, and the pubis 610 is located diagonally below the anterior side of the bladder 64.
  • the probe 1 is attached to the abdomen of the subject so that the ultrasonic waves emitted from the ultrasonic sensors 11A to 11D spread in the vertical direction.
  • Ultrasonic sensors 11A to 11D transmit ultrasonic waves to different positions in the vertical direction in the body.
  • the bladder swells three-dimensionally as the amount of urine increases. Therefore, the different positions in the vertical direction are one of the directions in which the bladder expands.
  • the bladder expands significantly in the vertical direction. That is, the ultrasonic sensors 11A to 11D are arranged so as to transmit ultrasonic waves to different positions in the direction in which the bladder expands relatively greatly.
  • FIG. 6 is a block diagram of the processing device 2.
  • the processing device 2 includes a transmission unit 21 that outputs a drive voltage to the ultrasonic sensor 11, a reception unit 22 that receives a reception signal from the ultrasonic sensor 11, and an ultrasonic sensor 11 connected to the transmission unit 21 and the reception unit 22.
  • a switch 23 for switching between, a notification unit 25 for notifying various information to the outside, a communication unit 26 for communicating with the outside, a storage unit 27 for storing various programs and data, and an overall processing device 2. It has a control unit 28 that performs various controls and a memory 29.
  • the processing device 2 is attached to the clothes or the like of the subject.
  • the transmission unit 21 supplies a drive voltage to the ultrasonic sensor 11.
  • the transmission unit 21 has a pulse generator 21a and an amplification unit 21b.
  • the pulse generator 21a generates a pulse signal having a predetermined pulse width and voltage value.
  • the pulse generator 21a may be configured so that the pulse width, the number of pulses, and the frequency can be changed.
  • the amplification unit 21b amplifies the pulse signal from the pulse generator 21a and outputs it as a drive voltage to the ultrasonic sensor 11.
  • the receiving unit 22 receives an electric signal from the ultrasonic sensor 11.
  • the receiving unit 22 includes an amplification unit 22a, a detection unit 22b, and an A / D conversion unit 22c.
  • the amplification unit 22a amplifies the received signal from the ultrasonic sensor 11.
  • the detection unit 22b performs envelope detection on the amplified received signal.
  • the detection unit 22b may amplify the received signal after detection.
  • the A / D conversion unit 22c A / D-converts the received signal after detection.
  • the switch 23 selectively switches between the first to fourth ultrasonic sensors 11A to 11D and the ultrasonic sensors 11 connected to the transmitting unit 21 and the receiving unit 22.
  • the notification unit 25 is, for example, an LED lamp. Various information (for example, with urination) is notified to the subject depending on the lighting mode of the LED lamp.
  • the communication unit 26 is a communication module and communicates with an external communication device.
  • the communication unit 26 communicates with the Bluetooth (registered trademark) standard.
  • the communication unit 26 communicates with the server group 3 via the repeater 72.
  • the storage unit 27 is a computer-readable recording medium, and is composed of, for example, a flash memory.
  • the storage unit 27 may be composed of an optical disk such as a CD-ROM.
  • the storage unit 27 stores various programs and various information necessary for executing the processing of the control unit 28. Further, the storage unit 27 stores the reception signal received by the reception unit 22, the acceleration signal from the attitude sensor 12, information acquired from the outside via the communication unit 26, and the like.
  • the control unit 28 controls the transmission unit 21, the reception unit 22, the switch 23, the notification unit 25, and the communication unit 26 based on the program stored in the storage unit 27.
  • the control unit 28 is composed of a processor such as a CPU (Central Processing Unit), for example.
  • the control unit 28 executes various processes by expanding the program stored in the storage unit 27 or the like into the memory 29 and executing the program.
  • the control unit 28 may be realized by hardware such as an LSI (Large Scale Integration) having the same function as the processor.
  • control unit 28 controls the switch 23 to switch the ultrasonic sensor 11 connected to the transmission unit 21 and the reception unit 22.
  • the control unit 28 controls the transmission unit 21 to output a drive voltage to the ultrasonic sensor 11.
  • the control unit 28 controls the reception unit 22 to convert the reception signal of the ultrasonic sensor 11 into a digital signal.
  • the control unit 28 controls the communication unit 26 to transmit signals from the reception unit 22 and the attitude sensor 12 to the outside.
  • the control unit 28 receives a signal from the outside via the communication unit 26 and performs processing according to the signal (for example, the notification unit 25 is operated).
  • the memory 29 is a computer-readable recording medium, and is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), a RAM (RandomAccessMemory), or the like.
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the server group 3 performs so-called cloud computing. As shown in FIG. 1, the server group 3 includes a plurality of servers. Specifically, the server group 3 includes a first server 31 that performs data analysis, a second server 32 that provides an application to the user terminal 71, and a third server 33 that functions as a database.
  • the first server 31 can communicate with the processing device 2 via the network, and the received signal transmitted from the processing device 2 (that is, the received signal of the ultrasonic sensor 11 received and processed by the receiving unit 22 (received wave). )) And the acceleration signal are received and stored in the third server 33.
  • the received signal received from the processing device 2 is also simply referred to as “the received signal of the ultrasonic sensor 11”
  • the acceleration signal received from the processing device 2 is also simply referred to as “the acceleration of the attitude sensor 12”.
  • the first server 31 analyzes the received signal of the ultrasonic sensor 11 and the acceleration of the attitude sensor 12 stored in the third server 33. Specifically, the first server 31 estimates the urine volume of the bladder based on the received signal of the ultrasonic sensor 11.
  • the first server 31 determines the presence or absence of urination based on the reception signal of the ultrasonic sensor 11 and the acceleration of the posture sensor 12.
  • the first server 31 stores a program and data for estimating the amount of urine, a program and data for determining the presence or absence of urination, and the like.
  • the second server 32 can communicate with the user terminal 71 via the network.
  • a user (user ID) can be registered in the server group 3 (specifically, the third server 33), and the user ID is stored in the server group 3 in association with the processing device 2.
  • the user terminal 71 can also be registered in the server group 3 in association with the user ID. For example, when a user registers or logs in to the second server 32 using the user terminal 71, the second server 32 acquires and registers the information of the user terminal 71. By doing so, communication between the server group 3 and the user terminal 71 becomes possible.
  • the user terminal 71 for example, a smartphone or tablet terminal
  • the caregiver can be registered in the server group 3.
  • the user terminal 71 of the target person can be registered.
  • the user terminal 71 is not limited to one, and a plurality of users (for example, the caregiver's user terminal 71 and the target person's user terminal 71) may be registered.
  • the user terminal 71 can send and receive information to and from the second server 32 to operate the dedicated application.
  • the second server 32 transmits various information such as the urination timing of the subject to the user terminal 71.
  • the third server 33 stores information about the target person, a reception signal of the ultrasonic sensor 11 received by the first server 31, an analysis result of the first server 31, and information received by the second server 32.
  • the information about the target person is, for example, a user ID that identifies the target person, a device ID that identifies the processing device 2, a terminal ID that identifies the user terminal, information about urination and urination of the target person, and the like.
  • the third server 33 stores these information in association with each other.
  • the user ID, device ID and terminal ID are registered in advance by the user.
  • the information on the subject's urine storage and urination is, for example, the allowable urine volume (allowable urine level described later), and a common initial value is preset by default.
  • FIG. 7 is a block diagram showing the hardware configuration of the first server 31.
  • the first server 31 has a control unit 41, a memory 42, a communication unit 43, and a storage unit 44.
  • the first server 31 may further have a keyboard and / or a display.
  • the control unit 41 is composed of a processor such as a CPU (Central Processing Unit), for example.
  • the control unit 41 executes various processes by expanding the program stored in the storage unit 44 or the like into the memory 42 and executing the program.
  • the control unit 41 may be realized by hardware such as an LSI (Large Scale Integration) having the same function as the processor.
  • the memory 42 is a computer-readable recording medium, and is composed of, for example, a ROM (ReadOnlyMemory), an EPROM (ErasableProgrammableROM), an EEPROM (ElectricallyErasableProgrammableROM), a RAM (RandomAccessMemory), or the like.
  • ROM ReadOnlyMemory
  • EPROM ErasableProgrammableROM
  • EEPROM ElectricallyErasableProgrammableROM
  • RAM RandomAccessMemory
  • the communication unit 43 is a communication module and communicates with the processing device 2 via the repeater 72.
  • the storage unit 44 is a computer-readable recording medium, and is composed of, for example, a hard disk.
  • the storage unit 44 may be composed of an optical disk such as a CD-ROM.
  • the storage unit 44 stores various programs and various information necessary for executing the processing of the control unit 41.
  • the storage unit 44 stores the urination prediction program 81 and the threshold value 82 used for urine volume estimation and urination determination.
  • the urination prediction program 81 continuously estimates the urine volume of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor 11 that transmits ultrasonic waves into the subject's body and receives the reflected wave, and urine.
  • the second server 32 and the third server 33 basically have the same hardware configuration as the first server 31.
  • the various programs and various information stored in the storage units of the second server 32 and the third server 33 are programs and information corresponding to the respective processes.
  • FIG. 8 is a block diagram showing the functional configuration of the control unit 41.
  • the control unit 41 realizes the function shown in FIG. 8 by expanding and executing the urination prediction program 81 or the like in the memory 42.
  • the control unit 41 includes an acquisition unit 51, a urination determination unit 52, and a posture determination unit 53.
  • the acquisition unit 51 receives, that is, acquires the reception signal of the ultrasonic sensor 11 and the acceleration of the attitude sensor 12 by communicating with the processing device 2. This acquisition function is realized by the control unit 41 executing the related program stored in the storage unit 44.
  • the acquisition unit 51 stores the reception signal and the acceleration in the third server 33 together with the time when the reception signal and the acceleration are received (that is, the acquisition time).
  • the third server 33 accumulates the received signal, the acceleration, and the acquisition time.
  • the urination determination unit 52 continuously estimates the urine volume of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor 11, and determines urination based on the decrease in the urine volume.
  • This urination determination function is realized by the control unit 41 executing the urination prediction program 81 stored in the storage unit 44. Specifically, the urination determination unit 52 analyzes the reception signal of the ultrasonic sensor 11 and the acceleration of the posture sensor 12 stored in the third server 33. The urination determination unit 52 continuously obtains a calculated value of the bladder urine volume based on the reflected wave from the bladder received by the ultrasonic sensor 11, and updates the estimated value of the bladder urine volume based on the calculated value. go.
  • the urination determination unit 52 stores the estimated value of the urine volume in the third server 33. In addition, the urination determination unit 52 compares the obtained calculated value with the latest estimated value before updating the estimated value of urine volume. When the amount of decrease in the value calculated from the latest estimated value is equal to or greater than the predetermined first urine volume threshold value ⁇ , the urination determination unit 52 determines that urination has occurred.
  • the posture determination unit 53 determines whether the posture of the subject is a posture in which the urine volume can be estimated or a posture in which the urine volume cannot be estimated based on the acceleration of the posture sensor 12. This posture determination function is realized by the control unit 41 executing the urination prediction program 81 stored in the storage unit 44. More specifically, the posture determination unit 53 determines in which direction gravity is acting based on the acceleration of the three axes, and estimates the posture of the subject based on the direction in which gravity is acting. Then, the posture determination unit 53 determines whether or not the estimated posture is an estimateable posture.
  • the presumable posture is a posture in which the contact state of the probe 1 with the body surface is appropriately maintained.
  • the estimable posture may change depending on the shape of the probe 1 and the method of mounting the probe 1 on the body surface.
  • There are various aspects of the estimable posture For example, in the standing or sitting position, the rotation angle around the left-right axis (that is, the tilt angle in the front-rear direction) is within the predetermined range, and the rotation angle around the front-rear axis (that is, the tilt angle in the left-right direction) is within the predetermined range.
  • the posture determination unit 53 determines that the posture can be estimated.
  • the presumable posture is when the patient is in a backward tilted state in a standing or sitting position and the left / right tilt is small.
  • the posture determination unit 53 determines that the posture can be estimated.
  • the supine position or the prone position is the presumable posture.
  • postures other than the presumable posture are difficult to estimate.
  • the difficult-to-estimate posture is the lateral decubitus position.
  • FIG. 9 is a flowchart of processing of the processing device 2.
  • the probe 1 and the processing device 2 periodically transmit and receive ultrasonic waves and detect the acceleration of the subject.
  • the transmission / reception of ultrasonic waves and the detection of acceleration are controlled by the control unit 28 of the processing device 2.
  • control unit 28 determines in step Sa1 whether or not the detection timing has arrived. The detection timing is repeated in a predetermined detection cycle. If the detection timing has not arrived, the control unit 28 waits for the detection timing in step Sa1.
  • the control unit 28 transmits and receives ultrasonic waves to the first to fourth ultrasonic sensors 11A to 11D in order while switching the switch 23, and detects the acceleration of the attitude sensor 12. Specifically, the control unit 28 controls the switch 23 so that the first ultrasonic sensor 11A, the transmission unit 21, and the reception unit 22 are connected in step Sa2. Then, the control unit 28 outputs a pulse signal generation command to the transmission unit 21, and causes the transmission unit 21 to supply a drive voltage to the first ultrasonic sensor 11A. The first ultrasonic sensor 11A transmits ultrasonic waves based on the driving voltage and receives reflected waves from the body. The received signal of the first ultrasonic sensor 11A is amplified, detected and A / D converted by the receiving unit 22.
  • the control unit 28 stores the received signal after the A / D conversion in the memory 29.
  • the control unit 28 repeats the transmission / reception of this ultrasonic wave a predetermined number of times.
  • the control unit 28 performs an averaging process on the received signals for a predetermined number of times stored in the memory 29.
  • the control unit 28 stores the received signal after averaging in the storage unit 27.
  • control unit 28 sequentially switches the switches 23 in steps Sa3 to Sa5 to execute the same control on the second to fourth ultrasonic sensors 11B to 11D.
  • step Sa6 the control unit 28 stores the acceleration signal from the attitude sensor 12 in the memory 29.
  • step Sa7 the control unit 28 transmits the received signals of the first to fourth ultrasonic sensors 11A to 11D and the acceleration of the attitude sensor 12 stored in the memory 29 to the server group 3 (specifically) via the communication unit 26. Specifically, it is transmitted to the first server 31).
  • the control unit 28 repeats the process from step Sa1. That is, the control unit 28 transmits and receives ultrasonic waves by the first to fourth ultrasonic sensors 11A to 11D, detects acceleration by the attitude sensor 12, and receives signals and attitudes of the first to fourth ultrasonic sensors 11A to 11D.
  • the transmission of the acceleration of the sensor 12 to the server group 3 is set as one set, and this process is periodically executed in the detection cycle.
  • FIG. 10 is a flowchart of processing of the first server 31.
  • FIG. 11 is a flowchart of a subroutine for determining urination.
  • the first server 31 executes the following processing by expanding and executing the urination prediction program 81 or the like in the memory 42.
  • FIG. 12 is a diagram showing an example of urination determination, in which (A) the urine level, (B) is the posture flag, (C) is the body movement flag, (D) is the notification of the urination timing, and (E). Indicates a urination notification.
  • FIG. 10 is a flowchart of processing of the first server 31.
  • FIG. 11 is a flowchart of a subroutine for determining urination.
  • the first server 31 executes the following processing by expanding and executing the urination prediction program 81 or the like in the memory 42.
  • FIG. 12 is a diagram showing an example of urination determination, in which (A) the urine level,
  • FIG. 13 is a diagram showing another example of urination determination, in which (A) the urine level, (B) is the posture flag, (C) is the body movement flag, and (D) is the notification of the urination timing. E) indicates a urination notification.
  • the estimated urine level is shown by a solid line, and the calculated urine level is shown by a broken line.
  • step Sb1 whether or not the acquisition unit 51 of the first server 31 has received the reception signals of the four ultrasonic sensors 11 and the accelerations of the attitude sensors 12 periodically transmitted from the processing device 2. Is determined.
  • the acquisition unit 51 receives the reception signal of the ultrasonic sensor 11 and the acceleration of the attitude sensor 12, in step Sb2, the acquisition unit 51 saves the reception signal of the ultrasonic sensor 11 and the acceleration of the attitude sensor 12 in the third server 33. ..
  • the urination determination unit 52 determines whether or not the determination timing has arrived.
  • the determination timing is repeated in a predetermined determination cycle. That is, the urination determination unit 52 is configured to estimate the urine volume and determine urination in the determination cycle.
  • the determination cycle is set at an interval longer than the detection cycle of the processing device 2. The determination cycle may be the same as the detection cycle.
  • step Sb1 If the determination timing has not arrived, the process returns to the process of the acquisition unit 51 in step Sb1. On the other hand, when the determination timing arrives, the urination determination unit 52 proceeds to step Sb4.
  • the urination determination unit 52 obtains the urine level calculation value at the current determination timing.
  • the urine level is an index showing the urine volume of the bladder, and the higher the urine level, the larger the urine volume.
  • the urine level calculated value is a urine level calculated based on the received signal of the ultrasonic sensor 11 at the present determination timing, and is a provisional urine level.
  • the "urine level estimated value" described later is the urine level finally estimated by the urination determination unit 52 at each determination timing.
