JPH03176904A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH03176904A
JPH03176904A JP31485789A JP31485789A JPH03176904A JP H03176904 A JPH03176904 A JP H03176904A JP 31485789 A JP31485789 A JP 31485789A JP 31485789 A JP31485789 A JP 31485789A JP H03176904 A JPH03176904 A JP H03176904A
Authority
JP
Japan
Prior art keywords
powder
weight
conductive paste
parts
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31485789A
Other languages
Japanese (ja)
Inventor
Shinobu Takagi
忍 高木
Takasumi Shimizu
孝純 清水
Tamotsu Nishinakagawa
西中川 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP31485789A priority Critical patent/JPH03176904A/en
Publication of JPH03176904A publication Critical patent/JPH03176904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To realize conductive paste having excellent performance and burnable in the atmosphere at a low cost by using predetermined quantities of respective Cu powder, B powder, boric acid or borate powder, glass frit and organic vehicle. CONSTITUTION:Low cost Cu is used to substitute for expensive Ni. A predetermined ratio is provided between respective compositions. Namely, the ratio of B powder against 100 weight part of the total weight of Cu powder and B powder is 3.5-3.9 weight part. The ratio of boric acid or borate against 100 weight part of the total weight of Cu powder and B powder is 2.0-50.0. The ratio of glass frit against 100 weight part of the total weight of Cu powder and B powder is 10-30 weight part. A conductive composition having excellent fluidity, formability, printing property and high conductivity can be manufactured with this paste composed in that method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性ペーストに関し、詳しくは導電粉末と
してCu粉末を用いた大気焼成可能な導電性ペーストに
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a conductive paste, and more particularly to a conductive paste that uses Cu powder as a conductive powder and can be fired in the atmosphere.

(従来の技術) 一般に、導電性ペーストは、導体回路、セラミックコン
デンザの電極、電I波シールド材プラズマデイスプレー
の電極等に用いられ、特にDC型プラズマデイスプレー
用の電極としての用途が有望視されている。
(Prior art) Generally, conductive paste is used for conductor circuits, electrodes of ceramic capacitors, radio I wave shield materials, electrodes of plasma displays, etc., and is particularly promising for use as electrodes for DC type plasma displays. being watched.

例えばプラズマデイスプレーは、ガラス製のバックプレ
ート基板上に電極(陰極)をプリント形成する一方、カ
バープレートの側に陰極に対向させ透明電極を形成し、
両電極間に電圧を印加して放電させ発色させるものであ
り、これはNi等の金属導電性ペーストをバックプレー
ト基板上にスクリーン印刷して厚膜形成し、その後これ
を乾燥した後、大気焼成して電極を形成する。
For example, in a plasma display, an electrode (cathode) is printed on a glass back plate substrate, and a transparent electrode is formed on the cover plate side facing the cathode.
A voltage is applied between both electrodes to cause discharge and color development.This is done by screen printing a metal conductive paste such as Ni on the back plate substrate to form a thick film, then drying it and baking it in the air. to form an electrode.

この種の導電性ペーストにおいては、その製造時、大気
焼成して電極等を形成するどきNiが酸化されて導電性
を消失しやすいので、従来のベースト組成中にBを含有
させてNiの酸化を防止することが考えら打ている。そ
の−例が特公昭55−51285号および特公昭60−
16041号公報に開示されている。このうち前者のも
のはNiおよびBを(N13’B)a  (Ni3Sl
)b (’)組成物の形で含有するものであり、後者の
ものはNi粉末中にB粉末を添加させた形態のもので、
何れもBの選択的酸化反応によってNiの酸化反応を防
止するものである。
In this type of conductive paste, Ni is easily oxidized and loses its conductivity when it is baked in the air to form electrodes, etc., during manufacture, so B is included in the conventional base composition to oxidize the Ni. The idea is to prevent hitting. Examples are Special Publication No. 51285-1985 and Special Publication No. 51285-1983.
It is disclosed in Japanese Patent No. 16041. Among these, the former is Ni and B (N13'B)a (Ni3Sl
) b (') It is contained in the form of a composition, and the latter is in the form of B powder added to Ni powder,
In either case, the oxidation reaction of Ni is prevented by the selective oxidation reaction of B.

