WO2021205701A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2021205701A1
WO2021205701A1 PCT/JP2021/000408 JP2021000408W WO2021205701A1 WO 2021205701 A1 WO2021205701 A1 WO 2021205701A1 JP 2021000408 W JP2021000408 W JP 2021000408W WO 2021205701 A1 WO2021205701 A1 WO 2021205701A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
voltage
unit
value
Prior art date
Application number
PCT/JP2021/000408
Other languages
English (en)
French (fr)
Inventor
悠生 工藤
鳥羽 廣次
駿介 河内
雪菜 秋山
加瀬 高弘
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to US17/905,149 priority Critical patent/US20230089057A1/en
Priority to DE112021002269.5T priority patent/DE112021002269T5/de
Publication of WO2021205701A1 publication Critical patent/WO2021205701A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present embodiment relates to a power conversion device that converts power supplied from a power supply source into AC power.
  • Such a microgrid system is composed of a plurality of solar power generation devices, a renewable energy power generation device such as a wind power generation device, or an inverter power source using a storage battery as a power source.
  • a power conversion device such as an inverter using power electronics technology.
  • the AC power converted by the power conversion device is supplied to the power system. Power converters used for inverter power supplies in such microgrid systems are known.
  • the microgrid system is connected to the upper power system.
  • the microgrid system independently supplies power to consumers even when the power supply from the upper power system is stopped.
  • the power converter may be controlled by VSG (virtual synchronous generator) control.
  • VSG virtual synchronous generator
  • the VSG control causes the power converter to simulate the operation of the synchronous generator, and maintains the system frequency and voltage in the same manner as the normal synchronous generator.
  • the power cross current is the difference between the target active power value and the output active power value of each power conversion device when it is necessary to suddenly fluctuate the output power of a plurality of power conversion devices due to load fluctuation or the like. It occurs due to the simultaneous control of adjusting the frequency accordingly.
  • VSG control consists of two controls, voltage control and phase control.
  • the voltage control is a control that uses an AVR (automatic voltage regulator) to match the output voltage with a reference value.
  • Phase control is a control that calculates a virtual mechanical angle phase based on a sway equation. Specifically, the difference between the target active power value and the output active power value added to the basic angular frequency via the first-order lag is used as the virtual mechanical angular frequency, and the virtual mechanical angular frequency is integrated to obtain the virtual mechanical angular phase. Is calculated.
  • the three-phase voltage target value for the output power is calculated from the voltage target value calculated by the two controls of voltage control and phase control and the virtual machine angle phase.
  • each power conversion device controls the output power by adjusting the virtual machine angle phase.
  • each power converter adjusts the respective virtual machine angular frequency to obtain the output active power. Take control.
  • the present embodiment aims to provide a power conversion device capable of reducing power cross current in view of the above problems.
  • the power conversion device of this embodiment has the following configuration. (1) A phase control unit that calculates a phase angle command value based on the difference between the commanded target active power value and the output active power supplied to the distribution system. (2) A voltage control unit that calculates a voltage command value based on the phase angle command value calculated by the phase control unit. (3) A power conversion unit that converts power supplied from a power supply source into AC power and outputs it to a distribution system based on the voltage command value calculated by the voltage control unit.
  • the figure which shows the structure of the power conversion system which concerns on 1st Embodiment The figure which shows the structure of the power conversion apparatus which concerns on 1st Embodiment
  • the figure which shows the output active power, the virtual machine angular frequency of the power conversion apparatus which concerns on the prior art The figure which shows the structure of the power conversion apparatus which concerns on 2nd Embodiment.
  • the figure which shows the output active power and the virtual machine angular frequency of the power conversion apparatus which concerns on 2nd Embodiment The figure which shows the structure of the voltage control part and the phase control part of the power conversion apparatus which concerns on another embodiment.
  • the power conversion device 1 and the power conversion system 100 according to the embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments shown below are examples and are not construed as being limited to these embodiments. In the present embodiment, when there are a plurality of devices and members having the same configuration, they will be described with the same number. In addition, when explaining each device or member having the same configuration, a common number is distinguished by adding an alphabetic (lowercase) subscript.
  • the configuration of the power conversion device 1 and the power conversion system 100 will be described as an example of the present embodiment with reference to FIGS. 1 to 3.
  • the power conversion system 100 is composed of a plurality of inverter power supplies 6, a step-up transformer 7, and an EMS (Energy Management System) 4.
  • the power conversion system 100 has three inverter power supplies 6a, 6b, 6c.
  • the inverter power supplies 6a, 6b, and 6c are connected to the distribution system 5 via step-up transformers 7a, 7b, and 7c, respectively.
  • a load 9 is connected to the distribution system 5.
  • the distribution system 5 is connected to the upper system 2 via the circuit breaker 3.
  • the upper system 2 supplies the power generated by power generation facilities such as thermal power, hydraulic power, and nuclear power to the distribution system 5.
  • the distribution system 5 supplies electric power to the load 9.
  • Power is supplied from the upper system 2 or the inverter power supplies 6a, 6b, 6c to the loads 9a, 9b, 9c via the power distribution system 5.
  • the power conversion system 100 may be composed of an arbitrary number of inverter power supplies 6a to 6n. Further, the power distribution system 5 may be connected to any number of loads 9a to 9n.
  • the inverter power supply 6 includes a power conversion device 1 described later.
  • the inverter power supplies 6a, 6b, and 6c include power conversion devices 1a, 1b, and 1c, respectively.
  • the power conversion devices 1a, 1b, and 1c are connected to the EMS 4 via the communication line 8.
  • the power conversion devices 1a, 1b, and 1c control the output active power P based on the target active power value Pe commanded by the EMS 4.
  • FIG. 2 shows the configuration of the inverter power supply 6.
  • the inverter power supply 6 includes a power conversion device 1 and a power supply 60.
  • the inverter power supplies 6a, 6b, and 6c have a similar configuration.
  • the power source 60 is composed of a renewable energy power source such as a solar power generation facility or a wind power generation facility.
  • the power supply 60 generates DC power and supplies it to the power conversion device 1.
  • the power supply 60 may be composed of a storage battery.
  • the power supply 60 composed of the storage battery is charged by converting the AC power of the distribution system 5 into DC power by the power conversion device 1.
  • the power supply 60 which is a storage battery, outputs DC power and supplies it to the power conversion device 1.
  • the power conversion device 1 is connected to the step-up transformer 7 and the power supply 60.
  • the power conversion device 1 converts the DC power output from the power supply 60 into AC power and supplies it to the distribution system 5 via the step-up transformer 7.
  • the power conversion device 1 includes a power conversion unit 52, a volt-ammeter side unit 53, a control unit 54, and a gate pulse generation unit 55.
  • the power conversion device 1 may have an interconnection reactor or a harmonic filter between the power conversion unit 52 and the step-up transformer 7.
  • the power conversion unit 52 is composed of a semiconductor switch such as a field effect transistor (FET).
  • FET field effect transistor
  • the power conversion unit 52 is connected to the power supply 60 and the step-up transformer 7.
  • the power conversion unit 52 is controlled by the gate pulse generation unit 55.
  • the power conversion unit 52 converts the DC power output from the power supply 60 into AC power and supplies it to the distribution system 5 via the step-up transformer 7.
  • the power conversion unit 52 converts the AC power of the distribution system 5 into DC power and supplies it to the power source 60.
  • the DC power converted by the power conversion unit 52 is stored in the power supply 60.
  • the voltage / current measuring unit 53 is composed of a measuring transformer, a measuring current transformer, and the like.
  • the voltage / current measuring unit 53 is arranged at the interconnection point between the power conversion unit 52 and the step-up transformer 7 or the distribution system 5, and is connected to the control unit 54.
  • the voltage / current measuring unit 53 measures the voltage and current at the interconnection point between the power conversion device 1 and the step-up transformer 7 or the distribution system 5.
  • the voltage / current measuring unit 53 measures the amplitude, frequency, and phase of the voltage to obtain the measured voltage value Vs, and measures the amplitude, frequency, and phase of the current to obtain the measured current value Is.
  • the voltage / current measurement unit 53 outputs the voltage measurement value Vs and the current measurement value Is to the control unit 54.
  • the control unit 54 is composed of a hardware circuit, a microcomputer, or the like.
  • the control unit 54 is connected to the voltage / current measurement unit 53 and the gate pulse generation unit 55.
  • the control unit 54 creates a control signal based on the voltage measurement value Vs and the current measurement value Is output from the voltage / current measurement unit 53, and outputs the control signal to the gate pulse generation unit 55.
  • the control signal is a signal that controls the gate pulse generation unit 55, and is a sinusoidal voltage waveform.
  • the control signal is composed of three-phase voltage command values Vu, Vv, and Vw.
  • the control signal commands the voltage amplitude, frequency, and phase.
  • the control signal may command the voltage amplitude, frequency, and phase by telegram.
  • the gate pulse generator 55 is composed of a hardware circuit, a microcomputer, or the like.
  • the gate pulse generation unit 55 is connected to the control unit 54 and the power conversion unit 52.
  • the gate pulse generation unit 55 generates a gate signal based on the voltage amplitude, frequency, and phase applied to the control signal received from the control unit 54, and outputs the gate signal to the power conversion unit 52.
  • the gate signal is a signal that modulates the output voltage waveform of the power conversion unit 52, and is, for example, a pulse width modulation (PWM modulation) signal that controls On / Off of the semiconductor switch of the power conversion unit 52.
  • PWM modulation pulse width modulation
  • the power conversion unit 52 converts the DC power output from the power supply 60 into AC power according to the voltage amplitude, frequency, and phase controlled by the gate pulse generation unit 55, and supplies the DC power to the distribution system 5 via the step-up transformer 7.
  • the control unit 54 is composed of a voltage control unit 10 and a phase control unit 20.
  • the phase control unit 20 is composed of the control block shown in FIG. 3 (b).
  • the phase control unit 20 includes a subtraction unit 21, a first-order lag system 22, an addition unit 23, an integrator 24, and a proportional control unit 25.
  • the subtraction unit 21, the first-order lag system 22, the addition unit 23, and the integrator 24 of the phase control unit 20 are connected in series in this order.
  • the proportional control unit 25 is connected in parallel to the first-order lag system 22.
  • the control amount output from the proportional control unit 25 is added to the control amount output from the primary delay system 22 by the addition unit 23.
  • the target active power value Pe is input to the subtraction unit 21 of the phase control unit 20.
  • the target active power value Pe is transmitted from EMS4.
  • the output active power P applied to the power output from the power conversion device 1 is input to the subtraction unit 21.
  • the output active power P is calculated by the control unit 54 based on the voltage measurement value Vs, the current measurement value Is, and the phase angle ⁇ s measured by the voltage / current measurement unit 53.
  • the reference angular frequency ⁇ 0 and the control amount output from the proportional control unit 25 are input to the addition unit 23.
  • the reference angular frequency ⁇ 0 may be transmitted from the EMS 4 or may be preset and held by the phase control unit 20.
  • the subtraction unit 21 subtracts the output active power P from the target active power value Pe.
  • the control amount for the primary delay processing is calculated by the primary delay system 22 based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 21.
  • the proportional control unit 25 calculates the control amount for proportional control based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 21. After that, the control amount calculated by the primary delay system 22, the control amount calculated by the proportional control unit 25, and the reference angular frequency ⁇ 0 are added by the addition unit 23 and converted into the phase angle command value ⁇ m by the integrator 34. NS.
  • the voltage control unit 10 is composed of the control block shown in FIG. 3A.
