JPH03176905A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH03176905A
JPH03176905A JP31485889A JP31485889A JPH03176905A JP H03176905 A JPH03176905 A JP H03176905A JP 31485889 A JP31485889 A JP 31485889A JP 31485889 A JP31485889 A JP 31485889A JP H03176905 A JPH03176905 A JP H03176905A
Authority
JP
Japan
Prior art keywords
powder
weight
parts
conductive paste
weight part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31485889A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Takasumi Shimizu
孝純 清水
Tamotsu Nishinakagawa
西中川 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP31485889A priority Critical patent/JPH03176905A/en
Publication of JPH03176905A publication Critical patent/JPH03176905A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To realize conductive paste having excellent performance and burnable in the atmosphere at a low cost by using predetermined quantities of respective Cu powder, B powder, Si powder, B2O3 powder, glass frit and organic vehicle. CONSTITUTION:Low cost Cu powder is used to substitute for expensive Ni. A predetermined ratio is provided between respective compositions. Namely, the ratio of B powder against 100 weight part of the total weight of Cu powder and B powder is 3.5-3.9 weight part. The ratio of Si powder against 100 weight part of the total weight of Cu powder and B powder is 2.0-20.0 weight part. The ratio of B2O3 powder against 100 weight part of the total weight of Cu powder and B powder is 2.0-30.0 weight part. A conductive composition having excellent fluidity, formability, printing property and high conductivity can be manufactured with this paste composed in that method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性ペース1〜に関し、詳しくは導電粉末
としてCu粉末を用いた大気焼成可能な導電性ペースト
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to conductive pastes 1 to 1, and specifically relates to a conductive paste that uses Cu powder as a conductive powder and can be fired in the atmosphere.

(従来の技術) 一般に、導電性ペーストは、導体回路、セラミックコン
デンサの電極、電磁波シールド材プラズマデイスプレー
の電極等に用いられ、特にDC型プラズマデイスプレー
用の電極としての用途が有望視されている。
(Prior Art) Generally, conductive paste is used for conductive circuits, ceramic capacitor electrodes, electromagnetic shielding materials, plasma display electrodes, etc., and its use as an electrode for DC-type plasma displays is particularly promising. There is.

例えばプラズマデイスプレーは、ガラス製のバックプレ
ート基板上に電極(陰極)をプリント形成する一方、カ
バープレートの側に陰極に対向させ透明電極を形成し、
両電極間に電圧を印加して放電させ発色させるものであ
り、これはNi等の金属導電性ペーストをバックプレー
ト基板上にスクリーン印刷して厚膜形成し、その後これ
を乾燥した後、大気焼成して電極を形成する。
For example, in a plasma display, an electrode (cathode) is printed on a glass back plate substrate, and a transparent electrode is formed on the cover plate side facing the cathode.
A voltage is applied between both electrodes to cause discharge and color development.This is done by screen printing a metal conductive paste such as Ni on the back plate substrate to form a thick film, then drying it and baking it in the air. to form an electrode.

この種の導電性ペーストにおいては、その製造時、大気
焼成して電極等を形成するときNiが酸化されて導電性
を消失しやすいので、従来のペースト組成中にBを含有
させてNiの酸化を防止することが考えられている。そ
の−例が特公昭5551285号および特公昭6C)−
16041号公報に開示されている。このうち前者のも
のはNiおよびBを(Nia B)a  (Ni3Si
)bの組成物の形で含有するものであり、後者のものは
Ni粉末中にB粉末を添加させた形態のもので、何れも
Bの選択的酸化反応によってNiの酸化反応を防止する
ものである。
In this type of conductive paste, Ni is easily oxidized and loses its conductivity when it is baked in the air to form electrodes, etc. during production, so B is included in the conventional paste composition to oxidize the Ni. It is considered to prevent Examples are Special Publication No. 5551285 and Special Publication No. 6C)
It is disclosed in Japanese Patent No. 16041. Of these, the former is Ni and B (Nia B) a (Ni3Si
) It is contained in the form of the composition b, and the latter is in the form of B powder added to Ni powder, and both prevent the oxidation reaction of Ni by the selective oxidation reaction of B. It is.