(発明が解決しようとする課題) しかしながら、これら従来の導電性ペーストは、その製
造法および特性の点で次のような問題を有している。
(Problems to be Solved by the Invention) However, these conventional conductive pastes have the following problems in terms of their manufacturing method and characteristics.

すなわち、前者の特公昭55−51285号公報に記載
のものの場合、(N 13B) a  (N 13Si
)bの組成物を製造するにはNiにBを添加して溶解し
凝固させた後粉砕する必要があり、このときBρ比重が
Niに比べて約1/4と軽いために均一な組成物の製造
が困難であり、しがも粉砕して粒状粉末にするために製
造コストが高(なるのに加えて、粉末形状は角ばった形
状となり、ペーストを基板上に印刷形成する際の印刷性
が悪い。
That is, in the case of the former described in Japanese Patent Publication No. 55-51285, (N 13B) a (N 13Si
) To produce the composition b, it is necessary to add B to Ni, dissolve it, solidify it, and then crush it. At this time, since the Bρ specific gravity is about 1/4 lighter than Ni, a uniform composition can be obtained. It is difficult to manufacture, and the manufacturing cost is high because it is crushed into granular powder (in addition, the powder shape is angular, making it difficult to print the paste on a substrate). It's bad.

また後者の特公昭60−16041号に記載のものの場
合、Bが比較的多量に添加されるために(Bの添加量は
4〜50%)、酸化生成したB20、が表面にガラス状
に浮上し、これら多量のB2O3が不純物となって電気
抵抗値を増大させるという問題がある。
In addition, in the case of the latter described in Japanese Patent Publication No. 60-16041, since a relatively large amount of B is added (the amount of B added is 4 to 50%), the oxidized B20 floats on the surface in a glass-like manner. However, there is a problem in that a large amount of B2O3 becomes an impurity and increases the electrical resistance value.

本発明は、このような問題点を解決するためになされた
もので、本発明が解決しようとする課題は、Niに代え
て相対的に安価なCuを用い、流動性、成形性、印刷性
に優れ、かつ大気焼成可能で、導電性の高い導電性組成
物を製造可能な導電性ペーストを提供することにある。
The present invention has been made to solve these problems, and the problem to be solved by the present invention is to use relatively inexpensive Cu instead of Ni, and improve fluidity, moldability, and printability. An object of the present invention is to provide a conductive paste that can be fired in the atmosphere, and can produce a conductive composition with high conductivity.

(課題を解決するための手段) 本発明は、前記課題を解決するためになされたもので、
その要旨とするところは、Cu粉末、B粉末、ボウ酸ま
たはホウ酸塩粉末、ガラスフリットおよび有機ビヒクル
よりなる導電性ペーストであって、その組成が、(イ)
前記B粉末はCu粉末とB粉末の合計重量100重量部
に対し3.5〜3.9重量部、(ロ)前記ホウ酸または
ホウ酸塩粉末はCu粉末とB粉末の杏計重量100重量
部に対し2.0〜50.0重量部、(ハ)前記ガラスフ
リットはCu粉末とB粉末の合計重量100重量部に対
し10〜30重量部であることを特徴とする。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and
Its gist is that it is a conductive paste consisting of Cu powder, B powder, boric acid or borate powder, glass frit, and organic vehicle, the composition of which is (a).
The B powder is 3.5 to 3.9 parts by weight based on 100 parts by weight of the total weight of the Cu powder and B powder, and (b) the boric acid or borate powder is 100 parts by weight of the total weight of the Cu powder and B powder. (c) The amount of the glass frit is 10 to 30 parts by weight based on 100 parts by weight of the total weight of Cu powder and B powder.