  • the urination determination unit 52 reads the reception signal of the ultrasonic sensor 11 from the third server 33 after the previous determination timing until the current determination timing. Since the acquisition unit 51 acquires the reception signals of the four ultrasonic sensors 11 at a time, the urination determination unit 52 reads out the reception signals of the plurality of sets of the ultrasonic sensors 11. If only one set of ultrasonic sensor 11 reception signals has been acquired between the previous determination timing and the current determination timing, the urination determination unit 52 receives the one set of ultrasonic sensors 11. Read the signal.
  • the urination determination unit 52 obtains the urine level for each set of received signals of the ultrasonic sensor 11. Specifically, the urination determination unit 52 examines whether or not the bladder is detected in each of the received signals of the four ultrasonic sensors 11 included in each set. Since noise is observed immediately after the transmission of ultrasonic waves in the received signal, it is easy to identify the reflected wave from the posterior wall of the bladder, which is relatively far from the surface of the abdomen. The urination determination unit 52 examines whether or not each of the received signals of the four ultrasonic sensors 11 includes a reflected wave on the posterior wall of the bladder. The reception time zone in which the reflected wave on the posterior wall of the bladder is expected to return is generally known.
  • the urination determination unit 52 determines whether or not a reflected wave is present in the reception time zone.
  • the "reflected wave of the bladder” means the reflected wave of the posterior wall of the bladder.
  • the urination determination unit 52 determines that the ultrasonic sensor 11 has detected the bladder based on the fact that the received signal includes the reflected wave of the bladder.
  • the urination determination unit 52 obtains the urine level based on which ultrasonic sensor 11 detects the bladder. While the bladder expands upward as the amount of urine increases, the first to fourth ultrasonic sensors 11A to 11D transmit ultrasonic waves to different positions in the vertical direction as described above. Therefore, the larger the amount of urine, the larger the number of ultrasonic sensors 11 that detect the bladder.
  • the urination determination unit 52 determines the urine level according to which ultrasonic sensor 11 detects the bladder in order from the bottom. The urine level when none of the ultrasonic sensors 11 detects the bladder is set to "0". Let the urine level be "2.5" when only the first ultrasonic sensor 11A detects the bladder.
  • the urine level be "5" when only the first ultrasonic sensor 11A and the second ultrasonic sensor 11B detect the bladder.
  • the urine level be "7.5" when only the first ultrasonic sensor 11A, the second ultrasonic sensor 11B, and the third ultrasonic sensor 11C detect the bladder.
  • the urine level when all the ultrasonic sensors 11 detect the bladder is set to "10". That is, urine levels are assessed in the range 0-10.
  • FIG. 14 shows an example of the lower abdomen of the human body.
  • FIG. 14 is a schematic cross-sectional view of the lower abdomen of the human body when the urine volume is medium.
  • examples of received signals of the four ultrasonic sensors 11 in the bladder state of FIG. 14 are shown in FIGS. 15 to 18.
  • FIG. 15 is a reception signal of the first ultrasonic sensor 11A.
  • FIG. 16 is a reception signal of the second ultrasonic sensor 11B.
  • FIG. 17 is a reception signal of the third ultrasonic sensor 11C.
  • FIG. 18 is a reception signal of the fourth ultrasonic sensor 11D.
  • the first ultrasonic sensor 11A and the second ultrasonic sensor 11B detect the reflected wave W1 of the bladder
  • the third ultrasonic sensor 11C and the fourth ultrasonic sensor 11D detect the reflected wave of the bladder. Not. That is, the urine level is "5".
  • the urination determination unit 52 obtains the urine level for the reception signals of all sets of ultrasonic sensors 11 read out at this determination timing. Then, the urination determination unit 52 averages them to obtain a urine level calculated value. For example, the urination determination unit 52 rounds off the minority point or less of the average value and represents the calculated urine level as an integer of 0 to 10. The urination determination unit 52 stores the calculated urine level in the third server 33 together with the time of the determination timing. The calculated urine level is still a provisional urine level at this point and has not been adopted as the official current urine level of the subject.
  • step Sb5 the urination determination unit 52 determines whether or not the urine level calculation value has increased from the urine level estimated value most recent of the current determination timing, that is, the urine level estimated value at the previous determination timing. ..
  • the urination determination unit 52 updates the urine level estimated value with the urine level calculated value in step Sb6. That is, the urination determination unit 52 adopts the calculated urine level as the current estimated urine level. As a result, urine level estimates increase.
  • the urination determination unit 52 determines in step Sb7 whether or not the current estimated urine level has reached a predetermined allowable urine level.
  • the permissible urine level is a urine level at which the subject is motivated to urinate, and for example, level "7" is stored in the storage unit 44 as an initial value. The permissible urine level can be changed by the user.
  • the urination determination unit 52 returns to step Sb1.
  • the estimated urine level is gradually updated and the estimated urine level rises by repeating the above processing.
  • the urine determination unit 52 performs the urine level estimate and urination via the communication unit 43 in step Sb8.
  • the arrival of the timing is transmitted to the processing device 2 and the user terminal 71.
  • the processing device 2 When the processing device 2 receives the notification of the urination timing, the processing device 2 operates the notification unit 25. For example, the processing device 2 lights the LED lamp, which is the notification unit 25, in a mode indicating the arrival of the urination timing (for example, blinking at a low speed). Further, when the user terminal 71 receives the notification of the urine level and the urination timing, the user terminal 71 displays the arrival of the urine level and the urination timing on the display of the user terminal 71.
  • the subject can prepare the toilet at an early stage.
  • people around the subject can also guide the subject to the toilet at an early stage. As a result, incontinence can be prevented.
  • step Sb5 the urination determination unit 52 determines urination in step Sb9.
  • the posture determination unit 53 determines in step Sc1 whether the posture of the subject is an estimable posture or a difficult to estimate posture.
  • the posture determination unit 53 reads the acceleration of the attitude sensor 12 from the third server 33 after the previous determination timing until the current determination timing. If only one acceleration is acquired between the previous determination timing and the current determination timing, the posture determination unit 53 reads out the one acceleration.
  • the posture determination unit 53 determines whether or not the posture of the subject is an estimable posture based on the read acceleration, specifically, based on the direction of the acceleration.
  • the supine and prone positions are defined as estimable postures in the recumbent position, and the estimable postures are defined as a backward tilted state and a small left-right tilt in the standing or sitting position.
  • the posture determination unit 53 determines whether or not the posture can be estimated for each read acceleration. When the postures can be estimated for all the read accelerations, the posture determination unit 53 determines that the posture of the subject at the current determination timing is the estimateable postures. If any of the read accelerations is in the difficult-to-estimate posture, the posture determination unit 53 determines that the posture of the subject at the current determination timing is the difficult-to-estimate posture. That is, if there is a posture that is difficult to estimate even once between the previous determination timing and the current determination timing, it is determined that the estimation is difficult, and it is determined that the estimation is possible only when the posture is always estimable.
  • the posture determination unit 53 sets the attitude flag according to the determination result.
  • the posture flag "0" represents an estimable posture
  • the posture flag "1” represents a standing or sitting position in a forward leaning state as the first aspect of the difficult-to-estimate posture
  • the posture flag "2" represents a difficult-to-estimate posture.
  • the lateral decubitus position is represented
  • the posture flag “3” represents the estimated difficult posture not included in the first and second aspects as the third aspect of the estimated difficult posture.
  • the posture determination unit 53 stores the determination result (for example, the attitude flag) in the third server 33.
  • the urination determination unit 52 When the level difference is less than the first urine volume threshold value ⁇ , the urination determination unit 52 does not update the current urine level estimated value in step Sc7, but maintains the value as it is (see arrows B in FIGS. 12 and 16). ). That is, the urination determination unit 52 does not adopt the calculated urine level as the current urine level. If the level difference is less than the first urine volume threshold ⁇ , the calculated urine level has not changed from the previous estimated urine level, or the calculated urine level has decreased slightly from the previous estimated urine level. If not. In the former case, of course, no urination has occurred. In the latter case as well, since the amount of decrease in urine level is small, the cause is a measurement error, and it is considered that urination does not occur. In the absence of urination, the urine volume does not decrease, so the current urine level estimate remains unchanged. After that, the urination determination unit 52 returns to the processing of the main flow (flow of FIG. 10).
  • the urination determination unit 52 repeats from the process of step Sb1. That is, the urination determination unit 52 repeatedly acquires the reception signal of the ultrasonic sensor 11 and the acceleration of the posture sensor 12 until the next determination timing arrives. When the next determination timing arrives, the urination determination unit 52 obtains a new calculated urine level and determines the urination timing or the presence or absence of urination. While the estimable posture is maintained, the urination determination unit 52 may perform processing after step Sb6 or steps Sc1, Sc2, Sc7 until the calculated urine level is significantly reduced from the latest estimated urine level. Repeat the process of. During this time, the urine level estimate may increase but not decrease.
  • the urination determination unit 52 determines in step Sc3 whether or not the subject has a large body movement.
  • the presence or absence of body movement is determined by the posture determination unit 53.
  • the posture determination unit 53 reads the acceleration between the previous determination timing and the current determination timing from the third server 33. If only one acceleration is acquired between the previous determination timing and the current determination timing, the posture determination unit 53 also reads the acceleration immediately before that. That is, the posture determination unit 53 reads out at least two accelerations.
  • the posture determination unit 53 determines whether or not there has been a large body movement based on the read acceleration, specifically, based on the absolute value (magnitude) of the acceleration.
  • the posture determination unit 53 determines whether or not the amount of change in the absolute value of acceleration is equal to or greater than the predetermined first body movement threshold value ⁇ .
  • the posture determination unit 53 makes this determination for each of two consecutive accelerations. That is, when three accelerations are read out, the amount of change between the absolute value of the first acceleration and the absolute value of the second acceleration, and the absolute value of the second acceleration and the absolute value of the third acceleration. The amount of change from the value is obtained, and each amount of change is compared with the first body movement threshold ⁇ . When the amount of change in the absolute value of all accelerations with respect to the read acceleration is less than the first body movement threshold value ⁇ , the posture determination unit 53 determines that there is no large body movement.
  • the posture determination unit 53 determines that there has been a large body movement.
  • the posture determination unit 53 sets the body movement flag to "2" when there is a large body movement, and sets the body movement flag to "0" when there is no large body movement.
  • the urination determination unit 52 determines in step Sc7 that the significant decrease in the urine level calculated value is a measurement error due to the large body movement of the subject. Maintain the current urine level estimates without updating them. That is, the urination determination unit 52 does not determine that urination has occurred. After that, the urination determination unit 52 returns to the main flow process. After returning to the main flow, the above process is repeated with the estimated urine level maintained.
  • the urination determination unit 52 updates the current urine level estimated value with the urine level calculated value in step Sc4 (arrow D in FIG. 12). That is, the urination determination unit 52 adopts the calculated urine level as the current urine level. In this case, since the subject is in an presumable posture, does not have a large body movement, and the urine volume is significantly reduced, the urination determination unit 52 determines that there is urination. Therefore, in step Sc5, the urination determination unit 52 transmits a urination notification indicating that urination has occurred to the processing device 2 and the user terminal 71 via the communication unit 43.
  • the urination determination unit 52 returns to the main flow process.
  • the urination determination unit 52 repeatedly acquires the reception signal of the ultrasonic sensor 11 and the acceleration of the posture sensor 12 until the next determination timing arrives, obtains a new urine level calculated value at the next determination timing, and urinates or urinates. Judge the presence or absence of. That is, the urine level is monitored again from the small estimated urine level after urination, and the urination timing and the presence or absence of urination are determined again.
  • the processing device 2 Upon receiving the urination notification, the processing device 2 operates the notification unit 25. For example, the processing device 2 lights the LED lamp, which is the notification unit 25, in an manner indicating that urination has occurred (for example, blinking at high speed). Further, when the user terminal 71 receives the urination notification, the user terminal 71 displays on the display of the user terminal 71 that urination has occurred.
  • the subject or people around the subject can know that there was urination, and can perform post-incontinence treatment at an early stage. That is, the time to change diapers is notified early. If the subject has properly urinated in the toilet or the like, the subject or the people around the subject may ignore the urination notification.
  • the urination determination unit 52 determines in step Sc6 that the posture is not the estimable posture, that is, the estimation difficult period continues. Judge whether or not. For example, the urination determination unit 52 determines whether or not the estimated difficult period is equal to or greater than a predetermined period threshold value ⁇ . If the estimated difficulty period is less than the period threshold value ⁇ , the urination determination unit 52 proceeds to step Sc7.
  • the urination determination unit 52 basically determines that the ultrasonic sensor 11 is not able to properly transmit and receive ultrasonic waves, and determines that there is no urination ( That is, it is not determined that there was urination). In the case of a difficult-to-estimate posture, even if the calculated urine level is significantly reduced from the latest estimated urine level, it is difficult to determine whether urination actually occurred or whether ultrasonic waves could not be transmitted or received properly. .. Therefore, as shown by the arrows E in FIGS. 12 and 13, the urination determination unit 52 maintains the current urine level estimation value as it is without updating it in step Sc7. After that, the urination determination unit 52 returns to the main flow process.
  • step Sc1 when the posture of the subject is a posture that is difficult to estimate at the time of arrow E, and the posture of the subject changes to a posture that can be estimated after the determination in step Sc1 is NO, the next step Sc1 The judgment of is YES.
  • the determination of the level difference in step Sc2 is YES.
  • the urination determination unit 52 determines that there is urination and updates the current urine level estimated value with the urine level calculated value (step Sc4). ), The urination notification is transmitted to the processing device 2 and the user terminal 71 via the communication unit 43 (step Sc5).
  • the posture of the subject is a posture that is difficult to estimate, there is a high possibility that the calculated urine level will be small.
  • the maintained urine level estimate is compared with the new urine level calculation value when the subject's posture changes to an estimable posture. Therefore, the amount of decrease in the calculated urine level from the estimated urine level can be accurately evaluated.
  • the calculated urine level becomes smaller, but priority is given to the difficult-to-estimate posture, and it is once determined that there was no urination.
  • the urine level estimate is maintained, the maintained urine level estimate and the small urine level calculation value are compared at the next determination timing. As a result, the determination of the level difference is YES in step Sc2, and as a result, it is determined that urination has occurred. As described above, even if it is determined that there is no urination in the posture where it is difficult to estimate, by maintaining the estimated urine level without updating, it is appropriately determined at the next determination timing that there is urination.
  • step Sc1 becomes NO, and the urination determination unit 52 returns to the main flow process.
  • the urination determination unit 52 proceeds to the process of step Sc1 of the urination determination again. Since the subject continues to be in a difficult-to-estimate posture, it is determined that it is difficult to estimate (NO) even in step Sc1 again, and the difficult-to-estimate period increases. If the estimation difficulty period is still less than the period threshold value ⁇ , the urination determination unit 52 returns to the main flow process.
  • the estimation difficulty period eventually becomes the period threshold value ⁇ or more.
  • the period threshold value ⁇ is set to a period longer than the determination cycle. For example, the period threshold value ⁇ is set to a time corresponding to three cycles of determination timing.
  • the urination determination unit 52 determines in step Sc8 the period corresponding to the latest period threshold value ⁇ of the estimated difficult period (in this example, the current determination timing). It is determined whether or not the subject has moved in the last 3 cycles including. The presence or absence of body movement is determined by the posture determination unit 53.
  • the basic process of determining the body movement by the posture determination unit 53 is the same as in step Sc3. However, in step Sc8, the posture determination unit 53 determines that there is no body movement when the amount of change in the absolute value of two consecutive accelerations is less than the predetermined second body movement threshold value ⁇ , and the amount of change is the second body.
  • the second body movement threshold value ⁇ is smaller than the first body movement threshold value ⁇ .
  • the second body movement threshold value ⁇ corresponds to a body movement small enough to be evaluated as maintaining the same difficult-to-estimate posture of the subject.
  • the posture determination unit 53 sets the body movement flag to "1" when the amount of change is equal to or greater than the second body movement threshold value ⁇ and there is a body movement smaller than the first body movement threshold value ⁇ . In step Sc8, even a small body movement that is not determined to be body movement in step Sc3 can be determined to be body movement.
  • the posture determination unit 53 determines the body movement. Judge that it did not exist.
  • the amount of change in the absolute value of any acceleration with respect to the read acceleration is equal to or greater than the second body movement threshold ⁇ (that is, when any body movement flag is 1 or 2)
