WO2021205809A1 - Discharge electrode plate - Google Patents
Discharge electrode plate Download PDFInfo
- Publication number
- WO2021205809A1 WO2021205809A1 PCT/JP2021/009827 JP2021009827W WO2021205809A1 WO 2021205809 A1 WO2021205809 A1 WO 2021205809A1 JP 2021009827 W JP2021009827 W JP 2021009827W WO 2021205809 A1 WO2021205809 A1 WO 2021205809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- discharge electrode
- sintered film
- conductive glass
- discharge
- conductive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T19/00—Devices providing for corona discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
Definitions
- the present invention relates to a discharge electrode plate that forms an elongated discharge electrode for corona discharge.
- the activated ions in the plasma appropriately make the surface of the resin uneven or jagged.
- the surface of the polymer resin When the surface of the polymer resin has a small uneven shape, it changes from water repellent to hydrophilic. For example, as an applied product, it is convenient that the surface of the bamboo blind for drying seaweed has small irregularities. As a result, the seaweed pulled up from the seawater has a certain degree of adhesion, but when the surface of the polymer resin is in a slippery state, this adhesion cannot be obtained and the seaweed does not adhere to the bamboo blinds.
- the surface modification treatment of the polymer resin is performed by causing a corona discharge in the atmosphere.
- metals for example, stainless steel and tungsten
- the material of the discharge electrode have been used as the material of the discharge electrode.
- the discharge is performed by replacing the metal electrode (stainless steel, tungsten, etc.) with the electron conductive glass sintered film 22-1 that does not oxidize under corona discharge plasma. I was able to prevent the electrode from oxidizing.
- the discharge (corona discharge) is stable near the take-out part (power supply part) of the external wiring 24, and unstable at the center part, as shown in the figure. There was a problem that the corona discharge stopped in about one month.
- FIGS. 10 to 12 will be briefly described.
- FIG. 10 shows a conventional technique (an electrode is a metal or a metal sintered film).
- the ceramic plate 21 is a heat-resistant and insulating plate, and holds a metal plate 22 to which a high frequency voltage (for example, 7.5 KV, 30 KHz) is applied.
- a high frequency voltage for example, 7.5 KV, 30 KHz
- the metal plate 22 is a metal plate that discharges corona, and is an elongated plate such as stainless steel or W.
- the external wiring 24 is a wiring (lead wire) for applying a high frequency voltage to the metal plate 22 from the outside.
- the solder 25 is a solder that solders the external wiring 24 to the metal plate 22.
- a high-frequency power source for example, 7.5 KV, 30 KHz
- a corona discharge in the atmosphere between the two metal plates 22.
- the above-mentioned polymer resin sheet is passed at a constant speed during the corona discharge, and minute irregularities are formed on the surface of the polymer resin sheet by the corona discharge.
- FIG. 11 shows a conventional technique (the electrode is an electron conductive glass sintered film).
- the ceramic substrate 21, the external wiring 24, and the solder 25 are the same as those having the same number in FIG. 10, the description thereof will be omitted.
- the electron conductive glass sintered film 22-1 is an electron conductive glass sintered film 22-1 that discharges corona discharge, and is a film obtained by sintering electron conductive glass.
- a high frequency power source for example, 6.5 KV, 30 KHz
- a corona discharge in the atmosphere for example, the above-mentioned polymer resin sheet is passed at a constant speed during the corona discharge, and minute irregularities are formed on the surface of the polymer resin sheet by the corona discharge.
- FIG. 12 shows an example of the discharge state of the electrode of the conventional electron conductive glass sintered film.
- the upper electrode 25 shows the upper electrode of the electron conductive glass sintered film 22-1 of FIG. 11
- the lower electrode 26 shows the lower electrode of the electron conductive glass sintered film 22-1 of FIG.
- a high-frequency power source for example, 6.5 KV, 30 KHz
- a corona discharge is generated between the upper electrode 5 and the lower electrode 6 in the atmosphere, the discharge (corona discharge) is stable near the take-out part (power supply part) of the external wiring 24 as shown in the figure. , It became unstable in the central part. Therefore, after long-term use (for example, about January), corona discharge has occurred.
- the present inventors can smoothly supply electrons for a long period of time even if a conductive glass sintered film is corona-discharged as a discharge electrode material, and in addition, a conductive metal sintered film is arranged on a base to be electrically conductive. It was discovered in experiments that the properties can be improved, the corona discharge can be made uniform, and the life of the electrode can be extended.
- a heat-resistant plate made of a heat-resistant material, a conductive metal sintered film formed elongated on the heat-resistant plate, and conductivity are provided.
- a discharge electrode composed of two layers of a conductive glass sintered film formed on a metal sintered film is provided, and a conductive glass sintered film constituting the discharge electrode is formed of electronically conductive conductive glass by corona discharge.
- a conductive metal sintered film is formed to reduce the voltage drop due to the current or electron flow flowing from the edge to the center of the conductive glass sintered film to generate a uniform corona discharge. I have to.
- the discharge electrode is placed in the atmosphere to discharge the corona.
- the conductive glass is vanadate glass composed of vanadium, barium, and iron.
- the heat-resistant plate is made of heat-resistant glass or ceramic.
- the size of the conductive glass sintered film formed on the conductive metal sintered film is made smaller than that of the conductive metal sintered film so as not to protrude.
- the portion of the external wiring soldered to the end of the facing discharge electrode is shifted in the length direction so as not to enter the corona discharge region, and the soldered portion is damaged. I am trying to reduce.
- the external wiring is connected by soldering to both the conductive metal sintered film and the conductive glass sintered film that make up the discharge electrode.
- the external wiring is soldered to the discharge electrode by ultrasonic soldering.
- a paste containing the powder of the conductive glass is generated, and the produced paste is applied and fired to form the electronically conductive discharge electrode. ing.
- the conductive glass sintered film is obtained by sintering a conductive metal sintered film and then applying, drying, and sintering on the conductive metal sintered film to prevent the metal particles and the conductive glass particles from thermally diffusing.
- a high frequency voltage in the range of 10 KHz to 5 MHz is applied between the other electrode facing the discharge electrode or the other electrode on the back surface of the discharge electrode to discharge the corona around the discharge electrode.
- the conductive glass sintered film is formed of electronically conductive conductive glass
- the conductive glass is obtained by heating the crushed conductive glass powder to a predetermined sintering temperature and sintering it to room temperature. After the first sintering heat treatment to be returned, the heating is performed to a predetermined annealing temperature lower than the sintering temperature to raise the temperature, and then the heating is stopped and the second annealing heat treatment for natural cooling is performed.
- the conductive glass sintered film after the first sintering heat treatment and the second annealing heat treatment has a resistance value of 10 squared to 3 or more as compared with the conductive glass before crushing. I try to reduce it small.
- a conductive glass sintered film is corona discharged as a discharge electrode material, electrons can be smoothly supplied for a long period of time, and in addition, a conductive metal sintered film is arranged as a base. As a result, the electrical conductivity was improved, the corona discharge was made uniform, and the life of the electrode was extended.
- FIG. 1 shows a structural diagram of an embodiment of the present invention (two layers of electronically conductive glass and a metal sintered film).
- the two ceramic substrates 1 are opposed to each other, and two layers of an aluminum sintered film 2 and an electronically conductive glass sintered film 3 are formed on the lower surface of the upper ceramic substrate 1 and the upper surface of the lower ceramic substrate 1.
- the discharge electrodes are formed respectively, the present invention is not limited to this, and two layers of discharge electrodes may be formed on the upper surface and the lower surface of one ceramic substrate 1, respectively, and corona discharge in the atmosphere may be performed between the two layers.
- an example in which two ceramic substrates 1 are opposed to each other will be described.
- the ceramic substrate 1 holds a discharge electrode formed of an aluminum sintered film 2 and an electron conductive glass sintered film 3 in an insulated state, and has heat resistance that can withstand the high temperature caused by corona discharge. Moreover, it is a high-frequency voltage insulating plate.
- the ceramic substrate 1 may be a heat-resistant glass plate in addition to the ceramic plate, and may have heat resistance and high-frequency voltage insulation.
- the aluminum sintered film 2 is an example of a conductive metal sintered film formed on the ceramic substrate 1.
- a metal sintered film such as copper or silver may be used.
- the width is about 1 mm to 30 mm, the length is 10 cm, and if it can be realized, it may be longer.
- the electron conductive glass sintered film 3 is a sintered film of electron conductive glass, and is a sintered film of a semiconductor glass made of vanadium, barium, or iron (described later).
- the external wiring 4 is for ultrasonically soldering the aluminum sintered film 2 and the electron conductive glass sintered film 3 with solder 5 and applying a high frequency voltage to each of them from the outside.
- the solder 5 is a solder that ultrasonically solders the external wiring 4 to the aluminum sintered film 2 and the electron conductive glass sintered film 3.
- the high-frequency power supply used was a power supply of 30 KHz in the experiment, but the power supply is not limited to this, and can be used from 10 KH to about 5 MHz for corona discharge in the atmosphere. The higher the frequency, the more likely it is that corona discharge will occur in atmospheric pressure, but the power supply will be more expensive.
- a current flows from the end (one end or both ends) of the external wiring 4 into the discharge electrode composed of two layers of the aluminum sintered film 2 and the electronically conductive glass sintered film (for example, the resistance is about 200 to 400 ⁇ cm) 3.
- the aluminum sintered film 2 which is a metal conductive sintered film is in the lower layer, the voltage drop in the electron conductive glass sintered film 2 due to the current is reduced, and a substantially uniform high-frequency voltage is applied to the entire surface of the electron conductive glass sintered film 3.
- FIG. 2 shows a structural diagram of an embodiment of the present invention (No. 2) (external wiring connection of two layers of an electron conductive glass and a metal sintered film).
- FIG. 2 shows a side view
- (b) of FIG. 2 shows a main part. Since the ceramic substrate 1, the aluminum sintered film 2, the electron conductive glass sintered film 3, and the external wiring 4 are the same as those having the same number in FIG. 1, the description thereof will be omitted.
- solder 5 is attached to both sides (layers) as shown in the main part (b) of FIG.
- both the aluminum sintered film 2 sintered on the ceramic substrate 1 and the electronically conductive glass sintered film 3 sintered on the aluminum sintered film 2 (both layers), and the external wiring 4 are soldered with solder 5. It is to be soldered.
- a high voltage and high voltage is applied to both the aluminum sintered film 2 and the electron conductive glass sintered film 3 via the external wiring 4, and in atmospheric pressure between the upper and lower electron conductive glass sintered films 3. It was possible to generate a uniform corona discharge and extend the life of the discharge electrode composed of the aluminum sintered film 2 and the electron conductive gas sintered film 3 (extending the life of one month or more).
- the current or the current associated with the conventional corona discharge of only the electronically conductive glass sintered film 3 or A voltage drop was generated by the electron flow, and the high-frequency voltage was high at the edges and low by the voltage drop at the center.
- the voltage at the opening of the opposing electron conductive glass sintered film 3 was low, and the corona discharge was unstable.
- an aluminum sintered film 2 is formed on the base, which is a metal sintered film and has a small resistance value, and the voltage drop of the current or electron flow flowing from the edge to the center is very small.
- the high frequency voltage is supplied to the electron conductive glass sintered film 3 in a reduced manner, as a result, the high frequency voltage applied between the upper side and the lower side of the electron conductive glass sintered film 3 becomes substantially uniform at the ends and the center. It was possible to generate a uniform corona discharge over a long period of time, and it was confirmed in experiments that the life of the discharge electrode was extended (for example, one month or more).
- FIG. 3 shows an example of forming the electron conductive glass sintered film of the present invention.
- FIG. 3A shows the discharge surface on the upper surface
- FIG. 3B shows the discharge surface on the lower surface.
- the aluminum sintered film 2 described in FIGS. 1 and 2 is formed between the ceramic substrate 1 under the electron conductive glass sintered film 3 shown in the drawing, but is omitted in the drawing.
- the electronically conductive glass sintered film 3 on the upper surface is shifted to the left side, and the electronically conductive glass sintered film 3 on the lower surface is shifted to the right side so that ion irradiation due to corona discharge does not occur in both soldered parts, and the soldered parts are damaged. Avoid (damage due to ion irradiation).
- FIG. 4 shows an example of the discharge state of the two-layer electrode of the electron conductive glass and the metal sintered film of the present invention.
- FIG. 4 is a lateral photograph of the state of corona discharge in the atmosphere when a high frequency voltage (for example, 6.8 KV, 30 KHz) is applied to the upper surface and the lower surface of the electron conductive glass sintered film 3 of FIG. 1 described above. This is an example of a photo taken.
- a high frequency voltage for example, 6.8 KV, 30 KHz
- the corona discharge is uniformly discharged over almost the entire area between the upper surface and the lower surface in the atmosphere.
- FIG. 5 shows an example of forming the electron conductive glass sintered film of the present invention (No. 2).
- FIG. 5A shows a bottom view / top view of the upper side (earth), and FIG. 5B shows a top view of the lower side (discharge electrode).
- the upper side (earth) of FIG. 5A may be formed on either the upper surface or the lower surface of the ceramic substrate 1, the upper side (a) of FIG. 5 is taken as a bottom view or a top view. be.
- the aluminum sintered film 2 described in FIGS. 1 and 2 is formed between the ceramic substrate 1 under the electron conductive glass sintered film 3 of FIG. 5 (b), the aluminum sintered film 2 described in FIGS. 1 and 2 is omitted in the drawing.
- the aluminum electrode (earth) 7 is an earth electrode when corona discharging is performed, and is used for corona discharging with the electron conductive glass sintered film 3 of FIG. 5B. It is a thing.
- the ground side wiring 6 is an external wiring (external terminal) for giving a ground potential to the aluminum electrode 7.
- the electron conductive glass sintered film 3 is an electron conductive glass sintered film formed by forming an aluminum sintered film 2 on a ceramic substrate 1 and further forming the aluminum sintered film 2 on the ceramic substrate 1, and is an electron conductive glass sintered film of FIG. It is an electrode for corona discharge with the aluminum electrode (earth) of (a).
- the external wiring 4 is an external wiring 4 soldered to the electron conductive glass sintered film 3 and the underlying aluminum sintered film 2 and is a wiring (external terminal) for applying a high frequency voltage.
- the external wiring 4 is a region outside the discharge portion where the corona discharge is performed, and here, the external wiring 4 is arranged outside so as not to come into contact with the surface modifier (wire) 8 and not interfere with it.
- a high-frequency voltage is applied between the electron-conductive glass sintered film 3 and the aluminum electrode 7 in the atmosphere to generate a corona discharge on the electron-conductive glass sintered film 3, and this corona discharge is generated.
- the surface modifier (wire) 8 is passed through the discharge to modify the surface (for example, to form minute irregularities).
- FIG. 6 shows a flow chart for manufacturing a two-layer discharge electrode of the metal and the electron conductive glass of the present invention.
- S1 prepares an alumina substrate, an aluminum paste, and an electron conductive glass paste. This is, -Alumina substrate 1 is prepared here as the ceramic substrate 1 of FIG.
- S2 prints the pattern of the aluminum layer on the alumina substrate with aluminum paste. This is the aluminum paste prepared in S1, and the pattern of the aluminum sintered film 2 of FIG. 1 is screen-printed on the alumina substrate 1 prepared in S1.
- S3 dries and sinters the aluminum pattern film (800 ° C x 10 minutes). This involves drying the aluminum pattern film printed on the alumina substrate 1 in S2 with hot air, and then sintering (800 ° C. ⁇ 10 minutes).
- S4 prints, dries, and fires (550 ° C. x 15 minutes) an electronically conductive glass paste that is one size smaller (2 mm or more) than the aluminum pattern. This involves printing an electroconductive glass paste 2 mm or more smaller than the pattern of the aluminum sintered film 2 on the aluminum sintered film 2 sintered in S3, drying with hot air, and firing (550 ° C. ⁇ 15 minutes). )I do.
- firing 500 ° C. ⁇ 1H
- glass reheating treatment glass reheating treatment
- S6 is soldered (ultrasonic wave, etc., aluminum film, electron conductive glass film).
- the external wiring 4, the aluminum sintered film 2, and the electron conductive glass sintered film 3 are ultrasonically soldered.
- an aluminum sintered film 2 is formed on the ceramic substrate 1
- an electron conductive glass sintered film 3 is further formed on the aluminum sintered film 2, and these aluminum sintered films 2 and electrons are formed.
- the external wiring 4 is ultrasonically soldered to the conductive glass sintered film 3, and the structures shown in FIGS. 1 and 2 are manufactured.
- the conductive glass sintered film is obtained by sintering a conductive metal sintered film and then applying, drying, and sintering on the conductive metal sintered film to prevent the metal particles and the conductive glass particles from thermally diffusing.
- heat diffusion was eliminated, and two layers (two layers of the aluminum sintered film 2 and the electron conductive glass sintered film 3) could be successfully manufactured.
- the simultaneous firing was performed, the metal particles and the conductive glass particles were thermally diffused, and the two layers could not be formed well.
- FIG. 7 shows a flow chart for manufacturing the electronically conductive glass paste of the present invention.
- a glass raw material is mixed and melted (900 to 1200 ° C.) (placed in a place where the electric furnace temperature has risen and held for 1 hour).
