WO2021206002A1 - 建設機械の油圧システム - Google Patents

建設機械の油圧システム Download PDF

Info

Publication number
WO2021206002A1
WO2021206002A1 PCT/JP2021/014270 JP2021014270W WO2021206002A1 WO 2021206002 A1 WO2021206002 A1 WO 2021206002A1 JP 2021014270 W JP2021014270 W JP 2021014270W WO 2021206002 A1 WO2021206002 A1 WO 2021206002A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
pump
relief
electromagnetic proportional
Prior art date
Application number
PCT/JP2021/014270
Other languages
English (en)
French (fr)
Inventor
哲弘 近藤
英泰 村岡
拓也 福本
直希 畑
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2021206002A1 publication Critical patent/WO2021206002A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor

Definitions

  • the present invention relates to a hydraulic system for construction machinery.
  • a plurality of control valves are interposed between a main pump and a plurality of hydraulic actuators. Each control valve controls the supply and discharge of hydraulic oil to the corresponding hydraulic actuator.
  • Patent Document 1 discloses a hydraulic system for a construction machine using a split pump having a first discharge port and a second discharge port.
  • the split pump is a variable displacement pump whose tilt angle can be changed, and the tilt angle of the split pump is adjusted by a regulator.
  • the discharge flow rate of the split pump is controlled by a negative control method.
  • a plurality of control valves are arranged on the first center bypass line extending from the first discharge port to the tank and on the second center bypass line extending from the second discharge port to the tank.
  • the regulator has a negative control pressure on the upstream side of the throttle provided on the downstream side of the control valve in the first center bypass line and a negative control on the upstream side of the throttle provided on the downstream side of the control valve in the second center bypass line. The lower of the pressures is supplied.
  • a relief line is connected to the first center bypass line so as to bypass the aperture, and a relief valve is provided in this relief line.
  • a relief line is connected to the second center bypass line so as to bypass the throttle, and a relief valve is provided in this relief line.
  • an object of the present invention is to provide a hydraulic system for construction machinery, which has an inexpensive configuration and can allow hydraulic oil discharged from a pump to escape from the upstream side of a throttle to a tank when the control valve is not operating. And.
  • the hydraulic system of the construction machine of the present invention relates to a variable displacement pump having a variable tilt angle and a hydraulic actuator arranged on a center bypass line extending from the pump to the tank.
  • a plurality of control valves for controlling the supply and discharge of hydraulic oil, a throttle provided on the center bypass line on the downstream side of the plurality of control valves, and a throttle provided on the center bypass line so as to bypass the throttle are connected to the center bypass line.
  • a relief valve provided on the relief line that can be changed between a first set value in which the relief pressure is substantially zero and a second set value in which the relief pressure is larger than the first set value, and a high pump signal pressure.
  • a regulator in which a negative control pressure, which is a pressure on the upstream side of the throttle in the center bypass line, is supplied as the pump signal pressure, which adjusts the tilt angle of the pump so that the discharge flow rate of the pump is reduced.
  • the relief pressure of the relief valve is switched to the first set value, and the plurality of operations are performed. It is characterized by including a control device for switching the relief pressure of the relief valve to the second set value when any of the devices is operated.
  • the relief pressure of the relief valve is switched to the first set value, which is substantially zero, so that the hydraulic oil discharged from the pump is discharged from the throttle. Also preferentially passes through the relief valve. In other words, the relief valve can act as an unload valve. Therefore, with an inexpensive configuration, the hydraulic oil discharged from the pump when the control valve is not operating can be released from the upstream side of the throttle to the tank through the relief line.
  • the relief pressure of the relief valve is switched to the second set value, so that the relief valve can be operated as a normal relief valve for negative control.
  • the hydraulic oil discharged from the pump when the control valve is not operating can be released to the tank from the upstream side of the throttle with an inexpensive configuration.
  • FIG. 1 shows the hydraulic system 1A of the construction machine according to the first embodiment of the present invention
  • FIG. 2 shows the construction machine 10 on which the hydraulic system 1A is mounted.
  • the construction machine 10 shown in FIG. 2 is a hydraulic excavator
  • the present invention can be applied to other construction machines such as a hydraulic crane.
  • the construction machine 10 shown in FIG. 2 is a self-propelled type and includes a traveling body 11. Further, the construction machine 10 includes a swivel body 12 rotatably supported by the traveling body 11 and a boom that looks down on the swivel body 12. An arm is swingably connected to the tip of the boom, and a bucket is swingably connected to the tip of the arm. The swivel body 12 is provided with a cabin 16 in which a driver's seat is installed. The construction machine 10 does not have to be self-propelled.
  • the hydraulic system 1A includes the boom cylinder 13, the arm cylinder 14, and the bucket cylinder 15 shown in FIG. 2, as the hydraulic actuator 20, and also includes a traveling left motor, a traveling right motor, and a swivel motor (not shown).
  • the boom cylinder 13 raises and lowers the boom, the arm cylinder 14 swings the arm, and the bucket cylinder 15 swings the bucket.
  • the hydraulic system 1A includes a first main pump 22 and a second main pump 24 that supply hydraulic oil to the above-mentioned hydraulic actuator 20.
  • the first main pump 22 and the second main pump 24 are driven by the engine 21.
  • the engine 21 also drives the auxiliary pump 26.
  • the first main pump 22, the second main pump 24, and the sub-pump 26 may be driven by an electric motor.
  • a first center bypass line 31 extends from the first main pump 22 to the tank, and a plurality of control valves 5A are arranged on the first center bypass line 31. Further, the first center bypass line 31 is provided with a throttle 34 on the downstream side of all the control valves 5A. Further, a relief line 35 is connected to the first center bypass line 31 so as to bypass the throttle 34, and the relief line 35 is provided with a first relief valve 36.
  • All control valves 5A are connected to the first main pump 22 by a parallel line 32.
  • a second center bypass line 41 extends from the second main pump 24 to the tank, and a plurality of control valves 5B are arranged on the second center bypass line 41. Further, the second center bypass line 41 is provided with a throttle 44 on the downstream side of all the control valves 5B. Further, a relief line 45 is connected to the second center bypass line 41 so as to bypass the throttle 44, and the relief line 45 is provided with a second relief valve 46.
  • All control valves 5B are connected to the second main pump 24 by a parallel line 42.
  • Each of the first relief valve 36 and the second relief valve 46 has a first set value P1 (for example, 0.5 MPa or less) in which the relief pressure is substantially zero, and a second set value larger than the first set value P1. It can be changed between the set value P2 and the set value P2.
  • the second set value P2 is a value set by a normal negative control (for example, 3.0 to 4.0 MPa). The configurations of the first relief valve 36 and the second relief valve 46 will be described in detail later.
  • Each of the control valves 5A and 5B controls the supply and discharge of hydraulic oil to the corresponding hydraulic actuator 20.
  • the control valve 5A arranged on the first center bypass line 31 includes the traveling left control valve 51, the boom control valve 52, and the bucket control valve 53, and is controlled on the second center bypass line 41.
  • the valve 5B includes a traveling right control valve 54, a swivel control valve 55, and an arm control valve 56.
  • the first main pump 22 supplies hydraulic oil to the traveling left motor (not shown) via the traveling left control valve 51, supplies hydraulic oil to the boom cylinder 13 via the boom control valve 52, and bucket control valve. Hydraulic oil is supplied to the bucket cylinder 15 via 53.
  • the second main pump 24 supplies hydraulic oil to the running right motor shown through the running right control valve 54, supplies hydraulic oil to the running right motor shown through the swivel control valve 55, and supplies hydraulic oil to the swivel motor shown through the swivel control valve 55. Hydraulic oil is supplied to the arm cylinder 14 via 56. However, which of the first main pump 22 and the second main pump 24 supplies the hydraulic oil to which hydraulic actuator 20 can be appropriately changed.
  • each control valve 5A arranged on the first center bypass line 31 is connected to the corresponding hydraulic actuator 20 by a pair of supply / discharge lines.
  • Each control valve 5A also includes a spool (not shown) and a pair of pilot ports for moving the spool to one and the other in the axial direction.
  • Each control valve 5A maximizes the opening area on the first center bypass line 31 in the neutral position, and blocks the parallel line 32, the tank line 33, and the pair of supply / discharge lines.
  • each control valve 5B arranged on the second center bypass line 41 is connected to the corresponding hydraulic actuator 20 by a pair of supply / discharge lines.
  • Each control valve 5B also includes a spool (not shown) and a pair of pilot ports for moving the spool to one and the other in the axial direction.
  • Each control valve 5B maximizes the opening area on the second center bypass line 41 in the neutral position, and blocks the parallel line 42, the tank line 43, and the pair of supply / discharge lines.
  • each operating device 5 is a pilot operated valve in which each operating device 5 is connected to the auxiliary pump 26 by a primary pressure line 57, and the discharge pressure of the auxiliary pump 26 is supplied as the primary pressure. Therefore, although not shown, the pair of pilot ports of the control valves 5A and 5B are connected to the corresponding operating device 5 by a pair of pilot lines.
  • the pilot operation valve which is the operation device 5 includes an operation unit (operation lever or foot pedal) that receives an operation for moving the corresponding hydraulic actuator 20, and the operation amount of the operation unit (for example, the operation lever of the operation lever).
  • the pilot pressure according to the tilt angle) is output.
  • the first main pump 22 and the second main pump 24 are variable displacement pumps (swash plate pump or diagonal shaft pump) whose tilt angle can be changed.
  • the tilt angle of the first main pump 22 is adjusted by the first regulator 23, and the tilt angle of the second main pump 24 is adjusted by the second regulator 25.
  • the first regulator 23 receives the pump signal pressure, and as shown in FIG. 3, adjusts the tilt angle of the first main pump 22 so that the discharge flow rate of the first main pump 22 decreases as the pump signal pressure increases. do.
  • the second regulator 25 receives the pump signal pressure and adjusts the tilt angle of the second main pump 24 so that the discharge flow rate of the second main pump 24 decreases as the pump signal pressure increases.
  • the first regulator 23 is connected to the output port of the high pressure selection valve 61 by the output line 27.
  • One of the pair of input ports of the high-pressure selection valve 61 is connected to the first center bypass line 31 on the downstream side of all the control valves 5A and on the upstream side of the throttle 34 by the first input line 37, and the other is connected to the first center bypass line 31.
  • the second input line 62 is connected to the first electromagnetic proportional valve 63 for the pump. That is, the high pressure selection valve 61 supplies the higher of the first negative control pressure Pn1 and the secondary pressure of the pump first electromagnetic proportional valve 63 as the pump signal pressure to the first regulator 23.
  • the second regulator 25 is connected to the output port of the high pressure selection valve 64 by the output line 28.
  • One of the pair of input ports of the high pressure selection valve 64 is connected to the second center bypass line 41 on the downstream side of all the control valves 5B and on the upstream side of the throttle 44 by the first input line 47, and the other is connected to the second center bypass line 41.
  • the second input line 65 is connected to the second electromagnetic proportional valve 66 for the pump. That is, the high pressure selection valve 64 supplies the higher of the second negative control pressure Pn2 and the secondary pressure of the second electromagnetic proportional valve 66 for the pump as the pump signal pressure to the second regulator 25.
  • the first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve 66 for the pump are connected to the auxiliary pump 26 by the primary pressure line 67.
  • the discharge pressure of the auxiliary pump 26 is kept constant by the relief valve 68.
  • the first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve 66 for the pump are controlled by the control device 8.
  • the control device 8 has a memory such as a ROM or RAM, a storage such as an HDD or an SSD, and a CPU, and the program stored in the ROM or the storage is executed by the CPU.
  • the control device 8 controls the first electromagnetic proportional valve 63 for the pump to control the horsepower that limits the discharge flow rate of the first main pump 22 so that the load of the first main pump 22 does not exceed the assumed first output. I do.
  • the control device 8 limits the discharge flow rate of the second main pump 24 by controlling the second electromagnetic proportional valve 66 for the pump so that the load of the second main pump 24 does not exceed the assumed second output. Performs horsepower control. Normally, the first output and the second output are set so that the total of them is equal to or less than the output of the engine 21.
  • control device 8 is electrically connected to a pressure sensor 83 that detects the discharge pressure of the first main pump 22 and a pressure sensor 84 that detects the discharge pressure of the second main pump 24.
  • the control device 8 has a horsepower control characteristic in which the discharge flow rate of the main pump decreases as the discharge pressure of the main pump increases as shown in FIG. 4A. Relationship is stored in advance.
  • the control device 8 in the control device 8, the higher the discharge pressure of the first main pump 22 detected by the pressure sensor 83, the higher the secondary pressure of the first electromagnetic proportional valve 63 for the pump.
  • the first electromagnetic proportional valve 63 for the pump is controlled in this way.
  • the second electromagnetic proportional valve for the pump increases so that the secondary pressure of the second electromagnetic proportional valve 66 for the pump increases as the discharge pressure of the second main pump 24 detected by the pressure sensor 84 increases. Control 66.
  • the relief pressure is set from the first set value P1 to the second setting when the on-load signal pressure Po higher than the switching pressure ⁇ is received. It is configured to switch to the value P2.
  • the first relief valve 36 includes a spring 36a that regulates the relief pressure, and an operating chamber 36b that faces the piston connected to one end of the spring 36a from the side opposite to the spring 36a.
  • the switching pressure ⁇ is a pressure for switching whether or not the spring 36a functions normally. That is, when the pressure in the operating chamber 36b is lower than the switching pressure ⁇ , the spring 36a has a substantially natural length and a relief pressure of the first set value P1.
  • the on-road signal pressure Po Po> ⁇
  • the spring 36a is compressed by a predetermined amount, and the relief pressure becomes the second set value P2.
  • the area of the piston on which the on-road signal pressure Po acts is set sufficiently large so that the piston does not move due to the spring 36a during relief.
  • the second relief valve 46 includes a spring 46a that regulates the relief pressure, and an operating chamber 46b that faces the piston connected to one end of the spring 46a from the side opposite to the spring 46a.
  • the switching pressure ⁇ is a pressure for switching whether or not the spring 46a functions normally. That is, when the pressure in the operating chamber 46b is lower than the switching pressure ⁇ , the spring 46a has a substantially natural length, and the relief pressure becomes the first set value P1.
  • the on-road signal pressure Po Po> ⁇
  • the spring 46a is compressed by a predetermined amount, and the relief pressure becomes the second set value P2.