(発明が解決しようとする課題) しかしながら、これら従来の導電性ペーストは、その製
造法および特性の点で次のような問題を有している。
(Problems to be Solved by the Invention) However, these conventional conductive pastes have the following problems in terms of their manufacturing method and characteristics.

すなわち、前者の特公昭55−51285号公報に記載
のものの場合、(N 13B) s  (N 13Si
)bの組成物を製造するにはNiにBを添加して溶解し
凝固させた後粉砕する必要があり、このときBの比重が
Niに比べて約1/4と軽いために均一な組成物の製造
が困難であり、しかも粉砕して粒状粉末にするために製
造コストが高くなるのに加えて、粉末形状は角ばった形
状となり、ペーストを基板上に印刷形成する際の印刷性
が悪い。
That is, in the case of the former described in Japanese Patent Publication No. 55-51285, (N 13B) s (N 13Si
) To produce the composition b, it is necessary to add B to Ni, dissolve it, solidify it, and then crush it. At this time, since the specific gravity of B is about 1/4 lighter than Ni, a uniform composition is obtained. It is difficult to manufacture the product, and the manufacturing cost is high because it is crushed into granular powder, and the shape of the powder is angular, making it difficult to print the paste on a substrate. .

また後者の特公昭60−16041号に記載のものの場
合、Bが比較的多量に添加されるために(Bの添加量は
4〜50%)、酸化生成したB2O3が表面にガラス状
に浮上し、これら多量のB2O3が不純物となって電気
抵抗値を増大させるという問題がある。
Furthermore, in the case of the latter described in Japanese Patent Publication No. 60-16041, since a relatively large amount of B is added (the amount of B added is 4 to 50%), the oxidized B2O3 floats to the surface in a glassy state. There is a problem in that a large amount of B2O3 becomes an impurity and increases the electrical resistance value.

本発明は、このような問題点を解決するためになされた
もので、本発明が解決しようとする課題は、Niに代え
て相対的に安価なCuを用い、流動性、成形性、印刷性
に優れ、かつ比較的高温の700℃付近にて大気焼成可
能で、導電性の高い導電性組成物を製造可能な導電性ペ
ーストを提供することにある。
The present invention has been made to solve these problems, and the problem to be solved by the present invention is to use relatively inexpensive Cu instead of Ni, and improve fluidity, moldability, and printability. An object of the present invention is to provide a conductive paste that can be fired in the atmosphere at a relatively high temperature of around 700°C, and can produce a conductive composition with high conductivity.

(課題を解決するための手段) 本発明は、前記課題を解決するためになされたもので、
その要旨とするところは、Cu粉末、B粉末、Si粉末
、B2O3粉末、ガラスフリットおよび有機ビヒクルよ
りなる導電性ペーストであって、その組成が、(イ)前
記B粉末は、Cu粉末とB粉末の合計重量100重量部
に対し3.5〜3.9重量部、(ロ)前記Si粉末は、
Cu粉末とB粉末の合計重量100重量部に対し2.0
〜20.0重量部、(ハ)前記B2O3粉末は、Cu粉
末とB粉末の合計重量100重量部に対し2.0〜30
.0重量部、(ニ)前記ガラスフリットは、Cu粉末と
B粉末の合計重量100重量部に対し10〜30重量部
であることを特徴とする。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and
The gist of this is that it is a conductive paste consisting of Cu powder, B powder, Si powder, B2O3 powder, glass frit, and an organic vehicle, the composition of which is: (a) the B powder is composed of Cu powder and B powder; 3.5 to 3.9 parts by weight per 100 parts by weight of the total weight of (b) the Si powder,
2.0 per 100 parts by weight of the total weight of Cu powder and B powder
~20.0 parts by weight, (c) the B2O3 powder is 2.0 to 30 parts by weight per 100 parts by weight of the total weight of Cu powder and B powder
.. (d) The amount of the glass frit is 10 to 30 parts by weight based on 100 parts by weight of the total weight of Cu powder and B powder.