  • the voltage control unit 10 is composed of a subtraction unit 11, a primary delay system 12, a PI control unit 13, a dq / abc conversion unit 14, and an abc / dq conversion unit 15.
  • the subtraction unit 11, the primary delay system 12, the PI control unit 13, and the dq / abc conversion unit 14 of the voltage control unit 10 are connected in series in this order.
  • the abc / dq conversion unit 15 is connected to the subtraction unit 11.
  • the voltage control unit 10 may not have the primary delay system 12.
  • the voltage measurement value Vs measured by the voltage / current measurement unit 53 is input to the abc / dq conversion unit 15 of the voltage control unit 10.
  • the voltage measurement value Vs is measured and transmitted by the voltage / current measurement unit 53.
  • the phase angle command value ⁇ m is input to the abc / dq conversion unit 15.
  • the phase angle command value ⁇ m is calculated by the phase control unit 20.
  • the reference voltage value V0 is input to the subtraction unit 11.
  • the reference voltage value V0 may be transmitted from the EMS 4 or may be preset and held by the voltage control unit 10.
  • the phase angle command value ⁇ m is input to the dq / abc conversion unit 14.
  • the voltage measurement value Vs is converted into the d-axis voltage Vsd by the abc / dq conversion unit 15.
  • the subtraction unit 11 subtracts the d-axis voltage Vsd from the reference voltage value V0. Based on the difference between the reference voltage value V0 subtracted by the subtracting unit 11 and the d-axis voltage Vsd, the primary delay system 12 calculates the control amount applied to the primary delay processing. After that, the control amount calculated by the primary delay system 12 is PI-controlled by the PI control unit 13, and the voltage command value Vd is calculated.
  • the voltage command value Vd calculated by the PI control unit 13 is phase-controlled by the phase angle command value ⁇ m in the dq / abc conversion unit 14, and is converted into three-phase voltage command values Vu, Vv, and Vw.
  • the three-phase voltage command values Vu, Vv, and Vw are control signals that command the amplitude, frequency, and phase of the voltage of each of the three phases, and are composed of voltage waveforms.
  • the three-phase voltage command values Vu, Vv, and Vw are control signals that control the gate pulse generation unit 22.
  • the three-phase voltage command values Vu, Vv, and Vw command the voltage amplitude, frequency, and phase according to the voltage waveform.
  • the control signals related to the voltage command values Vu, Vv, and Vw may command the voltage amplitude, frequency, and phase by telegram.
  • the above is the configuration of the power conversion device 1 and the power conversion system 100.
  • the control unit 54 of the power conversion device 1 calculates the phase angle command value ⁇ m by the phase control unit 20 based on the control amount for proportional control based on the difference between the target active power value Pe and the output active power P, and the phase angle.
  • the voltage control unit 10 calculates the voltage command values Vu, Vv, and Vw based on the command value ⁇ m.
  • the gate pulse generation unit 55 of the power conversion device 1 controls the power conversion unit 52 based on the voltage command values Vu, Vv, and Vw calculated by the control unit 54.
  • the target active power value Pe is input to the subtraction unit 21 of the phase control unit 20.
  • the target active power value Pe is transmitted from EMS4.
  • the output active power P applied to the power output from the power conversion device 1 is input to the subtraction unit 21.
  • the output active power P is calculated by the control unit 54 based on the voltage measurement value Vs, the current measurement value Is, and the phase angle ⁇ s measured by the voltage / current measurement unit 53.
  • the reference angular frequency ⁇ 0 is input to the addition unit 23.
  • the reference angular frequency ⁇ 0 may be transmitted from the EMS 4 or may be preset and held by the phase control unit 20.
  • the subtraction unit 21 subtracts the output active power P from the target active power value Pe.
  • the control amount for the primary delay processing is calculated by the primary delay system 22 based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 21.
  • the proportional control unit 25 calculates the control amount for proportional control based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 21.
  • the control amount applied to the proportional control is calculated by multiplying the difference between the target active power value Pe and the output active power P by the proportional gain K.
  • the voltage measurement value Vs measured by the voltage / current measurement unit 53 is input to the abc / dq conversion unit 15 of the voltage control unit 10.
  • the voltage measurement value Vs is measured and transmitted by the voltage / current measurement unit 53.
  • the phase angle command value ⁇ m is input to the abc / dq conversion unit 15.
  • the phase angle command value ⁇ m is calculated by the phase control unit 20.
  • the reference voltage value V0 is input to the subtraction unit 11.
  • the reference voltage value V0 may be transmitted from the EMS 4 or may be preset and held by the voltage control unit 10.
  • the phase angle command value ⁇ m is input to the dq / abc conversion unit 14.
  • the voltage measurement value Vs is converted into the d-axis voltage Vsd by the abc / dq conversion unit 15.
  • the subtraction unit 11 subtracts the d-axis voltage Vsd from the reference voltage value V0. Based on the difference between the reference voltage value V0 subtracted by the subtracting unit 11 and the d-axis voltage Vsd, the primary delay system 12 calculates the control amount applied to the primary delay processing. After that, the control amount calculated by the primary delay system 12 is PI-controlled by the PI control unit 13, and the voltage command value Vd is calculated.
  • the voltage command value Vd calculated by the PI control unit 13 is phase-controlled by the phase angle command value ⁇ m in the dq / abc conversion unit 14, and is converted into three-phase voltage command values Vu, Vv, and Vw.
  • the three-phase voltage command values Vu, Vv, and Vw are control signals that command the amplitude, frequency, and phase of the voltage of each of the three phases, and are composed of voltage waveforms.
  • the three-phase voltage command values Vu, Vv, and Vw are control signals that control the gate pulse generation unit 22.
  • the three-phase voltage command values Vu, Vv, and Vw command the voltage amplitude, frequency, and phase according to the voltage waveform.
  • the control signals related to the voltage command values Vu, Vv, and Vw may command the voltage amplitude, frequency, and phase by telegram.
  • proportional gain K related to the control amount applied to the proportional control calculated by the proportional control unit 25 is calculated as follows.
  • the proportional gain K is calculated based on the frequency fluctuation ⁇ f with respect to the output fluctuation ⁇ P of the inverter power supply 6.
  • ⁇ P is calculated by the following equation.
  • the target active power value is shown as Pe
  • the output active power is shown as P.
  • ⁇ P (Pe-P) ⁇ ⁇ ⁇ ⁇ ⁇ (Equation 1)
  • the maximum expected output fluctuation value is ⁇ Pmax
  • the maximum allowable frequency fluctuation is ⁇ fmax.
  • the virtual power conversion device 1 is virtual.
  • the virtual mechanical angular frequency (angular frequency ⁇ ) is as shown in FIG. 5 by the change in the mechanical angular frequency (angular frequency ⁇ ).
  • the output active power P and the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1 are as shown in FIG.
  • the output active power P fluctuates due to the load fluctuation, and the difference between the target active power value Pe and the output active power P is added to the reference angular frequency ⁇ 0 via the primary delay system 22 and the proportional control unit 25 connected in parallel. .. That is, the change in the virtual machine angular frequency (angular frequency ⁇ ) is the sum of the control amount by the primary delay system 22 and the control amount by the proportional control unit 25. The change in the virtual machine angular frequency (angular frequency ⁇ ) is increased by the amount of control by the proportional control unit 25 as compared with the case where the control is performed by the first-order lag system 22 that does not have the proportional control unit 25. There is.
  • the phase control unit 20 having the proportional control unit 25 shown in FIG. 3 can rapidly change the phase angle command value ⁇ m when the load fluctuates. As a result, the vibration of the output active power P output from the power conversion device 1 is suppressed, and as a result, the power cross current is reduced.
  • the control amount calculated by the primary delay system 22, the control amount calculated by the proportional control unit 25, and the reference frequency ⁇ 0 are added by the addition unit 23 and integrated as the virtual mechanical angular frequency (angular frequency ⁇ ) by the integrator 24. It is converted to the phase angle command value ⁇ m.
  • the virtual machine due to the change in the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1.
  • the angular frequency (angular frequency ⁇ ) is as shown in FIG.
  • the output active power P and the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1 are as shown in FIG.
  • the output active power P fluctuates due to the load fluctuation. Therefore, the difference between the target active power value Pe and the output active power P is the reference angular frequency via the primary delay system 22. It is added to ⁇ 0.
  • phase control unit 20 Since the phase control unit 20 does not have the proportional control unit 25, the phase control unit 20 which does not have the proportional control unit 25 shown in FIG. 4 cannot rapidly change the phase angle command value ⁇ m when the load fluctuates. Therefore, the vibration of the output active power P output from the power conversion device 1 is not suppressed, and as a result, the power cross current is not reduced.
  • the above is an outline of the operation of the power conversion device 1 and the power conversion system 100 according to the first embodiment.
  • the power conversion device 1 calculates the phase angle command value ⁇ m based on the difference between the commanded target active power value Pe and the output active power P supplied to the distribution system 5.
  • the voltage control unit 10 that calculates the voltage command values Vu, Vv, Vw based on the phase control unit 20 and the phase angle command value ⁇ m calculated by the phase control unit 20, and the voltage command value calculated by the voltage control unit 10. Since it has a power conversion unit 52 that converts the power supplied from the power supply source 60 into AC power and outputs the power to the distribution system 5 based on Vu, Vv, and Vw, the power conversion that can reduce the power cross current can be reduced.
  • the device 1 can be provided.
  • the phase control unit 20 of the power conversion device 1 has a control amount for proportional control based on the difference between the target active power value Pe and the output active power P, and the target active power value Pe. Since the phase angle command value ⁇ m is calculated by adding the control amount by the first-order lag system based on the difference from the output active power P, the phase angle command value ⁇ m can be rapidly changed when the load fluctuates. As a result, vibration of the electric power output from the electric power converter 1 can be suppressed. As a result, power crossflow is reduced.
  • the control unit 54 of the power conversion device 1 according to the first embodiment includes a phase control unit 20, but the control unit 54 of the power conversion device 1 according to the second embodiment replaces the phase control unit 20 and has a phase.
  • a control unit 30 is provided.
  • a voltage measuring device 61 is arranged between the step-up transformer 7 and the distribution system 5. The voltage measuring device 61 outputs the voltage measured value of the distribution system 5 to the control unit 54 of the inverter power supply 6. Other configurations are the same as those of the power conversion device 1 according to the first embodiment.
  • the phase control unit 30 is composed of the control block shown in FIG. 10 (b).
  • the phase control unit 30 includes a subtraction unit 31, a first-order lag system 32, an addition unit 33, an integrator 34, a proportional control unit 35, a multiplication unit 36, a subtraction unit 37, and a subtraction unit 38.
  • the subtraction unit 31, the first-order lag system 32, the addition unit 33, and the integrator 34 of the phase control unit 30 are connected in series in this order.
  • the proportional control unit 35 is connected in parallel to the first-order lag system 32.
  • the control amount output from the proportional control unit 35 is added to the control amount output from the primary delay system 32 by the addition unit 33.
  • the target active power value Pe is input to the subtraction unit 31 of the phase control unit 30.
  • the target active power value Pe is transmitted from EMS4.
  • the output active power P applied to the power output from the power conversion device 1 is input to the subtraction unit 31.
  • the output active power P is calculated by the control unit 54 based on the voltage measurement value Vs, the current measurement value Is, and the phase angle ⁇ s measured by the voltage / current measurement unit 53.
  • the reference angular frequency ⁇ 0 and the control amount output from the proportional control unit 35 are input to the addition unit 33.
  • the reference angular frequency ⁇ 0 may be transmitted from the EMS 4 or may be preset and held by the phase control unit 30.
  • the subtraction unit 31 subtracts the output active power P from the target active power value Pe. Based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 31, the control amount for the primary delay processing is calculated by the primary delay system 32.
