EP4168621A1 - Procédé de fabrication d'un câble résistant et/ou retardant au feu - Google Patents

Procédé de fabrication d'un câble résistant et/ou retardant au feu

Info

Publication number
EP4168621A1
EP4168621A1 EP21740129.8A EP21740129A EP4168621A1 EP 4168621 A1 EP4168621 A1 EP 4168621A1 EP 21740129 A EP21740129 A EP 21740129A EP 4168621 A1 EP4168621 A1 EP 4168621A1
Authority
EP
European Patent Office
Prior art keywords
fibrous material
composition
cable
carried out
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21740129.8A
Other languages
German (de)
English (en)
Inventor
Thierry Auvray
Franck Gyppaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans SA
Original Assignee
Nexans SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexans SA filed Critical Nexans SA
Publication of EP4168621A1 publication Critical patent/EP4168621A1/fr
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/124Chlorides of ammonium or of the alkali or alkaline earth metals, e.g. calcium chloride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/006Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mineral polymers, e.g. geopolymers of the Davidovits type
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/11Starch or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/13Alginic acid or derivatives thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/48Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances fibrous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2400/00Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
    • D06M2400/02Treating compositions in the form of solgel or aerogel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a method of manufacturing a cable using the impregnation of a nonwoven fibrous material with a liquid geopolymer composition and the addition of at least one precursor composition of a gel to the liquid geopolymer composition. .
  • retardant and / or fire-resistant cables intended for energy transport and / or data transmission such as retardant and / or resistant electrical and / or optical security cables.
  • fire in particular halogen-free, capable of operating for a given period of time under fire conditions without being a fire propagator or generating significant smoke.
  • These safety cables are in particular medium voltage power transmission cables (especially 6 to 45-60 kV) or low frequency transmission cables, such as control or signal cables.
  • a method of manufacturing a fire resistant cable comprising the following steps: a step of preparing a geopolymer composition comprising a sodium silicate, water, potassium hydroxide, an aluminosilicate, and polypropylene fibers; a step of winding a tape of non-woven paper around an assembly of copper conductors, a step of impregnation by dipping and coating of the assembly of copper conductors / non-woven paper tape, in the geopolymer composition previously prepared, to form a composite layer surrounding the copper conductors, followed by a step of hot extrusion of a protective polymer sheath.
  • the process is long, in particular due to the drying step, and cannot be carried out continuously.
  • the constituent elements of the cable near the composite layer based on a geopolymer material can easily be contaminated by the geopolymer composition and / or stick to said composite layer, which is not desired.
  • An object of the invention is to overcome all or part of the aforementioned drawbacks, and to provide a method of manufacturing a fire retardant cable, said method being easy to implement, in particular easily industrializable, economical and rapid, and making it possible to lead to a cable with good mechanical properties, especially in terms of flexibility and durability.
  • the first object of the invention is a method of manufacturing a cable comprising at least one elongated electrically conductive element and at least one composite layer surrounding said elongated electrically conductive element, characterized in that it comprises at least the following steps: i ) impregnating a nonwoven fibrous material, preferably in the form of a sliver or strip, with a liquid geopolymer composition, and ii) forming a gel encapsulating or supporting said nonwoven fibrous material, said gel comprising a geopolymer material , and in that said method further comprises a step a) of adding a gelling composition to the liquid geopolymer composition, to form said gel during step ii).
  • the method of the invention is rapid, easy to implement, in particular from an industrial and economic point of view, and it guarantees the production of a fire resistant and / or retardant cable having good mechanical properties, in particular in terms of flexibility and durability. Furthermore, the method of the invention makes it possible to protect the composite layer, and in particular to prevent the contamination of the constituent elements of the cable near the composite layer by the liquid geopolymer composition, or their bonding to said composite layer.
  • the inventors of the present application have observed that the presence of a gelling composition in the liquid geopolymer composition makes it possible to reduce the release of water over time, and in particular during the process, which is detrimental for the manufacture of the liquid. cable.
  • the liquid geopolymer composition used in step i) is preferably a liquid geopolymer composition at room temperature, i.e. at a temperature ranging from 18 to 25 ° C approximately.
  • the liquid geopolymer composition from step i) is preferably a liquid aluminosilicate geopolymer composition.
  • the liquid geopolymer composition of the invention is particularly preferably a liquid geopolymer composition comprising water, silicon (Si), aluminum (Al), oxygen (O), and at least one element. chosen from potassium (K), sodium (Na), lithium (Li), cesium (Cs), and calcium (Ca), and preferably chosen from potassium (K) and sodium (Na).
  • the liquid geopolymer composition can in particular comprise at least a first aluminosilicate, at least a first alkali silicate, water, and optionally an alkaline base.
  • the liquid geopolymer composition is a precursor composition of a geopolymer.
  • it comprises ingredients (first aluminosilicate, at least a first alkali silicate, water, and optionally an alkaline base; or first metakaolin, second metakaolin, first alkali silicate, water, and optionally an alkaline base and / or a second alkali silicate as defined below) which geopolymerize together (by polycondensation) to form a geopolymer also called geopolymer material as defined in the invention.
  • the first aluminosilicate can be chosen from metakaolins (ie calcined kaolins), fly ash (well known under the anglicism "fly ash”), blast furnace slag (well known by the anglicism "blast furnace slag”), swelling clays such as bentonite, calcined clays, any type of compound comprising aluminum and silica fume, zeolites, and a mixture thereof.
  • metakaolins ie calcined kaolins
  • fly ash well known under the anglicism "fly ash”
  • blast furnace slag well known by the anglicism "blast furnace slag”
  • swelling clays such as bentonite, calcined clays, any type of compound comprising aluminum and silica fume, zeolites, and a mixture thereof.
  • metakaolins are preferred, in particular those marketed by the company Imérys.
  • the expression “metakaolin” means a calcined kaolin or a dehydroxylated aluminosilicate. It is preferably obtained by dehydration of a kaolin or of a kaolinite. This dehydration is conventionally obtained by calcination.
  • the liquid geopolymer composition may comprise from 5 to 50% by weight approximately of aluminosilicate, and preferably from 10 to 35% by weight approximately of aluminosilicate, relative to the total weight of the liquid geopolymer composition.
  • the liquid geopolymer composition may further comprise a second aluminosilicate different from the first aluminosilicate.
  • the liquid geopolymer composition comprises two calcined kaolins having different calcination temperatures.
  • the liquid geopolymer composition comprises a first metakaolin chosen from kaolins calcined at a temperature T ci of at least 650 ° C approximately, and a second metakaolin chosen from kaolins calcined at a temperature temperature T C 2 such that T C 2 - T ci > 100 ° C approximately, at least a first alkali metal silicate, water, and optionally an alkaline base.
  • the liquid geopolymer composition can then exhibit improved mechanical properties, in particular in terms of flexibility and durability, while ensuring good reaction and fire resistance properties.
  • the second metakaolin being chosen from kaolins calcined at a temperature T C 2 such as T C 2 - T ci > 100 ° C approximately, it is different from the first metakaolin as defined in the invention.
  • the first metakaolin is a kaolin calcined at a temperature T ci of at least approximately 700 ° C, and preferably of at least 725 ° C approximately.
  • the first metakaolin is a kaolin calcined at a temperature T ci of at most 875 ° C approximately, and preferably at most 825 ° C approximately.
  • the first metakaolin can comprise at least 20 mol% approximately, and preferably at least 30 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the first metakaolin.
  • Al2O3 aluminum oxide
  • the first metakaolin may comprise at most 60 mol% approximately, and preferably at most 50 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the first metakaolin.
  • the first metakaolin may comprise at least 35 mol% approximately, and preferably at least 45 mol% approximately, of silicon oxide (S1O2), relative to the total number of moles of the first metakaolin.
  • the first metakaolin may comprise at most 75 mol% approximately, and preferably at most 65 mol% approximately, of silicon oxide (S1O2), relative to the total number of moles of the first metakaolin.
  • the metakaolins sold by the company Imérys, in particular that marketed under the reference PoleStar ® 450.
  • the first metakaolin can be chosen from kaolins calcined at T ci as defined in the invention, for at least approximately 1 min, preferably for at least approximately 10 min, particularly preferably for a period ranging from approximately 30 min. at 8 h, and more particularly preferably for a period ranging from approximately 2 h to 6 h.
  • the second metakaolin is preferably chosen from kaolins calcined at a temperature T C 2 such that T C 2 - T ci > 150 ° C approximately, particularly preferably such that T C 2 - T ci > 200 ° C approximately, and more particularly preferably such that T C 2 - T ci > 250 ° C approximately.
  • the second metakaolin is a kaolin calcined at a temperature T C 2 of at least 800 ° C approximately, preferably at least 850 ° C approximately, and particularly preferably of at least about 900 ° C.
  • the second metakaolin is a kaolin calcined at a temperature T C 2 of at most 1200 ° C approximately, and preferably at most 1150 ° C approximately.
  • the second metakaolin can comprise at least 20 mol% approximately, and preferably at least 30 mol% approximately, of aluminum oxide (Al 2 O 3 ), relative to the total number of moles of the second metakaolin.
  • the second metakaolin can comprise at most 60 mol% approximately, and preferably at most 50 mol% approximately, of aluminum oxide (Al2O3), relative to the total number of moles of the second metakaolin.
  • the second metakaolin can comprise at least 35 mol% approximately, and preferably at least 45 mol% approximately of silicon oxide (S1O2), relative to the total number of moles of the second metakaolin.
  • the second metakaolin can comprise at most 75 mol% approximately, and preferably at most 65 mol% approximately of silicon oxide (S1O2), relative to the total number of moles of the second metakaolin.
  • second metakaolin examples include metakaolins sold by Imérys society, especially that marketed under the reference PoleStar ® 200R.
  • the second metakaolin can be chosen from kaolins calcined at T C 2 as defined in the invention, for at least approximately 1 min, preferably for at least approximately 5 min, particularly preferably for a period ranging from approximately 10 min to 2 h, and more particularly preferably for a period ranging from approximately 15 min to 1 h.
  • the mass ratio [first metakaolin / second metakaolin] in the liquid geopolymer composition is preferably from 0.1 to 2 approximately, particularly preferably from 0.5 to 1.0 approximately, and more particularly preferably is approximately 1.
  • the liquid geopolymer composition can comprise from 5 to 50% by weight approximately, and preferably from 10 to 35% by weight approximately of first and second metakaolins, relative to the total weight of the liquid geopolymer composition.
  • the first and second metakaolins can be analyzed by differential thermal analysis (DTA) [absence or presence of a crystallization point or peak], nuclear magnetic resonance (NMR) [ 27 Al NMR spectrum], and / or X-ray diffraction ( DRX).
  • DTA differential thermal analysis
  • NMR nuclear magnetic resonance
  • DRX X-ray diffraction
  • the first metakaolin preferably exhibits a crystallization peak by differential thermal analysis, particularly preferably at a temperature ranging from 900 to 1060 ° C, and more particularly preferably at a temperature ranging from 950 to 1010 ° C.
  • the second metakaolin preferably comprises mullite.
  • the first alkali silicate can be chosen from sodium silicates, potassium silicates, and one of their mixtures.
  • the alkali metal silicates marketed by the company Silmaco or by the company PQ corporation are preferred.
  • the first alkali silicate is preferably sodium silicate.
  • the first alkali silicate may have an S1O2 / M2O molar ratio ranging from about 1.1 to about 35, preferably from about 1.3 to 10, and particularly preferably from about 1.4 to 5, with M being an atom of sodium or potassium, and preferably a sodium atom.
  • the liquid geopolymer composition can comprise from 5 to 60% by weight approximately, and preferably from 10 to 50% by weight approximately of first alkali silicate, relative to the total weight of the liquid geopolymer composition.
  • the liquid geopolymer composition may further comprise a second alkali silicate different from the first alkali silicate.
  • the second alkali silicate can be chosen from sodium silicates, potassium silicates, and one of their mixtures.
  • the alkali metal silicates marketed by the company Silmaco or by the company PQ Corporation are preferred.
  • the second alkali silicate is preferably sodium silicate.
  • the first and second alkali silicates can have respectively SÎ0 2 / M 2 0 and SiC / M 2 O molar ratios such as M and M ', which are identical, are chosen from a sodium atom and a potassium atom, and preferably a sodium atom, and said ratios have different values, preferably values such that their difference is at least 0.3, particularly preferably such that their difference is at least 0.5, and more particularly preferred such that their difference is at least 1.0.
  • the liquid geopolymer composition comprises:
  • a first alkali silicate having a molar ratio SÎO2 / M20 ranging from 1.5 to 2.6 approximately
  • a second alkali silicate having an SiO 2 / M'20 molar ratio greater than 2.6, preferably ranging from 2.8 to 4.5 approximately, and particularly preferably ranging from 3.0 to 4.0 approximately, being understood that M 'is identical to M.
  • the liquid geopolymer composition can comprise from 10 to 60% by weight approximately, and preferably from 20 to 50% by weight approximately of first and second alkali silicates, relative to the total weight of the liquid geopolymer composition.
  • the mass ratio [first alkali silicate / second alkali silicate] in the liquid geopolymer composition preferably ranges from 0.5 to 2.5, and particularly preferably from 0.8 to 2.0.
  • the alkaline base can be sodium hydroxide, or potassium hydroxide, and preferably sodium hydroxide.
  • the liquid geopolymer composition may be free from an alkaline base. This thus makes it possible to improve the handling of the liquid geopolymer composition, in particular during the preparation of a cable.
  • the solid matter / water mass ratio in said liquid geopolymer composition determines the solidification kinetics during step ii).
  • the liquid geopolymer composition may comprise from 35% to 80% by weight approximately, and more preferably from 40% to 70% by weight approximately, of solid materials (alkali silicate (s), aluminosilicate (s) and alkaline base), relative to the total weight of said liquid geopolymer composition.
  • solid materials alkali silicate (s), aluminosilicate (s) and alkaline base
  • the liquid geopolymer composition may further comprise one or more additives chosen from:
  • - mineral fibers in particular chosen from alumina or basalt fibers
  • a compound accelerating the setting in mass in particular chosen from aluminum sulphate, alums (eg double sulphate of aluminum and potassium), calcium chloride, calcium sulphate, hydrated calcium sulphate, sodium aluminate, sodium carbonate, sodium chloride, sodium silicate, sodium sulfate, iron (III) chloride, and sodium lignosulfonates,