本発明による導電性ペーストは、Cu粉末を主成分に用
いているので製造コストはNi扮粉末用いた場合に比べ
安価なものとなり、またB粉末の含有量をCu粉末とB
粉末の合計重量100部に対し3.5〜3.9重量部の
範囲にしその分Cu粉末を多くしているため導電性が向
上する。したがって、プラズマデイスプレーの電極形成
に本発明を適用した場合に画像の鮮明度が良好となる。
Since the conductive paste according to the present invention uses Cu powder as the main component, the manufacturing cost is lower than when using Ni powder, and the content of B powder is lower than that of Cu powder.
Since the Cu powder is increased by an amount corresponding to 3.5 to 3.9 parts by weight based on 100 parts of the total weight of the powder, the conductivity is improved. Therefore, when the present invention is applied to electrode formation of a plasma display, the image clarity becomes good.

Cu粉末の平均粒径は1〜30μmとするのが望ましく
、さらに好ましくは5〜207x mの範囲にする。こ
れは、平均粒径1μm未満とすると、Cu粒子の表面積
が相対的に大きくなり、Cuの酸化反応が促進されやす
く電気抵抗値が大きくなりやすいためであり、平均粒径
30μm以下としたのけ、30μmを超えると導電性ペ
ーストの流動性が悪くなり、印刷性および充填性が低下
するからである。
The average particle diameter of the Cu powder is desirably in the range of 1 to 30 μm, more preferably in the range of 5 to 207×m. This is because if the average particle size is less than 1 μm, the surface area of the Cu particles becomes relatively large, which tends to promote the oxidation reaction of Cu and increase the electrical resistance value. This is because if the thickness exceeds 30 μm, the fluidity of the conductive paste deteriorates, resulting in poor printability and filling properties.

B粉末を添加するのは、Cuの酸化防止のためであり、
そのためにはB粉末とCu粉末の合計重量100重量部
に対しB粉末は少なくとも3.5重量部が必要であり、
3.9重量部を超えると、その分Cuの含有量が低下し
抵抗値が高くなるので、B粉末は3.5〜3.9重量部
の範囲にする。
The reason for adding B powder is to prevent Cu from oxidizing.
For this purpose, at least 3.5 parts by weight of B powder is required per 100 parts by weight of the total weight of B powder and Cu powder,
If it exceeds 3.9 parts by weight, the Cu content decreases and the resistance value increases accordingly, so the amount of B powder is set in the range of 3.5 to 3.9 parts by weight.

すなわち、Bは高温において後述するように選択的に酸
化されてB20.になるが、このB20−の融点は57
7℃程度に低いため、B量が多いとベース1へを焼成温
度600〜620 ”C程度で大気焼成したとき選択的
に酸化されたBi O3が表面に浮上してキラキラ光っ
た状態となり、これが電極特性を低下させ、プラズマデ
イスプレーにおいて画像鮮明度を低下させる原因となる
。この画像鮮明度を低下させる境界域は、Bの添加量が
4゜0重量部であり、これより多いと電極表面へのB2
O3の浮上が顕著となって表面がキラキラ光った状態と
なるからである。反対にBの添加量がこれより少ないと
電極表面におけるキラキラ感が消失し、B2O3の浮上
が認められず、プラズマデイスプレーの画像鮮明度が高
(なる。またBの原料粉末形態は、アモルファス粉末で
あるのが望ましく、もしくは平均粒径50μm以下の粉
末であるのが望ましい。平均粒径50 It mを超え
ると、導電性ペーストの流動性、印刷性等が低下するた
めである。
That is, B is selectively oxidized at high temperature as described below to become B20. However, the melting point of this B20- is 57
Since the temperature is about 7℃, if the amount of B is large, when base 1 is fired in the atmosphere at a firing temperature of about 600 to 620''C, selectively oxidized BiO3 floats to the surface and becomes sparkling. This causes deterioration of the electrode characteristics and decreases the image clarity in plasma displays.The boundary region where the image clarity decreases is when the amount of B added is 4.0 parts by weight, and if it is more than this, the electrode surface B2 to
This is because the floating of O3 becomes noticeable and the surface becomes sparkling. On the other hand, if the amount of B added is less than this, the glittering feeling on the electrode surface disappears, no floating of B2O3 is observed, and the image clarity of the plasma display becomes high (in addition, the raw material powder form of B is amorphous powder). or a powder having an average particle size of 50 μm or less, because if the average particle size exceeds 50 It m, the fluidity, printability, etc. of the conductive paste will deteriorate.