  • the posture determination unit. 53 determines that there was body movement. As described above, in step Sc8, it is determined whether or not there is a change in posture based on whether or not there is body movement. If there is no body movement, it is determined that there is no change in posture, that is, the same posture is maintained.
  • step Sc6 it is determined whether or not the estimated difficult posture continues for a certain period of time, and in step Sc8, it is determined whether or not the estimated difficult posture is the same estimated difficult posture.
  • the same difficult-to-estimate posture does not have to be exactly the same difficult-to-estimate posture, but may be substantially the same difficult-to-estimate posture.
  • a similar difficult-to-estimate posture can be rephrased as a difficult-to-estimate posture of the same aspect. For example, in the lateral decubitus position, if the lateral angle is within a certain range, it is regarded as the same mode of difficult-to-estimate posture, that is, the same difficult-to-estimate posture. In this example, if the posture flags are the same, the posture determination unit 53 considers the posture to be a difficult-to-estimate posture in the same mode, that is, the same difficult-to-estimate posture.
  • the posture determination unit 53 considers that the two difficult-to-estimate postures are the same difficult-to-estimate postures in the lateral decubitus position.
  • the estimation difficulty period is equal to or greater than the period threshold value ⁇ in arrow F, and the presence or absence of body movement is determined in step Sc8.
  • the body movement flag 1 is established at the portion indicated by the arrow F in FIG.
  • the urination determination unit 52 determines that there is no urination in step Sc7, and maintains the estimated urine level.
  • the urination determination unit 52 repeats the determination of the presence or absence of body movement in step Sc8.
  • step Sc8 the presence or absence of body movement is determined in the most recent three cycles including the current determination timing in the estimation difficult period. If the undeterminable period continues, the body movement of arrow F will not be included in the period of the last three cycles. In the example of FIG. 13, when the arrow G is used, the body movement of the arrow F is not included in the period of the last three cycles. At this time, it is determined in step Sc8 that there is no body movement.
  • the second urine volume threshold value ⁇ may be the same as the first urine volume threshold value ⁇ , or may be a different value (for example, a value smaller than the first urine volume threshold value ⁇ ).
  • the reflected wave from the bladder may be stably received.
  • the probe 1 contacts the body surface when the front of the body does not face completely horizontally but faces diagonally upward and does not correspond to the presumable posture.
  • the condition is not optimal, it may be possible to send and receive ultrasonic waves from the probe 1 into the body.
  • the calculated urine level is smaller than the presumable posture, the smaller calculated urine level may be stably obtained. In such a case, the presence or absence of urination can be determined by comparing the reduced urine level calculated values with each other.
  • the determination unit 52 determines that there is no urination, and maintains the current estimated urine level in step Sc7. At the time point of arrow G in FIG. 13, since the level difference between the latest calculated urine level and the current calculated urine level is less than the second urine volume threshold value ⁇ , it is determined that there is no urination.
  • the urine level calculated value is greatly reduced, so that urination is determined.
  • the unit 52 determines that urination has occurred, updates the current estimated urine level with the calculated urine level (step Sc4), and transmits a urination notification (step Sc5). Since the level difference between the latest calculated urine level and the current calculated urine level is equal to or greater than the second urine volume threshold value ⁇ at the time of arrow H in FIG. 13, it is determined that urination has occurred.
  • the urination determination unit 52 can determine the urine level in the same difficult-to-estimate posture. The presence or absence of urination is determined by comparing the calculated values.
  • the calculated urine level is often very small. That is, the latest calculated urine level in the same difficult-to-estimate posture tends to be very small. Therefore, it is not very likely that the level difference between the latest urine level calculated value and the current urine level calculated value in the same difficult-to-estimate posture will be equal to or greater than the second urine volume threshold value ⁇ . As a result, the level difference is less than the second body movement threshold value ⁇ , and it is often determined that there is no urination and the estimated urine level is maintained, as in the basic processing in the case of a difficult-to-estimate posture. Therefore, urination can be determined by the above-mentioned method only when a urine level calculation value of a certain size can be obtained even in a posture that is difficult to estimate.
  • the urination prediction system 100 includes an ultrasonic sensor 11 that transmits ultrasonic waves into the body of the subject and receives reflected waves, a posture sensor 12 that detects the posture of the subject, and an ultrasonic sensor 11.
  • the urine volume of the bladder is continuously estimated based on the reflected wave from the received bladder, and the urination determination unit 52 that determines the presence or absence of urination based on the decrease in urine volume and the posture detected by the posture sensor 12
  • the urination determination unit 52 includes a posture determination unit 53 that determines whether the subject's posture is an estimable urine volume posture or a urine volume estimation difficult posture based on the urination determination unit 52.
  • the urination prediction method continuously estimates the urine volume of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor 11 that transmits ultrasonic waves into the subject's body and receives the reflected wave.
  • the step of determining urination which includes the step of urinating, it is determined that the subject has urination when the posture of the subject is an estimable posture and the amount of urine decreases, while the posture of the subject is a difficult posture to estimate. In that case, it is not determined that there was urination even if the amount of urine decreased.
  • the urination prediction program 81 is a urination prediction program for realizing a function of determining the presence or absence of urination of the subject on a computer, and is an ultrasonic wave that transmits ultrasonic waves into the body of the subject and receives reflected waves.
  • the function to determine whether the subject's posture is the posture in which the urine volume can be estimated or the posture in which it is difficult to estimate the urine volume is realized by the computer based on the above, and the function to judge the urination is the posture in which the subject's posture can be estimated. Moreover, when the urine volume decreases, it is determined that urination has occurred, while when the subject's posture is the above-mentioned difficult estimation posture, it is not determined that urination has occurred even if the urine volume decreases.
  • the urination determination unit 52 continuously obtains a calculated urine level (calculated value of urine volume) of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor 11, and the bladder is based on the calculated urine level.
  • the estimated urine level (estimated urine volume) is updated, and urination occurs when the decrease in the calculated urine level from the latest estimated urine level is equal to or greater than the predetermined first urine volume threshold ⁇ . Judged as urinating.
  • the urine level calculated value (calculated value of urine volume) of the bladder is continuously obtained based on the reflected wave from the bladder received by the ultrasonic sensor 11.
  • the estimated urine level (estimated urine volume) of the bladder is updated based on the calculated urine level, and the decrease in the calculated urine level from the latest estimated urine level is the predetermined first urine volume threshold ⁇ . If the above is the case, it is determined that there is urination.
  • the function of determining urination continuously obtains the urine level calculated value (calculated value of urine volume) of the bladder based on the reflected wave from the bladder received by the ultrasonic sensor 11, and urine.
  • the estimated urine level (estimated urine volume) of the bladder is updated based on the calculated level, and the amount of decrease in the calculated urine level from the latest estimated urine level is equal to or greater than the predetermined first urine volume threshold ⁇ . If, it is determined that there was urination.
  • the urine level calculated value is continuously obtained based on the received signal of the ultrasonic sensor 11, and the urine level estimated value is updated at any time according to the obtained urine level calculated value.
  • the estimated urine level increases as the amount of urine in the bladder increases.
  • the amount of decrease in the urine level calculated value from the latest estimated urine level is equal to or greater than the first urine volume threshold value ⁇ , it is determined that urination has occurred. It is not determined that there was urination just because the calculated urine level decreased from the latest estimated urine level, and it was determined that there was urination when the calculated urine level decreased to some extent from the latest estimated volume urine level. Will be done.
  • the calculated urine level is slightly reduced due to a measurement error in the transmission / reception of ultrasonic waves, it is possible to prevent erroneous determination that urination has occurred.
  • the urine determination unit 52 updates the urine level estimated value with the urine level calculated value when the urine level calculated value is decreased from the latest urine level estimated value and determines that there is urination. If the calculated level is reduced from the latest estimated urine level and it is not determined that urination has occurred, the estimated urine level is maintained without being updated with the calculated urine level.
  • the estimated urine level is updated with the calculated urine level value, which is a small value after urination.
  • the estimated urine level is not updated even if the calculated urine level decreases. Since urination is the main cause of the actual decrease in bladder urine volume, the decrease in urine level calculation when it is not determined that urination has occurred may not accurately reflect the actual bladder urine volume. Therefore, the urine level estimated value is not updated by the urine level calculated value, but is maintained as it is. This makes it possible to improve the accuracy of the urine level estimate.
  • the latest urine level estimate will be the next time the urine level calculation value is calculated. It becomes unreasonably small. If the latest estimated urine level is small, the amount of decrease in the calculated urine level will inevitably be small. As a result, even if urination actually occurs, the reduced amount may not reach the first urine volume threshold value ⁇ , and the presence or absence of urination may not be accurately determined. If it is not determined that urination has occurred, such a situation can be avoided by maintaining the estimated urine level without updating it with the calculated urine level, and as a result, the presence or absence of urination can be accurately determined. be able to.
  • the urination determination unit 52 updates the urine level estimated value with the urine level calculated value.
  • the calculated urine level is increased from the latest estimated urine level.
  • the estimated urine level is updated with the calculated urine level. In other words, when the calculated urine level does not change from the latest estimated urine level, and the amount of decrease in the calculated urine level from the latest estimated urine level is small (that is, less than the first urine threshold ⁇ ). In some cases, urine level estimates are not updated and are maintained. This makes it possible to stably estimate the urine volume by ignoring minute fluctuations in the urine volume of the bladder.
  • the urination determination unit 52 determines the urine level calculation value in the same estimation difficult posture within a predetermined period, that is, within the period corresponding to the period threshold ⁇ , when the posture of the subject is the estimation difficult posture.
  • a predetermined period that is, within the period corresponding to the period threshold ⁇
  • urination occurs when the decrease amount of the urine level calculated value is equal to or more than the predetermined second urine volume threshold ⁇ . Judge that there was.
  • the posture of the subject in the step of determining urination, is an estimation difficult posture, and the same estimation is performed within a predetermined period, that is, within a period corresponding to the period threshold ⁇ .
  • a plurality of calculated urine level values in a difficult posture are obtained, a plurality of calculated urine level values in the same estimated difficult posture are compared, and the amount of decrease in the calculated urine level is a predetermined second urine volume threshold ⁇ . If the above is the case, it is determined that urination has occurred.
  • the function of determining urination is when the posture of the subject is a posture that is difficult to estimate, and the same estimation difficulty is made within a predetermined period, that is, within a period corresponding to the period threshold ⁇ .
  • the calculated values of the urine level in the same difficult-to-estimate posture are compared, and the amount of decrease in the calculated urine level is equal to or higher than the predetermined second urine volume threshold ⁇ . In some cases, it is determined that there was urination.
  • the calculated urine level is smaller than the actual urine volume, but the smaller calculated urine level may be stably obtained.
  • the calculated urine level has a size that can evaluate urination, there is a possibility that urination can be determined based on the change in the calculated urine level. Therefore, when the posture of the subject is a difficult-to-estimate posture and within the period corresponding to the period threshold value ⁇ , that is, within a relatively short period in the past, a plurality of calculated urine level values in the same difficult-to-estimate posture are obtained.
  • the bladder can be detected by both the received signals of the two sets of ultrasonic sensors 11 that are the basis of the two urine level calculated values. It is probable that the signal was received under certain conditions. Therefore, even if it is determined that urination has occurred when the amount of decrease in the calculated urine level value in the same difficult-to-estimate posture is equal to or greater than the second urine volume threshold value ⁇ , the determination can be regarded as a somewhat accurate determination.
  • the urination determination unit 52 continues the same estimation difficult posture during the period corresponding to the period threshold value ⁇ , a plurality of urine level calculation values in the same estimation difficulty posture are generated in the period corresponding to the period threshold value ⁇ . It is determined that it has been obtained.
  • the embodiment may have the following configuration.
  • the location of the probe 1 on the body surface can be set arbitrarily. Further, the mounting method of the probe 1 is not limited to the above method.
  • the contact surface 14 may be formed of an adhesive sticking surface, and the contact surface 14 may be stuck to the abdomen of the subject.
  • a holder to be attached to the body surface may be separately provided, and the probe 1 may be attached to the holder in a state of being in contact with the body surface.
  • the number of a plurality of ultrasonic sensors 11 is not limited to four.
  • the number of ultrasonic sensors 11 may be one, three or less, or five or more.
  • the arrangement of the plurality of ultrasonic sensors 11 is not limited to the above arrangement.
  • the ultrasonic sensor 11 does not have to be offset in the left-right direction.
  • the casing 13 is not limited to the above configuration.
  • the contact surface 14 of the casing 13 may be provided with a protruding portion.
  • the ultrasonic sensor 11 is built in the protrusion.
  • the protruding portion improves the adhesion of the portion of the casing 13 in which the ultrasonic sensor 11 is incorporated to the skin (body surface), and promotes the incident of ultrasonic waves on the human body. This enhances the ability to detect the bladder.
  • the casing 13 may be formed in a substantially disk shape.
  • the probe 1 and the processing device 2 are configured separately, but the present invention is not limited to this.
  • the probe 1 and the processing device 2 may be integrally configured.
  • the probe 1 and the processing device 2 are not connected by wire, and wireless communication may be performed.
  • the probe 1 may have a part of the function of the processing device 2 (for example, the transmitting unit 21 or the receiving unit 22).
  • the configuration of the processing device 2 is not limited to the above-mentioned configuration.
  • the transmission unit 21 inputs a pulse signal as a drive signal to the probe 1, but the drive signal is not limited to the pulse signal.
  • the drive signal may be a burst wave or the like instead of a pulse wave.
  • the notification unit 25 is not limited to the LED lamp, and may be a display, an alarm, or a vibrator.
  • the processing device 2 is wirelessly connected to the server group 3, more specifically, the first server 31, but may be connected by wire. Further, the processing device 2 once collects the received signals of the first to fourth ultrasonic sensors 11A to 11D and the acceleration of the attitude sensor 12 in the memory 29, collects them, and puts them together, and the server group 3 via the repeater 72. Is sent to, but is not limited to this. For example, the processing device 2 may transmit the received signal to the repeater 72 each time the received signal of the ultrasonic sensor 11 is acquired, and when the acceleration of the attitude sensor 12 is acquired, the acceleration may be transmitted to the repeater 72. .. The repeater 72 may collect these signals and collectively transmit the received signals of the first to fourth ultrasonic sensors 11A to 11D and the acceleration of the attitude sensor 12 to the server group 3.
  • the respective processes of the processing device 2 and the server group 3 described above are not unique to each device, and at least a part of the processes may be executed by a device different from the above description.
  • the processing device 2 may execute the estimation of the urine volume.
  • the urination prediction system 100 does not include the server group 3, and the function of the server group 3 described above may be realized by the processing device 2 or another device (for example, a PC or a user terminal 71).
  • the server group 3 has a plurality of servers, but one server may have the functions of the first to third servers 31 to 33.
  • the urination prediction system 100 does not have to include the server group 3.
  • the processing device 2 or the user terminal 71 executes the processing of the server group 3 described above (particularly the processing described with reference to the flowchart).
  • the processing device 2 may execute a process other than the notification to the user terminal 71 among the processes of the server group 3 described above.
  • the urination prediction system 100 determines the urine level based on which ultrasonic sensor 11 detects the bladder, but the urine level is not limited to this. Estimating urine volume can be achieved by any method.
  • the user terminal 71 is registered in the server group 3, and the determination result of the server group 3 and the like are appropriately transmitted to the user terminal 71, but the user terminal 71 may not be registered. In that case, the process to the user terminal 71 is omitted in the above-mentioned process.
  • the posture sensor 12 is not limited to the acceleration sensor that detects the acceleration of the three orthogonal axes.
  • the posture sensor 12 may be a gyro sensor.
  • the posture sensor 12 may have the function of the posture determination unit 53.
  • the posture sensor 12 may have a threshold value for determining the posture internally, and may output a signal according to the posture determination result.
  • the estimable posture determined by the posture determination unit 53 may be changed depending on the shape of the probe 1 and the method of mounting the probe 1 on the body surface.
  • the posture determination unit 53 may have a machine learning function. For example, the posture determination unit 53 may determine the presumable posture and the difficult-to-estimate posture according to the user by machine learning.
  • Urination prediction program 100 Urination prediction system 11 Ultrasonic sensor 12 Posture sensor 52 Urination judgment unit 53 Posture judgment unit 81 Urination prediction program