  • an agent delaying setting in mass in particular chosen from ammonium, alkali metals, alkaline earth metals, borax, lignosulphonates and in particular metal salts of calcium lignosulphonates, sulphoalkylated lignins such as, for example, sulfomethylated lignin, hydroxycarboxylic acids, copolymers of salts of 2-acrylamido-2-methylpropane sulfonic acid and acrylic acid or maleic acid, and saturated salts,
  • an inert filler in particular chosen from talc, micas, dehydrated clays, and calcium carbonate,
  • the dye is preferably a liquid dye at room temperature (i.e. at 18-25 ° C).
  • the liquid geopolymer composition may comprise from 0.01 to 15% by weight approximately of additive (s), preferably from 0.1 to 8% by weight approximately of additive (s), and particularly preferably 0, 5 to 5% by weight approximately of additive (s), relative to the total weight of the liquid geopolymer composition.
  • the nonwoven fibrous material is preferably in the form of a ribbon or a strip.
  • the fibrous nonwoven material preferably has a soft and flexible structure.
  • the nonwoven fibrous material can be chosen from cellulosic materials, materials based on synthetic organic polymers, glass fibers, and a mixture thereof, and preferably from materials based on synthetic organic polymers.
  • the cellulosic materials can be chosen from paper, in particular blotting paper; non-woven materials made from functionalized or non-functionalized cellulose; structure matrices alveolar and / or fibrous made from natural fibers of cellulose acetate.
  • the materials based on synthetic organic polymers can be chosen from polymer materials with a porous and / or fibrous polyolefin (s) matrix, in particular those chosen from propylene homopolymers and copolymers, ethylene homopolymers and copolymers, high density polyethylenes (HDPE), aromatic polyamides (aramids), polyesters, and a mixture thereof.
  • s polyolefin
  • the nonwoven fibrous material is polyethylene terephthalate (PET).
  • the nonwoven fibrous material preferably has a basis weight ranging from 50 to 120 g / cm 2 approximately. This thus makes it possible to obtain a composite layer which is sufficiently flexible to be able to be handled easily, and sufficiently robust to obtain good fire protection.
  • Step i) can be carried out manually or automatically, and preferably automatically.
  • step i) is carried out at a speed ranging from 20 to 280 m / min approximately, and preferably ranging from 50 to 150 m / min approximately.
  • the impregnation step i) can be carried out on the nonwoven fibrous material alone (hereinafter referred to as the first variant), or on a nonwoven fibrous material / cable assembly comprising at least one elongate electrically conductive element (hereinafter referred to as second variant).
  • step i) is step i-vl) and it is preferably carried out by impregnation coating, and particularly preferably by pre-controlled coating.
  • Step i-vl) can for example be carried out using a coating device such as a coating die.
  • This device is particularly suitable for impregnating a nonwoven fibrous material alone, i.e. when it is not yet applied around the cable.
  • Step i-vl) is more particularly carried out by passing the nonwoven fibrous material through a coating device such as a die. coating, said device being supplied with the liquid geopolymer composition, in particular using means such as a pump. This thus makes it possible to directly distribute the desired amount of the liquid geopolymer composition homogeneously over the entire desired width of said nonwoven fibrous material.
  • Step i-vl) can in particular be a coating known according to the anglicism “tensioned web die coating”.
  • step i-vl) of impregnation is carried out at a temperature ranging from 15 ° C to 90 ° C approximately, and particularly preferably from 20 ° C to 40 ° C. about.
  • the nonwoven fibrous material may be placed on a dispenser such as an unwinder or unwinder, and said material may be dispensed or unwound continuously to implement at least step i)
  • step i-vl) is carried out by passing the nonwoven fibrous material through a coating device supplied with the liquid geopolymer composition at a flow rate D (in kg / min), the distributor delivers the nonwoven fibrous material at a speed V (in km / min), and the D / V ratio ranges from about 20 to 50 kg of liquid geopolymer composition / km of nonwoven fibrous material, and particularly preferably about 25 to 40 kg of liquid geopolymer composition / km of nonwoven fibrous material.
  • the amount of liquid geopolymer composition applied to the nonwoven fibrous material can thus be easily adjusted by a pump.
  • the speed V is preferably identical to the running speed of the cable.
  • the flow rate D can range from 0.5 kg / min to 4.5 kg / min approximately.
  • the speed V can range from approximately 20 m / min to 280 m / min, and preferably from 50 m / min to approximately 150 m / min.
  • step i) is step i-v2) and it is preferably carried out by coating soaking.
  • Step i-v2) can for example be carried out using an impregnation bath or tank comprising the liquid geopolymer composition into which is introduced the cable comprising at least one elongated electrically conductive element and a nonwoven fibrous material. surrounding said elongated electrically conductive member.
  • the bath or impregnation tank is preferably configured to allow passage of the cable comprising at least one elongated electrically conductive element and a nonwoven fibrous material surrounding said elongated electrically conductive element, through said impregnation bath.
  • the liquid geopolymer composition is then introduced into said impregnation bath, to allow step i-v2).
  • the bath or impregnation tank is preferably supplied with the liquid geopolymer composition, in particular using means such as a pump. This thus makes it possible to continuously supply said bath or tank with liquid geopolymer composition.
  • the impregnation step i-v2) is carried out at a temperature ranging from 15 ° C to 40 ° C approximately, and particularly preferably from 20 ° C to 30 ° C. about.
  • the speed V is preferably identical to the running speed of the cable.
  • step i-v2) is carried out by passing the cable comprising said elongated electrically conductive element and said nonwoven fibrous material surrounding said elongated electrically conductive element in an impregnation bath or tank supplied with the geopolymer composition. with a flow rate D (in kg / min).
  • the flow rate D can range from 0.5 kg / min to 4.5 kg / min approximately.
  • the cable running speed in step i-v2) can range from approximately 20 m / min to 280 m / min, and preferably from 50 m / min to approximately 150 m / min.
  • the nonwoven fibrous material impregnated with the liquid geopolymer composition (first variant) or the cable / nonwoven fibrous material assembly impregnated with the liquid geopolymer composition (first variant) is then directly used in step ii) or step a ) as defined in the invention.
  • Step a) of adding a gelling composition can be carried out before step i) or after step i) of impregnating the nonwoven fibrous material.
  • Step a) thus makes it possible to add to the liquid geopolymer composition alone (i.e. before step i)) or to the liquid geopolymer composition impregnating the nonwoven fibrous material (i.e. after step i)) the gelling composition.
  • the gelling composition is in other words a precursor composition of a gel or a composition capable of forming a gel, in particular when it is added to the liquid geopolymer composition.
  • the gelling composition can comprise at least one precursor compound of a gel chosen from crosslinkable organic polymers, polysaccharides, organic monomers, and one of their mixtures.
  • polysaccharides mention may be made of starches, modified starches, alginates, modified alginates, chitosan, hyaluronic acid, carrageenans, polysaccharide gums such as agar-agar, xanthan gum or gellan gum , pectins, cellulose, cellulose derivatives, modified dextrans, and hyaluronic acid.
  • the polysaccharide used is in the form of a powder.
  • crosslinkable organic polymers mention may be made of polyorganosiloxanes and poly (meth) acrylates.
  • organic monomers mention may be made of acrylates, methacrylates and acrylamides.
  • the gelling composition may further comprise a crosslinking agent and / or a crosslinking catalyst and / or an initiator, in particular when the precursor compound of a gel is chosen from crosslinkable organic polymers and organic monomers.
  • the gelling composition may further comprise one or more viscosity agents (ie which increases the viscosity of said composition), such as, for example, calcium chloride, calcium carbonate, or a mixture thereof, in particular when the precursor compound d a gel is chosen from polysaccharides, and in particular alginates.
  • the viscosity agent is preferably soluble in the gelling composition at a temperature ranging from 15 to 40 ° C approximately.
  • the precursor compound of a gel is preferably chosen from polysaccharides, and particularly preferably from alginates and starches, and more particularly preferably in the form of a powder.
  • Step a) is preferably carried out after step i).
  • the addition of the gelling composition a) can be carried out by spraying a powder of the gelling composition onto the liquid geopolymer composition; or by mixing a liquid gelling composition with the liquid geopolymer composition.
  • Spraying a powder of the gelling composition onto the liquid geopolymer composition is preferred.
  • the nonwoven material impregnated with the geopolymer composition can for example pass into a spray cell comprising a tubular chamber and nozzles allowing the spraying of the gelling composition on the fibrous material. impregnated nonwoven [steps a) and ii)].
  • the spray cell can be connected to a tightening device, in particular to allow the confinement of the gel / nonwoven material assembly around the elongated electrically conductive element when the second variant is used for step iii) described below. after.
  • Step ii) forming a gel encapsulating the nonwoven fibrous material
  • Step ii) makes it possible to bring the liquid geopolymer composition from a liquid state to a gel state linked to the presence of a gelling composition.
  • Step ii) can be concomitant with step a).
  • the addition of the gelling composition to the liquid geopolymer composition makes it possible to directly form a gel encapsulating the nonwoven material.
  • Step ii) can be carried out after step a).
  • step ii) is carried out in the presence of an external stimulus, such as temperature or the presence of UV rays, for example to trigger crosslinking.
  • a gel encapsulating the nonwoven fibrous material is formed, said gel comprising a geopolymer material. This thus makes it possible to pump part of the excess water and / or to dry at least on the surface the whole non-woven fibrous material / polymer material, and thus to obtain a composite layer whose mechanical properties are retained over time. .
  • this gelling composition a chemical or physical, volume or surface network is obtained during step ii) which keeps the nonwoven fibrous material in place and / or encapsulates it and / or plays the role of support; while protecting the composite layer obtained from water loss over time.
  • the method preferably does not include a drying step, in particular due to the presence of step ii).
  • the gel can make it possible to ensure surface gelation, thus providing at the end of step ii) a texture that is dry to the touch after fixing of the water.
  • the method may further comprise, before step i), a step i 0 ) of preparing the liquid geopolymer composition.
  • Step io) is generally carried out at a high pH, in particular varying from 10 to 13.
  • Step io) preferably comprises the following sub-steps:
  • the aqueous solution of the first alkali silicate can be prepared by mixing silicon dioxide S1O2 or an alkali silicate with an MOH base in which M is K or Na.
  • the silicon dioxide S1O2 can be chosen from silica fume (ie fumed silica), quartz, and mixtures thereof.
  • Sub-step ioi) can be carried out by dissolving the alkaline base in water, causing the release of heat (exothermic reaction), then adding the silica (or the alkali silicate). The heat released then accelerates the dissolution of the silica (or of the alkali silicate) during the sub-step ioi), and of the first aluminosilicate during the sub-step 102).
  • step io) of preparing the liquid geopolymer composition may comprise mixing said first aluminosilicate (of preferably in powder form) and optionally said second aluminosilicate (preferably in powder form), with said first alkali silicate (preferably in the form of an aqueous solution), and optionally said second alkali silicate (preferably in the form of an aqueous solution).
  • Step io) preferably comprises mixing the first and second metakaolins, with the first alkali silicate and optionally the second alkali silicate, water, and optionally an alkaline base.
  • the first and second metakaolins and the first and second alkali silicates are as defined in the invention.
  • step io) comprises the following sub-steps: ioa) the mixture of the first and second alkali metal silicates, preferably in the form of aqueous solutions, in particular with stirring, iob) optionally the addition of an alkaline base, in particular while maintaining the agitation, and ioc) the addition of the first and second metakaolins, preferably in the form of powders, in particular while maintaining the agitation.
  • a fluid and homogeneous solution is preferably obtained.
  • the geopolymer composition can comprise from 35% to 80% by weight approximately, and particularly preferably from 40% to 70% by weight approximately, of solid materials (alkali silicate (s) , aluminosilicate (s), and alkaline base), relative to the total weight of said liquid geopolymer composition.
  • solid materials alkali silicate (s) , aluminosilicate (s), and alkaline base
  • Such a mass ratio makes it possible to have a liquid geopolymer composition that is fluid enough to allow it to be handled, and the solidification kinetics of which are slow enough to allow the formation of a composite cable layer as defined below.
  • the solid matter / water mass ratio in said liquid geopolymer composition can make it possible to determine the solidification kinetics of said liquid geopolymer composition.
  • Step io) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • the method may further comprise a step iii) of applying the nonwoven fibrous material around a cable comprising at least one elongated electrically conductive element.
  • Step iii) can be carried out either after impregnation step i), when the latter uses the nonwoven fibrous material alone [first variant of the invention or step i-vl)], or before the impregnation step i), when the latter uses the cord / nonwoven fibrous material assembly [second variant of the invention or step i-v2)].
  • step iii) is then a step iii-vl).
  • Step iii-vl) is preferably carried out after step ii) as defined in the invention.
  • the nonwoven fibrous material alone is impregnated with the liquid geopolymer composition according to step i), a gel is formed according to step ii), then the gel / nonwoven fibrous material assembly is applied around the element. electrically conductive elongated according to step iii-vl).
  • the fibrous nonwoven material is in the form of a web or ribbon. This thus makes it possible to facilitate step iii-vl).
  • the gel / nonwoven fibrous material assembly can be applied either directly around one or more elongated conductive elements, or around an internal layer of said cable which is itself around one or more elongated conductive elements.
  • the application step iii-vl) can be carried out by winding the tape or the tape around the cable.
  • the winding can be longitudinal (i.e. along the longitudinal axis of the cable or in other words in the direction of the length of the cable) or helical, and preferably longitudinal.
  • the longitudinal winding can also be carried out with overlap zones, the overlap zone (s) representing from 10 to 20% approximately.
  • Step iii-vl) can be carried out manually or in an automated fashion, and preferably in an automated fashion.
  • Step iii-vl) can be carried out by passing the gel / nonwoven fibrous material assembly of step ii) through a tightening device or a shaping device (also by the terms “trumpet” or “ tape shaper ”).
  • the cable comprising at least one elongated electrically conductive element also passes through the tightening device during step iii-vl).
  • This device is a mechanical device which continuously wraps the gel / nonwoven fibrous material assembly around the elongated electrically conductive element. This thus makes it possible to facilitate the longitudinal winding of the gel / ribbon assembly around the cable.
  • Step iii-vl) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • step iii) is then a step iii-v2).