Si粉末は、Cu粉末とB粉末の合計重量100重量部
に対し2.0〜20.0重量部の範囲にするのが望まし
い。Si粉末を添加するのは、温度600°C以上でガ
ラス質を形成しCuの酸化を効果的に抑制するためであ
り、そのためには少なくとも2.0重量部が必要となる
。また20.0重量部を超えると、Si酸化物がガラス
膜状となり絶縁体を構成しペーストの電気抵抗値が増大
するからである。Si粉末の平均粒径ば、50μm以下
にするのが望ましい。これは流動性、充填性および印刷
性等を向上させるためである。
It is desirable that the amount of Si powder be in the range of 2.0 to 20.0 parts by weight based on 100 parts by weight of the total weight of Cu powder and B powder. The reason why Si powder is added is to form a glassy substance at a temperature of 600° C. or higher and effectively suppress oxidation of Cu, and for this purpose, at least 2.0 parts by weight is required. If the amount exceeds 20.0 parts by weight, the Si oxide becomes like a glass film and forms an insulator, increasing the electrical resistance of the paste. The average particle size of the Si powder is desirably 50 μm or less. This is to improve fluidity, filling properties, printability, etc.

B 20 a粉末は、Cu粉末とB粉末の合計重量10
0重量部に対し2.0〜30.0重量部の範囲にするの
が望ましい。B2O3粉末を添加するのは、温度300
〜500℃の範囲でガラス質を形成しCuの酸化を効果
的に抑制するためであり、そのためには少な(とも2.
0重量部が必要となる。また30.0重量部を超えると
、B2O3がガラス膜状となり絶縁体を構成しペースト
の電気抵抗値が増大するからである。B 203粉末の
平均粒径は、ペーストの流動性、充填性および印刷性等
を向上させるため50μm以下にするのが望ましい。
B 20 a powder has a total weight of Cu powder and B powder of 10
It is desirable that the amount is in the range of 2.0 to 30.0 parts by weight relative to 0 parts by weight. B2O3 powder is added at a temperature of 300
This is to form a glassy substance in the range of ~500°C and effectively suppress the oxidation of Cu, and for that purpose, it is necessary to use a small amount (both 2.
0 parts by weight are required. Moreover, if it exceeds 30.0 parts by weight, B2O3 becomes like a glass film and constitutes an insulator, increasing the electrical resistance value of the paste. The average particle size of the B 203 powder is desirably 50 μm or less in order to improve the fluidity, filling properties, printability, etc. of the paste.

ガラスフリットは、軟化点温度400〜600℃のもの
で、Cu粉末とB粉末の合計重量100重量部に対し、
10〜30重量部の範囲にするのが望ましい。ガラスフ
リットは、焼成時に温度400〜600℃の範囲でガラ
スフリッ1−がガラス状化してCu粉末の周囲に保護層
を形成しCuの酸化防止の役割を果たすからであり、そ
のためにはガラスフリットが10重量部以上必要となる
The glass frit has a softening point temperature of 400 to 600°C, and is
It is desirable that the amount is in the range of 10 to 30 parts by weight. This is because the glass frit becomes vitrified at a temperature in the range of 400 to 600°C during firing to form a protective layer around the Cu powder, which plays a role in preventing oxidation of the Cu. 10 parts by weight or more is required.

ガラスフリットが多過ぎると、ガラス膜状の絶縁物を作
り易く、導電性が低下するから、30重量部以内にする
If there is too much glass frit, it is easy to form a glass film-like insulator and the conductivity decreases, so the amount is limited to 30 parts by weight or less.

有機ビヒクルは、導電性ペーストの流動性を確保するた
めに加えるものである。
The organic vehicle is added to ensure the fluidity of the conductive paste.