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Urology & Nephrology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

排尿予測システム(100)は、対象者の体内に超音波を送信し、反射波を受信する超音波センサ(11)と、対象者の姿勢を検出する姿勢センサ(12)と、超音波センサ(11)が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿の有無を判定する排尿判定部(52)と、姿勢センサ(12)によって検出される姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する姿勢判定部(53)とを備えている。排尿判定部(52)は、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。

Description

排尿予測システム、排尿予測方法及び排尿予測プログラム
 ここに開示された技術は、排尿予測システム、排尿予測方法及び排尿予測プログラムに関する。
 従来より、排尿の有無を判定するシステムが知られている。例えば、特許文献1に開示されたシステムは、超音波を体内に送信し、膀胱からの反射波に基づいて膀胱の尿量を推定している。そして、この装置は、尿量が減少した場合に排尿があったと判定している。
特開2016-43274号公報
 ところで、前述のようなシステムの超音波センサが装着された対象者は、常に静止しているわけではなく、活動している。そのため、対象者の状態によっては、膀胱からの反射波を適切に受信できなかったり、尿量を正確に評価できなかったりする場合がある。
 ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とするところは、排尿の有無の判定精度を向上させることにある。
 ここに開示された排尿予測システムは、対象者の体内に超音波を送信し、反射波を受信する超音波センサと、対象者の姿勢を検出する姿勢センサと、前記超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿の有無を判定する排尿判定部と、前記姿勢センサによって検出される姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する姿勢判定部とを備え、前記排尿判定部は、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 ここに開示された排尿予測方法は、対象者の体内に超音波を送信し、反射波を受信する超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する工程と、姿勢センサによって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する工程とを含み、前記排尿を判定する工程では、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 ここに開示された排尿予測プログラムは、対象者の排尿の有無を判定する機能をコンピュータに実現させるための排尿予測プログラムであって、対象者の体内に超音波を送信し、反射波を受信する超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する機能と、姿勢センサによって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する機能とをコンピュータに実現させ、前記排尿を判定する機能は、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 ここに開示された排尿予測システムによれば、排尿の有無の判定精度を向上させることができる。
 ここに開示された排尿予測方法によれば、排尿の有無の判定精度を向上させることができる。
 ここに開示された排尿予測プログラムによれば、排尿の有無の判定精度を向上させることができる。
図1は、排尿予測システムの概略図である。 図2は、プローブの概略的な斜視図である。 図3は、プローブの概略的な側面図である。 図4は、プローブの装着状態を示す図である。 図5は、プローブを装着した人体の下腹部の模式的な断面図である。 図6は、端末装置のブロック図である。 図7は、第1サーバのハードウェア構成を示すブロック図である。 図8は、制御部の機能構成を示すブロック図である。 図9は、処理装置の処理のフローチャートである。 図10は、第1サーバの処理のフローチャートである。 図11は、排尿判定のサブルーチンのフローチャートである。 図12は排尿判定の一例を示す図であり、(A)尿レベルを、(B)は姿勢フラグを、(C)は体動フラグを、(D)は排尿タイミングの報知を、(E)は排尿報知を示す。 図13は排尿判定の別の例を示す図であり、(A)尿レベルを、(B)は姿勢フラグを、(C)は体動フラグを、(D)は排尿タイミングの報知を、(E)は排尿報知を示す。 図14は、尿量が中程度の場合の人体の下腹部の模式的な断面図である。 図15は、図14の状態における第1超音波センサの受信信号である。 図16は、図14の状態における第2超音波センサの受信信号である。 図17は、図14の状態における第3超音波センサの受信信号である。 図18は、図14の状態における第4超音波センサの受信信号である。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。
 〈排尿予測システムの構成〉
 図1は、排尿予測システム100の概略図である。
 排尿予測システム100は、超音波を用いて、対象者の膀胱の尿量を推定すると共に、排尿の有無を判定するものである。例えば、対象者は、健常者だけでなく、老人若しくは身体障害者等の要介護者、又は要介護者ではないものの体が不自由でトイレに行くまでに時間を要する人等が含まれる。ただし、対象者は、これに限られるものではない。
 排尿予測システム100は、対象者の体内に超音波を送信し、反射波を受信する超音波センサ11と、対象者の姿勢を検出する姿勢センサ12と、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿の有無を判定する排尿判定部52と、姿勢センサ12によって検出される姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する姿勢判定部53とを備えている。
 排尿判定部52は、尿量が減少した場合に、姿勢判定部53の判定結果を考慮して排尿の有無を判定する。具体的には、排尿判定部52は、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 排尿予測システム100は、超音波センサ11及び姿勢センサ12を収容し、対象者の体表に接触した状態で装着されるプローブ1と、超音波センサ11の受信信号及び姿勢センサ12の加速度信号を処理する処理装置2とをさらに備えていてもよい。プローブ1は、対象者に常時装着される。処理装置2と超音波センサ11及び姿勢センサ12とは有線で接続されている。排尿予測システム100は、処理装置2からの信号を解析するサーバ群3をさらに備えていてもよい。処理装置2は、サーバ群3と無線通信を行う。サーバ群3は、排尿判定部52及び姿勢判定部53として機能する。
 〈プローブ〉
 図2は、プローブ1の概略的な斜視図である。図3は、プローブ1の概略的な側面図である。
 プローブ1は、超音波センサ11及び姿勢センサ12を収容するケーシング13を有している。
 超音波センサ11は、4つ設けられている。4つの超音波センサ11のそれぞれの基本的な構成は同じである。以下、4つの超音波センサ11のそれぞれを区別する場合には、第1超音波センサ11A、第2超音波センサ11B、第3超音波センサ11C、第4超音波センサ11Dと称する。
 超音波センサ11は、超音波の送受信を行う。具体的には、超音波センサ11は、圧電素子で形成されている。圧電素子は、駆動電圧に応じた振動を行って超音波を発生させる一方、超音波を受信すると、その振動に応じた電気信号を発生させる。
 姿勢センサ12は、加速度を検出する。例えば、姿勢センサ12は、直交3軸それぞれの加速度を検出する加速度センサである。姿勢センサ12からは、加速度信号が出力される。
 ケーシング13は、図2に示すように、偏平な形状に形成されている。ケーシング13は、比較的大きな面積を有し、相対向する一対の略長方形の面を有しており、その一方の面が、対象者の腹部に接触する面(以下、「接触面」という)14となる。
 第1~第4超音波センサ11A~11Dは、膀胱が膨張する方向における異なる位置に向かって超音波を送信するように配置されている。
 詳しくは、第1~第4超音波センサ11A~11Dは、図2,3に示すように、ケーシング13の上下方向における異なる位置に配置されている。第1超音波センサ11A、第2超音波センサ11B、第3超音波センサ11C、第4超音波センサ11Dの順で下から配置されている。ここで、ケーシング13の上下方向とは、プローブ1が対象者に装着されたときの上下方向である。プローブ1は、例えば、略長方形状の接触面14の長手方向が上下方向に一致する状態で対象者に装着される。すなわち、ケーシング13の上下方向は、接触面14の長手方向である。
 第1超音波センサ11A及び第3超音波センサ11Cの左右方向の位置は同じである一方、第2超音波センサ11B及び第4超音波センサ11Dは、第1超音波センサ11A及び第3超音波センサ11Cに対して左右方向にオフセットしている。第2超音波センサ11B及び第4超音波センサ11Dの左右方向の位置は同じである。つまり、超音波センサ11A~11Dは、千鳥状に配置されている。
 それに加えて、超音波センサ11A~11Dのそれぞれの超音波の送信方向は、平行ではない。超音波センサ11A~11Dは、図3に示すように、上下方向に放射状に超音波を送信する。すなわち、超音波センサ11A~11Dは、上下方向における超音波の出射角度が異なっている。具体的には、第4超音波センサ11Dは、接触面14の法線方向に超音波を送信する。第3超音波センサ11Cは、第4超音波センサ11Aよりも斜め下方に向かって超音波を送信する。第2超音波センサ11Bは、第3超音波センサ11Cよりも斜め下方に向かって超音波を送信する。第1超音波センサ11Aは、第2超音波センサ11Bよりも斜め下方に向かって超音波を送信する。つまり、第1超音波センサ11Aが、最も下向きに超音波を送信し、第2超音波センサ11B、第3超音波センサ11C、第4超音波センサ11Dの順にしだいに上向きに超音波を送信する。
 図4は、プローブ1の装着状態を示す図である。プローブ1は、図4に示すように、対象者に常時装着される。プローブ1は、対象者の腹部の皮膚上であって、膀胱に対応する部分(例えば、下腹部)に配置される。
 例えば、プローブ1は、接触面14を対象者の腹部に接触させた状態で、ベルト又はテープによって腹部に取り付けられる。尚、接触面14と腹部との間には、超音波の腹部への透過性を向上させるためのジェル等が塗布される。
 図5は、プローブ1を装着した人体の下腹部の模式的な断面図である。尚、図5の例は、尿量がほとんど無い状態を示している。腹部の表面から背中に向かって、皮下脂肪61、筋肉62、脂肪63、膀胱64、精嚢65若しくは前立腺66(男性の場合)又は膣(女性の場合)、直腸67、背骨(仙骨)68等が順に並んでいる。膀胱64の上には、小腸69が位置しており、膀胱64の前側の斜め下には、恥骨610が位置している。
 プローブ1は、超音波センサ11A~11Dから出射される超音波が上下方向に広がるように対象者の腹部に装着される。超音波センサ11A~11Dは、体内における上下方向の異なる位置に向かって超音波を送信する。膀胱は、尿量の増加に伴って三次元に膨らむ。そのため、上下方向における異なる位置は、膀胱が膨張する方向の1つである。尚、膀胱は、特に上下方向に大きく膨張する。すなわち、超音波センサ11A~11Dは、膀胱が比較的大きく膨張する方向における異なる位置に向かって超音波を送信するように配置されている。
 〈処理装置〉
 図6は、処理装置2のブロック図である。処理装置2は、超音波センサ11へ駆動電圧を出力する送信部21と、超音波センサ11から受信信号を受信する受信部22と、送信部21及び受信部22に接続される超音波センサ11を切り替えるスイッチ23と、外部に種々の情報を報知するための報知部25と、外部との通信を行う通信部26と、各種プログラム及びデータを記憶する記憶部27と、処理装置2の全体的な制御を行う制御部28と、メモリ29とを有している。処理装置2は、対象者の衣服等に装着される。
 送信部21は、超音波センサ11に駆動電圧を供給する。送信部21は、パルス発生器21aと増幅部21bとを有している。パルス発生器21aは、所定のパルス幅及び電圧値のパルス信号を発生させる。パルス発生器21aは、パルス幅、パルス数、及び、周波数を変更可能に構成されていてもよい。増幅部21bは、パルス発生器21aからのパルス信号を増幅し、駆動電圧として超音波センサ11へ出力する。
 受信部22は、超音波センサ11からの電気信号を受信する。受信部22は、増幅部22aと、検波部22bと、A/D変換部22cとを有している。増幅部22aは、超音波センサ11からの受信信号を増幅する。検波部22bは、増幅された受信信号に包絡線検波を施す。尚、検波部22bは、検波後の受信信号を増幅してもよい。A/D変換部22cは、検波後の受信信号をA/D変換する。
 スイッチ23は、第1~第4超音波センサ11A~11Dの中から送信部21及び受信部22に接続される超音波センサ11を択一的に切り替える。
 報知部25は、例えば、LEDランプである。LEDランプの点灯態様によって対象者に様々な情報(例えば、排尿有り)を報知する。
 通信部26は、通信モジュールであり、外部の通信装置と通信を行う。例えば、通信部26は、ブルートゥース(登録商標)規格の通信を行う。通信部26は、図1に示すように、中継機72を介してサーバ群3と通信を行う。
 記憶部27は、コンピュータ読み取り可能な記録媒体であり、例えば、フラッシュメモリで構成されている。尚、記憶部27は、CD-ROM等の光ディスク等で構成されていてもよい。記憶部27は、制御部28の処理の実行に必要な各種プログラムや各種情報を記憶している。さらに、記憶部27は、受信部22によって受信された受信信号、姿勢センサ12からの加速度信号及び、通信部26を介して外部から取得した情報等を記憶している。
 制御部28は、記憶部27に記憶されているプログラムに基づいて送信部21、受信部22、スイッチ23、報知部25及び通信部26を制御する。制御部28は、例えばCPU(Central Processing Unit)等のプロセッサで構成されている。制御部28は、記憶部27等に記憶されたプログラムをメモリ29に展開して実行することによって各種処理を実行する。尚、制御部28は、プロセッサと同様の機能を有するLSI(Large Scale Integration)等のハードウェアによって実現されてもよい。
 具体的には、制御部28は、スイッチ23を制御して、送信部21及び受信部22に接続される超音波センサ11を切り替える。制御部28は、送信部21を制御して、駆動電圧を超音波センサ11へ出力させる。制御部28は、受信部22を制御して、超音波センサ11の受信信号をデジタル信号に変換させる。制御部28は、通信部26を制御して、受信部22及び姿勢センサ12からの信号を外部に送信する。制御部28は、通信部26を介して外部からの信号を受信し、その信号に応じた処理を行う(例えば、報知部25を作動させる)。
 メモリ29は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)又はRAM(Random Access Memory)等で構成されている。
 〈サーバ群〉
 サーバ群3は、所謂、クラウドコンピューティングを行う。サーバ群3は、図1に示すように、複数のサーバを含んでいる。具体的には、サーバ群3は、データ解析を行う第1サーバ31、ユーザ端末71にアプリケーションを提供する第2サーバ32と、データベースとして機能する第3サーバ33とを含んでいる。
 第1サーバ31は、処理装置2とネットワークを介して通信可能であり、処理装置2から送信されてくる受信信号(即ち、受信部22により受信処理された超音波センサ11の受信信号(受信波))及び加速度信号を受信し、第3サーバ33に保存する。以下、処理装置2から受信した受信信号を単に「超音波センサ11の受信信号」とも称し、処理装置2から受信した加速度信号を単に「姿勢センサ12の加速度」とも称する。また、第1サーバ31は、第3サーバ33に保存された超音波センサ11の受信信号及び姿勢センサ12の加速度の解析を行う。具体的には、第1サーバ31は、超音波センサ11の受信信号に基づいて膀胱の尿量を推定する。さらに、第1サーバ31は、超音波センサ11の受信信号及び姿勢センサ12の加速度に基づいて排尿の有無を判定する。第1サーバ31は、尿量を推定するためのプログラム及びデータ、並びに、排尿の有無を判定するためのプログラム及びデータ等を記憶している。