  • the proportional control unit 35 calculates a control amount for proportional control, which will be described later. After that, the control amount calculated by the first-order lag system 32, the control amount calculated by the proportional control unit 35, and the reference angular frequency ⁇ 0 are added by the adding unit 33, integrated by the integrator 34, and the phase angle command value ⁇ m. Is converted to.
  • the multiplication unit 36 multiplies the target active power value Pe and the numerical value (X / (Vsrms ⁇ Vgrms)) to calculate the target phase angle difference ( ⁇ m ⁇ g) x.
  • X is the reactance of the step-up transformer 7 to which the power conversion device 1 is connected.
  • the reactance X is preset and held in the phase control unit 30.
  • Vsrms is an effective value of the measured voltage value Vs.
  • Vgrms is an effective value of the voltage Vg of the distribution system 5.
  • the voltage effective value Vgrms is measured by the voltage measuring device 61.
  • the subtraction unit 37 calculates the actually measured phase angle difference ( ⁇ m ⁇ g), which is the difference between the phase angle command value ⁇ m and the system phase angle ⁇ g, and outputs it to the subtraction unit 38.
  • the phase angle command value ⁇ m is output from the integrator 34.
  • the system phase angle ⁇ g is calculated based on the voltage Vg of the distribution system 5.
  • the subtraction unit 38 calculates the difference between the target phase angle difference ( ⁇ m- ⁇ g) x and the measured phase angle difference ( ⁇ m- ⁇ g) and outputs it to the proportional control unit 35. Based on the difference between the target phase angle difference ( ⁇ m- ⁇ g) x and the measured phase angle difference ( ⁇ m- ⁇ g), the proportional control unit 35 calculates the control amount for proportional control. After that, the control amount calculated by the first-order lag system 32, the control amount calculated by the proportional control unit 35, and the reference angular frequency ⁇ 0 are added by the adding unit 33, integrated by the integrator 34, and the phase angle command value ⁇ m. Is converted to.
  • the voltage control unit 10 is composed of the control block shown in FIG. 10A, as in the first embodiment.
  • the voltage measurement value Vs measured by the voltage / current measurement unit 53 is input to the abc / dq conversion unit 15 of the voltage control unit 10.
  • the voltage measurement value Vs is measured and transmitted by the voltage / current measurement unit 53.
  • the phase angle command value ⁇ m is input to the abc / dq conversion unit 15.
  • the phase angle command value ⁇ m is calculated by the phase control unit 30.
  • the reference voltage value V0 is input to the subtraction unit 11.
  • the reference voltage value V0 may be transmitted from the EMS 4 or may be preset and held by the voltage control unit 10.
  • the phase angle command value ⁇ m is input to the dq / abc conversion unit 14.
  • the voltage measurement value Vs is converted into the d-axis voltage Vsd by the abc / dq conversion unit 15.
  • the subtraction unit 11 subtracts the d-axis voltage Vsd from the reference voltage value V0. Based on the difference between the reference voltage value V0 subtracted by the subtracting unit 11 and the d-axis voltage Vsd, the primary delay system 12 calculates the control amount applied to the primary delay processing. After that, the control amount calculated by the primary delay system 12 is PI-controlled by the PI control unit 13, and the voltage command value Vd is calculated.
  • the voltage command value Vd calculated by the PI control unit 13 is phase-controlled by the phase angle command value ⁇ m in the dq / abc conversion unit 14, and is converted into three-phase voltage command values Vu, Vv, and Vw.
  • proportional gain K related to the control amount applied to the proportional control calculated by the proportional control unit 35 is calculated as follows.
  • the relationship between the output fluctuation ⁇ P and the frequency fluctuation ⁇ f can be expressed by the following equation.
  • the phase angle is ⁇ m
  • the phase angle of the entire distribution system 5 is ⁇ g
  • the sum of the reactors of the step-up transformer 7 and the PCS reactor to which the power conversion device 1 is connected is the reactorance.
  • Vsrms be the effective voltage value of the transformer power supply 6 which is the X and PCS output terminal voltage
  • Vgrms be the effective voltage value of the distribution system 5 which is the grid interconnection point voltage.
  • Equation 7 when K ⁇ (VsrmsVgrms) / XD, the frequency fluctuation ⁇ f is twice or more as compared with (Equation 4), which is inconvenient. Therefore, it is desirable that K ⁇ (VsrmsVgrms) / XD.
  • phase angle command value ⁇ m is calculated by the phase control unit 30 shown in FIG. 10B and the voltage command value Vd is calculated by the voltage control unit 10 based on the phase angle command value ⁇ m, the power conversion device.
  • the virtual machine angular frequency (angular frequency ⁇ ) of 1 is as shown in FIG. 11 by the change in the virtual machine angular frequency (angular frequency ⁇ ).
  • the output active power P and the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1 are as shown in FIG.
  • the output active power P fluctuates due to the load fluctuation, and the difference between the target active power value Pe and the output active power P is added to the reference angular frequency ⁇ 0 via the primary delay system 32.
  • the difference between the target phase angle difference ( ⁇ m- ⁇ g) x between the virtual machine angle and the grid interconnection point and the measured phase angle difference ( ⁇ m- ⁇ g) is controlled by proportional control by the proportional control unit 35 having the proportional gain K. Is converted to and added to the reference angular frequency ⁇ 0.
  • the target phase angle difference ( ⁇ m- ⁇ g) x is a prediction of the convergence value.
  • the target phase angle difference ( ⁇ m ⁇ g) x is the reactance X, which is the sum of the reactances of the target active power value Pe, the PCS reactor, and the step-up transformer 7, the voltage effective value Vsrms of the voltage measurement value Vs, and the voltage Vg of the distribution system 5. It is calculated from the effective voltage value Vgrms.
  • the change in the virtual machine angular frequency (angular frequency ⁇ ) is the sum of the control amount by the primary delay system 32 and the control amount by the proportional control unit 35.
  • the change in the virtual machine angular frequency (angular frequency ⁇ ) is increased by the amount of control by the proportional control unit 35 as compared with the case where the control is performed by the first-order lag system 32 that does not have the proportional control unit 35. There is.
  • the phase control unit 30 having the proportional control unit 35 shown in FIG. 10B can rapidly change the phase angle command value ⁇ m when the load fluctuates. As a result, the vibration of the output active power P output from the power conversion device 1 is suppressed, and as a result, the power cross current is reduced.
  • the control amount calculated by the primary delay system 32, the control amount calculated by the proportional control unit 35, and the reference frequency ⁇ 0 are added by the addition unit 33 and integrated as the virtual mechanical angular frequency (angular frequency ⁇ ) by the integrator 34. It is converted to the phase angle command value ⁇ m.
  • the above is an outline of the configuration and operation of the power conversion device 1 and the power conversion system 100 according to the second embodiment.
  • the phase control unit 30 of the power conversion device 1 controls proportional control based on the difference between the target phase angle difference ( ⁇ m- ⁇ g) x and the measured phase angle difference ( ⁇ m- ⁇ g). Since the phase angle command value ⁇ m is calculated by adding the amount and the control amount by the first-order lag system based on the difference between the target active power value Pe and the output active power P, the phase angle command value ⁇ m can be quickly set when the load fluctuates. Can be varied to. As a result, vibration of the electric power output from the electric power converter 1 can be suppressed. As a result, power crossflow is reduced.
  • the target phase angle difference ( ⁇ m ⁇ g) x is the phase control unit based on the target active power value Pe, the reactorance X up to the distribution system 5, the output voltage effective values Vsrms, and Vgrms. Since it is calculated by 30, the target phase angle difference ( ⁇ m- ⁇ g) x by instructing the measured voltage measurement value Vs and the voltage effective values Vsrms and Vgrms of the voltage measurement value based on the voltage Vg of the distribution system 5. Is calculated, and the power cross current can be efficiently reduced according to the situation of the distribution system 5.
  • the control unit 54 of the power conversion device 1 has the configuration shown in FIG. 3, but the control unit 54 of the power conversion device 1 has the configuration shown in FIG. It may be. That is, the phase control unit 20 may be configured by the control block shown in FIG. 13 (b).
  • the phase control unit 20 according to the first embodiment is composed of a subtraction unit 21, a first-order lag system 22, an addition unit 23, an integrator 24, and a proportional control unit 25.
  • the phase control unit 20 does not have the first-order lag system 22, and may be composed of the subtraction unit 21, the proportional control unit 25, the addition unit 23, and the integrator 24.
  • the target active power value Pe is input to the subtraction unit 21 of the phase control unit 20.
  • the target active power value Pe is transmitted from EMS4.
  • the output active power P applied to the power output from the power conversion device 1 is input to the subtraction unit 21.
  • the output active power P is calculated by the control unit 54 based on the voltage measurement value Vs, the current measurement value Is, and the phase angle ⁇ s measured by the voltage / current measurement unit 53.
  • the reference angular frequency ⁇ 0 is input to the addition unit 23.
  • the reference angular frequency ⁇ 0 may be transmitted from the EMS 4 or may be preset and held by the phase control unit 20.
  • the subtraction unit 21 subtracts the output active power P from the target active power value Pe.
  • the proportional control unit 25 calculates the control amount for proportional control based on the difference between the target active power value Pe and the output active power P subtracted by the subtraction unit 21.
  • the control amount applied to the proportional control is calculated by multiplying the difference between the target active power value Pe and the output active power P by the proportional gain K.
  • the control amount and the reference angular frequency ⁇ 0 calculated by the proportional control unit 25 are added by the adding unit 23, integrated by the integrator 24, and converted into the phase angle command value ⁇ m.
  • the voltage measurement value Vs measured by the voltage / current measurement unit 53 is input to the abc / dq conversion unit 15 of the voltage control unit 10.
  • the voltage measurement value Vs is measured and transmitted by the voltage / current measurement unit 53.
  • the phase angle command value ⁇ m is input to the abc / dq conversion unit 15.
  • the phase angle command value ⁇ m is calculated by the phase control unit 20.
  • the reference voltage value V0 is input to the subtraction unit 11.
  • the reference voltage value V0 may be transmitted from the EMS 4 or may be preset and held by the voltage control unit 10.
  • the phase angle command value ⁇ m is input to the dq / abc conversion unit 14.
  • the voltage measurement value Vs is converted into the d-axis voltage Vsd by the abc / dq conversion unit 15.
  • the subtraction unit 11 subtracts the d-axis voltage Vsd from the reference voltage value V0. Based on the difference between the reference voltage value V0 subtracted by the subtracting unit 11 and the d-axis voltage Vsd, the primary delay system 12 calculates the control amount applied to the primary delay processing. After that, the control amount calculated by the primary delay system 12 is PI-controlled by the PI control unit 13, and the voltage command value Vd is calculated.
  • the voltage command value Vd calculated by the PI control unit 13 is phase-controlled by the phase angle command value ⁇ m in the dq / abc conversion unit 14, and is converted into three-phase voltage command values Vu, Vv, and Vw.
  • the change in the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1 and the virtual machine angular frequency (angular frequency ⁇ ) are as shown in FIG.
  • the output active power P and the virtual machine angular frequency (angular frequency ⁇ ) of the power conversion device 1 are as shown in FIG.
  • the phase control unit 20 of the power conversion device 1 calculates the phase angle command value ⁇ m based on the control amount for proportional control based on the difference between the target active power value Pe and the output active power P. Therefore, the phase angle command value ⁇ m can be rapidly changed when the load fluctuates. As a result, vibration of the electric power output from the electric power converter 1 can be suppressed. As a result, power crossflow is reduced. Further, with such a configuration, the phase control unit 20 does not have the first-order lag system 22, and the number of parts or the number of control blocks can be reduced. Thereby, the power conversion device 1 having a simple configuration can be provided.
  • in the power conversion system 100 three inverter power supplies 6 are connected to the distribution system 5, but the number of inverter power supplies 6 connected to the distribution system 5 is not limited to this. ..
  • the quantity of the inverter power supply 6 connected to the distribution system 5 may be two, or four or more.
  • power generation facilities such as thermal power, hydraulic power, and nuclear power may be connected to the power distribution system 5.
  • the power source 60 of the inverter power source 6 is composed of a renewable energy power source such as a solar power generation facility or a wind power generation facility, but the power source 60 is not limited to this.
  • the power source 60 may be a fuel cell, a device that generates electricity by geothermal power generation, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