- This is a glass raw material prepared when the glass raw material is mixed (see FIG. 8 described later) and the electric furnace temperature rises to a melting temperature (for example, the optimum temperature obtained in an experiment of 900 to 1200 ° C.). Is put in a platinum crucible and put in, and the mixture is well stirred and held for, for example, 1 hour.
- S12 creates 3-5 mm pieces of glass (crushes the molten glass while pouring it through a chilled roller). In this method, the molten glass prepared in S11 is crushed while being poured between water-cooled rollers to prepare glass fragments of about 3-5 mm.
- S13 is coarsely crushed glass, powder 2-3 mm, powder ⁇ 50 ⁇ m. This grinds the glass shards 3-5 mm prepared in S12 into a powder of 2-3 mm and a powder of -50 ⁇ m.
- S14 is finely pulverized (2-3 ⁇ m, jet mill device).
- the powder to 50 ⁇ m prepared in S13 is further finely pulverized to about 2-3 ⁇ m with a jet mill device.
- the raw materials (vanadium, barium, iron, see FIG. 8) are melted and stirred, rapidly cooled and crushed, and the crushed fine powder and the organic material, organic solvent, and resin are well stirred to generate electrons. It becomes possible to produce a conductive glass paste.
- FIG. 8 shows an example of the electron conductive glass of the present invention.
- the electron conductive glass raw material of FIG. 7 is composed of the following materials shown in the figure.
- FIG. 9 shows a flow chart for manufacturing the aluminum paste of the present invention.
- S21 prepares aluminum fragments of 3-5 mm.
- aluminum fragments of 3 to 5 mm are prepared as the aluminum material.
- S22 is finely pulverized aluminum (2-3 ⁇ m, jet mill device). This is done by crushing 3-5 mm of aluminum fragments prepared in S21 to about 2-3 ⁇ m with a jet mill device.
- FIG. 13 shows an explanatory diagram of the other electrodes and insulating layer of the present invention and their corona discharge.
- a thin insulating layer (30 to 300 ⁇ m, preferably 70 to 100 ⁇ m) is formed between the electrodes for corona discharge, and a low voltage (80 to 150 V commercial AC voltage (50 / 60 Hz)) corona discharge is shown.
- a low voltage 80 to 150 V commercial AC voltage (50 / 60 Hz)
- FIG. 13 (a) shows a corona discharge (top view of a main part)
- FIG. 13 (a-1) shows a schematic top view
- FIG. 13 (a-2) is a side view of the schematic view. Is shown.
- a disk-shaped conductive layer 12 is applied, dried, and sintered on a substrate (not shown), and then formed.
- a disk-shaped insulating layer 13 is applied, dried, and sintered on the top, and a ring-shaped conductive layer 11 is further applied, dried, and sintered on the top.
- the ring-shaped corona discharge of FIG. 13A forms a thin insulating layer 13 between the ring-shaped conductive layer 11 and the conductive layer 12, and between the conductive layer 11 and the conductive layer 12.
- the state of the corona discharge generated when a low voltage (30 to 300 VAC) is applied is shown.
- a low voltage is applied between the conductive layer 11 and the conductive layer 12
- the surface of the conductive glass paste sintered film used in the experiment in which the conductive layers 11 and 12 are formed has irregularities of about 30 to 50 ⁇ m at the maximum.
- the conductive glass paste sintered film becomes hot and the resistance becomes low, and the current to the part increases and becomes hot, and the conductive glass becomes hot. It is expected that the paste sintered film will partially melt, the arc discharge like lightning will cease, and a stable corona discharge will occur and continue as shown in Fig. 13 (a). It is also considered that the conductive glass paste sintered films (conductive layers 11 and 12) are conductive and semiconductor (electron conductive), so that corona discharge is likely to occur at a low voltage. increase.
- FIG. 13B shows a top view of the entire corona discharge. This shows the whole experimental apparatus including the main part of FIG. 13 (a).
- FIG. 13 (c) shows the experimental conditions. Here, it is as shown below.
- the applied voltage is a voltage applied between the conductive layer 11 and the conductive layer 12 in FIGS. 13 (a-1) and 13 (a-2), and is a commercial frequency of 80 to 150 V.
- the current is the current that was passed at that time.
- the electrode spacing is the thickness of the insulating layer 13 of FIGS. 13 (a-1) and (a-2), and is the spacing between the conductive layer 11 and the conductive layer 12.
- the thickness of the insulating layer 13 is the interval at which corona discharge is performed when 80 to 150 V is applied in the atmosphere (in the air), and if it is smaller than this, arc discharge is performed, and the thickness is equal to or greater than the maximum interval. This is the interval at which the corona discharge does not start.
- the power supply (AC) was tested using a commercial frequency (50 / 60 Hz), a high frequency power supply may also be used.
- FIG. 14 shows an explanatory view of the other electrodes and the insulating layer of the present invention.
- FIG. 14 (a) shows an example of the structure of the present invention
- FIG. 14 (a-1) shows an example of experimental conditions.
- a feature of the structural example of the present invention is that a thin insulating paste sintered body 16 is formed between the conductive layers 15 for corona discharge, and stable corona discharge is realized by applying a low voltage. It is in.
- the experimental conditions of the present invention are as shown below.-Applied voltage: 80 to 150 V (AC) -Current: 0.6 to 0.09 mA (AC) -Electrode spacing: 30 to 300 ⁇ m (preferably 70 to 100 ⁇ m)
- FIG. 14 (b) shows a conventional structural example
- FIG. 14 (b-1) shows an example of experimental conditions.
- the feature of the conventional structural example is that a thick ceramic plate 18 is inserted between the conductive layers 15 for corona discharge, and stable corona discharge is realized by applying a large voltage.
- the conventional experimental conditions are as shown below.
- Electrode spacing 1 mm
- a 1 mm thick ceramic plate 18 is inserted between the conductive layers 15 and a large voltage (1.8 KVAC) is applied to generate a corona discharge.
- a thin insulating paste sintered body 16 having a thickness of 30 to 300 ⁇ m is formed between the conductive layers 15 to apply a low voltage (80 to 150 VAC). It differs in that it is applied to generate a stable corona discharge.
- the present invention is characterized in that the distance between the electrodes is narrow and stable corona discharge is generated at a low voltage.
- FIG. 15 shows an explanatory view (No. 2) of the other electrode and the insulating layer of the present invention.
- FIG. 15 (a) shows a feature example
- FIG. 15 (b) shows a structural example (No. 2) of the present invention.
- FIG. 15A the structure of the present invention is the structure of FIG. 14A described above.
- the conventional structure is the structure (b) of FIG. 14 described above.
- Insulator thin film processing 3D shape of insulation layer features Structure of the present invention 30 ⁇ m to 300 ⁇ m Easy low voltage compatible Conventional structure 300 ⁇ m or more Difficult Low voltage compatible
- a thin film of 30 to 300 ⁇ m can be easily and inexpensively produced by using an insulating glass described later in the present invention.
- the ceramic plate having a conventional structure is difficult to process and expensive.
- the present invention is capable of dealing with low voltage and generates a stable corona discharge at 80 to 150 VAC. With the structure of the prior art, the voltage is as high as 1.6 KV, and it is impossible to reduce the voltage.
- FIG. 15 shows a structural example (No. 2) of the present invention.
- the illustrated structure is formed as follows.
- the conductive layer 15 is formed by applying, drying, and sintering a conductive glass paste, for example, on the substrate 14.
- a conductive glass paste is applied, dried, and sintered as a conductive layer 15 on the conductive layer 15 to form a three-layer structure (lower conductive layer 15, insulating paste sintered body 16, upper conductive layer) as shown in the figure.
- a three-layer structure of layer 15) is formed.
- a low voltage is applied between the conductive layers 15 of the structural example (No. 2) of the present invention formed as described above, and a corona discharge is stably generated between the conductive layers 15.
- FIG. 16 shows another flow chart for applying the insulating glass of the present invention.
- S31 screen-prints the insulating glass paste.
- a pattern is screen-printed on the portion of FIG. 14 (a) on which the insulating paste sintered body 16 is formed, using the insulating glass paste.
- the concentration of the paste is adjusted so that the thickness after sintering becomes a predetermined thickness (30 to 300 ⁇ m).
- S32 is dried. This is the drying of the sintered glass paste after screen printing in S31, which is left in the air (may be omitted), for example, left for 1 hour to dry.
- S33 dries. This is performed by hot air drying at 40 to 100 ° C. for 15 to 100 minutes in an electric furnace in order to remove the solvent.
- S34 is cooled. This is left in the air for, for example, 2 to 24 hours (may be omitted) to cool.
- S35 is fired. This is fired in an electric furnace at 340 to 900 ° C. for 10 to 100 minutes to form the insulating paste sintered body 16.
- a uniform insulating layer having a thickness of 30 to 300 ⁇ m can be manufactured inexpensively, with high accuracy, and in an arbitrary shape.
- FIG. 17 shows an example of the insulating glass paste composition of the present invention. This shows a composition example of the insulating glass paste used in S31 of FIG. 16 described above. Here, it has the following components, applicable ranges, and remarks shown in FIG.
- Component Concentration application Remarks Soda glass (window glass) 75-80% Main material (powder 2-3 ⁇ m, maximum 30 ⁇ m) Diethylene glycol 10-15% Bonding of main particle Monobutyl acetate Tabineol 5-10% Concentration adjustment Cellulose-based resin 1-5% adjuster
- soda glass granules, binders, concentration adjusters, etc. which are often used for general window glass, are used in the above range.
- concentration adjusters, etc. which are often used for general window glass, are used in the above range.
- Other glasses can be used in the same way.
- FIG. 18 shows a test example of the resistivity of the ABL glass sintered film of the present invention.
- FIG. 18A shows an example of an ABL glass sintered film sample. The resistivity was measured by measuring the resistance value between a and b as shown in the figure.
- the substrate 21 is an alumina substrate having a thickness of 1 mm as shown in the figure.
- the ABL glass sintered film 22 is formed by screen-printing a pattern having a width of 5 mm and a length of 40 mm with a conductive glass paste, drying, sintering, and annealing (described later with reference to FIG. 19).
- the resistance value is measured by measuring the resistance value between a and b in FIG. 18 (a) (described later with reference to FIG. 20).
- FIG. 19 shows a flowchart of the ABL glass sintering process of the present invention. This is a flowchart for forming the ABL glass sintered film 22 of FIG. 18 described above.
- S41 prints the ABL glass paste on the substrate. This involves screen-printing the illustrated pattern (5 mm ⁇ 40 mm) on the substrate 21 of FIG. 18 described above using ABL glass paste.
- S42 is dried in an electric furnace at 100 ° C. for 10 minutes.
- S43 is taken out at room temperature. Leave at room temperature for about 20 minutes.
- the substrate 21 screen-printed on the substrate 21 in S41 is placed in an electric furnace heated to 100 ° C. and left for 10 minutes to dry the printed ABL glass paste. The drying is not limited to this, and hot air of about 100 ° C. may be blown for about 10 minutes to dry.
- S44 is sintered in an electric furnace at 550 ° C. for 5 minutes.
- S45 is taken out at room temperature. Leave at room temperature for 5 minutes.
- the substrate 21 on which the pattern of the dried ABL glass paste is formed is placed in an electric furnace at 550 ° C. for 5 minutes, sintered, taken out to room temperature, and cooled. By this sintering, the glass sintered film 22 having the rectangular pattern shown in FIG. 18 described above is formed, and at the same time, it is strongly adhered to the substrate 21.
- S46 is placed in an electric furnace at 500 ° C. for 60 minutes for annealing.
- the ABL glass itself (electron conductive semiconductor) used for sintering usually has a resistance value of about 10 ⁇ cm to 150 ⁇ cm because the particles are connected to each other and the hands that carry electrons are limited. It is a thing.
- the first sintering heat treatment (S44, S45) and the second annealing heat treatment (S46, S47) are performed by printing the ABL glass paste (electroconductive semiconductor) obtained by crushing (1) into fine particles.
- the ABL glass boiled film after the heat treatment has more hands to carry electrons between the connections between the sintered particles of the fine powder (fine particles), and the surface area of the particles is increased, resulting in usually 10 particles. It was confirmed by experiments that the resistance value was as small as 2 to 3 or more (see FIG. 20 described later).
- the firing temperature At this firing temperature, some of the ABL glass powder particles melt and the particles begin to bond with each other. It functions in the range of 550 ° C ⁇ 70 ° C. After the lower limit, the glass particles do not melt and the particles do not bond sufficiently. When the upper limit is exceeded, the bonds between the particles extend over a large region, and glass plate-like particles are formed inside. When this becomes large, the resistivity (resistance value) increases.
- Annealing heat treatment is performed at a temperature lower than the sintering temperature of 550 ° C by about 50 to 70 ° C, and then naturally cooled (not taken out to the outside and rapidly cooled). As a result, the components inside the glass are matched and the resistivity (resistance value) is lowered.
- the resistance value of the conjunctiva is determined by the sum of the current flowing inside the glass and the current flowing on the surface of the glass particles. At an appropriate firing temperature (for example, 550 ° C.), it is considered that the bonding of glass particles becomes appropriate and the current flowing on the glass surface plays a leading role, and the resistivity (resistance value) can be reduced.
- the resistance value of the glass solid of the conductive glass (electromagnetic conductive glass (semiconductor)) before burning is mainly the current flowing inside the glass.
- FIG. 20 shows an example of the resistivity measurement value of the ABL glass sintered film of the present invention.
- 550-1 Film thickness 14 ⁇ m, resistance value 3.5 K ⁇ , resistivity 0.612 ⁇ cm
- 550-2 Film thickness 17 ⁇ m, resistance value 2.4 K ⁇ , resistivity 0.510 ⁇ cm
- 550-3 Film thickness 20 ⁇ m, resistance value 5.7 K ⁇ , resistivity 0.51 ⁇ cm, The following measured values were obtained at a sintering temperature of 580 ° C.
- 580-1 Film thickness 11 ⁇ m, resistance value 4.5 K ⁇ , resistivity 0.618 ⁇ cm
- 580-2 Film thickness 17 ⁇ m, resistance value 7.4 K ⁇ , resistivity 1.573 ⁇ cm
- 580-3 Film thickness 23 ⁇ m, resistance value 5.7 K ⁇ , resistivity 1.638 ⁇ cm
- the smallest resistance value is obtained at a sintering temperature of 550 ° C. and a film thickness of about 15 to 20 ⁇ m (here, the film thickness by screen printing). It became 0.51 ⁇ cm (it became smaller by about 4 ⁇ (10 3) ⁇ cm).
- FIG. 2 is a structural diagram (No. 2) of 1 Example of the present invention (external wiring connection of two layers of electron conductive glass and a metal sintered film).
- This is an example of forming the electron conductive glass sintered film of the present invention.
- This is an example of the discharge state of the two-layer electrode of the electron conductive glass and the metal sintered film of the present invention.
- This is an example of forming the electron conductive glass sintered film of the present invention (No. 2).
- It is a manufacturing flowchart of the two-layer discharge electrode of the metal and the electron conductive glass of this invention.
- Ceramic substrate 2 Aluminum sintered film 3: Electronically conductive glass sintered film 4: External wiring 5: Solder 6: Ground side wiring 7: Aluminum electrode 8: Surface modifier 11, 12, 15: Conductive layer 13: Insulating layer 14: Substrate 16: Insulating paste sintered body 17: Corona discharge portion 21; Substrate 22: ABL glass-brushed film
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
Abstract
[Purpose] The present invention pertains to a discharge electrode plate forming an elongated discharge electrode for causing corona discharge. The purpose of the present invention is to smoothly supply electrons over a long period of time even when a conductive glass sintered film serving as a discharge electrode material is being made to perform corona discharge, and to extend the service life of the electrode by arranging a conductive metal sintered film in a substrate and thereby improving electrical conductivity and making corona discharge uniform. [Configuration] A discharge electrode plate provided with: a heat-resistant plate formed from a heat-resistant material; and a discharge electrode comprising two layers, namely, a conductive metal sintered film formed in an elongated shape on the heat-resistant plate and a conductive glass sintered film formed in an elongated shape on the conductive metal sintered film. Deterioration resulting from corona discharge is reduced and the service life is extended by forming the conductive glass sintered film constituting the discharge electrode from conductive glass having electron conductivity, and decreases in voltage resulting from electron flow or current flowing from the end to the center of the conductive glass sintered film are reduced and uniform corona discharge is generated by forming the conductive metal sintered film.
Description
本発明は、コロナ放電させる細長い放電電極を形成する放電電極板に関するものである。
The present invention relates to a discharge electrode plate that forms an elongated discharge electrode for corona discharge.
従来、高分子樹脂の表面を改質してつるつるの表面を、小さな凹凸あるいはトゲトゲ状にする方法と1つとして、大気コロナ放電中を通す手法がある。
Conventionally, there is a method of modifying the surface of a polymer resin to make a smooth surface into a small unevenness or a thorny shape, and one method of passing it through an atmospheric corona discharge.
このコロナ放電を起こした中を高分子樹脂を通過させることにより、プラズマ中の活性化したイオンが樹脂の表面を適切に凹凸化、あるいはギザギザ化する。
By passing the polymer resin through the corona discharge, the activated ions in the plasma appropriately make the surface of the resin uneven or jagged.