 第2サーバ32は、ユーザ端末71とネットワークを介して通信可能である。サーバ群3(詳しくは、第3サーバ33)には、ユーザ(ユーザID)を登録可能であり、ユーザIDがサーバ群3に処理装置2と紐づけて記憶されている。さらには、サーバ群3には、ユーザIDと紐づけてユーザ端末71も登録され得る。例えば、ユーザがユーザ端末71を用いて、第2サーバ32にユーザ登録をしたり、ログインしたりする際に、第2サーバ32がユーザ端末71の情報を取得し、登録しておく。そうすることで、サーバ群3とユーザ端末71との間の通信が可能となる。例えば、介護者の所持するユーザ端末71(例えば、スマートフォンやタブレット端末)がサーバ群3に登録され得る。また、対象者が自力でトイレへ行くことができる場合には、対象者のユーザ端末71が登録され得る。ユーザ端末71は、1台に限らず、複数台(例えば、介護者のユーザ端末71と対象者のユーザ端末71)を登録可能としてもよい。ユーザ端末71は、排尿予測システム100専用のアプリをダウンロードしておくことによって、第2サーバ32と情報の送受信を行って、専用のアプリを作動させることができる。また、第2サーバ32は、対象者の排尿タイミング等の各種情報をユーザ端末71に送信する。
 第3サーバ33は、対象者に関する情報、第1サーバ31が受信した超音波センサ11の受信信号、第1サーバ31の解析結果、及び、第2サーバ32が受信した情報を記憶している。対象者に関する情報は、例えば、対象者を特定するユーザID、処理装置2を特定する機器ID、ユーザ端末を特定する端末ID、及び、対象者の蓄尿及び排尿に関する情報等である。第3サーバ33は、これらの情報を紐づけて記憶している。ユーザID、機器ID及び端末IDは、ユーザによって予め登録されている。対象者の蓄尿及び排尿に関する情報は、例えば、許容尿量(後述する許容尿レベル)であり、デフォルトで共通の初期値が予め設定されている。
 図7は、第1サーバ31のハードウェア構成を示すブロック図である。第1サーバ31は、制御部41と、メモリ42と、通信部43と、記憶部44とを有している。尚、第1サーバ31は、キーボード及び/又はディスプレイをさらに有していてもよい。
 制御部41は、例えばCPU(Central Processing Unit)等のプロセッサで構成されている。制御部41は、記憶部44等に記憶されたプログラムをメモリ42に展開して実行することによって各種処理を実行する。尚、制御部41は、プロセッサと同様の機能を有するLSI(Large Scale Integration)等のハードウェアによって実現されてもよい。
 メモリ42は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)又はRAM(Random Access Memory)等で構成されている。
 通信部43は、通信モジュールであり、中継機72を介して処理装置2と通信する。
 記憶部44は、コンピュータ読み取り可能な記録媒体であり、例えば、ハードディスクで構成されている。尚、記憶部44は、CD-ROM等の光ディスク等で構成されていてもよい。記憶部44は、制御部41の処理の実行に必要な各種プログラムや各種情報を記憶している。例えば、記憶部44は、排尿予測プログラム81並びに尿量推定及び排尿判定に用いる閾値82等を記憶している。排尿予測プログラム81は、対象者の体内に超音波を送信し、反射波を受信する超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する機能と、姿勢センサ12によって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する機能とをコンピュータとしての制御部41に実現させる。
 なお、第2サーバ32及び第3サーバ33は、基本的には第1サーバ31と同様のハードウェア構成を有している。第2サーバ32及び第3サーバ33の記憶部に記憶されている各種プログラム及び各種情報は、それぞれの処理に応じたプログラム及び情報となっている。
 図8は、制御部41の機能構成を示すブロック図である。制御部41は、排尿予測プログラム81等をメモリ42に展開して実行することによって図8に示す機能を実現する。制御部41は、取得部51と、排尿判定部52と、姿勢判定部53とを有している。
 取得部51は、処理装置2との通信によって超音波センサ11の受信信号及び姿勢センサ12の加速度を受信、即ち、取得する。この取得機能は、制御部41が記憶部44に記憶された関連するプログラムを実行することによって実現される。取得部51は、受信信号及び加速度を受信したときの時刻(即ち、取得時刻)と共に受信信号及び加速度を第3サーバ33に保存する。第3サーバ33は、受信信号及び加速度と取得時刻とを蓄積していく。
 排尿判定部52は、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する。この排尿判定機能は、制御部41が記憶部44に記憶された排尿予測プログラム81を実行することによって実現される。具体的には、排尿判定部52は、第3サーバ33に記憶された超音波センサ11の受信信号及び姿勢センサ12の加速度を解析する。排尿判定部52は、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量の算出値を継続的に求め、算出値に基づいて膀胱の尿量の推定値を更新していく。排尿判定部52は、尿量の推定値を第3サーバ33に保存する。また、排尿判定部52は、求めた算出値を、尿量の推定値を更新する前に、直近の推定値と比較する。直近の推定値からの算出値の減少量が所定の第1尿量閾値α以上である場合には、排尿判定部52は、排尿があったと判定する。
 姿勢判定部53は、姿勢センサ12の加速度に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する。この姿勢判定機能は、制御部41が記憶部44に記憶された排尿予測プログラム81を実行することによって実現される。より詳しくは、姿勢判定部53は、3軸の加速度に基づいて重力がどの方向に作用しているかを求め、重力が作用している方向に基づいて対象者の姿勢を推定する。そして、姿勢判定部53は、推定した姿勢が推定可能姿勢か否かを判定する。
 ここで、推定可能姿勢とは、体表へのプローブ1の接触状態が適切に維持される姿勢である。推定可能姿勢は、プローブ1の形状及び体表へのプローブ1の装着方法等によって変わり得る。推定可能姿勢には、様々な態様がある。例えば、立位又は座位においては左右軸回りの回転角(即ち、前後方向への傾動角)が所定範囲内で且つ前後軸回りの回転角(即ち、左右方向への傾動角)が所定範囲内の場合に、姿勢判定部53は、推定可能姿勢と判定する。具体的には、立位又は座位において後傾状態で且つ左右の傾きが小さい場合が推定可能姿勢となる。臥位においては正中線(頭部及び体幹を貫通する軸)回りの回転角が所定範囲内の場合、姿勢判定部53は、推定可能姿勢と判定する。具体的には、臥位においては仰臥位又は伏臥位の場合が推定可能姿勢となる。
 一方、推定可能姿勢以外の姿勢が推定困難姿勢である。推定困難姿勢には、様々な態様がある。例えば、推定困難姿勢の一態様として、側臥位がある。また、推定困難姿勢の別態様として、前傾状態の立位又は座位がある。
 〈排尿予測システムの動作〉
 以下、排尿予測システム100の処理について詳しく説明する。図9は、処理装置2の処理のフローチャートである。
 まず、プローブ1及び処理装置2の動作について説明する。プローブ1及び処理装置2は、超音波の送受信及び対象者の加速度の検出を周期的に行う。この超音波の送受信及び加速度の検出は、処理装置2の制御部28によって制御される。
 詳しくは、制御部28は、ステップSa1において、検出タイミングが到来したか否かを判定する。検出タイミングは、所定の検出周期で繰り返している。検出タイミングが到来していない場合には、制御部28は、ステップSa1において、検出タイミングを待機する。
 検出タイミングが到来した場合には、制御部28は、スイッチ23を切り替えながら、第1~第4超音波センサ11A~11Dに順番に超音波を送受信させると共に、姿勢センサ12の加速度を検出する。具体的には、制御部28は、ステップSa2において、第1超音波センサ11Aと送信部21及び受信部22とが接続されるようにスイッチ23を制御する。そして、制御部28は、送信部21へパルス信号の生成指令を出力し、送信部21に駆動電圧を第1超音波センサ11Aへ供給させる。第1超音波センサ11Aは、駆動電圧に基づく超音波を送信すると共に、体内からの反射波を受信する。第1超音波センサ11Aの受信信号は、受信部22により増幅、検波及びA/D変換される。制御部28は、A/D変換された後の受信信号をメモリ29に保存する。制御部28は、この超音波の送受信を所定回数だけ繰り返す。制御部28は、メモリ29に保存された、所定回数分の受信信号に平均化処理を施す。制御部28は、平均後の受信信号を記憶部27に保存する。
 続いて、制御部28は、ステップSa3~Sa5において、スイッチ23を順次切り替えて、第2~第4超音波センサ11B~11Dに対しても同様の制御を実行する。
 次に、制御部28は、ステップSa6において、姿勢センサ12からの加速度信号をメモリ29に保存する。
 その後、制御部28は、ステップSa7において、メモリ29に保存された、第1~第4超音波センサ11A~11Dの受信信号及び姿勢センサ12の加速度を通信部26を介してサーバ群3(具体的には、第1サーバ31)に送信する。
 制御部28は、ステップSa1からの処理を繰り返す。つまり、制御部28は、第1~第4超音波センサ11A~11Dによる超音波の送受信、姿勢センサ12による加速度の検出、並びに、第1~第4超音波センサ11A~11Dの受信信号及び姿勢センサ12の加速度のサーバ群3への送信を1セットとして、この処理を検出周期で周期的に実行する。
 続いて、サーバ群3の処理を説明する。図10は、第1サーバ31の処理のフローチャートである。図11は、排尿判定のサブルーチンのフローチャートである。第1サーバ31は、排尿予測プログラム81等をメモリ42に展開して実行することによって以下の処理を実行する。図12は排尿判定の一例を示す図であり、(A)尿レベルを、(B)は姿勢フラグを、(C)は体動フラグを、(D)は排尿タイミングの報知を、(E)は排尿報知を示す。図13は排尿判定の別の例を示す図であり、(A)尿レベルを、(B)は姿勢フラグを、(C)は体動フラグを、(D)は排尿タイミングの報知を、(E)は排尿報知を示す。図12,13のそれぞれの(A)では、尿レベル推定値が実線で示され、尿レベル算出値が破線で示されている。
 詳しくは、ステップSb1において、第1サーバ31の取得部51は、処理装置2から周期的に送信されてくる、4つの超音波センサ11の受信信号及び姿勢センサ12の加速度を受信したか否かを判定する。取得部51は、超音波センサ11の受信信号及び姿勢センサ12の加速度を受信した場合には、ステップSb2において、超音波センサ11の受信信号及び姿勢センサ12の加速度を第3サーバ33に保存する。
 取得部51が超音波センサ11の受信信号及び姿勢センサ12の加速度を受信していない場合には、ステップSb3において、排尿判定部52は、判定タイミングが到来したか否かを判定する。判定タイミングは、所定の判定周期で繰り返している。つまり、排尿判定部52は、判定周期で尿量の推定及び排尿の判定を行うように構成されている。判定周期は、処理装置2の検出周期よりも長い間隔に設定されている。尚、判定周期は、検出周期と同じ周期であってもよい。
 判定タイミングが到来していない場合には、ステップSb1における取得部51の処理に戻る。一方、判定タイミングが到来した場合には、排尿判定部52は、ステップSb4へ進む。
 ステップSb4において、排尿判定部52は、今回の判定タイミングにおける尿レベル算出値を求める。尿レベルとは、膀胱の尿量を示す指標であり、尿レベルが大きいほど尿量が多いことを示す。尿レベル算出値とは、今回の判定タイミングにおいて超音波センサ11の受信信号に基づいて算出される尿レベルであって、暫定的な尿レベルである。一方、後述する「尿レベル推定値」は、各判定タイミングにおいて排尿判定部52が最終的に推定する尿レベルである。
 まず、排尿判定部52は、前回の判定タイミングより後で今回の判定タイミングまで間の超音波センサ11の受信信号を第3サーバ33から読み出す。取得部51は1度に4つの超音波センサ11の受信信号を取得するので、排尿判定部52は、複数セットの超音波センサ11の受信信号を読み出す。尚、前回の判定タイミングから今回の判定タイミングまでの間に1セットの超音波センサ11の受信信号しか取得されていない場合には、排尿判定部52は、その1セットの超音波センサ11の受信信号を読み出す。
 次に、排尿判定部52は、超音波センサ11の受信信号の1セットごとに尿レベルを求める。具体的には、排尿判定部52は、各セットに含まれる4つの超音波センサ11の受信信号のそれぞれにおいて膀胱の検出の有無を調べる。受信信号においては超音波の送信直後にノイズが観測されるので、腹部の表面から比較的遠い、膀胱の後壁からの反射波が識別し易い。排尿判定部52は、4つの超音波センサ11の受信信号のそれぞれにおいて膀胱の後壁の反射波が含まれるか否かを調べる。膀胱の後壁の反射波が返ってくると想定される受信時間帯は概ねわかっている。排尿判定部52は、該受信時間帯において反射波が存在するか否かを判定する。以下、特に断りがない限り、「膀胱の反射波」は、膀胱の後壁の反射波を意味する。排尿判定部52は、受信信号に膀胱の反射波が含まれていることをもって、超音波センサ11が膀胱を検出していると判定する。
 その後、排尿判定部52は、どの超音波センサ11が膀胱を検出しているかに基づいて尿レベルを求める。膀胱は、尿量の増加に伴って上方へ膨張する一方、第1~第4超音波センサ11A~11Dは、前述の如く、上下方向の異なる位置に向かって超音波を送信している。そのため、尿量が多いほど、膀胱を検出する超音波センサ11の個数が多くなる。排尿判定部52は、下から順にどの超音波センサ11までが膀胱を検出しているかによって尿レベルを判定する。何れの超音波センサ11も膀胱を検出していないときの尿レベルを「0」とする。第1超音波センサ11Aのみが膀胱を検出しているときの尿レベルを「2.5」とする。第1超音波センサ11A及び第2超音波センサ11Bのみが膀胱を検出しているときの尿レベルを「5」とする。第1超音波センサ11A、第2超音波センサ11B及び第3超音波センサ11Cのみが膀胱を検出しているときの尿レベルを「7.5」とする。全ての超音波センサ11が膀胱を検出しているときの尿レベルを「10」とする。つまり、尿レベルは、0~10の範囲で評価される。
 人体の下腹部の例を図14に示す。図14は、尿量が中程度の場合の人体の下腹部の模式的な断面図である。また、図14の膀胱の状態における4つの超音波センサ11の受信信号の例を図15~18に示す。図15は、第1超音波センサ11Aの受信信号である。図16は、第2超音波センサ11Bの受信信号である。図17は、第3超音波センサ11Cの受信信号である。図18は、第4超音波センサ11Dの受信信号である。この例では、第1超音波センサ11A及び第2超音波センサ11Bが膀胱の反射波W1を検出しており、第3超音波センサ11C及び第4超音波センサ11Dは膀胱の反射波を検出していない。つまり、尿レベルは「5」である。
 一方、図5の例では、尿量が少なく、膀胱が小さいので、何れの超音波センサ11も膀胱の反射波を検出しない。この場合の尿レベルは「0」である。
 排尿判定部52は、今回の判定タイミングで読み出した、全セットの超音波センサ11の受信信号について尿レベルを求める。そして、排尿判定部52は、それらを平均して尿レベル算出値を求める。例えば、排尿判定部52は、平均値の少数点以下を四捨五入して、尿レベル算出値を0~10の整数で表す。排尿判定部52は、尿レベル算出値を判定タイミングの時刻と共に第3サーバ33に記憶させる。尿レベル算出値は、この時点ではまだ暫定的な尿レベルであり、対象者の正式な現在の尿レベルとして採用されていない。
 続いて、排尿判定部52は、ステップSb5において、今回の判定タイミングの直近の尿レベル推定値、即ち、前回の判定タイミングにおける尿レベル推定値から尿レベル算出値が増加したか否かを判定する。
 尿レベル算出値が増加している場合には、排尿判定部52は、ステップSb6において、尿レベル推定値を尿レベル算出値で更新する。つまり、排尿判定部52は、尿レベル算出値を現在の尿レベル推定値として採用する。その結果、尿レベル推定値が増加する。
 その後、排尿判定部52は、ステップSb7において、現在の尿レベル推定値が所定の許容尿レベルに達しているか否かを判定する。許容尿レベルは、対象者が尿意を催す尿レベルであり、例えばレベル「7」が初期値として記憶部44に記憶されている。許容尿レベルは、ユーザによって変更することができる。
 現在の尿レベル推定値が許容尿レベルに達していない場合には、排尿判定部52は、ステップSb1に戻る。尿レベル算出値が少しずつ増加していく場合には、以上の処理を繰り返すことによって、尿レベル推定値が徐々に更新され、尿レベル推定値が上昇していく。
