WO2021205103A1 - Procédé de fabrication d'un câble résistant et/ou retardant au feu - Google Patents

Procédé de fabrication d'un câble résistant et/ou retardant au feu Download PDF

Info

Publication number
WO2021205103A1
WO2021205103A1 PCT/FR2021/050588 FR2021050588W WO2021205103A1 WO 2021205103 A1 WO2021205103 A1 WO 2021205103A1 FR 2021050588 W FR2021050588 W FR 2021050588W WO 2021205103 A1 WO2021205103 A1 WO 2021205103A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
electrically conductive
fibrous material
geopolymer composition
approximately
Prior art date
Application number
PCT/FR2021/050588
Other languages
English (en)
Inventor
Thierry Auvray
Franck Gyppaz
Original Assignee
Nexans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans filed Critical Nexans
Priority to US17/913,753 priority Critical patent/US20230109750A1/en
Priority to BR112022019941A priority patent/BR112022019941A2/pt
Priority to EP21723327.9A priority patent/EP4132761A1/fr
Priority to KR1020227038785A priority patent/KR20220164780A/ko
Priority to CN202180026628.7A priority patent/CN115427208A/zh
Publication of WO2021205103A1 publication Critical patent/WO2021205103A1/fr
Priority to CONC2022/0015289A priority patent/CO2022015289A2/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/221Sheathing; Armouring; Screening; Applying other protective layers filling-up interstices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • B29C44/32Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements
    • B29C44/322Incorporating or moulding on preformed parts, e.g. linings, inserts or reinforcements the preformed parts being elongated inserts, e.g. cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2713/00Use of textile products or fabrics for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a method of manufacturing a cable comprising at least one elongated electrically conductive element, at least one composite layer surrounding said elongated electrically conductive element, said composite layer comprising a non-woven fibrous material impregnated with a geopolymer material, and at at least one polymeric sheath surrounding said composite layer, said method employing a plastic tube to facilitate the extrusion of said polymeric sheath around the composite layer.
  • retardant and / or fire-resistant cables intended for energy transport and / or data transmission such as retardant and / or fire-resistant electrical and / or optical security cables.
  • halogen-free capable of operating for a given period of time under fire conditions without being a fire propagator or generating significant smoke.
  • These safety cables are in particular medium voltage power transmission cables (especially 6 to 45-60 kV) or low frequency transmission cables, such as control or signal cables.
  • a method of manufacturing a fire resistant cable comprising the following steps: a step of preparing a geopolymer composition; a step of winding a nonwoven fibrous material around at least one metallic conductor, a step of impregnating the metallic conductor / nonwoven fibrous material in the previously prepared geopolymer composition, a step of curing the geopolymer composition for forming a composite layer comprising said nonwoven fibrous material impregnated with a geopolymer material and surrounding the metallic conductor, then a step of hot extrusion of a polymer sheath around the composite layer.
  • the geopolymer composition on the surface of the nonwoven material is still liquid, it then flows into the metal parts of the extruder, hardens, and turns at least partly into ceramic, causing the obstructing or plugging the extrusion head, and preventing extrusion of the polymer jacket around the composite layer.
  • the aim of the invention is therefore to overcome all or part of the aforementioned drawbacks, and to provide a method of manufacturing a fire retardant cable, said method being easy to implement, in particular easily industrializable, economical and rapid, and in particular making it possible to facilitate the step of extruding the polymer sheath around the composite layer based on geopolymer.
  • the first object of the invention is a method of manufacturing a cable comprising at least one elongated electrically conductive element, at least one composite layer surrounding said elongated electrically conductive element, said composite layer comprising a nonwoven fibrous material impregnated with a material.
  • geopolymer and at least one polymer sheath surrounding said composite layer, characterized in that it comprises at least the following steps: i) passing through a plastic tube a cable comprising at least one elongated electrically conductive element, and at least a nonwoven fibrous material impregnated with a geopolymer composition surrounding said elongated electrically conductive member, and ii) extruding a polymer sheath using an extruder comprising at least one extruder head provided with a die and a punch, said method being characterized in that part of said plastic tube is inserted into the extruder head and is configured e to avoid contact between the geopolymer composition and the punch of the extruder head.
  • the process of the invention is rapid, easy to implement, in particular from an industrial standpoint, economically, and it guarantees the production of a fire resistant and / or retardant cable having good mechanical properties, in particular in terms of flexibility and durability.
  • the method of the invention makes it possible, on the one hand, to facilitate the shaping of the nonwoven fibrous material around the elongated electrically conductive element, to improve the impregnation of the nonwoven fibrous material by the geopolymer composition, and also to avoid ceramification of the geopolymer composition within the extruder head, thus facilitating the extrusion of the polymer sheath around the composite layer based on geopolymer.
  • Step i) makes it possible to place or introduce into a plastic tube the cable comprising at least one elongated electrically conductive element and at least one nonwoven fibrous material impregnated with a geopolymer composition surrounding said elongated electrically conductive element.
  • This step of confining said cable within said plastic tube makes it possible, on the one hand, to facilitate the shaping of the non-woven fibrous material around the elongated electrically conductive element, and on the other hand, to improve the impregnation of the material. nonwoven fibrous material by the geopolymer composition.
  • the plastic tube surrounds the cable, and in particular surrounds the nonwoven fibrous material impregnated with said geopolymer composition.
  • the tube of the invention is made of plastic in order in particular to prevent the adhesion of the geopolymer composition to said tube. Moreover, the plastic tube being less good thermal conductor than the metal, this makes it possible to avoid setting of the geopolymer material at the interface (i.e. to prevent the geopolymer composition from drying too quickly at the interface).
  • thermostable thermoplastic polymers that is to say stable at a temperature greater than or equal to approximately 250 ° C
  • PEEK polyaryletherketones
  • PEEK polyetheretherketones
  • PEKEKK polyetherketonketones
  • PEK polyetherketones
  • PEEKK polyetherketonketones
  • PEKEKK polyetherketoneetherketonketones
  • PES polyetherketoneetherketonketones
  • PA polyamide-imides
  • PAI polyamide-imides
  • VdF-TrFE polyvinylidene and trifluoroethylene
  • PVdF-HFP hexafluoropropene
  • PTFE polytetrafluoroethylene
  • FEP hexafluoropropylene
  • ETFE ETFE
  • the polymer material is preferably chosen from polyaryletherketones, and particularly preferably is chosen from PEEKs.
  • the polymer material thus chosen has the advantage of having surface and / or physicochemical properties adapted to facilitate step i), in particular said polymer material has no roughness, and has a high chemical inertia, and / or ease of machining.
  • the plastic tube is preferably an airtight tube.
  • the plastic tube is impermeable to the geopolymer composition impregnating said nonwoven fibrous material.
  • the plastic tube is a hollow cylinder. It is defined by an external diameter "Dext” and an internal diameter "Dint”.
  • Said plastic tube preferably has a thickness conditioned by the difference between the external diameter of the cable used in step i) and the internal diameter of the extruder head. This thickness is therefore chosen as a function of the external diameter of the cable used in step i), and of the internal diameter of the extruder head used. The thickness is defined by the difference between the external diameter of the “Dext” tube and the internal diameter of the “Dint” tube so that “Dint” is strictly greater than the external diameter of the cable used in step i) and “Dext Is strictly less than the internal diameter of the extruder head.
  • the plastic tube is configured so that the distance “d” between the external surface of the nonwoven fibrous material and the internal surface of said tube is at most approximately 1 mm, and particularly preferably at most about 0.5 mm.
  • the conformation of the nonwoven fibrous material around the elongated electrically conductive element is maintained (ie the nonwoven material surrounding the electrically elongated element. elongated conductor cannot open), and impregnation of the nonwoven fibrous material with the geopolymer composition facilitated.
  • the homogeneity of the composite layer around the elongated electrically conductive member is also improved.
  • the distance "d" is preferably at least about 0.2 mm, and more preferably at least about 0.3 mm.
  • the tube has another part which is not inserted into the extruder head.
  • This other part preferably has a length of at least about 100 mm. This thus facilitates the removal or removal of the tube from the extruder head.
  • the presence of the plastic insert makes it possible to avoid any contact between the geopolymer composition and the punch of the extruder head.
  • the plastic insert preferably has a shape similar to that of the punch and particularly preferably has a conical shape.
  • Step i) is preferably carried out at room temperature (i.e. 18-
  • step i) is carried out at a speed ranging from 20 to 280 m / min approximately, and preferably ranging from 50 to 150 m / min approximately.
  • the fibrous nonwoven material preferably has a soft and flexible structure.
  • the cellulosic materials can be chosen from paper, in particular blotting paper; non-woven materials made from functionalized or non-functionalized cellulose; matrices with a cellular and / or fibrous structure made from natural fibers of cellulose acetate.
  • the nonwoven fibrous material is polyethylene terephthalate (PET).
  • the nonwoven fibrous material preferably has a basis weight ranging from 50 to 120 g / cm 2 approximately. This thus makes it possible to obtain a composite layer which is sufficiently flexible to be able to be handled easily, and sufficiently robust to obtain good fire protection.
  • the nonwoven fibrous material represents from 2 to 95% by weight approximately, particularly preferably from 5 to 45% by weight approximately, and even more preferably from 10 to 35% by weight approximately, relative to the total weight of the composite layer.
  • the nonwoven fibrous material is preferably in the form of a ribbon or a strip. This thus makes it possible to facilitate step i).
  • the geopolymer composition used in step i) is preferably a liquid geopolymer composition.
  • the geopolymer composition of step i) is preferably an aluminosilicate geopolymer composition.
  • the geopolymer composition of the invention is particularly preferably a geopolymer composition comprising water, silicon (Si), aluminum (Al), oxygen (O), and at least one element chosen from among potassium (K), sodium (Na), lithium (Li), cesium (Cs), and calcium (Ca), and preferably chosen from potassium (K) and sodium (Na).
  • the geopolymer composition can in particular comprise at least a first aluminosilicate, at least a first alkali silicate, water, and optionally an alkaline base.
  • the first aluminosilicate can be chosen from metakaolins (ie calcined kaolins), fly ash (well known under the anglicism "fly ash”), blast furnace slag (well known by the anglicism "blast furnace slag”), swelling clays such as bentonite, calcined clays, any type of compound comprising aluminum and silica fume, zeolites, and a mixture thereof.
  • metakaolins are preferred, in particular those marketed by the company Imérys.
  • the geopolymer composition may comprise from 5 to 50% by weight approximately of aluminosilicate, and preferably from 10 to 35% by weight approximately of aluminosilicate, relative to the total weight of the geopolymer composition.
  • the geopolymer composition can further comprise a second aluminosilicate different from the first aluminosilicate.
  • the geopolymer composition comprises two calcined kaolins having different calcination temperatures.
  • the geopolymer composition comprises a first metakaolin chosen from kaolins calcined at a temperature T ci of at least 650 ° C approximately, and a second metakaolin chosen from kaolins calcined at a temperature T C 2 such as T C 2 - T ci 3 approximately 100 ° C, at least a first alkali silicate, water, and optionally an alkaline base.
  • T C 2 such as T C 2 - T ci 3 approximately 100 ° C
  • the geopolymer composition can then exhibit improved mechanical properties, in particular in terms of flexibility and durability, while ensuring good reaction and fire resistance properties.
  • the first metakaolin is a kaolin calcined at a temperature T ci of at least approximately 700 ° C, and preferably of at least 725 ° C approximately.
  • the first metakaolin is a kaolin calcined at a temperature T ci of at most 875 ° C approximately, and preferably at most 825 ° C approximately.
  • the first metakaolin may comprise at most 60 mol% approximately, and preferably at most 50 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the first metakaolin.
  • Al2O3 aluminum oxide
  • the first metakaolin can comprise at least 35 mol% approximately, and preferably at least 45 mol% approximately of silicon oxide (S1O2), relative to the total number of moles of the first metakaolin.
  • the first metakaolin may comprise at most 75 mol% approximately, and preferably at most 65 mol% approximately, of silicon oxide (S1O2), relative to the total number of moles of the first metakaolin.