  • Step iii-v2) is preferably carried out before step i) as defined in the invention.
  • the nonwoven fibrous material alone is first applied around the elongated electrically conductive element according to step iii-v2), then the cable / nonwoven material assembly is impregnated with the liquid geopolymer composition according to step i), and a gel is formed according to step ii).
  • Step iii-v2) allows the application of the nonwoven material around the elongated electrically conductive element, in particular to form a cable comprising at least one elongated electrically conductive element and a nonwoven fibrous material surrounding said elongate electrically conductive element.
  • the nonwoven fibrous material may be placed on a dispenser such as an unwinder or unwinder, and said material may be dispensed or unwound continuously in order to implement at least step iii-v2).
  • step iii-v2) the distributor delivers the nonwoven fibrous material at a speed V (in km / min).
  • the speed V is preferably identical to the running speed of the cable.
  • the speed V can range from approximately 20 m / min to 280 m / min, and preferably from 50 m / min to approximately 150 m / min.
  • the fibrous nonwoven material is in the form of a web or ribbon. This thus makes it possible to facilitate step iii-v2).
  • the nonwoven fibrous material can be applied either directly around one or more elongated conductive elements, or around an inner layer of said cable which is itself around one or more elongated conductive elements.
  • the application step iii-v2) can be carried out by winding the tape around the cable.
  • the winding can be longitudinal (ie along the longitudinal axis of the cable or in other words in the direction of the length of the cable) or helical, and preferably longitudinal.
  • the longitudinal winding makes it possible to reduce the production cost of the cable.
  • the longitudinal winding can also be carried out with overlap zones, the overlap zone (s) representing from 10 to 20% approximately.
  • Step iii-v2) can be performed manually or automatically, and preferably automatically.
  • Step iii-v2) can be implemented by passing the tape through a tightening device or a shaping device (also designated by the terms “trumpet” or “tape shaper”).
  • the cable comprising at least one elongated electrically conductive element also passes through the tightening device during step iii-v2).
  • This device is a mechanical device which continuously wraps the tape around the elongated electrically conductive element. This thus makes it possible to facilitate the longitudinal winding of the tape around the cable.
  • Step iii-v2) is preferably carried out at ambient temperature (approximately 18-25 ° C.).
  • the second variant is preferred.
  • the method may further comprise after step ii) or step iii-vl), a step iv) of applying a protective outer sheath around the composite layer.
  • the outer protective sheath can ensure the mechanical integrity of the cable.
  • the cable can then comprise at least one elongated electrically conductive element, the composite layer surrounding said elongated electrically conductive element, and at least one protective outer sheath surrounding said composite layer.
  • Step iv) is preferably carried out by extrusion, in particular at a temperature ranging from 140 ° C to 195 ° C approximately.
  • Step iv) can be carried out using an extruder.
  • an extrusion head can be positioned at the outlet of the shaping device as defined in the invention.
  • the protective outer sheath is preferably the outermost layer of the cable.
  • the outer protective sheath is preferably an electrically insulating layer.
  • the protective outer sheath is preferably made of a halogen-free material. It can be produced conventionally from materials retarding the propagation of the flame or resistant to the propagation of the flame. In particular, if the latter do not contain halogen, we speak of HFFR type sheathing (for the anglicism “Halogen Free Flame Retardant”).
  • the outer protective sheath can comprise at least one organic or inorganic polymer.
  • organic or inorganic polymer is not limiting and these are well known to those skilled in the art.
  • the organic or inorganic polymer is chosen from crosslinked and noncrosslinked polymers.
  • the organic or inorganic polymer can be a homo- or a co-polymer having thermoplastic and / or elastomeric properties.
  • the inorganic polymers can be polyorganosiloxanes.
  • the organic polymers can be polyurethanes or polyolefins.
  • the polyolefins can be chosen from polymers of ethylene and propylene.
  • ethylene polymers such as linear low density polyethylene (LLDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), copolymers of 'ethylene and vinyl acetate (EVA), copolymers of ethylene and butyl acrylate (EBA), methyl acrylate (EMA), 2-hexylethyl acrylate (2HEA), ethylene copolymers and alpha-olefins such as, for example, polyethylene-octene (PEO), copolymers of ethylene and propylene (EPR), terpolymers of ethylene and propylene (EPT) such as, for example, ethylene propylene diene monomer (EPDM) terpolymers or a mixture thereof.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • EVA
  • the polymer of the outer protective sheath is preferably an organic polymer, more preferably an ethylene polymer, and more preferably a copolymer of ethylene and vinyl acetate, a linear low density polyethylene, or one of theirs. mixtures.
  • the protective outer sheath may further include a hydrated flame retardant mineral filler.
  • This hydrated flame-retardant mineral filler acts mainly physically by decomposing endothermically (e.g. release of water), which has the consequence of lowering the temperature of the sheath and limiting the propagation of flames along the cable.
  • endothermically e.g. release of water
  • the hydrated flame retardant inorganic filler can be a metal hydroxide such as magnesium hydroxide or aluminum trihydroxide.
  • the outer protective sheath may further comprise an inert filler, in particular chosen from talc, micas, dehydrated clays and one of their mixtures.
  • the composite layer is preferably an electrically insulating layer.
  • the term “electrically insulating layer” is understood to mean a layer whose electrical conductivity can be at most 1.10 9 S / m, and preferably at most 1.10 10 S / m (Siemens per meter) (at 25 ° C).
  • the composite layer is preferably a retardant and / or fire resistant layer.
  • the composite layer preferably has a thickness ranging from approximately 0.2 to 3 mm, and particularly preferably ranging from 0.5 to 1 mm approximately.
  • the composite layer of the invention is preferably a tape layer (ie in the form of a tape or a strip).
  • the composite layer preferably has a substantially constant thickness and in particular constitutes a continuous protective envelope.
  • the composite layer can in particular comprise 2 to 3 superimposed tapes.
  • the composite layer of the invention is preferably non-porous.
  • the composite layer is preferably an internal layer of said cable.
  • the term “internal layer” is understood to mean a layer which does not constitute the outermost layer of the cable.
  • the composite layer preferably comprises at least one geopolymeric material, a gel (in which the geopolymeric material is dispersed), and the nonwoven fibrous material as defined in the invention.
  • the geopolymer material is obtained from a liquid geopolymer composition as defined in the invention, preferably by curing, geopolymerization and / or polycondensation of said liquid geopolymer composition.
  • the liquid geopolymer composition as defined in the invention is suitable for forming said geopolymer material.
  • the ingredients of the liquid geopolymer composition can therefore undergo polycondensation to form said geopolymer material.
  • the hardening takes place by internal reaction of the polycondensation type. Hardening, for example, is not the result of simple drying, as is generally the case with binders based on alkali silicates.
  • geopolymer materials result from a reaction of mineral polycondensation by alkaline activation, called geosynthesis, as opposed to traditional hydraulic binders in which hardening is the result of hydration of calcium aluminates and calcium silicates.
  • the expression “geopolymer material” means a solid material comprising silicon (Si), aluminum (Al), oxygen (O) and at least one element chosen from potassium (K). , sodium (Na), lithium (Li), cesium (Cs) and calcium (Ca), and preferably chosen from potassium (K), and sodium (Na).
  • the geopolymer material can be an aluminosilicate geopolymer material.
  • the aluminosilicate geopolymer material can be chosen from the poly (sialates) corresponding to the formula (I) M n (-Si-0- Al-0-) n [(M) -PS] and having an equal Si / Al molar ratio to 1, the poly (sialate-siloxos) corresponding to the formula (II) M n (-Si-0AI-0Si-0) n [(M) -PPS] and having an Si / Al molar ratio equal to 2, the poly (sialate-disiloxos) corresponding to the formula (III) M n (-Si-0-Al-0-Si-0-Si-0) n [(M) -PSDS] and having an equal Si / Al molar ratio to 3, and other poly (sialates) of Si / Al ratio> 3, the aforementioned poly (sialates) comprising an alkali metal cation M chosen from K, Na, Li, Cs
  • the geopolymer material represents from 5 to 98% by weight approximately, preferably from 55 to 95% by weight approximately, and more preferably from 65 to 90% by weight approximately, relative to the total weight of the composite layer.
  • the nonwoven fibrous material represents from 2 to 95% by weight approximately, particularly preferably from 5 to 45% by weight approximately, and even more preferably from 10 to 35% by weight approximately, relative to the total weight of the composite layer.
  • the gel represents from 0.1 to 15% by weight approximately, particularly preferably from 1 to 10% by weight approximately, and even more preferably from 2 to 6% by weight approximately , relative to the total weight of the composite layer.
  • the cable obtained according to a process in accordance with the invention satisfies at least one of the standards for reaction or non-propagation to fire chosen from standards EN 60332-1, EN 60332-3, and EN 50399 (2012/02 + Al 2016); and preferably to standard EN 50399 (2012/02 + Al 2016), in particular the B2ca, sla, dO, al classification criteria of said standard, and possibly the EN 60332-1 and EN 60332-3 standards.
  • the cable is an energy and / or telecommunications cable, and preferably an electric cable.
  • the composite layer may then surround the plurality of elongate electrically conductive elements of the cable.
  • the cable can comprise a single composite layer as defined in the invention or a plurality of composite layers as defined in the invention.
  • the cable comprises a single composite layer, and more particularly preferably a single internal composite layer.
  • the cable obtained according to the method of the invention further comprises one or more layers interposed between the elongated electrically conductive element and the composite layer as defined in the invention.
  • These layers can include one or more polymer layers such as electrically insulating polymer layers.
  • the method further comprises, before step iii), one or more steps of applying one or more of the layers mentioned above, around the elongated electrically conductive element, of all of the layers. elongated electrically conductive elements, or around each of the elongated electrically conductive elements, depending on the type of cable desired.
  • the cable comprises:
  • each of said electrically conductive elements being surrounded by a polymer layer, in particular electrically insulating, to form a plurality of isolated electrically conductive elements,
  • a composite layer as defined in the invention surrounding said plurality of insulated electrically conductive elements, and an outer protective sheath, in particular electrically insulating, surrounding said composite layer.
  • the process according to the invention is preferably a continuous process.
  • at least steps i), ii) and a), and preferably at least steps iO), i), ii), a) and iii) are carried out continuously.
  • the expression “continuous process” means that the process is carried out on a single production line, and / or without stages of rest, collection, or recovery. In other words, in the process according to the invention, there are no intermediate stages of rest between the distribution of the nonwoven fibrous material and the recovery / obtaining of the final cord. More particularly, steps i), ii) and a), or steps iO), i), ii), a), and iii) are concomitant, ie steps i), ii) and a), or steps iO), i), ii), a), and iii) are implemented at the same time.
  • the nonwoven fibrous material may be placed on a dispenser such as an unwinder or unwinder, and said material may be dispensed or unwound continuously in order to carry out at least steps i) and iii).
  • the nonwoven fibrous material in the form of a ribbon delivered by the unwinder or unwinder passes into the tightening or shaping device through which a cable comprising at least one elongated electrically conductive element passes according to step iii- v2), then the cable thus obtained passes into the bath or impregnation tank comprising the geopolymer composition according to step i-v2), then the cable thus impregnated leaves the impregnation tank and enters the spray cell to put carrying out steps a) and ii), then the cable obtained passes through the tightening device before entering the extruder head, in order to allow the extrusion of the polymer sheath around the cable according to step iv) .
  • the distributor delivers the nonwoven fibrous material at a speed V (in km / min).
  • the speed V is preferably identical to the running speed of the cable.
  • the impregnation bath or tank is supplied with the geopolymer composition at a flow rate D (in kg / min).
  • the flow rate D can range from 0.5 kg / min to 4.5 kg / min approximately.
  • the cable running speed in the process ranges from approximately 20 m / min to 280 m / min, and preferably ranges from approximately 50 m / min to 150 m / min.
  • Figure 1 shows a schematic sectional view of an electric cable as obtained according to the process according to the invention.
  • FIG. 2 represents a schematic view of the method according to the invention according to one embodiment.
  • the 10A electric cable illustrated in figure 1, corresponds to a fire-resistant electric cable of type K25 or RZ1K.
  • This electric cable 10 comprises four elongated electrically conductive elements 1, each being insulated with an electrically insulating layer 200, and, successively and coaxially around these four isolated elongated electrically conductive elements (100, 200), a composite layer 3 as defined in the invention surrounding the four elongated insulated electrically conductive elements (100, 200), and an outer sheath 400 of the HFFR type surrounding the composite layer 300 as defined in the invention, and is advantageously in the form of a ribbon.
  • FIG. 2 a schematic view of the process according to the invention implemented continuously is illustrated.
  • a nonwoven fibrous material 1 in the form of a tape is placed on a winder 2, unwound and brought to a tightening device 3 through which a cable comprising at least one elongated electrically conductive element 4 (bare cable 4) runs, in order to allow the longitudinal winding of the tape 1 around the cable 4 [step iii-v2) ]
  • the cable obtained comprising the elongated electrically conductive element and said nonwoven fibrous material surrounding said elongated electrically conductive element 5 passes into an impregnation bath 6 comprising a geopolymer composition 7, in order to allow the impregnation of the non-fibrous material.
  • the impregnated cable 8 obtained then passes into a spraying cell 9 comprising a tubular chamber and pipes allowing the spraying of a gelling composition 1 0 comprising 10 g of an alginate and 1 g of calcium chloride on the impregnated cable 8 [ steps a) and ii)].
  • a gelling composition 1 0 comprising 10 g of an alginate and 1 g of calcium chloride on the impregnated cable 8 [ steps a) and ii)].
  • the cable obtained 1 1 enters a tightening device 1 2 connected to said tubular chamber and is brought to an extruder head 1 3, in order to allow the extrusion of the polymer sheath around the cable to form a sheathed cable 14 [step iv)].
  • the composite layer obtained is dry and can be deformed while retaining its cohesion without any tearing. Aging tests show that steps a) and ii) make it possible to retain the flexibility properties after prolonged temperature aging, unlike the implementation of a process without steps a) and ii). The fire properties are not altered since the fire tests according to standard EN50399 remain unchanged B2, si, dl.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un câble mettant en œuvre l'imprégnation d'un matériau fibreux non tissé par une composition géopolymère liquide et l'ajout d'au moins une composition précurseur d'un gel à la composition géopolymère liquide.