高分子樹脂の表面が小さな凹凸形状になると、撥水性から親水性に変化する。例えば、応用製品として、海苔を干す簾の表面は小さな凹凸化があると都合がよい。これにより、海水から引き揚げた海苔は相応の密着性を有するが、高分子樹脂表面がツルツル状態では、この密着性は得られず、簾に海苔がつかない。
When the surface of the polymer resin has a small uneven shape, it changes from water repellent to hydrophilic. For example, as an applied product, it is convenient that the surface of the bamboo blind for drying seaweed has small irregularities. As a result, the seaweed pulled up from the seawater has a certain degree of adhesion, but when the surface of the polymer resin is in a slippery state, this adhesion cannot be obtained and the seaweed does not adhere to the bamboo blinds.
このように高分子樹脂の表面改質処理は、大気中でコロナ放電を起こして行われている。この放電電極の材質は、従来は、金属類(例えば、ステンレス、タングステン)が使われていた。
In this way, the surface modification treatment of the polymer resin is performed by causing a corona discharge in the atmosphere. Conventionally, metals (for example, stainless steel and tungsten) have been used as the material of the discharge electrode.
上述した従来のコロナ放電させる放電材料として、図10に示すように、金属類(ステンレス、タングステン)を使用した場合には、コロナ放電プラズマ下で多量に発生するオゾンO3のために、極めて短時間(速いものは1週間程度)で表面が酸化してしまい、放電電極(金属板22)の表面からの電子の供給が円滑に行われなくなってしまい、使用できなくなってしまう欠点があった。
As shown in FIG. 10, when metals (stainless steel, tungsten) are used as the above-mentioned conventional discharge material for corona discharge, a large amount of ozone O3 is generated under the corona discharge plasma, so that the time is extremely short. There is a drawback that the surface is oxidized in (a fast one is about one week), electrons are not smoothly supplied from the surface of the discharge electrode (metal plate 22), and the discharge electrode (metal plate 22) cannot be used.
また、放電電極(金属板22)が短時間(1週間程度)で表面が酸化して放電ができなくなり、放電電極を交換することが要求されてしまう欠点もあった。
Further, there is a drawback that the surface of the discharge electrode (metal plate 22) is oxidized in a short time (about one week) and discharge cannot be performed, so that it is required to replace the discharge electrode.
これらの欠点を解消するために、図11に示すように、コロナ放電プラズマ下で酸化しない電子導電性ガラス焼結膜22ー1に、上記金属電極(ステンレス、タングステン等)を置き換えることにより、上記放電電極の酸化を防ぐごとはできた。
In order to eliminate these drawbacks, as shown in FIG. 11, the discharge is performed by replacing the metal electrode (stainless steel, tungsten, etc.) with the electron conductive glass sintered film 22-1 that does not oxidize under corona discharge plasma. I was able to prevent the electrode from oxidizing.
しかし、これも実際に使用すると、図12に示すように、外部配線24の取出し部(電源供給部)に近いところでは放電(コロナ放電)は安定、中央部では不安定と図示のようになり、1か月程度でコロナ放電しなくなってしまうという問題が発生した。
However, when this is also actually used, as shown in FIG. 12, the discharge (corona discharge) is stable near the take-out part (power supply part) of the external wiring 24, and unstable at the center part, as shown in the figure. There was a problem that the corona discharge stopped in about one month.
以下簡単に図10から図12を説明する。
Hereinafter, FIGS. 10 to 12 will be briefly described.
図10は、従来技術(電極が金属又は金属の焼結膜)を示す。
FIG. 10 shows a conventional technique (an electrode is a metal or a metal sintered film).
図10において、セラミック板21は、耐熱絶縁性の板であって、高周波電圧(例えば7.5KV,30KHz)を印加する金属板22を保持するものである。
In FIG. 10, the ceramic plate 21 is a heat-resistant and insulating plate, and holds a metal plate 22 to which a high frequency voltage (for example, 7.5 KV, 30 KHz) is applied.
金属板22は、コロナ放電させる金属板であって、ステンレス、Wなどの細長い板である。
The metal plate 22 is a metal plate that discharges corona, and is an elongated plate such as stainless steel or W.
外部配線24は、金属板22に外部から高周波電圧を印加するための配線(リード線)である。
The external wiring 24 is a wiring (lead wire) for applying a high frequency voltage to the metal plate 22 from the outside.
半田25は、金属板22に外部配線24を半田付けする半田である。
The solder 25 is a solder that solders the external wiring 24 to the metal plate 22.
以上の構成のもとで、高周波電源(例えば7.5KV,30KHz)を、ここでは、対向する金属板22の間に印加し、両金属板22の間に大気中でコロナ放電を発生させる。そして、コロナ放電中を例えば上述した高分子樹脂シートを一定速度で通過させ、該高分子樹脂シートの表面にコロナ放電により微小凹凸を形成する。
Under the above configuration, a high-frequency power source (for example, 7.5 KV, 30 KHz) is applied between the opposing metal plates 22 to generate a corona discharge in the atmosphere between the two metal plates 22. Then, for example, the above-mentioned polymer resin sheet is passed at a constant speed during the corona discharge, and minute irregularities are formed on the surface of the polymer resin sheet by the corona discharge.
図11は、従来技術(電極が電子導電性ガラス焼結膜)を示す。ここで、セラミック基板21、外部配線24、半田25は、図10の同一番号のものと同一であるので説明を省略する。
FIG. 11 shows a conventional technique (the electrode is an electron conductive glass sintered film). Here, since the ceramic substrate 21, the external wiring 24, and the solder 25 are the same as those having the same number in FIG. 10, the description thereof will be omitted.
図11において、電子導電ガラス焼結膜22ー1は、コロナ放電させる電子導電ガラス焼結膜22ー1であって、電子導電ガラスを焼結した膜である。
In FIG. 11, the electron conductive glass sintered film 22-1 is an electron conductive glass sintered film 22-1 that discharges corona discharge, and is a film obtained by sintering electron conductive glass.
以上の構成のもとで、高周波電源(例えば6.5KV,30KHz)を、ここでは、対向する電子導電ガラス焼結膜22ー1の間に印加し、両電子導電ガラス焼結膜22ー1の間に大気中でコロナ放電を発生させる。そして、コロナ放電中を例えば上述した高分子樹脂シートを一定速度で通過させ、該高分子樹脂シートの表面にコロナ放電により微小凹凸を形成する。
Under the above configuration, a high frequency power source (for example, 6.5 KV, 30 KHz) is applied between the opposing electron conductive glass sintered films 22-1, and between the two electron conductive glass sintered films 22-1. Generates a corona discharge in the atmosphere. Then, for example, the above-mentioned polymer resin sheet is passed at a constant speed during the corona discharge, and minute irregularities are formed on the surface of the polymer resin sheet by the corona discharge.
図12は、従来の電子導電ガラス焼結膜の電極の放電状態例を示す。
FIG. 12 shows an example of the discharge state of the electrode of the conventional electron conductive glass sintered film.
図12において、上側電極25は図11の電子導電ガラス焼結膜22ー1の上側のもの示し、下側電極26は図11の電子導電ガラス焼結膜22ー1の下側の電極を示す。
In FIG. 12, the upper electrode 25 shows the upper electrode of the electron conductive glass sintered film 22-1 of FIG. 11, and the lower electrode 26 shows the lower electrode of the electron conductive glass sintered film 22-1 of FIG.
以上の構成のもとで、高周波電源(例えば6.5KV,30KHz)を、ここでは、対向する電子導電ガラス焼結膜22ー1である上側電極25と、下側電極26との間に印加し、上側電極5と下側電極6との間に大気中でコロナ放電を発生させると、図示のように、外部配線24の取出部(電源供給部)に近いところでは放電(コロナ放電)は安定、中央部では不安定となってしまった。このため、長期間(例えば1月程度)使用すると、コロナ放電が発生しなってしまった。
Under the above configuration, a high-frequency power source (for example, 6.5 KV, 30 KHz) is applied between the upper electrode 25, which is the opposite electron conductive glass sintered film 22-1, and the lower electrode 26. When a corona discharge is generated between the upper electrode 5 and the lower electrode 6 in the atmosphere, the discharge (corona discharge) is stable near the take-out part (power supply part) of the external wiring 24 as shown in the figure. , It became unstable in the central part. Therefore, after long-term use (for example, about January), corona discharge has occurred.
そこで、大気中で図12のコロナ放電が端部で安定、中央部で不安定になる問題を解決すること、更に、放電電極(電子導電性ガラス焼結膜)の長寿命化が望まれていた。
Therefore, it has been desired to solve the problem that the corona discharge of FIG. 12 becomes stable at the end and unstable at the center in the atmosphere, and further to extend the life of the discharge electrode (electroconductive glass sintered film). ..
本発明者らは、放電電極材料として導電性ガラス焼結膜をコロナ放電させても電子の供給を円滑に長期間に渡って行えることに加え、下地に導電性金属焼結膜を配置して電気導電性を改善してコロナ放電を均一化し、電極の長寿命化できることを実験で発見した。
The present inventors can smoothly supply electrons for a long period of time even if a conductive glass sintered film is corona-discharged as a discharge electrode material, and in addition, a conductive metal sintered film is arranged on a base to be electrically conductive. It was discovered in experiments that the properties can be improved, the corona discharge can be made uniform, and the life of the electrode can be extended.
そして、特に、大気中でもコロナ放電を均一化し、電極の長寿命化を図ることを実験で確認した。
And, in particular, it was confirmed by experiments that the corona discharge was made uniform even in the atmosphere and the life of the electrodes was extended.
そのために、本願発明は、 コロナ放電させる細長い放電電極を形成する放電電極板に
おいて、耐熱性材料で作成した耐熱性板と、耐熱性板の上に細長く形成した導電性金属焼結膜と、導電性金属焼結膜の上に細長く形成した導電性ガラス焼結膜との2層からなる放電電極を備え、放電電極を構成する導電性ガラス焼結膜を電子導電性の導電性ガラスで形成してコロナ放電による劣化を低減して長寿命化すると共に、導電性金属焼結膜を形成して導電性ガラス焼結膜の端から中央に流れる電流あるいは電子流による電圧降下を低減して均一なコロナ放電を生成するようにしている。 Therefore, according to the present invention, in a discharge electrode plate for forming an elongated discharge electrode for corona discharge, a heat-resistant plate made of a heat-resistant material, a conductive metal sintered film formed elongated on the heat-resistant plate, and conductivity are provided. A discharge electrode composed of two layers of a conductive glass sintered film formed on a metal sintered film is provided, and a conductive glass sintered film constituting the discharge electrode is formed of electronically conductive conductive glass by corona discharge. Along with reducing deterioration and extending the service life, a conductive metal sintered film is formed to reduce the voltage drop due to the current or electron flow flowing from the edge to the center of the conductive glass sintered film to generate a uniform corona discharge. I have to.
おいて、耐熱性材料で作成した耐熱性板と、耐熱性板の上に細長く形成した導電性金属焼結膜と、導電性金属焼結膜の上に細長く形成した導電性ガラス焼結膜との2層からなる放電電極を備え、放電電極を構成する導電性ガラス焼結膜を電子導電性の導電性ガラスで形成してコロナ放電による劣化を低減して長寿命化すると共に、導電性金属焼結膜を形成して導電性ガラス焼結膜の端から中央に流れる電流あるいは電子流による電圧降下を低減して均一なコロナ放電を生成するようにしている。 Therefore, according to the present invention, in a discharge electrode plate for forming an elongated discharge electrode for corona discharge, a heat-resistant plate made of a heat-resistant material, a conductive metal sintered film formed elongated on the heat-resistant plate, and conductivity are provided. A discharge electrode composed of two layers of a conductive glass sintered film formed on a metal sintered film is provided, and a conductive glass sintered film constituting the discharge electrode is formed of electronically conductive conductive glass by corona discharge. Along with reducing deterioration and extending the service life, a conductive metal sintered film is formed to reduce the voltage drop due to the current or electron flow flowing from the edge to the center of the conductive glass sintered film to generate a uniform corona discharge. I have to.
この際、放電電極を大気中に配置してコロナ放電させるようにしている。
At this time, the discharge electrode is placed in the atmosphere to discharge the corona.
また、導電性ガラスは、バナジウム、バリウム、鉄から構成されるバナジン酸塩ガラスとするようにしている。
In addition, the conductive glass is vanadate glass composed of vanadium, barium, and iron.
また、耐熱性板は、耐熱ガラスあるいはセラミックとするようにしている。
Also, the heat-resistant plate is made of heat-resistant glass or ceramic.
また、導電性金属焼結膜の上に形成する導電性ガラス焼結膜のサイズは、導電性金属焼結膜よりも小さくしてはみださないようにしている。
In addition, the size of the conductive glass sintered film formed on the conductive metal sintered film is made smaller than that of the conductive metal sintered film so as not to protrude.
また、放電電極を対向して配置した場合には、対向する放電電極の端に半田付けした外部配線の部分を長さ方向にずらしてコロナ放電の領域に入らないようにし、半田付け部分の損傷を低減するようにしている。
In addition, when the discharge electrodes are arranged facing each other, the portion of the external wiring soldered to the end of the facing discharge electrode is shifted in the length direction so as not to enter the corona discharge region, and the soldered portion is damaged. I am trying to reduce.
また、放電電極を構成する導電性金属焼結膜および導電性ガラス焼結膜の両者に半田付けして外部配線を接続するようにしている。
In addition, the external wiring is connected by soldering to both the conductive metal sintered film and the conductive glass sintered film that make up the discharge electrode.
また、放電電極に外部配線の半田付けは、超音波半田付けするようにしている。
Also, the external wiring is soldered to the discharge electrode by ultrasonic soldering.
また、導電性ガラスを塗布、焼成して放電電極の形成は、導電性ガラスの粉末を含むペーストを生成し、この生成したペーストを塗布、焼成して電子導電性の放電電極を形成するようにしている。
Further, in the formation of the discharge electrode by applying and firing the conductive glass, a paste containing the powder of the conductive glass is generated, and the produced paste is applied and fired to form the electronically conductive discharge electrode. ing.
また、導電性ガラス焼結膜は、導電性金属焼結膜を焼結した後、その上に塗布・乾燥・焼結し、金属粒子と導電性ガラス粒子とが熱拡散しないようにしている。
In addition, the conductive glass sintered film is obtained by sintering a conductive metal sintered film and then applying, drying, and sintering on the conductive metal sintered film to prevent the metal particles and the conductive glass particles from thermally diffusing.
また、放電電極と対面した他の電極、あるいは放電電極と背面した他の電極との間に10KHzから5MHzの範囲内の高周波電圧を印加し、放電電極の周りにコロナ放電させるようにしている。
また、導電性ガラス焼結膜を電子導電性の導電性ガラスで形成した場合には、導電性ガラスは、粉砕した導電性ガラスの粉末を所定の焼結温度に加熱して焼結して常温に戻す第1の焼結熱処理した後、焼結温度より低い所定のアニーリング温度に加熱して昇温した後、加熱を停止して自然冷却する第2のアニーリング熱処理を行うようにしている。
また、第1の焼結熱処理、および前記第2のアニーリング熱処理を行った後の導電性ガラス焼結膜は、粉砕する前の導電性ガラスに比し、抵抗値を10の2乗ないし3乗以上小さく低減させるようにしている。 Further, a high frequency voltage in the range of 10 KHz to 5 MHz is applied between the other electrode facing the discharge electrode or the other electrode on the back surface of the discharge electrode to discharge the corona around the discharge electrode.
Further, when the conductive glass sintered film is formed of electronically conductive conductive glass, the conductive glass is obtained by heating the crushed conductive glass powder to a predetermined sintering temperature and sintering it to room temperature. After the first sintering heat treatment to be returned, the heating is performed to a predetermined annealing temperature lower than the sintering temperature to raise the temperature, and then the heating is stopped and the second annealing heat treatment for natural cooling is performed.
Further, the conductive glass sintered film after the first sintering heat treatment and the second annealing heat treatment has a resistance value of 10 squared to 3 or more as compared with the conductive glass before crushing. I try to reduce it small.
また、導電性ガラス焼結膜を電子導電性の導電性ガラスで形成した場合には、導電性ガラスは、粉砕した導電性ガラスの粉末を所定の焼結温度に加熱して焼結して常温に戻す第1の焼結熱処理した後、焼結温度より低い所定のアニーリング温度に加熱して昇温した後、加熱を停止して自然冷却する第2のアニーリング熱処理を行うようにしている。
また、第1の焼結熱処理、および前記第2のアニーリング熱処理を行った後の導電性ガラス焼結膜は、粉砕する前の導電性ガラスに比し、抵抗値を10の2乗ないし3乗以上小さく低減させるようにしている。 Further, a high frequency voltage in the range of 10 KHz to 5 MHz is applied between the other electrode facing the discharge electrode or the other electrode on the back surface of the discharge electrode to discharge the corona around the discharge electrode.
Further, when the conductive glass sintered film is formed of electronically conductive conductive glass, the conductive glass is obtained by heating the crushed conductive glass powder to a predetermined sintering temperature and sintering it to room temperature. After the first sintering heat treatment to be returned, the heating is performed to a predetermined annealing temperature lower than the sintering temperature to raise the temperature, and then the heating is stopped and the second annealing heat treatment for natural cooling is performed.