  • the metakaolins sold by the company Imérys, in particular that marketed under the reference PoleStar ® 450.
  • the first metakaolin can be chosen from kaolins calcined at T ci as defined in the invention, for at least approximately 1 min, preferably for at least approximately 10 min, particularly preferably for a period ranging from approximately 30 min. at 8 h, and more particularly preferably for a period ranging from approximately 2 h to 6 h.
  • the second metakaolin is preferably chosen from kaolins calcined at a temperature T C 2 such that T C 2 - T ci > 150 ° C approximately, particularly preferably such that T C 2 - T ci > 200 ° C approximately, and more particularly preferably such that T C 2 - T ci > 250 ° C approximately.
  • the second metakaolin is a kaolin calcined at a temperature T C 2 of at least 800 ° C approximately, preferably at least 850 ° C approximately, and particularly preferably of at least about 900 ° C.
  • the second metakaolin is a kaolin calcined at a temperature T C 2 of at most 1200 ° C approximately, and preferably at most 1150 ° C approximately.
  • the second metakaolin may comprise at least 20 mol% approximately, and preferably at least 30 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the second metakaolin.
  • Al2O3 aluminum oxide
  • the second metakaolin can comprise at most 60 mol% approximately, and preferably at most 50 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the second metakaolin.
  • Al2O3 aluminum oxide
  • the second metakaolin can comprise at least 35 mol% approximately, and preferably at least 45 mol% approximately of silicon oxide (S1O2), relative to the total number of moles of the second metakaolin.
  • the second metakaolin can comprise at most 75% by mole approximately, and preferably at most 65% by mole approximately of silicon oxide (S1O2), relative to the total number of moles of the second metakaolin.
  • the second metakaolin can be chosen from kaolins calcined at T C 2 as defined in the invention, for at least approximately 1 min, preferably for at least approximately 5 min, particularly preferably for a period ranging from approximately 10 min to 2 h, and more particularly preferably for a period ranging from approximately 15 min to 1 h.
  • the mass ratio [first metakaolin / second metakaolin] in the geopolymer composition is preferably from 0.1 to 2 approximately, particularly preferably from 0.5 to 1.0 approximately, and more particularly preferably is approximately 1. .
  • the geopolymer composition can comprise from 5 to 50% by weight approximately, and preferably from 10 to 35% by weight approximately of first and second metakaolins, relative to the total weight of the geopolymer composition.
  • the first and second metakaolins can be analyzed by differential thermal analysis (DTA) [absence or presence of a point or peak of crystallization], nuclear magnetic resonance (NMR) [ 27 Al NMR spectrum], and / or X-ray diffraction (XRD).
  • DTA differential thermal analysis
  • NMR nuclear magnetic resonance
  • XRD X-ray diffraction
  • the first metakaolin preferably exhibits a crystallization peak by differential thermal analysis, particularly preferably at a temperature ranging from 900 to 1060 ° C, and more particularly preferably at a temperature ranging from 950 to 1010 ° C.
  • the second metakaolin preferably comprises mullite.
  • the alkali metal silicates marketed by the company Silmaco or by the company PQ corporation are preferred.
  • the first alkali silicate is preferably sodium silicate.
  • the first alkali silicate may have an S1O2 / M2O molar ratio ranging from 1.1 to about 35, preferably from 1.3 to 10 about, and particularly preferably from 1.4 to about 5, with M being an atom of sodium or potassium, and preferably a sodium atom.
  • the geopolymer composition can comprise from 5 to 60% by weight approximately, and preferably from 10 to 50% by weight approximately of first alkali silicate, relative to the total weight of the geopolymer composition.
  • the second alkali silicate can be chosen from sodium silicates, potassium silicates, and one of their mixtures.
  • the alkali metal silicates marketed by the company Silmaco or by the company PQ Corporation are preferred.
  • the second alkali silicate is preferably sodium silicate.
  • a second alkali silicate having an SiC / M 2 O molar ratio greater than 2.6, preferably ranging from 2.8 to 4.5 approximately, and particularly preferably ranging from 3.0 to 4.0 approximately, being understood that M 'is identical to M.
  • the geopolymer composition can comprise from 10 to 60% by weight approximately, and preferably from 20 to 50% by weight approximately of first and second alkali silicates, relative to the total weight of the geopolymer composition.
  • the mass ratio [first alkali silicate / second alkali silicate] in the geopolymer composition preferably ranges from 0.5 to 2.5, and particularly preferably from 0.8 to 2.0.
  • the alkaline base can be sodium hydroxide, or potassium hydroxide, and preferably sodium hydroxide.
  • the geopolymer composition can be free from alkaline base. This thus makes it possible to improve the handling of the geopolymer composition, in particular during the preparation of a cable.
  • the geopolymer composition can further comprise one or more additives chosen from:
  • polystyrene-butadiene copolymer SBR
  • EBS styrene-butadiene-ethylene copolymer
  • derivatives of styrene-ethylene copolymers in particular those marketed by Kraton such as a styrene-ethylene-butylene-styrene (SEBS) copolymer, a styrene-butadiene-styrene (SBS) copolymer, a styrene-isoprene copolymer styrene (SIS), a styrene-propylene-ethylene copolymer (EPS) or a styrene
  • polyolefin fibers such as polypropylene or polyethylene fibers (eg high density polyethylene or HDPE fibers), aramids, and technical glass fibers coated with silicone or an organic polymer of polyethylene type
  • SBR styrene-butadiene copolymer
  • an agent delaying setting in mass in particular chosen from ammonium, alkali metals, alkaline earth metals, borax, lignosulphonates and in particular metal salts of calcium lignosulphonates, celluloses such as carboxymethyl hydroethyl cellulose, sulfoalkylated lignins such as, for example, sulfomethylated lignin, hydroxycarboxylic acids, copolymers of salts of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid or maleic acid, and saturated salts,
  • a starch plasticizer in particular chosen from a metal stearate, a polyethylene glycol, an ethylene glycol, a polyol such as glycerol, sorbitol, mannitol, maltitol, xylitol or an oligomer of one of these polyols, a sucrose such as glucose or fructose, a plasticizer containing amide groups, and any type of plasticizer based on modified polysaccharide (s), - an expanded carbonaceous material such as an expanded graphite.
  • a starch plasticizer in particular chosen from a metal stearate, a polyethylene glycol, an ethylene glycol, a polyol such as glycerol, sorbitol, mannitol, maltitol, xylitol or an oligomer of one of these polyols, a sucrose such as glucose or fructose, a plasticizer containing amide groups, and any type of plasticizer
  • the dye is preferably a liquid dye at room temperature (i.e. at 18-25 ° C).
  • the geopolymer composition may comprise from 0.01 to 15% by weight approximately of additive (s), and preferably from 0.5 to 8% by weight approximately of additive (s), relative to the total weight of the composition. geopolymer.
  • the nonwoven fibrous material becomes impregnated with the liquid geopolymer composition, but due to its low viscosity, drip effects are observed.
  • the geopolymer upon contact with a hot metal surface turns into a rigid ceramic.
  • a compact ceramic block is then built up in the extruder head, which ends up obstructing the passage of the cable.
  • the plastic tube the geopolymer composition is transported in the cable thanks to the non-woven fibrous material which, after a few hours, becomes a cohesive and protective layer against fire.
  • step ii) can make it possible to ensure the mechanical integrity of the cable. We can then speak of a protective sheath.
  • the cable can then comprise at least one elongated electrically conductive element, the composite layer surrounding said elongated electrically conductive element, and at least one polymer sheath surrounding said composite layer.
  • Step ii) is preferably carried out at a temperature ranging from 140 ° C to 225 ° C approximately, and particularly preferably ranging from 170 ° C to 210 ° C approximately.
  • Step ii) preferably uses a distributor configured to allow the passage between the punch and the die of the extruder head, of at least one molten polymer material capable of forming the polymer sheath.
  • Step ii) can be performed automatically.
  • Step ii) is carried out at a speed ranging from 20 to 280 m / min approximately, and preferably ranging from 50 to 150 m / min approximately.
  • organic or inorganic polymer is not limiting and these are well known to those skilled in the art.
  • the organic or inorganic polymer is chosen from crosslinked and non-crosslinked polymers.
  • the organic or inorganic polymer can be a homo- or a co-polymer having thermoplastic and / or elastomeric properties.
  • the inorganic polymers can be polyorganosiloxanes.
  • the organic polymers can be polyurethanes or polyolefins.
  • the polyolefins can be chosen from polymers of ethylene and propylene.
  • ethylene polymers such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), copolymers of 'ethylene and vinyl acetate (EVA), copolymers of ethylene and butyl acrylate (EBA), methyl acrylate (EMA), 2-hexylethyl acrylate (2HEA), ethylene copolymers and alpha-olefins such as for example polyethylene-octene (PEO), copolymers of ethylene and propylene (EPR), terpolymers of ethylene and propylene (EPT) such as for example terpolymers of ethylene propylene diene monomer (EPDM) or a of their mixtures.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • EVA cop
  • the polymer sheath can also comprise an inert filler, in particular chosen from talc, micas, dehydrated clays and one of their mixtures.
  • the method may further comprise before step i), a step iO) of manufacturing the cable comprising at least said elongated electrically conductive element and at least said nonwoven fibrous material impregnated with the geopolymer composition surrounding said elongated electrically conductive element.
  • Step iO) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • Step iO) can in particular comprise the following sub-steps: a) preparing a geopolymer composition, b) applying a nonwoven fibrous material around a cable comprising at least one elongated electrically conductive element, and c) impregnating the cable / nonwoven fibrous material assembly with said geopolymer composition.
  • Sub-step a) is generally carried out at a high pH, in particular varying from 10 to 13.
  • Sub-step a) preferably comprises the following sub-steps: a1) the preparation of an aqueous solution of the first alkali silicate, and a2) the mixture of the first aluminosilicate in powder form with the aqueous solution of alkali silicate prepared in the previous sub-step a1).
  • the aqueous solution of the first alkali silicate can be prepared by mixing silicon dioxide S1O2 or an alkali silicate with an MOH base in which M is K or Na.
  • the silicon dioxide S1O2 can be chosen from silica fume (i.e. fumed silica), quartz, and their mixtures.
  • the sub-step a) of preparation of the geopolymer composition can comprise the mixture of said first aluminosilicate and optionally of said second aluminosilicate, with said first alkali silicate, optionally said second alkali silicate, water, and optionally the alkaline base.
  • the sub-step a) comprises the following sub-steps: a1 ′) the mixing of the first and second alkali metal silicates, in particular with stirring, a2 ′) optionally the addition of an alkaline base, in particular while maintaining agitation, and a3 ′) adding the first and second metakaolins, in particular while maintaining agitation.
  • a fluid and homogeneous solution is preferably obtained.
  • Such a mass ratio makes it possible to have a geopolymer composition that is fluid enough to allow it to be handled, and the solidification kinetics of which are slow enough to allow the formation of a composite cable layer as defined below.
  • the solid matter / water mass ratio in said geopolymer composition can make it possible to determine the solidification kinetics of said geopolymer composition.
  • Sub-step a) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • Sub-step b) allows the application of the nonwoven material around the elongated electrically conductive element, in particular to form a cable comprising at least one elongated electrically conductive element and a nonwoven fibrous material surrounding said elongate electrically conductive element.
  • the fibrous nonwoven material is in the form of a web or ribbon. This thus makes it possible to facilitate sub-step b).
  • the nonwoven fibrous material can be applied either directly around one or more elongated conductive elements, or around an inner layer of said cable which is itself around one or more elongated conductive elements.
  • the winding can be longitudinal (i.e. along the longitudinal axis of the cable or in other words in the direction of the length of the cable) or helical, and preferably longitudinal.
  • the longitudinal winding makes it possible to reduce the cost of producing the cable.
  • the longitudinal winding can also be carried out with overlap zones, the overlap zone (s) representing approximately 10 to 20%.
  • Sub-step b) can be performed manually or automatically, and preferably automatically.
  • Sub-step b) can be carried out by passing the nonwoven fibrous material through a tightening device or a shaping device (also designated by the terms “trumpet” or “shaping nonwoven fibrous material”).
  • the cable comprising at least one elongated electrically conductive element also passes through the tightening device during sub-step b).
  • This device is a mechanical device which continuously wraps the tape around the elongated electrically conductive element. This thus makes it possible to facilitate the longitudinal winding of the tape around the cable.