Description

Procédé de fabrication d’un câble résistant et/ ou retardant au feu
La présente invention concerne un procédé de fabrication d'un câble mettant en oeuvre l'imprégnation d'un matériau fibreux non tissé par une composition géopolymère liquide et l'ajout d'au moins une composition précurseur d'un gel à la composition géopolymère liquide.
Elle s'applique typiquement, mais non exclusivement, à des câbles retardants et/ou résistants au feu destinés au transport d’énergie et/ou à la transmission de donnée tels que des câbles électriques et/ou optiques de sécurité retardants et/ou résistants au feu, notamment sans halogène, susceptibles de fonctionner pendant un laps de temps donné dans des conditions d’incendie sans être pour autant propagateur d’incendie, ni générateur de fumées importantes. Ces câbles de sécurité sont en particulier des câbles de transport d’énergie moyenne tension (notamment de 6 à 45-60 kV) ou des câbles de transmission basse fréquence, tels que des câbles de contrôle ou de signalisation.
De WO 2016/099200 est connu un procédé de fabrication d'un câble résistant au feu comprenant les étapes suivantes : une étape de préparation d'une composition géopolymère comprenant un silicate de sodium, de l'eau, de l'hydroxyde de potassium, un aluminosilicate, et des fibres de polypropylène ; une étape d'enroulement d'un ruban de papier non tissé autour d'un assemblage de conducteurs en cuivre, une étape d'imprégnation par trempage enduction de l'assemblage conducteurs en cuivre/ruban de papier non tissé, dans la composition géopolymère précédemment préparée, pour former une couche composite entourant les conducteurs en cuivre, puis une étape d'extrusion à chaud d'une gaine protectrice polymère. Le procédé est long, notamment de par l'étape de séchage, et ne peut être réalisé en continu. Par ailleurs, les éléments constitutifs du câble à proximité de la couche composite à base d'un matériau géopolymère peuvent être facilement contaminés par la composition géopolymère et/ou coller à ladite couche composite ce qui n'est pas souhaité.
Un but de l'invention est de pallier tout ou partie des inconvénients précités, et de fournir un procédé de fabrication d'un câble retardant au feu ledit procédé étant facile à mettre en oeuvre, notamment facilement industrialisable, économique et rapide, et permettant de conduire à un câble présentant de bonnes propriétés mécaniques, notamment en termes de flexibilité et de durabilité.
L'invention a pour premier objet un procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé et au moins une couche composite entourant ledit élément électriquement conducteur allongé, caractérisé en ce qu'il comprend au moins les étapes suivantes : i) imprégner un matériau fibreux non tissé, de préférence sous la forme d'un ruban ou d'une bande, avec une composition géopolymère liquide, et ii) former un gel encapsulant ou supportant ledit matériau fibreux non tissé, ledit gel comprenant un matériau géopolymère, et en ce que ledit procédé comprend en outre une étape a) d'ajout d'une composition gélifiante à la composition géopolymère liquide, pour former ledit gel lors de l'étape ii).
Le procédé de l'invention est rapide, facile à mettre en oeuvre, notamment sur le plan industriel, économique, et il garantit l'obtention d'un câble résistant et/ou retardant au feu présentant de bonnes propriétés mécaniques, notamment en termes de flexibilité et de durabilité. Par ailleurs, le procédé de l'invention permet de protéger la couche composite, et notamment d'éviter la contamination des éléments constitutifs du câble à proximité de la couche composite par la composition géopolymère liquide, ou leur collage à ladite couche composite. En particulier, les inventeurs de la présente demande ont observé que la présence d'une composition gélifiante dans la composition géopolymère liquide permet de diminuer la libération d'eau dans le temps, et notamment au cours du procédé, qui est néfaste pour la fabrication du câble.
Etape i) d'impréanation du matériau fibreux non tissé
La composition aéopolvmère liquide
La composition géopolymère liquide utilisée à l'étape i) est de préférence une composition géopolymère liquide à température ambiante, i.e. à une température allant de 18 à 25°C environ.
La composition géopolymère liquide de l'étape i) est de préférence une composition géopolymère aluminosilicate liquide. La composition géopolymère liquide de l'invention est de façon particulièrement préférée une composition géopolymère liquide comprenant de l'eau, du silicium (Si), de l'aluminium (Al), de l'oxygène (O), et au moins un élément choisi parmi le potassium (K), le sodium (Na), le lithium (Li), le césium (Cs), et le calcium (Ca), et de préférence choisi parmi le potassium (K) et le sodium (Na).
La composition géopolymère liquide peut en particulier comprendre au moins un premier aluminosilicate, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline.
Dans l'invention, la composition géopolymère liquide est une composition précurseur d'un géopolymère. En d'autres termes, elle comprend des ingrédients (premier aluminosilicate, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline ; ou premier métakaolin, deuxième métakaolin, premier silicate alcalin, eau, et éventuellement une base alcaline et/ou un deuxième silicate alcalin tels que définis ci-après) qui géopolymérisent ensemble (par polycondensation) pour former un géopolymère également dénommé matériau géopolymère tel que défini dans l'invention.
Le premier aluminosilicate
Le premier aluminosilicate peut être choisi parmi les métakaolins (i.e. kaolins calcinés), les cendres volantes (bien connues sous l'anglicisme « fly ash »), le laitier de haut fourneau (bien connu sous l'anglicisme « blast furnace slag »), les argiles gonflantes telles que la bentonite, les argiles calcinées, tout type de composé comprenant de l'aluminium et de la fumée de silice, les zéolithes, et un de leurs mélanges.
Parmi ces composés, les métakaolins sont préférés, notamment ceux commercialisés par la société Imérys.
Dans l'invention, l'expression « métakaolin » signifie un kaolin calciné ou un aluminosilicate déshydroxylé. Il est de préférence obtenu par déshydratation d'un kaolin ou d'une kaolinite. Cette déshydratation est classiquement obtenue par calcination. La composition géopolymère liquide peut comprendre de 5 à 50% en poids environ d'aluminosilicate, et de préférence de 10 à 35% en poids environ d'aluminosilicate, par rapport au poids total de la composition géopolymère liquide.
La composition géopolymère liquide peut comprendre en outre un deuxième aluminosilicate différent du premier aluminosilicate.
De préférence, la composition géopolymère liquide comprend deux kaolins calcinés ayant des températures de calcination différentes.
Selon une forme de réalisation particulièrement préférée de l'invention, la composition géopolymère liquide comprend un premier métakaolin choisi parmi les kaolins calcinés à une température Tci d'au moins 650°C environ, et un deuxième métakaolin choisi parmi les kaolins calcinés à une température TC2 telle que TC2 - Tci > 100°C environ, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline. La composition géopolymère liquide peut alors présenter des propriétés mécaniques améliorées, notamment en termes de flexibilité et de durabilité, tout en garantissant de bonnes propriétés de réaction et de résistance au feu.
Le deuxième métakaolin étant choisi parmi les kaolins calcinés à une température TC2 telle que TC2 - Tci > 100°C environ, il est différent du premier métakaolin tel que défini dans l'invention.
Selon une forme de réalisation de l'invention, le premier métakaolin est un kaolin calciné à une température Tci d'au moins 700°C environ, et de préférence d'au moins 725°C environ.
Selon une forme de réalisation préférée de l'invention, le premier métakaolin est un kaolin calciné à une température Tci d'au plus 875°C environ, et de préférence d'au plus 825°C environ.
Le premier métakaolin peut comprendre au moins 20% en mole environ, et de préférence au moins 30% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du premier métakaolin.
Le premier métakaolin peut comprendre au plus 60% en mole environ, et de préférence au plus 50% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du premier métakaolin. Le premier métakaolin peut comprendre au moins 35% en mole environ, et de préférence au moins 45% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du premier métakaolin.
Le premier métakaolin peut comprendre au plus 75% en mole environ, et de préférence au plus 65% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du premier métakaolin.
À titre d'exemples de premier métakaolin, on peut citer les métakaolins vendus par la société Imérys, notamment celui commercialisé sous la référence PoleStar® 450.
Le premier métakaolin peut être choisi parmi les kaolins calcinés à Tci telle que définie dans l'invention, pendant au moins 1 min environ, de préférence pendant au moins 10 min environ, de façon particulièrement préférée pendant une durée allant d'environ 30 min à 8h, et de façon plus particulièrement préférée pendant une durée allant d'environ 2h à 6h.
Le deuxième métakaolin est choisi de préférence parmi les kaolins calcinés à une température TC2 telle que TC2 - Tci > 150°C environ, de façon particulièrement préférée telle que TC2 - Tci > 200°C environ, et de façon plus particulièrement préférée telle que TC2 - Tci > 250°C environ.
Selon une forme de réalisation de l'invention, le deuxième métakaolin est un kaolin calciné à une température TC2 d'au moins 800°C environ, de préférence d'au moins 850°C environ, et de façon particulièrement préférée d'au moins 900°C environ.
Selon une forme de réalisation préférée de l'invention, le deuxième métakaolin est un kaolin calciné à une température TC2 d'au plus 1200°C environ, et de préférence d'au plus 1150°C environ.
Le deuxième métakaolin peut comprendre au moins 20% en mole environ, et de préférence au moins 30% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du deuxième métakaolin.
Le deuxième métakaolin peut comprendre au plus 60% en mole environ, et de préférence au plus 50% en mole environ d'oxyde d'aluminium (AI2O3), par rapport au nombre de moles total du deuxième métakaolin. Le deuxième métakaolin peut comprendre au moins 35% en mole environ, et de préférence au moins 45% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du deuxième métakaolin.
Le deuxième métakaolin peut comprendre au plus 75% en mole environ, et de préférence au plus 65% en mole environ d'oxyde de silicium (S1O2), par rapport au nombre de moles total du deuxième métakaolin.
À titre d'exemples de deuxième métakaolin, on peut citer les métakaolins vendus par la société Imérys, notamment celui commercialisé sous la référence PoleStar® 200R.
Le deuxième métakaolin peut être choisi parmi les kaolins calcinés à TC2 telle que définie dans l'invention, pendant au moins 1 min environ, de préférence pendant au moins 5 min environ, de façon particulièrement préférée pendant une durée allant d'environ 10 min à 2h, et de façon plus particulièrement préférée pendant une durée allant d'environ 15 min à lh.
Le rapport massique [premier métakaolin/deuxième métakaolin] dans la composition géopolymère liquide va de préférence de 0,1 à 2 environ, de façon particulièrement préférée de 0,5 à 1,0 environ, et de façon plus particulièrement préférée est d'environ 1.
La composition géopolymère liquide peut comprendre de 5 à 50% en poids environ, et de préférence de 10 à 35% en poids environ de premier et deuxième métakaolins, par rapport au poids total de la composition géopolymère liquide.
Les premier et deuxième métakaolins peuvent être analysés par analyse thermique différentielle (ATD) [absence ou présence d'un point ou pic de cristallisation], résonance magnétique nucléaire (RMN) [spectre RMN27 Al], et/ou diffraction aux rayons X (DRX).
Le premier métakaolin présente de préférence un pic de cristallisation par analyse thermique différentielle, de façon particulièrement préférée à une température allant de 900 à 1060°C, et de façon plus particulièrement préférée à une température allant de 950 à 1010°C.
Le deuxième métakaolin comprend de préférence de la mullite. Le premier silicate alcalin
Le premier silicate alcalin peut être choisi parmi les silicates de sodium, les silicates de potassium, et l'un de leurs mélanges.
Les silicates alcalins commercialisés par la société Silmaco ou par la société PQ corporation sont préférés. Le premier silicate alcalin est de préférence un silicate de sodium.
Le premier silicate alcalin peut avoir un rapport molaire S1O2/M2O allant de 1,1 à 35 environ, de préférence de 1,3 à 10 environ, et de façon particulièrement préférée de 1,4 à 5 environ, avec M étant un atome de sodium ou de potassium, et de préférence un atome de sodium.
La composition géopolymère liquide peut comprendre de 5 à 60% en poids environ, et de préférence de 10 à 50% en poids environ de premier silicate alcalin, par rapport au poids total de la composition géopolymère liquide.
Le deuxième silicate alcalin
La composition géopolymère liquide peut comprendre en outre un deuxième silicate alcalin différent du premier silicate alcalin.
Le deuxième silicate alcalin peut être choisi parmi les silicates de sodium, les silicates de potassium, et l'un de leurs mélanges. Les silicates alcalins commercialisés par la société Silmaco ou par la société PQ Corporation sont préférés. Le deuxième silicate alcalin est de préférence un silicate de sodium.