Further, the conductive glass sintered film after the first sintering heat treatment and the second annealing heat treatment has a resistance value of 10 squared to 3 or more as compared with the conductive glass before crushing. I try to reduce it small.
本発明は、上述したように、放電電極材料として導電性ガラス焼結膜をコロナ放電させても電子の供給を円滑に長期間に渡って行えることに加え、下地に導電性金属焼結膜を配置して電気導電性を改善してコロナ放電を均一化し、電極の長寿命化できた。
In the present invention, as described above, even if a conductive glass sintered film is corona discharged as a discharge electrode material, electrons can be smoothly supplied for a long period of time, and in addition, a conductive metal sintered film is arranged as a base. As a result, the electrical conductivity was improved, the corona discharge was made uniform, and the life of the electrode was extended.
また、電気導電ガラス焼結膜を放電電極に使用したことで、高周波電圧の低減化を図り、より長期間の使用を可能にして長寿命化を図ることができた。
In addition, by using an electrically conductive glass sintered film for the discharge electrode, it was possible to reduce the high-frequency voltage, enable longer-term use, and extend the service life.
また、大気中でもコロナ放電を均一化し、電極の長寿命化を図ることができた。
In addition, the corona discharge was made uniform even in the atmosphere, and the life of the electrodes could be extended.
図1は、本発明の1実施例構造図(電子導電ガラスと金属焼結膜の2層)を示す。尚、実施例では、2枚のセラミック基板1を対向させ、上側のセラミック基板1の下面と、下側のセラミック基板1の上面にアルミ焼結膜2と電子導電ガラス焼結膜3との2層の放電電極をそれぞれ形成したが、これに限らず、1枚のセラミック基板1の上面と下面とに2層の放電電極をそれぞれ形成し、両者の間で大気中コロナ放電させてもよい。以下実施例では2枚のセラミック基板1を対向させた例を用いて説明する。
FIG. 1 shows a structural diagram of an embodiment of the present invention (two layers of electronically conductive glass and a metal sintered film). In the embodiment, the two ceramic substrates 1 are opposed to each other, and two layers of an aluminum sintered film 2 and an electronically conductive glass sintered film 3 are formed on the lower surface of the upper ceramic substrate 1 and the upper surface of the lower ceramic substrate 1. Although the discharge electrodes are formed respectively, the present invention is not limited to this, and two layers of discharge electrodes may be formed on the upper surface and the lower surface of one ceramic substrate 1, respectively, and corona discharge in the atmosphere may be performed between the two layers. Hereinafter, in the embodiment, an example in which two ceramic substrates 1 are opposed to each other will be described.
図1において、セラミック基板1は、アルミ焼結膜2と電子導電ガラス焼結膜3とらなる放電電極を絶縁した状態で保持するものであって、コロナ放電により高温になるのでそれに耐えることができる耐熱性かつ高周波電圧絶縁性の板である。セラミック基板1は、セラミック板の他に、耐熱性ガラスの板でもよく、耐熱性かつ高周波電圧絶縁性があればよい。
In FIG. 1, the ceramic substrate 1 holds a discharge electrode formed of an aluminum sintered film 2 and an electron conductive glass sintered film 3 in an insulated state, and has heat resistance that can withstand the high temperature caused by corona discharge. Moreover, it is a high-frequency voltage insulating plate. The ceramic substrate 1 may be a heat-resistant glass plate in addition to the ceramic plate, and may have heat resistance and high-frequency voltage insulation.
アルミ焼結膜2は、セラミック基板1の上に形成した導電性金属焼結膜の例である。アルミ焼結膜の他に、銅、銀などの金属の焼結膜でもよい。実験では幅1mmないし30mm程度、長さは10cm、更に実現できれば長くてもよい。
The aluminum sintered film 2 is an example of a conductive metal sintered film formed on the ceramic substrate 1. In addition to the aluminum sintered film, a metal sintered film such as copper or silver may be used. In the experiment, the width is about 1 mm to 30 mm, the length is 10 cm, and if it can be realized, it may be longer.
電子導電ガラス焼結膜3は、電子導電ガラスの焼結膜であって、バナジウム、バリウム、鉄かなる半導体ガラスの焼結膜である(後述する)。
The electron conductive glass sintered film 3 is a sintered film of electron conductive glass, and is a sintered film of a semiconductor glass made of vanadium, barium, or iron (described later).
外部配線4は、アルミ焼結膜2と電子導電ガラス焼結膜3とに半田5で超音波半田付けし、外部から高周波電圧をそれぞれに印加するためのものである。
The external wiring 4 is for ultrasonically soldering the aluminum sintered film 2 and the electron conductive glass sintered film 3 with solder 5 and applying a high frequency voltage to each of them from the outside.
半田5は、アルミ焼結膜2と電子導電ガラス焼結膜3とに、外部配線4を超音波半田付けする半田である。
The solder 5 is a solder that ultrasonically solders the external wiring 4 to the aluminum sintered film 2 and the electron conductive glass sintered film 3.
以上の構成のもとで、高周波電源(例えば6.5KV、30KHz)の高周波電圧を外部配線4を介してアルミ焼結膜2と電子導電ガラス焼結膜3とに印加すると、大気中で、図示の電子導電ガラス焼結膜3の上側と、下側との間にコロナ放電が発生する。このコロナ放電中に樹脂シートを通過させると、該樹脂シートの表面に微小の凹凸が形成される。
Under the above configuration, when a high-frequency voltage of a high-frequency power source (for example, 6.5 KV, 30 KHz) is applied to the aluminum sintered film 2 and the electron conductive glass sintered film 3 via the external wiring 4, it is shown in the atmosphere. A corona discharge is generated between the upper side and the lower side of the electron conductive glass sintered film 3. When the resin sheet is passed during this corona discharge, minute irregularities are formed on the surface of the resin sheet.
尚、高周波電源は、実験では30KHzの電源を用いたが、これに限られず、大気中のコロナ放電には、10KHから5MHz程度まで使用できる。周波数が高いほど、大気圧中におけるコロナ放電が発生しやすくなるが、電源が高価になる。
The high-frequency power supply used was a power supply of 30 KHz in the experiment, but the power supply is not limited to this, and can be used from 10 KH to about 5 MHz for corona discharge in the atmosphere. The higher the frequency, the more likely it is that corona discharge will occur in atmospheric pressure, but the power supply will be more expensive.
この際、外部配線4の端(1端あるいは両端)から、アルミ焼結膜2と電子導電ガラス焼結膜(例えば抵抗率が200から400Ωcm程度)3との2層からなる放電電極中に電流が流れるが、金属導電性焼結膜であるアルミ焼結膜2が下層にあるため当該電流による電子導電ガラス焼結膜2中の電圧降下が低減され、ほぼ均一の高周波電圧が電子導電ガラス焼結膜3の全面に渡って印加され、当該電子導電ガラス焼結膜3の間にほぼ均一なコロナ放電が大気中で発生し、長期間継続して放電電極を使用でき、該放電電極の長寿命化ができた(図4参照)。
At this time, a current flows from the end (one end or both ends) of the external wiring 4 into the discharge electrode composed of two layers of the aluminum sintered film 2 and the electronically conductive glass sintered film (for example, the resistance is about 200 to 400 Ωcm) 3. However, since the aluminum sintered film 2 which is a metal conductive sintered film is in the lower layer, the voltage drop in the electron conductive glass sintered film 2 due to the current is reduced, and a substantially uniform high-frequency voltage is applied to the entire surface of the electron conductive glass sintered film 3. It was applied over a period of time, and a substantially uniform corona current was generated between the electron conductive glass sintered films 3 in the atmosphere, and the discharge electrode could be used continuously for a long period of time, and the life of the discharge electrode could be extended (Fig.). 4).
図2は、本発明の1実施例構造図(その2)(電子導電ガラスと金属焼結膜の2層の外部配線結合)を示す。
FIG. 2 shows a structural diagram of an embodiment of the present invention (No. 2) (external wiring connection of two layers of an electron conductive glass and a metal sintered film).
図2の(a)は側面図を示し、図2の(b)は要部を示す。セラミック基板1、アルミ焼結膜2、電子導電ガラス焼結膜3、外部配線4は図1の同一番号のものと同一であるので説明を省略する。
(A) of FIG. 2 shows a side view, and (b) of FIG. 2 shows a main part. Since the ceramic substrate 1, the aluminum sintered film 2, the electron conductive glass sintered film 3, and the external wiring 4 are the same as those having the same number in FIG. 1, the description thereof will be omitted.
図2において、半田5は、図2の(b)要部に示すように、両面(層)に付ける。図示ではセラミック基板1の上に焼結したアルミ焼結膜2と、このアルミ焼結膜2の上に焼結した電子導電ガラス焼結膜3との両者(両層)と、外部配線4を半田5により半田付けするものである。これにより、高圧高周波電圧を外部配線4を介してアルミ焼結膜2と電子導電ガラス焼結膜3との両者に印加し、上側と下側の電子導電ガラス焼結膜3との間に大気圧中で均一なコロナ放電を発生させ、かつ該アルミ焼結膜2および電子導電ガス焼結膜3からなる放電電極の長寿命化(1月以上の長寿命化)を図ることができた。
In FIG. 2, the solder 5 is attached to both sides (layers) as shown in the main part (b) of FIG. In the figure, both the aluminum sintered film 2 sintered on the ceramic substrate 1 and the electronically conductive glass sintered film 3 sintered on the aluminum sintered film 2 (both layers), and the external wiring 4 are soldered with solder 5. It is to be soldered. As a result, a high voltage and high voltage is applied to both the aluminum sintered film 2 and the electron conductive glass sintered film 3 via the external wiring 4, and in atmospheric pressure between the upper and lower electron conductive glass sintered films 3. It was possible to generate a uniform corona discharge and extend the life of the discharge electrode composed of the aluminum sintered film 2 and the electron conductive gas sintered film 3 (extending the life of one month or more).
詳述すれば、外部配線4からアルミ焼結膜2および電子導電ガラス焼結膜3の1端(あるいは両端)から高周波電圧を印加すると、電子導電ガラス焼結膜3のみの従来ではコロナ放電に伴う電流あるいは電子流により電圧降下が発生して端で高く、中央で電圧降下分だけ低い高周波電圧となり、対向する電子導電ガラス焼結膜3の開いたでの電圧が低くなりコロナ放電が不安定であった。これを解決するために、本発明では下地にアルミ焼結膜2が形成してありこれは金属焼結膜であって抵抗値が小さく、端から中央に流れる電流あるいは電子流の電圧降下を非常に小さく低減して電子導電ガラス焼結膜3に高周波電圧を供給するので、結果として該電子導電ガラス焼結膜3の上側と下側との間に印加される高周波電圧が端と中央とでほぼ均一となり、長期間に渡った均一なコロナ放電を発生させることができ、放電電極の長寿命化(例えば1月以上)が実験で確認できた。
More specifically, when a high-frequency voltage is applied from one end (or both ends) of the aluminum sintered film 2 and the electronically conductive glass sintered film 3 from the external wiring 4, the current or the current associated with the conventional corona discharge of only the electronically conductive glass sintered film 3 or A voltage drop was generated by the electron flow, and the high-frequency voltage was high at the edges and low by the voltage drop at the center. The voltage at the opening of the opposing electron conductive glass sintered film 3 was low, and the corona discharge was unstable. In order to solve this, in the present invention, an aluminum sintered film 2 is formed on the base, which is a metal sintered film and has a small resistance value, and the voltage drop of the current or electron flow flowing from the edge to the center is very small. Since the high frequency voltage is supplied to the electron conductive glass sintered film 3 in a reduced manner, as a result, the high frequency voltage applied between the upper side and the lower side of the electron conductive glass sintered film 3 becomes substantially uniform at the ends and the center. It was possible to generate a uniform corona discharge over a long period of time, and it was confirmed in experiments that the life of the discharge electrode was extended (for example, one month or more).
図3は、本発明の電子導電ガラス焼結膜の形成例を示す。
FIG. 3 shows an example of forming the electron conductive glass sintered film of the present invention.
図3の(a)は上面の放電面を示し、図3の(b)は下面の放電面を示す。ここで、図示の電子導電ガラス焼結膜3の下のセラミック基板1との間に図1、図2で既述したアルミ焼結膜2が形成されているが、図では省略する。
FIG. 3A shows the discharge surface on the upper surface, and FIG. 3B shows the discharge surface on the lower surface. Here, the aluminum sintered film 2 described in FIGS. 1 and 2 is formed between the ceramic substrate 1 under the electron conductive glass sintered film 3 shown in the drawing, but is omitted in the drawing.
図3において、下側に記載したように、該図3の上面と下面の外部配線4の位置は1cm程度、図示のようにずらし、放電領域から外し、配線保護する様子を模式的に示す。
In FIG. 3, as described on the lower side, the positions of the external wiring 4 on the upper surface and the lower surface of FIG. 3 are approximately 1 cm, shifted as shown in the drawing, removed from the discharge region, and the wiring is protected.
これは、外部配線4が上面と下面とが同一の位置であると、対向する上面と下面との電子導電ガラス焼結膜3の間でコロナ放電が発生し、外部配線4を該電子導電ガラス焼結膜3に超音波半田付けした部分にも及び、イオン照射されて少しずつなくなって、長期間の間に導電不良が発生したので、半田付け部分にコロナ放電が発生しないように、図示のように、例えば上面の電子導電ガラス焼結膜3を左側にずらし、下面の電子導電ガラス焼結膜3を右側にずらし、両者の半田付け部分にコロナ放電によるイオン照射が発生しないようにし、半田付け部分の損傷(イオン照射による損傷)を回避する。
This is because when the upper surface and the lower surface of the external wiring 4 are at the same position, a corona discharge occurs between the electron conductive glass sintered film 3 between the upper surface and the lower surface facing each other, and the external wiring 4 is burnt with the electronic conductive glass. As shown in the figure, the portion of the condensate 3 that was ultrasonically soldered was also irradiated with ions and gradually disappeared, resulting in poor conductivity over a long period of time. For example, the electronically conductive glass sintered film 3 on the upper surface is shifted to the left side, and the electronically conductive glass sintered film 3 on the lower surface is shifted to the right side so that ion irradiation due to corona discharge does not occur in both soldered parts, and the soldered parts are damaged. Avoid (damage due to ion irradiation).
図4は、本発明の電子導電ガラスと金属焼結膜の2層電極の放電状態例を示す。図4は、既述した図1の電子導電ガラス焼結膜3の上面と下面とに高周波電圧(例えば6.8KV,30KHz)を印加したときに、大気中におけるコロナ放電の状態を横方向から撮影した写真の例である。
FIG. 4 shows an example of the discharge state of the two-layer electrode of the electron conductive glass and the metal sintered film of the present invention. FIG. 4 is a lateral photograph of the state of corona discharge in the atmosphere when a high frequency voltage (for example, 6.8 KV, 30 KHz) is applied to the upper surface and the lower surface of the electron conductive glass sintered film 3 of FIG. 1 described above. This is an example of a photo taken.
ここでは、大気中で、上面と下面との間にコロナ放電がほぼ全域に渡り均一に放電している様子が見える。
Here, it can be seen that the corona discharge is uniformly discharged over almost the entire area between the upper surface and the lower surface in the atmosphere.
図5は、本発明の電子導電ガラス焼結膜の形成例(その2)を示す。
FIG. 5 shows an example of forming the electron conductive glass sintered film of the present invention (No. 2).
図5の(a)は上側(アース)の下面図/上面図を示し、図5の(b)は下側(放電電極)の上面図を示す。ここで、図5の(a)の上側(アース)は、セラミック基板1の上面あるいは下面のいずれに形成してもよいから、該図5の(a)を下面図あるいは上面図としたものである。また、図5の(b)の電子導電ガラス焼結膜3の下のセラミック基板1との間に図1、図2で既述したアルミ焼結膜2が形成されているが、図では省略する。
FIG. 5A shows a bottom view / top view of the upper side (earth), and FIG. 5B shows a top view of the lower side (discharge electrode). Here, since the upper side (earth) of FIG. 5A may be formed on either the upper surface or the lower surface of the ceramic substrate 1, the upper side (a) of FIG. 5 is taken as a bottom view or a top view. be. Further, although the aluminum sintered film 2 described in FIGS. 1 and 2 is formed between the ceramic substrate 1 under the electron conductive glass sintered film 3 of FIG. 5 (b), the aluminum sintered film 2 described in FIGS. 1 and 2 is omitted in the drawing.
図5の(a)において、アルミニウム電極(アース)7は、コロナ放電するときにアース電極であって、図5の(b)の電子導電性ガラス焼結膜3との間でコロナ放電させるためのものである。
In FIG. 5A, the aluminum electrode (earth) 7 is an earth electrode when corona discharging is performed, and is used for corona discharging with the electron conductive glass sintered film 3 of FIG. 5B. It is a thing.
アース側配線6は、アルミニウム電極7にアース電位を与えるための外部配線(外部端子)である。
The ground side wiring 6 is an external wiring (external terminal) for giving a ground potential to the aluminum electrode 7.