前述した組成の導電性ペーストは、大気中つまり酸化性
雰囲気中で焼成可能である。また温度は最高700℃付
近の温度で焼成可能である。
The conductive paste having the composition described above can be fired in the air, that is, in an oxidizing atmosphere. Further, firing can be performed at a maximum temperature of around 700°C.

次に、前記導電性ペーストが大気焼成されるとき、前記
各種の添加物によりCuの酸化がどのように防止される
のかについて第1図に基づいて説明する。第1図中の矢
印で示す範囲の添加物は、主としてその温度範囲にて酸
化防止効果が働くことを示している。
Next, how the oxidation of Cu is prevented by the various additives when the conductive paste is fired in the atmosphere will be explained based on FIG. 1. The additives in the range indicated by the arrows in FIG. 1 show that their antioxidant effect mainly occurs within that temperature range.

予備焼成後の焼成時、温度を室温から次第に上昇してい
(と、まず常温から約350℃までの範囲は、有機ビヒ
クルがCuの酸化を防止する。そして300℃から35
0℃の範囲においては、有機ビヒクルによるCu酸化防
止が働くとともに、B2O3粉末がガラス質に変化する
ことに伴いCUの周囲にガラス質層を作ってCuの酸化
が防止サレル。350℃から400℃の範囲になると、
B2O3のガラス質化によりCuの酸化が防止さレル。
During firing after pre-firing, the temperature is gradually raised from room temperature (first, from room temperature to about 350°C, the organic vehicle prevents Cu oxidation, and then from 300°C to 350°C
In the temperature range of 0°C, the organic vehicle acts to prevent Cu from oxidizing, and as the B2O3 powder changes to glassy, a glassy layer is formed around the Cu to prevent Cu from oxidizing. When the temperature ranges from 350℃ to 400℃,
Vitrification of B2O3 prevents Cu oxidation.

400℃から550℃の範囲になると、さらにガラスフ
リットがホウケイ酸ガラスを造ることによりCuの酸化
が防止される。550 ”Cを超えると選択的にBが酸
化されるのに伴いCuの酸化が抑制される。600℃(
”l近においてはこのBの働きが顕著に作用し、Cuの
酸化が効果的に抑制される。650℃を超え700 ’
C付近ではSLが酸化され易(これに伴いCuの酸化が
抑制される。
When the temperature ranges from 400° C. to 550° C., the glass frit further forms borosilicate glass, thereby preventing Cu from oxidizing. When the temperature exceeds 550"C, B is selectively oxidized and the oxidation of Cu is suppressed. At 600"C (
At temperatures close to 650°C and 700°C, the effect of B is significant and the oxidation of Cu is effectively suppressed.
SL is easily oxidized near C (accompanying this, oxidation of Cu is suppressed).

これらペースト中の添加物つまり有機ビヒクル、B2O
3,ガラスフリット、B、Siが、それぞ 0 れ所定の温度域において効果的にCuの酸化防止を図る
。これにより、大気中の比較的高温の700″C付近に
おいても、酸化抑制効果が顕著に作用し導電性を保持し
つつ焼成可能になる。
The additives in these pastes, namely the organic vehicle, B2O
3. Glass frit, B, and Si each effectively prevent Cu from oxidizing in a predetermined temperature range. As a result, even at a relatively high temperature of around 700''C in the atmosphere, the oxidation suppressing effect works significantly and it becomes possible to sinter while maintaining conductivity.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

導電性ペーストの原料としては、平均粒径10゜4μm
の球状Cu扮粉末、アモルファスB粉末と、アモルファ
スSi粉末ど、平均粒径50μm以下のB2O3粉末と
、これにガラスフリットを加え、さらに有機ビヒクルと
してエチルセルロースをテルピネオールに溶解したもの
を使用した。これらを3本ロールミルを用いて混練した
後、#200スクリーンを用いて線幅0.5mmX長さ
100mmの線をアルミナ基板上に印刷した。これを1
20℃で10分乾燥した後、600〜800℃で15〜
20分大気焼成した。焼成後の膜厚の平均値は50μm
であった。
As a raw material for conductive paste, the average particle size is 10°4 μm.
Spherical Cu powder, amorphous B powder, amorphous Si powder, etc., B2O3 powder with an average particle size of 50 μm or less, glass frit was added to this, and ethyl cellulose dissolved in terpineol was used as an organic vehicle. After kneading these using a three-roll mill, lines with a line width of 0.5 mm and a length of 100 mm were printed on an alumina substrate using a #200 screen. This is 1
After drying at 20℃ for 10 minutes, drying at 600-800℃ for 15~
It was baked in the air for 20 minutes. The average film thickness after firing is 50μm
Met.