 現在の尿レベル推定値が許容尿レベルに達している場合(図12,13における矢印A参照)には、排尿判定部52は、ステップSb8において、通信部43を介して尿レベル推定値及び排尿タイミングの到来を処理装置2及びユーザ端末71へ送信する。
 処理装置2は、排尿タイミングの通知を受信すると、報知部25を作動させる。例えば、処理装置2は、報知部25であるLEDランプを排尿タイミングの到来を示す態様(例えば、低速で点滅させる)で点灯させる。また、ユーザ端末71は、尿レベル及び排尿タイミングの通知を受信すると、ユーザ端末71のディスプレイに尿レベル及び排尿タイミングの到来を表示する。
 これにより、対象者又は対象者の周りの人々は、尿レベル及び排尿タイミングを知ることができ、排尿の準備を行うことができる。対象者は、早期にトイレの準備を行うことができる。また、対象者の周りの人々も、対象者をトイレへ早期に誘導することができる。その結果、失禁を防止することができる。
 一方、ステップSb5において尿レベル算出値が増加していなかった場合には、排尿判定部52は、ステップSb9において、排尿判定を行う。
 排尿判定においては、姿勢判定部53は、ステップSc1において、対象者の姿勢が推定可能姿勢か推定困難姿勢かを判定する。姿勢判定部53は、前回の判定タイミングより後で今回の判定タイミングまで間の姿勢センサ12の加速度を第3サーバ33から読み出す。尚、前回の判定タイミングから今回の判定タイミングまでの間に加速度が1つしか取得されていない場合には、姿勢判定部53は、その1つの加速度を読み出す。姿勢判定部53は、読み出された加速度に基づいて、具体的には、加速度の方向に基づいて、対象者の姿勢が推定可能姿勢か否かを判定する。この例では、臥位においては仰臥位及び伏臥位を推定可能姿勢とし、立位又は座位においては後傾状態であって左右の傾きが小さい状態を推定可能姿勢とする。姿勢判定部53は、読み出された加速度ごとに推定可能姿勢か否かを判定する。読み出された全ての加速度に関して推定可能姿勢であった場合には、姿勢判定部53は、今回の判定タイミングにおける対象者の姿勢が推定可能姿勢であったと判定する。読み出された加速度の何れかが推定困難姿勢であった場合には、姿勢判定部53は、今回の判定タイミングにおける対象者の姿勢が推定困難姿勢であったと判定する。つまり、前回の判定タイミングから今回の判定タイミングの間で、1度でも推定困難姿勢があれば推定困難と判定され、ずっと推定可能姿勢である場合のみ推定可能と判定される。
 例えば、姿勢判定部53は、判定結果に応じて姿勢フラグを設定する。姿勢フラグ「0」は、推定可能姿勢を表し、姿勢フラグ「1」は、推定困難姿勢の第1態様として、前傾状態の立位又は座位を表し、姿勢フラグ「2」は、推定困難姿勢の第2態様として、側臥位を表し、姿勢フラグ「3」は、推定困難姿勢の第3態様として、第1態様及び第2態様に含まれない推定困難姿勢を表す。尚、姿勢判定部53は、判定結果(例えば、姿勢フラグ)を第3サーバ33に記憶させる。
 対象者の姿勢が推定可能姿勢の場合には、排尿判定部52は、ステップSc2において、今回の判定タイミングの直近の尿レベル推定値、即ち、前回の判定タイミングにおける尿レベル推定値と尿レベル算出値とのレベル差(=直近の尿レベル推定値-尿レベル算出値)が所定の第1尿量閾値α以上か否かを判定する。つまり、排尿判定部52は、尿レベル算出値が直近の尿レベル推定値から大幅に減少したか否かを判定する。
 レベル差が第1尿量閾値α未満である場合、排尿判定部52は、ステップSc7において、現在の尿レベル推定値を更新せず、そのままの値を維持する(図12,16の矢印B参照)。つまり、排尿判定部52は、尿レベル算出値を現在の尿レベルとして採用しない。レベル差が第1尿量閾値α未満である場合には、尿レベル算出値が前回の尿レベル推定値から変化していないか、尿レベル算出値が前回の尿レベル推定値から少ししか減少していない場合である。前者の場合、当然、排尿は起こっていない。後者の場合も、尿レベルの減少量が小さいので、その原因は測定誤差であり、排尿が起こっていないと考えられる。排尿がない場合には、尿量が減少することもないので、現在の尿レベル推定値は変更されず、そのままの値が維持される。その後、排尿判定部52は、メインフロー(図10のフロー)の処理に戻る。
 排尿判定から戻った後のメインフローでは、排尿判定部52は、ステップSb1の処理から繰り返す。すなわち、排尿判定部52は、次の判定タイミングが到来するまで、超音波センサ11の受信信号及び姿勢センサ12の加速度の取得を繰り返す。次の判定タイミングが到来すると、排尿判定部52は、新たな尿レベル算出値を求め、排尿タイミング又は排尿の有無を判定する。推定可能姿勢が維持されている間は、尿レベル算出値が直近の尿レベル推定値から大幅に減少するまで、排尿判定部52は、ステップSb6以降の処理か、又は、ステップSc1,Sc2,Sc7の処理を繰り返す。この間は、尿レベル推定値は、増えることはあっても、減ることはない。
 ステップSc2においてレベル差が第1尿量閾値α以上である場合、排尿判定部52は、ステップSc3において、対象者に大きな体動があったか否かを判定する。体動の有無は、姿勢判定部53によって判定される。姿勢判定部53は、前回の判定タイミングから今回の判定タイミングまでの間の加速度を第3サーバ33から読み出す。尚、前回の判定タイミングから今回の判定タイミングまでの間に加速度が1つしか取得されていない場合には、姿勢判定部53は、さらにその1つ前の加速度も読み出す。つまり、姿勢判定部53は、少なくとも2つの加速度を読み出す。姿勢判定部53は、読み出された加速度に基づいて、具体的には、加速度の絶対値(大きさ)に基づいて、大きな体動があったか否かを判定する。姿勢判定部53は、加速度の絶対値の変化量が所定の第1体動閾値β以上か否かを判定する。姿勢判定部53は、連続する2つの加速度ごとにこの判定を行う。つまり、3つの加速度が読み出された場合には、1番目の加速度の絶対値と2番目の加速度の絶対値との変化量、及び、2番目の加速度の絶対値と3番目の加速度の絶対値との変化量が求められ、それぞれの変化量が第1体動閾値βと比較される。読み出された加速度に関して全ての加速度の絶対値の変化量が第1体動閾値β未満の場合には、姿勢判定部53は、大きな体動がなかったと判定する。一方、読み出された加速度に関して何れかの加速度の絶対値の変化量が第1体動閾値β以上の場合には、姿勢判定部53は、大きな体動があったと判定する。姿勢判定部53は、大きな体動があった場合には体動フラグを「2」に設定する一方、大きな体動がなかった場合には体動フラグを「0」に設定する。
 大きな体動があった場合(図12の矢印C)には、排尿判定部52は、ステップSc7において、尿レベル算出値の大幅減少は対象者の大きな体動による測定誤差であると判断し、現在の尿レベル推定値を更新せずにそのままの値を維持する。つまり、排尿判定部52は、排尿があったとは判定しない。その後、排尿判定部52は、メインフローの処理に戻る。メインフローへ戻った後は、尿レベル推定値が維持された状態で前述の処理が繰り返される。
 一方、ステップSc3において大きな体動がなかった場合には、排尿判定部52は、ステップSc4において、現在の尿レベル推定値を尿レベル算出値で更新する(図12の矢印D)。つまり、排尿判定部52は、尿レベル算出値を現在の尿レベルとして採用する。この場合は、対象者は推定可能姿勢であって且つ大きな体動もなく、尿量が大幅に減少しているので、排尿判定部52は、排尿があったと判定する。そのため、排尿判定部52は、ステップSc5において、排尿があった旨を示す排尿通知を処理装置2及びユーザ端末71に通信部43を介して送信する。
 その後、排尿判定部52は、メインフローの処理に戻る。排尿判定部52は、次の判定タイミングが到来するまで超音波センサ11の受信信号及び姿勢センサ12の加速度の取得を繰り返し、次の判定タイミングにおいて新たな尿レベル算出値を求め、排尿タイミング又は排尿の有無を判定する。つまり、排尿後の少ない尿レベル推定値から再び尿レベルの監視が実行され、排尿タイミング及び排尿の有無の判定が再度行われる。
 処理装置2は、排尿通知を受信すると、報知部25を作動させる。例えば、処理装置2は、報知部25であるLEDランプを排尿があった旨を示す態様(例えば、高速で点滅させる)で点灯させる。また、ユーザ端末71は、排尿通知を受信すると、ユーザ端末71のディスプレイに排尿があった旨を表示する。
 これにより、対象者又は対象者の周りの人々は、排尿があったことを知ることができ、失禁後の処理を早期に行うことができる。つまり、オムツ交換の時期が早期に報知される。尚、対象者がトイレ等で適切に排尿を済ませていた場合には、対象者又は対象者の周りの人々は、排尿通知を無視すればよい。
 また、ステップSc1において対象者の姿勢が推定可能姿勢でなかった場合には、排尿判定部52は、ステップSc6において、推定可能姿勢でないと判定している期間、即ち、推定困難期間が継続しているか否かを判定する。例えば、排尿判定部52は、推定困難期間が所定の期間閾値γ以上か否かを判定する。推定困難期間が期間閾値γ未満である場合には、排尿判定部52は、ステップSc7へ進む。つまり、対象者の姿勢が推定可能姿勢でない場合、排尿判定部52は、基本的には、超音波センサ11が超音波を適切に送受信できていないと判断して、排尿が無かったと判定する(即ち、排尿があったと判定しない)。推定困難姿勢の場合は、尿レベル算出値が直近の尿レベル推定値から大きく減少していたとしても、実際に排尿があったのか、超音波が適切に送受信できなかったのか判別することが難しい。そこで、図12,13の矢印Eで示すように、排尿判定部52は、ステップSc7において現在の尿レベル推定値を更新せずにそのままの値を維持する。その後、排尿判定部52は、メインフローの処理に戻る。
 図12の例では、矢印Eのときに対象者の姿勢が推定困難姿勢であって、ステップSc1の判定がNOとなった後に、対象者の姿勢が推定可能姿勢に変わると、次回のステップSc1の判定がYESとなる。ここで、直近の尿レベル推定値と新たな尿レベル算出値とのレベル差が大きい場合には、ステップSc2におけるレベル差の判定がYESとなる。そして、大きな体動がない限り、図12の矢印Dで示すように、排尿判定部52は、排尿があったと判定して、現在の尿レベル推定値を尿レベル算出値で更新し(ステップSc4)、排尿通知を処理装置2及びユーザ端末71に通信部43を介して送信する(ステップSc5)。
 このように、対象者の姿勢が推定困難姿勢である場合には尿レベル算出値が小さくなる可能性が高い。しかし、尿レベル推定値は更新されずに維持されるので、対象者の姿勢が推定可能姿勢に変わったときには維持された尿レベル推定値と新たな尿レベル算出値とが比較される。そのため、尿レベル推定値からの尿レベル算出値の減少量を精度よく評価することができる。
 また、推定困難姿勢のときに排尿があった場合には、尿レベル算出値が小さくなるものの、推定困難姿勢であることが優先されて、一旦、排尿がなかったと判定される。しかし、尿レベル推定値が維持されるので、次の判定タイミングにおいては、維持された尿レベル推定値と小さな尿レベル算出値とが比較されることになる。その結果、ステップSc2においてレベル差の判定がYESとなり、結果として、排尿があったと判定される。このように、推定困難姿勢のときには排尿がなかったと判定したとしても、尿レベル推定値を更新せずに維持することによって、排尿があったことが次の判定タイミングで適切に判定される。
 一方、図13の矢印E以降に示されるように、対象者が推定困難姿勢を継続している場合には、ステップSc1の判定がNOとなり、排尿判定部52は、メインフローの処理に戻る。尿レベル算出値が増加しない限り、排尿判定部52は、再び排尿判定のステップSc1の処理に進む。対象者は推定困難姿勢を継続しているので、再度のステップSc1でも推定困難(NO)と判定され、推定困難期間が増加する。推定困難期間がまだ期間閾値γ未満であれば、排尿判定部52は、メインフローの処理に戻る。排尿判定部52がこのような処理のループを繰り返すと、推定困難期間がやがて期間閾値γ以上となる。期間閾値γは、判定周期よりも長い期間に設定されている。例えば、期間閾値γは、判定タイミングの3周期に相当する時間に設定されている。
 そして、推定困難期間が期間閾値γ以上となった場合には、排尿判定部52は、ステップSc8において、推定困難期間のうち直近の期間閾値γに相当する期間(この例では、今回の判定タイミングを含む直近の3周期分)において対象者に体動があったか否かを判定する。体動の有無は、姿勢判定部53によって判定される。姿勢判定部53による体動の判定の基本的な処理は、ステップSc3と同じである。ただし、ステップSc8では、姿勢判定部53は、連続する2つの加速度の絶対値の変化量が所定の第2体動閾値ε未満の場合に体動がなかったと判定し、変化量が第2体動閾値ε以上の場合に体動があったと判定する。第2体動閾値εは、第1体動閾値βよりも小さい。第2体動閾値εは、対象者が同様の推定困難姿勢を維持していると評価できる程度に小さな体動に相当する。姿勢判定部53は、変化量が第2体動閾値ε以上で且つ第1体動閾値βよりも小さな体動があった場合には体動フラグを「1」に設定する。ステップSc8では、ステップSc3では体動ありと判定されない程度の小さな体動でも、体動ありと判定され得る。読み出された加速度に関して全ての加速度の絶対値の変化量が第2体動閾値ε未満の場合(即ち、全ての体動フラグが0の場合)には、姿勢判定部53は、体動がなかったと判定する。一方、読み出された加速度に関して何れかの加速度の絶対値の変化量が第2体動閾値ε以上の場合(すなわち、いずれかの体動フラグが1又は2の場合)には、姿勢判定部53は、体動があったと判定する。このように、ステップSc8では、体動があったか否かに基づいて、姿勢の変化があったか否かが判定される。体動がなかった場合には、姿勢の変化がなかった、即ち、同様の姿勢が維持されていると判定される。
 これらステップSc6,Sc8の一連の処理は、同様の推定困難姿勢が一定期間継続しているか否か、すなわち、直近の過去の一定期間内に同様の推定困難姿勢での尿レベル算出値が得られているか否かを判定している。ステップSc6において推定困難姿勢が一定期間継続しているか否かが判定され、ステップSc8においてその推定困難姿勢が同様の推定困難姿勢か否かが判定される。
 同様の推定困難姿勢とは、厳密に同一の推定困難姿勢である必要はなく、実質的に同一の推定困難姿勢であればよい。同様の推定困難姿勢は、同じ態様の推定困難姿勢と言い換えることもできる。例えば、側臥位であれば、横向きの角度が或る程度の範囲内に収まっていれば、同じ態様の推定困難姿勢、即ち、同様の推定困難姿勢とみなされる。この例では、姿勢判定部53は、姿勢フラグが同じであれば、同じ態様の推定困難姿勢、即ち、同様の推定困難姿勢とみなす。例えば、2つの推定困難姿勢の姿勢フラグが「2」で同じであれば、姿勢判定部53は、2つの推定困難姿勢は側臥位で同様の推定困難姿勢であるとみなす。
 図13の例では、矢印Fにおいて推定困難期間が期間閾値γ以上となり、ステップSc8において体動の有無が判定される。このとき、図(B)の矢印Fで示すように、姿勢フラグが2から3に変化しており、対象者の姿勢が側臥位の推定困難姿勢から側臥位でも前傾状態の立位又は座位でもない推定困難姿勢に変化している。そのときの体動によって、図(C)の矢印Fの部分で体動フラグ1が成立している。その結果、体動ありと判定され、排尿判定部52は、ステップSc7において、排尿無しと判定し、尿レベル推定値を維持する。
 その後、対象者が推定困難姿勢を継続すると、推定困難期間が期間閾値γ以上の状態が継続される。そのため、排尿判定部52は、ステップSc8における体動の有無の判定を繰り返す。ステップSc8では、推定困難期間のうち今回の判定タイミングを含む直近の3周期分で体動の有無が判定される。判定不能期間が継続していくと、矢印Fの体動がやがて直近の3周期分の期間に含まれなくなる。図13の例では、矢印Gのときに矢印Fの体動が直近の3周期分の期間に含まれなくなる。このとき、ステップSc8において体動無しと判定される。
 体動無しと判定されると、排尿判定部52は、ステップSc9において、今回の推定困難姿勢と同様の推定困難姿勢における直近の尿レベル算出値と今回の尿レベル算出値とのレベル差(=直近の尿レベル算出値-今回の尿レベル算出値)が所定の第2尿量閾値ζ以上か否かを判定する。ステップSc2では、直近の尿レベル推定値と今回の尿レベル算出値とを比較しているのに対し、ステップSc9では、同様の推定困難姿勢における直近の尿レベル算出値と今回の尿レベル算出値とを比較する。排尿判定部52は、同様の推定困難姿勢の尿レベル算出値を比較して、尿レベル算出値が大幅に減少したか否かを判定する。尚、第2尿量閾値ζは、第1尿量閾値αと同じであってもよいし、異なる値(例えば、第1尿量閾値αよりも小さな値)であってもよい。
 つまり、対象者の姿勢が推定困難姿勢である場合であっても、膀胱からの反射波を安定的に受信できる場合がある。例えば、側臥位であっても、身体の正面が完全に水平方向を向くのではなく、斜め上方を向く姿勢であって且つ推定可能姿勢に該当しない場合には、体表へのプローブ1の接触状態が最適ではないものの、プローブ1から体内への超音波の送受信が可能な場合がある。この場合には、尿レベル算出値が推定可能姿勢に比べると小さくなるものの、小さくなった尿レベル算出値が安定的に取得される場合がある。そのような場合には、小さくなった尿レベル算出値同士を比較することによって、排尿の有無を判定することができる。