図5の(b)において、電子導電性ガラス焼結膜3は、セラミック基板1の上にアルミ焼結膜2を形成し、更にその上に形成した電子導電性ガラス焼結膜であって、図5の(a)のアルミニウム電極(アース)との間でコロナ放電させるための電極である。
In FIG. 5B, the electron conductive glass sintered film 3 is an electron conductive glass sintered film formed by forming an aluminum sintered film 2 on a ceramic substrate 1 and further forming the aluminum sintered film 2 on the ceramic substrate 1, and is an electron conductive glass sintered film of FIG. It is an electrode for corona discharge with the aluminum electrode (earth) of (a).
外部配線4は、電子導電性ガラス焼結膜3とその下地のアルミ焼結膜2とに半田付けする外部配線4であって、高周波電圧を印加するための配線(外部端子)である。外部配線4は、コロナ放電する放電部分から外れた領域であって、かつ、ここでは、表面改質材(ワイヤー)8に接触しなくて邪魔にならない外側に配置したものである。
The external wiring 4 is an external wiring 4 soldered to the electron conductive glass sintered film 3 and the underlying aluminum sintered film 2 and is a wiring (external terminal) for applying a high frequency voltage. The external wiring 4 is a region outside the discharge portion where the corona discharge is performed, and here, the external wiring 4 is arranged outside so as not to come into contact with the surface modifier (wire) 8 and not interfere with it.
以上の構成のもとで、電子導電性ガラス焼結膜3とアルミニウム電極7との間に高周波電圧を大気中で印加し、電子導電性ガラス焼結膜3の上にコロナ放電を発生させ、このコロナ放電中を表面改質材(ワイヤー)8を通過させ、表面の改質(例えば微小の凹凸を形成)するようにしている。
Under the above configuration, a high-frequency voltage is applied between the electron-conductive glass sintered film 3 and the aluminum electrode 7 in the atmosphere to generate a corona discharge on the electron-conductive glass sintered film 3, and this corona discharge is generated. The surface modifier (wire) 8 is passed through the discharge to modify the surface (for example, to form minute irregularities).
次に、図6のフローチャートの順番に従い、電子導電ガラスの2層の放電電極の製造方法を詳細に説明する。
Next, a method of manufacturing a two-layer discharge electrode of electron conductive glass will be described in detail according to the order of the flowchart of FIG.
図6は、本発明の金属と電子導電ガラスの2層の放電電極の製造フローチャートを示す。
FIG. 6 shows a flow chart for manufacturing a two-layer discharge electrode of the metal and the electron conductive glass of the present invention.
図6において、S1は、アルミナ基板・アルミペースト・電子導電ガラスペーストを用意する。これは、
・図1のセラミック基板1としてここでは、アルミナ基板1を用意する。 In FIG. 6, S1 prepares an alumina substrate, an aluminum paste, and an electron conductive glass paste. this is,
-Alumina substrate 1 is prepared here as the ceramic substrate 1 of FIG.
・図1のセラミック基板1としてここでは、アルミナ基板1を用意する。 In FIG. 6, S1 prepares an alumina substrate, an aluminum paste, and an electron conductive glass paste. this is,
-
・図1のアルミ焼結膜2を形成するためのアルミペーストを用意する。
・ Prepare an aluminum paste for forming the aluminum sintered film 2 shown in FIG.
・図2の電子導電ガラス焼結膜3を形成するための電子導電ガラスペーストを用意する。
-Prepare an electron conductive glass paste for forming the electron conductive glass sintered film 3 of FIG.
S2は、アルミペーストでアルミ層のパターンをアルミナ基板に印刷する。これは、S1で用意したアルミペーストで、図1のアルミ焼結膜2のパターンを、S1で用意したアルミナ基板1の上にスクリーン印刷する。
S2 prints the pattern of the aluminum layer on the alumina substrate with aluminum paste. This is the aluminum paste prepared in S1, and the pattern of the aluminum sintered film 2 of FIG. 1 is screen-printed on the alumina substrate 1 prepared in S1.
S3は、アルミパターン膜を乾燥・焼結(800℃×10分)する。これは、S2でアルミナ基板1の上に印刷したアルミパターン膜を熱風乾燥した後、焼結(800℃×10分)を行う。
S3 dries and sinters the aluminum pattern film (800 ° C x 10 minutes). This involves drying the aluminum pattern film printed on the alumina substrate 1 in S2 with hot air, and then sintering (800 ° C. × 10 minutes).
S4は、アルミパターンより一回り(2mm以上)小さい電子導電性ガラスペーストを印刷・乾燥・焼成(550℃×15分)する。これは、S3で焼結したアルミ焼結膜2の上に、更に、当該アルミ焼結膜2のパターンよりも2mm以上小さい電子導電性ガラスペーストを印刷、熱風乾燥、更に、焼成(550℃×15分)を行う。
S4 prints, dries, and fires (550 ° C. x 15 minutes) an electronically conductive glass paste that is one size smaller (2 mm or more) than the aluminum pattern. This involves printing an electroconductive glass paste 2 mm or more smaller than the pattern of the aluminum sintered film 2 on the aluminum sintered film 2 sintered in S3, drying with hot air, and firing (550 ° C. × 15 minutes). )I do.
S5は、焼成(500℃×1H)(ガラス再加熱処理」を行う。これは、S4で焼成した電子導電性ガラス焼結膜について、再焼成(例えば500℃×1H)、即ちアニーリングを行い、電子導電性ガラスの抵抗値を非常に小さくする(例えば10のマイナス4乗Ωcm程度に小さくする)。
In S5, firing (500 ° C. × 1H) (glass reheating treatment” is performed. This involves re-baking (for example, 500 ° C. × 1H), that is, annealing the electron conductive glass sintered film fired in S4 to obtain electrons. Make the resistance value of the conductive glass very small (for example, reduce it to about 10 minus 4 Ωcm).
S6は、半田付け(超音波等・アルミ膜・電子導電ガラス膜)する。これは、既述した図2に示すように、外部配線4と、アルミ焼結膜2、電子導電ガラス焼結膜3との3者を超音波半田付けする。
S6 is soldered (ultrasonic wave, etc., aluminum film, electron conductive glass film). In this method, as shown in FIG. 2 described above, the external wiring 4, the aluminum sintered film 2, and the electron conductive glass sintered film 3 are ultrasonically soldered.
以上のようにして、図1、図2に示すように、セラミック基板1の上にアルミ焼結膜2を形成、更にその上に電子導電ガラス焼結膜3を形成し、これらアルミ焼結膜2および電子導電ガラス焼結膜3に外部配線4を超音波半田付けし、図1、図2の構造を製造する。
As described above, as shown in FIGS. 1 and 2, an aluminum sintered film 2 is formed on the ceramic substrate 1, an electron conductive glass sintered film 3 is further formed on the aluminum sintered film 2, and these aluminum sintered films 2 and electrons are formed. The external wiring 4 is ultrasonically soldered to the conductive glass sintered film 3, and the structures shown in FIGS. 1 and 2 are manufactured.
ここで、導電性ガラス焼結膜は導電性金属焼結膜を焼結した後、その上に塗布・乾燥・焼結し、金属粒子と導電性ガラス粒子とが熱拡散しないようにしている。これにより、熱拡散がなくなり、2層(アルミ焼結膜2、電子導電性ガラス焼結膜3の2層)がうまく製造できた。同時焼成を行うと、金属粒子と導電ガラス粒子とが熱拡散してしまい、2層がうまくできなかった。
Here, the conductive glass sintered film is obtained by sintering a conductive metal sintered film and then applying, drying, and sintering on the conductive metal sintered film to prevent the metal particles and the conductive glass particles from thermally diffusing. As a result, heat diffusion was eliminated, and two layers (two layers of the aluminum sintered film 2 and the electron conductive glass sintered film 3) could be successfully manufactured. When the simultaneous firing was performed, the metal particles and the conductive glass particles were thermally diffused, and the two layers could not be formed well.
図7は、本発明の電子導電ガラスペーストの製造フローチャートを示す。
FIG. 7 shows a flow chart for manufacturing the electronically conductive glass paste of the present invention.
図7において、S11は、ガラス原料を調合して溶融(900~1200℃)する(電気炉温度が上がったところに入れて1時間、保持する)。これは、ガラス原料を調合(後述する図8参照)し、電気炉温度が上がって溶解する温度(例えば900~1200℃の実験で求めた最適温度)になったときに、該調合したガラス原料を白金ルツボを入れて投入し、例えば1時間、良く攪拌して保持する。
In FIG. 7, in S11, a glass raw material is mixed and melted (900 to 1200 ° C.) (placed in a place where the electric furnace temperature has risen and held for 1 hour). This is a glass raw material prepared when the glass raw material is mixed (see FIG. 8 described later) and the electric furnace temperature rises to a melting temperature (for example, the optimum temperature obtained in an experiment of 900 to 1200 ° C.). Is put in a platinum crucible and put in, and the mixture is well stirred and held for, for example, 1 hour.
S12は、ガラス破片3ー5mmを作成する(溶融ガラスを冷やしたローラーに流しながら粉砕する)。これは、S11で作成した溶融ガラスを、水冷したローラーの間に流しこみながら粉砕し、3ー5mm程度のガラス破片を作成する。
S12 creates 3-5 mm pieces of glass (crushes the molten glass while pouring it through a chilled roller). In this method, the molten glass prepared in S11 is crushed while being poured between water-cooled rollers to prepare glass fragments of about 3-5 mm.
S13は、ガラス粗粉砕・粉末2ー3mm・粉末~50μmする。これは、S12で作成したガラス破片3ー5mmを、更に、粉末2ー3mm、更に、粉末~50μmに粉砕する。
S13 is coarsely crushed glass, powder 2-3 mm, powder ~ 50 μm. This grinds the glass shards 3-5 mm prepared in S12 into a powder of 2-3 mm and a powder of -50 μm.
S14は、微粉砕(2―3μm・ジェットミル装置)する。これは、S13で作成した粉末~50μmを、ジェットミル装置で更に2―3μm程度に微粉砕する。
S14 is finely pulverized (2-3 μm, jet mill device). For this, the powder to 50 μm prepared in S13 is further finely pulverized to about 2-3 μm with a jet mill device.
S15は、有機材・有機溶剤・樹脂を上記ガラス微粉砕と共に攪拌する。
S15 stirs the organic material, organic solvent, and resin together with the above-mentioned finely pulverized glass.
S16は、電子導電ガラスペーストを完成する。
S16 completes the electron conductive glass paste.
以上の手順により、原材料(バナジウム、バリウム、鉄、図8参照)を溶融・攪拌して急速冷却して粉砕し、粉砕した微粉末と、有機材、有機溶剤、樹脂とを良く攪拌して電子導電ガラスペーストを製造することが可能となる。
According to the above procedure, the raw materials (vanadium, barium, iron, see FIG. 8) are melted and stirred, rapidly cooled and crushed, and the crushed fine powder and the organic material, organic solvent, and resin are well stirred to generate electrons. It becomes possible to produce a conductive glass paste.
図8は、本発明の電子導電ガラス例を示す。図7の電子導電ガラス原料は、図示の下記の材料から構成されるものである。
FIG. 8 shows an example of the electron conductive glass of the present invention. The electron conductive glass raw material of FIG. 7 is composed of the following materials shown in the figure.
・V2O5 ;50-75wt%
・Bao ;10-25wt%
・Fe2O3;8.0-15wt%
以上の各材料のうちの範囲は、実験により、図1、図2の電子導電ガラス焼結膜3を作成し、コロナ放電が良好かつ長寿命に適した最適な値を選択する必要がある。更に、図6で説明した、焼成、ガラス再加熱処理(アニーリング)の温度、時間についても実験で最適な値を決める必要がある。 V2O5; 50-75 wt%
Bao; 10-25 wt%
-Fe2O3; 8.0-15 wt%
For the range of each of the above materials, it is necessary to prepare the electron conductive glass sintered film 3 of FIGS. 1 and 2 by experiment and select the optimum value suitable for good corona discharge and long life. Furthermore, it is necessary to determine the optimum values for the temperature and time of firing and glass reheating treatment (annealing) described in FIG. 6 by experiments.
・Bao ;10-25wt%
・Fe2O3;8.0-15wt%
以上の各材料のうちの範囲は、実験により、図1、図2の電子導電ガラス焼結膜3を作成し、コロナ放電が良好かつ長寿命に適した最適な値を選択する必要がある。更に、図6で説明した、焼成、ガラス再加熱処理(アニーリング)の温度、時間についても実験で最適な値を決める必要がある。 V2O5; 50-75 wt%
Bao; 10-25 wt%
-Fe2O3; 8.0-15 wt%
For the range of each of the above materials, it is necessary to prepare the electron conductive glass sintered film 3 of FIGS. 1 and 2 by experiment and select the optimum value suitable for good corona discharge and long life. Furthermore, it is necessary to determine the optimum values for the temperature and time of firing and glass reheating treatment (annealing) described in FIG. 6 by experiments.
図9は、本発明のアルミペーストの製造フローチャートを示す。
FIG. 9 shows a flow chart for manufacturing the aluminum paste of the present invention.
図9において、S21は、アルミ破片3ー5mmを用意する。これは、アルミ材料として、アルミ破片3ー5mmを用意する。
In FIG. 9, S21 prepares aluminum fragments of 3-5 mm. For this, aluminum fragments of 3 to 5 mm are prepared as the aluminum material.
S22は、アルミ微粉砕(2―3μm・ジェットミル装置)する。これは、S21で用意したアルミ破片3ー5mmを、ジェットミル装置で2―3μm程度に粉砕する。
S22 is finely pulverized aluminum (2-3 μm, jet mill device). This is done by crushing 3-5 mm of aluminum fragments prepared in S21 to about 2-3 μm with a jet mill device.
S23は、有機材・有機溶剤・樹脂を上記アルミ微粉砕と共に攪拌する。
S23 stirs the organic material, organic solvent, and resin together with the above-mentioned fine pulverization of aluminum.
S24は、アルミペーストを完成する。
S24 completes the aluminum paste.
以上の手順により、原材料(アルミ破片)を粉砕した微粉末と、有機材、有機溶剤、樹脂とを良く攪拌してアルミペーストを製造することが可能となる。
By the above procedure, it is possible to produce an aluminum paste by well stirring the fine powder obtained by crushing the raw material (aluminum fragment) with the organic material, the organic solvent, and the resin.
図13は、本発明の他の電極および絶縁層とそのコロナ放電の説明図を示す。この図13は、コロナ放電させる電極の間に、薄い絶縁層(30~300μm、好ましくは70~100μm)を形成し、低電圧(80~150Vの商用交流電圧(50/60Hz))のコロナ放電を実現した実験例を示す。以下図13から図17を用いて順次詳細に説明する。
FIG. 13 shows an explanatory diagram of the other electrodes and insulating layer of the present invention and their corona discharge. In FIG. 13, a thin insulating layer (30 to 300 μm, preferably 70 to 100 μm) is formed between the electrodes for corona discharge, and a low voltage (80 to 150 V commercial AC voltage (50 / 60 Hz)) corona discharge is shown. An example of an experiment that realized the above is shown. Hereinafter, the details will be sequentially described with reference to FIGS. 13 to 17.
図13の(a)はコロナ放電(要部の上面図)を示し、図13の(a-1)は模式図の上面図を示し、図13の(a-2)は模式図の側面図を示す。
FIG. 13 (a) shows a corona discharge (top view of a main part), FIG. 13 (a-1) shows a schematic top view, and FIG. 13 (a-2) is a side view of the schematic view. Is shown.
まず、実験に用いた導電層12、絶縁層13、導電層11の3層構造について説明し、次に、低電圧のコロナ放電の現象を説明する。
First, the three-layer structure of the conductive layer 12, the insulating layer 13, and the conductive layer 11 used in the experiment will be described, and then the phenomenon of low-voltage corona discharge will be described.
(1)図13の(a-1)と(a-2)に示すように、円板状の導電層12を図示外の基板の上に塗布・乾燥・焼結して形成し、次に、上に円板状の絶縁層13を塗布・乾燥・焼結して形成し、更に上にリング状の導電層11を塗布・乾燥・焼結して形成する。
(1) As shown in (a-1) and (a-2) of FIG. 13, a disk-shaped conductive layer 12 is applied, dried, and sintered on a substrate (not shown), and then formed. , A disk-shaped insulating layer 13 is applied, dried, and sintered on the top, and a ring-shaped conductive layer 11 is further applied, dried, and sintered on the top.
(2)(1)で形成した導電層11と、導電層12との間に低電圧を印加すると、図13の(a)のように、導電層11と導電層12との間にコロナ放電が安定的に発生した。
(2) When a low voltage is applied between the conductive layer 11 formed in (1) and the conductive layer 12, a corona discharge occurs between the conductive layer 11 and the conductive layer 12 as shown in FIG. 13 (a). Occurred stably.
(3)低電圧で安定したコロナ放電が発生した理由は下記と思われる。
(3) The reason why stable corona discharge occurred at low voltage seems to be as follows.