本発明による導電性ペーストは、Cu粉末を主成分に用
いているのでNi粉末を用いた場合に比べ製造コストは
安価になり、またB粉末の含有量をCu粉末とB粉末の
合計重量100部に対し3゜5〜3.9重量部の範囲に
しその分Cu粉末を多くしているため導電性が向上する
。したがって、プラズマデイスプレーの電極形成に本発
明を適用した場合に画像の鮮明度が良好となる。
Since the conductive paste according to the present invention uses Cu powder as the main component, the manufacturing cost is lower than when using Ni powder, and the content of B powder is reduced to 100 parts by total weight of Cu powder and B powder. Since the amount of Cu powder is increased by that much in the range of 3.5 to 3.9 parts by weight, the conductivity is improved. Therefore, when the present invention is applied to electrode formation of a plasma display, the image clarity becomes good.

Cu粉末の平均粒径は1〜30μmとするのが望ましく
、さらに好ましくは5〜20μmの範囲にする。これは
、平均粒径1μm未満とすると、Cu粒子の表面積が相
対的に太き(なり、Cuの酸化反応が促進されやすく電
気抵抗値が大きくなりやすいためであり、平均粒径30
μm以下としたのは、30 g mを超えると導電性ペ
ーストの流動性が悪くなり、印刷性および充填性が低下
するからである。
The average particle size of the Cu powder is desirably in the range of 1 to 30 μm, more preferably in the range of 5 to 20 μm. This is because when the average particle size is less than 1 μm, the surface area of the Cu particles becomes relatively large (the oxidation reaction of Cu is likely to be promoted and the electrical resistance value tends to increase), and the average particle size is 30 μm.
The reason why the thickness is set to be less than μm is because if it exceeds 30 gm, the fluidity of the conductive paste deteriorates, and printability and filling performance deteriorate.

B粉末を添加するのは、Cuの酸化防止のためであり、
そのためにはB粉末とCu粉末の合計重量100重量部
に対しB粉末は少なくとも3.5重量部が必要であり、
3.9重量部を超えると、その分Cuの含有量が低下し
抵抗値が高くなるので、B粉末は3.5〜3.9重量部
の範囲にする。
The reason for adding B powder is to prevent Cu from oxidizing.
For this purpose, at least 3.5 parts by weight of B powder is required per 100 parts by weight of the total weight of B powder and Cu powder,
If it exceeds 3.9 parts by weight, the Cu content decreases and the resistance value increases accordingly, so the amount of B powder is set in the range of 3.5 to 3.9 parts by weight.

すなわち、Bは高温において後述するように選択的に酸
化されてB2O3になるが、このB2O3の融点は57
7℃程度に低いため、B量が多いとペーストを焼成温度
600〜620℃程度で大気焼成したとき選択的に酸化
されたB203が表面に浮上してキラキラ光った状態と
なり、これが電極特性を低下させ、プラズマデイスプレ
ーにおいて画像鮮明度を低下させる原因となる。この画
像鮮明度を低下させる境界域は、Bの添加量が4゜0重
量部であり、これより多いと電極表面へのB2O3の浮
上が顕著となって表面がキラキラ光った状態となるから
である。反対にBの添加量がこれより少ないと電極表面
におりるキラキラ感が消失し、B2O3の浮上が認めら
れず、プラズマデイスプレーの画像鮮明度が高くなる。
That is, B is selectively oxidized to B2O3 at high temperatures as described below, but the melting point of this B2O3 is 57
Since the temperature is about 7℃, if the amount of B is large, selectively oxidized B203 floats to the surface when the paste is fired in the atmosphere at a firing temperature of about 600 to 620℃, causing a glittering state, which deteriorates the electrode properties. This causes a decrease in image clarity in plasma displays. This boundary region that reduces image clarity occurs when the amount of B added is 4.0 parts by weight, and if it is more than this, B2O3 will float to the electrode surface and the surface will become glittery. be. On the other hand, if the amount of B added is less than this, the glittering effect on the electrode surface disappears, floating of B2O3 is not observed, and the image clarity of the plasma display becomes high.