  • Sub-step b) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • Sub-step c) consists in impregnating the cable / nonwoven fibrous material assembly.
  • Sub-step c) can be performed manually or automatically, and preferably automatically.
  • Sub-step c) is preferably carried out by coating soaking.
  • Sub-step c) can for example be carried out using an impregnation bath or tank comprising the geopolymer composition in which the cable comprising at least one elongated electrically conductive element and a surrounding non-woven fibrous material is passed. said elongated electrically conductive element.
  • the impregnation bath or tank is preferably configured to allow the cable of sub-step b) to pass through said impregnation bath.
  • the geopolymer composition thus obtained during sub-step a) is then placed in said impregnation bath, to enable sub-step c).
  • the impregnation bath or tank is preferably supplied with the geopolymer composition, in particular using means such as a pump. This thus makes it possible to continuously supply said bath or tank with geopolymer composition.
  • the impregnation sub-step c) is carried out at a temperature ranging from 15 ° C to 40 ° C approximately, and particularly preferably from 20 ° C to 30 ° C approximately .
  • the plastic tube is preferably connected to the impregnation bath or tank, for example with mechanical means.
  • the impregnated cable passes through said plastic tube.
  • Step i) preferably uses an extension tube directly connected to the impregnation bath.
  • the cable therefore leaves the impregnation bath to pass into the plastic tube via this extension tube.
  • the tube is held in place in the extruder head by means of two plastic rings.
  • the resulting cable is held in place in the extruder head by means of two plastic rings.
  • the composite layer is preferably a retardant and / or fire resistant layer.
  • the composite layer preferably has a thickness ranging from approximately 0.2 to 3 mm, and more preferably ranging from approximately 0.5 to 1 mm.
  • the thermal protection of the cable obtained according to the method of the invention is not sufficient.
  • the composite layer of the invention is preferably a banded layer (i.e. in the form of a ribbon or a strip).
  • the composite layer can in particular comprise 2 to 3 superimposed tapes.
  • the composite layer of the invention is preferably non-porous.
  • the composite layer is preferably an internal layer of said cable.
  • the term “internal layer” is understood to mean a layer which does not constitute the outermost layer of the cable.
  • the composite layer preferably comprises at least one geopolymer material and the nonwoven fibrous material as defined in the invention.
  • the geopolymer composition as defined in the invention is suitable for forming said geopolymer material.
  • the ingredients of the geopolymer composition can therefore undergo polycondensation to form said geopolymeric material.
  • the hardening takes place by internal reaction of the polycondensation type.
  • the hardening is not, for example, the result of simple drying, as is generally the case for binders based on alkali silicates.
  • geopolymeric materials result from a reaction of mineral polycondensation by alkaline activation, called geosynthesis, as opposed to traditional hydraulic binders in which hardening is the result of hydration of calcium aluminates and calcium silicates.
  • the expression “geopolymer material” means a solid material comprising silicon (Si), aluminum (Al), oxygen (O) and at least one element chosen from potassium (K). , sodium (Na), lithium (Li), cesium (Cs) and calcium (Ca), and preferably chosen from potassium (K), and sodium (Na).
  • the geopolymer material can be an aluminosilicate geopolymer material.
  • the aluminosilicate geopolymer material can be chosen from the poly (sialates) corresponding to the formula (I) M n (-Si-0- Al-0-) n [(M) -PS] and having an equal Si / Al molar ratio to 1, the poly (sialate-siloxos) corresponding to the formula (II) Mn (-Si-OAI-OSi-0-) n [(M) -PPS] and having an Si / Al molar ratio equal to 2, the poly (sialate-disiloxos) corresponding to the formula (III) M n (-Si-0-Al-0-Si-0-Si-0) n [(M) -PSDS] and having an equal Si / Al molar ratio to 3, and other poly (sialates) of Si / Al ratio> 3, the aforementioned poly (sialates) comprising an alkali metal cation M chosen from K, Na, Li, Cs and one
  • the geopolymer material represents from 5 to 98% by weight approximately, preferably from 55 to 95% by weight approximately, and more preferably from 65 to 90% by weight approximately, relative to the total weight of the composite layer.
  • the cable obtained according to a process in accordance with the invention satisfies at least one of the standards for reaction or non-propagation to fire chosen from standards EN 60332-1, EN 60332-3, and EN 50399 (2012/02 + Al 2016); and preferably to standard EN 50399 (2012/02 + A1 2016), in particular to the B2ca, sla, dO, al classification criteria of said standard, and possibly to standards EN 60332-1 and EN 60332-3.
  • the composite layer may then surround the plurality of elongate electrically conductive elements of the cable.
  • the cable can comprise a single composite layer as defined in the invention or a plurality of composite layers as defined in the invention.
  • the method can further comprise the repetition of steps a) to c), as many times as there are composite layers to be applied.
  • the cable comprises a single composite layer, and more particularly preferably a single internal composite layer.
  • the cable obtained according to the method of the invention further comprises one or more layers interposed between the elongated electrically conductive element and the composite layer as defined in the invention.
  • the cable comprises: a plurality of electrically conductive elements, each of said electrically conductive elements being surrounded by a polymer layer, in particular electrically insulating, to form a plurality of isolated electrically conductive elements ,
  • the expression “continuous process” means that the process is carried out on a single production line, and / or without stages of rest, collection, or recovery.
  • the nonwoven fibrous material may be placed on a dispenser such as an unwinder or unwinder, and said material may be dispensed or unwound continuously to implement at least steps iO), i) and ii ).
  • the sub-step b) is carried out by passing the nonwoven fibrous material in the form of a ribbon in the tightening or shaping device through which a cable comprising at least one elongated electrically conductive element runs. , then the cable thus obtained passes into the bath or impregnation tank comprising the geopolymer composition according to sub-step c), then the cable thus impregnated leaves the impregnation tank and enters the plastic tube according to step i), part of said tube being inserted into the extruder head. Finally, the cable confined in said tube is brought into the die of the extruder head, in order to allow the extrusion of the polymer sheath around the cable according to step ii).
  • the distributor delivers the nonwoven fibrous material at a speed V (in km / min).
  • the cable running speed in sub-step c) and steps i) and ii) ranges from approximately 10 m / min to 600 m / min, preferably ranges from approximately 20 m / min to approximately 280 m / min, and more preferably from 50 m / min to 200 m / min approximately, and particularly preferably from 50 m / min to 150 m / min approximately.
  • the process according to the invention is rapid, simple and advantageous from an economic point of view. It makes it possible to manufacture in a few steps a cable having good mechanical properties, in particular in terms of flexibility and durability, while guaranteeing good fire resistance performance.
  • FIG. 1 represents a schematic view of an electric cable as obtained according to the method according to the invention.
  • FIG. 2 represents a schematic view of the method according to the invention.
  • FIG. 3 represents several 3D views of the arrangement of the various parts used in the method of the invention.
  • Figure 4 shows a cross section of part of the extruder during the process of the invention.
  • the 10A electric cable illustrated in figure 1, corresponds to a fire-resistant electric cable of type K25 or RZ1K.
  • This electrical cable 10A comprises four elongated electrically conductive elements 100, each being insulated with an electrically insulating layer 200, and, successively and coaxially around these four isolated elongated electrically conductive elements (100, 200), a composite layer 300 as defined in the invention surrounding the four elongated insulated electrically conductive elements (100, 200), and an outer sheath 400 of the HFFR type surrounding the composite layer 300 as defined in the invention.
  • FIG. 2 is illustrated a schematic view of the method according to the invention implemented continuously.
  • a nonwoven fibrous material 1 in the form of a ribbon is placed on a winder 2, unwound and fed to a tightening device 3 through which a cable comprising at least one elongated electrically conductive element 4 (cable naked 4) scrolls, in order to allow the longitudinal winding of the tape 1 around the cable 4.
  • a tightening device 3 through which a cable comprising at least one elongated electrically conductive element 4 (cable naked 4) scrolls, in order to allow the longitudinal winding of the tape 1 around the cable 4.
  • Cable 8 confined in the material tube plastic 9 is thus brought into the die 14 of the extruder head 11 via the punch 13, in order to allow the extrusion of the polymer sheath around the cable while avoiding any contact of the geopolymer composition with the punch 13 and the metal tools of the extruder head [step ii)].
  • FIG. 4 shows a cross-sectional view of part of the extruder and shows the arrangement of the different parts during the extrusion of the sheath when the method of the invention is implemented.
  • Figure 4 shows an impregnated cable 8 comprising an elongated electrically conductive element 4, and the composite layer (1, 7) obtained from a non-woven fibrous material 1 impregnated with a geopolymer composition 7 surrounding said electrically element.
  • elongated conductor 4 The composite layer (1, 7) is surrounded by the plastic tube 9, and the plastic tube 9 (eg PEEK tube) is connected at its end to a plastic insert 12 (eg insert in PEEK) configured to fit the punch 13 of the extruder head.
  • the plastic tube 9 eg PEEK tube
  • the impregnated cable 8 confined in the plastic tube 9 is thus brought into the die 14 of the extruder head via the punch 13, in order to allow the extrusion of the material 16 of the polymer sheath around the cable while avoiding any contact. of the geopolymer composition 7 with the punch 13 and the metal tools of the extruder head [step ii)].
  • Example 1 preparation of a fire retardant cable according to a process according to the invention
  • a geopolymer composition was prepared as follows: an aqueous solution of alkali silicates was prepared by mixing 40 g of a 50% by weight aqueous solution of a first sodium silicate and 40 g of an aqueous solution of sodium hydroxide. 38% by weight of a second sodium silicate. Then, 10 g of a first metakaolin and 10 g of a second metakaolin were mixed with the aqueous solution of alkali silicates. Said geopolymer composition comprises approximately 55.2% by weight of solids, relative to the total weight of said geopolymer composition.
  • the geopolymer composition thus obtained is placed in an impregnation bath configured to allow the cable to pass through said impregnation bath.
  • a low voltage cable comprises five copper conductors with a cross section of 1.5 mm 2 , each of the conductors being surrounded with an electrically insulating layer based on XLPE, is previously manufactured.
  • a nonwoven fibrous polyester material in the form of a ribbon is placed on a winder, unwound at a speed of about 100 m / min and fed into a tightening device through which said low tension cable runs, in order to allow the longitudinal winding of the tape around the cable.
  • said cable is brought to an impregnation bath comprising said geopolymer composition at a speed of approximately 100 m / min.
  • the cable thus impregnated passes through a PEEK tube comprising at one end a conically shaped insert made of PEEK, said tube being partly inserted into an extruder head provided with a die and a conical shaped punch.
  • the cable When the cable arrives at the level of the PEEK insert, the cable is then covered by extrusion at a temperature of 198 ° C with a polymer sheath based on an HFFR mixture produced by NEXANS comprising polyethylene and flame retardant fillers.
  • the composite layer thus formed has a thickness of 0.5 mm, and said sheath thus formed has a thickness of about 2 mm.
  • a cable in accordance with the invention was thus obtained.
  • the flame performance of the cable is determined according to standard EN50399. 15 sections of cable positioned on a vertical ladder are exposed to a 20kW flame power for 20 min.
  • the acronym HRR corresponds to the English expression “Heat Release Rate” which provides information on the heat flow or the thermal flow
  • THR corresponds to the English expression “Total Heat Release” which provides information on the amount of heat released during combustion or the total heat release
  • FIGRA corresponds to the English expression “FIre GRowth rAte” which provides information on the rate of fire growth or the acceleration of energy production
  • SPR corresponds to the English expression “Smoke Production Rate” which provides information on the speed of smoke production
  • TSP corresponds to the English expression "Total Smoke Production” which provides information on the total quantity of smoke produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Insulated Conductors (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé, au moins une couche composite entourant ledit élément électriquement conducteur allongé, ladite couche composite comprenant un matériau fibreux non tissé imprégné par un matériau géopolymère, et au moins une gaine polymère entourant ladite couche composite, ledit procédé mettant un œuvre un tube en matière plastique pour faciliter l'extrusion de ladite gaine polymère autour de la couche composite.