(4)図13の(a)のリング状のコロナ放電は、リング状の導電層11と導電層12との間に薄い絶縁層13を形成し、導電層11と導電層12との間に低電圧(30~300VAC)を印加したときに発生したコロナ放電の様子を示す。導電層11と導電層12との間に低電圧を印加すると、これら導電層11、12を形成した実験に用いた導電ガラスペースト焼結膜の表面は最大30~50μm程度の凹凸となっており、この部分に電界が集中して放電が始まって過剰の電流(電子)が流れると当該導電ガラスペースト焼結膜が熱くなり、低抵抗化し、更にその部分への電流が増えて熱くなり、当該導電ガラスペースト焼結膜が部分的に溶け、雷のようなアーク放電が途絶え、図13の(a)に図示のように安定したコロナ放電が発生して継続すると予想されます。また、導電性ガラスぺースト焼結膜(導電層11、12)が導電性を有しかつ半導体(電子伝導性)であることにより、コロナ放電を低電圧で発生しやすいことにも起因すると思われます。
(4) The ring-shaped corona discharge of FIG. 13A forms a thin insulating layer 13 between the ring-shaped conductive layer 11 and the conductive layer 12, and between the conductive layer 11 and the conductive layer 12. The state of the corona discharge generated when a low voltage (30 to 300 VAC) is applied is shown. When a low voltage is applied between the conductive layer 11 and the conductive layer 12, the surface of the conductive glass paste sintered film used in the experiment in which the conductive layers 11 and 12 are formed has irregularities of about 30 to 50 μm at the maximum. When the electric field is concentrated in this part and the discharge starts and an excessive current (electrons) flows, the conductive glass paste sintered film becomes hot and the resistance becomes low, and the current to the part increases and becomes hot, and the conductive glass becomes hot. It is expected that the paste sintered film will partially melt, the arc discharge like lightning will cease, and a stable corona discharge will occur and continue as shown in Fig. 13 (a). It is also considered that the conductive glass paste sintered films (conductive layers 11 and 12) are conductive and semiconductor (electron conductive), so that corona discharge is likely to occur at a low voltage. increase.
図13の(b)は、コロナ放電の全体の上面図を示す。これは、図13の(a)の要部を含む実験装置の全体を示す。
FIG. 13B shows a top view of the entire corona discharge. This shows the whole experimental apparatus including the main part of FIG. 13 (a).
図13の(c)は、実験条件を示す。ここでは、図示の下記のようにした。
FIG. 13 (c) shows the experimental conditions. Here, it is as shown below.
・印加電圧:80~150V(AC)
・電流 :0.9mA(AC)
・電極間隔:30~300μm(好ましくは70~100μm)
ここで、印加電圧は、図13の(a-1)、(a-2)の導電層11と導電層12との間に印加した電圧であって、商用周波数の80~150Vである。電流はそのときに流した電流である。電極間隔は、図13の(a-1)、(a-2)の絶縁層13の厚さであって、導電層11と導電層12との間の間隔である。この絶縁層13の厚さは、大気中(空気中)で80~150V印加したときにコロナ放電する間隔であって、これよりも小さくするとアーク放電し、また、最大間隔以上であると本発明のコロナ放電が開始しない間隔である。尚、電源(AC)は商用周波数(50/60Hz)を用いて実験したが、高周波電源でもよい。 -Applied voltage: 80 to 150 V (AC)
・ Current: 0.9mA (AC)
-Electrode spacing: 30 to 300 μm (preferably 70 to 100 μm)
Here, the applied voltage is a voltage applied between the conductive layer 11 and the conductive layer 12 in FIGS. 13 (a-1) and 13 (a-2), and is a commercial frequency of 80 to 150 V. The current is the current that was passed at that time. The electrode spacing is the thickness of the insulating layer 13 of FIGS. 13 (a-1) and (a-2), and is the spacing between the conductive layer 11 and the conductive layer 12. The thickness of the insulating layer 13 is the interval at which corona discharge is performed when 80 to 150 V is applied in the atmosphere (in the air), and if it is smaller than this, arc discharge is performed, and the thickness is equal to or greater than the maximum interval. This is the interval at which the corona discharge does not start. Although the power supply (AC) was tested using a commercial frequency (50 / 60 Hz), a high frequency power supply may also be used.
・電流 :0.9mA(AC)
・電極間隔:30~300μm(好ましくは70~100μm)
ここで、印加電圧は、図13の(a-1)、(a-2)の導電層11と導電層12との間に印加した電圧であって、商用周波数の80~150Vである。電流はそのときに流した電流である。電極間隔は、図13の(a-1)、(a-2)の絶縁層13の厚さであって、導電層11と導電層12との間の間隔である。この絶縁層13の厚さは、大気中(空気中)で80~150V印加したときにコロナ放電する間隔であって、これよりも小さくするとアーク放電し、また、最大間隔以上であると本発明のコロナ放電が開始しない間隔である。尚、電源(AC)は商用周波数(50/60Hz)を用いて実験したが、高周波電源でもよい。 -Applied voltage: 80 to 150 V (AC)
・ Current: 0.9mA (AC)
-Electrode spacing: 30 to 300 μm (preferably 70 to 100 μm)
Here, the applied voltage is a voltage applied between the conductive layer 11 and the conductive layer 12 in FIGS. 13 (a-1) and 13 (a-2), and is a commercial frequency of 80 to 150 V. The current is the current that was passed at that time. The electrode spacing is the thickness of the insulating layer 13 of FIGS. 13 (a-1) and (a-2), and is the spacing between the conductive layer 11 and the conductive layer 12. The thickness of the insulating layer 13 is the interval at which corona discharge is performed when 80 to 150 V is applied in the atmosphere (in the air), and if it is smaller than this, arc discharge is performed, and the thickness is equal to or greater than the maximum interval. This is the interval at which the corona discharge does not start. Although the power supply (AC) was tested using a commercial frequency (50 / 60 Hz), a high frequency power supply may also be used.
図14は、本発明の他の電極および絶縁層の説明図を示す。
FIG. 14 shows an explanatory view of the other electrodes and the insulating layer of the present invention.
図14の(a)は本発明の構造例を示し、図14の(a-1)は実験条件例を示す。
FIG. 14 (a) shows an example of the structure of the present invention, and FIG. 14 (a-1) shows an example of experimental conditions.
図14の(a)において、本発明の構造例の特徴は、コロナ放電させる導電層15の間に薄い絶縁ペースト焼結体16を形成し、低電圧の印加で安定したコロナ放電を実現した点にあります。本発明の実験条件は図示の下記の通りである
・印加電圧:80~150V(AC)
・電流 :0.6~0.09mA(AC)
・電極間隔:30~300μm(好ましくは70~100μm)
図14の(b)は従来の構造例を示し、図14の(b-1)は実験条件例を示す。 In FIG. 14A, a feature of the structural example of the present invention is that a thin insulating paste sintered body 16 is formed between the conductive layers 15 for corona discharge, and stable corona discharge is realized by applying a low voltage. It is in. The experimental conditions of the present invention are as shown below.-Applied voltage: 80 to 150 V (AC)
-Current: 0.6 to 0.09 mA (AC)
-Electrode spacing: 30 to 300 μm (preferably 70 to 100 μm)
FIG. 14 (b) shows a conventional structural example, and FIG. 14 (b-1) shows an example of experimental conditions.
・印加電圧:80~150V(AC)
・電流 :0.6~0.09mA(AC)
・電極間隔:30~300μm(好ましくは70~100μm)
図14の(b)は従来の構造例を示し、図14の(b-1)は実験条件例を示す。 In FIG. 14A, a feature of the structural example of the present invention is that a thin insulating paste sintered body 16 is formed between the conductive layers 15 for corona discharge, and stable corona discharge is realized by applying a low voltage. It is in. The experimental conditions of the present invention are as shown below.-Applied voltage: 80 to 150 V (AC)
-Current: 0.6 to 0.09 mA (AC)
-Electrode spacing: 30 to 300 μm (preferably 70 to 100 μm)
FIG. 14 (b) shows a conventional structural example, and FIG. 14 (b-1) shows an example of experimental conditions.
図14の(b)において、従来の構造例の特徴は、コロナ放電させる導電層15の間に厚いセラミック板18を挿入し、大電圧の印加で安定したコロナ放電を実現した点にあります。従来の実験条件は図示の下記の通りである。
In (b) of FIG. 14, the feature of the conventional structural example is that a thick ceramic plate 18 is inserted between the conductive layers 15 for corona discharge, and stable corona discharge is realized by applying a large voltage. The conventional experimental conditions are as shown below.
・印加電圧:1、8KV(AC)
・電流 :0.9mA(AC)
・電極間隔:1mm
以上説明したように、図14の(b)の従来の構造例では導電層15の間に1mm厚のセラミック板18を挿入して大電圧(1.8KVAC)を印加してコロナ放電を発生させており、これに対して図14の(a)の本発明の構造例では導電層15の間に30~300μm厚の薄い絶縁ペースト焼結体16を形成して低電圧(80~150VAC)を印加して安定にコロナ放電を発生させている点において異なります。つまり、本発明は、電極間間隔が狭く、かつ低電圧で安定したコロナ放電を発生させている点に特徴があります。 -Applied voltage: 1,8 KV (AC)
・ Current: 0.9mA (AC)
・ Electrode spacing: 1 mm
As described above, in the conventional structural example of FIG. 14B, a 1 mm thick ceramic plate 18 is inserted between the conductive layers 15 and a large voltage (1.8 KVAC) is applied to generate a corona discharge. On the other hand, in the structural example of the present invention shown in FIG. 14A, a thin insulating paste sintered body 16 having a thickness of 30 to 300 μm is formed between the conductive layers 15 to apply a low voltage (80 to 150 VAC). It differs in that it is applied to generate a stable corona discharge. In other words, the present invention is characterized in that the distance between the electrodes is narrow and stable corona discharge is generated at a low voltage.
・電流 :0.9mA(AC)
・電極間隔:1mm
以上説明したように、図14の(b)の従来の構造例では導電層15の間に1mm厚のセラミック板18を挿入して大電圧(1.8KVAC)を印加してコロナ放電を発生させており、これに対して図14の(a)の本発明の構造例では導電層15の間に30~300μm厚の薄い絶縁ペースト焼結体16を形成して低電圧(80~150VAC)を印加して安定にコロナ放電を発生させている点において異なります。つまり、本発明は、電極間間隔が狭く、かつ低電圧で安定したコロナ放電を発生させている点に特徴があります。 -Applied voltage: 1,8 KV (AC)
・ Current: 0.9mA (AC)
・ Electrode spacing: 1 mm
As described above, in the conventional structural example of FIG. 14B, a 1 mm thick ceramic plate 18 is inserted between the conductive layers 15 and a large voltage (1.8 KVAC) is applied to generate a corona discharge. On the other hand, in the structural example of the present invention shown in FIG. 14A, a thin insulating paste sintered body 16 having a thickness of 30 to 300 μm is formed between the conductive layers 15 to apply a low voltage (80 to 150 VAC). It differs in that it is applied to generate a stable corona discharge. In other words, the present invention is characterized in that the distance between the electrodes is narrow and stable corona discharge is generated at a low voltage.
図15は、本発明の他の電極および絶縁層の説明図(その2)を示す。
FIG. 15 shows an explanatory view (No. 2) of the other electrode and the insulating layer of the present invention.
図15の(a)は特徴例を示し、図15の(b)は本発明の構造例(その2)を示す。
FIG. 15 (a) shows a feature example, and FIG. 15 (b) shows a structural example (No. 2) of the present invention.
図15の(a)において、本発明の構造は、既述した図14の(a)の構造である。
In FIG. 15A, the structure of the present invention is the structure of FIG. 14A described above.
従来の構造は、既述した図14の(b)の構造である。
The conventional structure is the structure (b) of FIG. 14 described above.
本発明の構造と、従来の構造とを比較すると図示の下記の特徴がある。
Comparing the structure of the present invention with the conventional structure, there are the following features shown in the figure.
絶縁体薄膜化 加工 絶縁層の3D形状化 特徴
本発明の構造 30μm~300μm 易 易 低電圧対応
従来の構造 300μm以上 難 難 低電圧対応不可
ここで、絶体体薄膜化は本発明では後述する絶縁ガラスを用いることにより薄い30~300μmを容易かつ安価に製造できる。しかし従来構造のセラミック板は加工が難であ
り、高価である。絶縁層の3D形状かも同様である。また、本発明は低電圧対応が可能であって、80~150VACで安定したコロナ放電を発生させている。従来技術の構造では1.6KVと高圧であり低電圧化は不可である。 Insulator thin film processing 3D shape of insulation layer Features Structure of the present invention 30 μm to 300 μm Easy low voltage compatible Conventional structure 300 μm or more Difficult Low voltage compatible
Here, in the present invention, a thin film of 30 to 300 μm can be easily and inexpensively produced by using an insulating glass described later in the present invention. However, the ceramic plate having a conventional structure is difficult to process and expensive. The same applies to the 3D shape of the insulating layer. Further, the present invention is capable of dealing with low voltage and generates a stable corona discharge at 80 to 150 VAC. With the structure of the prior art, the voltage is as high as 1.6 KV, and it is impossible to reduce the voltage.
本発明の構造 30μm~300μm 易 易 低電圧対応
従来の構造 300μm以上 難 難 低電圧対応不可
ここで、絶体体薄膜化は本発明では後述する絶縁ガラスを用いることにより薄い30~300μmを容易かつ安価に製造できる。しかし従来構造のセラミック板は加工が難であ
り、高価である。絶縁層の3D形状かも同様である。また、本発明は低電圧対応が可能であって、80~150VACで安定したコロナ放電を発生させている。従来技術の構造では1.6KVと高圧であり低電圧化は不可である。 Insulator thin film processing 3D shape of insulation layer Features Structure of the present invention 30 μm to 300 μm Easy low voltage compatible Conventional structure 300 μm or more Difficult Low voltage compatible
Here, in the present invention, a thin film of 30 to 300 μm can be easily and inexpensively produced by using an insulating glass described later in the present invention. However, the ceramic plate having a conventional structure is difficult to process and expensive. The same applies to the 3D shape of the insulating layer. Further, the present invention is capable of dealing with low voltage and generates a stable corona discharge at 80 to 150 VAC. With the structure of the prior art, the voltage is as high as 1.6 KV, and it is impossible to reduce the voltage.
図15の(b)は、本発明の構造例(その2)を示す。
(B) of FIG. 15 shows a structural example (No. 2) of the present invention.
図15の(b)において、図示の構造は下記により形成する。
In FIG. 15B, the illustrated structure is formed as follows.
(1)基板14の上に導電層15を例えば導電ガラスペーストを塗布・乾燥・焼結して形成する。
(1) The conductive layer 15 is formed by applying, drying, and sintering a conductive glass paste, for example, on the substrate 14.
(2)その上に絶縁ペースト焼結体16(図14の(a)参照)として絶縁ガラスペーストを塗布・乾燥・焼結して形成する。この形成した絶縁ペースト焼結体16は、端から見ると図示のように、下側の導電層15の全体を覆っているがこれは両端の部分のみで、中央のコロナ放電を発生させる部分は、下の導電層15が露出し、上の導電層15との間にコロナ放電するように形成してある。
(2) An insulating glass paste is applied, dried, and sintered as an insulating paste sintered body 16 (see (a) in FIG. 14) on the insulating paste sintered body 16. As shown in the figure, the formed insulating paste sintered body 16 covers the entire lower conductive layer 15, but this is only at both ends, and the portion that generates the central corona discharge is. , The lower conductive layer 15 is exposed, and is formed so as to cause a corona discharge between the lower conductive layer 15 and the upper conductive layer 15.
(3)更にその上に導電層15として導電ガラスペーストを塗布・乾燥・焼結して形成し、図示のような3層構造(下の導電層15、絶縁ペースト焼結体16、上の導電層15の3層構造)を形成する。
(3) Further, a conductive glass paste is applied, dried, and sintered as a conductive layer 15 on the conductive layer 15 to form a three-layer structure (lower conductive layer 15, insulating paste sintered body 16, upper conductive layer) as shown in the figure. A three-layer structure of layer 15) is formed.
以上のように形成した本発明の構造例(その2)の導電層15の間に低電圧を印加し、導電層15の間にコロナ放電を安定的に発生させる。
A low voltage is applied between the conductive layers 15 of the structural example (No. 2) of the present invention formed as described above, and a corona discharge is stably generated between the conductive layers 15.
次に、図16、図17を用いて絶縁ペースト焼結体16の形成方法について詳細に説明する。
Next, a method for forming the insulating paste sintered body 16 will be described in detail with reference to FIGS. 16 and 17.
図16は、本発明の他の絶縁ガラス適用フローチャートを示す。
FIG. 16 shows another flow chart for applying the insulating glass of the present invention.
図16において、S31は、絶縁ガラスペーストをスクリーン印刷する。これは、例えば既述した図14の(a)の絶縁ペースト焼結体16を形成する部分に、絶縁ガラスペーストを用いてパターンをスクリーン印刷する。この際、焼結後の厚さが所定厚さ(30~300μm)になるようにペーストの濃度調整を行う。
In FIG. 16, S31 screen-prints the insulating glass paste. In this method, for example, a pattern is screen-printed on the portion of FIG. 14 (a) on which the insulating paste sintered body 16 is formed, using the insulating glass paste. At this time, the concentration of the paste is adjusted so that the thickness after sintering becomes a predetermined thickness (30 to 300 μm).
S32は、乾燥する。これは、S31でスクリーン印刷した後の焼結ガラスペーストの乾燥として、大気中に放置(省略する場合もある)、例えば1時間放置して乾燥する。
S32 is dried. This is the drying of the sintered glass paste after screen printing in S31, which is left in the air (may be omitted), for example, left for 1 hour to dry.