Les premier et deuxième silicates alcalins peuvent avoir respectivement des rapports molaires SÎ02/M20 et SiC /M^O tels que M et M', identiques, sont choisis parmi un atome de sodium et un atome de potassium, et de préférence un atome de sodium, et lesdits rapports ont des valeurs différentes, de préférence des valeurs telles que leur différence est d'au moins 0,3, de façon particulièrement préférée telles que leur différence est d'au moins 0,5, et de façon plus particulièrement préférée telles que leur différence est d'au moins 1,0.
Selon une forme de réalisation de l'invention, la composition géopolymère liquide comprend :
- un premier silicate alcalin ayant un rapport molaire SÎ02/M20 allant de 1,5 à 2,6 environ, et - un deuxième silicate alcalin ayant un rapport molaire Si02/M'20 supérieur à 2,6, de préférence allant de 2,8 à 4,5 environ, et de façon particulièrement préférée allant de 3,0 à 4,0 environ, étant entendu que M' est identique à M.
La composition géopolymère liquide peut comprendre de 10 à 60% en poids environ, et de préférence de 20 à 50% en poids environ de premier et deuxième silicates alcalins, par rapport au poids total de la composition géopolymère liquide.
Le rapport massique [premier silicate alcalin/deuxième silicate alcalin] dans la composition géopolymère liquide va de préférence de 0,5 à 2,5, et de façon particulièrement préférée de 0,8 à 2,0.
La base alcaline
La base alcaline peut être de l'hydroxyde de sodium, ou de l'hydroxyde de potassium, et de préférence de l'hydroxyde de sodium.
La composition géopolymère liquide peut être exempte de base alcaline. Cela permet ainsi d'améliorer la manipulation de la composition géopolymère liquide, en particulier lors de la préparation d'un câble.
Le rapport massique matières solides/eau dans ladite composition géopolymère liquide détermine la cinétique de solidification lors de l'étape ii).
La composition géopolymère liquide peut comprendre de 35% à 80% en poids environ, et de façon particulièrement préférée de 40% à 70% en poids environ, de matières solides (silicate alcalin(s), aluminosilicate(s) et base alcaline), par rapport au poids total de ladite composition géopolymère liquide.
La composition géopolymère liquide peut comprendre en outre un ou plusieurs additifs choisis parmi :
- un colorant,
- des fibres minérales, notamment choisies parmi les fibres d'alumine ou de basalte,
- un composé accélérant la prise en masse, notamment choisi parmi le sulfate d'aluminium, les aluns (e.g. sulfate double d'aluminium et de potassium), le chlorure de calcium, le sulfate de calcium, le sulfate de calcium hydraté, l'aluminate de sodium, le carbonate de sodium, le chlorure de sodium, le silicate de sodium, le sulfate de sodium, le chlorure de fer (III), et les lignosulfonates de sodium,
- un agent retardant la prise en masse, notamment choisi parmi l'ammonium, les métaux alcalins, les métaux alcalino-terreux, le borax, les lignosulfonates et en particulier les sels de métaux de lignosulfonates de calcium, les lignines sulfoalkylées telles que par exemple la lignine sulfométhylée, les acides hydroxycarboxyliques, les copolymères de sels d'acide 2-acrylamido-2- méthylpropane sulfonique et d'acide acrylique ou d'acide maléique, et les sels saturés,
- une charge inerte, notamment choisi parmi le talc, les micas, les argiles déshydratées, et le carbonate de calcium,
- un matériau carboné expansé tel qu'un graphite expansé.
Le colorant est de préférence un colorant liquide à température ambiante (i.e. à 18-25°C).
La composition géopolymère liquide peut comprendre de 0,01 à 15% en poids environ d'additif(s), de préférence de 0,1 à 8% en poids environ d'additif(s), et de façon particulièrement préférée de 0,5 à 5% en poids environ d'additif(s), par rapport au poids total de la composition géopolymère liquide.
Le matériau fibreux non tissé
Dans l'étape i), le matériau fibreux non tissé se présente préférentiellement sous la forme d'un ruban ou d'une bande.
Le matériau fibreux non tissé a de préférence une structure souple et flexible.
Le matériau fibreux non tissé peut être choisi parmi les matériaux cellulosiques, les matériaux à base de polymères organiques synthétiques, les fibres de verre, et un de leurs mélanges, et de préférence parmi les matériaux à base de polymères organiques synthétiques.
Les matériaux cellulosiques peuvent être choisis parmi le papier, en particulier le papier buvard ; les matériaux non tissés fabriqués à partir de cellulose fonctionnalisée ou non fonctionnalisée ; les matrices à structure alvéolaire et/ou fibreuse fabriquées à partir de fibres naturelles d'acétate de cellulose.
Les matériaux à base de polymères organiques synthétiques peuvent être choisis parmi les matériaux polymères à matrice poreuse et/ou fibreuse de polyoléfine(s), en particulier ceux choisis parmi les homo- et copolymères de propylène, les homo- et copolymères d'éthylène, les polyéthylènes haute densité (HDPE), les polyamides aromatiques (aramides), les polyesters, et un de leurs mélanges.
Selon une forme de réalisation préférée de l'invention, le matériau fibreux non tissé est un polyéthylène téréphtalate (PET).
Le matériau fibreux non tissé présente de préférence un grammage allant de 50 à 120 g/cm2 environ. Cela permet ainsi d'obtenir une couche composite suffisamment flexible pour pouvoir être manipulée facilement, et suffisamment robuste pour obtenir une bonne protection au feu.
L'étape i) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
Lorsqu'elle est automatisée, l'étape i) est effectuée à une vitesse allant de 20 à 280 m/min environ, et de préférence allant de 50 à 150 m/min environ.
L'étape d'imprégnation i) peut être effectuée sur le matériau fibreux non tissé seul (dénommée ci-après première variante), ou sur un ensemble matériau fibreux non tissé/câble comprenant au moins un élément électriquement conducteur allongé (dénommé ci-après deuxième variante).
Première variante
Selon la première variante, l'étape i) est une étape i-vl) et elle est de préférence effectuée par enduction imprégnation, et de façon particulièrement préférée par enduction pré-contrôlée.
L'étape i-vl) peut par exemple être effectuée à l'aide d'un dispositif d'enduction tel qu'une filière d'enduction. Ce dispositif est particulièrement approprié pour imprégner un matériau fibreux non tissé seul, i.e. lorsqu'il n'est pas encore appliqué autour du câble.
L'étape i-vl) est plus particulièrement mise en oeuvre en faisant passer le matériau fibreux non tissé dans un dispositif d'enduction tel qu'une filière d'enduction, ledit dispositif étant alimenté avec la composition géopolymère liquide, notamment à l'aide de moyens tels qu'une pompe. Cela permet ainsi de distribuer directement la quantité voulue de la composition géopolymère liquide de façon homogène sur toute la largeur désirée dudit matériau fibreux non tissé.
L'étape i-vl) peut en particulier être une enduction connue selon l'anglicisme « tensioned web die coating ».
Dans un mode de réalisation préféré de l'invention, l'étape i-vl) d'imprégnation est réalisée à une température allant de 15°C à 90°C environ, et de façon particulièrement préférée de 20°C à 40°C environ.
Selon cette première variante, le matériau fibreux non tissé peut être disposé sur un distributeur tel qu'un dérouleur ou dévidoir, et ledit matériau peut être distribué ou déroulé en continu pour mettre en oeuvre au moins l'étape i)·
De préférence, selon la première variante de l'invention, l'étape i-vl) est mise en oeuvre en faisant passer le matériau fibreux non tissé dans un dispositif d'enduction alimenté avec la composition géopolymère liquide avec un débit D (en kg/min), le distributeur délivre le matériau fibreux non tissé à une vitesse V (en km/min), et le rapport D/V va d'environ 20 à 50 kg de composition géopolymère liquide / km de matériau fibreux non tissé, et de façon particulièrement préférée d'environ 25 à 40 kg de composition géopolymère liquide / km de matériau fibreux non tissé. La quantité de composition géopolymère liquide appliquée sur le matériau fibreux non tissée peut ainsi être facilement ajustée par une pompe.
La vitesse V est de préférence identique à la vitesse de défilement du câble.
Le débit D peut aller de 0,5 kg/min à 4,5 kg/min environ.
La vitesse V peut aller de 20 m/min à 280 m/min environ, et de préférence de 50 m/min à 150 m/min environ. Deuxième variante
Selon la deuxième variante, l'étape i) est une étape i-v2) et elle est de préférence effectuée par trempage enduction.
L'étape i-v2) peut par exemple être effectuée à l'aide d'un bain ou bac d'imprégnation comprenant la composition géopolymère liquide dans lequel on introduit le câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé.
Le bain ou bac d'imprégnation est de préférence configuré pour permettre le passage du câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé, au travers dudit bain d'imprégnation.
La composition géopolymère liquide est alors introduite dans ledit bain d'imprégnation, pour permettre l'étape i-v2).
Le bain ou bac d'imprégnation est de préférence alimenté avec la composition géopolymère liquide, notamment à l'aide de moyens tels qu'une pompe. Cela permet ainsi d'alimenter en continu ledit bain ou bac en composition géopolymère liquide.
Dans un mode de réalisation préféré de l'invention, l'étape i-v2) d'imprégnation est réalisée à une température allant de 15°C à 40°C environ, et de façon particulièrement préférée de 20°C à 30°C environ.
La vitesse V est de préférence identique à la vitesse de défilement du câble.
De préférence, l'étape i-v2) est mise en oeuvre en faisant passer le câble comprenant ledit élément électriquement conducteur allongé et ledit matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé dans un bain ou bac d'imprégnation alimenté avec la composition géopolymère avec un débit D (en kg/min). Le débit D peut aller de 0,5 kg/min à 4,5 kg/min environ.
La vitesse de défilement du câble dans l'étape i-v2) peut aller de 20 m/min à 280 m/min environ, et de préférence de 50 m/min à 150 m/min environ. Le matériau fibreux non tissé imprégné de la composition géopolymère liquide (première variante) ou l'ensemble câble/matériau fibreux non tissé imprégné de la composition géopolymère liquide (première variante) est alors directement utilisé dans l'étape ii) ou l'étape a) telle que définie dans l'invention.
Etape a) d'aiout d'une composition gélifiante
L'étape a) d'ajout d'une composition gélifiante peut être effectuée avant l'étape i) ou après l'étape i) d'imprégnation du matériau fibreux non tissé.
L'étape a) permet ainsi d'ajouter à la composition géopolymère liquide seule (i.e. avant l'étape i)) ou à la composition géopolymère liquide imprégnant le matériau fibreux non tissé (i.e. après l'étape i)) la composition gélifiante.
La composition gélifiante est en d'autres termes une composition précurseur d'un gel ou une composition apte à former un gel, en particulier lorsqu'elle est ajoutée à la composition géopolymère liquide.
La composition gélifiante peut comprendre au moins un composé précurseur d'un gel choisi parmi les polymères organiques réticulables, les polysaccharides, les monomères organiques, et un de leurs mélanges.
Parmi les polysaccharides, on peut citer les amidons, les amidons modifiés, les alginates, les alginates modifiés, le chitosan, l'acide hyaluronique, les carraghénanes, les gommes polysaccharidiques telles que l'agar-agar, la gomme xanthane ou la gomme gellane, les pectines, la cellulose, les dérivés de la cellulose, les dextranes modifiés, et l'acide hyaluronique.
De préférence, le polysaccharide utilisé est sous la forme d'une poudre.
Parmi les polymères organiques réticulables on peut citer les polyorganosiloxanes, et les poly(méth)acrylates.
Parmi les monomères organiques on peut citer les acrylates, les méthacrylates, et les acrylamides.
La composition gélifiante peut comprendre en outre un agent de réticulation et/ou un catalyseur de réticulation et/ou un initiateur, notamment lorsque le composé précurseur d'un gel est choisi parmi les polymères organiques réticulables, et les monomères organiques. La composition gélifiante peut comprendre en outre un ou plusieurs agents de viscosité (i.e. qui augmente la viscosité de ladite composition), tels que par exemple du chlorure de calcium, du carbonate de calcium, ou un de leur mélange, notamment lorsque le composé précurseur d'un gel est choisi parmi les polysaccharides, et en particulier les alginates.
L'agent de viscosité est préférentiellement soluble dans la composition gélifiante à une température allant de 15 à 40°C environ.
Le composé précurseur d'un gel est de préférence choisi parmi les polysaccharides, et de façon particulièrement préférée parmi les alginates et les amidons, et de façon plus particulièrement préférée sous la forme d'une poudre.
L'étape a) est de préférence effectuée après l'étape i).
Selon une forme de réalisation préférée de l'invention, l'ajout de la composition gélifiante a) peut être effectué par pulvérisation d'une poudre de la composition gélifiante sur la composition géopolymère liquide ; ou par mélange d'une composition gélifiante liquide avec la composition géopolymère liquide.
La pulvérisation d'une poudre de la composition gélifiante sur la composition géopolymère liquide est préférée.
Lorsque la pulvérisation a) est utilisée après l'étape i), le matériau non tissé imprégné de la composition géopolymère peut par exemple passer dans une cellule de pulvérisation comprenant une chambre tubulaire et des tubulures permettant la pulvérisation de la composition gélifiante sur le matériau fibreux non tissé imprégné [étapes a) et ii)].
La cellule de pulvérisation peut être connectée à un dispositif de resserrement, notamment pour permettre le confinement de l'ensemble gel/matériau non tissé autour de l'élément électriquement conducteur allongé lorsque la deuxième variante est utilisée pour l'étape iii) décrite ci-après.
Etape ii) de formation d'un gel encapsulant le matériau fibreux non tissé