  • the area of the piston on which the on-road signal pressure Po acts is set sufficiently large so that the piston does not move due to the spring 46a during relief.
  • the operating chamber 36b of the first relief valve 36 and the operating chamber 46b of the second relief valve 46 are connected to the electromagnetic proportional valve 92 for the relief valve by the signal pressure line 93.
  • the electromagnetic proportional valve 92 for the relief valve is connected to the auxiliary pump 26 by the primary pressure line 91.
  • the electromagnetic proportional valve 92 for the relief valve is a direct proportional type in which the command current and the secondary pressure show a positive correlation.
  • the electromagnetic proportional valve 92 for the relief valve may be an inverse proportional type in which the command current and the secondary pressure show a negative correlation.
  • the relief valve electromagnetic proportional valve 92 switches whether or not to output the on-road signal pressure Po to the operating chamber 36b of the first relief valve 36 and the operating chamber 46b of the second relief valve 46.
  • the electromagnetic proportional valve 92 for the relief valve is controlled by the control device 8.
  • the control device 8 controls the relief valve electromagnetic proportional valve 92 according to whether or not any of the operating devices 5 is operated.
  • the traveling detection line 73 and the non-traveling detection line 71 are adopted as a configuration for determining whether any of the operating devices 5 is not operated or one of them is operated.
  • the traveling detection line 73 extends from the sub-pump 26 to the tank via the traveling right control valve 54 and the traveling left control valve 51.
  • the order in which the traveling detection line 73 passes through the control valves 54 and 51 is not particularly limited.
  • the traveling detection line 73 is provided with a throttle 74 for holding the discharge pressure of the auxiliary pump 26 on the upstream side of the traveling right control valve 54 located at the most upstream, and is between the traveling right control valve 54 and the throttle 74. Is provided with a pressure sensor 82.
  • the traveling detection line 73 is configured to be shut off when the traveling right control valve 54 and / or the traveling left control valve 51 is activated. That is, if neither the traveling right control valve 54 nor the traveling left control valve 51 is operating, the pressure detected by the pressure sensor 82 is substantially zero, and the traveling right control valve 54 and / or the traveling left control When the valve 51 operates, the pressure detected by the pressure sensor 82 becomes the discharge pressure of the auxiliary pump 26 (relief pressure of the relief valve 68).
  • the non-traveling detection line 71 extends from the sub-pump 26 to the tank via the boom control valve 52, the bucket control valve 53, the arm control valve 56, and the swivel control valve 55.
  • the order in which the non-traveling detection line 71 passes through the control valves 52, 53, 56, 55 is not particularly limited.
  • the non-traveling detection line 71 is provided with a throttle 72 for holding the discharge pressure of the auxiliary pump 26 on the upstream side of the boom control valve 52 located at the most upstream, and is provided between the boom control valve 52 and the throttle 72.
  • a pressure sensor 81 is provided.
  • the non-traveling detection line 71 is configured to be shut off when at least one of the boom control valve 52, the bucket control valve 53, the arm control valve 56, and the swivel control valve 55 is activated. That is, if all of the boom control valve 52, the bucket control valve 53, the arm control valve 56, and the swing control valve 55 are not operating, the pressure detected by the pressure sensor 81 is substantially zero, and the boom control valve 52 If at least one of the bucket control valve 53, the arm control valve 56, and the swing control valve 55 is activated, the pressure detected by the pressure sensor 81 becomes the discharge pressure of the auxiliary pump 26 (relief pressure of the relief valve 68).
  • the control device 8 determines that none of the operating devices 5 is being operated, and the pressure sensor 82 determines that none of the operating devices 5 is being operated. If at least one of the detected pressure and the pressure detected by the pressure sensor 81 is higher than the threshold value, it is determined that any one of the operating devices 5 is being operated.
  • the configuration for determining whether any of the operating devices 5 is not operated or one of them is being operated is not limited to the above-mentioned one.
  • one detection line may pass through all the control valves 51 to 56.
  • the pilot pressure output from each pilot operating valve may be detected by the pressure sensor, and it may be determined whether or not any of the operating devices 5 is operated based on the pilot pressure. .. In this case, the detection line passing through the control valve is unnecessary.
  • the control device 8 controls the relief valve electromagnetic proportional valve 92 so that the relief valve electromagnetic proportional valve 92 does not output the on-road signal pressure Po when none of the operating devices 5 is operated.
  • the control device 8 since the relief valve electromagnetic proportional valve 92 is of a direct proportional type, the control device 8 does not send a command current to the relief valve electromagnetic proportional valve 92.
  • the secondary pressure of the electromagnetic proportional valve 92 for the relief valve becomes zero, and the relief pressures of the first relief valve 36 and the second relief valve 46 are switched to the first set value P1.
  • the discharge pressures of the first main pump 22 and the second main pump 24 become almost zero. Therefore, in the control device 8, when none of the operating devices 5 is operated, the secondary pressure of the first electromagnetic proportional valve 63 for the pump is equal to or higher than the pressure that minimizes the discharge flow rate of the first main pump 22. , The first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve 66 for the pump so that the secondary pressure of the second electromagnetic proportional valve 66 for the pump is equal to or higher than the pressure that minimizes the discharge flow rate of the second main pump 24. To control.
  • the control device 8 causes the relief valve electromagnetic proportional valve 92 to output the on-road signal pressure Po, in other words, the relief valve electromagnetic proportional valve 92.
  • the electromagnetic proportional valve 92 for the relief valve is controlled so that the secondary pressure of the above becomes the on-road signal pressure Po (command current is supplied to the electromagnetic proportional valve 92 for the relief valve).
  • the relief pressures of the first relief valve 36 and the second relief valve 46 are switched to the second set value P2.
  • control device 8 controls the first electromagnetic proportional valve 63 for the pump based on the pressure detected by the pressure sensor 83 and the pressure as described above.
  • the second electromagnetic proportional valve 66 for the pump is controlled based on the pressure detected by the sensor 84.
  • the relief pressures of the first relief valve 36 and the second relief valve 46 are substantially zero. 1
  • the set value is switched to P1. Therefore, the hydraulic oil discharged from the first main pump 22 passes through the first relief valve 36 preferentially over the throttle 34, and the hydraulic oil discharged from the second main pump 24 passes through the second relief valve 36 more than the throttle 44. It preferentially passes through the valve 46. In other words, the first relief valve 36 and the second relief valve 46 can act as unload valves.
  • the hydraulic oil discharged from the first main pump 22 can be released from the upstream side of the throttle 34 to the tank through the relief line 35.
  • the hydraulic oil discharged from the second main pump 24 can be released from the upstream side of the throttle 44 to the tank through the relief line 45.
  • the relief pressures of the first relief valve 36 and the second relief valve 46 are switched to the second set value P2, so that the first relief valve 36 and the second relief valve The 46 can be operated as a relief valve for normal negative control.
  • the horsepower is controlled by electrical control using the first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve 66 for the pump. That is, the first regulator 23 and the second regulator 25 can have a simpler structure than a regulator including a flow rate control piston that operates in response to a negative control pressure and a horsepower control piston that operates in response to a pump discharge pressure. can.
  • a simple electromagnetic switching valve (on / off valve) may be used.
  • an electromagnetic relief valve is used as the first relief valve 36 and the second relief valve 46, and the control device 8 directly directs those electromagnetic relief valves. It may be controlled to.
  • FIG. 5 shows the hydraulic system 1B according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are designated by the same reference numerals, and duplicate description will be omitted.
  • the pilot operated valve which is the operating device 5
  • the pilot operated valve is connected to the signal pressure line 93 by the primary pressure line 57. That is, the secondary pressure of the electromagnetic proportional valve 92 for the relief valve is supplied to the pilot operated valve as the primary pressure.
  • control device 8 is also electrically connected to the selection device 85 arranged in the cabin 16.
  • the selection device 85 accepts the selection of the operation lock that invalidates the operation on the operation device 5 or the selection of the operation lock release that enables the operation on the operation device 5.
  • the selection device 85 may be a micro switch or a limit switch that can select operation lock or operation lock release by moving or swinging the safety lever.
  • the selection device 85 may be a push button switch capable of selecting operation lock or operation lock release depending on whether or not the button is pressed.
  • the control device 8 is used for the relief valve so that the secondary pressure of the electromagnetic proportional valve 92 for the relief valve becomes substantially zero while the selection device 85 is accepting the selection of the operation lock.
  • the electromagnetic proportional valve 92 is controlled.
  • the control device 8 does not supply the command current to the electromagnetic proportional valve 92 for the relief valve.
  • the secondary pressure of the electromagnetic proportional valve 92 for the relief valve becomes zero, and the relief pressures of the first relief valve 36 and the second relief valve 46 are switched to the first set value P1. Further, since the primary pressure of the pilot operated valve which is the operating device 5 also becomes zero, the operation on the operating device 5 becomes invalid.
  • the control of the electromagnetic proportional valve 92 for the relief valve differs depending on the operation status of the operation device 5.
  • the secondary pressure of the electromagnetic proportional valve 92 for the relief valve becomes higher than the upper limit pressure ⁇ of the pilot operated valve which is the operating device 5, and the switching pressure ⁇
  • the electromagnetic proportional valve 92 for the relief valve is controlled so as to be lower than the above.
  • the operation on the operating device 5 becomes effective while the relief pressures of the first relief valve 36 and the second relief valve 46 are maintained at the first set value P1.
  • the upper limit pressure ⁇ of the pilot operated valve is a pressure higher than the pilot pressure required for the spool of each control valve to start moving. Desirably, the upper limit pressure ⁇ is a pilot pressure at which the spool of each control valve can move to the full stroke.
  • the control device 8 causes the relief valve electromagnetic proportional valve 92 to output the on-road signal pressure Po, in other words, the relief valve electromagnetic proportional valve.
  • the electromagnetic proportional valve 92 for the relief valve is controlled so that the secondary pressure of the 92 becomes the on-road signal pressure Po.
  • the relief pressures of the first relief valve 36 and the second relief valve 46 are switched to the second set value P2.
  • the relief valve electromagnetic proportional valve 92 has a function of switching between operating the first relief valve 36 and the second relief valve 46 as an unload valve or a normal negative control valve, and an operating device 5. It is possible to provide two functions, that is, a function of switching between invalidating and enabling the operation for. Therefore, the cost can be reduced as compared with the case where the solenoid valve for the first relief valve 36 and the second relief valve 46 and the solenoid valve for the selection device 85 are used.
  • FIG. 7 shows the hydraulic system 1C according to the third embodiment of the present invention.
  • the relief pressure changes from the second set value P2 to the first set value P1. It is configured to switch to.
  • the first relief valve 36 includes an operating chamber 36c facing the piston connected to one end of the spring 36a from the spring 36a side, and a spring 36d that urges the piston from the side opposite to the spring 36a.
  • the switching pressure ⁇ is a pressure for switching whether or not the spring 36a functions normally. That is, when the pressure in the operating chamber 36c is lower than the switching pressure ⁇ , the spring 36a is compressed by a predetermined amount by the urging force of the spring 36d, and the relief pressure becomes the second set value P2.
  • the unload signal pressure Pu Pu (Pu> ⁇ ) is introduced into the operating chamber 36c, the spring 36a has a substantially natural length, and the relief pressure becomes the first set value P1.
  • the operating chamber 36c is connected to the second input line 62 by a signal pressure line 94.
  • the second relief valve 46 includes an operating chamber 46c facing the piston connected to one end of the spring 46a from the spring 46a side, and a spring 46d that urges the piston from the side opposite to the spring 46a.
  • the switching pressure ⁇ is a pressure for switching whether or not the spring 46a functions normally. That is, when the pressure in the operating chamber 46c is lower than the switching pressure ⁇ , the spring 46a is compressed by a predetermined amount by the urging force of the spring 46d, and the relief pressure becomes the second set value P2.
  • the unload signal pressure Pu Pu (Pu> ⁇ ) is introduced into the operating chamber 46c, the spring 46a has a substantially natural length, and the relief pressure becomes the first set value P1.
  • the operating chamber 46c is connected to the second input line 65 by a signal pressure line 95.
  • the first electromagnetic proportional valve 63 for the pump switches whether or not to output the unload signal pressure Pu to the first relief valve 36, and the second electromagnetic proportional valve 66 for the pump unwinds the second relief valve 46. Switches whether or not to output the load signal pressure Pu.
  • the control device 8 is any of the first operating devices 5a (running left operating device, boom operating device, and bucket operating device) corresponding to the control valve 5A arranged on the first center bypass line 31 of the operating devices 5.
  • the first electromagnetic proportional valve 63 for the pump is controlled according to whether or not is operated, and the control valve 5B arranged on the second center bypass line 41 of the operating device 5 is used.
  • the second electromagnetic proportional valve 66 for the pump is controlled according to whether or not any of the corresponding second operating devices 5b (running right operating device, turning operating device and arm operating device) is operated. do.
  • the first detection line 75 is adopted as a configuration for determining whether any of the first operating devices 5a is not operated or one of them is being operated, and the second operating device 5b.
  • the second detection line 77 is adopted as a configuration for determining whether any of them is not operated or whether any of them is operated.
  • the first detection line 75 extends from the auxiliary pump 26 to the tank via the control valve 5A.
  • the order in which the first detection line 75 passes through the control valve 5A is not particularly limited.
  • the first detection line 75 is provided with a throttle 76 for holding the discharge pressure of the auxiliary pump 26 on the upstream side of the traveling left control valve 51 located at the most upstream, and is between the traveling left control valve 51 and the throttle 76. Is provided with a pressure sensor 86.
  • the first detection line 75 is configured to be shut off when at least one of the control valves 5A is activated. That is, if all the control valves 5A are not operating, the pressure detected by the pressure sensor 86 is substantially zero, and if at least one of the control valves 5A is operating, the pressure detected by the pressure sensor 86 is It becomes the discharge pressure of the auxiliary pump 26 (the relief pressure of the relief valve 68).