電力横流を軽減することができる電力変換装置を提供する。 電力変換装置1は、指令された目標有効電力値Peと配電系統5に供給された出力有効電力Pとの差分に基づき、位相角指令値θmを算出する位相制御部20と、位相制御部20により算出された位相角指令値θmに基づき、電圧指令値Vu、Vv、Vwを算出する電圧制御部10と、電圧制御部10により算出された電圧指令値Vu、Vv、Vwに基づき、電力供給源60から供給された電力を交流電力に変換して配電系統5に出力する電力変換部52と、を有する。

Description

電力変換装置
 本実施形態は、電力供給源から供給される電力を交流電力に変換する電力変換装置に関する。
 近年、自立可能なマイクログリッドシステムの導入が進められている。このようなマイクログリッドシステムは、複数台の太陽光発電装置や風力発電装置のような再生可能エネルギー発電装置、または蓄電池を電源としたインバータ電源により構成される。インバータ電源において、太陽光発電、風力発電または蓄電池等から出力された電力が、パワーエレクトロニクス技術を用いたインバータ等の電力変換装置により、交流の電力に変換される。電力変換装置により変換された交流電力が、電力系統に供給される。このようなマイクログリッドシステムにおけるインバータ電源に使用される電力変換装置が知られている。
特開2007-318833号公報 特許4846450号
 マイクログリッドシステムは、上位の電力系統に連系される。マイクログリッドシステムは、上位の電力系統からの電力供給が停止した場合においても、自立して需要家に電力供給を行う。
 マイクログリッドシステムが自立して電力供給を行う場合、インバータ電源に通常用いられる系統連系制御である定電力型制御を適用して系統周波数、電圧を維持することは困難である。マイクログリッドシステムが自立して電力供給を行う場合、VSG(virtual synchronous generator:仮想同期発電機)制御により電力変換装置が制御される場合がある。VSG制御は、電力変換装置に同期発電機の動作を模擬させるものであり、通常の同期発電機と同様に系統周波数、電圧が維持される。
 しかしながら、マイクログリッドシステムにおける複数の電力変換装置をVSG制御により制御した場合、電力変換装置相互間で有効電力を振動的に授受する電力横流と呼ばれる事象が発生する場合がある。電力横流は、負荷変動などにより複数の電力変換装置の出力電力を急激に変動させることが必要とされた場合等において、各電力変換装置がそれぞれの目標有効電力値と出力有効電力値の差分に応じて周波数を調整する制御を同時に行うことに起因して発生する。
 VSG制御は電圧制御、位相制御の2つの制御により構成される。電圧制御は、AVR(automatic voltage regulator)を使用し、出力電圧を基準値に一致させる制御である。位相制御は、仮想的な機械角位相を動揺方程式に基づいて算出する制御である。具体的には、目標有効電力値と出力有効電力値の差分を、一次遅れを介して基本角周波数に加算したものを仮想機械角周波数とし、仮想機械角周波数を積分することにより仮想機械角位相が算出される。電圧制御、位相制御の2つの制御により算出された電圧目標値と仮想機械角位相により、出力電力にかかる三相電圧目標値が算出される。
 マイクログリッドシステムにおける複数の電力変換装置をVSG制御により制御する場合、各電力変換装置は、仮想機械角位相を調整することにより出力電力の制御を行う。負荷変動などにより複数の電力変換装置の出力電力を急激に変動させることが必要とされた場合等において、各電力変換装置はそれぞれの仮想機械角周波数を調整することにより、出力される有効電力の制御を行う。
 電力変換装置が複数存在する場合、周波数調整における過剰分または不足分は、複数の電力変換装置間で調整される。しかしながら、一次遅れを介しているため、電力変換装置間の調整が安定に至るまでの一定時間の間、振動が生じる。これにより電力横流が発生する。各電力変換装置は、一定時間経過後に同一の周波数で動作し安定する。電力変換装置間における電力横流は、必要な電力変換装置の容量を増大させるとの問題点があった。
 本実施形態は、上記の問題点に鑑み、電力横流を軽減することができる電力変換装置を提供することを目的とする。
 本実施形態の電力変換装置は、次のような構成を有する。
(1)指令された目標有効電力値と配電系統に供給された出力有効電力との差分に基づき、位相角指令値を算出する位相制御部。
(2)前記位相制御部により算出された前記位相角指令値に基づき、電圧指令値を算出する電圧制御部。
(3)前記電圧制御部により算出された前記電圧指令値に基づき、電力供給源から供給された電力を交流電力に変換して配電系統に出力する電力変換部。
第1実施形態にかかる電力変換システムの構成を示す図 第1実施形態にかかる電力変換装置の構成を示す図 第1実施形態にかかる電力変換装置の電圧制御部、位相制御部の構成を示す図 従来技術にかかる電力変換装置の電圧制御部、位相制御部の構成を示す図 第1実施形態にかかる電力変換装置の仮想機械角周波数変化分、仮想機械角周波数を示す図 従来技術にかかる電力変換装置の仮想機械角周波数変化分、仮想機械角周波数を示す図 第1実施形態にかかる電力変換装置の出力有効電力、仮想機械角周波数を示す図 従来技術にかかる電力変換装置の出力有効電力、仮想機械角周波数を示す図 第2実施形態にかかる電力変換装置の構成を示す図 第2実施形態にかかる電力変換装置の電圧制御部、位相制御部の構成を示す図 第2実施形態にかかる電力変換装置の仮想機械角周波数変化分、仮想機械角周波数を示す図 第2実施形態にかかる電力変換装置の出力有効電力、仮想機械角周波数を示す図 他の実施形態にかかる電力変換装置の電圧制御部、位相制御部の構成を示す図 他の実施形態にかかる電力変換装置の仮想機械角周波数変化分、仮想機械角周波数を示す図 他の実施形態にかかる電力変換装置の出力有効電力、仮想機械角周波数を示す図
 以下、本発明の実施形態に係る電力変換装置1および電力変換システム100について、図面を参照しながら説明する。なお、以下に示す実施形態は、一例であってこれらの実施形態に限定して解釈されるものではない。本実施形態において、同一構成の装置や部材が複数ある場合にはそれらについて同一の番号を付して説明を行う。また、同一構成の個々の装置や部材についてそれぞれを説明する場合に、共通する番号にアルファベット(小文字)の添え字を付けることで区別する。
[1.第1実施形態]
[1-1.構成]
 図1~3を参照して本実施形態の一例として、電力変換装置1および電力変換システム100の構成について説明する。電力変換システム100は、複数のインバータ電源6、昇圧トランス7、EMS(Energy Management System)4により構成される。一例として、電力変換システム100は、3つのインバータ電源6a、6b、6cを有する。インバータ電源6a、6b、6cはそれぞれ昇圧トランス7a、7b、7cを介し配電系統5に接続される。配電系統5には、負荷9が接続される。
 配電系統5は、遮断器3を介して上位系統2に接続される。上位系統2は、火力、水力、原子力などの発電設備により発電された電力を配電系統5に供給する。配電系統5は、負荷9への電力供給を行う。配電系統5を介し上位系統2またはインバータ電源6a、6b、6cから負荷9a、9b、9cに対し、電力が供給される。電力変換システム100は、任意の数量のインバータ電源6a~6nにより構成されるものであってもよい。また、配電系統5は、任意の数量の負荷9a~9nが接続されるものであってもよい。
 インバータ電源6は、後述する電力変換装置1を備える。インバータ電源6a、6b、6cは、それぞれ電力変換装置1a、1b、1cを備える。電力変換装置1a、1b、1cは、通信線8を介しEMS4に接続される。電力変換装置1a、1b、1cは、EMS4から指令される目標有効電力値Peに基づいて出力有効電力Pの制御を行う。
(インバータ電源6)
 図2にインバータ電源6の構成を示す。インバータ電源6は、電力変換装置1、電源60を備える。インバータ電源6a、6b、6cは同様の構成を有する。
 電源60は、太陽光発電設備や風力発電設備等の再生可能エネルギー電源により構成される。電源60は、直流電力を発電し電力変換装置1に供給する。また、電源60は、蓄電池により構成されるものであってもよい。蓄電池により構成される電源60は、電力変換装置1により配電系統5の交流電力が直流電力に変換され充電される。蓄電池である電源60は、直流電力を出力し、電力変換装置1に供給する。
(電力変換装置1)
 電力変換装置1は、昇圧トランス7、電源60に接続される。電力変換装置1は、電源60から出力された直流電力を交流電力に変換し、昇圧トランス7を介し配電系統5に供給する。電力変換装置1は、電力変換部52、電圧電流計側部53、制御部54、ゲートパルス生成部55を備える。電力変換装置1は、電力変換部52と昇圧トランス7の間に連系リアクトルや高調波フィルタを有するものであってもよい。
 電力変換部52は、電界効果型トランジスタ(FET)等の半導体スイッチにより構成される。電力変換部52は、電源60、昇圧トランス7に接続される。電力変換部52は、ゲートパルス生成部55により制御される。電力変換部52は、電源60から出力された直流電力を交流電力に変換し、昇圧トランス7を介し配電系統5に供給する。電源60が蓄電池により構成される場合、電力変換部52は、配電系統5の交流電力を直流電力に変換し、電源60に供給する。電力変換部52により変換された直流電力は、電源60に蓄電される。
 電圧電流計測部53は、計測用変圧器や計測用変流器等により構成される。電圧電流計測部53は、電力変換部52と昇圧トランス7または配電系統5の連系点に配置され、制御部54に接続される。電圧電流計測部53は、電力変換装置1と昇圧トランス7または配電系統5の連系点における電圧、電流を計測する。電圧電流計測部53により、電圧の振幅、周波数、位相が計測され電圧計測値Vsとされ、電流の振幅、周波数、位相が計測され電流計測値Isとされる。電圧電流計測部53は、電圧計測値Vsと電流計測値Isを制御部54に出力する。