 そこで、同様の推定困難姿勢における直近の尿レベル算出値と今回の尿レベル算出値とのレベル差が第2尿量閾値ζ未満の場合には、尿レベル算出値の減少が大きくないので、排尿判定部52は、排尿無しと判定し、ステップSc7において、現在の尿レベル推定値を維持する。図13の矢印Gの時点では、直近の尿レベル算出値と今回の尿レベル算出値とのレベル差が第2尿量閾値ζ未満なので、排尿無しと判定される。
 一方、同様の推定困難姿勢における直近の尿レベル算出値と今回の尿レベル算出値とのレベル差が第2尿量閾値ζ以上の場合には、尿レベル算出値の減少が大きいので、排尿判定部52は、排尿があったと判定し、現在の尿レベル推定値を尿レベル算出値で更新する(ステップSc4)と共に、排尿通知を送信する(ステップSc5)。図13の矢印Hの時点で直近の尿レベル算出値と今回の尿レベル算出値とのレベル差が第2尿量閾値ζ以上となるので、排尿があったと判定される。
 このように、同様の推定困難姿勢が継続している場合には、精度は低いものの尿レベル算出値が安定的に取得できていれば、排尿判定部52は、同様の推定困難姿勢における尿レベル算出値同士を比較することによって、排尿の有無を判定する。
 尚、推定困難姿勢においては、尿レベル算出値が非常に小さくなる場合が多い。つまり、同様の推定困難姿勢における直近の尿レベル算出値が非常に小さくなる傾向にある。そのため、同様の推定困難姿勢における直近の尿レベル算出値と今回の尿レベル算出値とのレベル差が第2尿量閾値ζ以上となる可能性はあまり高くない。その結果、レベル差は第2体動閾値ε未満となり、推定困難姿勢の場合の基本的な処理と同様に、排尿無しと判定され、尿レベル推定値が維持される場合が多い。よって、推定困難姿勢であっても或る程度の大きさの尿レベル算出値が取得できる場合に限り、前述のような方法で排尿を判定することができる。
 以上のように、排尿予測システム100は、対象者の体内に超音波を送信し、反射波を受信する超音波センサ11と、対象者の姿勢を検出する姿勢センサ12と、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿の有無を判定する排尿判定部52と、姿勢センサ12によって検出される姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する姿勢判定部53とを備え、排尿判定部52は、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 換言すると、排尿予測方法は、対象者の体内に超音波を送信し、反射波を受信する超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する工程と、姿勢センサ12によって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する工程とを含み、排尿を判定する工程では、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 また、排尿予測プログラム81は、対象者の排尿の有無を判定する機能をコンピュータに実現させるための排尿予測プログラムであって、対象者の体内に超音波を送信し、反射波を受信する超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する機能と、姿勢センサ12によって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する機能とをコンピュータに実現させ、排尿を判定する機能は、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない。
 これらの構成によれば、単に尿量が減少しただけでは排尿があったと判定されず、対象者の姿勢が推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定される。一方、対象者の姿勢が推定困難姿勢であった場合には尿量が減少しても排尿があったと判定されない。これにより、対象者の姿勢が推定困難姿勢であるために尿量が減少した場合に排尿があったと誤って判定されることを防止することができる。その結果、排尿の有無の判定精度を向上させることができる。
 また、排尿判定部52は、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿レベル算出値(尿量の算出値)を継続的に求め、尿レベル算出値に基づいて膀胱の尿レベル推定値(尿量の推定値)を更新していき、直近の尿レベル推定値からの尿レベル算出値の減少量が所定の第1尿量閾値α以上である場合に排尿があったと判定する。
 換言すると、排尿予測プログラム81において、排尿を判定する工程では、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿レベル算出値(尿量の算出値)を継続的に求め、尿レベル算出値に基づいて膀胱の尿レベル推定値(尿量の推定値)を更新していき、直近の尿レベル推定値からの尿レベル算出値の減少量が所定の第1尿量閾値α以上である場合に排尿があったと判定する。
 また、排尿予測プログラム81において、排尿を判定する機能は、超音波センサ11が受信する膀胱からの反射波に基づいて膀胱の尿レベル算出値(尿量の算出値)を継続的に求め、尿レベル算出値に基づいて膀胱の尿レベル推定値(尿量の推定値)を更新していき、直近の尿レベル推定値からの尿レベル算出値の減少量が所定の第1尿量閾値α以上である場合に排尿があったと判定する。
 これらの構成によれば、超音波センサ11の受信信号に基づいて尿レベル算出値が継続的に求められ、求められた尿レベル算出値によって尿レベル推定値が随時更新されていく。これにより、尿レベル推定値は、膀胱の尿量の増加に応じて増加していく。そして、直近の尿レベル推定値からの尿レベル算出値の減少量が第1尿量閾値α以上である場合に排尿があったと判定される。尿レベル算出値が直近の尿レベル推定部から単に減少しただけでは排尿があったと判定されず、尿レベル算出値が直近の量尿レベル推定値から或る程度減少した場合に排尿があったと判定される。これにより、超音波の送受信における測定誤差等で尿レベル算出値が少し減少した場合に、排尿があったと誤判定されることが防止される。
 さらに、排尿判定部52は、尿レベル算出値が直近の尿レベル推定値から減少した場合であって排尿があったと判定する場合には、尿レベル推定値を尿レベル算出値で更新し、尿レベル算出値が直近の尿レベル推定値から減少した場合であって且つ排尿があったと判定しない場合には、尿レベル推定値を尿レベル算出値で更新することなく維持する。
 この構成によれば、排尿があったと判定される場合には、尿レベル推定値が尿レベル算出値で更新され、排尿後の小さな値となる。一方、排尿があったと判定されない場合には、尿レベル算出値が減少したとしても尿レベル推定値を更新しない。膀胱の尿量が実際に減少する主な原因は排尿なので、排尿があったと判定されない場合の尿レベル算出値の減少は、実際の膀胱の尿量を正確に反映していない可能性がある。そのため、尿レベル推定値は、尿レベル算出値で更新されず、そのままの値で維持される。これにより、尿レベル推定値の精度を向上させることができる。また、尿レベル推定値を、正確ではない、減少した尿レベル算出値で尿レベル推定値で更新してしまうと、次に尿レベル算出値の減少値を求める際の直近の尿レベル推定値が不当に小さくなってしまう。直近の尿レベル推定値が小さいと、必然的に尿レベル算出値の減少量も小さくなってしまう。その結果、実際に排尿があったとしても、減少量が第1尿量閾値αとならない可能性があり、排尿の有無を精度よく判定できない虞がある。排尿があったと判定しない場合には尿レベル推定値を尿レベル算出値で更新することなく維持することによって、このような事態を回避することができ、結果として、排尿の有無を精度よく判定することができる。
 それに加えて、排尿判定部52は、尿レベル算出値が直近の尿レベル推定値から増加した場合には、尿レベル推定値を尿レベル算出値で更新する。
 この構成によれば、尿レベル算出値が直近の尿レベル推定値から減少した場合であって排尿があったと判定する場合に加えて、尿レベル算出値が直近の尿レベル推定値から増加した場合にも、尿レベル推定値が尿レベル算出値で更新される。言い換えると、尿レベル算出値が直近の尿レベル推定値から変わらない場合、及び、直近の尿レベル推定値からの尿レベル算出値の減少量が小さい(即ち、第1尿量閾値α未満の)場合には、尿レベル推定値は更新されず維持される。これにより、膀胱の尿量の微小な変動を無視して、尿量を安定的に推定することができる。
 また、排尿判定部52は、対象者の姿勢が推定困難姿勢であった場合であって、所定の期間内、即ち、期間閾値γに相当する期間内に同様の推定困難姿勢における尿レベル算出値が複数得られている場合には、同様の推定困難姿勢における2つの尿レベル算出値を比較して、尿レベル算出値の減少量が所定の第2尿量閾値ζ以上である場合に排尿があったと判定する。
 換言すると、排尿予測方法において、排尿を判定する工程では、対象者の姿勢が推定困難姿勢であった場合であって、所定の期間内、即ち、期間閾値γに相当する期間内に同様の推定困難姿勢における尿レベル算出値が複数得られている場合には、同様の推定困難姿勢における複数の尿レベル算出値を比較して、尿レベル算出値の減少量が所定の第2尿量閾値ζ以上である場合に排尿があったと判定する。
 また、排尿予測プログラムにおいて、排尿を判定する機能は、対象者の姿勢が推定困難姿勢であった場合であって、所定の期間内、即ち、期間閾値γに相当する期間内に同様の推定困難姿勢における前記算出値が複数得られている場合には、同様の推定困難姿勢における複数の尿レベル算出値を比較して、尿レベル算出値の減少量が所定の第2尿量閾値ζ以上である場合に排尿があったと判定する。
 これらの構成によれば、推定困難姿勢であっても、排尿があったと判定される場合がある。詳しくは、推定困難姿勢の場合には、尿レベル算出値が実際の尿量よりも小さくなるが、小さくなった尿レベル算出値が安定的に取得される場合がある。このとき、尿レベル算出値が排尿を評価できる程度の大きさを有していれば、尿レベル算出値の変化に基づいて排尿を判定できる可能性がある。そこで、対象者の姿勢が推定困難姿勢であった場合であって且つ期間閾値γに相当する期間内、即ち、過去の比較的短い期間内に同様の推定困難姿勢における尿レベル算出値が複数得られている場合には、同様の推定困難姿勢における尿レベル算出値を比較する。その結果、尿レベル算出値の減少量が第2尿量閾値ζ以上である場合に排尿があったと判定される。減少量が第2尿量閾値ζ以上となるためには、先の(即ち、早い方の)尿レベル算出値が或る程度の大きさを有している必要がある。このことは、推定困難姿勢であっても、超音波の送受信が膀胱を検出可能な程度に実行できることを意味している。そして、同様の推定困難姿勢であれば、後の尿レベル算出値の基となった超音波センサ11の受信信号も、膀胱を検出可能な程度の条件下で受信されたものと考えられる。つまり、尿レベル算出値の減少量が第2尿量閾値ζ以上である場合には、2つの尿レベル算出値の基となる2セットの超音波センサ11の受信信号は共に、膀胱を検出可能な程度の条件下で受信されたものと考えられる。そのため、同様の推定困難姿勢における尿レベル算出値の減少量が第2尿量閾値ζ以上の場合に排尿があったと判定しても、その判定は或る程度正確な判定とみなすことができる。
 さらに、排尿判定部52は、同様の推定困難姿勢が期間閾値γに相当する期間中、継続されている場合に、期間閾値γに相当する期間に同様の推定困難姿勢における尿レベル算出値が複数得られていると判定する。
 この構成によれば、同様の推定困難姿勢が期間閾値γに相当する期間中、継続されていることをもって、期間閾値γに相当する期間に同様の推定困難姿勢における尿レベル算出値が複数得られていると判定される。
 《その他の実施形態》
 以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 前記実施形態について、以下のような構成としてもよい。
 プローブ1の体表への設置場所は、任意に設定することができる。また、プローブ1の装着方法は、前記の方法に限られるものではない。例えば、接触面14を粘着性を有する貼付面で形成し、接触面14を対象者の腹部に貼り付けるようにしてもよい。あるいは、体表に貼着されるホルダを別途設け、プローブ1を体表に接触する状態でホルダに装着するようにしてもよい。
 複数の超音波センサ11の個数は、4個に限られるものではない。超音波センサ11の個数は、1個であってもよく、3個以下又は5個以上であってもよい。
 複数の超音波センサ11の配置は、前記の配置に限られるものではない。例えば、超音波センサ11は、左右方向にオフセットしていなくてもよい。
 また、ケーシング13は、前記の構成に限られるものではない。例えば、ケーシング13の接触面14には突出部が設けられていてもよい。超音波センサ11は、突出部内に内蔵される。突出部により、ケーシング13のうち超音波センサ11が内蔵された部分の皮膚(体表)との密着性が向上し、超音波の人体への入射が促進される。これにより、膀胱の検出能力が高められる。ケーシング13は、概ね円盤状に形成されていてもよい。
 プローブ1と処理装置2とが別体に構成されているが、これに限られるものではない。例えば、プローブ1と処理装置2とを一体的に構成してもよい。また、プローブ1と処理装置2とは、有線で接続されておらず、無線通信してもよい。さらに、処理装置2の機能の一部(例えば、送信部21又は受信部22)を、プローブ1が有していてもよい。
 処理装置2の構成は、前述の構成に限られない。例えば、送信部21は、パルス信号を駆動信号としてプローブ1に入力しているが、駆動信号は、パルス信号に限定されるものではない。駆動信号は、パルス波ではなく、バースト波等であってもよい。また、報知部25は、LEDランプに限られず、ディスプレイ、アラーム又はバイブレータであってもよい。
 処理装置2は、サーバ群3、より具体的には第1サーバ31と無線で接続されているが、有線で接続されていてもよい。また、処理装置2は、第1~第4超音波センサ11A~11Dの受信信号及び姿勢センサ12の加速度をメモリ29に一旦、収集し、それらをまとめて、中継機72を介してサーバ群3に送信しているが、これに限定されない。例えば、処理装置2は、超音波センサ11の受信信号を取得するごとにその受信信号を中継機72に送信し、姿勢センサ12の加速度を取得するとその加速度を中継機72に送信してもよい。中継機72は、それらの信号を収集し、第1~第4超音波センサ11A~11Dの受信信号及び姿勢センサ12の加速度をまとめてサーバ群3に送信してもよい。
 前述の処理装置2及びサーバ群3のそれぞれの処理は、それぞれの装置に固有のものではなく、少なくとも一部の処理を前述の説明とは異なる装置が実行してもよい。例えば、尿量の推定を処理装置2が実行してもよい。あるいは、排尿予測システム100は、サーバ群3を含まず、前述のサーバ群3の機能を処理装置2又はそれ以外の装置(例えば、PC又はユーザ端末71)が実現してもよい。
 サーバ群3は複数のサーバを有しているが、1つのサーバが第1~第3サーバ31~33の機能を有していてもよい。
 また、排尿予測システム100は、サーバ群3を備えていなくてもよい。その場合、前述のサーバ群3の処理(特にフローチャートを用いて説明した処理)を処理装置2又はユーザ端末71が実行する。
 あるいは、前述のサーバ群3の処理のうちユーザ端末71への通知以外の処理を、処理装置2が実行してもよい。
 また、排尿予測システム100は、どの超音波センサ11までが膀胱を検出しているかによって尿レベルを判定しているが、これに限られるものではない。尿量の推定は、任意の方法によって実現することができる。
 サーバ群3にはユーザ端末71が登録されており、サーバ群3の判定結果等が適宜、ユーザ端末71に送信されているが、ユーザ端末71は登録されていなくてもよい。その場合、前述の処理においてユーザ端末71への処理が省略される。
 姿勢センサ12は、直交3軸の加速度を検出する加速度センサに限定されない。姿勢センサ12は、ジャイロセンサであってもよい。
 また、姿勢センサ12は、姿勢判定部53の機能を有していてもよい。例えば、姿勢センサ12は、姿勢を判定する閾値を内部に有し、姿勢の判定結果に応じた信号を出力してもよい。
 姿勢判定部53によって判定される推定可能姿勢は、プローブ1の形状及び体表へのプローブ1の装着方法等によって変更されてもよい。
 さらに、姿勢判定部53は、機械学習機能を有していてもよい。例えば、姿勢判定部53は、機械学習によって、ユーザに応じた推定可能姿勢及び推定困難姿勢を判定するようにしてもよい。
100  排尿予測システム
11   超音波センサ
12   姿勢センサ
52   排尿判定部
53   姿勢判定部
81   排尿予測プログラム