  • the second detection line 77 extends from the auxiliary pump 26 to the tank via the control valve 5B.
  • the order in which the second detection line 77 passes through the control valve 5B is not particularly limited.
  • the second detection line 77 is provided with a throttle 78 for holding the discharge pressure of the auxiliary pump 26 on the upstream side of the traveling right control valve 54 located at the most upstream, and is between the traveling right control valve 54 and the throttle 78. Is provided with a pressure sensor 87.
  • the second detection line 77 is configured to be shut off when at least one of the control valves 5B is activated. That is, if all the control valves 5B are not operating, the pressure detected by the pressure sensor 87 is substantially zero, and if at least one of the control valves 5B is operating, the pressure detected by the pressure sensor 87 is It becomes the discharge pressure of the auxiliary pump 26 (the relief pressure of the relief valve 68).
  • the control device 8 determines that none of the first operating devices 5a is operated, and the pressure detected by the pressure sensor 86 is lower than the threshold value. If it is high, it is determined that any one of the first operating devices 5a is being operated. Similarly, if the pressure detected by the pressure sensor 87 is lower than the threshold value, the control device 8 determines that none of the second operating devices 5b is operated, and the pressure detected by the pressure sensor 87 is the above. If it is higher than the threshold value, it is determined that any of the second operating devices 5b is being operated.
  • the control device 8 outputs the unload signal pressure Pu so that the first electromagnetic proportional valve 63 for the pump outputs the unload signal pressure Pu when none of the first operating devices 5a is operated.
  • the first electromagnetic proportional valve 63 for the pump is controlled so that the secondary pressure of the first electromagnetic proportional valve 63 for the pump becomes the unload signal pressure Pu.
  • the relief pressure of the first relief valve 36 is switched to the first set value P1.
  • the unload signal pressure Pu is equal to or higher than the pressure that minimizes the discharge flow rate of the first main pump 22. Therefore, when none of the first operating devices 5a is operated, the discharge flow rate of the first main pump 22 is minimized.
  • the control device 8 controls the first electromagnetic proportional valve 63 for the pump so that the first electromagnetic proportional valve 63 for the pump does not output the unload signal pressure Pu.
  • the first electromagnetic proportional valve 63 for the pump is controlled so that the secondary pressure of the first electromagnetic proportional valve 63 for the pump becomes higher as the pressure increases. Since the secondary pressure of the first electromagnetic proportional valve 63 for the pump is lower than the switching pressure ⁇ , the relief pressure of the first relief valve 36 is switched to the second set value P2. Further, as the discharge pressure of the first main pump 22 increases, the secondary pressure of the first electromagnetic proportional valve 63 for the pump increases, so that horsepower control can be performed as in the first embodiment.
  • the second electromagnetic proportional valve 66 for the pump outputs the unload signal pressure Pu, in other words, the second electromagnetic proportional for the pump.
  • the second electromagnetic proportional valve 66 for the pump is controlled so that the secondary pressure of the valve 66 becomes the unload signal pressure Pu.
  • the relief pressure of the second relief valve 46 is switched to the first set value P1.
  • the unload signal pressure Pu is equal to or higher than the pressure that minimizes the discharge flow rate of the second main pump 24. Therefore, when none of the second operating devices 5b is operated, the discharge flow rate of the second main pump 24 is minimized.
  • the control device 8 controls the second electromagnetic proportional valve 66 for the pump so that the second electromagnetic proportional valve 66 for the pump does not output the unload signal pressure Pu.
  • the second electromagnetic proportional valve 66 for the pump is controlled so that the secondary pressure of the second electromagnetic proportional valve 66 for the pump becomes higher as the pressure increases. Since the secondary pressure of the second electromagnetic proportional valve 66 for the pump is lower than the switching pressure ⁇ , the relief pressure of the second relief valve 46 is switched to the second set value P2. Further, as the discharge pressure of the second main pump 24 increases, the secondary pressure of the second electromagnetic proportional valve 66 for the pump increases, so that horsepower control can be performed as in the first embodiment.
  • the first relief valve 36 can be operated as an unload valve when none of the first operating devices 5a is operated, and the first relief when any of the first operating devices 5a is operated.
  • the valve 36 can act as a relief valve for normal negative control.
  • the second relief valve 46 can be operated as an unload valve when none of the second operating devices 5b is operated, and the second when any of the second operating devices 5b is operated.
  • the relief valve 46 can be operated as a relief valve for normal negative control.
  • the horsepower is controlled by electrical control using the first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve 66 for the pump, the first regulator 23 and the second regulator 25 have a simple structure. Can be done.
  • the first electromagnetic proportional valve 63 for the pump is provided with two functions, that is, a function of switching whether the first relief valve 36 is operated as an unload valve or a normal negative control valve, and a function of controlling horsepower. Can be done. Therefore, the cost can be reduced as compared with the case where the solenoid valve for the first relief valve 36 and the solenoid proportional valve for horsepower control are used.
  • the second electromagnetic proportional valve 66 for the pump is provided with two functions, that is, a function of switching whether the second relief valve 46 is operated as an unload valve or a normal negative control valve, and a function of performing horsepower control. be able to. Therefore, the cost can be reduced as compared with the case where the solenoid valve for the second relief valve 46 and the solenoid proportional valve for horsepower control are used.
  • the control device 8 uses the first electromagnetic proportional valve 63 for the pump and the second electromagnetic proportional valve for the pump in the configuration shown in FIG. Both of 66 may be controlled.
  • the operating chamber 36c of the first relief valve 36 and the operating chamber 46c of the second relief valve 46 are connected by the signal pressure line 96 to the second electromagnetic proportional valve 66 for the pump (first electromagnetic proportional valve for the pump). 63 may be used), and the control device 8 may control the second electromagnetic proportional valve 66 for the pump.
  • the operating chamber 36c of the first relief valve 36 is connected to the sub-pump 26 by a signal pressure line, and an electromagnetic valve (electromagnetic proportional valve or electromagnetic switching valve) is provided on the signal pressure line for control.
  • the device 8 may switch whether or not to output the unload signal pressure Pu to the first relief valve 36 by controlling the solenoid valve.
  • the operating chamber 46c of the second relief valve 46 is connected to the sub-pump 26 by a signal pressure line, an electromagnetic valve (electromagnetic proportional valve or electromagnetic switching valve) is provided in the signal pressure line, and the control device 8 controls the electromagnetic valve. It may be switched whether or not to output the unload signal pressure Pu to the second relief valve 46 by controlling.
  • electromagnetic relief valves may be used as the first relief valve 36 and the second relief valve 46, and the control device 8 may directly control those electromagnetic relief valves.
  • the solenoid valve is used as in the above-described embodiment or the above-described modification, the cost can be reduced as compared with the case of using the solenoid relief valve.
  • each operating device 5 does not necessarily have to be a pilot operated valve, and may be an electric joystick that outputs an electric signal according to the amount of operation of the operating unit. In this case, the detection line passing through the control valve is unnecessary.
  • each operating device 5 is an electric joystick, a pair of electromagnetic proportional valves are connected to each pair of pilot ports of the control valves 5A and 5B.
  • the number of main pumps may be one.
  • the discharge flow rate of the pump is limited so that the load of the pump does not exceed the output of the engine that drives the pump.
  • the hydraulic system of the construction machine of the present invention controls the supply and discharge of hydraulic oil to a variable displacement pump whose tilt angle can be changed and a hydraulic actuator arranged on a center bypass line extending from the pump to the tank.
  • a relief valve whose pressure can be changed between a first set value at which the pressure is substantially zero and a second set value larger than the first set value, and the discharge flow rate of the pump decreases as the pump signal pressure increases.
  • a regulator in which a negative control pressure, which is a pressure on the upstream side of the throttle in the center bypass line, which adjusts the tilt angle of the pump so as to be supplied as the pump signal pressure, and the plurality of control valves are operated.
  • a negative control pressure which is a pressure on the upstream side of the throttle in the center bypass line, which adjusts the tilt angle of the pump so as to be supplied as the pump signal pressure
  • the plurality of control valves When none of the plurality of operating devices and the plurality of operating devices is operated, the relief pressure of the relief valve is switched to the first set value, and any of the plurality of operating devices is operated. It is characterized by including a control device for switching the relief pressure of the relief valve to the second set value when the pump is used.
  • the relief pressure of the relief valve is switched to the first set value, which is substantially zero, so that the hydraulic oil discharged from the pump is discharged from the throttle. Also preferentially passes through the relief valve. In other words, the relief valve can act as an unload valve. Therefore, with an inexpensive configuration, the hydraulic oil discharged from the pump when the control valve is not operating can be released from the upstream side of the throttle to the tank through the relief line.
  • the relief pressure of the relief valve is switched to the second set value, so that the relief valve can be operated as a normal relief valve for negative control.
  • the relief valve is configured so that the relief pressure is switched from the first set value to the second set value when an on-road signal pressure higher than the switching pressure is received.
  • a solenoid valve for switching whether or not to output the on-load signal pressure to the relief valve is further provided, and the control device is such that when none of the plurality of operating devices is operated, the solenoid valve emits the on-load signal.
  • the solenoid valve may be controlled so that the solenoid valve outputs the on-road signal pressure when any of the plurality of operating devices is operated without outputting the pressure. According to this configuration, the cost can be reduced as compared with using an electromagnetic relief valve as the relief valve.
  • the electromagnetic valve is an electromagnetic proportional valve
  • each of the plurality of operating devices is a pilot operated valve to which the secondary pressure of the electromagnetic proportional valve is supplied as a primary pressure
  • the above hydraulic system is a plurality of the above-mentioned hydraulic systems.
  • the control device further includes a selection device that accepts the selection of an operation lock that invalidates the operation on the operation device or the selection of the operation lock release that enables the operation on the plurality of operation devices. While accepting the selection, the electromagnetic proportional valve is controlled so that the secondary pressure of the electromagnetic proportional valve becomes substantially zero, and while the selection device accepts the selection of operation lock release, the plurality of said.
  • the secondary pressure of the electromagnetic proportional valve becomes higher than the upper limit pressure of the pilot operating valve and lower than the switching pressure, and any of the plurality of operating devices.
  • the electromagnetic proportional valve may be controlled so that the secondary pressure of the electromagnetic proportional valve becomes the on-road signal pressure when is operated.
  • the electromagnetic proportional valve has a function of switching whether the relief valve operates as an unload valve or a normal negative control valve, and a function of switching whether the operation on the operating device is invalidated or enabled. It can have two functions. Therefore, the cost can be reduced as compared with the case where the solenoid valve for the relief valve and the solenoid valve for the selection device are used.
  • the hydraulic system includes a pump electromagnetic proportional valve, a high-pressure selective valve that supplies the higher of the secondary pressure and the negative control pressure of the pump electromagnetic proportional valve to the regulator as the pump signal pressure, and the above.
  • a pressure sensor for detecting the discharge pressure of the pump is further provided, and the control device is provided with an electromagnetic wave for the pump so that the secondary pressure of the electromagnetic proportional valve for the pump increases as the pressure detected by the pressure sensor increases.
  • the proportional valve may be controlled. According to this configuration, it is possible to perform horsepower control that limits the discharge flow rate of the pump so that the load of the pump does not exceed the expected output by electrical control. That is, the regulator can have a simpler structure than a regulator including a flow rate control piston that operates in response to a negative control pressure and a horsepower control piston that operates in response to a pump discharge pressure.
  • the relief valve is configured so that when an unload signal pressure higher than the switching pressure is received, the relief pressure is switched from the second set value to the first set value, and the above hydraulic system is described.
  • a solenoid valve for switching whether or not to output the unload signal pressure to the relief valve is further provided, and the control device is provided with the solenoid valve when none of the plurality of operating devices is operated.
  • the solenoid valve may be controlled so that the pressure is output and the solenoid valve does not output the unload signal pressure when any of the plurality of operating devices is operated. According to this configuration, the cost can be reduced as compared with using an electromagnetic relief valve as the relief valve.
  • the electromagnetic valve is an electromagnetic proportional valve
  • the hydraulic system is a high-pressure selection valve that supplies the higher of the secondary pressure of the electromagnetic proportional valve and the negative control pressure as the pump signal pressure to the regulator.
  • the control device further includes a pressure sensor for detecting the discharge pressure of the pump, and when none of the plurality of operating devices is operated, the secondary pressure of the electromagnetic proportional valve is the unload signal. When it becomes a pressure and any one of the plurality of operating devices is operated, the higher the pressure detected by the pressure sensor is, the higher the electromagnetic wave is, in a state where the secondary pressure of the electromagnetic proportional valve is lower than the switching pressure.
  • the electromagnetic proportional valve may be controlled so that the secondary pressure of the proportional valve becomes high.
  • the regulator can have a simpler structure than a regulator including a flow rate control piston that operates in response to a negative control pressure and a horsepower control piston that operates in response to a pump discharge pressure.
  • the electromagnetic proportional valve can be provided with two functions, that is, a function of switching whether the relief valve is operated as an unload valve or a normal negative control valve, and a function of performing horsepower control. Therefore, the cost can be reduced as compared with the case where the solenoid valve for the relief valve and the solenoid proportional valve for horsepower control are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