 制御部54は、ハードウェアによる回路、またはマイクロコンピュータ等により構成される。制御部54は、電圧電流計測部53、ゲートパルス生成部55に接続される。制御部54は、電圧電流計測部53から出力された電圧計測値Vs、電流計測値Isに基づき、制御信号を作成しゲートパルス生成部55に出力する。制御信号は、ゲートパルス生成部55を制御する信号であり、正弦波状の電圧波形である。制御信号は、3相の電圧指令値Vu、Vv、Vwにより構成される。制御信号により電圧振幅、周波数、位相が指令される。制御信号は、電圧振幅、周波数、位相を電文により指令するものであってもよい。
 ゲートパルス生成部55は、ハードウェアによる回路、またはマイクロコンピュータ等により構成される。ゲートパルス生成部55は、制御部54、電力変換部52に接続される。ゲートパルス生成部55は、制御部54から受信した制御信号にかかる電圧振幅、周波数、位相に基づき、ゲート信号を生成し電力変換部52に出力する。ゲート信号は、電力変換部52の出力電圧波形を変調する信号であり、例えば電力変換部52の半導体スイッチのOn/Offを制御するパルス幅変調(PWM変調)信号である。電力変換部52は、ゲートパルス生成部55に制御された電圧振幅、周波数、位相により、電源60から出力された直流電力を交流電力に変換し、昇圧トランス7を介し配電系統5に供給する。
(制御部54の構成)
 制御部54は、電圧制御部10、位相制御部20により構成される。
 位相制御部20は、図3(b)に示す制御ブロックにより構成される。位相制御部20は、減算部21、一次遅れ系22、加算部23、積分器24、比例制御部25により構成される。位相制御部20の減算部21、一次遅れ系22、加算部23、積分器24は、順に直列に接続される。比例制御部25は、一次遅れ系22に並列に接続される。比例制御部25から出力された制御量が一次遅れ系22から出力された制御量と、加算部23において加算される。
 位相制御部20の減算部21には、目標有効電力値Peが入力される。目標有効電力値Peは、EMS4から送信される。また減算部21には、電力変換装置1から出力された電力にかかる出力有効電力Pが入力される。出力有効電力Pは、電圧電流計測部53により計測された電圧計測値Vs、電流計測値Is、位相角θsに基づき、制御部54において算出される。
 加算部23には、基準角周波数ω0および比例制御部25から出力された制御量が入力される。基準角周波数ω0は、EMS4から送信されるものであってもよいし、予め設定され位相制御部20に保持されているものであってもよい。
 減算部21により目標有効電力値Peから出力有効電力Pが減算処理される。減算部21により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、一次遅れ系22により一次遅れ処理にかかる制御量が算出される。一方、減算部21により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、比例制御部25により比例制御にかかる制御量が算出される。その後、一次遅れ系22により算出された制御量、比例制御部25により算出された制御量、基準角周波数ω0が、加算部23において加算処理され、積分器34により位相角指令値θmに変換される。
 電圧制御部10は、図3(a)に示す制御ブロックにより構成される。電圧制御部10は、減算部11、一次遅れ系12、PI制御部13、dq/abc変換部14、abc/dq変換部15により構成される。電圧制御部10の減算部11、一次遅れ系12、PI制御部13、dq/abc変換部14は、順に直列に接続される。abc/dq変換部15は、減算部11に接続される。電圧制御部10は、一次遅れ系12を有しないものであってもよい。
 電圧制御部10のabc/dq変換部15には、電圧電流計測部53により計測された電圧計測値Vsが入力される。電圧計測値Vsは、電圧電流計測部53により計測され、送信される。また、abc/dq変換部15には、位相角指令値θmが入力される。位相角指令値θmは、位相制御部20により演算される。減算部11には基準電圧値V0が入力される。基準電圧値V0は、EMS4から送信されるものであってもよいし、予め設定され電圧制御部10に保持されているものであってもよい。dq/abc変換部14には、位相角指令値θmが入力される。
 電圧計測値Vsは、abc/dq変換部15によりd軸電圧Vsdに変換される。減算部11により基準電圧値V0からd軸電圧Vsdが減算処理される。減算部11により減算処理された基準電圧値V0とd軸電圧Vsdとの差分に基づき、一次遅れ系12により一次遅れ処理にかかる制御量が算出される。その後、一次遅れ系12により算出された制御量は、PI制御部13によりPI制御され、電圧指令値Vdが算出される。PI制御部13により算出された電圧指令値Vdは、dq/abc変換部14において位相角指令値θmにより位相を制御され、3相の電圧指令値Vu、Vv、Vwに変換される。
 3相の電圧指令値Vu、Vv、Vwは、3相を構成する各相の電圧の振幅、周波数、位相を指令する制御信号であり、電圧波形により構成される。3相の電圧指令値Vu、Vv、Vwは、ゲートパルス生成部22を制御する制御信号である。3相の電圧指令値Vu、Vv、Vwは、電圧波形により電圧振幅、周波数、位相を指令する。電圧指令値Vu、Vv、Vwにかかる制御信号は、電圧振幅、周波数、位相を電文により指令するものであってもよい。
 以上が、電力変換装置1および電力変換システム100の構成である。
[1-2.作用]
 次に、図1~8に基づき本実施形態の電力変換装置1および電力変換システム100の動作の概要を説明する。電力変換装置1の制御部54は、目標有効電力値Peと出力有効電力Pとの差分に基づく比例制御にかかる制御量に基づき位相制御部20により位相角指令値θmの算出を行い、位相角指令値θmに基づき電圧制御部10により電圧指令値Vu、Vv、Vwの算出を行う。電力変換装置1のゲートパルス生成部55は、制御部54により算出された電圧指令値Vu、Vv、Vwに基づき、電力変換部52の制御を行う。
 位相制御部20の減算部21には、目標有効電力値Peが入力される。目標有効電力値Peは、EMS4から送信される。また、減算部21には、電力変換装置1から出力された電力にかかる出力有効電力Pが入力される。出力有効電力Pは、電圧電流計測部53により計測された電圧計測値Vs、電流計測値Is、位相角θsに基づき、制御部54において算出される。加算部23には、基準角周波数ω0が入力される。基準角周波数ω0は、EMS4から送信されるものであってもよいし、予め設定され位相制御部20に保持されているものであってもよい。
 減算部21により目標有効電力値Peから出力有効電力Pが減算処理される。減算部21により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、一次遅れ系22により一次遅れ処理にかかる制御量が算出される。一方、減算部21により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、比例制御部25により比例制御にかかる制御量が算出される。比例制御にかかる制御量は、目標有効電力値Peと出力有効電力Pとの差分に、比例ゲインKが乗算され算出される。その後、一次遅れ系22により算出された制御量、比例制御部25により算出された制御量、基準角周波数ω0は、加算部23において加算処理され、積分器24により積分処理され位相角指令値θmに変換される。
 電圧制御部10のabc/dq変換部15には、電圧電流計測部53により計測された電圧計測値Vsが入力される。電圧計測値Vsは、電圧電流計測部53により計測され、送信される。また、abc/dq変換部15には、位相角指令値θmが入力される。位相角指令値θmは、位相制御部20により演算される。減算部11には基準電圧値V0が入力される。基準電圧値V0は、EMS4から送信されるものであってもよいし、予め設定され電圧制御部10に保持されているものであってもよい。dq/abc変換部14には、位相角指令値θmが入力される。
 電圧計測値Vsは、abc/dq変換部15によりd軸電圧Vsdに変換される。減算部11により基準電圧値V0からd軸電圧Vsdが減算処理される。減算部11により減算処理された基準電圧値V0とd軸電圧Vsdとの差分に基づき、一次遅れ系12により一次遅れ処理にかかる制御量が算出される。その後、一次遅れ系12により算出された制御量は、PI制御部13によりPI制御され、電圧指令値Vdが算出される。PI制御部13により算出された電圧指令値Vdは、dq/abc変換部14において位相角指令値θmにより位相を制御され、3相の電圧指令値Vu、Vv、Vwに変換される。
 3相の電圧指令値Vu、Vv、Vwは、3相を構成する各相の電圧の振幅、周波数、位相を指令する制御信号であり、電圧波形により構成される。3相の電圧指令値Vu、Vv、Vwは、ゲートパルス生成部22を制御する制御信号である。3相の電圧指令値Vu、Vv、Vwは、電圧波形により電圧振幅、周波数、位相を指令する。電圧指令値Vu、Vv、Vwにかかる制御信号は、電圧振幅、周波数、位相を電文により指令するものであってもよい。
 比例制御部25により算出される比例制御にかかる制御量にかかる比例ゲインKは、以下のように算出されたものであることが望ましい。
 比例ゲインKは、インバータ電源6の出力変動ΔPに対する周波数変動Δfに基づき算出される。ここでΔPは、次式により算出される。目標有効電力値をPe、出力有効電力をPと示す。
     ΔP=(Pe-P)               ・・・・・(式1)