Description

Procédé de fabrication d’un câble résistant et/ ou retardant au feu
La présente invention concerne un procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé, au moins une couche composite entourant ledit élément électriquement conducteur allongé, ladite couche composite comprenant un matériau fibreux non tissé imprégné par un matériau géopolymère, et au moins une gaine polymère entourant ladite couche composite, ledit procédé mettant un oeuvre un tube en matière plastique pour faciliter l'extrusion de ladite gaine polymère autour de la couche composite.
Elle s'applique typiquement mais non exclusivement à des câbles retardants et/ou résistants au feu destinés au transport d’énergie et/ou à la transmission de donnée tels que des câbles électriques et/ou optiques de sécurité retardants et/ou résistants au feu, notamment sans halogène, susceptibles de fonctionner pendant un laps de temps donné dans des conditions d’incendie sans être pour autant propagateur d’incendie, ni générateur de fumées importantes. Ces câbles de sécurité sont en particulier des câbles de transport d’énergie moyenne tension (notamment de 6 à 45-60 kV) ou des câbles de transmission basse fréquence, tels que des câbles de contrôle ou de signalisation.
De WO 2016/092200 est connu un procédé de fabrication d'un câble résistant au feu comprenant les étapes suivantes : une étape de préparation d'une composition géopolymère ; une étape d'enroulement d'un matériau fibreux non tissé autour d'au moins un conducteur métallique, une étape d'imprégnation du conducteur métallique/matériau fibreux non tissé dans la composition géopolymère précédemment préparée, une étape de durcissement de la composition géopolymère pour former une couche composite comprenant ledit matériau fibreux non tissé imprégné d'un matériau géopolymère et entourant le conducteur métallique, puis une étape d'extrusion à chaud d'une gaine polymère autour de la couche composite. Au cours de la fabrication du câble, la composition géopolymère en surface du matériau non tissé est encore liquide, elle s'écoule alors dans les parties métalliques de l'extrudeuse, se durcit, et se transforme au moins en partie en céramique, entraînant l'obstruction ou le bouchage de la tête d'extrusion, et empêchant l'extrusion de la gaine polymère autour de la couche composite. Le but de l'invention est par conséquent de pallier tout ou partie des inconvénients précités, et de fournir un procédé de fabrication d'un câble retardant au feu, ledit procédé étant facile à mettre en oeuvre, notamment facilement industrialisable, économique et rapide, et permettant en particulier de faciliter l'étape d'extrusion de la gaine polymère autour de la couche composite à base de géopolymère.
L'invention a pour premier objet un procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé, au moins une couche composite entourant ledit élément électriquement conducteur allongé, ladite couche composite comprenant un matériau fibreux non tissé imprégné d'un matériau géopolymère, et au moins une gaine polymère entourant ladite couche composite, caractérisé en ce qu'il comprend au moins les étapes suivantes : i) faire passer dans un tube en matière plastique un câble comprenant au moins un élément électriquement conducteur allongé, et au moins un matériau fibreux non tissé imprégné d'une composition géopolymère entourant ledit élément électriquement conducteur allongé, et ii) extruder une gaine polymère à l'aide d'une extrudeuse comprenant au moins une tête d'extrudeuse munie d'une filière et d'un poinçon, ledit procédé étant caractérisé en ce qu'une partie dudit tube en matière plastique est insérée dans la tête d'extrudeuse et est configurée pour éviter le contact entre la composition géopolymère et le poinçon de la tête d'extrudeuse.
Le procédé de l'invention est rapide, facile à mettre en oeuvre, notamment sur le plan industriel, économique, et il garantit l'obtention d'un câble résistant et/ou retardant au feu présentant de bonnes propriétés mécaniques, notamment en termes de flexibilité et de durabilité. Par ailleurs, le procédé de l'invention permet d'une part de faciliter la conformation du matériau fibreux non tissé autour de l'élément électriquement conducteur allongé, d'améliorer l'imprégnation du matériau fibreux non tissé par la composition géopolymère, et également d'éviter la céramification de la composition géopolymère au sein de la tête d'extrudeuse, facilitant ainsi l'extrusion de la gaine polymère autour de la couche composite à base de géopolymère.
Figure imgf000003_0001
L'étape i) permet de placer ou introduire dans un tube en matière plastique le câble comprenant au moins un élément électriquement conducteur allongé et au moins un matériau fibreux non tissé imprégné d'une composition géopolymère entourant ledit élément électriquement conducteur allongé. Cette étape de confinement dudit câble au sein dudit tube en matière plastique permet d'une part, de faciliter la conformation du matériau fibreux non tissé autour de l'élément électriquement conducteur allongé, et d'autre part, d'améliorer l'imprégnation du matériau fibreux non tissé par la composition géopolymère.
Lors de l'étape i), le tube en matière plastique entoure le câble, et en particulier entoure le matériau fibreux non tissé imprégné de ladite composition géopolymère.
Le tube de l'invention est en matière plastique afin notamment d'éviter l'adhésion de la composition géopolymère sur ledit tube. Par ailleurs, le tube en matière plastique étant moins bon conducteur thermique que le métal, cela permet d'éviter une prise du matériau géopolymère à l'interface (i.e. d'éviter le séchage de la composition géopolymère à l'interface trop rapide).
Le tube en matière plastique peut comprendre (ou être constitué d') un matériau polymère choisi parmi :
- les polymères thermoplastiques thermostables (c'est-à-dire stables à une température supérieure ou égale à 250°C environ), tels que les polyaryléthercétones (PAEK) [e.g. polyétheréthercétones (PEEK), polyéthercétonecétones (PEKK), polyéthercétones (PEK), polyétheréthercétonecétones (PEEKK), polyéthercétoneéthercétonecétones (PEKEKK)], les polyétherimides (PEI), les polyéthersulfones (PES), les polysulfones (PS) ou les polyimides (PI),
- les polyamides (PA), et les polyamide-imides (PAI),
- les polymères fluorés tels que le polyfluorure de vinylidène et de trifluoroéthylène [P(VdF-TrFE)] ou d'hexafluoropropène [P(VdF-HFP)], le polytétrafluoroéthylène (PTFE), le copolymère de tétrafluoroéthylène et d'hexafluoropropylène (FEP), ou l'ETFE,
- les résines polymères ayant une température de fusion supérieure à 200°C environ, et - un de leurs mélanges.
Le matériau polymère est de préférence choisi parmi les polyaryléthercétones, et de façon particulièrement préférée est choisi parmi les PEEK.
Le matériau polymère ainsi choisi présente l'avantage d'avoir des propriétés surfaciques et/ou physico-chimiques adaptées pour faciliter l'étape i), en particulier ledit matériau polymère ne présente aucune rugosité, et a une grande inertie chimique, et/ou une facilité d'usinage.
Le tube en matière plastique est de préférence un tube hermétique. En particulier, le tube en matière plastique est étanche à la composition géopolymère imprégnant ledit matériau fibreux non tissé.
Le tube en matière plastique est un cylindre creux. Il est défini par un diamètre externe « Dext » et un diamètre interne « Dint ».
Ledit tube en matière plastique a de préférence une épaisseur conditionnée par la différence entre le diamètre externe du câble utilisé dans l'étape i) et le diamètre interne de la tête d'extrudeuse. Cette épaisseur est donc choisie en fonction du diamètre externe du câble utilisé dans l'étape i), et du diamètre interne de la tête d'extrudeuse utilisée. L'épaisseur est définie par la différence entre le diamètre externe du tube « Dext » et le diamètre interne du tube « Dint » de sorte que « Dint » est strictement supérieur au diamètre externe du câble utilisé dans l'étape i) et « Dext » est strictement inférieur au diamètre interne de la tête d'extrudeuse.
Selon un mode de réalisation, le tube en matière plastique est configuré de sorte que la distance « d » entre la surface externe du matériau fibreux non tissé et la surface interne dudit tube est d'au plus 1 mm environ, et de façon particulièrement préférée d'au plus 0,5 mm environ.
En d'autres termes, la distance « d » définit l'espace radial vide entre le matériau fibreux non tissé imprégné de la composition géopolymère et la surface interne du tube.
Grâce à cette distance « d » maximale, la conformation du matériau fibreux non tissé autour de l'élément électriquement conducteur allongé est maintenue (i.e. le matériau non tissé entourant l'élément électriquement conducteur allongé ne peut pas s'ouvrir), et l'imprégnation du matériau fibreux non tissé par la composition géopolymère facilitée. L'homogénéité de la couche composite autour de l'élément électriquement conducteur allongé est également améliorée.
La distance « d » est de préférence d'au moins 0,2 mm environ, et de façon particulièrement préférée d'au moins 0,3 mm environ.
Le procédé de l'invention est en outre caractérisé en ce qu'une partie dudit tube en matière plastique est insérée dans la tête d'extrudeuse et est configurée pour éviter le contact entre la composition géopolymère et le poinçon de l'extrudeuse.
Le tube étant disposé en partie dans la tête d'extrusion ou tête d'extrudeuse, et le tube étant hermétique, tout écoulement de la composition géopolymère est évité au niveau du poinçon, mais également pendant tout le trajet du câble imprégné vers la tête d'extrudeuse. Par ailleurs, cela permet également de s'assurer que le matériau non tissé, notamment lorsqu'il est sous la forme d'un ruban appliqué longitudinalement, reste fermé autour du câble, i.e. entoure complètement l'élément électriquement conducteur allongé).
Le tube présente une autre partie qui n'est pas insérée dans la tête d'extrudeuse.
Cette autre partie présente de préférence une longueur d'au moins 100 mm environ. Cela permet ainsi de faciliter la sortie ou le retrait du tube de la tête d'extrudeuse.
Ainsi, lors de l'étape i), la composition géopolymère n'est pas en contact avec la tête d'extrudeuse, et plus particulièrement avec le poinçon de la tête d'extrudeuse, et avec toutes les parties métalliques contenues dans la tête d'extrudeuse.
De préférence, le tube est maintenu en place dans la tête d'extrudeuse au moyen de deux anneaux en métal, ou en matière plastique telle que définie dans l'invention, qui peut être identique ou différente, et de préférence identique, à la matière plastique du tube. Avantageusement, la partie du tube insérée dans la tête d'extrudeuse comprend une extrémité connectée à un insert en matière plastique configuré pour s'adapter au poinçon de la tête d'extrudeuse.
Ledit insert en matière plastique peut comprendre (ou être constitué d') un matériau polymère tel que définie dans l'invention. La matière plastique de l'insert peut être identique ou différent, et de préférence identique, à celle dudit tube.
La présence de l'insert en matière plastique permet d'éviter tout contact entre la composition géopolymère et le poinçon de la tête d'extrudeuse.
L'insert en matière plastique a de préférence une forme similaire à celle du poinçon et de façon particulièrement préférée a une forme conique.
L'étape i) est de préférence effectuée à température ambiante (i.e. 18-
25°C).
L'étape i) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
Lorsqu'elle est automatisée, l'étape i) est effectuée à une vitesse allant de 20 à 280 m/min environ, et de préférence allant de 50 à 150 m/min environ.
Le matériau fibreux non tissé
Le matériau fibreux non tissé a de préférence une structure souple et flexible.
Le matériau fibreux non tissé peut être choisi parmi les matériaux cellulosiques, les matériaux à base de polymères organiques synthétiques, les fibres de verre, et un de leurs mélanges, et de préférence parmi les matériaux à base de polymères organiques synthétiques.
Les matériaux cellulosiques peuvent être choisis parmi le papier, en particulier le papier buvard ; les matériaux non tissés fabriqués à partir de cellulose fonctionnalisée ou non fonctionnalisée ; les matrices à structure alvéolaire et/ou fibreuse fabriquées à partir de fibres naturelles d'acétate de cellulose.
Les matériaux à base de polymères organiques synthétiques peuvent être choisis parmi les matériaux polymères à matrice poreuse et/ou fibreuse de polyoléfine(s), en particulier ceux choisis parmi les homo- et copolymères de propylène, les homo- et copolymères d'éthylène, les polyéthylènes haute densité (HDPE), les polyamides aromatiques (aramides), les polyesters, et un de leurs mélanges.
Selon une forme de réalisation préférée de l'invention, le matériau fibreux non tissé est un polyéthylène téréphtalate (PET).
Le matériau fibreux non tissé présente de préférence un grammage allant de 50 à 120 g/cm2 environ. Cela permet ainsi d'obtenir une couche composite suffisamment flexible pour pouvoir être manipulée facilement, et suffisamment robuste pour obtenir une bonne protection au feu.
Selon une forme de réalisation préférée de l'invention, le matériau fibreux non tissé représente de 2 à 95% en poids environ, de façon particulièrement préférée de 5 à 45% en poids environ, et encore plus préférentiellement de 10 à 35% en poids environ, par rapport au poids total de la couche composite.
Le matériau fibreux non tissé se présente préférentiellement sous la forme d'un ruban ou d'une bande. Cela permet ainsi de faciliter l'étape i).
La composition aéopolvmère
La composition géopolymère utilisée à l'étape i) est de préférence une composition géopolymère liquide.
La composition géopolymère de l'étape i) est de préférence une composition géopolymère aluminosilicate.
La composition géopolymère de l'invention est de façon particulièrement préférée une composition géopolymère comprenant de l'eau, du silicium (Si), de l'aluminium (Al), de l'oxygène (O), et au moins un élément choisi parmi le potassium (K), le sodium (Na), le lithium (Li), le césium (Cs), et le calcium (Ca), et de préférence choisi parmi le potassium (K) et le sodium (Na).
La composition géopolymère peut en particulier comprendre au moins un premier aluminosilicate, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline.
Le premier aluminosilicate Le premier aluminosilicate peut être choisi parmi les métakaolins (i.e. kaolins calcinés), les cendres volantes (bien connues sous l'anglicisme « fly ash »), le laitier de haut fourneau (bien connu sous l'anglicisme « blast furnace slag »), les argiles gonflantes telles que la bentonite, les argiles calcinées, tout type de composé comprenant de l'aluminium et de la fumée de silice, les zéolithes, et un de leurs mélanges.