一実施形態に係る油圧システム1Aは、可変容量型のポンプ22,24からタンクまで延びるセンターバイパスライン31,41上に配置された複数の制御弁5A,5Bと、センターバイパスライン31,41に設けられた絞り34,44をバイパスするリリーフライン35,45に設けられたリリーフ弁36,46を含む。さらに、油圧システム1Aは、制御弁5A,5Bを作動させるための複数の操作装置5のいずれもが操作されていないときはリリーフ弁36,46のリリーフ圧を実質的にゼロである第1設定値に切り換え、操作装置5のいずれかが操作されているときはリリーフ弁36,46のリリーフ圧を第2設定値に切り換える制御装置8を含む。

Description

建設機械の油圧システム
 本発明は、建設機械の油圧システムに関する。
 油圧ショベルや油圧クレーンのような建設機械に搭載される油圧システムでは、主ポンプと複数の油圧アクチュエータとの間に複数の制御弁が介在する。各制御弁は、対応する油圧アクチュエータに対する作動油の供給および排出を制御する。
 例えば、特許文献1には、第1吐出口および第2吐出口を有するスプリットポンプを用いた建設機械の油圧システムが開示されている。スプリットポンプは傾転角が変更可能な可変容量型のポンプであり、スプリットポンプの傾転角はレギュレータにより調整される。スプリットポンプの吐出流量は、ネガティブコントロール方式で制御される。
 具体的に、第1吐出口からタンクまで延びる第1センターバイパスライン上および第2吐出口からタンクまで延びる第2センターバイパスライン上には、複数の制御弁が配置されている。レギュレータには、第1センターバイパスラインにおける制御弁の下流側に設けられた絞りの上流側のネガティブコントロール圧と第2センターバイパスラインにおける制御弁の下流側に設けられた絞りの上流側のネガティブコントロール圧のうちの低い方が供給される。
 なお、第1センターバイパスラインには絞りをバイパスするようにリリーフラインが接続されており、このリリーフラインにリリーフ弁が設けられている。同様に、第2センターバイパスラインには絞りをバイパスするようにリリーフラインが接続されており、このリリーフラインにリリーフ弁が設けられている。
 また、特許文献1に開示された油圧システムでは、第1センターバイパスライン上および第2センターバイパスライン上の制御弁が作動していないとき(制御弁へパイロット圧を出力するパイロット操作弁が操作されていないとき)に、スプリットポンプから吐出される作動油を絞りの上流側からタンクへ逃すための構成が採用されている。具体的には、第1センターバイパスラインの制御弁の上流側に第1アンロード弁が設けられ、第2センターバイパスラインの制御弁の上流側に第2アンロード弁が設けられている。
特開2014-59015号公報
 しかしながら、特許文献1に開示された油圧システムのようにアンロード弁を用いた構成では、コストが高くなる。
 そこで、本発明は、安価な構成で、制御弁が作動していないときにポンプから吐出される作動油を絞りの上流側からタンクへ逃すことができる建設機械の油圧システムを提供することを目的とする。
 前記課題を解決するために、本発明の建設機械の油圧システムは、傾転角が変更可能な可変容量型のポンプと、前記ポンプからタンクまで延びるセンターバイパスライン上に配置された、油圧アクチュエータに対する作動油の供給および排出を制御する複数の制御弁と、前記複数の制御弁の下流側で前記センターバイパスラインに設けられた絞りと、前記絞りをバイパスするように前記センターバイパスラインに接続されたリリーフラインに設けられた、リリーフ圧が、実質的にゼロである第1設定値と前記第1設定値よりも大きな第2設定値との間で変更可能なリリーフ弁と、ポンプ信号圧が高くなるほど前記ポンプの吐出流量が減少するように前記ポンプの傾転角を調整する、前記センターバイパスラインにおける前記絞りの上流側の圧力であるネガティブコントロール圧が前記ポンプ信号圧として供給されるレギュレータと、前記複数の制御弁を作動させるための複数の操作装置と、前記複数の操作装置のいずれもが操作されていないときは前記リリーフ弁のリリーフ圧を前記第1設定値に切り換え、前記複数の操作装置のいずれかが操作されているときは前記リリーフ弁のリリーフ圧を前記第2設定値に切り換える制御装置と、を備える、ことを特徴とする。
 上記の構成によれば、操作装置のいずれもが操作されていないときはリリーフ弁のリリーフ圧が実質的にゼロである第1設定値に切り換えられるので、ポンプから吐出された作動油は絞りよりもリリーフ弁を優先的に通過する。換言すれば、リリーフ弁をアンロード弁として働かせることができる。従って、安価な構成で、制御弁が作動していないときにポンプから吐出される作動油を絞りの上流側からリリーフラインを通じてタンクへ逃すことができる。一方、操作装置のいずれかが操作されているときはリリーフ弁のリリーフ圧が第2設定値に切り換えられるので、リリーフ弁を通常のネガティブコントロール用のリリーフ弁として働かせることができる。
 本発明によれば、安価な構成で、制御弁が作動していないときにポンプから吐出される作動油を絞りの上流側からタンクへ逃すことができる。
本発明の第1実施形態に係る建設機械の油圧システムの概略構成図である。 建設機械の一例である油圧ショベルの側面図である。 レギュレータに供給されるポンプ信号圧と主ポンプの吐出流量との関係を示すグラフである。 (a)は馬力制御特性を示すグラフ、(b)は主ポンプの吐出圧とポンプ用電磁比例弁の二次圧との関係を示すグラフである。 本発明の第2実施形態に係る建設機械の油圧システムの概略構成図である。 リリーフ弁用電磁比例弁の二次圧の経時的変化を示すグラフである。 本発明の第3実施形態に係る建設機械の油圧システムの概略構成図である。 ポンプ用電磁比例弁の二次圧の経時的変化を示すグラフである。 第3実施形態の変形例の油圧システムの概略構成図である。
 (第1実施形態)
 図1に、本発明の第1実施形態に係る建設機械の油圧システム1Aを示し、図2に、その油圧システム1Aが搭載された建設機械10を示す。図2に示す建設機械10は油圧ショベルであるが、本発明は油圧クレーンなどの他の建設機械にも適用可能である。
 図2に示す建設機械10は自走式であり、走行体11を含む。また、建設機械10は、走行体11に旋回可能に支持された旋回体12と、旋回体12に対して俯仰するブームを含む。ブームの先端には、アームが揺動可能に連結されており、アームの先端には、バケットが揺動可能に連結されている。旋回体12には、運転席が設置されたキャビン16が設けられている。なお、建設機械10は自走式でなくてもよい。
 具体的に、油圧システム1Aは、油圧アクチュエータ20として、図2に示すブームシリンダ13、アームシリンダ14およびバケットシリンダ15を含むとともに、図示しない走行左モータ、走行右モータおよび旋回モータを含む。ブームシリンダ13はブームを俯仰させ、アームシリンダ14はアームを揺動させ、バケットシリンダ15はバケットを揺動させる。
 また、油圧システム1Aは、図1に示すように、上述した油圧アクチュエータ20へ作動油を供給する第1主ポンプ22および第2主ポンプ24を含む。第1主ポンプ22および第2主ポンプ24は、エンジン21により駆動される。また、エンジン21は、副ポンプ26も駆動する。ただし、第1主ポンプ22、第2主ポンプ24および副ポンプ26は電動機によって駆動されてもよい。
 第1主ポンプ22からは、タンクまで第1センターバイパスライン31が延びており、この第1センターバイパスライン31上に複数の制御弁5Aが配置されている。また、第1センターバイパスライン31には、全ての制御弁5Aの下流側に絞り34が設けられている。さらに、第1センターバイパスライン31には、絞り34をバイパスするようにリリーフライン35が接続されており、このリリーフライン35に第1リリーフ弁36が設けられている。
 全ての制御弁5Aは、パラレルライン32により第1主ポンプ22と接続されている。パラレルライン32と第1センターバイパスライン31の上流側部分は互いに合流して共通の流路となっている。また、全ての制御弁5Aは、タンクライン33によりタンクと接続されている。
 同様に、第2主ポンプ24からは、タンクまで第2センターバイパスライン41が延びており、この第2センターバイパスライン41上に複数の制御弁5Bが配置されている。また、第2センターバイパスライン41には、全ての制御弁5Bの下流側に絞り44が設けられている。さらに、第2センターバイパスライン41には、絞り44をバイパスするようにリリーフライン45が接続されており、このリリーフライン45に第2リリーフ弁46が設けられている。
 全ての制御弁5Bは、パラレルライン42により第2主ポンプ24と接続されている。パラレルライン42と第2センターバイパスライン41の上流側部分は互いに合流して共通の流路となっている。また、全ての制御弁5Bは、タンクライン43によりタンクと接続されている。
 第1リリーフ弁36および第2リリーフ弁46のそれぞれは、リリーフ圧が、実質的にゼロである第1設定値P1(例えば、0.5MPa以下)と、第1設定値P1よりも大きな第2設定値P2との間で変更可能なものである。第2設定値P2は、通常のネガティブコントロールで設定される値(例えば、3.0~4.0MPa)である。なお、第1リリーフ弁36および第2リリーフ弁46のそれぞれの構成は、後述にて詳細に説明する。
 制御弁5A,5Bのそれぞれは、対応する油圧アクチュエータ20に対する作動油の供給および排出を制御する。本実施形態では、第1センターバイパスライン31上に配置された制御弁5Aが走行左制御弁51、ブーム制御弁52およびバケット制御弁53を含み、第2センターバイパスライン41上に配置された制御弁5Bが走行右制御弁54、旋回制御弁55およびアーム制御弁56を含む。
 すなわち、第1主ポンプ22は、走行左制御弁51を介して図略の走行左モータへ作動油を供給し、ブーム制御弁52を介してブームシリンダ13へ作動油を供給し、バケット制御弁53を介してバケットシリンダ15へ作動油を供給する。第2主ポンプ24は、走行右制御弁54を介して図略の走行右モータへ作動油を供給し、旋回制御弁55を介して図略の旋回モータへ作動油を供給し、アーム制御弁56を介してアームシリンダ14へ作動油を供給する。ただし、第1主ポンプ22と第2主ポンプ24のどちらがどの油圧アクチュエータ20へ作動油を供給するかは適宜変更可能である。
 より詳しくは、第1センターバイパスライン31上に配置された各制御弁5Aは、一対の給排ラインにより対応する油圧アクチュエータ20と接続されている。また、各制御弁5Aは、図略のスプールと、スプールを軸方向の一方および他方に移動させるための一対のパイロットポートを含む。各制御弁5Aは、中立位置では第1センターバイパスライン31上の開口面積を最大とするとともに、パラレルライン32、タンクライン33および一対の給排ラインをブロックする。これにより、第1リリーフ弁36のリリーフ圧が第2設定値P2に切り換えられているときは、第1センターバイパスライン31における絞り34の上流側の圧力である第1ネガティブコントロール圧Pn1が最大となる。
 一方、各制御弁5Aは、どちらかのパイロットポートにパイロット圧が供給されると、そのパイロット圧が大きくなるほど、第1センターバイパスライン31上の開口面積を小さくするとともに、パラレルライン32と一方の給排ラインの間の開口面積および他方の給排ラインとタンクライン33の間の開口面積を大きくする。このため、第1リリーフ弁36のリリーフ圧が第2設定値P2に切り換えられているときは、どちらかのパイロットポートに供給されるパイロット圧が大きくなるほど、第1ネガティブコントロール圧Pn1が小さくなる。
 同様に、第2センターバイパスライン41上に配置された各制御弁5Bは、一対の給排ラインにより対応する油圧アクチュエータ20と接続されている。また、各制御弁5Bは、図略のスプールと、スプールを軸方向の一方および他方に移動させるための一対のパイロットポートを含む。各制御弁5Bは、中立位置では第2センターバイパスライン41上の開口面積を最大とするとともに、パラレルライン42、タンクライン43および一対の給排ラインをブロックする。これにより、第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられているときは、第2センターバイパスライン41における絞り44の上流側の圧力である第2ネガティブコントロール圧Pn2が最大となる。