S33は、乾燥する。これは、溶剤飛ばしを行うために、電気炉で40~100℃、15分~100分の熱風乾燥を行う。
S33 dries. This is performed by hot air drying at 40 to 100 ° C. for 15 to 100 minutes in an electric furnace in order to remove the solvent.
S34は、冷却する。これは、大気放置として、例えば2~24時間(省略する場合もある)の間、放置して冷却する。
S34 is cooled. This is left in the air for, for example, 2 to 24 hours (may be omitted) to cool.
S35は、焼成する。これは、電気炉で340~900℃で、10分から100分の焼成を行い、絶縁ペースト焼結体16を形成する。
S35 is fired. This is fired in an electric furnace at 340 to 900 ° C. for 10 to 100 minutes to form the insulating paste sintered body 16.
以上によって、既述した図14の(a)の絶縁ペースト焼結体16として、30~300μm厚の均一な絶縁層を安価かつ高精度かつ任意形状に製造することが可能となる。
As described above, as the insulating paste sintered body 16 of FIG. 14 (a) described above, a uniform insulating layer having a thickness of 30 to 300 μm can be manufactured inexpensively, with high accuracy, and in an arbitrary shape.
図17は、本発明の絶縁ガラスペースト組成例を示す。これは、既述した図16のS31で使用する絶縁ガラスペーストの組成例を示す。ここで、図17に示す下記のような成分、適用範囲、備考を有するものである。
FIG. 17 shows an example of the insulating glass paste composition of the present invention. This shows a composition example of the insulating glass paste used in S31 of FIG. 16 described above. Here, it has the following components, applicable ranges, and remarks shown in FIG.
成分 濃度適用 備考
ソーダガラス(窓ガラス) 75-80% 主材
(粉末2~3μm最大30μm)
ジエチレングリコール 10-15% 主材粒子の結合
モノブチルアセテート
タビネオール 5-10% 濃度調整
セルロース系樹脂 1-5% 調整剤
ここでは、絶縁ガラスペーストとして、一般的な窓ガラスに多用されているソーダガラスの粒系、結合剤、濃度調整剤等について上記のような範囲で使用した。その他のガラスでも同様に使用可能である。 Component Concentration application Remarks Soda glass (window glass) 75-80% Main material (powder 2-3 μm, maximum 30 μm)
Diethylene glycol 10-15% Bonding of main particle
Monobutyl acetate
Tabineol 5-10% Concentration adjustment
Cellulose-based resin 1-5% adjuster Here, as an insulating glass paste, soda glass granules, binders, concentration adjusters, etc., which are often used for general window glass, are used in the above range. Other glasses can be used in the same way.
ソーダガラス(窓ガラス) 75-80% 主材
(粉末2~3μm最大30μm)
ジエチレングリコール 10-15% 主材粒子の結合
モノブチルアセテート
タビネオール 5-10% 濃度調整
セルロース系樹脂 1-5% 調整剤
ここでは、絶縁ガラスペーストとして、一般的な窓ガラスに多用されているソーダガラスの粒系、結合剤、濃度調整剤等について上記のような範囲で使用した。その他のガラスでも同様に使用可能である。 Component Concentration application Remarks Soda glass (window glass) 75-80% Main material (powder 2-3 μm, maximum 30 μm)
Diethylene glycol 10-15% Bonding of main particle
Monobutyl acetate
Tabineol 5-10% Concentration adjustment
Cellulose-based resin 1-5% adjuster Here, as an insulating glass paste, soda glass granules, binders, concentration adjusters, etc., which are often used for general window glass, are used in the above range. Other glasses can be used in the same way.
図18は、本発明のABLガラス焼結膜の抵抗率のテスト例を示す。
FIG. 18 shows a test example of the resistivity of the ABL glass sintered film of the present invention.
図18の(a)は、ABLガラス焼結膜サンプル例を示す。抵抗率の測定は、図示のように、a-b間の抵抗値を測定して行った。
FIG. 18A shows an example of an ABL glass sintered film sample. The resistivity was measured by measuring the resistance value between a and b as shown in the figure.
図18の(a)において、基板21は、アルミナ基板であって、厚さ1mmの図示の形状を持つものである。
In FIG. 18A, the substrate 21 is an alumina substrate having a thickness of 1 mm as shown in the figure.
ABLガラス焼結膜22は、幅5mm、長さ40mmのパターンを導電性ガラスペーストでスクリーン印刷して乾燥、焼結、アニーリングして形成したものである(図19を用いて後述する)。
The ABL glass sintered film 22 is formed by screen-printing a pattern having a width of 5 mm and a length of 40 mm with a conductive glass paste, drying, sintering, and annealing (described later with reference to FIG. 19).
抵抗値の測定は、図18の(a)のa-b間の抵抗値を測定することによって行う(図20を用いて後述する)。
The resistance value is measured by measuring the resistance value between a and b in FIG. 18 (a) (described later with reference to FIG. 20).
図19は、本発明のABLガラス焼結プロセスのフローチャートを示す。これは、既述した図18のABLガラス焼結膜22を形成するフローチャートである。
FIG. 19 shows a flowchart of the ABL glass sintering process of the present invention. This is a flowchart for forming the ABL glass sintered film 22 of FIG. 18 described above.
図19において、S41は、ABLガラスペーストを基板に印刷する。これは、既述した図18の基板21の上に、ABLガラスペーストを用い、図示のパターン(5mm×40mm)をスクリーン印刷する。
In FIG. 19, S41 prints the ABL glass paste on the substrate. This involves screen-printing the illustrated pattern (5 mm × 40 mm) on the substrate 21 of FIG. 18 described above using ABL glass paste.
S42は、100℃にした電気炉に10分間乾燥する。
S42 is dried in an electric furnace at 100 ° C. for 10 minutes.
S43は、常温に取り出す。常温で約20分間放置する。これらS42,S43は、S41で基板21の上にスクリーン印刷した当該基板21を、100℃に加熱した電気炉に入れて10分間放置して印刷したABLガラスペーストを乾燥する。乾燥は、これに限られず、100℃前後の熱風を10分間程度吹き付けて乾燥などしてもよい。
S43 is taken out at room temperature. Leave at room temperature for about 20 minutes. In these S42 and S43, the substrate 21 screen-printed on the substrate 21 in S41 is placed in an electric furnace heated to 100 ° C. and left for 10 minutes to dry the printed ABL glass paste. The drying is not limited to this, and hot air of about 100 ° C. may be blown for about 10 minutes to dry.
S44は、550℃にした電気炉に5分間焼結処理する。
S44 is sintered in an electric furnace at 550 ° C. for 5 minutes.
S45は、常温に取り出す。常温で5分間放置する。これらS44,S45は、乾燥したABLガラスペーストのパターンを形成した基板21を、550℃の電気炉に5分間いれて焼結した後、常温に取り出し、冷却する。この焼結により、既述した図18に示す矩形パターンのガラス焼結膜22が形成されると共に、基板21に強く固着する。
S45 is taken out at room temperature. Leave at room temperature for 5 minutes. In these S44 and S45, the substrate 21 on which the pattern of the dried ABL glass paste is formed is placed in an electric furnace at 550 ° C. for 5 minutes, sintered, taken out to room temperature, and cooled. By this sintering, the glass sintered film 22 having the rectangular pattern shown in FIG. 18 described above is formed, and at the same time, it is strongly adhered to the substrate 21.
S46は、500℃の電気炉に60分間入れてアニーリングする。
S46 is placed in an electric furnace at 500 ° C. for 60 minutes for annealing.
S47は、電気炉を切り、そのまま常温になるまで自然冷却する。これらS46,S47のアニーリング処理、即ちS44,S45の焼結処理よりも低い温度(ここでは、500℃で、実験により最適値を求める)に60分間放置(実験により最適放置時間を求める)した後、電離炉の電源をOFFにし、そのまま自然冷却(ゆっくり冷却)させるという、アニーリング熱処理を施すことにより、低抵抗値のABLガラス焼結膜を得ることができた。
For S47, turn off the electric furnace and let it cool naturally until it reaches room temperature. After being left at a temperature lower than the annealing treatments of S46 and S47, that is, the sintering treatment of S44 and S45 (here, the optimum value is obtained by an experiment at 500 ° C.) for 60 minutes (the optimum leaving time is obtained by an experiment). By performing an annealing heat treatment in which the power of the ionizing furnace is turned off and naturally cooled (slowly cooled) as it is, an ABL glass sintered film having a low resistance value can be obtained.
低抵抗値のABLガラス焼結膜の上記フローチャートの手順による生成は、下記のようにして形成されたと思われる。
It is considered that the production of the ABL glass sintered film having a low resistance value by the procedure of the above flowchart was formed as follows.
(1) 焼結に用いたABLガラス自体(電子導電性半導体)は、粒子同士が蜜に繋がっており、電子を運ぶ手が限られてしまうことにより、通常10Ωcmから150Ωcm程度の抵抗値を有するものである。
(1) The ABL glass itself (electron conductive semiconductor) used for sintering usually has a resistance value of about 10 Ωcm to 150 Ω cm because the particles are connected to each other and the hands that carry electrons are limited. It is a thing.
(2) 一方、(1)を粉砕して細かくしたABLガラスペースト(電子導電性半導体)を印刷して上記第1の焼結熱処理(S44,S45)、第2のアニーリング熱処理(S46,S47)を施した後のABLガラス燒結膜は、微粉末(微粒子)の焼結された粒子同士の繋がりの間に電子を運ぶ手が多くなり、かつ粒子の表面積が増大し、結果として、通常10の2乗ないし3乗以上の小さい抵抗値となることが実験で確認された(後述する図20を参照)。
(2) On the other hand, the first sintering heat treatment (S44, S45) and the second annealing heat treatment (S46, S47) are performed by printing the ABL glass paste (electroconductive semiconductor) obtained by crushing (1) into fine particles. The ABL glass boiled film after the heat treatment has more hands to carry electrons between the connections between the sintered particles of the fine powder (fine particles), and the surface area of the particles is increased, resulting in usually 10 particles. It was confirmed by experiments that the resistance value was as small as 2 to 3 or more (see FIG. 20 described later).
ここで、燒結温度について:この燒結温度ではABLガラス粉末粒子の一部が溶けて粒子が互いに結合し始める。550℃±70℃の範囲で機能する。下限を過ぎると、ガラス粒子は溶けず、粒子同士が十分に結合しない。上限を過ぎると、粒子同士の結合が大きな領域に渡り、ガラス板状のものが内部に形成される。これが沢山になると抵抗率(抵抗値)が高くなる。
Here, regarding the firing temperature: At this firing temperature, some of the ABL glass powder particles melt and the particles begin to bond with each other. It functions in the range of 550 ° C ± 70 ° C. After the lower limit, the glass particles do not melt and the particles do not bond sufficiently. When the upper limit is exceeded, the bonds between the particles extend over a large region, and glass plate-like particles are formed inside. When this becomes large, the resistivity (resistance value) increases.
また、アニーリングについて:燒結温度550℃に対して、50~70℃前後低い温度でアニーリング熱処理を行い、かつ、その後は自然冷却する(外部に取り出して急速冷却しない)。これにより、ガラスの内部の成分が整合して抵抗率(抵抗値)が下がる。
Annealing: Annealing heat treatment is performed at a temperature lower than the sintering temperature of 550 ° C by about 50 to 70 ° C, and then naturally cooled (not taken out to the outside and rapidly cooled). As a result, the components inside the glass are matched and the resistivity (resistance value) is lowered.
また、燒結膜の抵抗値は、ガラス内部を流れる電流と、ガラスの粒子表面を流れる電流との総和で決まる。適切な燒結温度(例えば550℃)では、ガラス粒子の結合が適切になりガラス表面を流れる電流が主役となり、抵抗率(抵抗値)を小さくできると考えられる。燒結前の導電性ガラス(電子導電性ガラス(半導体))のガラス固体の抵抗値は、ガラス内部を流れる電流が主役である。
The resistance value of the conjunctiva is determined by the sum of the current flowing inside the glass and the current flowing on the surface of the glass particles. At an appropriate firing temperature (for example, 550 ° C.), it is considered that the bonding of glass particles becomes appropriate and the current flowing on the glass surface plays a leading role, and the resistivity (resistance value) can be reduced. The resistance value of the glass solid of the conductive glass (electromagnetic conductive glass (semiconductor)) before burning is mainly the current flowing inside the glass.
図20は、本発明のABLガラス焼結膜の抵抗率測定値例を示す。
FIG. 20 shows an example of the resistivity measurement value of the ABL glass sintered film of the present invention.
図20において、焼結温度520℃、550℃、580℃について上述した第1の焼結熱処理、第2のアニーリング熱処理を施した結果、図示の下記の測定値が得られた。ここで用いた固体ABLガラス(焼結前のABLガラス)の抵抗率(抵抗値)は、140Ωcmである。
In FIG. 20, as a result of performing the above-mentioned first sintering heat treatment and second annealing heat treatment at a sintering temperature of 520 ° C., 550 ° C., and 580 ° C., the following measured values shown in the figure were obtained. The resistivity (resistance value) of the solid ABL glass (ABL glass before sintering) used here is 140 Ωcm.
・焼結温度520℃では下記の測定値が得られた。、
・520-1:膜厚15μm、抵抗値5.7KΩ、抵抗率1.068Ωcm、
・520-2:膜厚16μm、抵抗値6.1KΩ、抵抗率1.143Ωcm、
・520-3:膜厚20μm、抵抗値7.0KΩ、抵抗率1.75Ωcm、
・焼結温度550℃では下記の測定値が得られた。、
・550-1:膜厚14μm、抵抗値3.5KΩ、抵抗率0.612Ωcm、
・550-2:膜厚17μm、抵抗値2.4KΩ、抵抗率0.510Ωcm、
・550-3:膜厚20μm、抵抗値5.7KΩ、抵抗率0.51Ωcm、
・焼結温度580℃では下記の測定値が得られた。
・580-1:膜厚11μm、抵抗値4.5KΩ、抵抗率0.618Ωcm、
・580-2:膜厚17μm、抵抗値7.4KΩ、抵抗率1.573Ωcm、
・580-3:膜厚23μm、抵抗値5.7KΩ、抵抗率1.638Ωcm、
以上の測定結果から、第1の焼結熱処理、第2のアニーリング熱処理を施した結果、抵抗値(抵抗率)が約10の2乗ないし3乗以上だけ小さい図示の測定値が得られた。ここで、膜厚、焼結温度に依存して抵抗率(抵抗値)が変動するので、実験により最適値を求めて、決める必要がある。図20の例では、焼結温度550℃、膜厚15から20μm程度(ここでは、スクリーン印刷による膜厚)が最も小さな抵抗値となり、焼結前のABLガラスの140Ωcmから、燒結、アニーリング熱処理により0.51Ωcmになった(約4×(10の3乗)Ωcmだけ小さくなった)。 The following measured values were obtained at a sintering temperature of 520 ° C. ,
520-1: Film thickness 15 μm, resistance value 5.7 KΩ, resistivity 1.068 Ω cm,
520-2: Film thickness 16 μm, resistance value 6.1 KΩ, resistivity 1.143 Ωcm,
520-3: Film thickness 20 μm, resistance value 7.0 KΩ, resistivity 1.75 Ω cm,
The following measured values were obtained at a sintering temperature of 550 ° C. ,
550-1: Film thickness 14 μm, resistance value 3.5 KΩ, resistivity 0.612 Ω cm,
550-2: Film thickness 17 μm, resistance value 2.4 KΩ, resistivity 0.510 Ω cm,
550-3: Film thickness 20 μm, resistance value 5.7 KΩ, resistivity 0.51 Ω cm,
The following measured values were obtained at a sintering temperature of 580 ° C.
580-1: Film thickness 11 μm, resistance value 4.5 KΩ, resistivity 0.618 Ω cm,
580-2: Film thickness 17 μm, resistance value 7.4 KΩ, resistivity 1.573 Ω cm,
580-3: Film thickness 23 μm, resistance value 5.7 KΩ, resistivity 1.638 Ω cm,
From the above measurement results, as a result of performing the first sintering heat treatment and the second annealing heat treatment, the illustrated measured values having a resistance value (resistivity) as small as about 10 squared to 3rd power or more were obtained. Here, since the resistivity (resistance value) fluctuates depending on the film thickness and the sintering temperature, it is necessary to obtain and determine the optimum value by an experiment. In the example of FIG. 20, the smallest resistance value is obtained at a sintering temperature of 550 ° C. and a film thickness of about 15 to 20 μm (here, the film thickness by screen printing). It became 0.51 Ωcm (it became smaller by about 4 × (10 3) Ωcm).