またBの原料粉末形態は、アモルファス粉末であるのが
望ましく、もしくは平均粒径50LLm以下の粉末であ
るのが望ましい。平均粒径50 Ht、 mを超えると
、導電性ペーストの流動性、印刷性等が低下するためで
ある。
Further, the raw material powder form of B is preferably an amorphous powder, or preferably a powder with an average particle size of 50 LLm or less. This is because if the average particle size exceeds 50 Ht.m, the fluidity, printability, etc. of the conductive paste will deteriorate.

ホウ酸またはホウ酸塩粉末は、Cu粉末とB粉末の合計
重量100重量部に対し20〜50重量部の範囲にする
。ホウ酸またはホウ酸塩粉末を添加するのは温度300
〜500℃の範囲でガラス質を形成しCuの酸化を効果
的に抑制するためであり、そのためには少なくとも2.
0重量部が必要となる。また50重量部を超えると、B
201のガラス膜状となり絶縁体を構成しベースI・の
抵抗値が増大するからである。
The amount of boric acid or borate powder is in the range of 20 to 50 parts by weight based on 100 parts by weight of the total weight of Cu powder and B powder. Adding boric acid or borate powder is at a temperature of 300
This is to form a glassy substance in the range of ~500°C and effectively suppress the oxidation of Cu, and for this purpose, at least 2.
0 parts by weight are required. Moreover, if it exceeds 50 parts by weight, B
This is because the base I becomes like a glass film and forms an insulator, increasing the resistance value of the base I.

ホウ酸は、例えば、300°Cで次式に示す反応が促進
される。
In boric acid, for example, the reaction shown in the following formula is promoted at 300°C.

2H3BO2□→B203+3H20 ここに、■ホウ酸にはオルトホウ酸(H3BO。2H3BO2□→B203+3H20 Here, ■ boric acid is orthoboric acid (H3BO.

)、メタホウ酸(HBO2)、四ボウ酸(H□B4O7
)を含む。また、■ホウ酸塩は、一般式%式% 5/2.4に相当するそれぞれオルトホウ酸塩、ニホウ
酸塩、メタホウ酸塩、四ホウ酸塩、五ホウ酸塩、へホウ
酸塩などがある。例えば、Co B 407 、CuB
4O? 、Na2B407 、Li2B4O、,2Zn
0 ・3B203 ・3.5H20、K2 B40? 
 ’ 4■]10.CaB4O? ・6H20、MnB
a 0?  −8820等である。
), metaboric acid (HBO2), tetraboric acid (H□B4O7
)including. ■Borates include orthoborate, diborate, metaborate, tetraborate, pentaborate, heborate, etc., which correspond to the general formula % formula % 5/2.4. be. For example, Co B 407 , CuB
4O? , Na2B407 , Li2B4O, ,2Zn
0 ・3B203 ・3.5H20, K2 B40?
'4■]10. CaB4O?・6H20, MnB
a 0? -8820 etc.

ガラスフリットは、Cu粉末とB粉末の合計重量100
重量部に対し、]O〜30重量部の範囲にするのが望ま
しい。ガラスフリットを添加するの(J、焼成時に温度
400〜600℃の範囲でガラスフリットがガラス状化
してCu粉末の周囲に保護層を形成しCuの酸化防止の
役割を果たすからであり、そのためにはガラスフリット
が10重量部以上必要となる。ガラスフリットが多過ぎ
るど、ガラス膜状の絶縁物を作り易(、導電性が低下す
るから、30重量部以内にする。
The glass frit has a total weight of Cu powder and B powder of 100
It is desirable that the amount is in the range of ]0 to 30 parts by weight. Glass frit is added (J, this is because glass frit becomes vitrified at temperatures in the range of 400 to 600°C during firing, forms a protective layer around Cu powder, and plays a role in preventing oxidation of Cu. In this case, 10 parts by weight or more of glass frit is required. Too much glass frit makes it easy to form a glass film-like insulator (and the conductivity decreases), so it should be within 30 parts by weight.