L'étape ii) permet d'amener la composition géopolymère liquide d'un état liquide à un état de gel lié à la présence d'une composition gélifiante.
L'étape ii) peut être concomitante avec l'étape a). En d'autres termes, l'ajout de la composition gélifiante à la composition géopolymère liquide permet de former directement un gel encapsulant le matériau non tissé. L'étape ii) peut être réalisée après l'étape a). De préférence, dans ce mode de réalisation l'étape ii) est mise en oeuvre en présence d'un stimulus externe, tel que la température ou la présence de rayons UV, par exemple pour déclencher une réticulation.
Grâce aux étapes a) et ii), un gel encapsulant le matériau fibreux non tissé se forme, ledit gel comprenant un matériau géopolymère. Cela permet ainsi de pomper une partie de l'eau en excès et/ou de sécher au moins en surface l'ensemble matériau fibreux non tissé/matériau polymère, et ainsi d'obtenir une couche composite dont les propriétés mécaniques sont conservées dans le temps.
Grâce à la présence de cette composition gélifiante, un réseau chimique ou physique, volumique ou surfacique est obtenu au cours de l'étape ii) qui maintient le matériau fibreux non tissé en place et/ou l'encapsule et/ou joue le rôle de support ; tout en protégeant la couche composite obtenue d'une perte d'eau dans le temps.
Le procédé ne comprend pas de préférence d'étape de séchage, notamment de par la présence de l'étape ii). En effet, le gel peut permettre d'assurer une gélification de surface, apportant ainsi à la fin de l'étape ii) une texture sèche au toucher après fixation de l'eau.
Etape inj de préparation de la composition aéopolvmère liquide
Le procédé peut comprendre en outre avant l'étape i), une étape i0) de préparation de la composition géopolymère liquide.
L'étape io) est généralement effectuée à un pH élevé, notamment variant de 10 à 13.
L'étape io) comprend de préférence les sous-étapes suivantes :
101) la préparation d'une solution aqueuse du premier silicate alcalin, et
102) le mélange du premier aluminosilicate sous forme de poudre avec la solution aqueuse de silicate alcalin préparée à la sous-étape iOl) précédente.
La solution aqueuse du premier silicate alcalin peut être préparée en mélangeant du dioxyde de silicium S1O2 ou un silicate alcalin avec une base MOH dans laquelle M est K ou Na.
Le dioxyde de silicium S1O2 peut être choisi parmi la fumée de silice (i.e. silice pyrogénée), le quartz, et leurs mélanges. La sous-étape ioi) peut être effectuée en dissolvant la base alcaline dans de l'eau, entraînant un dégagement de chaleur (réaction exothermique), puis en ajoutant la silice (ou le silicate alcalin). La chaleur dégagée accélère alors la dissolution de la silice (ou du silicate alcalin) lors de la sous-étape ioi), et du premier aluminosilicate lors de la sous-étape 102).
Lorsque le deuxième aluminosilicate et/ou le deuxième silicate alcalin tel(s) que défini(s) dans l'invention existe(nt), l'étape io) de préparation de la composition géopolymère liquide peut comprendre le mélange dudit premier aluminosilicate (de préférence sous forme de poudre) et éventuellement dudit deuxième aluminosilicate (de préférence sous forme de poudre), avec ledit premier silicate alcalin (de préférence sous forme d'une solution aqueuse), et éventuellement ledit deuxième silicate alcalin (de préférence sous forme d'une solution aqueuse).
L'étape io) comprend de préférence le mélange des premier et deuxième métakaolins, avec le premier silicate alcalin et éventuellement le deuxième silicate alcalin, de l'eau, et éventuellement une base alcaline.
Les premier et deuxième métakaolins et les premier et deuxième silicates alcalins sont tels que définis dans l'invention.
Selon une forme de réalisation préférée, l'étape io) comprend les sous- étapes suivantes : ioa) le mélange des premier et deuxième silicates alcalins, de préférence sous forme de solutions aqueuses, notamment sous agitation, iob) éventuellement l'ajout d'une base alcaline, notamment en maintenant l'agitation, et ioc) l'ajout des premier et deuxième métakaolins, de préférence sous forme de poudres, notamment en maintenant l'agitation.
À l'issue de l'étape i0), ou de la sous-étape i0 ) ou i0c), on obtient préférentiellement une solution fluide et homogène.
À l'issue de l'étape io), la composition géopolymère peut comprendre de 35% à 80% en poids environ, et de façon particulièrement préférée de 40% à 70% en poids environ, de matières solides (silicate alcalin(s), aluminosilicate(s), et base alcaline), par rapport au poids total de ladite composition géopolymère liquide.
Un tel rapport massique permet d'avoir une composition géopolymère liquide assez fluide pour permettre sa manipulation, et dont la cinétique de solidification est assez lente pour permettre la formation d'une couche composite de câble telle que définie ci-après.
Le rapport massique matières solides/eau dans ladite composition géopolymère liquide peut permettre de déterminer la cinétique de solidification de ladite composition géopolymère liquide.
L'étape io) est de préférence effectuée à température ambiante (18-25°C environ).
Etape iii) d'application du matériau fibreux non tissé autour du câble
Le procédé peut comprendre en outre une étape iii) d'application du matériau fibreux non tissé autour d'un câble comprenant au moins un élément électriquement conducteur allongé.
L'étape iii) peut être effectuée soit après l'étape i) d'imprégnation, lorsque cette dernière met en oeuvre le matériau fibreux non tissé seul [première variante de l'invention ou étape i-vl)], soit avant l'étape i) d'imprégnation, lorsque cette dernière met en oeuvre l'ensemble câble/matériau fibreux non tissé [deuxième variante de l'invention ou étape i-v2)].
Première variante
Selon la première variante de l'étape i) de l'invention (i.e. lorsque l'étape i) est une étape i-vl)), l'étape iii) est alors une étape iii-vl).
L'étape iii-vl) est préférentiellement effectuée après l'étape ii) telle que définie dans l'invention.
Ainsi, le matériau fibreux non tissé seul est imprégné avec la composition géopolymère liquide selon l'étape i), un gel est formé selon l'étape ii), puis l'ensemble gel/matériau fibreux non tissé est appliqué autour de l'élément électriquement conducteur allongé selon l'étape iii-vl).
Le matériau fibreux non tissé se présente de préférence sous la forme d'une bande ou d'un ruban. Cela permet ainsi de faciliter l'étape iii-vl). L'ensemble gel/matériau fibreux non tissé peut être appliqué soit directement autour d'un ou de plusieurs éléments conducteurs allongés, soit autour d'une couche interne dudit câble qui est elle-même autour d'un ou de plusieurs éléments conducteurs allongés.
Lorsque le matériau fibreux non tissé est un ruban ou une bande, l'étape iii-vl) d'application peut être effectuée par enroulement du ruban ou de la bande autour du câble.
L'enroulement peut être longitudinal (i.e. selon l'axe longitudinal du câble ou en d'autres termes dans le sens de la longueur du câble) ou hélicoïdal, et de préférence longitudinal.
L'enroulement longitudinal peut en outre être effectué avec des zones de recouvrement, la ou les zones de recouvrement représentant de 10 à 20% environ.
L'étape iii-vl) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
L'étape iii-vl) peut être mise en oeuvre en faisant passer l'ensemble gel/matériau fibreux non tissé de l'étape ii) dans un dispositif de resserrement ou un dispositif de conformation (également par les termes « trompette » ou « conformateur de ruban »). Le câble comprenant au moins un élément électriquement conducteur allongé passe également dans le dispositif de resserrement pendant l'étape iii-vl). Ce dispositif est un dispositif mécanique qui enroule en continu l'ensemble gel/matériau fibreux non tissé autour de l'élément électriquement conducteur allongé. Cela permet ainsi de faciliter l'enroulement longitudinal de l'ensemble gel/ruban autour du câble.
L'étape iii-vl) est de préférence effectuée à température ambiante (18- 25°C environ).
Deuxième variante
Selon la deuxième variante de l'étape i) de l'invention (i.e. lorsque l'étape i) est une étape i-v2)), l'étape iii) est alors une étape iii-v2).
L'étape iii-v2) est préférentiellement effectuée avant l'étape i) telle que définie dans l'invention. Ainsi, le matériau fibreux non tissé seul est d'abord appliqué autour de l'élément électriquement conducteur allongé selon l'étape iii-v2), puis l'ensemble câble/matériau non tissé est imprégné avec la composition géopolymère liquide selon l'étape i), et un gel est formé selon l'étape ii).
L'étape iii-v2) permet l'application du matériau non tissé autour de l'élément électriquement conducteur allongé, notamment pour former un câble comprenant au moins un élément électriquement conducteur allongé et un matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé.
Selon cette deuxième variante, le matériau fibreux non tissé peut être disposé sur un distributeur tel qu'un dérouleur ou dévidoir, et ledit matériau peut être distribué ou déroulé en continu pour mettre en oeuvre au moins l'étape iii-v2).
Lors de l'étape iii-v2), le distributeur délivre le matériau fibreux non tissé à une vitesse V (en km/min).
La vitesse V est de préférence identique à la vitesse de défilement du câble.
La vitesse V peut aller de 20 m/min à 280 m/min environ, et de préférence de 50 m/min à 150 m/min environ.
Le matériau fibreux non tissé se présente de préférence sous la forme d'une bande ou d'un ruban. Cela permet ainsi de faciliter l'étape iii-v2).
Le matériau fibreux non tissé peut être appliqué soit directement autour d'un ou de plusieurs éléments conducteurs allongés, soit autour d'une couche interne dudit câble qui est elle-même autour d'un ou de plusieurs éléments conducteurs allongés.
À l'issue de l'étape iii-v2), on obtient un ensemble câble/matériau fibreux non tissé,
Lorsque le matériau fibreux non tissé est un ruban ou une bande, l'étape iii-v2) d'application peut être effectuée par enroulement du ruban autour du câble.
L'enroulement peut être longitudinal (i.e. selon l'axe longitudinal du câble ou en d'autres termes dans le sens de la longueur du câble) ou hélicoïdal, et de préférence longitudinal. L'enroulement longitudinal permet de diminuer le coût de production du câble.
L'enroulement longitudinal peut en outre être effectué avec des zones de recouvrement, la ou les zones de recouvrement représentant de 10 à 20% environ.
L'étape iii-v2) peut être effectuée manuellement ou de façon automatisée, et de préférence de façon automatisée.
L'étape iii-v2) peut être mise en oeuvre en faisant passer le ruban dans un dispositif de resserrement ou un dispositif de conformation (désigné également par les termes « trompette » ou « conformateur de ruban »). Le câble comprenant au moins un élément électriquement conducteur allongé passe également dans le dispositif de resserrement pendant l'étape iii-v2). Ce dispositif est un dispositif mécanique qui enroule en continu le ruban autour de l'élément électriquement conducteur allongé. Cela permet ainsi de faciliter l'enroulement longitudinal du ruban autour du câble.
L'étape iii-v2) est de préférence effectuée à température ambiante (18- 25°C environ).
La deuxième variante est préférée.
Etape de formation de la gaine polymère
Le procédé peut comprendre en outre après l'étape ii) ou l'étape iii-vl), une étape iv) d'application d'une gaine externe de protection autour de la couche composite. La gaine externe de protection peut permettre d'assurer l'intégrité mécanique du câble.
À l'issue de l'étape iv), le câble peut alors comprendre au moins un élément électriquement conducteur allongé, la couche composite entourant ledit élément électriquement conducteur allongé, et au moins une gaine externe de protection entourant ladite couche composite.
L'étape iv) est de préférence effectuée par extrusion, notamment à une température allant de 140°C à 195°C environ.
L'étape iv) peut être effectuée à l'aide d'une extrudeuse. Dans ce mode de réalisation, une tête d'extrusion peut être positionnée à la sortie du dispositif de conformation tel que défini dans l'invention.
La gaine externe de protection est de préférence la couche la plus externe du câble.
La gaine externe de protection est de préférence une couche électriquement isolante.
La gaine externe de protection est de préférence réalisée en un matériau exempt d'halogène. Elle peut être réalisée classiquement à partir de matériaux retardant la propagation de la flamme ou résistant à la propagation de la flamme. Notamment, si ces derniers ne contiennent pas d'halogène, on parle de gainage de type HFFR (pour l'anglicisme « Halogen Free Flame Retardant »).
La gaine externe de protection peut comprendre au moins un polymère organique ou inorganique.
Le choix du polymère organique ou inorganique n'est pas limitatif et ceux-ci sont bien connus de l'homme du métier.
Selon une forme de réalisation préférée de l'invention, le polymère organique ou inorganique est choisi parmi les polymères réticulés et non réticulés.
Le polymère organique ou inorganique peut être un homo- ou un co-polymère ayant des propriétés thermoplastiques et/ou élastomères.
Les polymères inorganiques peuvent être des polyorganosiloxanes.
Les polymères organiques peuvent être des polyuréthanes ou des polyoléfines.
Les polyoléfines peuvent être choisies parmi les polymères d'éthylène et de propylène. A titre d'exemple de polymères d'éthylène, on peut citer le polyéthylène linéaire basse densité (LLDPE), le polyéthylène basse densité (LDPE), le polyéthylène moyenne densité (MDPE), le polyéthylène haute densité (HDPE), les copolymères d’éthylène et d'acétate de vinyle (EVA), les copolymères d’éthylène et d’acrylate de butyle (EBA), d’acrylate de méthyle (EMA), de 2-hexyléthyl acrylate (2HEA), les copolymères d'éthylène et d'alpha- oléfines tels que par exemple les polyéthylène-octène (PEO), les copolymères d'éthylène et de propylène (EPR), les terpolymères d'éthylène et de propylène (EPT) tels que par exemple les terpolymères d'éthylène propylène diène monomère (EPDM) ou un de leurs mélanges.