 一方、各制御弁5Bは、どちらかのパイロットポートにパイロット圧が供給されると、そのパイロット圧が大きくなるほど、第2センターバイパスライン41上の開口面積を小さくするとともに、パラレルライン42と一方の給排ラインの間の開口面積および他方の給排ラインとタンクライン43の間の開口面積を大きくする。このため、第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられているときは、どちらかのパイロットポートに供給されるパイロット圧が大きくなるほど、第2ネガティブコントロール圧Pn2が小さくなる。
 キャビン16内には、制御弁5A,5Bを作動させるための複数の操作装置5が配置されている。本実施形態では、各操作装置5が、一次圧ライン57により副ポンプ26と接続され、副ポンプ26の吐出圧が一次圧として供給されるパイロット操作弁である。このため、図示は省略するが、制御弁5A,5Bのそれぞれの一対のパイロットポートが一対のパイロットラインにより対応する操作装置5と接続されている。
 具体的に、操作装置5であるパイロット操作弁は、対応する油圧アクチュエータ20を可動させるための操作を受ける操作部(操作レバーまたはフットペダル)を含み、操作部の操作量(例えば、操作レバーの傾倒角)に応じたパイロット圧を出力する。
 第1主ポンプ22および第2主ポンプ24は、傾転角が変更可能な可変容量型のポンプ(斜板ポンプまたは斜軸ポンプ)である。第1主ポンプ22の傾転角は第1レギュレータ23により調整され、第2主ポンプ24の傾転角は第2レギュレータ25により調整される。
 第1レギュレータ23は、ポンプ信号圧を受け、図3に示すように、そのポンプ信号圧が高くなるほど第1主ポンプ22の吐出流量が減少するように第1主ポンプ22の傾転角を調整する。同様に、第2レギュレータ25は、ポンプ信号圧を受け、そのポンプ信号圧が高くなるほど第2主ポンプ24の吐出流量が減少するように第2主ポンプ24の傾転角を調整する。
 第1レギュレータ23は、出力ライン27により高圧選択弁61の出力ポートと接続されている。高圧選択弁61の一対の入力ポートの一方は、第1入力ライン37により全ての制御弁5Aの下流側であって絞り34の上流側で第1センターバイパスライン31と接続されており、他方は、第2入力ライン62によりポンプ用第1電磁比例弁63と接続されている。すなわち、高圧選択弁61は、第1ネガティブコントロール圧Pn1とポンプ用第1電磁比例弁63の二次圧のうちの高い方をポンプ信号圧として第1レギュレータ23へ供給する。
 同様に、第2レギュレータ25は、出力ライン28により高圧選択弁64の出力ポートと接続されている。高圧選択弁64の一対の入力ポートの一方は、第1入力ライン47により全ての制御弁5Bの下流側であって絞り44の上流側で第2センターバイパスライン41と接続されており、他方は、第2入力ライン65によりポンプ用第2電磁比例弁66と接続されている。すなわち、高圧選択弁64は、第2ネガティブコントロール圧Pn2とポンプ用第2電磁比例弁66の二次圧のうちの高い方をポンプ信号圧として第2レギュレータ25へ供給する。
 ポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66は、一次圧ライン67により副ポンプ26と接続されている。この一次圧ライン67と上述した一次圧ライン57の上流側部分は互いに合流して共通の流路となっている。副ポンプ26の吐出圧は、リリーフ弁68により一定に保たれる。
 ポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66は、制御装置8により制御される。ただし、図1では、図面の簡略化のために一部の信号線のみを描いている。例えば、制御装置8は、ROMやRAMなどのメモリと、HDDやSSDなどのストレージと、CPUを有し、ROMまたはストレージに格納されたプラグラムがCPUにより実行される。
 制御装置8は、ポンプ用第1電磁比例弁63を制御することにより、第1主ポンプ22の負荷が想定した第1出力を超えないように第1主ポンプ22の吐出流量を制限する馬力制御を行う。同様に、制御装置8は、ポンプ用第2電磁比例弁66を制御することにより、第2主ポンプ24の負荷が想定した第2出力を超えないように第2主ポンプ24の吐出流量を制限する馬力制御を行う。通常、第1出力および第2出力は、それらの合計がエンジン21の出力以下となるように設定される。
 具体的に、制御装置8は、第1主ポンプ22の吐出圧を検出する圧力センサ83および第2主ポンプ24の吐出圧を検出する圧力センサ84と電気的に接続されている。制御装置8には、図4(a)に示すような主ポンプの吐出圧が高くなるほど主ポンプの吐出流量が減少する馬力制御特性を示す主ポンプの吐出圧と電磁比例弁の二次圧との関係が予め記憶されている。
 従って、制御装置8は、図4(b)に示すように、圧力センサ83で検出される第1主ポンプ22の吐出圧が高くなるほどポンプ用第1電磁比例弁63の二次圧が高くなるようにポンプ用第1電磁比例弁63を制御する。同様に、制御装置8は、圧力センサ84で検出される第2主ポンプ24の吐出圧が高くなるほどポンプ用第2電磁比例弁66の二次圧が高くなるようにポンプ用第2電磁比例弁66を制御する。
 上述した第1リリーフ弁36および第2リリーフ弁46のそれぞれは、本実施形態では、切換圧αよりも高いオンロード信号圧Poを受けたときにリリーフ圧が第1設定値P1から第2設定値P2に切り換わるように構成されている。
 具体的に、第1リリーフ弁36は、リリーフ圧を規定するスプリング36aと、スプリング36aの一端に連結されたピストンにスプリング36aと反対側から面する作動室36bを含む。上記の切換圧αは、スプリング36aを正常に機能させるか否かを切り換える圧力である。すなわち、作動室36bの圧力が切換圧αよりも低いときは、スプリング36aがほぼ自然長がほぼ自然長となり、リリーフ圧が第1設定値P1となる。一方、作動室36bにオンロード信号圧Po(Po>α)が導入されると、スプリング36aが所定量圧縮され、リリーフ圧が第2設定値P2となる。なお、リリーフ時にスプリング36aによってピストンが移動しないように、オンロード信号圧Poが作用するピストンの面積は十分大きく設定される。
 同様に、第2リリーフ弁46は、リリーフ圧を規定するスプリング46aと、スプリング46aの一端に連結されたピストンにスプリング46aと反対側から面する作動室46bを含む。上記の切換圧αは、スプリング46aを正常に機能させるか否かを切り換える圧力である。すなわち、作動室46bの圧力が切換圧αよりも低いときは、スプリング46aがほぼ自然長となり、リリーフ圧が第1設定値P1となる。一方、作動室46bにオンロード信号圧Po(Po>α)が導入されると、スプリング46aが所定量圧縮され、リリーフ圧が第2設定値P2となる。なお、リリーフ時にスプリング46aによってピストンが移動しないように、オンロード信号圧Poが作用するピストンの面積は十分大きく設定される。
 本実施形態では、第1リリーフ弁36の作動室36bおよび第2リリーフ弁46の作動室46bが、信号圧ライン93によりリリーフ弁用電磁比例弁92と接続されている。リリーフ弁用電磁比例弁92は、一次圧ライン91により副ポンプ26と接続されている。
 本実施形態では、リリーフ弁用電磁比例弁92が、指令電流と二次圧が正の相関を示す正比例型である。ただし、リリーフ弁用電磁比例弁92は、指令電流と二次圧が負の相関を示す逆比例型であってもよい。
 リリーフ弁用電磁比例弁92は、第1リリーフ弁36の作動室36bおよび第2リリーフ弁46の作動室46bへオンロード信号圧Poを出力するか否かを切り換える。リリーフ弁用電磁比例弁92は、制御装置8により制御される。制御装置8は、操作装置5のいずれもが操作されていないかいずれかが操作されているかに応じてリリーフ弁用電磁比例弁92を制御する。
 本実施形態では、操作装置5のいずれもが操作されていないかいずれかが操作されているかを判定するための構成として、走行用検出ライン73および非走行用検出ライン71が採用されている。
 走行用検出ライン73は、副ポンプ26から走行右制御弁54および走行左制御弁51を経由してタンクまで延びている。なお、走行用検出ライン73が制御弁54,51を経由する順は特に限定されるものではない。走行用検出ライン73には、最も上流に位置する走行右制御弁54の上流側に、副ポンプ26の吐出圧の保持用の絞り74が設けられるとともに、走行右制御弁54と絞り74の間に圧力センサ82が設けられている。
 走行用検出ライン73は、走行右制御弁54および/または走行左制御弁51が作動したときに遮断されるように構成されている。つまり、走行右制御弁54と走行左制御弁51のどちらもが作動していなければ、圧力センサ82で検出される圧力が実質的にゼロであり、走行右制御弁54および/または走行左制御弁51が作動すれば、圧力センサ82で検出される圧力が副ポンプ26の吐出圧(リリーフ弁68のリリーフ圧)となる。
 非走行用検出ライン71は、副ポンプ26からブーム制御弁52、バケット制御弁53、アーム制御弁56および旋回制御弁55を経由してタンクまで延びている。なお、非走行用検出ライン71が制御弁52,53,56,55を経由する順は特に限定されるものではない。非走行用検出ライン71には、最も上流に位置するブーム制御弁52の上流側に、副ポンプ26の吐出圧の保持用の絞り72が設けられるとともに、ブーム制御弁52と絞り72の間に圧力センサ81が設けられている。
 非走行用検出ライン71は、ブーム制御弁52、バケット制御弁53、アーム制御弁56および旋回制御弁55の少なくとも1つが作動したときに遮断されるように構成されている。つまり、ブーム制御弁52、バケット制御弁53、アーム制御弁56および旋回制御弁55の全てが作動していなければ、圧力センサ81で検出される圧力が実質的にゼロであり、ブーム制御弁52、バケット制御弁53、アーム制御弁56および旋回制御弁55の少なくとも1つが作動すれば、圧力センサ81で検出される圧力が副ポンプ26の吐出圧(リリーフ弁68のリリーフ圧)となる。
 制御装置8は、圧力センサ82で検出される圧力と圧力センサ81で検出される圧力の双方が閾値よりも低ければ、操作装置5のいずれもが操作されていないと判定し、圧力センサ82で検出される圧力と圧力センサ81で検出される圧力の少なくとも一方が前記閾値よりも高ければ、操作装置5のいずれかが操作されていると判定する。
 ただし、操作装置5のいずれもが操作されていないかいずれかが操作されているかを判定するための構成は、上述したものに限られるものではない。例えば、1本の検出ラインが全ての制御弁51~56を経由していてもよい。あるいは、各パイロット操作弁から出力されるパイロット圧が圧力センサにより検出され、そのパイロット圧に基づいて操作装置5のいずれもが操作されていないかいずれかが操作されているかが判定されてもよい。この場合、制御弁を経由する検出ラインは不要である。
 制御装置8は、操作装置5のいずれもが操作されていないときは、リリーフ弁用電磁比例弁92がオンロード信号圧Poを出力しないようにリリーフ弁用電磁比例弁92を制御する。上述したように、リリーフ弁用電磁比例弁92は正比例型であるので、制御装置8はリリーフ弁用電磁比例弁92へ指令電流を送給しない。これにより、リリーフ弁用電磁比例弁92の二次圧がゼロとなり、第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第1設定値P1に切り換えられる。
 このとき、第1主ポンプ22および第2主ポンプ24の吐出圧はほぼゼロとなる。従って、制御装置8は、操作装置5のいずれもが操作されていないとき、ポンプ用第1電磁比例弁63の二次圧が第1主ポンプ22の吐出流量を最小とする圧力以上となり、かつ、ポンプ用第2電磁比例弁66の二次圧が第2主ポンプ24の吐出流量を最小とする圧力以上となるように、ポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66を制御する。
 一方、操作装置5のいずれかが操作されているときは、制御装置8は、リリーフ弁用電磁比例弁92がオンロード信号圧Poを出力するように、換言すればリリーフ弁用電磁比例弁92の二次圧がオンロード信号圧Poとなるように、リリーフ弁用電磁比例弁92を制御する(リリーフ弁用電磁比例弁92へ指令電流を送給する)。これにより、第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられる。
 なお、操作装置5のいずれかが操作されているとき、制御装置8は、上述したように、圧力センサ83で検出される圧力に基づいてポンプ用第1電磁比例弁63を制御するとともに、圧力センサ84で検出される圧力に基づいてポンプ用第2電磁比例弁66を制御する。