有機ビヒクルは、導電性ペーストの流動性を確保するた
めに加えるものである。
The organic vehicle is added to ensure the fluidity of the conductive paste.

前述した組成の導電性ペーストは、大気中つまり酸化性
雰囲気中で焼成可能である。また温度は最高600℃の
温度で焼成可能である。
The conductive paste having the composition described above can be fired in the air, that is, in an oxidizing atmosphere. Further, firing can be performed at a maximum temperature of 600°C.

次に、前記導電性ペーストが大気焼成されるとき、前記
各種の添加物によりCuの酸化がどのように防止される
のかについて第1図に基づいて説明する。第1図に示す
矢印の範囲の添加物は、主どしてその温度範囲にて酸化
防止効果が働くことを示している。
Next, how the oxidation of Cu is prevented by the various additives when the conductive paste is fired in the atmosphere will be explained based on FIG. 1. The additives in the range of the arrows shown in FIG. 1 show that their antioxidant effect mainly works within that temperature range.

予備焼成後の焼成時、温度を室温から次第に上昇してい
くと、まず常温から約350℃までの範囲C」、有機ビ
ヒクルがCuの酸化を防止する。そして300℃から3
50℃の範囲においては、有機ビヒクルによるCu酸化
防止が(動(とともに、ホウ酸またはホウ酸塩粉末がガ
ラス質に変化することに伴いCuの周囲にガラス質層を
作ってCuの酸化が防止される。350°Cから400
℃の範囲になると、ホウ酸またはホウ酸塩粉末のB2O
3へのガラス質化によりCuの酸化が防止される。
When the temperature is gradually increased from room temperature during firing after pre-calcination, the organic vehicle prevents the oxidation of Cu in the range C' from room temperature to about 350°C. and from 300℃ to 3
In the range of 50°C, Cu oxidation prevention by the organic vehicle (movement) and the formation of a glassy layer around Cu as boric acid or borate powder changes to glassy state prevents Cu oxidation. from 350°C to 400°C
℃ range, boric acid or borate powder B2O
Vitrification to 3 prevents oxidation of Cu.

400℃から550°Cの範囲になると、さらにガラス
フリットがホウケイ酸ガラスを造ることによりCuの酸
化が防止される。550°Cを超えるとBが選択的に酸
化されるのに伴いCuの酸化が抑制される。600℃付
近においてはこのBの働きが顕著に作用し、Cuの酸化
が効果的に抑制される。
When the temperature ranges from 400° C. to 550° C., the oxidation of Cu is further prevented by the glass frit forming borosilicate glass. When the temperature exceeds 550°C, oxidation of Cu is suppressed as B is selectively oxidized. At around 600°C, the effect of B is significant, and the oxidation of Cu is effectively suppressed.

これらの有機ビヒクル、ホウ酸またはホウ酸塩粉末、ガ
ラスフリット、Bがそれぞれ所定の温度域において効果
的にCuの酸化防止を図る。これにより、大気中600
°C付、近の温度においても、酸化抑制効果が顕著に作
用し電動性を保持しつつ焼成可能になる。
These organic vehicles, boric acid or borate powder, glass frit, and B each effectively prevent Cu from oxidizing in a predetermined temperature range. As a result, 600
The oxidation-suppressing effect is significant even at temperatures around or near °C, making it possible to sinter while maintaining electrical properties.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