Le polymère de la gaine externe de protection est de préférence un polymère organique, de préférence encore un polymère d'éthylène, et de préférence encore un copolymère d’éthylène et d'acétate de vinyle, un polyéthylène linéaire basse densité, ou un de leurs mélanges.
La gaine externe de protection peut comprendre en outre une charge minérale ignifugeante hydratée. Cette charge minérale ignifugeante hydratée agit principalement par voie physique en se décomposant de manière endothermique (e.g. libération d'eau), ce qui a pour conséquence d'abaisser la température de la gaine et de limiter la propagation des flammes le long du câble. On parle notamment de propriétés de retard à la flamme, bien connues sous l'anglicisme « flame retardant ».
La charge minérale ignifugeante hydratée peut être un hydroxyde métallique tel que l'hydroxyde de magnésium ou le trihydroxyde d'aluminium.
La gaine externe de protection peut comprendre en outre une charge inerte, notamment choisi parmi le talc, les micas, les argiles déshydratées et un de leurs mélanges.
La couche composite
La couche composite est de préférence une couche électriquement isolante.
Dans la présente invention, on entend par « couche électriquement isolante » une couche dont la conductivité électrique peut être d'au plus 1.109 S/m, et de préférence d'au plus 1.10 10 S/m (Siemens par mètre) (à 25°C).
La couche composite est de préférence une couche retardante et/ou résistante au feu.
La couche composite présente de préférence une épaisseur allant de 0,2 à 3 mm environ, et de façon particulièrement préférée allant de 0,5 à 1 mm environ.
Lorsque l'épaisseur de la couche composite est inférieure à 0,2 mm, la protection thermique du câble obtenu selon le procédé de l'invention n'est pas suffisante. La couche composite de l'invention est de préférence une couche rubanée (i.e. sous la forme d'un ruban ou d'une bande).
La couche composite présente de préférence une épaisseur sensiblement constante et constitue notamment une enveloppe de protection continue.
La couche composite peut en particulier comprendre 2 à 3 rubans superposés.
La couche composite de l'invention est de préférence non poreuse.
La couche composite est de préférence une couche interne dudit câble.
Selon l'invention, on entend par « couche interne », une couche qui ne constitue pas la couche la plus externe du câble.
La couche composite comprend de préférence au moins un matériau géopolymère, un gel (dans lequel le matériau géopolymère est dispersé), et le matériau fibreux non tissé tel que défini dans l'invention.
Le matériau qéopolvmère
Dans la présente invention, le matériau géopolymère est obtenu à partir d'une composition géopolymère liquide telle que définie dans l'invention, de préférence par durcissement, géopolymérisation et/ou polycondensation de ladite composition géopolymère liquide.
En particulier, la composition géopolymère liquide telle que définie dans l'invention est apte à former ledit matériau géopolymère. Les ingrédients de la composition géopolymère liquide peuvent donc subir une polycondensation pour former ledit matériau géopolymère. Le durcissement s'effectue par réaction interne du type polycondensation. Le durcissement n'est par exemple pas le résultat d’un simple séchage, comme c’est généralement le cas pour des liants à base de silicates alcalins.
En effet, les matériaux géopolymères résultent d’une réaction de polycondensation minérale par activation alcaline, dite géosynthèse, par opposition aux liants traditionnels hydrauliques dans lesquels le durcissement est le résultat d’une hydratation des aluminates de calcium et des silicates de calcium. Dans la présente invention, l'expression « matériau géopolymère » signifie un matériau solide comprenant du silicium (Si), de l'aluminium (Al), de l'oxygène (O) et au moins un élément choisi parmi le potassium (K), le sodium (Na), le lithium (Li), le césium (Cs) et le calcium (Ca), et de préférence choisi parmi le potassium (K), et le sodium (Na).
Le matériau géopolymère peut être un matériau géopolymère aluminosilicate.
Le matériau géopolymère aluminosilicate peut être choisi parmi les poly(sialates) répondant à la formule (I) Mn(-Si-0-AI-0-)n [(M)-PS] et ayant un rapport molaire Si/Al égal à 1, les poly(sialate-siloxos) répondant à la formule (II) Mn(-Si-0AI-0Si-0)n [(M)-PPS] et ayant un rapport molaire Si/Al égal à 2, les poly(sialate-disiloxos) répondant à la formule (III) Mn(-Si-0-AI-0-Si-0-Si-0)n [(M)-PSDS] et ayant un rapport molaire Si/Al égal à 3, et d'autres poly(sialates) de rapport Si/Al > 3, les poly(sialates) précités comprenant un cation alcalin M choisi parmi K, Na, Li, Cs et l'un de leurs mélanges, et n désigne le degré de polymérisation.
Dans un mode de réalisation, le matériau géopolymère représente de 5 à 98% en poids environ, de préférence de 55 à 95% en poids environ, et de préférence encore de 65 à 90% en poids environ, par rapport au poids total de la couche composite.
Selon une forme de réalisation préférée de l'invention, le matériau fibreux non tissé représente de 2 à 95% en poids environ, de façon particulièrement préférée de 5 à 45% en poids environ, et encore plus préférentiellement de 10 à 35% en poids environ, par rapport au poids total de la couche composite.
Selon une forme de réalisation préférée de l'invention, le gel représente de 0,1 à 15% en poids environ, de façon particulièrement préférée de 1 à 10% en poids environ, et encore plus préférentiellement de 2 à 6% en poids environ, par rapport au poids total de la couche composite.
Avantageusement, le câble obtenu selon un procédé conforme à l'invention satisfait à au moins une des normes de réaction ou non-propagation au feu choisies parmi les normes EN 60332-1, EN 60332-3, et EN 50399 (2012/02 + Al 2016) ; et de préférence à la norme EN 50399 (2012/02 + Al 2016), en particulier aux critères de classification B2ca, sla, dO, al de ladite norme, et éventuellement aux normes EN 60332-1 et EN 60332-3.
Selon une forme de réalisation de l'invention, le câble est un câble d'énergie et/ou de télécommunication, et de préférence un câble électrique.
Lorsque le câble comprend une pluralité d'éléments électriquement conducteurs allongés, la couche composite peut alors entourer la pluralité d'éléments électriquement conducteurs allongés du câble.
Le câble peut comprendre une seule couche composite telle que définie dans l'invention ou une pluralité de couches composites telles que définies dans l'invention.
De préférence, le câble comprend une seule couche composite, et de façon plus particulièrement préférée une seule couche composite interne.
Selon une forme de réalisation de l'invention, le câble obtenu selon le procédé de l'invention comprend en outre un ou plusieurs couches interposées entre l'élément électriquement conducteur allongé et la couche composite telle que définie dans l'invention.
Ces couches peuvent comprendre une ou plusieurs couches polymères telles que des couches polymères électriquement isolantes.
Dans ce cas, le procédé comprend en outre, avant l'étape iii), une ou plusieurs étapes d'application d'une ou plusieurs des couches mentionnées ci- dessus, autour de l'élément électriquement conducteur allongé, de l'ensemble des éléments électriquement conducteurs allongés, ou autour de chacun des éléments électriquement conducteurs allongés, selon le type de câble souhaité.
Selon une forme de réalisation préférée de l'invention, le câble comprend :
- une pluralité d'éléments électriquement conducteurs, chacun desdits éléments électriquement conducteurs étant entouré par une couche polymère, notamment électriquement isolante, pour former une pluralité d'éléments électriquement conducteurs isolés,
- une couche composite telle que définie dans l'invention entourant ladite pluralité d'éléments électriquement conducteurs isolés, et - une gaine externe de protection, notamment électriquement isolante, entourant ladite couche composite.
Le procédé conforme à l'invention est de préférence un procédé continu. En d'autres termes, au moins les étapes i), ii) et a), et de préférence au moins les étapes iO), i), ii), a) et iii) sont effectuées en continu.
Dans l'invention, l'expression "procédé continu" signifie que le procédé est effectué sur une seule ligne de production, et/ou sans étapes de repos, de recueil, ou de récupération. En d'autres termes, dans le procédé conforme à l'invention, il n'y a pas d'étapes intermédiaires de repos entre la distribution du matériau fibreux non tissé et la récupération/obtention du câble final. Plus particulièrement, les étapes i), ii) et a), ou les étapes iO), i), ii), a), et iii) sont concomitantes, i.e. les étapes i), ii) et a), ou les étapes iO), i), ii), a), et iii) sont mises en oeuvre en même temps.
Selon ce mode de réalisation, le matériau fibreux non tissé peut être disposé sur un distributeur tel qu'un dérouleur ou dévidoir, et ledit matériau peut être distribué ou déroulé en continu pour mettre en oeuvre au moins les étapes i) et iii).
De préférence, le matériau fibreux non tissé sous la forme d'un ruban délivré par le dérouleur ou dévidoir passe dans le dispositif de resserrement ou de conformation au travers duquel un câble comprenant au moins un élément électriquement conducteur allongé défile selon l'étape iii-v2), puis le câble ainsi obtenu passe dans le bain ou bac d'imprégnation comprenant la composition géopolymère selon l'étape i-v2), puis le câble ainsi imprégné sort du bac d'imprégnation et rentre dans la cellule de pulvérisation pour mettre en oeuvre les étapes a) et ii), puis le câble obtenu passe dans le dispositif de resserrement avant d'entrer dans la tête d'extrudeuse, afin de permettre l'extrusion de la gaine polymère autour du câble selon l'étape iv).
Le distributeur délivre le matériau fibreux non tissé à une vitesse V (en km/min).
La vitesse V est de préférence identique à la vitesse de défilement du câble. De préférence, le bain ou bac d'imprégnation est alimenté avec la composition géopolymère avec un débit D (en kg/min). Le débit D peut aller de 0,5 kg/min à 4,5 kg/min environ.
La vitesse de défilement du câble dans le procédé va de 20 m/min à 280 m/min environ, et de préférence va de 50 m/min à 150 m/min environ.
Brève description des dessins
Les dessins annexés illustrent l'invention :
La Figure 1 représente une vue schématique en coupe d'un câble électrique tel qu'obtenu selon le procédé conforme à l'invention.
La Figure 2 représente une vue schématique du procédé conforme à l'invention selon un mode de réalisation.
Pour des raisons de clarté, seuls les éléments essentiels pour la compréhension de l’invention ont été représentés de manière schématique sur ces figures, et ceci sans respect de l’échelle.
Le câble électrique 10A, illustré sur la figure 1, correspond à un câble électrique résistant au feu de type K25 ou RZ1K.
Ce câble électrique 10 comprend quatre éléments électriquement conducteurs allongés 1, chacun étant isolé avec une couche électriquement isolante 200, et, successivement et coaxialement autour de ces quatre éléments électriquement conducteurs allongés isolés (100, 200), une couche composite 3 telle que définie dans l'invention entourant les quatre éléments électriquement conducteurs allongés isolés (100, 200), et une gaine externe 400 de type HFFR entourant la couche composite 300 telle que définie dans l'invention, et se présente avantageusement sous la forme d'un ruban.
Les exemples suivants permettent d’illustrer la présente invention. Ils n’ont pas de caractère limitatif sur la portée globale de l’invention telle que présentée dans les revendications.
EXEM PLE
Sur la figure 2, est illustrée une vue schématique du procédé conforme à l'invention mis en oeuvre de façon continue. En particulier, un matériau fibreux non tissé 1 sous la forme d'un ruban est placé sur un enrouleur 2, déroulé et amené jusqu'à un dispositif de resserrement 3 au travers duquel un câble comprenant au moins un élément électriquement conducteur allongé 4 (câble nu 4) défile, afin de permettre l'enroulement longitudinal du ruban 1 autour du câble 4 [étape iii-v2)] Puis, le câble obtenu comprenant l'élément électriquement conducteur allongé et ledit matériau fibreux non tissé entourant ledit élément électriquement conducteur allongé 5 passe dans un bain d'imprégnation 6 comprenant une composition géopolymère 7, afin de permettre l'imprégnation du matériau fibreux non tissé 1 par ladite composition géopolymère 7 [étape i- v2)]. Le câble imprégné 8 obtenu passe alors dans une cellule de pulvérisation 9 comprenant une chambre tubulaire et des tubulures permettant la pulvérisation d'une composition gélifiante 1 0 comprenant 10 g d'un alginate et 1 g de chlorure de calcium sur le câble imprégné 8 [étapes a) et il)] . En sortie de cellule de pulvérisation 9, le câble obtenu 1 1 entre dans un dispositif de resserrement 1 2 connecté à ladite chambre tubulaire et est amené vers une tête d'extrudeuse 1 3, afin de permettre l'extrusion de la gaine polymère autour du câble pour former un câble gainé 14 [étape iv)].
La couche composite obtenue est sèche et peut se déformer tout en conservant sa cohésion sans aucun déchirement. Des tests de vieillissement montrent que les étapes a) et ii) permettent de conserver les propriétés de flexibilité après un vieillissement prolongé en température contrairement à la mise oeuvre d'un procédé sans étapes a) et ii). Les propriétés feu ne sont pas altérées puisque les essais feu selon la norme EN50399 restent inchangées B2, si, dl.