Claims (12)

  1.  対象者の体内に超音波を送信し、反射波を受信する超音波センサと、
     対象者の姿勢を検出する姿勢センサと、
     前記超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿の有無を判定する排尿判定部と、
     前記姿勢センサによって検出される姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する姿勢判定部とを備え、
     前記排尿判定部は、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない排尿予測システム。
  2.  請求項1に記載の排尿予測システムにおいて、
     前記排尿判定部は、
      前記超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量の算出値を継続的に求め、前記算出値に基づいて膀胱の尿量の推定値を更新していき、
      直近の前記推定値からの前記算出値の減少量が所定の第1尿量閾値以上である場合に排尿があったと判定する排尿予測システム。
  3.  請求項2に記載の排尿予測システムにおいて、
     前記排尿判定部は、
      前記算出値が直近の前記推定値から減少した場合であって排尿があったと判定する場合には、前記推定値を前記算出値で更新し、
      前記算出値が直近の前記推定値から減少した場合であって且つ排尿があったと判定しない場合には、前記推定値を前記算出値で更新することなく維持する排尿予測システム。
  4.  請求項3に記載の排尿予測システムにおいて、
     前記排尿判定部は、
      前記算出値が直近の前記推定値から増加した場合には、前記推定値を前記算出値で更新する排尿予測システム。
  5.  請求項2に記載の排尿予測システムにおいて、
     前記排尿判定部は、対象者の姿勢が前記推定困難姿勢であった場合であって、所定の期間内に同様の前記推定困難姿勢における前記算出値が複数得られている場合には、同様の前記推定困難姿勢における2つの前記算出値を比較して、前記算出値の減少量が所定の第2尿量閾値以上である場合に排尿があったと判定する排尿予測システム。
  6.  請求項5に記載の排尿予測システムにおいて、
     前記排尿判定部は、同様の前記推定困難姿勢が前記期間中、継続されている場合に、前記期間内に同様の前記推定困難姿勢における前記算出値が複数得られていると判定する排尿予測システム。
  7.  対象者の体内に超音波を送信し、反射波を受信する超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する工程と、
     姿勢センサによって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する工程とを含み、
     前記排尿を判定する工程では、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない排尿予測方法。
  8.  請求項7に記載の排尿予測方法において、
     前記排尿を判定する工程では、
      前記超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量の算出値を継続的に求め、前記算出値に基づいて膀胱の尿量の推定値を更新していき、
      直近の前記推定値からの前記算出値の減少量が所定の第1尿量閾値以上である場合に排尿があったと判定する排尿予測方法。
  9.  請求項8に記載の排尿予測方法において、
     前記排尿を判定する工程では、対象者の姿勢が前記推定困難姿勢であった場合であって、所定の期間内に同様の前記推定困難姿勢における前記算出値が複数得られている場合には、同様の前記推定困難姿勢における複数の前記算出値を比較して、前記算出値の減少量が所定の第2尿量閾値以上である場合に排尿があったと判定する排尿予測方法。
  10.  対象者の排尿の有無を判定する機能をコンピュータに実現させるための排尿予測プログラムであって、
     対象者の体内に超音波を送信し、反射波を受信する超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量を継続的に推定すると共に、尿量の減少に基づいて排尿を判定する機能と、
     姿勢センサによって検出される対象者の姿勢に基づいて対象者の姿勢が尿量の推定可能姿勢か尿量の推定困難姿勢かを判定する機能とをコンピュータに実現させ、
     前記排尿を判定する機能は、対象者の姿勢が前記推定可能姿勢であって且つ尿量が減少した場合に排尿があったと判定する一方、対象者の姿勢が前記推定困難姿勢であった場合には尿量が減少しても排尿があったと判定しない排尿予測プログラム。
  11.  請求項10に記載の排尿予測プログラムにおいて、
     前記排尿を判定する機能は、
      前記超音波センサが受信する膀胱からの反射波に基づいて膀胱の尿量の算出値を継続的に求め、前記算出値に基づいて膀胱の尿量の推定値を更新していき、
      直近の前記推定値からの前記算出値の減少量が所定の第1尿量閾値以上である場合に排尿があったと判定する排尿予測プログラム。
  12.  請求項11に記載の排尿予測プログラムにおいて、
     前記排尿を判定する機能は、対象者の姿勢が前記推定困難姿勢であった場合であって、所定の期間内に同様の前記推定困難姿勢における前記算出値が複数得られている場合には、同様の前記推定困難姿勢における複数の前記算出値を比較して、前記算出値の減少量が所定の第2尿量閾値以上である場合に排尿があったと判定する排尿予測プログラム。

     
PCT/JP2021/014654 2020-04-07 2021-04-06 排尿予測システム、排尿予測方法及び排尿予測プログラム WO2021206094A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022514089A JPWO2021206094A1 (ja) 2020-04-07 2021-04-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-069184 2020-04-07
JP2020069184 2020-04-07

Publications (1)

Publication Number Publication Date
WO2021206094A1 true WO2021206094A1 (ja) 2021-10-14

Family

ID=78023303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014654 WO2021206094A1 (ja) 2020-04-07 2021-04-06 排尿予測システム、排尿予測方法及び排尿予測プログラム

Country Status (2)

Country Link
JP (1) JPWO2021206094A1 (ja)
WO (1) WO2021206094A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171149A (ja) * 1992-10-26 1995-07-11 Agency Of Ind Science & Technol 照射角度自動選択機能付き排尿警報装置
WO2005099582A1 (ja) * 2004-03-31 2005-10-27 National Institute Of Advanced Industrial Science And Technology 超音波尿量センサ
JP2013183950A (ja) * 2012-03-08 2013-09-19 Toto Ltd 生体情報測定装置
JP2016127971A (ja) * 2014-08-26 2016-07-14 大塚メディカルデバイス株式会社 超音波尿量測定システム
WO2016199182A1 (ja) * 2015-06-12 2016-12-15 トリプル・ダブリュー・ジャパン株式会社 尿量推定装置及び尿量推定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171149A (ja) * 1992-10-26 1995-07-11 Agency Of Ind Science & Technol 照射角度自動選択機能付き排尿警報装置
WO2005099582A1 (ja) * 2004-03-31 2005-10-27 National Institute Of Advanced Industrial Science And Technology 超音波尿量センサ
JP2013183950A (ja) * 2012-03-08 2013-09-19 Toto Ltd 生体情報測定装置
JP2016127971A (ja) * 2014-08-26 2016-07-14 大塚メディカルデバイス株式会社 超音波尿量測定システム
WO2016199182A1 (ja) * 2015-06-12 2016-12-15 トリプル・ダブリュー・ジャパン株式会社 尿量推定装置及び尿量推定方法

Also Published As

Publication number Publication date
JPWO2021206094A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
CN107613879B (zh) 尿量推定装置和尿量推定方法
US11412955B2 (en) Blood pressure measuring apparatus and blood pressure measuring method
JP6338788B1 (ja) 排尿予測装置及び排尿予測方法
JP5405564B2 (ja) ドップラー運動センサー装置およびその使用方法
US8467726B2 (en) Communication device and communication method
JP6012909B2 (ja) 排便予測装置及び排便予測方法
KR101076816B1 (ko) 초음파 요량 센서
US20180064413A1 (en) Stool amount estimating apparatus and stool amount estimating method
EP4159117A2 (en) Real-time monitoring device for human body
WO2021206094A1 (ja) 排尿予測システム、排尿予測方法及び排尿予測プログラム
JP7284364B2 (ja) 超音波測定装置、接触判定サーバ装置、接触判定プログラム及び接触判定方法
US20230255533A1 (en) Monitoring device
JP2020092812A (ja) 尿量推定用探触子、及びそれを用いた尿量推定装置
JP2021186347A (ja) 排便時期学習予測システムおよび排便時期学習予測方法
KR20200104702A (ko) 웨어러블 디바이스 및 이를 이용한 방광용적 모니터링 시스템과 방법
JP2021168712A (ja) 尿量推定用探触子、及びそれを用いた尿量推定装置
JP2022159870A (ja) プローブ
JPWO2006115278A1 (ja) 臓器形状測定方法とその測定装置、排尿障害対策システム、並びに超音波探触子
JP2022159871A (ja) センサ装置
TW202312941A (zh) 多感測單元之母體胎兒監測裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21785559

Country of ref document: EP

Kind code of ref document: A1