 0 導電性ペーストの原料としては、平均粒径10゜4μm
の球状Cu扮粉末、アモルファスB粉末と、ホウ酸また
はホウ酸塩粉末と、これにガラスフリットを加え、さら
に有機ビヒクルとしてエチルセルロースをテルピネオー
ルに溶解したものを使用した。これらを3本ロールミル
を用いて混練した後、#200スクリーンを用いて線幅
0.5mm×長さ100mmの線をアルミナ基板上に印
刷した。これを120℃で10分乾燥した後、600〜
650°Cで15〜20分大気焼成した。焼成後の膜厚
の平均値は50μmであった。
0 As a raw material for conductive paste, the average particle size is 10°4 μm.
A spherical Cu powder, an amorphous B powder, a boric acid or borate powder, a glass frit was added thereto, and an organic vehicle in which ethyl cellulose was dissolved in terpineol was used. After kneading these using a three-roll mill, lines with a line width of 0.5 mm and a length of 100 mm were printed on an alumina substrate using a #200 screen. After drying this at 120℃ for 10 minutes,
It was baked in the atmosphere at 650°C for 15 to 20 minutes. The average film thickness after firing was 50 μm.

得られた焼成部の表面状態を観察し、その焼成部の色相
から表面酸化状態を観察したところ、焼成部の色相は第
1表に示す通りであった。焼成部の比抵抗値について測
定したところ、その結果は第1表に示すとおりであった
When the surface condition of the obtained fired part was observed and the surface oxidation state was observed from the hue of the fired part, the hue of the fired part was as shown in Table 1. When the specific resistance value of the fired part was measured, the results were as shown in Table 1.

(以下、余白。) ■ 第1表において、実施例1〜10においては、焼成部の
比抵抗値が2]Xl0−’Ωcm以下となり、導電性が
高いことが判明した。
(The following is a blank space.) (1) In Table 1, in Examples 1 to 10, the specific resistance value of the fired portion was 2]Xl0-'Ωcm or less, indicating that the conductivity was high.

これに対し、比較例1〜4はBの含有量は本発明の範囲
から逸脱するものであり、比較例5および比較例6はボ
ウ酸またはホウ酸塩粉末を含有しない等の理由により、
比抵抗値が極めて大きいかあるい(j測定不能(50Ω
cmより抵抗大)という結果となった。また比較例7お
よび8は、それぞれ焼成温度が620℃、650°Cと
高温であったこと等により比抵抗値が大となった。これ
は、高温において酸化が過度に促進されたものと推定さ
れる。
On the other hand, in Comparative Examples 1 to 4, the content of B deviates from the scope of the present invention, and in Comparative Examples 5 and 6, for reasons such as not containing boric acid or borate powder,
The specific resistance value is extremely large or unmeasurable (50Ω)
The result was that the resistance was higher than cm. Further, in Comparative Examples 7 and 8, the specific resistance values were large because the firing temperatures were as high as 620° C. and 650° C., respectively. This is presumed to be because oxidation was excessively accelerated at high temperatures.

(発明の効果) 以上説明したように、本発明の導電性ペース1へにJ:
 A1ば、流動性、充填性、印刷性が良好なペーストで
あり、高温の大気焼成時にも酸化防止効果が適正に働く
ので、得られる導電体は電気抵抗値が小さいだけでなく
、基板との同時焼成が可能になり、簡単な生産工程によ
り良好な導電体が得られるという効果がある。
(Effect of the invention) As explained above, in the conductive paste 1 of the present invention, J:
A1 is a paste with good fluidity, filling properties, and printability, and the oxidation prevention effect works properly even during high-temperature atmospheric firing, so the resulting conductor not only has a low electrical resistance value but also has good compatibility with the substrate. Simultaneous firing becomes possible, and a good conductor can be obtained through a simple production process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は導電性ペーストに添加する各種添加物の酸化防
止効果を説明するための説明図である。
FIG. 1 is an explanatory diagram for explaining the antioxidant effects of various additives added to the conductive paste.