・520-1:膜厚15μm、抵抗値5.7KΩ、抵抗率1.068Ωcm、
・520-2:膜厚16μm、抵抗値6.1KΩ、抵抗率1.143Ωcm、
・520-3:膜厚20μm、抵抗値7.0KΩ、抵抗率1.75Ωcm、
・焼結温度550℃では下記の測定値が得られた。、
・550-1:膜厚14μm、抵抗値3.5KΩ、抵抗率0.612Ωcm、
・550-2:膜厚17μm、抵抗値2.4KΩ、抵抗率0.510Ωcm、
・550-3:膜厚20μm、抵抗値5.7KΩ、抵抗率0.51Ωcm、
・焼結温度580℃では下記の測定値が得られた。
・580-1:膜厚11μm、抵抗値4.5KΩ、抵抗率0.618Ωcm、
・580-2:膜厚17μm、抵抗値7.4KΩ、抵抗率1.573Ωcm、
・580-3:膜厚23μm、抵抗値5.7KΩ、抵抗率1.638Ωcm、
以上の測定結果から、第1の焼結熱処理、第2のアニーリング熱処理を施した結果、抵抗値(抵抗率)が約10の2乗ないし3乗以上だけ小さい図示の測定値が得られた。ここで、膜厚、焼結温度に依存して抵抗率(抵抗値)が変動するので、実験により最適値を求めて、決める必要がある。図20の例では、焼結温度550℃、膜厚15から20μm程度(ここでは、スクリーン印刷による膜厚)が最も小さな抵抗値となり、焼結前のABLガラスの140Ωcmから、燒結、アニーリング熱処理により0.51Ωcmになった(約4×(10の3乗)Ωcmだけ小さくなった)。 The following measured values were obtained at a sintering temperature of 520 ° C. ,
520-1: Film thickness 15 μm, resistance value 5.7 KΩ, resistivity 1.068 Ω cm,
520-2: Film thickness 16 μm, resistance value 6.1 KΩ, resistivity 1.143 Ωcm,
520-3: Film thickness 20 μm, resistance value 7.0 KΩ, resistivity 1.75 Ω cm,
The following measured values were obtained at a sintering temperature of 550 ° C. ,
550-1: Film thickness 14 μm, resistance value 3.5 KΩ, resistivity 0.612 Ω cm,
550-2: Film thickness 17 μm, resistance value 2.4 KΩ, resistivity 0.510 Ω cm,
550-3: Film thickness 20 μm, resistance value 5.7 KΩ, resistivity 0.51 Ω cm,
The following measured values were obtained at a sintering temperature of 580 ° C.
580-1: Film thickness 11 μm, resistance value 4.5 KΩ, resistivity 0.618 Ω cm,
580-2: Film thickness 17 μm, resistance value 7.4 KΩ, resistivity 1.573 Ω cm,
580-3: Film thickness 23 μm, resistance value 5.7 KΩ, resistivity 1.638 Ω cm,
From the above measurement results, as a result of performing the first sintering heat treatment and the second annealing heat treatment, the illustrated measured values having a resistance value (resistivity) as small as about 10 squared to 3rd power or more were obtained. Here, since the resistivity (resistance value) fluctuates depending on the film thickness and the sintering temperature, it is necessary to obtain and determine the optimum value by an experiment. In the example of FIG. 20, the smallest resistance value is obtained at a sintering temperature of 550 ° C. and a film thickness of about 15 to 20 μm (here, the film thickness by screen printing). It became 0.51 Ωcm (it became smaller by about 4 × (10 3) Ωcm).
1:セラミック基板
2:アルミ焼結膜
3:電子導電ガラス焼結膜
4:外部配線
5:半田
6:アース側配線
7:アルミニウム電極
8:表面改質材
11、12、15:導電層
13:絶縁層
14:基板
16:絶縁ペースト焼結体
17:コロナ放電部
21;基板
22:ABLガラス燒結膜 1: Ceramic substrate 2: Aluminum sintered film 3: Electronically conductive glass sintered film 4: External wiring 5: Solder 6: Ground side wiring 7: Aluminum electrode 8: Surface modifier 11, 12, 15: Conductive layer 13: Insulating layer 14: Substrate 16: Insulating paste sintered body 17: Corona discharge portion 21; Substrate 22: ABL glass-brushed film
2:アルミ焼結膜
3:電子導電ガラス焼結膜
4:外部配線
5:半田
6:アース側配線
7:アルミニウム電極
8:表面改質材
11、12、15:導電層
13:絶縁層
14:基板
16:絶縁ペースト焼結体
17:コロナ放電部
21;基板
22:ABLガラス燒結膜 1: Ceramic substrate 2: Aluminum sintered film 3: Electronically conductive glass sintered film 4: External wiring 5: Solder 6: Ground side wiring 7: Aluminum electrode 8: Surface modifier 11, 12, 15: Conductive layer 13: Insulating layer 14: Substrate 16: Insulating paste sintered body 17: Corona discharge portion 21; Substrate 22: ABL glass-brushed film
Claims (16)
- コロナ放電させる放電電極を形成する放電電極板において、
耐熱性材料で作成した耐熱性板と、
前記耐熱性板の上に形成した導電性金属焼結膜と、前記導電性金属焼結膜の上に形成した導電性ガラス焼結膜との2層からなる放電電極と
を備え、
前記放電電極を構成する前形成してコロナ放電による劣化を低減して長寿命化すると共に、前記導電性金属焼結膜を形成して前記導電性ガラス焼結膜の端から中央に流れる電流あるいは電子流による電圧降下を低減して均一なコロナ放電を生成したことを特徴とする放電電極板。 In the discharge electrode plate that forms the discharge electrode that discharges the corona
A heat-resistant board made of heat-resistant material and
A discharge electrode composed of two layers of a conductive metal sintered film formed on the heat-resistant plate and a conductive glass sintered film formed on the conductive metal sintered film is provided.
A current or electron flow that flows from the edge to the center of the conductive glass sintered film by forming the conductive metal sintered film while preforming the discharge electrode to reduce deterioration due to corona discharge and extending the life. A discharge electrode plate characterized in that a uniform corona discharge is generated by reducing the voltage drop due to the discharge. - コロナ放電させる放電電極を形成する放電電極板において、
絶縁性かつ耐熱性材料で作成した、30から300μm厚の薄い絶縁体と、
前記薄い絶縁体の表面と裏面とにそれぞれ形成した導電層とからなる放電電極を備え、
前記放電電極を構成する前記導電層を導電性ガラスでそれぞれ形成して低電圧のコロナ放電を良好に開始・継続させると共に劣化を低減して長寿命化することを特徴とする放電電極板。 In the discharge electrode plate that forms the discharge electrode that discharges the corona
A thin insulator with a thickness of 30 to 300 μm made of an insulating and heat resistant material,
A discharge electrode composed of a conductive layer formed on the front surface and the back surface of the thin insulator is provided.
A discharge electrode plate characterized in that the conductive layers constituting the discharge electrode are each formed of conductive glass to satisfactorily start and continue low-voltage corona discharge, reduce deterioration, and extend the life. - 前記放電電極を大気中に配置してコロナ放電させることを特徴とする請求項1から請求項2のいずれかに記載の放電電極板。 The discharge electrode plate according to any one of claims 1 to 2, wherein the discharge electrode is arranged in the atmosphere to discharge a corona.
- 前記導電性ガラスは、バナジウム、バリウム、鉄から構成されるバナジン酸塩ガラスとしたことを特徴とする請求項1から請求項3のいずれかに記載の放電電極板。 The discharge electrode plate according to any one of claims 1 to 3, wherein the conductive glass is vanadate glass composed of vanadium, barium, and iron.
- 前記耐熱性板は、耐熱ガラスあるいはセラミックとしたことを特徴とする請求項1、請求項3から請求項5のいずれかに記載の放電電極板。 The discharge electrode plate according to any one of claims 1, 3 to 5, wherein the heat-resistant plate is made of heat-resistant glass or ceramic.
- 前記導電性金属焼結膜の上に形成する前記導電性ガラス焼結膜のサイズは、該導電性金属焼結膜よりも小さくしてはみださないようにしたことを特徴とする請求項1、請求項3から請求項5のいずれかに記載の放電電極。 The first aspect of the present invention is that the size of the conductive glass sintered film formed on the conductive metal sintered film is smaller than that of the conductive metal sintered film so as not to protrude. The discharge electrode according to any one of items 3 to 5.
- 前記放電電極を対向して配置した場合には、対向する放電電極の端に半田付けした外部配線の部分を長さ方向にずらしてコロナ放電の領域に入らないようにし、該半田付け部分の損傷を低減したことを特徴とする請求項1、請求項3から請求項6のいずれかに記載の放電電極。 When the discharge electrodes are arranged facing each other, the portion of the external wiring soldered to the end of the facing discharge electrode is shifted in the length direction so as not to enter the corona discharge region, and the soldered portion is damaged. The discharge electrode according to any one of claims 1 and 3 to 6, characterized in that
- 前記放電電極を構成する前記導電性金属焼結膜および導電性ガラス焼結膜の両者に半田付けして外部配線を接続したことを特徴とする請求項1、請求項3から請求項7のいずれかに記載の放電電極板。 The method according to any one of claims 1 and 3 to 7, wherein the external wiring is connected by soldering to both the conductive metal sintered film and the conductive glass sintered film constituting the discharge electrode. The discharge electrode plate described.
- 前記放電電極に外部配線の半田付けは、超音波半田付けとしたことを特徴とする請求項1、請求項3から請求項8に記載の放電電極板。 The discharge electrode plate according to claim 1, wherein the external wiring is soldered to the discharge electrode by ultrasonic soldering.
- 導電性ガラスを塗布、焼成して放電電極の形成は、導電性ガラスの粉末を含むペーストを生成し、この生成したペーストを塗布、焼成して電子導電性の放電電極を形成したことを特徴とする請求項1、請求項3から請求項9のいずれかに記載の放電電極板。 The formation of the discharge electrode by applying and firing the conductive glass is characterized in that a paste containing the powder of the conductive glass is generated, and the produced paste is applied and fired to form the electronically conductive discharge electrode. The discharge electrode plate according to any one of claims 1 and 3 to 9.
- 前記導電性ガラス焼結膜は、前記導電性金属焼結膜を焼結した後、その上に塗布・乾燥・焼結し、金属粒子と導電性ガラス粒子とが熱拡散しないようにしたことを特徴とする請求項1、請求項3から請求項10のいずれかに記載の放電電極。 The conductive glass sintered film is characterized in that after the conductive metal sintered film is sintered, it is coated, dried, and sintered on the conductive metal sintered film to prevent the metal particles and the conductive glass particles from thermally diffusing. The discharge electrode according to any one of claims 1 and 3 to 10.
- 前記放電電極と対面した他の電極、あるいは前記放電電極と背面した他の電極との間に10KHzから5MHzの範囲内の高周波電圧を印加し、当該放電電極の周りにコロナ放電させることを特徴とする請求項1、請求項3から請求項11のいずれかに記載の放電電極。 A feature is that a high-frequency voltage in the range of 10 KHz to 5 MHz is applied between the other electrode facing the discharge electrode or the other electrode on the back surface, and corona discharge is performed around the discharge electrode. The discharge electrode according to any one of claims 1 and 3 to 11.
- 前記薄い絶縁体は、絶縁性のガラスペーストを焼結した絶縁ペースト焼結体としたことを特徴とする請求項2から請求項4のいずれかに記載の放電電極。 The discharge electrode according to any one of claims 2 to 4, wherein the thin insulator is an insulating paste sintered body obtained by sintering an insulating glass paste.
- 前記放電電極の表面と裏面に形成した前記導電層の間に80Vないし150Vの交流電圧を印加し、大気中でコロナ放電を開始・継続させることを特徴とする請求項2から請求項4のいずれかに記載の放電電極。 Any of claims 2 to 4, wherein an AC voltage of 80 V to 150 V is applied between the conductive layer formed on the front surface and the back surface of the discharge electrode to start and continue the corona discharge in the atmosphere. The discharge electrode described in.
- 前記導電性ガラス焼結膜を電子導電性の導電性ガラスで形成した場合には、該導電性ガラスは、粉砕した導電性ガラスの粉末を所定の焼結温度に加熱して焼結して常温に戻す第1の焼結熱処理した後、前記焼結温度より低い所定のアニーリング温度に加熱して昇温した後、加熱を停止して自然冷却する第2のアニーリング熱処理を行うことを特徴とする請求項1から請求項14のいずれかに記載の放電電極。 When the conductive glass sintered film is formed of electronically conductive conductive glass, the conductive glass is obtained by heating crushed conductive glass powder to a predetermined sintering temperature and sintering it to room temperature. After the first sintering heat treatment for returning, the second annealing heat treatment is performed by heating to a predetermined annealing temperature lower than the sintering temperature to raise the temperature, and then stopping the heating and naturally cooling. The discharge electrode according to any one of items 1 to 14.
- 前記第1の焼結熱処理、および前記第2のアニーリング熱処理を行った後の導電性ガラス焼結膜は、前記粉砕する前の導電性ガラスに比し、抵抗値を10の2乗ないし3乗以上小さく低減させたことを特徴とする請求項15に記載の放電電極。 The conductive glass sintered film after the first sintering heat treatment and the second annealing heat treatment has a resistance value of 10 squared to 3 or more as compared with the conductive glass before crushing. The discharge electrode according to claim 15, wherein the discharge electrode is reduced to a small size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022514351A JP7393050B2 (en) | 2020-04-06 | 2021-03-11 | discharge electrode plate |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020068317 | 2020-04-06 | ||
JP2020-068317 | 2020-04-06 | ||
JP2020-119236 | 2020-07-10 | ||
JP2020119236 | 2020-07-10 | ||
JP2021-007162 | 2021-01-20 | ||
JP2021007162 | 2021-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021205809A1 true WO2021205809A1 (en) | 2021-10-14 |
Family
ID=78022732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009827 WO2021205809A1 (en) | 2020-04-06 | 2021-03-11 | Discharge electrode plate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7393050B2 (en) |
TW (1) | TW202207561A (en) |
WO (1) | WO2021205809A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000080184A (en) * | 1998-06-26 | 2000-03-21 | Dainippon Printing Co Ltd | Film sheet multi-step surface modifying method and apparatus therefor |
JP2002226614A (en) * | 2001-01-30 | 2002-08-14 | Bridgestone Corp | Surface finishing method and device of corona discharge treatment |
JP2004175604A (en) * | 2002-11-26 | 2004-06-24 | Okumine:Kk | Ozone generating element |
JP2011065747A (en) * | 2008-01-15 | 2011-03-31 | Tokai Industry Corp | Static eliminator |
JP2015139755A (en) * | 2014-01-29 | 2015-08-03 | 保雄 寺谷 | air cleaner |
-
2021
- 2021-03-11 WO PCT/JP2021/009827 patent/WO2021205809A1/en active Application Filing
- 2021-03-11 JP JP2022514351A patent/JP7393050B2/en active Active
- 2021-03-18 TW TW110109788A patent/TW202207561A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000080184A (en) * | 1998-06-26 | 2000-03-21 | Dainippon Printing Co Ltd | Film sheet multi-step surface modifying method and apparatus therefor |
JP2002226614A (en) * | 2001-01-30 | 2002-08-14 | Bridgestone Corp | Surface finishing method and device of corona discharge treatment |
JP2004175604A (en) * | 2002-11-26 | 2004-06-24 | Okumine:Kk | Ozone generating element |
JP2011065747A (en) * | 2008-01-15 | 2011-03-31 | Tokai Industry Corp | Static eliminator |
JP2015139755A (en) * | 2014-01-29 | 2015-08-03 | 保雄 寺谷 | air cleaner |
Also Published As
Publication number | Publication date |
---|---|
JP7393050B2 (en) | 2023-12-06 |
TW202207561A (en) | 2022-02-16 |
JPWO2021205809A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6339685Y2 (en) | ||
JPS648441B2 (en) | ||
CN109427427B (en) | Thick film resistor composition and thick film resistor paste comprising same | |
TW200847223A (en) | Method of forming an external electrode fluorescent lamp, thick film electrode compositions used therein, and lamps and LCD devices formed thereof | |
WO2021205809A1 (en) | Discharge electrode plate | |
JP2008108716A (en) | Conductive paste composition for low-temperature firing | |
CN115461825A (en) | Thick film resistor paste, thick film resistor, and electronic component | |
JP5713112B2 (en) | ESD protection device and manufacturing method thereof | |
WO2015025347A1 (en) | Electronic circuit board, semiconductor device using same, and manufacturing method for same | |
KR20120000745A (en) | The ceramics electrostatic support chuck | |
CN107428529B (en) | Ozone gas generation device and method for manufacturing ozone gas generation device | |
TWI716193B (en) | Discharge electrode plate | |
US20020139457A1 (en) | Method of suppressing the oxidation characteristics of nickel | |
JP2004172250A (en) | Thick-film resistor composition and thick-film resistor using the same, and method for manufacturing the same | |
TW201920001A (en) | Composition for thick film resistor, thick film resistance paste, and thick film resistor | |
US7208218B2 (en) | Method of suppressing the oxidation characteristics of nickel | |
JP3885265B2 (en) | Manufacturing method of ceramic circuit board | |
KR20200142319A (en) | The surface heater and the manufacturing method for the same | |
JP2841586B2 (en) | Conductive paste | |
US3411203A (en) | Electric field tailoring of thin film resistors | |
KR102242532B1 (en) | Copper precursor for intense pulsed light sintering, manufacturing method for thereof, and intense pulsed light sintering method for thereof | |
JPH03176905A (en) | Conductive paste | |
KR102099983B1 (en) | Preparation method of ITO pellet and ITO pellet using the same | |
JP2007013210A (en) | Method for manufacturing ceramic substrate | |
JP2003327419A (en) | Discharge body for generating ozone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21784239 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022514351 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21784239 Country of ref document: EP Kind code of ref document: A1 |