得られた焼成部の表面状態を観察し、その焼成部の色相
から表面酸化状態を観察したところ、焼成部の色相は第
1表に示す通りであった。焼成部の比抵抗値について測
定したところ、その結果は第1表に示すとおりであった
When the surface condition of the obtained fired part was observed and the surface oxidation state was observed from the hue of the fired part, the hue of the fired part was as shown in Table 1. When the specific resistance value of the fired part was measured, the results were as shown in Table 1.

(以下、余白。) 1 第1表において、実施例1〜9においては、焼成部の比
抵抗が15X]O−’Ωcm以下となり、導電性が高い
値となった。
(The following is a blank space.) 1 In Table 1, in Examples 1 to 9, the specific resistance of the fired part was 15X]O-'Ωcm or less, and the conductivity was a high value.

これに対し、比較例1および比較例2はStを含まず本
発明のSiの範囲から逸脱するものであり、比較例3は
B2O3を含有しない等の理由により、比抵抗値が極め
て大きいかあるいは測定不能(500cmより抵抗大)
という結果となった。
On the other hand, Comparative Examples 1 and 2 do not contain St and deviate from the Si range of the present invention, and Comparative Example 3 does not contain B2O3, so the specific resistance value is extremely high or Unmeasurable (resistance greater than 500cm)
The result was.

また比較例4および比較例5は、それぞれ焼成温度が7
50℃、800℃と高温であったこと等により比抵抗値
が大となった。これは、高温において酸化が過度に促進
されたものと推定される。
Furthermore, in Comparative Example 4 and Comparative Example 5, the firing temperature was 7.
The specific resistance value was large due to the high temperatures of 50°C and 800°C. This is presumed to be because oxidation was excessively accelerated at high temperatures.

(発明の効果) 以上説明したように、本発明の導電性ペーストによれば
、流動性、充填性、印刷性が良好なペーストであり、比
較的高温にて大気焼成時の酸化防止効果が適正に働くの
で、得られる導電体は電気抵抗値が小さいだけでな(、
基板との同時焼成が可能になり、極めて簡単な生産」−
程により良好な導電性をもつ導電体が得られるという効
果がある。
(Effects of the Invention) As explained above, the conductive paste of the present invention has good fluidity, fillability, and printability, and has an appropriate oxidation prevention effect during air firing at relatively high temperatures. Therefore, the resulting conductor not only has a small electrical resistance value (,
It is now possible to fire simultaneously with the substrate, making production extremely simple.
This has the effect that a conductor with better conductivity can be obtained as the temperature increases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導電性ペーストに添加する各種添加物の酸化防
止効果を説明するための説明図である。
FIG. 1 is an explanatory diagram for explaining the antioxidant effects of various additives added to the conductive paste.

Claims (1)

【特許請求の範囲】 Cu粉末、B粉末、Si粉末、B_2O_3粉末、ガラ
スフリットおよび有機ビヒクルよりなる導電性ペースト
であって、その組成が、 (イ)前記B粉末は、Cu粉末とB粉末の合計重量10
0重量部に対し3.5〜3.9重量部、(ロ)前記Si
粉末は、Cu粉末とB粉末の合計重量100重量部に対
し2.0〜20.0重量部、(ハ)前記B_2O_3粉
末は、Cu粉末とB粉末の合計重量100重量部に対し
2.0〜30.0重量部、 (ニ)前記ガラスフリットは、Cu粉末とB粉末の合計
重量100重量部に対し10〜30重量部であることを
特徴とする導電性ペースト。
[Claims] A conductive paste consisting of Cu powder, B powder, Si powder, B_2O_3 powder, glass frit, and an organic vehicle, the composition of which is: (a) the B powder is a combination of Cu powder and B powder; Total weight 10
3.5 to 3.9 parts by weight relative to 0 parts by weight, (b) the above Si
The powder is 2.0 to 20.0 parts by weight per 100 parts by weight of the total weight of Cu powder and B powder, and (c) the B_2O_3 powder is 2.0 parts by weight per 100 parts by weight of the total weight of Cu powder and B powder. ~30.0 parts by weight, (iv) A conductive paste characterized in that the glass frit is present in an amount of 10 to 30 parts by weight based on 100 parts by weight of the total weight of Cu powder and B powder.
JP31485889A 1989-12-04 1989-12-04 Conductive paste Pending JPH03176905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31485889A JPH03176905A (en) 1989-12-04 1989-12-04 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31485889A JPH03176905A (en) 1989-12-04 1989-12-04 Conductive paste