Claims

Revendications
1. Procédé de fabrication d'un câble comprenant au moins un élément électriquement conducteur allongé et au moins une couche composite entourant ledit élément électriquement conducteur allongé, caractérisé en ce qu'il comprend au moins les étapes suivantes : i) imprégner un matériau fibreux non tissé, de préférence sous la forme d'un ruban ou d'une bande, avec une composition géopolymère liquide, et ii) former un gel encapsulant ou supportant ledit matériau fibreux non tissé, ledit gel comprenant un matériau géopolymère, et en ce que ledit procédé comprend en outre une étape a) d'ajout d'une composition gélifiante à la composition géopolymère liquide, pour former ledit gel lors de l'étape ii).
2. Procédé selon la revendication 1, caractérisé en ce que la composition géopolymère liquide comprend au moins un premier aluminosilicate, au moins un premier silicate alcalin, de l'eau, et éventuellement une base alcaline.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le matériau fibreux non tissé est choisi parmi les matériaux cellulosiques, les matériaux à base de polymères organiques synthétiques, les fibres de verre, et un de leurs mélanges.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape i) est effectuée sur le matériau fibreux non tissé seul selon l'étape i-vl), et ladite étape i-vl) est effectuée par enduction imprégnation.
5. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape i) est effectuée sur un ensemble matériau fibreux non tissé/câble comprenant au moins un élément électriquement conducteur allongé selon l'étape i-v2), et ladite étape i-v2) est effectuée par trempage enduction.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape a) d'ajout d'une composition gélifiante est effectuée avant l'étape i) ou après l'étape i) d'imprégnation du matériau fibreux non tissé.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition gélifiante comprend au moins un composé précurseur d'un gel choisi parmi les polymères organiques réticulables, les polysaccharides, les monomères organiques, et un de leurs mélanges.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition gélifiante comprend en outre un agent de réticulation et/ou un catalyseur de réticulation et/ou un initiateur.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé précurseur d'un gel est choisi parmi les alginates et les amidons.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé précurseur d'un gel est un polysaccharide sous la forme d'une poudre.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ajout de la composition gélifiante a) est effectué par pulvérisation d'une poudre de la composition gélifiante dans la composition géopolymère liquide ; ou par mélange d'une composition gélifiante liquide avec la composition géopolymère liquide.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape ii) est concomitante avec l'étape a).
13. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'étape ii) est réalisée après l'étape a), et l'étape ii) est mise en oeuvre en présence d'un stimulus externe.
14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé est continu.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre une étape iii) d'application du matériau fibreux non tissé autour d'un câble comprenant au moins un élément électriquement conducteur allongé.
EP21740129.8A 2020-06-19 2021-06-17 Procédé de fabrication d'un câble résistant et/ou retardant au feu Pending EP4168621A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006409A FR3111648B1 (fr) 2020-06-19 2020-06-19 Procédé de fabrication d’un câble résistant et/ou retardant au feu
PCT/FR2021/051093 WO2021255394A1 (fr) 2020-06-19 2021-06-17 Procédé de fabrication d'un câble résistant et/ou retardant au feu

Publications (1)

Publication Number Publication Date
EP4168621A1 true EP4168621A1 (fr) 2023-04-26

Family

ID=72470542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21740129.8A Pending EP4168621A1 (fr) 2020-06-19 2021-06-17 Procédé de fabrication d'un câble résistant et/ou retardant au feu

Country Status (4)

Country Link
US (1) US20230335311A1 (fr)
EP (1) EP4168621A1 (fr)
FR (1) FR3111648B1 (fr)
WO (1) WO2021255394A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134647A1 (fr) * 2022-04-13 2023-10-20 Nexans matériau pour le renforcement local ou la restauration de la résistance au feu de câbles électriques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338349A (en) * 1992-08-27 1994-08-16 Firecomp, Inc. Fire resistant and high temperature insulating composition
FR3030100B1 (fr) * 2014-12-10 2018-03-02 Nexans Cable ou accessoire pour cable comportant une couche resistante au feu
KR20160074864A (ko) 2014-12-18 2016-06-29 주식회사 케이오씨솔루션 강화 플라스틱 시트 및 그 제조방법

Also Published As

Publication number Publication date
US20230335311A1 (en) 2023-10-19
FR3111648B1 (fr) 2022-08-19
WO2021255394A1 (fr) 2021-12-23
FR3111648A1 (fr) 2021-12-24

Similar Documents

Publication Publication Date Title
EP3230231B1 (fr) Cable ou accessoire pour cable comportant une couche resistante au feu
EP3387654A1 (fr) Câble résistant au feu
EP3670471A1 (fr) Composition géopolymère résistante au feu, notamment pour un dispositif comprenant un câble ou un accessoire pour câble
FR3049948B1 (fr) Couche composite resistante au feu pour cable ou accessoire pour cable
EP3503121B1 (fr) Dispositif comprenant un câble ou un accessoire pour câble contenant une couche composite résistante au feu
EP3202002B1 (fr) Connexion de câbles résistante au feu
EP4168621A1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP3754671B1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP3640956B1 (fr) Couche de bourrage pour câble basse tension ayant une protection au feu améliorée
CA2408197C (fr) Procede de fabrication d'une gaine de cable par extrusion et reticulation d'une composition a base de polymere greffe silane, et cable comportant une gaine obtenue par ce procede
EP4132761A1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP3474293B1 (fr) Câble resistant au feu
WO2021205104A1 (fr) Composition résistante et/ou retardante au feu
EP4016554A1 (fr) Procédé de fabrication d'un câble résistant et/ou retardant au feu
EP4261852A1 (fr) Matériau pour le renforcement local ou la restauration de la résistance au feu de câbles électriques
FR3119926A1 (fr) dispositif d’imprégnation pour la fabrication d’un câble résistant et/ou retardant au feu comprenant un revêtement composite géopolymère
FR3118725A1 (fr) Câble armé résistant au feu avec une limitation de la projection de matières incandescentes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)