Parmi ces composés, les métakaolins sont préférés, notamment ceux commercialisés par la société Imérys.
Dans l'invention, l'expression « métakaolin » signifie un kaolin calciné ou un aluminosilicate déhydroxylé. Il est de préférence obtenu par déshydratation d'un kaolin ou d'une kaolinite.
La composition géopolymère peut comprendre de 5 à 50% en poids environ d'aluminosilicate, et de préférence de 10 à 35% en poids environ d'aluminosilicate, par rapport au poids total de la composition géopolymère.
La composition géopolymère peut comprendre en outre un deuxième aluminosilicate différent du premier aluminosilicate.
De préférence, la composition géopolymère comprend deux kaolins calcinés ayant des températures de calcination différentes.
Selon une forme de réalisation particulièrement préférée de l'invention, la composition géopolymère comprend un premier métakaolin choisi parmi les kaolins calcinés à une température Tci d'au moins 650°C environ, et un deuxième métakaolin choisi parmi les kaolins calcinés à une température TC2 telle que TC2 - Tci ³ 100°C environ, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline. La composition géopolymère peut alors présenter des propriétés mécaniques améliorées, notamment en termes de flexibilité et de durabilité, tout en garantissant de bonnes propriétés de réaction et de résistance au feu.
Selon une forme de réalisation de l'invention, le premier métakaolin est un kaolin calciné à une température Tci d'au moins 700°C environ, et de préférence d'au moins 725°C environ. Selon une forme de réalisation préférée de l'invention, le premier métakaolin est un kaolin calciné à une température Tci d'au plus 875°C environ, et de préférence d'au plus 825°C environ.
Le premier métakaolin peut comprendre au moins 20% en mole environ, et de préférence au moins 30% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du premier métakaolin.
Le premier métakaolin peut comprendre au plus 60% en mole environ, et de préférence au plus 50% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du premier métakaolin.
Le premier métakaolin peut comprendre au moins 35% en mole environ, et de préférence au moins 45% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du premier métakaolin.
Le premier métakaolin peut comprendre au plus 75% en mole environ, et de préférence au plus 65% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du premier métakaolin.
À titre d'exemples de premier métakaolin, on peut citer les métakaolins vendus par la société Imérys, notamment celui commercialisé sous la référence PoleStar® 450.
Le premier métakaolin peut être choisi parmi les kaolins calcinés à Tci telle que définie dans l'invention, pendant au moins 1 min environ, de préférence pendant au moins 10 min environ, de façon particulièrement préférée pendant une durée allant d'environ 30 min à 8h, et de façon plus particulièrement préférée pendant une durée allant d'environ 2h à 6h.
Le deuxième métakaolin est choisi de préférence parmi les kaolins calcinés à une température TC2 telle que TC2 - Tci > 150°C environ, de façon particulièrement préférée telle que TC2 - Tci > 200°C environ, et de façon plus particulièrement préférée telle que TC2 - Tci > 250°C environ.
Selon une forme de réalisation de l'invention, le deuxième métakaolin est un kaolin calciné à une température TC2 d'au moins 800°C environ, de préférence d'au moins 850°C environ, et de façon particulièrement préférée d'au moins 900°C environ. Selon une forme de réalisation préférée de l'invention, le deuxième métakaolin est un kaolin calciné à une température TC2 d'au plus 1200°C environ, et de préférence d'au plus 1150°C environ.
Le deuxième métakaolin peut comprendre au moins 20% en mole environ, et de préférence au moins 30% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du deuxième métakaolin.
Le deuxième métakaolin peut comprendre au plus 60% en mole environ, et de préférence au plus 50% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du deuxième métakaolin.
Le deuxième métakaolin peut comprendre au moins 35% en mole environ, et de préférence au moins 45% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du deuxième métakaolin.
Le deuxième métakaolin peut comprendre au plus 75% en mole environ, et de préférence au plus 65% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du deuxième métakaolin.
À titre d'exemples de deuxième métakaolin, on peut citer les métakaolins vendus par la société Imérys, notamment celui commercialisé sous la référence PoleStar® 200R.
Le deuxième métakaolin peut être choisi parmi les kaolins calcinés à TC2 telle que définie dans l'invention, pendant au moins 1 min environ, de préférence pendant au moins 5 min environ, de façon particulièrement préférée pendant une durée allant d'environ 10 min à 2h, et de façon plus particulièrement préférée pendant une durée allant d'environ 15 min à lh.
Le rapport massique [premier métakaolin/deuxième métakaolin] dans la composition géopolymère va de préférence de 0,1 à 2 environ, de façon particulièrement préférée de 0,5 à 1,0 environ, et de façon plus particulièrement préférée est d'environ 1.
La composition géopolymère peut comprendre de 5 à 50% en poids environ, et de préférence de 10 à 35% en poids environ de premier et deuxième métakaolins, par rapport au poids total de la composition géopolymère.
Les premier et deuxième métakaolins peuvent être analysés par analyse thermique différentielle (ATD) [absence ou présence d'un point ou pic de cristallisation], résonance magnétique nucléaire (RMN) [spectre RMN27 Al], et/ou diffraction aux rayons X (DRX).
Le premier métakaolin présente de préférence un pic de cristallisation par analyse thermique différentielle, de façon particulièrement préférée à une température allant de 900 à 1060°C, et de façon plus particulièrement préférée à une température allant de 950 à 1010°C.
Le deuxième métakaolin comprend de préférence de la mullite.
Le premier silicate alcalin
Le premier silicate alcalin peut être choisi parmi les silicates de sodium, les silicates de potassium, et l'un de leurs mélanges.
Les silicates alcalins commercialisés par la société Silmaco ou par la société PQ corporation sont préférés. Le premier silicate alcalin est de préférence un silicate de sodium.
Le premier silicate alcalin peut avoir un rapport molaire S1O2/M2O allant de 1,1 à 35 environ, de préférence de 1,3 à 10 environ, et de façon particulièrement préférée de 1,4 à 5 environ, avec M étant un atome de sodium ou de potassium, et de préférence un atome de sodium.
La composition géopolymère peut comprendre de 5 à 60% en poids environ, et de préférence de 10 à 50% en poids environ de premier silicate alcalin, par rapport au poids total de la composition géopolymère.
Le deuxième silicate alcalin
La composition géopolymère peut comprendre en outre un deuxième silicate alcalin différent du premier silicate alcalin.
Le deuxième silicate alcalin peut être choisi parmi les silicates de sodium, les silicates de potassium, et l'un de leurs mélanges. Les silicates alcalins commercialisés par la société Silmaco ou par la société PQ Corporation sont préférés. Le deuxième silicate alcalin est de préférence un silicate de sodium.
Les premier et deuxième silicates alcalins peuvent avoir respectivement des rapports molaires S1O2/M2O et SiCh/M^O tels que M et M', identiques, sont choisis parmi un atome de sodium et un atome de potassium, et de préférence un atome de sodium, et lesdits rapports ont des valeurs différentes, de préférence des valeurs telles que leur différence est d'au moins 0,3, de façon particulièrement préférée telles que leur différence est d'au moins 0,5, et de façon plus particulièrement préférée telles que leur différence est d'au moins 1,0.
Selon une forme de réalisation de l'invention, la composition géopolymère comprend :
- un premier silicate alcalin ayant un rapport molaire S1O2/M2O allant de 1,5 à 2,6 environ, et
- un deuxième silicate alcalin ayant un rapport molaire SiC /M^O supérieur à 2,6, de préférence allant de 2,8 à 4,5 environ, et de façon particulièrement préférée allant de 3,0 à 4,0 environ, étant entendu que M' est identique à M.
La composition géopolymère peut comprendre de 10 à 60% en poids environ, et de préférence de 20 à 50% en poids environ de premier et deuxième silicates alcalins, par rapport au poids total de la composition géopolymère.
Le rapport massique [premier silicate alcalin/deuxième silicate alcalin] dans la composition géopolymère va de préférence de 0,5 à 2,5, et de façon particulièrement préférée de 0,8 à 2,0.
La base alcaline
La base alcaline peut être de l'hydroxyde de sodium, ou de l'hydroxyde de potassium, et de préférence de l'hydroxyde de sodium.
La composition géopolymère peut être exempte de base alcaline. Cela permet ainsi d'améliorer la manipulation de la composition géopolymère, en particulier lors de la préparation d'un câble.
Additifs
La composition géopolymère peut comprendre en outre un ou plusieurs additifs choisis parmi:
- un colorant,
- des fibres minérales, notamment choisies parmi les fibres d'alumine,
- un additif à structure polymère, notamment choisi parmi les fibres de polyoléfine telles que les fibres de polypropylène ou de polyéthylène (e.g. fibres de polyéthylène haute densité ou de HDPE), les aramides, et les fibres techniques de verre enduites de silicone ou d'un polymère organique de type polyéthylène ; un copolymère de styrène-butadiène (SBR) ; un copolymère de styrène- butadiène-éthylène (EBS) ; les dérivés des copolymères de styrène-éthylène, notamment ceux commercialisés par Kraton tels qu'un copolymère de styrène- éthylène-butylène-styrène (SEBS), un copolymère de styrène-butadiène-styrène (SBS), un copolymère de styrène-isoprène-styrène (SIS), un copolymère de styrène-propylène-éthylène (EPS) ou un copolymère de styrène-éthylène- propylène- styrène (SEPS) ; un copolymère d’éthylène et d'acétate de vinyle (EVA), un polyorganosiloxane réticulé (e.g. à l'aide d'un péroxyde) ; du polyéthylène éventuellement sous forme de poudre ; des lignosulfonates ; de l'acétate de cellulose ; d'autres dérivés de la cellulose ; une huile silicone de faible viscosité (e.g. de l'ordre de 12500 cPo) ; et une huile polyéthylène, - un composé accélérant la prise en masse, notamment choisi parmi le sulfate d'aluminium, les aluns (e.g. sulfate double d'aluminium et de potassium), le chlorure de calcium, le sulfate de calcium, le sulfate de calcium hydraté, l'aluminate de sodium, le carbonate de sodium, le chlorure de sodium, le silicate de sodium, le sulfate de sodium, le chlorure de fer (III), et les lignosulfonates de sodium,
- un agent retardant la prise en masse, notamment choisi parmi l'ammonium, les métaux alcalins, les métaux alcalino-terreux, le borax, les lignosulfonates et en particulier les sels de métaux de lignosulfonates de calcium, les celluloses telles que la carboxyméthyl hydroéthyl cellulose, les lignines sulfoalkylées telles que par exemple la lignine sulfométhylée, les acides hydroxycarboxyliques, les copolymères de sels d'acide 2-acrylamido-2- méthylpropane sulfonique et d'acide acrylique ou d'acide maléique, et les sels saturés,
- une charge inerte, notamment choisi parmi le talc, les micas, les argiles déshydratées, et le carbonate de calcium,
- un amidon,
- un plastifiant de l'amidon, notamment choisi parmi un stéarate de métal, un polyéthylène glycol, un éthylène glycol, un polyol comme le glycérol, le sorbitol, le mannitol, le maltitol, le xylitol ou un oligomère de l'un de ces polyols, un sucrose comme le glucose ou le fructose, un plastifiant contenant des groupes amides, et tout type de plastifiant à base de polysaccharide(s) modifié(s), - un matériau carboné expansé tel qu'un graphite expansé.
Le colorant est de préférence un colorant liquide à température ambiante (i.e. à 18-25°C).
La composition géopolymère peut comprendre de 0,01 à 15% en poids environ d'additif(s), et de préférence de 0,5 à 8% en poids environ d'additif(s), par rapport au poids total de la composition géopolymère.
L'étape ii)
L'étape d'extrusion ii) est effectuée après l'étape i). Grâce à la présence du tube en matière plastique, la céramification de la composition géopolymère au sein de l'extrudeuse est évitée, facilitant ainsi l'extrusion de la gaine polymère autour de la couche composite à base de géopolymère. Cela permet également d'éviter le bouchage ou l'obstruction de l'extrudeuse ainsi que sa détérioration.
En effet, lors de l'extrusion, le matériau fibreux non tissé s'imprégne de la composition géopolymère liquide mais en raison de sa faible viscosité, des effets d'égouttement sont observés. Le géopolymère lors d'un contact sur une surface métallique chaude se transforme en une céramique rigide. Au cours du temps, se construit alors dans la tête d'extrudeuse un bloc compact de céramique, qui finit par obstruer le passage du câble. Grâce au tube en matière plastique, la composition géopolymère est transportée dans le câble grâce au matériau fibreux non tissé qui, après quelques heures, devient une couche cohésive et protectrice contre l'incendie.
La gaine polymère de l'étape ii) peut permettre d'assurer l'intégrité mécanique du câble. On peut alors parler de gaine de protection.
À l'issue de l'étape ii), le câble peut alors comprendre au moins un élément électriquement conducteur allongé, la couche composite entourant ledit élément électriquement conducteur allongé, et au moins une gaine polymère entourant ladite couche composite.
L'étape ii) est de préférence effectuée à une température allant de 140°C à 225°C environ, et de façon particulièrement préférée allant de 170°C à 210°C environ. L'étape ii) met de préférence en œuvre un distributeur configuré pour permettre le passage entre le poinçon et la filière de la tête d'extrudeuse, d'au moins un matériau polymère fondu apte à former la gaine polymère.
L'étape ii) peut être effectuée de façon automatisée.
L'étape ii) est effectuée à une vitesse allant de 20 à 280 m/min environ, et de préférence allant de 50 à 150 m/min environ.
La gaine polymère est de préférence la couche la plus externe du câble.
La gaine polymère est de préférence une couche électriquement isolante.
La gaine polymère est de préférence réalisée en un matériau exempt d'halogène. Elle peut être réalisée classiquement à partir de matériaux retardant la propagation de la flamme ou résistant à la propagation de la flamme. Notamment, si ces derniers ne contiennent pas d'halogène, on parle de gainage de type HFFR (pour l'anglicisme « Halogen Free Flame Retardant »).
La gaine polymère peut comprendre au moins un polymère organique ou inorganique.
