WO2021204266A1 - 下行参考信号处理方法、装置及可读存储介质 - Google Patents

下行参考信号处理方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2021204266A1
WO2021204266A1 PCT/CN2021/086261 CN2021086261W WO2021204266A1 WO 2021204266 A1 WO2021204266 A1 WO 2021204266A1 CN 2021086261 W CN2021086261 W CN 2021086261W WO 2021204266 A1 WO2021204266 A1 WO 2021204266A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time domain
downlink reference
domain resources
valid
Prior art date
Application number
PCT/CN2021/086261
Other languages
English (en)
French (fr)
Inventor
周化雨
潘振岗
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to EP21785694.7A priority Critical patent/EP4135249A4/en
Priority to US17/917,939 priority patent/US20230155777A1/en
Publication of WO2021204266A1 publication Critical patent/WO2021204266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals

Definitions

  • This application relates to the field of communications technology, and in particular to a method, device and readable storage medium for processing downlink reference signals.
  • the base station can only send downlink signals when it hears that the channel is idle.
  • UE User Equipment
  • Type 3-Physical Downlink Control Channel Common Search Space Type3-Physical Downlink Control Channel Common Search Space, Type3-PDCCH CSS
  • DCI Downlink Control Information
  • the UE also needs to determine whether the semi-statically configured CSI-RS is "canceled" by the SFI according to the Slot Format Indicator (SFI) information in the DCI format 2-0.
  • SFI Slot Format Indicator
  • the SFI indicates a certain If a symbol is an uplink symbol, then the CSI-RS on this symbol is cancelled.
  • the base station does not configure the UE to monitor the DCI format 2-0, the UE cannot know the COT information, and cannot determine whether the semi-statically configured CSI-RS is valid. In this case, for example, the base station cannot configure the DCI format 2-0 for the UE in the idle state through broadcast signaling (generally, the base station can only configure the DCI format 2-0 for the UE through dedicated RRC signaling).
  • the base station configures the UE to monitor the DCI format 2-0, but sometimes does not send the DCI format 2-0 even if the signal is sent, the UE cannot know the COT information and cannot determine whether the semi-statically configured CSI-RS is valid .
  • the base station adopts the type 2 or type 2A downlink channel access procedure (Type 2/2A downlink channel access procedure) or the type 2 (Listen Before Talk Category 2, LBT Category 2) to send discovery burst (The discovery burst, where the discovery burst includes at least a synchronization signal block, and may include the PDCCH for scheduling SIB1 and the PDSCH and/or CSI-RS carrying SIB1), but does not include DCI format 2-0.
  • the embodiments of the present application provide a downlink reference signal processing method, device, and readable storage medium to determine whether the downlink reference signal is valid or invalid.
  • an embodiment of the present application provides a downlink reference signal processing method, including:
  • determining whether the downlink reference signal is valid or invalid includes:
  • the first type of PDCCH is type 3-PDCCH scrambled by SFI-RNTI.
  • the determining whether the downlink reference signal is valid or invalid includes:
  • the downlink The reference signal is valid
  • the preset time interval is determined according to the downlink transmission burst.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resources occupied by the detected PDCCH are continuous with the time domain resources occupied by the downlink reference signal, determining that the downlink reference signal is valid;
  • the time domain resource occupied by the detected PDCCH is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the downlink reference signal is determined invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the detected time domain resources occupied by the PDCCH and the time domain resources occupied by the downlink reference signal have at least part of the same time domain resources, determining that the downlink reference signal is valid;
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the downlink reference signal are in the first half time slot or the second half time slot of the same time slot, determining that the downlink reference signal is valid;
  • the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are not in the first half slot or the second half slot of the same slot, it is determined that the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the downlink reference is determined Signal is valid
  • the preset time interval is determined according to the downlink transmission burst.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resources occupied by the received PDSCH are continuous with the time domain resources occupied by the downlink reference signal, determining that the downlink reference signal is valid;
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than or equal to the preset threshold, it is determined that the downlink reference signal is invalid .
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal have at least part of the same time domain resources, determining that the downlink reference signal is valid;
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot, determining that the downlink reference signal is valid;
  • the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal belong to the first half slot and the second half slot of the same slot respectively, it is determined that the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than or equal to the preset time interval, determine all The downlink reference signal is valid;
  • the time interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than the preset time interval, then determine all The downlink reference signal is invalid;
  • the preset time interval is determined according to the downlink transmission burst.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resource occupied by the detected synchronization signal block is continuous with the time domain resource occupied by the downlink reference signal, determining that the downlink reference signal is valid;
  • the time domain resource occupied by the detected synchronization signal block is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource, determining that the downlink reference signal is valid;
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the downlink reference signal is invalid.