Claims (1)

【特許請求の範囲】 Cu粉末、B粉末、ホウ酸またはホウ酸塩粉末、ガラス
フリットおよび有機ビヒクルよりなる導電性ペーストで
あって、その組成が、 (イ)前記B粉末は、Cu粉末とB粉末の合計重量10
0重量部に対し3.5〜3.9重量部、(ロ)前記ホウ
酸またはホウ酸塩粉末は、Cu粉末とB粉末の合計重量
100重量部に対し2.0〜50.0重量部、 (ハ)前記ガラスフリットは、Cu粉末とB粉末の合計
重量100重量部に対し10〜30重量部であることを
特徴とする導電性ペースト。
[Scope of Claims] A conductive paste consisting of Cu powder, B powder, boric acid or borate powder, glass frit, and an organic vehicle, the composition of which is: (a) the B powder is composed of Cu powder and B powder; Total weight of powder 10
(b) The boric acid or borate powder is 2.0 to 50.0 parts by weight relative to 100 parts by weight of the total weight of Cu powder and B powder. (c) The conductive paste is characterized in that the glass frit is present in an amount of 10 to 30 parts by weight based on 100 parts by weight of the total weight of the Cu powder and the B powder.
JP31485789A 1989-12-04 1989-12-04 Conductive paste Pending JPH03176904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31485789A JPH03176904A (en) 1989-12-04 1989-12-04 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31485789A JPH03176904A (en) 1989-12-04 1989-12-04 Conductive paste

Publications (1)

Publication Number Publication Date
JPH03176904A true JPH03176904A (en) 1991-07-31

Family

ID=18058453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31485789A Pending JPH03176904A (en) 1989-12-04 1989-12-04 Conductive paste

Country Status (1)

Country Link
JP (1) JPH03176904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203330A (en) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd Conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203330A (en) * 1995-01-23 1996-08-09 Murata Mfg Co Ltd Conductive paste
US5618470A (en) * 1995-01-23 1997-04-08 Murata Manufacturing Co., Ltd. Electrically conductive paste

Similar Documents

Publication Publication Date Title
EP4063341A1 (en) Modification layer on surface of ceramic substrate and preparation method therefor, ceramic heating body and electronic atomization device
KR101138246B1 (en) Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
JP2007126319A (en) Bismuth-based lead-free glass composition
JPH03176904A (en) Conductive paste
JPH03176905A (en) Conductive paste
KR920001452B1 (en) Resistance materials and making method there of
KR101138238B1 (en) Manufacturing method of paste composition for resistor using coating metal oxide, thick film resistor and manufacturing method of the resistor
JPH03176903A (en) Conductive paste
WO2013031957A1 (en) Lead-free glass composition for forming conductors
KR101166709B1 (en) Manufacturing method of paste composite for resistor, thick film resistor and manufacturing method of the resistor
JP2016079084A (en) Ceramic color composition, glass sheet with ceramic color and manufacturing method therefor
JP2003267750A (en) Glass composition for coating resistive element
JP2005306677A (en) Ru-M-O FINE POWDER, METHOD OF MANUFACTURING THE SAME AND THICK FILM RESISTOR COMPOSITION USING THE SAME
JPS6130366B2 (en)
JP2684718B2 (en) Conductive paste
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
CN106782763A (en) A kind of Alumina-Based Media slurry containing tabular alumina and preparation method thereof
JPH03183640A (en) Resistor paste and ceramic substrate
JP2021193705A (en) Thick film resistor composition and thick film resistance paste including the same
CN110660500A (en) Electrode silver paste for piezoresistor
JPH051963B2 (en)
JPH05335108A (en) Thick film resistance composition and thick film resistor using thereof
JPWO2008117797A1 (en) Lead-free glass composition
JP2019031409A (en) Glass composition and glass powder