Le choix du polymère organique ou inorganique n'est pas limitatif et ceux- ci sont bien connus de l'homme du métier.
Selon une forme de réalisation préférée de l'invention, le polymère organique ou inorganique est choisi parmi les polymères réticulés et non réticulés.
Le polymère organique ou inorganique peut être un homo- ou un co-polymère ayant des propriétés thermoplastiques et/ou élastomères.
Les polymères inorganiques peuvent être des polyorganosiloxanes.
Les polymères organiques peuvent être des polyuréthanes ou des polyoléfines.
Les polyoléfines peuvent être choisies parmi les polymères d'éthylène et de propylène. A titre d'exemple de polymères d'éthylène, on peut citer le polyéthylène linéaire basse densité (LLDPE), le polyéthylène basse densité (LDPE), le polyéthylène moyenne densité (MDPE), le polyéthylène haute densité (HDPE), les copolymères d’éthylène et d'acétate de vinyle (EVA), les copolymères d’éthylène et d’acrylate de butyle (EBA), d’acrylate de méthyle (EMA), de 2- hexyléthyl acrylate (2HEA), les copolymères d'éthylène et d'alpha-oléfines tels que par exemple les polyéthylène-octène (PEO), les copolymères d'éthylène et de propylène (EPR), les terpolymères d'éthylène et de propylène (EPT) tels que par exemple les terpolymères d'éthylène propylène diène monomère (EPDM) ou un de leurs mélanges.
Le polymère de la gaine polymère est de préférence un polymère organique, de façon particulièrement préférée un polymère d'oléfine, de façon plus particulièrement préférée un polymère d'éthylène, et de façon encore plus particulièrement préférée un copolymère d’éthylène et d'acétate de vinyle, un polyéthylène linéaire basse densité, ou un de leurs mélanges.
La gaine polymère peut comprendre en outre une charge minérale ignifugeante hydratée. Cette charge minérale ignifugeante hydratée agit principalement par voie physique en se décomposant de manière endothermique (e.g. libération d'eau), ce qui a pour conséquence d'abaisser la température de la gaine et de limiter la propagation des flammes le long du câble. On parle notamment de propriétés de retard à la flamme, bien connues sous l'anglicisme « flame retardant ».
La charge minérale ignifugeante hydratée peut être un hydroxyde métallique tel que l'hydroxyde de magnésium ou le trihydroxyde d'aluminium.
La gaine polymère peut comprendre en outre une charge inerte, notamment choisi parmi le talc, les micas, les argiles déshydratées et un de leurs mélanges.
L'étape iCH
Le procédé peut comprendre en outre avant l'étape i), une étape iO) de fabrication du câble comprenant au moins ledit élément électriquement conducteur allongé et au moins ledit matériau fibreux non tissé imprégné de la composition géopolymère entourant ledit élément électriquement conducteur allongé.
L'étape iO) est de préférence effectuée à température ambiante (18-25°C environ).
L'étape iO) peut en particulier comprendre les sous-étapes suivantes : a) préparer une composition géopolymère, b) appliquer un matériau fibreux non tissé autour d'un câble comprenant au moins un élément électriquement conducteur allongé, et c) imprégner l'ensemble câble/matériau fibreux non tissé par ladite composition géopolymère.
Sous-étape a)
La sous-étape a) est généralement effectuée à un pH élevé, notamment variant de 10 à 13.
La sous-étape a) comprend de préférence les sous-étapes suivantes : al) la préparation d'une solution aqueuse du premier silicate alcalin, et a2) le mélange du premier aluminosilicate sous forme de poudre avec la solution aqueuse de silicate alcalin préparée à la sous-étape al) précédente.
La solution aqueuse du premier silicate alcalin peut être préparée en mélangeant du dioxyde de silicium S1O2 ou un silicate alcalin avec une base MOH dans laquelle M est K ou Na.
Le dioxyde de silicium S1O2 peut être choisi parmi la fumée de silice (i.e. silice pyrogénée), le quartz, et leurs mélanges.
La sous-étape al) peut être effectuée en dissolvant la base alcaline dans de l'eau, entraînant un dégagement de chaleur (réaction exothermique), puis en ajoutant la silice (ou le silicate alcalin). La chaleur dégagée accélère alors la dissolution de la silice (ou du silicate alcalin) lors de la sous-étape al), et du premier aluminosilicate lors de la sous-étape a2).
Lorsque le deuxième aluminosilicate et/ou le deuxième silicate alcalin tel(s) que défini(s) dans l'invention existe(nt), la sous-étape a) de préparation de la composition géopolymère peut comprendre le mélange dudit premier aluminosilicate et éventuellement dudit deuxième aluminosilicate, avec ledit premier silicate alcalin, éventuellement ledit deuxième silicate alcalin, de l'eau, et éventuellement la base alcaline.
La sous-étape a) comprend de préférence le mélange des premier et deuxième métakaolins, avec le premier silicate alcalin et éventuellement le deuxième silicate alcalin, de l'eau, et éventuellement une base alcaline. Les premier et deuxième métakaolins et les premier et deuxième silicates alcalins sont tels que définis dans l'invention.
Selon une forme de réalisation préférée, la sous-étape a) comprend les sous-étapes suivantes : al') le mélange des premier et deuxième silicates alcalins, notamment sous agitation, a2') éventuellement l'ajout d'une base alcaline, notamment en maintenant l'agitation, et a3') l'ajout des premier et deuxième métakaolins, notamment en maintenant l'agitation.
À l'issue de la sous-étape a), ou de la sous-étape a2) ou a3'), on obtient préférentiellement une solution fluide et homogène.
À l'issue de sous-étape a), la composition géopolymère peut comprendre de 35% à 80% en poids environ, et de façon particulièrement préférée de 40% à 70% en poids environ, de matières solides (silicate alcalin(s), aluminosilicate(s) et base alcaline), par rapport au poids total de ladite composition géopolymère.
Un tel rapport massique permet d'avoir une composition géopolymère assez fluide pour permettre sa manipulation, et dont la cinétique de solidification est assez lente pour permettre la formation d'une couche composite de câble telle que définie ci-après.
Le rapport massique matières solides/eau dans ladite composition géopolymère peut permettre de déterminer la cinétique de solidification de ladite composition géopolymère.
La sous-étape a) est de préférence effectuée à température ambiante (18- 25°C environ).
Sous-étape bj
La sous-étape b) permet l'application du matériau non tissé autour du l'élément électriquement conducteur allongé, notamment pour former un câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé. Le matériau fibreux non tissé se présente de préférence sous la forme d'une bande ou d'un ruban. Cela permet ainsi de faciliter la sous-étape b).
Le matériau fibreux non tissé peut être appliqué soit directement autour d'un ou de plusieurs éléments conducteurs allongés, soit autour d'une couche interne dudit câble qui est elle-même autour d'un ou de plusieurs éléments conducteurs allongés.
À l'issue de la sous-étape b), on obtient un ensemble câble/matériau fibreux non tissé,
Lorsque le matériau fibreux non tissé est un ruban, la sous-étape b) d'application peut être effectuée par enroulement du ruban autour du câble.
L'enroulement peut être longitudinal (i.e. selon l'axe longitudinal du câble ou en d'autres termes dans le sens de la longueur du câble) ou hélicoïdal, et de préférence longitudinal. L'enroulement longitudinal permet de diminuer le coût de production du câble.
L'enroulement longitudinal peut en outre être effectué avec des zones de recouvrement, la ou les zones de recouvrement représentant de 10 à 20% environ.
La sous-étape b) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
La sous-étape b) peut être mise en oeuvre en faisant passer le matériau fibreux non tissé dans un dispositif de resserrement ou un dispositif de conformation (désigné également par les termes « trompette » ou « conformateur de matériau fibreux non tissé »). Le câble comprenant au moins un élément électriquement conducteur allongé passe également dans le dispositif de resserrement pendant la sous-étape b). Ce dispositif est un dispositif mécanique qui enroule en continu le ruban autour de l'élément électriquement conducteur allongé. Cela permet ainsi de faciliter l'enroulement longitudinal du ruban autour du câble.
La sous-étape b) est de préférence effectuée à température ambiante (18- 25°C environ).
Sous-étape c)
La sous-étape c) consiste à imprégner l'ensemble câble/matériau fibreux non tissé. La sous-étape c) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
La sous-étape c) est de préférence effectuée par trempage enduction.
La sous-étape c) peut par exemple être effectuée à l'aide d'un bain ou bac d'imprégnation comprenant la composition géopolymère dans lequel on fait passer le câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé.
Le bain ou bac d'imprégnation est de préférence configuré pour permettre le passage du câble de la sous-étape b) au travers dudit bain d'imprégnation.
La composition géopolymère ainsi obtenue au cours de la sous-étape a) est alors placée dans ledit bain d'imprégnation, pour permettre la sous-étape c).
Le bain ou bac d'imprégnation est de préférence alimenté avec la composition géopolymère, notamment à l'aide de moyens tels qu'une pompe. Cela permet ainsi d'alimenter en continu ledit bain ou bac en composition géopolymère.
Dans un mode de réalisation préféré de l'invention, La sous-étape c) d'imprégnation est réalisée à une température allant de 15°C à 40°C environ, et de façon particulièrement préférée de 20°C à 30°C environ.
L'ensemble câble/matériau fibreux non tissé imprégné de la composition géopolymère est alors directement utilisé dans l'étape i) telle que définie ci-dessus.
Pour ce faire, le tube en matière plastique est de préférence connecté au bain ou bac d'imprégnation, par exemple avec des moyens mécaniques. Ainsi, dès la sortie du bain d'imprégnation, le câble imprégné passe dans ledit tube en matière plastique. Cela permet ainsi de maintenir le matériau fibreux non tissé autour de l'élément électriquement conducteur allongé et/ou de maintenir la composition géopolymère sur la circonférence du câble.
L'étape i) met de préférence en oeuvre un tube d'extension directement connecté au bain d'imprégnation. Le câble sort donc du bain d'imprégnation pour passer dans le tube en matière plastique via ce tube d'extension.
De préférence, le tube en maintenu en place dans la tête d'extrudeuse au moyen de deux anneaux en matière plastique. Le câble obtenu
La couche composite
La couche composite est de préférence une couche retardante et/ou résistante au feu.
La couche composite présente de préférence une épaisseur allant de 0,2 à 3 mm environ, et de façon particulièrement préférée allant de 0,5 à 1 mm environ.
Lorsque l'épaisseur de la couche composite est inférieure à 0,2 mm, la protection thermique du câble obtenu selon le procédé de l'invention n'est pas suffisante.
La couche composite de l'invention est de préférence une couche rubanée (i.e. sous la forme d'un ruban ou d'une bande).
La couche composite présente de préférence une épaisseur sensiblement constante et constitue notamment une enveloppe de protection continue.
La couche composite peut en particulier comprendre 2 à 3 rubans superposés.
La couche composite de l'invention est de préférence non poreuse.
La couche composite est de préférence une couche interne dudit câble.
Selon l'invention, on entend par « couche interne », une couche qui ne constitue pas la couche la plus externe du câble.
La couche composite comprend de préférence au moins un matériau géopolymère et le matériau fibreux non tissé tel que défini dans l'invention.
Le matériau qéopolvmère
Dans la présente invention, le matériau géopolymère est obtenu à partir d'une composition géopolymère telle que définie dans l'invention, de préférence par durcissement, géopolymérisation et/ou polycondensation de ladite composition géopolymère.
En particulier, la composition géopolymère telle que définie dans l'invention est apte à former ledit matériau géopolymère. Les ingrédients de la composition géopolymère peuvent donc subir une polycondensation pour former ledit matériau géopolymère. Le durcissement s'effectue par réaction interne du type polycondensation. Le durcissement n'est par exemple pas le résultat d’un simple séchage, comme c’est généralement le cas pour des liants à base de silicates alcalins.
En effet, les matériaux géopolymères résultent d’une réaction de polycondensation minérale par activation alcaline, dite géosynthèse, par opposition aux liants traditionnels hydrauliques dans lesquels le durcissement est le résultat d’une hydratation des aluminates de calcium et des silicates de calcium.
Dans la présente invention, l'expression « matériau géopolymère » signifie un matériau solide comprenant du silicium (Si), de l'aluminium (Al), de l'oxygène (O) et au moins un élément choisi parmi le potassium (K), le sodium (Na), le lithium (Li), le césium (Cs) et le calcium (Ca), et de préférence choisi parmi le potassium (K), et le sodium (Na).
Le matériau géopolymère peut être un matériau géopolymère aluminosilicate.
Le matériau géopolymère aluminosilicate peut être choisi parmi les poly(sialates) répondant à la formule (I) Mn(-Si-0-AI-0-)n [(M)-PS] et ayant un rapport molaire Si/Al égal à 1, les poly(sialate-siloxos) répondant à la formule (II) Mn(-Si-OAI-OSi-0-)n [(M)-PPS] et ayant un rapport molaire Si/Al égal à 2, les poly(sialate-disiloxos) répondant à la formule (III) Mn(-Si-0-AI-0-Si-0-Si-0)n [(M)-PSDS] et ayant un rapport molaire Si/Al égal à 3, et d'autres poly(sialates) de rapport Si/Al > 3, les poly(sialates) précités comprenant un cation alcalin M choisi parmi K, Na, Li, Cs et l'un de leurs mélanges, et n désigne le degré de polymérisation.
Dans un mode de réalisation, le matériau géopolymère représente de 5 à 98% en poids environ, de préférence de 55 à 95% en poids environ, et de préférence encore de 65 à 90% en poids environ, par rapport au poids total de la couche composite.
Le câble
Avantageusement, le câble obtenu selon un procédé conforme à l'invention satisfait à au moins une des normes de réaction ou non-propagation au feu choisies parmi les normes EN 60332-1, EN 60332-3, et EN 50399 (2012/02 + Al 2016) ; et de préférence à la norme EN 50399 (2012/02 + Al 2016), en particulier aux critères de classification B2ca, sla, dO, al de ladite norme, et éventuellement aux normes EN 60332-1 et EN 60332-3.
Selon une forme de réalisation de l'invention, le câble est un câble d'énergie et/ou de télécommunication, et de préférence un câble électrique.
Lorsque le câble comprend une pluralité d'éléments électriquement conducteurs allongés, la couche composite peut alors entourer la pluralité d'éléments électriquement conducteurs allongés du câble.