 以上説明したように、本実施形態の油圧システム1Aでは、操作装置5のいずれもが操作されていないときは第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が実質的にゼロである第1設定値P1に切り換えられる。それ故、第1主ポンプ22から吐出された作動油は絞り34よりも第1リリーフ弁36を優先的に通過し、第2主ポンプ24から吐出された作動油は絞り44よりも第2リリーフ弁46を優先的に通過する。換言すれば、第1リリーフ弁36および第2リリーフ弁46をアンロード弁として働かせることができる。従って、安価な構成で、制御弁5A,5Bが作動していないときに、第1主ポンプ22から吐出される作動油を絞り34の上流側からリリーフライン35を通じてタンクへ逃すことができるとともに、第2主ポンプ24から吐出される作動油を絞り44の上流側からリリーフライン45を通じてタンクへ逃すことができる。一方、操作装置5のいずれかが操作されているときは第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられるので、第1リリーフ弁36および第2リリーフ弁46を通常のネガティブコントロール用のリリーフ弁として働かせることができる。
 さらに、本実施形態では、ポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66を用いた電気的な制御によって馬力制御が行われる。すなわち、ネガティブコントロール圧に応じて作動する流量制御ピストンおよびポンプの吐出圧に応じて作動する馬力制御ピストンを含むレギュレータに比べて、第1レギュレータ23および第2レギュレータ25を簡素な構造とすることができる。
 <変形例>
 リリーフ弁用電磁比例弁92の代わりに、単なる電磁切換弁(オンオフ弁)を用いてもよい。あるいは、リリーフ弁用電磁比例弁92と電磁切換弁のどちらも用いずに、第1リリーフ弁36および第2リリーフ弁46として電磁リリーフ弁を用い、制御装置8がそれらの電磁リリーフ弁を直接的に制御してもよい。
 ただし、リリーフ弁用電磁比例弁92または電磁切換弁が用いられれば、電磁リリーフ弁を用いるよりもコストを低減することができる。
 (第2実施形態)
 図5に、本発明の第2実施形態に係る油圧システム1Bを示す。なお、本実施形態および後述する第3実施形態において、第1実施形態と同一構成要素には同一符号を付し、重複した説明は省略する。
 本実施形態では、操作装置5であるパイロット操作弁が、一次圧ライン57により信号圧ライン93と接続されている。すなわち、パイロット操作弁には、リリーフ弁用電磁比例弁92の二次圧が一次圧として供給される。
 また、本実施形態では、制御装置8が、キャビン16内に配置された選択装置85とも電気的に接続されている。選択装置85は、操作装置5に対する操作を無効とする操作ロックの選択、または操作装置5に対する操作を有効とする操作ロック解除の選択を受け付ける。
 例えば、選択装置85は、安全レバーの移動または揺動により操作ロックか操作ロック解除かを選択可能なマイクロスイッチやリミットスイッチであってもよい。あるいは、選択装置85は、ボタンを押すか否かで操作ロックか操作ロック解除かを選択可能な押しボタンスイッチであってもよい。
 図6に示すように、制御装置8は、選択装置85が操作ロックの選択を受け付けている間は、リリーフ弁用電磁比例弁92の二次圧が実質的にゼロとなるようにリリーフ弁用電磁比例弁92を制御する。本実施形態では、制御装置8がリリーフ弁用電磁比例弁92へ指令電流を送給しない。これにより、リリーフ弁用電磁比例弁92の二次圧がゼロとなり、第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第1設定値P1に切り換えられる。また、操作装置5であるパイロット操作弁の一次圧もゼロとなるので、操作装置5に対する操作が無効となる。
 一方、選択装置85が操作ロック解除の選択を受け付けている間は、操作装置5の操作状況によりリリーフ弁用電磁比例弁92の制御が異なる。
 具体的に、操作装置5のいずれもが操作されていないときは、リリーフ弁用電磁比例弁92の二次圧が操作装置5であるパイロット操作弁の上限圧βよりも高くなるとともに切換圧αよりも低くなるようにリリーフ弁用電磁比例弁92を制御する。これにより、第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第1設定値P1に維持されたままで、操作装置5に対する操作が有効となる。
 なお、パイロット操作弁の上限圧βは、各制御弁のスプールが移動し始めるのに必要なパイロット圧以上の圧力である。望ましくは、上限圧βは、各制御弁のスプールがフルストロークまで移動可能なパイロット圧である。
 逆に、操作装置5のいずれかが操作されているときは、制御装置8は、リリーフ弁用電磁比例弁92がオンロード信号圧Poを出力するように、換言すればリリーフ弁用電磁比例弁92の二次圧がオンロード信号圧Poとなるように、リリーフ弁用電磁比例弁92を制御する。これにより、第1リリーフ弁36および第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられる。
 本実施形態でも、第1実施形態と同様の効果を得ることができる。また、本実施形態では、リリーフ弁用電磁比例弁92に、第1リリーフ弁36および第2リリーフ弁46をアンロード弁として働かせるか通常のネガティブコントロール弁として働かせるかを切り換える機能と、操作装置5に対する操作を無効とするか有効とするかを切り換える機能という2つの機能を具備させることができる。従って、第1リリーフ弁36および第2リリーフ弁46用の電磁弁と選択装置85用の電磁弁とを用いた場合に比べて、コストを低減することができる。
 (第3実施形態)
 図7に、本発明の第3実施形態に係る油圧システム1Cを示す。本実施形態では、第1リリーフ弁36および第2リリーフ弁46のそれぞれが、切換圧γよりも高いアンロード信号圧Puを受けたときにリリーフ圧が第2設定値P2から第1設定値P1に切り換わるように構成されている。
 具体的に、第1リリーフ弁36は、スプリング36aの一端に連結されたピストンにスプリング36a側から面する作動室36cと、上記のピストンをスプリング36aと反対側から付勢するスプリング36dを含む。上記の切換圧γは、スプリング36aを正常に機能させるか否かを切り換える圧力である。すなわち、作動室36cの圧力が切換圧γよりも低いときは、スプリング36dの付勢力によりスプリング36aが所定量圧縮され、リリーフ圧が第2設定値P2となる。一方、作動室36cにアンロード信号圧Pu(Pu>γ)が導入されると、スプリング36aがほぼ自然長となり、リリーフ圧が第1設定値P1となる。作動室36cは、信号圧ライン94により第2入力ライン62と接続されている。
 同様に、第2リリーフ弁46は、スプリング46aの一端に連結されたピストンにスプリング46a側から面する作動室46cと、上記のピストンをスプリング46aと反対側から付勢するスプリング46dを含む。上記の切換圧γは、スプリング46aを正常に機能させるか否かを切り換える圧力である。すなわち、作動室46cの圧力が切換圧γよりも低いときは、スプリング46dの付勢力によりスプリング46aが所定量圧縮され、リリーフ圧が第2設定値P2となる。一方、作動室46cにアンロード信号圧Pu(Pu>γ)が導入されると、スプリング46aがほぼ自然長となり、リリーフ圧が第1設定値P1となる。作動室46cは、信号圧ライン95により第2入力ライン65と接続されている。
 本実施形態では、ポンプ用第1電磁比例弁63が第1リリーフ弁36へアンロード信号圧Puを出力するか否かを切り換え、ポンプ用第2電磁比例弁66が第2リリーフ弁46へアンロード信号圧Puを出力するか否かを切り換える。
 制御装置8は、操作装置5のうちの第1センターバイパスライン31上に配置された制御弁5Aに対応する第1操作装置5a(走行左操作装置、ブーム操作装置およびバケット操作装置)のいずれもが操作されていないかいずれかが操作されているかに応じてポンプ用第1電磁比例弁63を制御するとともに、操作装置5のうちの第2センターバイパスライン41上に配置された制御弁5Bに対応する第2操作装置5b(走行右操作装置、旋回操作装置およびアーム操作装置)のいずれもが操作されていないかいずれかが操作されているかに応じてポンプ用第2電磁比例弁66を制御する。
 本実施形態では、第1操作装置5aのいずれもが操作されていないかいずれかが操作されているかを判定するための構成として第1検出ライン75が採用されており、第2操作装置5bのいずれもが操作されていないかいずれかが操作されているかを判定するための構成として第2検出ライン77が採用されている。
 第1検出ライン75は、副ポンプ26から制御弁5Aを経由してタンクまで延びている。なお、第1検出ライン75が制御弁5Aを経由する順は特に限定されるものではない。第1検出ライン75には、最も上流に位置する走行左制御弁51の上流側に、副ポンプ26の吐出圧の保持用の絞り76が設けられるとともに、走行左制御弁51と絞り76の間に圧力センサ86が設けられている。
 第1検出ライン75は、制御弁5Aの少なくとも1つが作動したときに遮断されるように構成されている。つまり、全ての制御弁5Aが作動していなければ、圧力センサ86で検出される圧力が実質的にゼロであり、制御弁5Aの少なくとも1つが作動すれば、圧力センサ86で検出される圧力が副ポンプ26の吐出圧(リリーフ弁68のリリーフ圧)となる。
 第2検出ライン77は、副ポンプ26から制御弁5Bを経由してタンクまで延びている。なお、第2検出ライン77が制御弁5Bを経由する順は特に限定されるものではない。第2検出ライン77には、最も上流に位置する走行右制御弁54の上流側に、副ポンプ26の吐出圧の保持用の絞り78が設けられるとともに、走行右制御弁54と絞り78の間に圧力センサ87が設けられている。
 第2検出ライン77は、制御弁5Bの少なくとも1つが作動したときに遮断されるように構成されている。つまり、全ての制御弁5Bが作動していなければ、圧力センサ87で検出される圧力が実質的にゼロであり、制御弁5Bの少なくとも1つが作動すれば、圧力センサ87で検出される圧力が副ポンプ26の吐出圧(リリーフ弁68のリリーフ圧)となる。
 制御装置8は、圧力センサ86で検出される圧力が閾値よりも低ければ、第1操作装置5aのいずれもが操作されていないと判定し、圧力センサ86で検出される圧力が前記閾値よりも高ければ、第1操作装置5aのいずれかが操作されていると判定する。同様に、制御装置8は、圧力センサ87で検出される圧力が閾値よりも低ければ、第2操作装置5bのいずれもが操作されていないと判定し、圧力センサ87で検出される圧力が前記閾値よりも高ければ、第2操作装置5bのいずれかが操作されていると判定する。
 制御装置8は、図8に示すように、第1操作装置5aのいずれもが操作されていないときは、ポンプ用第1電磁比例弁63がアンロード信号圧Puを出力するように、換言すればポンプ用第1電磁比例弁63の二次圧がアンロード信号圧Puとなるように、ポンプ用第1電磁比例弁63を制御する。これにより、第1リリーフ弁36のリリーフ圧が第1設定値P1に切り換えられる。
 また、アンロード信号圧Puは、第1主ポンプ22の吐出流量を最小とする圧力以上である。従って、第1操作装置5aのいずれもが操作されていないときは、第1主ポンプ22の吐出流量が最小となる。
 一方、第1操作装置5aのいずれかが操作されているときは、制御装置8は、ポンプ用第1電磁比例弁63がアンロード信号圧Puを出力しないようにポンプ用第1電磁比例弁63を制御する。より詳しくは、制御装置8は、ポンプ用第1電磁比例弁63の二次圧が切換圧γよりも低い状態で、第1実施形態で説明したのと同様に圧力センサ83で検出される圧力が高くなるほどポンプ用第1電磁比例弁63の二次圧が高くなるように、ポンプ用第1電磁比例弁63を制御する。ポンプ用第1電磁比例弁63の二次圧が切換圧γよりも低いために、第1リリーフ弁36のリリーフ圧が第2設定値P2に切り換えられる。また、第1主ポンプ22の吐出圧が高くなるほどポンプ用第1電磁比例弁63の二次圧が高くなるために、第1実施形態と同様に馬力制御を行うことができる。
 制御装置8は、第2操作装置5bのいずれもが操作されていないときは、ポンプ用第2電磁比例弁66がアンロード信号圧Puを出力するように、換言すればポンプ用第2電磁比例弁66の二次圧がアンロード信号圧Puとなるように、ポンプ用第2電磁比例弁66を制御する。これにより、第2リリーフ弁46のリリーフ圧が第1設定値P1に切り換えられる。