Publications (1)

Publication Number Publication Date
JPH03176905A true JPH03176905A (en) 1991-07-31

Family

ID=18058466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31485889A Pending JPH03176905A (en) 1989-12-04 1989-12-04 Conductive paste

Country Status (1)

Country Link
JP (1) JPH03176905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349316A (en) * 1993-06-11 1994-12-22 Tdk Corp Conductive paste
JP2011029113A (en) * 2009-07-29 2011-02-10 Jsr Corp Photosensitive black paste, and method of forming bus electrode black layer
JP2015011979A (en) * 2013-07-02 2015-01-19 大研化学工業株式会社 Conductive paste for atmospheric firing, and method for manufacturing the same
JP2017535024A (en) * 2014-08-28 2017-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Copper-containing conductive paste and electrode made from copper-containing conductive paste
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349316A (en) * 1993-06-11 1994-12-22 Tdk Corp Conductive paste
JP2011029113A (en) * 2009-07-29 2011-02-10 Jsr Corp Photosensitive black paste, and method of forming bus electrode black layer
JP2015011979A (en) * 2013-07-02 2015-01-19 大研化学工業株式会社 Conductive paste for atmospheric firing, and method for manufacturing the same
JP2017535024A (en) * 2014-08-28 2017-11-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Copper-containing conductive paste and electrode made from copper-containing conductive paste
US10325693B2 (en) 2014-08-28 2019-06-18 E I Du Pont De Nemours And Company Copper-containing conductive pastes and electrodes made therefrom
US10672922B2 (en) 2014-08-28 2020-06-02 Dupont Electronics, Inc. Solar cells with copper electrodes

Similar Documents

Publication Publication Date Title
JP5018032B2 (en) Lead-free glass for electrode coating
CN109844871B (en) Resistor paste, resistor, electronic component, and method for producing lead-free resistor
JP2006193385A (en) Glass for coating electrode and front and back substrates of plasma display panel
JP5594682B2 (en) Lead-free low melting point glass with acid resistance
WO2018150890A1 (en) Resistor composition, resistor paste containing same, and thick-film resistor using same
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
KR101138246B1 (en) Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
JP2019040782A (en) Thick film resistor composition and thick film resistor paste containing the same
JP2007126319A (en) Bismuth-based lead-free glass composition
JPH03176905A (en) Conductive paste
JP2004172250A (en) Thick-film resistor composition and thick-film resistor using the same, and method for manufacturing the same
JP2018532278A (en) Lead-free thick film resistor composition, lead-free thick film resistor, and manufacturing method thereof
JP2841586B2 (en) Conductive paste
KR101138238B1 (en) Manufacturing method of paste composition for resistor using coating metal oxide, thick film resistor and manufacturing method of the resistor
JP2008050252A (en) Method for manufacturing glass substrate with partition wall
JP2005244115A (en) Resistor paste, resistor and electronic part
JPH0725568B2 (en) Glass composition and insulator using the same
JP2005289804A (en) Low melting point glass for coating electrode, and plasma display device
KR101166709B1 (en) Manufacturing method of paste composite for resistor, thick film resistor and manufacturing method of the resistor
JPH03176904A (en) Conductive paste
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
CN106782763A (en) A kind of Alumina-Based Media slurry containing tabular alumina and preparation method thereof
JP2684718B2 (en) Conductive paste