Le câble peut comprendre une seule couche composite telle que définie dans l'invention ou une pluralité de couches composites telles que définies dans l'invention.
Lorsque le câble comprend une pluralité de couches composites, le procédé peut comprendre en outre la réitération des étapes a) à c), autant de fois qu'il y a de couches composites à appliquer.
De préférence, le câble comprend une seule couche composite, et de façon plus particulièrement préférée une seule couche composite interne.
Selon une forme de réalisation de l'invention, le câble obtenu selon le procédé de l'invention comprend en outre un ou plusieurs couches interposées entre l'élément électriquement conducteur allongé et la couche composite telle que définie dans l'invention.
Ces couches peuvent comprendre une ou plusieurs couches polymères telles que des couches polymères électriquement isolantes, et/ou une ou plusieurs couches métalliques telles que des couches métalliques contenant une ou plusieurs ouvertures.
Dans ce cas, le procédé comprend en outre, avant l'étape b) ou avant l'étape a), une ou plusieurs étapes d'application d'une ou plusieurs des couches mentionnées ci-dessus, autour de l'élément électriquement conducteur allongé, de l'ensemble des éléments électriquement conducteurs allongés, ou autour de chacun des éléments électriquement conducteurs allongés, selon le type de câble souhaité.
Les couches métalliques contenant une ou plusieurs ouvertures sont typiquement des couches utilisées dans des câbles rayonnants bien connus de l'homme du métier. Selon une forme de réalisation préférée de l'invention, le câble comprend : - une pluralité d'éléments électriquement conducteurs, chacun desdits éléments électriquement conducteurs étant entouré par une couche polymère, notamment électriquement isolante, pour former une pluralité d'éléments électriquement conducteurs isolés,
- une couche composite telle que définie dans l'invention entourant ladite pluralité d'éléments électriquement conducteurs isolés, et
- une gaine polymère telle que définie dans l'invention entourant ladite couche composite.
Procédé continu
Le procédé conforme à l'invention est de préférence un procédé continu. En d'autres termes, au moins les étapes i) et ii), et de préférence au moins les étapes iO), i) et ii) sont effectuées en continu.
Dans l'invention, l'expression "procédé continu" signifie que le procédé est effectué sur une seule ligne de production, et/ou sans étapes de repos, de recueil, ou de récupération. En d'autres termes, dans le procédé conforme à l'invention, il n'y a pas d'étapes intermédiaires de repos entre la distribution du matériau fibreux non tissé ou au moins le passage dans le tube en matière plastique du câble comprenant au moins ledit élément électriquement conducteur allongé et au moins ledit matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé, et la récupération/obtention du câble final à l'issue de l'étape ii). Plus particulièrement, les étapes i) et ii), ou les étapes iO), i) et ii), sont concomitantes, i.e. les étapes i) et ii), ou les étapes iO), i) et ii), sont mises en oeuvre en même temps.
Selon ce mode de réalisation, le matériau fibreux non tissé peut être disposé sur un distributeur tel qu'un dérouleur ou dévidoir, et ledit matériau peut être distribué ou déroulé en continu pour mettre en oeuvre au moins les étapes iO), i) et ii).
De préférence, la sous-étape b) est mise en oeuvre en faisant passer le matériau fibreux non tissé sous la forme d'un ruban dans le dispositif de resserrement ou de conformation au travers duquel un câble comprenant au moins un élément électriquement conducteur allongé défile, puis le câble ainsi obtenu passe dans le bain ou bac d'imprégnation comprenant la composition géopolymère selon la sous-étape c), puis le câble ainsi imprégné sort du bac d'imprégnation et rentre dans le tube en matière plastique selon l'étape i), une partie dudit tube étant insérée dans la tête d'extrudeuse. Enfin le câble confiné dans ledit tube est amené dans la filière de la tête d'extrudeuse, afin de permettre l'extrusion de la gaine polymère autour du câble selon l'étape ii).
Le tube en matière plastique est de préférence connecté au bain ou bac d'imprégnation, par exemple avec des moyens mécaniques.
Lors de la sous-étape b), le distributeur délivre le matériau fibreux non tissé à une vitesse V (en km/min).
La vitesse V est de préférence identique à la vitesse de défilement du câble.
De préférence, la sous-étape c) est mise en oeuvre en faisant passer le câble comprenant ledit élément électriquement conducteur allongé et ledit matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé dans un bain ou bac d'imprégnation alimenté avec la composition géopolymère avec un débit D (en kg/min). Le débit D peut aller de 0,5 kg/min à 36 kg/min environ ou de 36 kg/min à 300 kg/min environ, et de préférence de 0,5 kg/min à 25 kg/min environ.
La vitesse de défilement du câble dans la sous-étape c) et les étapes i) et ii) va de 10 m/min à 600 m/min environ, de préférence va de 20 m/min à 280 m/min environ environ, et de préférence encore de 50 m/min à 200 m/min environ, et de façon particulièrement préférée de 50 m/min à 150 m/min environ.
Le procédé conforme à l'invention est rapide, simple et avantageux d'un point de vue économique. Il permet de fabriquer en peu d'étapes un câble présentant de bonnes propriétés mécaniques, notamment en termes de flexibilité et de durabilité, tout en garantissant une bonne performance de résistance au feu.
Brève description des dessins
Les dessins annexés illustrent l'invention :
La figure 1 représente une vue schématique d'un câble électrique tel qu'obtenu selon le procédé conforme à l'invention.
La figure 2 représente une vue schématique du procédé conforme à l'invention. La figure 3 représente plusieurs vues en 3D de l'agencement des différentes pièces mises en œuvre dans le procédé de l'invention.
La figure 4 représente une coupe transversale d'une partie de l'extrudeuse lors du procédé de l'invention.
Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l’invention ont été représentés de manière schématique sur ces figures, et ceci sans respect de l’échelle.
Le câble électrique 10A, illustré sur la figure 1, correspond à un câble électrique résistant au feu de type K25 ou RZ1K.
Ce câble électrique 10A comprend quatre éléments électriquement conducteurs allongés 100, chacun étant isolé avec une couche électriquement isolante 200, et, successivement et coaxialement autour de ces quatre éléments électriquement conducteurs allongés isolés (100, 200), une couche composite 300 telle que définie dans l'invention entourant les quatre éléments électriquement conducteurs allongés isolés (100, 200), et une gaine externe 400 de type HFFR entourant la couche composite 300 telle que définie dans l'invention.
Sur la figure 2, est illustrée une vue schématique du procédé conforme à l'invention mis en œuvre de façon continue. En particulier, un matériau fibreux non tissé 1 sous la forme d'un ruban est placé sur un enrouleur 2, déroulé et amené jusqu'à un dispositif de resserrement 3 au travers duquel un câble comprenant au moins un élément électriquement conducteur allongé 4 (câble nu 4) défile, afin de permettre l'enroulement longitudinal du ruban 1 autour du câble 4. Puis, le câble obtenu comprenant l'élément électriquement conducteur allongé et ledit matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé 5 passe dans un bain d'imprégnation 6 comprenant une composition géopolymère 7, afin de permettre l'imprégnation du matériau fibreux non tissé 1 par ladite composition géopolymère 7. Le câble imprégné 8 obtenu passe alors dans le tube en matière plastique 9 (e.g. tube en PEEK) au moyen d'un tube d'extension 10 directement connecté au bain d'imprégnation 6, afin de permettre le confinement dudit câble lors de son entrée dans la tête d'extrudeuse 11 [étape i)]. Le tube en matière plastique 9 est connecté à son extrémité à un insert en matière plastique 12 (e.g. insert en PEEK) configuré pour s'adapter au poinçon 13 de la tête d'extrudeuse 11 . Le câble 8 confiné dans le tube en matière plastique 9 est ainsi amené dans la filière 14 de la tête d'extrudeuse 11 via le poinçon 13, afin de permettre l'extrusion de la gaine polymère autour du câble en évitant tout contact de la composition géopolymère avec le poinçon 13 et les outillages métalliques de la tête d'extrudeuse [étape ii)].
La figure 3 montre plusieurs vues en 3D de l'agencement des différentes pièces mises en oeuvre dans le procédé de l'invention. En particulier, la figure 3a montre le bac d'imprégnation 6, le tube d'extension 10, le tube en matière plastique 9, et l'insert en matière plastique 12. La figure 3b montre plus spécifiquement le poinçon 13 et l'insert en matière plastique 12 configuré pour s'adapter audit poinçon 13 . La figure 3c montre plus spécifiquement la filière 14. La figure 3d montre plus particulièrement un distributeur 15 qui permet de distribuer la matière polymère fondu servant à former la gaine polymère, matière se trouvant entre le poinçon et la filière au moment de l'extrusion.
La figure 4 montre une vue en coupe transversale d'une partie de l'extrudeuse et montre l'agencement des différentes pièces lors de l'extrusion de la gaine lorsque le procédé de l'invention est mise en oeuvre. En particulier, la figure 4 montre un câble imprégné 8 comprenant un élément électriquement conducteur allongé 4 , et la couche composite (1 , 7) obtenue à partir d'un matériau fibreux non tissé 1 imprégné d'une composition géopolymère 7 entourant ledit élément électriquement conducteur allongé 4. La couche composite (1 , 7) est entourée par le tube en matière plastique 9, et le tube en matière plastique 9 (e.g. tube en PEEK) est connecté à son extrémité à un insert en matière plastique 12 (e.g. insert en PEEK) configuré pour s'adapter au poinçon 13 de la tête d'extrudeuse. Le câble imprégné 8 confiné dans le tube en matière plastique 9 est ainsi amené dans la filière 14 de la tête d'extrudeuse via le poinçon 13, afin de permettre l'extrusion du matériau 16 de la gaine polymère autour du câble en évitant tout contact de la composition géopolymère 7 avec le poinçon 13 et les outillages métalliques de la tête d'extrudeuse [étape ii)].
Les exemples suivants permettent d’illustrer la présente invention. Ils n’ont pas de caractère limitatif sur la portée globale de l’invention telle que présentée dans les revendications.
EXEMPLES
Les matières premières utilisées dans les exemples, sont listées ci-après : - solution aqueuse d'un premier silicate de sodium à 50% en poids environ de type « waterglass », Simalco, silicate de sodium de rapport molaire Si0 /Na 0 de 2,0 environ,
- solution aqueuse d'un deuxième silicate de sodium à 38% en poids environ de type « waterglass », Simalco, silicate de sodium de rapport molaire Si02/Na20 de 3,4 environ,
- premier métakaolin, PoleStar® 450, Imerys, de rapport molaire Al203/Si02 de 41/55 (i.e. de 0,745 environ), kaolin calciné à une température de 700°C environ,
- deuxième métakaolin, PoleStar® 200R, Imerys, de rapport molaire Al203/Si02 de 41/55 (i.e. de 0,745 environ), kaolin calciné à une température de 1000°C environ, et
- matériau non tissé en Polyester, GT320, GECA TAPES.
Sauf indications contraires, toutes ces matières premières ont été utilisées telles que reçues des fabricants.
Exem ple 1 : préparation d’un câble retardant au feu selon un procédé conform e à l’invention
Une composition géopolymère a été préparée de la façon suivante : une solution aqueuse de silicates alcalins a été préparée en mélangeant 40 g d'une solution aqueuse à 50% en poids d'un premier silicate de sodium et 40 g d'une solution aqueuse à 38% en poids d'un deuxième silicate de sodium. Puis, 10 g d'un premier métakaolin et 10 g d'un deuxième métakaolin ont été mélangés avec la solution aqueuse de silicates alcalins. Ladite composition géopolymère comprend 55,2% en poids environ de matières solides, par rapport au poids total de ladite composition géopolymère.
La composition géopolymère ainsi obtenue est placée dans un bain d'imprégnation configurée pour permettre le passage du câble au sein dudit bain d'imprégnation.
Dans cet exemple, un câble basse tension comprend cinq conducteurs en cuivre de section 1,5 mm2, chacun des conducteurs étant entouré avec une couche électriquement isolante à base de XLPE, est préalablement fabriqué. Un matériau fibreux non tissé en polyester sous la forme d'un ruban est placé sur un enrouleur, déroulé à une vitesse de 100 m/min environ et amené dans un dispositif de resserrement au travers duquel ledit câble basse tension défile, afin de permettre l'enroulement longitudinal du ruban autour du câble.
À l'issue de l'étape d'application du ruban autour du câble, ledit câble est amené vers un bain d'imprégnation comprenant ladite composition géopolymère à une vitesse de 100 m/min environ.
Puis, le câble ainsi imprégné passe dans un tube en PEEK comprenant à une extrémité un insert de forme conique en PEEK, ledit tube étant en partie inséré dans une tête d'extrudeuse munie d'une filière et d'un poinçon de forme conique.
Lorsque le câble arrive au niveau de l'insert en PEEK, le câble est ensuite recouvert par extrusion à une température de 198°C d'une gaine polymère à base d'un mélange HFFR produit par NEXANS comprenant du polyéthylène et des charges ignifugeantes.
La couche composite ainsi formée a une épaisseur de 0,5 mm, et ladite gaine ainsi formée a une épaisseur de 2 mm environ.
On a ainsi obtenu un câble conforme à l'invention. Les performances à la flamme du câble sont déterminées suivant la norme EN50399. 15 tronçons de câble positionnés sur une échelle verticale sont exposés à une flamme 20kW de puissance pendant 20 min.
Les résultats sont reportés dans le tableau 1 ci-dessous :
Figure imgf000030_0001
Dans ce tableau, l'acronyme HRR correspond à l'expression anglophone « Heat Release Rate » qui renseigne sur le débit calorifique ou le débit thermique, l'acronyme THR correspond à l'expression anglophone « Total Heat Release » qui renseigne sur la quantité de chaleur dégagée lors de la combustion ou le dégagement thermique total, l'acronyme FIGRA correspond à l'expression anglophone « FIre GRowth rAte » qui renseigne sur la vitesse de croissance du feu ou l'accélération de la production énergétique, l'acronyme SPR correspond à l'expression anglophone « Smoke Production Rate » qui renseigne sur la vitesse de production de fumée, et l'acronyme TSP correspond à l'expression anglophone « Total Smoke Production » qui renseigne sur la quantité totale de fumée produite.
Ces résultats démontrent que le câble conforme à l'invention présente les propriétés de protection au feu maximales au regard des exigences de la norme Européenne EN50399.