 また、アンロード信号圧Puは、第2主ポンプ24の吐出流量を最小とする圧力以上である。従って、第2操作装置5bのいずれもが操作されていないときは、第2主ポンプ24の吐出流量が最小となる。
 一方、第2操作装置5bのいずれかが操作されているときは、制御装置8は、ポンプ用第2電磁比例弁66がアンロード信号圧Puを出力しないようにポンプ用第2電磁比例弁66を制御する。より詳しくは、制御装置8は、ポンプ用第2電磁比例弁66の二次圧が切換圧γよりも低い状態で、第1実施形態で説明したのと同様に圧力センサ84で検出される圧力が高くなるほどポンプ用第2電磁比例弁66の二次圧が高くなるように、ポンプ用第2電磁比例弁66を制御する。ポンプ用第2電磁比例弁66の二次圧が切換圧γよりも低いために、第2リリーフ弁46のリリーフ圧が第2設定値P2に切り換えられる。また、第2主ポンプ24の吐出圧が高くなるほどポンプ用第2電磁比例弁66の二次圧が高くなるために、第1実施形態と同様に馬力制御を行うことができる。
 本実施形態でも、第1実施形態と同様の効果を得ることができる。すなわち、第1操作装置5aのいずれもが操作されていないときは第1リリーフ弁36をアンロード弁として働かせることができ、第1操作装置5aのいずれかが操作されているときは第1リリーフ弁36を通常のネガティブコントロール用のリリーフ弁として働かせることができる。同様に、第2操作装置5bのいずれもが操作されていないときは第2リリーフ弁46をアンロード弁として働かせることができ、第2操作装置5bのいずれかが操作されているときは第2リリーフ弁46を通常のネガティブコントロール用のリリーフ弁として働かせることができる。さらに、ポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66を用いた電気的な制御によって馬力制御が行われるため、第1レギュレータ23および第2レギュレータ25を簡素な構造とすることができる。
 しかも、ポンプ用第1電磁比例弁63に、第1リリーフ弁36をアンロード弁として働かせるか通常のネガティブコントロール弁として働かせるかを切り換える機能と、馬力制御を行う機能という2つの機能を具備させることができる。従って、第1リリーフ弁36用の電磁弁と馬力制御用の電磁比例弁とを用いた場合に比べて、コストを低減することができる。
 同様に、ポンプ用第2電磁比例弁66に、第2リリーフ弁46をアンロード弁として働かせるか通常のネガティブコントロール弁として働かせるかを切り換える機能と、馬力制御を行う機能という2つの機能を具備させることができる。従って、第2リリーフ弁46用の電磁弁と馬力制御用の電磁比例弁とを用いた場合に比べて、コストを低減することができる。
 <変形例>
 第1検出ライン75および第2検出ライン77の代わりに、図9に示す変形例の油圧システム1Dのように、第1実施形態で説明した走行用検出ライン73および非走行用検出ライン71が採用されてもよい。この場合、制御装置8は、操作装置5のいずれかが操作されたときに、第1リリーフ弁36および第2リリーフ弁46の双方のアンロード状態を解除する。
 第1リリーフ弁36および第2リリーフ弁46の双方のアンロード状態を解除するには、制御装置8が、図7に示す構成においてポンプ用第1電磁比例弁63およびポンプ用第2電磁比例弁66の双方を制御してもよい。あるいは、図9に示すように、第1リリーフ弁36の作動室36cおよび第2リリーフ弁46の作動室46cを信号圧ライン96によりポンプ用第2電磁比例弁66(ポンプ用第1電磁比例弁63でも可)と接続し、制御装置8がポンプ用第2電磁比例弁66を制御してもよい。
 さらには、図示は省略するが、第1リリーフ弁36の作動室36cを信号圧ラインにより副ポンプ26と接続し、その信号圧ラインに電磁弁(電磁比例弁または電磁切換弁)を設け、制御装置8がその電磁弁を制御することで第1リリーフ弁36へアンロード信号圧Puを出力するか否かを切り換えてもよい。同様に、第2リリーフ弁46の作動室46cを信号圧ラインにより副ポンプ26と接続し、その信号圧ラインに電磁弁(電磁比例弁または電磁切換弁)を設け、制御装置8がその電磁弁を制御することで第2リリーフ弁46へアンロード信号圧Puを出力するか否かを切り換えてもよい。
 あるいは、第1リリーフ弁36および第2リリーフ弁46として電磁リリーフ弁を用い、制御装置8がそれらの電磁リリーフ弁を直接的に制御してもよい。ただし、前記実施形態または上述した変形例のように電磁弁が用いられれば、電磁リリーフ弁を用いるよりもコストを低減することができる。
 (その他の実施形態)
 本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
 例えば、各操作装置5は、必ずしもパイロット操作弁である必要はなく、操作部の操作量に応じた電気信号を出力する電気ジョイスティックであってもよい。この場合、制御弁を経由する検出ラインは不要である。また、各操作装置5が電気ジョイスティックである場合、制御弁5A,5Bのそれぞれの一対のパイロットポートには、一対の電磁比例弁が接続される。
 また、主ポンプの数は1つであってもよい。この場合、馬力制御では、例えばポンプの負荷が当該ポンプを駆動するエンジンの出力を超えないようにポンプの吐出流量が制限される。
 (まとめ)
 本発明の建設機械の油圧システムは、傾転角が変更可能な可変容量型のポンプと、前記ポンプからタンクまで延びるセンターバイパスライン上に配置された、油圧アクチュエータに対する作動油の供給および排出を制御する複数の制御弁と、前記複数の制御弁の下流側で前記センターバイパスラインに設けられた絞りと、前記絞りをバイパスするように前記センターバイパスラインに接続されたリリーフラインに設けられた、リリーフ圧が、実質的にゼロである第1設定値と前記第1設定値よりも大きな第2設定値との間で変更可能なリリーフ弁と、ポンプ信号圧が高くなるほど前記ポンプの吐出流量が減少するように前記ポンプの傾転角を調整する、前記センターバイパスラインにおける前記絞りの上流側の圧力であるネガティブコントロール圧が前記ポンプ信号圧として供給されるレギュレータと、前記複数の制御弁を作動させるための複数の操作装置と、前記複数の操作装置のいずれもが操作されていないときは前記リリーフ弁のリリーフ圧を前記第1設定値に切り換え、前記複数の操作装置のいずれかが操作されているときは前記リリーフ弁のリリーフ圧を前記第2設定値に切り換える制御装置と、を備える、ことを特徴とする。
 上記の構成によれば、操作装置のいずれもが操作されていないときはリリーフ弁のリリーフ圧が実質的にゼロである第1設定値に切り換えられるので、ポンプから吐出された作動油は絞りよりもリリーフ弁を優先的に通過する。換言すれば、リリーフ弁をアンロード弁として働かせることができる。従って、安価な構成で、制御弁が作動していないときにポンプから吐出される作動油を絞りの上流側からリリーフラインを通じてタンクへ逃すことができる。一方、操作装置のいずれかが操作されているときはリリーフ弁のリリーフ圧が第2設定値に切り換えられるので、リリーフ弁を通常のネガティブコントロール用のリリーフ弁として働かせることができる。
 前記リリーフ弁は、切換圧よりも高いオンロード信号圧を受けたときにリリーフ圧が前記第1設定値から前記第2設定値に切り換わるように構成されており、上記の油圧システムは、前記リリーフ弁へ前記オンロード信号圧を出力するか否かを切り換える電磁弁をさらに備え、前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁弁が前記オンロード信号圧を出力せず、前記複数の操作装置のいずれかが操作されているときは前記電磁弁が前記オンロード信号圧を出力するように、前記電磁弁を制御してもよい。この構成によれば、リリーフ弁として電磁リリーフ弁を用いるよりもコストを低減することができる。
 前記電磁弁は、電磁比例弁であり、前記複数の操作装置のそれぞれは、前記電磁比例弁の二次圧が一次圧として供給されるパイロット操作弁であり、上記の油圧システムは、前記複数の操作装置に対する操作を無効とする操作ロックの選択、または前記複数の操作装置に対する操作を有効とする操作ロック解除の選択を受け付ける選択装置をさらに備え、前記制御装置は、前記選択装置が操作ロックの選択を受け付けている間は前記電磁比例弁の二次圧が実質的にゼロとなるように前記電磁比例弁を制御し、前記選択装置が操作ロック解除の選択を受け付けている間は、前記複数の操作装置のいずれもが操作されていないときは前記電磁比例弁の二次圧が前記パイロット操作弁の上限圧よりも高くなるとともに前記切換圧よりも低くなり、前記複数の操作装置のいずれかが操作されているときは前記電磁比例弁の二次圧が前記オンロード信号圧となるように、前記電磁比例弁を制御してもよい。この構成によれば、電磁比例弁に、リリーフ弁をアンロード弁として働かせるか通常のネガティブコントロール弁として働かせるかを切り換える機能と、操作装置に対する操作を無効とするか有効とするかを切り換える機能という2つの機能を具備させることができる。従って、リリーフ弁用の電磁弁と選択装置用の電磁弁とを用いた場合に比べて、コストを低減することができる。
 上記の油圧システムは、ポンプ用電磁比例弁と、前記ポンプ用電磁比例弁の二次圧と前記ネガティブコントロール圧のうちの高い方を前記ポンプ信号圧として前記レギュレータへ供給する高圧選択弁と、前記ポンプの吐出圧を検出する圧力センサと、をさらに備え、前記制御装置は、前記圧力センサで検出される圧力が高くなるほど前記ポンプ用電磁比例弁の二次圧が高くなるように前記ポンプ用電磁比例弁を制御してもよい。この構成によれば、電気的な制御によって、ポンプの負荷が想定した出力を超えないようにポンプの吐出流量を制限する馬力制御を行うことができる。すなわち、ネガティブコントロール圧に応じて作動する流量制御ピストンおよびポンプの吐出圧に応じて作動する馬力制御ピストンを含むレギュレータに比べて、レギュレータを簡素な構造とすることができる。
 前記リリーフ弁は、切換圧よりも高いアンロード信号圧を受けたときにリリーフ圧が前記第2設定値から前記第1設定値に切り換わるように構成されており、上記の油圧システムは、前記リリーフ弁へ前記アンロード信号圧を出力するか否かを切り換える電磁弁をさらに備え、前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁弁が前記アンロード信号圧を出力し、前記複数の操作装置のいずれかが操作されているときは前記電磁弁が前記アンロード信号圧を出力しないように、前記電磁弁を制御してもよい。この構成によれば、リリーフ弁として電磁リリーフ弁を用いるよりもコストを低減することができる。
 前記電磁弁は、電磁比例弁であり、上記の油圧システムは、前記電磁比例弁の二次圧と前記ネガティブコントロール圧のうちの高い方を前記ポンプ信号圧として前記レギュレータへ供給する高圧選択弁と、前記ポンプの吐出圧を検出する圧力センサと、をさらに備え、前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁比例弁の二次圧が前記アンロード信号圧となり、前記複数の操作装置のいずれかが操作されているときは、前記電磁比例弁の二次圧が前記切換圧よりも低い状態で、前記圧力センサで検出される圧力が高くなるほど前記電磁比例弁の二次圧が高くなるように、前記電磁比例弁を制御してもよい。この構成によれば、電気的な制御によって、ポンプの負荷が想定した出力を超えないようにポンプの吐出流量を制限する馬力制御を行うことができる。すなわち、レギュレータを、ネガティブコントロール圧に応じて作動する流量制御ピストンおよびポンプの吐出圧に応じて作動する馬力制御ピストンを含むレギュレータに比べて、簡素な構造とすることができる。
 しかも、電磁比例弁に、リリーフ弁をアンロード弁として働かせるか通常のネガティブコントロール弁として働かせるかを切り換える機能と、馬力制御を行う機能という2つの機能を具備させることができる。従って、リリーフ弁用の電磁弁と馬力制御用の電磁比例弁とを用いた場合に比べて、コストを低減することができる。
 1A~1D 油圧システム
 10 建設機械
 20 油圧アクチュエータ
 22,24 主ポンプ
 23,25 レギュレータ
 31,41 センターバイパスライン
 34,44 絞り
 36,46 リリーフ弁
 5  操作装置
 5A,5B 制御弁
 61,64 高圧選択弁
 63,66 ポンプ用電磁比例弁
 92 リリーフ弁用電磁比例弁
 8  制御装置
 81~84,86,87 圧力センサ
 85 選択装置