電力変換装置1から出力される電力の出力変動ΔPにおいて、想定される最大の出力変動値をΔPmax、許容される周波数変動の最大値をΔfmaxとする。
 仮に、図3(b)において一次遅れ系22を有さず、比例制御部25のみにより比例ゲインKにて制御が行われた場合を想定すると、出力変動ΔP、周波数変動Δfの関係は、次式で表すことができる。
     Δf=KΔP                 ・・・・・(式2)
 ΔP=ΔPmaxであるとき、Δf≦Δfmaxとする制御が行われる。したがって比例ゲインKは、次式であることが望ましい。
     K≦Δfmax/ΔPmax          ・・・・・(式3)
 また仮に、図3(b)において比例制御部25を有さず、一次遅れ系22のみにより制御が行われた場合を想定すると、出力変動ΔP、周波数変動Δfの関係は、次式で表すことができる。Dは、制御係数Dである。
     Δf=(1/D)ΔP             ・・・・・(式4)
 次に、図3(b)において比例制御部25および一次遅れ系22により制御が行われた場合を想定すると、出力変動ΔP、周波数変動Δfの関係は、次式で表すことができる。
     Δf=[(1/D)+K]ΔP         ・・・・・(式5)
 (式5)において、K≧(1/D)とした場合、(式4)と比較し周波数変動Δfが2倍以上となり不都合である。したがってK<(1/D)であることが望ましい。ΔP=ΔPmaxであるとき、Δf≦Δfmaxとする制御が行われるために、比例ゲインKは、次式であることが望ましい。
     K≦(Δfmax/ΔPmax)-(1/D)  ・・・・・(式6)
 図3に示す位相制御部20により位相角指令値θmの算出が行われ、位相角指令値θmに基づき電圧制御部10により電圧指令値Vdの算出が行われた場合、電力変換装置1の仮想機械角周波数(角周波数ω)変化分、仮想機械角周波数(角周波数ω)は、図5に示すようになる。電力変換装置1の出力有効電力P、仮想機械角周波数(角周波数ω)は図7に示すようになる。
 負荷変動により出力有効電力Pが変動し、目標有効電力値Peと出力有効電力Pの差分は、並列に接続された一次遅れ系22および比例制御部25を介して基準角周波数ω0に加算される。すなわち仮想機械角周波数(角周波数ω)の変化分は一次遅れ系22による制御量と比例制御部25による制御量の和となっている。仮想機械角周波数(角周波数ω)の変化分は、比例制御部25を有さない一次遅れ系22による制御が行われた場合に比較し、比例制御部25による制御量の分だけ増加している。
 負荷変動時に、比例制御部25による制御量は迅速に変動する。図3に示す比例制御部25を有する位相制御部20は、負荷変動時に位相角指令値θmを迅速に変動させることができる。これにより電力変換装置1から出力された出力有効電力Pの振動が抑制され、その結果、電力横流が軽減される。
 一次遅れ系22により算出された制御量、比例制御部25により算出された制御量、基準周波数ω0は加算部23において加算処理され、積分器24により仮想機械角周波数(角周波数ω)として積分され位相角指令値θmに変換される。
 仮に、図4に示す比例制御部25を有さない位相制御部20により、一次遅れ系の制御が行われた場合、電力変換装置1の仮想機械角周波数(角周波数ω)変化分、仮想機械角周波数(角周波数ω)は図6に示すようになる。電力変換装置1の出力有効電力P、仮想機械角周波数(角周波数ω)は図8に示すようになる。t=1(s)において負荷変動が生じた場合、負荷変動により出力有効電力Pが変動するため、目標有効電力値Peと出力有効電力Pの差分は、一次遅れ系22を介して基準角周波数ω0に加算される。
 比例制御部25を有していないため図4に示す比例制御部25を有さない位相制御部20は、負荷変動時に位相角指令値θmを迅速に変動させることができない。したがって電力変換装置1から出力された出力有効電力Pの振動は抑制されず、その結果、電力横流は軽減されない。
 以上が、第1実施形態にかかる電力変換装置1および電力変換システム100の動作の概要である。
[1-3.効果]
(1)本実施形態によれば、電力変換装置1は、指令された目標有効電力値Peと配電系統5に供給された出力有効電力Pとの差分に基づき、位相角指令値θmを算出する位相制御部20と、位相制御部20により算出された位相角指令値θmに基づき、電圧指令値Vu、Vv、Vwを算出する電圧制御部10と、電圧制御部10により算出された電圧指令値Vu、Vv、Vwに基づき、電力供給源60から供給された電力を交流電力に変換して配電系統5に出力する電力変換部52と、を有するので、電力横流を軽減することができる電力変換装置1を提供することができる。
(2)本実施形態によれば、電力変換装置1の位相制御部20は、目標有効電力値Peと出力有効電力Pとの差分に基づく比例制御にかかる制御量と、目標有効電力値Peと出力有効電力Pとの差分に基づく一次遅れ系による制御量とを加算して、位相角指令値θmを算出するので、負荷変動時に位相角指令値θmを迅速に変動させることができる。これにより電力変換装置1から出力された電力の振動を抑制することができる。その結果、電力横流が軽減される。
[2.第2実施形態]
[2-1.構成および作用]
 第2実施形態にかかる電力変換装置1の一例について図9~10を参照して説明する。第1実施形態にかかる電力変換装置1の制御部54は、位相制御部20を備えていたが、第2実施形態にかかる電力変換装置1の制御部54は、位相制御部20に代替し位相制御部30を備える。昇圧トランス7と配電系統5との間に、電圧計測装置61が配置される。電圧計測装置61は、配電系統5の電圧計測値をインバータ電源6の制御部54に出力する。その他の構成は、第1実施形態にかかる電力変換装置1と同じである。
 第2実施形態にかかる位相制御部30は、図10(b)に示す制御ブロックにより構成される。位相制御部30は、減算部31、一次遅れ系32、加算部33、積分器34、比例制御部35、乗算部36、減算部37、減算部38により構成される。位相制御部30の減算部31、一次遅れ系32、加算部33、積分器34は、順に直列に接続される。比例制御部35は、一次遅れ系32に並列に接続される。比例制御部35から出力された制御量が一次遅れ系32から出力された制御量と、加算部33において加算される。
 位相制御部30の減算部31には、目標有効電力値Peが入力される。目標有効電力値Peは、EMS4から送信される。また減算部31には、電力変換装置1から出力された電力にかかる出力有効電力Pが入力される。出力有効電力Pは、電圧電流計測部53により計測された電圧計測値Vs、電流計測値Is、位相角θsに基づき、制御部54において算出される。加算部33には、基準角周波数ω0および比例制御部35から出力された制御量が入力される。基準角周波数ω0は、EMS4から送信されるものであってもよいし、予め設定され位相制御部30に保持されているものであってもよい。
 減算部31により目標有効電力値Peから出力有効電力Pが減算処理される。減算部31により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、一次遅れ系32により一次遅れ処理にかかる制御量が算出される。比例制御部35により、後述する比例制御にかかる制御量が算出される。その後、一次遅れ系32により算出された制御量、比例制御部35により算出された制御量、基準角周波数ω0が、加算部33において加算処理され、積分器34により積分処理され位相角指令値θmに変換される。
 乗算部36は、目標有効電力値Peと、数値(X/(Vsrms・Vgrms))を乗算処理し、目標位相角差(θm―θg)xを算出する。Xは、電力変換装置1が接続された昇圧トランス7のリアクタンスである。リアクタンスXは、予め設定され位相制御部30に保持されている。Vsrmsは、電圧計測値Vsの実効値である。Vgrmsは、配電系統5の電圧Vgの実効値である。電圧実効値Vgrmsは、電圧計測装置61により計測される。
 減算部37は、位相角指令値θmと系統位相角θgとの差分である実測位相角差(θm―θg)を算出し、減算部38に出力する。位相角指令値θmは、積分器34から出力される。系統位相角θgは、配電系統5の電圧Vgに基づき算出される。
 減算部38は、目標位相角差(θm―θg)xと実測位相角差(θm―θg)との差分を算出し比例制御部35に出力する。目標位相角差(θm―θg)xと実測位相角差(θm―θg)との差分に基づき、比例制御部35により比例制御にかかる制御量が算出される。その後、一次遅れ系32により算出された制御量、比例制御部35により算出された制御量、基準角周波数ω0は、加算部33において加算処理され、積分器34により積分処理され位相角指令値θmに変換される。
 電圧制御部10は、第1実施形態同様、図10(a)に示す制御ブロックにより構成される。電圧制御部10のabc/dq変換部15には、電圧電流計測部53により計測された電圧計測値Vsが入力される。電圧計測値Vsは、電圧電流計測部53により計測され、送信される。また、abc/dq変換部15には、位相角指令値θmが入力される。位相角指令値θmは、位相制御部30により演算される。減算部11には基準電圧値V0が入力される。基準電圧値V0は、EMS4から送信されるものであってもよいし、予め設定され電圧制御部10に保持されているものであってもよい。dq/abc変換部14には、位相角指令値θmが入力される。
 電圧計測値Vsは、abc/dq変換部15によりd軸電圧Vsdに変換される。減算部11により基準電圧値V0からd軸電圧Vsdが減算処理される。減算部11により減算処理された基準電圧値V0とd軸電圧Vsdとの差分に基づき、一次遅れ系12により一次遅れ処理にかかる制御量が算出される。その後、一次遅れ系12により算出された制御量は、PI制御部13によりPI制御され、電圧指令値Vdが算出される。PI制御部13により算出された電圧指令値Vdは、dq/abc変換部14において位相角指令値θmにより位相を制御され、3相の電圧指令値Vu、Vv、Vwに変換される。