Claims

Revendications
1. Procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé, au moins une couche composite entourant ledit élément électriquement conducteur allongé, ladite couche composite comprenant un matériau fibreux non tissé imprégné d'un matériau géopolymère, et au moins une gaine polymère entourant ladite couche composite, caractérisé en ce qu'il comprend au moins les étapes suivantes : i) faire passer dans un tube en matière plastique un câble comprenant au moins un élément électriquement conducteur allongé, et au moins un matériau fibreux non tissé imprégné d'une composition géopolymère entourant ledit élément électriquement conducteur allongé, et ii) extruder une gaine polymère à l'aide d'une extrudeuse comprenant au moins une tête d'extrudeuse munie une filière et d'un poinçon, ledit procédé étant caractérisé en ce qu'une partie dudit tube en matière plastique est insérée dans la tête d'extrudeuse et est configurée pour éviter le contact entre la composition géopolymère et le poinçon de la tête d'extrudeuse.
2. Procédé selon la revendication 1, caractérisé en ce que le tube en matière plastique comprend un matériau polymère choisi parmi les polyaryléthercétones.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le tube en matière plastique est configuré de sorte que la distance « d » entre la surface externe du matériau fibreux non tissé et la surface interne dudit tube est d'au plus 1 mm.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la partie du tube insérée dans la tête d'extrudeuse comprend une extrémité connectée à un insert en matière plastique configuré pour s'adapter au poinçon de la tête d'extrudeuse.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau fibreux non tissé est choisi parmi les matériaux cellulosiques, les matériaux à base de polymères organiques synthétiques, les fibres de verre, et un de leurs mélanges.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition géopolymère est une composition géopolymère aluminosilicate.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape ii) est effectuée à une température allant de 140°C à 225°C.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre avant l'étape i), une étape iO) de fabrication du câble comprenant au moins ledit élément électriquement conducteur allongé et au moins ledit matériau fibreux non tissé imprégné de la composition géopolymère entourant ledit élément électriquement conducteur allongé, ladite étape iO) comprenant les sous-étapes suivantes : a) préparer une composition géopolymère, b) appliquer un matériau fibreux non tissé autour d'un câble comprenant au moins un élément électriquement conducteur allongé, ledit matériau fibreux non tissé se présentant sous la forme d'un ruban, et c) imprégner l'ensemble câble/matériau fibreux non tissé par ladite composition géopolymère.
9. Procédé selon la revendication 8, caractérisé en ce que la sous-étape b) est mise en oeuvre en faisant passer le ruban dans un dispositif de resserrement.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce que la sous- étape c) est effectuée par trempage enduction, à l'aide d'un bain d'imprégnation comprenant la composition géopolymère dans lequel on fait passer le câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé.
11. Procédé selon la revendication 8, caractérisé en ce que ledit procédé est un procédé continu.
12. Procédé selon la revendication 11, caractérisé en ce que le matériau fibreux non tissé est disposé sur un distributeur, et ledit matériau est distribué en continu pour mettre en oeuvre au moins les étapes iO), i) et ii).
13. Procédé selon l'une quelconque des revendications 11 ou 12, caractérisé en ce que la sous-étape b) est mise en oeuvre en faisant passer le matériau fibreux non tissé dans un dispositif de resserrement au travers duquel un câble comprenant au moins un élément électriquement conducteur allongé défile, puis le câble ainsi obtenu passe dans un bain d'imprégnation comprenant la composition géopolymère selon la sous-étape c), puis le câble ainsi imprégné sort du bain d'imprégnation et rentre dans le tube en matière plastique selon l'étape i), une partie dudit tube étant insérée dans la tête d'extrudeuse, et enfin le câble confiné dans ledit tube est amené dans la filière de la tête d'extrudeuse, afin de permettre l'extrusion de la gaine polymère autour du câble selon l'étape ii).
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que la vitesse de défilement du câble dans la sous-étape c) et les étapes i) et ii) va de 10 m/min à 600 m/min.
PCT/FR2021/050588 2020-04-06 2021-04-02 Procédé de fabrication d'un câble résistant et/ou retardant au feu WO2021205103A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/913,753 US20230109750A1 (en) 2020-04-06 2021-04-02 Method for manufacturing a fire-resistant and/or fire-retardant cable
BR112022019941A BR112022019941A2 (pt) 2020-04-06 2021-04-02 Método para manufatura de um cabo resistente ao fogo e/ou retardador de fogo
EP21723327.9A EP4132761A1 (fr) 2020-04-06 2021-04-02 Procédé de fabrication d'un câble résistant et/ou retardant au feu
KR1020227038785A KR20220164780A (ko) 2020-04-06 2021-04-02 내화성 및/또는 난연성 케이블의 제조 방법
CN202180026628.7A CN115427208A (zh) 2020-04-06 2021-04-02 耐火和/或阻燃缆线的制造方法
CONC2022/0015289A CO2022015289A2 (es) 2020-04-06 2022-10-27 Método para fabricar un cable resistente al fuego y/o retardante al fuego

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003415 2020-04-06
FR2003415A FR3109014B1 (fr) 2020-04-06 2020-04-06 Procédé de fabrication d’un câble résistant et/ou retardant au feu

Publications (1)

Publication Number Publication Date
WO2021205103A1 true WO2021205103A1 (fr) 2021-10-14

Family

ID=71662031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050588 WO2021205103A1 (fr) 2020-04-06 2021-04-02 Procédé de fabrication d'un câble résistant et/ou retardant au feu

Country Status (9)

Country Link
US (1) US20230109750A1 (fr)
EP (1) EP4132761A1 (fr)
KR (1) KR20220164780A (fr)
CN (1) CN115427208A (fr)
BR (1) BR112022019941A2 (fr)
CL (1) CL2022002736A1 (fr)
CO (1) CO2022015289A2 (fr)
FR (1) FR3109014B1 (fr)
WO (1) WO2021205103A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134647A1 (fr) * 2022-04-13 2023-10-20 Nexans matériau pour le renforcement local ou la restauration de la résistance au feu de câbles électriques

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468435A (en) * 1973-08-21 1984-08-28 Sumitomo Electric Industries, Ltd. Process for the production of highly expanded polyolefin insulated wires and cables
WO2016092200A1 (fr) 2014-12-10 2016-06-16 Nexans Cable ou accessoire pour cable comportant une couche resistante au feu
WO2016099200A1 (fr) * 2014-12-18 2016-06-23 주식회사 케이오씨솔루션 Feuille de plastique renforcé et procédé de fabrication associé

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121255A (en) * 1960-11-18 1964-02-18 Western Electric Co Apparatus for extruding plastic compounds
DE1590419B2 (de) * 1962-07-19 1970-11-19 Schloemann AG, 4000 Düsseldorf Anordnung zur Verhinderung von Wärmeschäden an der wärmeempfindlichen Isolierung einer den Hohldorn einer Kabelummantelungspresse d"rchlaufenden Kabelseele
US3383736A (en) * 1965-08-19 1968-05-21 Whitney Blake Co Communication wire extrusion apparatus
US4585407A (en) * 1983-10-03 1986-04-29 Pirelli Cable Corporation Guide for electric cable insulation extrusion head
DE3568233D1 (en) * 1984-02-10 1989-03-16 Cables De Lyon Geoffroy Delore Electrical cable to transport very high current strengths under low tensions, and manufacturing methods for such a cable
FR2745417B1 (fr) * 1996-02-23 1998-05-15 Fileca Foptica Procede et installation de fabrication de cables electriques isoles a revetement mince

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468435A (en) * 1973-08-21 1984-08-28 Sumitomo Electric Industries, Ltd. Process for the production of highly expanded polyolefin insulated wires and cables
US4468435C1 (en) * 1973-08-21 2001-06-12 Sumitomo Electric Industries Process for the production of highly expanded polyolefin insulated wires and cables
WO2016092200A1 (fr) 2014-12-10 2016-06-16 Nexans Cable ou accessoire pour cable comportant une couche resistante au feu
US20170345528A1 (en) * 2014-12-10 2017-11-30 Nexans Cable or cable accessory comprising a fire-resistant layer
WO2016099200A1 (fr) * 2014-12-18 2016-06-23 주식회사 케이오씨솔루션 Feuille de plastique renforcé et procédé de fabrication associé

Also Published As

Publication number Publication date
CN115427208A (zh) 2022-12-02
FR3109014A1 (fr) 2021-10-08
CL2022002736A1 (es) 2023-08-25
FR3109014B1 (fr) 2022-04-01
US20230109750A1 (en) 2023-04-13
CO2022015289A2 (es) 2023-01-16
EP4132761A1 (fr) 2023-02-15
KR20220164780A (ko) 2022-12-13
BR112022019941A2 (pt) 2022-12-06

Similar Documents

Publication Publication Date Title
EP3387654B1 (fr) Câble résistant au feu
EP3230231B1 (fr) Cable ou accessoire pour cable comportant une couche resistante au feu
EP3670471A1 (fr) Composition géopolymère résistante au feu, notamment pour un dispositif comprenant un câble ou un accessoire pour câble
EP3202002B1 (fr) Connexion de câbles résistante au feu
EP3503121B1 (fr) Dispositif comprenant un câble ou un accessoire pour câble contenant une couche composite résistante au feu
EP3440032A1 (fr) Dispositif comprenant un câble ou un accessoire pour câble contenant une couche composite résistante au feu
WO2021205103A1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP3640956B1 (fr) Couche de bourrage pour câble basse tension ayant une protection au feu améliorée
EP3754671B1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP3474293B1 (fr) Câble resistant au feu
EP4168621A1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
FR3118272A1 (fr) Procédé de fabrication d’un câble résistant et/ou retardant au feu
FR3108913A1 (fr) Cable comportant une composition résistante et/ou retardante au feu
FR3118725A1 (fr) Câble armé résistant au feu avec une limitation de la projection de matières incandescentes
EP4261852A1 (fr) Matériau pour le renforcement local ou la restauration de la résistance au feu de câbles électriques
FR3119926A1 (fr) dispositif d’imprégnation pour la fabrication d’un câble résistant et/ou retardant au feu comprenant un revêtement composite géopolymère

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21723327

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019941

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: NC2022/0015289

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20227038785

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021723327

Country of ref document: EP

Effective date: 20221107

ENP Entry into the national phase

Ref document number: 112022019941

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220930