Claims (6)

  1.  傾転角が変更可能な可変容量型のポンプと、
     前記ポンプからタンクまで延びるセンターバイパスライン上に配置された、油圧アクチュエータに対する作動油の供給および排出を制御する複数の制御弁と、
     前記複数の制御弁の下流側で前記センターバイパスラインに設けられた絞りと、
     前記絞りをバイパスするように前記センターバイパスラインに接続されたリリーフラインに設けられた、リリーフ圧が、実質的にゼロである第1設定値と前記第1設定値よりも大きな第2設定値との間で変更可能なリリーフ弁と、
     ポンプ信号圧が高くなるほど前記ポンプの吐出流量が減少するように前記ポンプの傾転角を調整する、前記センターバイパスラインにおける前記絞りの上流側の圧力であるネガティブコントロール圧が前記ポンプ信号圧として供給されるレギュレータと、
     前記複数の制御弁を作動させるための複数の操作装置と、
     前記複数の操作装置のいずれもが操作されていないときは前記リリーフ弁のリリーフ圧を前記第1設定値に切り換え、前記複数の操作装置のいずれかが操作されているときは前記リリーフ弁のリリーフ圧を前記第2設定値に切り換える制御装置と、
    を備える、建設機械の油圧システム。
  2.  前記リリーフ弁は、切換圧よりも高いオンロード信号圧を受けたときにリリーフ圧が前記第1設定値から前記第2設定値に切り換わるように構成されており、
     前記リリーフ弁へ前記オンロード信号圧を出力するか否かを切り換える電磁弁をさらに備え、
     前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁弁が前記オンロード信号圧を出力せず、前記複数の操作装置のいずれかが操作されているときは前記電磁弁が前記オンロード信号圧を出力するように、前記電磁弁を制御する、請求項1に記載の建設機械の油圧システム。
  3.  前記電磁弁は、電磁比例弁であり、
     前記複数の操作装置のそれぞれは、前記電磁比例弁の二次圧が一次圧として供給されるパイロット操作弁であり、
     前記複数の操作装置に対する操作を無効とする操作ロックの選択、または前記複数の操作装置に対する操作を有効とする操作ロック解除の選択を受け付ける選択装置をさらに備え、
     前記制御装置は、前記選択装置が操作ロックの選択を受け付けている間は前記電磁比例弁の二次圧が実質的にゼロとなるように前記電磁比例弁を制御し、
     前記選択装置が操作ロック解除の選択を受け付けている間は、前記複数の操作装置のいずれもが操作されていないときは前記電磁比例弁の二次圧が前記パイロット操作弁の上限圧よりも高くなるとともに前記切換圧よりも低くなり、前記複数の操作装置のいずれかが操作されているときは前記電磁比例弁の二次圧が前記オンロード信号圧となるように、前記電磁比例弁を制御する、請求項2に記載の建設機械の油圧システム。
  4.  ポンプ用電磁比例弁と、
     前記ポンプ用電磁比例弁の二次圧と前記ネガティブコントロール圧のうちの高い方を前記ポンプ信号圧として前記レギュレータへ供給する高圧選択弁と、
     前記ポンプの吐出圧を検出する圧力センサと、をさらに備え、
     前記制御装置は、前記圧力センサで検出される圧力が高くなるほど前記ポンプ用電磁比例弁の二次圧が高くなるように前記ポンプ用電磁比例弁を制御する、請求項1~3の何れか一項に記載の建設機械の油圧システム。
  5.  前記リリーフ弁は、切換圧よりも高いアンロード信号圧を受けたときにリリーフ圧が前記第2設定値から前記第1設定値に切り換わるように構成されており、
     前記リリーフ弁へ前記アンロード信号圧を出力するか否かを切り換える電磁弁をさらに備え、
     前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁弁が前記アンロード信号圧を出力し、前記複数の操作装置のいずれかが操作されているときは前記電磁弁が前記アンロード信号圧を出力しないように、前記電磁弁を制御する、請求項1に記載の建設機械の油圧システム。
  6.  前記電磁弁は、電磁比例弁であり、
     前記電磁比例弁の二次圧と前記ネガティブコントロール圧のうちの高い方を前記ポンプ信号圧として前記レギュレータへ供給する高圧選択弁と、
     前記ポンプの吐出圧を検出する圧力センサと、をさらに備え、
     前記制御装置は、前記複数の操作装置のいずれもが操作されていないときは前記電磁比例弁の二次圧が前記アンロード信号圧となり、前記複数の操作装置のいずれかが操作されているときは、前記電磁比例弁の二次圧が前記切換圧よりも低い状態で、前記圧力センサで検出される圧力が高くなるほど前記電磁比例弁の二次圧が高くなるように、前記電磁比例弁を制御する、請求項5に記載の建設機械の油圧システム。
PCT/JP2021/014270 2020-04-09 2021-04-02 建設機械の油圧システム WO2021206002A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-070175 2020-04-09
JP2020070175A JP2021167614A (ja) 2020-04-09 2020-04-09 建設機械の油圧システム

Publications (1)

Publication Number Publication Date
WO2021206002A1 true WO2021206002A1 (ja) 2021-10-14

Family

ID=78022885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014270 WO2021206002A1 (ja) 2020-04-09 2021-04-02 建設機械の油圧システム

Country Status (2)

Country Link
JP (1) JP2021167614A (ja)
WO (1) WO2021206002A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667559U (ja) * 1993-02-24 1994-09-22 住友建機株式会社 建設機械の制御回路
US20160002888A1 (en) * 2013-02-15 2016-01-07 Parker-Hannifin Corporation Variable load sense open center hybrid system
JP2016156393A (ja) * 2015-02-23 2016-09-01 川崎重工業株式会社 建設機械の油圧駆動システム
JP2016156426A (ja) * 2015-02-24 2016-09-01 川崎重工業株式会社 アンロード弁および油圧ショベルの油圧駆動システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667559U (ja) * 1993-02-24 1994-09-22 住友建機株式会社 建設機械の制御回路
US20160002888A1 (en) * 2013-02-15 2016-01-07 Parker-Hannifin Corporation Variable load sense open center hybrid system
JP2016156393A (ja) * 2015-02-23 2016-09-01 川崎重工業株式会社 建設機械の油圧駆動システム
JP2016156426A (ja) * 2015-02-24 2016-09-01 川崎重工業株式会社 アンロード弁および油圧ショベルの油圧駆動システム

Also Published As

Publication number Publication date
JP2021167614A (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2021039284A1 (ja) 建設機械の油圧システム
GB2581069A (en) Hydraulic drive system for construction machine
US10677274B2 (en) Hydraulic excavator drive system
JP6917871B2 (ja) 建設機械の油圧制御回路
WO2021039285A1 (ja) 建設機械の油圧システム
JP7324654B2 (ja) 建設機械の油圧システム
WO2021039282A1 (ja) 建設機械の油圧システム
WO2021039287A1 (ja) 建設機械の油圧システム
WO2021039286A1 (ja) 建設機械の油圧システム
CN108105182B (zh) 油压驱动系统
JP6799480B2 (ja) 油圧システム
WO2021206002A1 (ja) 建設機械の油圧システム
JP7152968B2 (ja) 油圧ショベル駆動システム
KR20130075663A (ko) 건설기계의 유압시스템
JP6924161B2 (ja) 建設機械の油圧システム
CN110431317B (zh) 油压系统
KR20050049767A (ko) 굴삭기의 선회제어장치
JPH068641B2 (ja) 油圧回路
WO1990010795A1 (en) Hydraulic driving unit for working machine
JP2011236971A (ja) 作業機械の油圧システム
JPH09100554A (ja) 建機の油圧回路
JPH0510307A (ja) アクチユエ−タの暴走防止用方向切換弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21783920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21783920

Country of ref document: EP

Kind code of ref document: A1