 比例制御部35により算出される、比例制御にかかる制御量にかかる比例ゲインKは、以下のように算出されたものであることが望ましい。
 出力変動ΔP、周波数変動Δfの関係は、次式で表すことができる。ここで、電力変換装置1を仮想発電機とした場合の位相角をθm、配電系統5全体の位相角をθg、電力変換装置1が接続された昇圧トランス7およびPCSリアクトルのリアクタンスの和をリアクタンスX、PCS出力端電圧であるインバータ電源6の電圧実効値をVsrms、系統連系点電圧である配電系統5の電圧実効値をVgrmsとする。
Figure JPOXMLDOC01-appb-M000001
                            ・・・・・(式7)
 (式7)において、K≧(VsrmsVgrms)/XDとした場合、(式4)と比較し周波数変動Δfが2倍以上となり不都合である。したがってK<(VsrmsVgrms)/XDであることが望ましい。ΔP=ΔPmaxであるとき、Δf≦Δfmaxとする制御が行われるために、比例ゲインKは、次式であることが望ましい。
Figure JPOXMLDOC01-appb-M000002
                            ・・・・・(式8)
 図10(b)に示す位相制御部30により位相角指令値θmの算出が行われ、位相角指令値θmに基づき電圧制御部10により電圧指令値Vdの算出が行われた場合、電力変換装置1の仮想機械角周波数(角周波数ω)変化分、仮想機械角周波数(角周波数ω)は図11に示すようになる。電力変換装置1の出力有効電力P、仮想機械角周波数(角周波数ω)は図12に示すようになる。
 負荷変動により出力有効電力Pが変動し、目標有効電力値Peと出力有効電力Pの差分は、一次遅れ系32を介して基準角周波数ω0に加算される。一方、仮想機械角と系統連系点の目標位相角差(θm―θg)xと実測位相角差(θm―θg)の差分が、比例ゲインKを有する比例制御部35における比例制御により制御量に変換され、基準角周波数ω0に加算される。
 目標位相角差(θm―θg)xは、収束値を予測したものである。目標位相角差(θm―θg)xは、目標有効電力値Pe、PCSリアクトルおよび昇圧トランス7のリアクタンスの和であるリアクタンスX、電圧計測値Vsの電圧実効値Vsrms、配電系統5の電圧Vgの電圧実効値Vgrmsより算出される。
 仮想機械角周波数(角周波数ω)の変化分は一次遅れ系32による制御量と比例制御部35による制御量の和となっている。仮想機械角周波数(角周波数ω)の変化分は、比例制御部35を有さない一次遅れ系32による制御が行われた場合に比較し、比例制御部35による制御量の分だけ増加している。
 負荷変動時に、比例制御部35による制御量は迅速に変動する。図10(b)に示す比例制御部35を有する位相制御部30は、負荷変動時に位相角指令値θmを迅速に変動させることができる。これにより電力変換装置1から出力された出力有効電力Pの振動が抑制され、その結果、電力横流が軽減される。
 一次遅れ系32により算出された制御量、比例制御部35により算出された制御量、基準周波数ω0は、加算部33において加算処理され、積分器34により仮想機械角周波数(角周波数ω)として積分され位相角指令値θmに変換される。
 以上が、第2実施形態にかかる電力変換装置1および電力変換システム100の構成および動作の概要である。
[2-2.効果]
(1)本実施形態によれば、電力変換装置1の位相制御部30は、目標位相角差(θm―θg)xと実測位相角差(θm―θg)の差分に基づく比例制御にかかる制御量と、目標有効電力値Peと出力有効電力Pとの差分に基づく一次遅れ系による制御量とを加算して、位相角指令値θmを算出するので、負荷変動時に位相角指令値θmを迅速に変動させることができる。これにより電力変換装置1から出力された電力の振動を抑制することができる。その結果、電力横流が軽減される。
(2)本実施形態によれば、目標位相角差(θm―θg)xは、目標有効電力値Pe、配電系統5までのリアクタンスX、出力された電圧実効値Vsrms、Vgrmsに基づき位相制御部30により算出されるので、計測された電圧計測値Vs、配電系統5の電圧Vgに基づく電圧計測値の電圧実効値Vsrms、Vgrmsが指示されることにより、目標位相角差(θm―θg)xが算出され、配電系統5の状況に応じ効率よく電力横流を軽減することができる。
[3.他の実施形態]
 変形例を含めた実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。以下は、その一例である。
(1)上記第1実施形態では、電力変換装置1の制御部54は、図3に示す構成を有するものとしたが、電力変換装置1の制御部54は、図13に示す構成を有するものであってもよい。つまり、位相制御部20は、図13(b)に示す制御ブロックにより構成されるようにしてもよい。第1実施形態にかかる位相制御部20は、減算部21、一次遅れ系22、加算部23、積分器24、比例制御部25により構成されるものとした。しかしながら、位相制御部20は、一次遅れ系22を有さず、減算部21、比例制御部25、加算部23、積分器24により構成されるものであってもよい。
 位相制御部20の減算部21には、目標有効電力値Peが入力される。目標有効電力値Peは、EMS4から送信される。また、減算部21には、電力変換装置1から出力された電力にかかる出力有効電力Pが入力される。出力有効電力Pは、電圧電流計測部53により計測された電圧計測値Vs、電流計測値Is、位相角θsに基づき、制御部54において算出される。加算部23には、基準角周波数ω0が入力される。基準角周波数ω0は、EMS4から送信されるものであってもよいし、予め設定され位相制御部20に保持されているものであってもよい。
 減算部21により目標有効電力値Peから出力有効電力Pが減算処理される。減算部21により減算処理された目標有効電力値Peと出力有効電力Pとの差分に基づき、比例制御部25により比例制御にかかる制御量が算出される。比例制御にかかる制御量は、目標有効電力値Peと出力有効電力Pとの差分に、比例ゲインKが乗算され算出される。その後、比例制御部25により算出された制御量、基準角周波数ω0は、加算部23において加算処理され、積分器24により積分処理され位相角指令値θmに変換される。
 電圧制御部10のabc/dq変換部15には、電圧電流計測部53により計測された電圧計測値Vsが入力される。電圧計測値Vsは、電圧電流計測部53により計測され、送信される。また、abc/dq変換部15には、位相角指令値θmが入力される。位相角指令値θmは、位相制御部20により演算される。減算部11には基準電圧値V0が入力される。基準電圧値V0は、EMS4から送信されるものであってもよいし、予め設定され電圧制御部10に保持されているものであってもよい。dq/abc変換部14には、位相角指令値θmが入力される。
 電圧計測値Vsは、abc/dq変換部15によりd軸電圧Vsdに変換される。減算部11により基準電圧値V0からd軸電圧Vsdが減算処理される。減算部11により減算処理された基準電圧値V0とd軸電圧Vsdとの差分に基づき、一次遅れ系12により一次遅れ処理にかかる制御量が算出される。その後、一次遅れ系12により算出された制御量は、PI制御部13によりPI制御され、電圧指令値Vdが算出される。PI制御部13により算出された電圧指令値Vdは、dq/abc変換部14において位相角指令値θmにより位相を制御され、3相の電圧指令値Vu、Vv、Vwに変換される。
電力変換装置1の仮想機械角周波数(角周波数ω)変化分、仮想機械角周波数(角周波数ω)は図14に示すようになる。電力変換装置1の出力有効電力P、仮想機械角周波数(角周波数ω)は図15に示すようになる。
 このように構成することにより、電力変換装置1の位相制御部20は、目標有効電力値Peと出力有効電力Pとの差分に基づく比例制御にかかる制御量に基づき、位相角指令値θmを算出するので、負荷変動時に位相角指令値θmを迅速に変動させることができる。これにより電力変換装置1から出力された電力の振動を抑制することができる。その結果、電力横流が軽減される。また、このように構成することにより位相制御部20は一次遅れ系22を有さず、部品点数または制御ブロック数を削減することができる。これにより、単純な構成を有する電力変換装置1を提供することができる。
(2)上記実施形態では、電力変換システム100は、配電系統5に3つのインバータ電源6が接続されるものとしたが、配電系統5に接続されるインバータ電源6の数量はこれに限られない。配電系統5に接続されるインバータ電源6の数量は、2つ、または4つ以上でもよい。また配電系統5に、火力、水力、原子力などの発電設備が接続されるようにしてもよい。
(3)上記実施形態では、インバータ電源6の電源60は、太陽光発電設備や風力発電設備等の再生可能エネルギー電源により構成されるものとしたが、電源60はこれに限られない。電源60は、燃料電池や地熱発電により発電を行う装置等であってもよい。
1・・・電力変換装置
2・・・上位系統
3・・・遮断器
4・・・EMS
5・・・配電系統
6、6a、6b、6c・・・インバータ電源
7、7a、7b、7c・・・昇圧トランス
8・・・通信線
9、9a、9b、9c・・・負荷
10・・・電圧制御部
11、21、31、37、38・・・減算部
12、22、32・・・一次遅れ系
13・・・PI制御部
14・・・dq/abc変換部
15・・・abc/dq変換部
20・・・位相制御部
23、33・・・加算部
24、34・・・積分器
25、35・・・比例制御部
30・・・位相制御部
36・・・乗算部
52・・・電力変換部
53・・・電圧電流計側部
54・・・制御部
55・・・ゲートパルス生成部
60・・・電源
61・・・電圧計測装置
100・・・電力変換システム

 

Claims (5)

  1.  指令された目標有効電力値と配電系統に供給された出力有効電力との差分に基づき、位相角指令値を算出する位相制御部と、
     前記位相制御部により算出された前記位相角指令値に基づき、電圧指令値を算出する電圧制御部と、
     前記電圧制御部により算出された前記電圧指令値に基づき、電力供給源から供給された電力を交流電力に変換して配電系統に出力する電力変換部と、
     を有する、
      電力変換装置。
  2.  前記位相制御部は、前記目標有効電力値と前記出力有効電力との差分に基づく比例制御にかかる制御量と、前記目標有効電力値と前記出力有効電力との差分に基づく一次遅れ系による制御量とを加算して、前記位相角指令値を算出する、
      請求項1に記載の電力変換装置。
  3.  前記位相制御部は、目標位相角差と実測位相角差の差分に基づく比例制御にかかる制御量と、前記目標有効電力値と前記出力有効電力との差分に基づく一次遅れ系による制御量とを加算して、前記位相角指令値を算出する、
      請求項1に記載の電力変換装置。
  4.  前記目標位相角差は、目標有効電力値、前記配電系統までのリアクタンス、出力された電圧実効値に基づき算出される、
      請求項3に記載の電力変換装置。
  5.  前記位相制御部は、目標位相角差と実測位相角差の差分に基づく比例制御にかかる制御量に基づき、前記位相角指令値を算出する、
      請求項1に記載の電力変換装置。
PCT/JP2021/000408 2020-04-10 2021-01-07 電力変換装置 WO2021205701A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/905,149 US20230089057A1 (en) 2020-04-10 2021-01-07 Power conversion device
DE112021002269.5T DE112021002269T5 (de) 2020-04-10 2021-01-07 Leistungsumwandlungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-070971 2020-04-10
JP2020070971A JP2021168555A (ja) 2020-04-10 2020-04-10 電力変換装置

Publications (1)

Publication Number Publication Date
WO2021205701A1 true WO2021205701A1 (ja) 2021-10-14

Family

ID=78023941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000408 WO2021205701A1 (ja) 2020-04-10 2021-01-07 電力変換装置

Country Status (4)

Country Link
US (1) US20230089057A1 (ja)
JP (1) JP2021168555A (ja)
DE (1) DE112021002269T5 (ja)
WO (1) WO2021205701A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105602A1 (ja) * 2021-12-07 2023-06-15 株式会社東芝 電力変換装置及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318833A (ja) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp インバータ電源制御装置
JP2013039026A (ja) * 2011-07-29 2013-02-21 General Electric Co <Ge> 過渡事象ライド・スルー能力を伴う電力変換システムおよびその方法
JP2018107991A (ja) * 2016-12-28 2018-07-05 川崎重工業株式会社 複合発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318833A (ja) * 2006-05-23 2007-12-06 Mitsubishi Electric Corp インバータ電源制御装置
JP2013039026A (ja) * 2011-07-29 2013-02-21 General Electric Co <Ge> 過渡事象ライド・スルー能力を伴う電力変換システムおよびその方法
JP2018107991A (ja) * 2016-12-28 2018-07-05 川崎重工業株式会社 複合発電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105602A1 (ja) * 2021-12-07 2023-06-15 株式会社東芝 電力変換装置及びプログラム

Also Published As

Publication number Publication date
JP2021168555A (ja) 2021-10-21
DE112021002269T5 (de) 2023-06-22
US20230089057A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP6809753B2 (ja) 複合発電システム
JP4680102B2 (ja) 電力変換装置
US9356448B2 (en) Electric power converter for combined power generation system
WO2020084688A1 (ja) 系統システム、制御装置及び系統システムの制御方法
JP6455661B2 (ja) 自立運転システム
CN112234643B (zh) 一种基于柔性直流输电互联两区域电网的控制系统及方法
Nagliero et al. Analysis of a universal inverter working in grid-connected, stand-alone and micro-grid
EP3218981B1 (en) Power controller and power control method
JP5830484B2 (ja) 無効電力比率制御器、無効電力比率制御方法、およびこれを用いた発電システム
WO2020024064A1 (en) Controller for power inverter
JP2020068650A (ja) 系統システム、制御装置及び系統システムの制御方法
Xue et al. Power flow control of a distributed generation unit in micro-grid
WO2021205701A1 (ja) 電力変換装置
US8598839B2 (en) Method for controlling sodium-sulfur battery
WO2021205700A1 (ja) 電力変換装置
TWI505597B (zh) 智慧型微電網電力品質管理的操作系統
WO2022044361A1 (ja) インバータ電源を用いたマイクログリッドシステムおよびインバータ電源
JP7136368B2 (ja) 電力変換装置
EP3869682B1 (en) A method and a control device for controlling a power converter
KR20080041310A (ko) 무변압기형 계통연계 태양광 발전 시스템에서의 dc/ac컨버터 제어 장치
Gira et al. ANFIS controlled reactive power compensation utilizing grid-connected solar photovoltaic system as PV-STATCOM
JP2009151832A (ja) 電力変換装置
JP2022167502A (ja) 分散電源の制御装置、制御プログラム、及び分散電源システム
US20240128764A1 (en) Power supply system for independent system
Singh et al. Modeling and control of grid connected voltage source converter for power sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784061

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21784061

Country of ref document: EP

Kind code of ref document: A1