  • the determining that the downlink reference signal is valid or invalid includes:
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are in the first half time slot or the second half time slot of the same time slot, determining that the downlink reference signal is valid;
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are not in the first half time slot and the second half time slot of the same time slot, it is determined that the downlink reference signal is invalid.
  • the preset time interval is 16 microseconds.
  • an embodiment of the present application provides a downlink reference signal processing apparatus, including:
  • the processing module is used to determine whether the downlink reference signal is valid or invalid.
  • the processing module is specifically configured to determine that the downlink reference signal is invalid if it is not configured to monitor the first type of physical downlink control channel PDCCH;
  • the first type of PDCCH is type 3-PDCCH scrambled by SFI-RNTI.
  • the processing module is specifically configured to: if the time interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than Or equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected PDCCH is continuous with the time domain resource occupied by the downlink reference signal; and,
  • the time domain resource occupied by the detected PDCCH is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than a preset threshold , It is determined that the downlink reference signal is valid; and,
  • the downlink reference signal is determined invalid.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource ;as well as,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are in the same time slot; and,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are in the first half time slot or the second half time slot of the same time slot, then Determining that the downlink reference signal is valid; and,
  • the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are not in the first half slot or the second half slot of the same slot, it is determined that the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the time interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than or Is equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH is continuous with the time domain resource occupied by the downlink reference signal; and,
  • the time domain resource occupied by the received PDSCH is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than a preset threshold, Then it is determined that the downlink reference signal is valid; and,
  • the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than or equal to the preset threshold, it is determined that the downlink reference signal is invalid .
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource; as well as,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal are in the same time slot; and,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to determine if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot The downlink reference signal is valid; and,
  • the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal belong to the first half slot and the second half slot of the same slot respectively, it is determined that the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the time between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal If the interval is less than or equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected synchronization signal block is continuous with the time domain resource occupied by the downlink reference signal;
  • the time domain resource occupied by the detected synchronization signal block is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than the preset Setting a threshold, it is determined that the downlink reference signal is valid; and,
  • the processing module is specifically configured to determine the downlink reference if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource The signal is valid; and,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are in the same time slot; and ,
  • the downlink reference signal is invalid.
  • the processing module is specifically configured to: if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot , It is determined that the downlink reference signal is valid; and,
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are not in the first half slot and the second half slot of the same slot, it is determined that the downlink reference signal is invalid.
  • the preset time interval is 16 microseconds.
  • an embodiment of the present application provides an electronic device, including: a memory, a processor, and computer program instructions;
  • the memory stores the computer program instructions
  • the processor executes the computer program instructions to perform the method of any one of the first aspect.
  • an embodiment of the present application provides a readable storage medium, including: a program
  • the embodiments of the present application provide a downlink reference signal processing method, device, and readable storage medium, which determine whether the downlink reference signal is valid by determining whether the UE is configured to monitor the first type of PDCCH, or by receiving the downlink signal or monitoring the PDCCH or monitoring
  • the time domain resources occupied by the synchronization signal block, and the time domain resources occupied by the received downlink signal or monitoring PDCCH or monitoring synchronization signal block, and the time domain resources occupied by the downlink reference signal configured by the high-level signaling to determine whether the downlink reference signal is valid In the above manner, the complexity of the UE is reduced and the system overhead is optimized.
  • FIG. 1 is a schematic diagram of an application scenario shown in an embodiment of the application
  • FIG. 2 is a flowchart of a downlink reference signal processing method provided by an embodiment of this application;
  • FIG. 3 is a flowchart of a downlink reference signal processing method provided by another embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a downlink reference signal processing apparatus provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a downlink reference signal processing apparatus provided by another embodiment of this application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a downlink reference signal processing apparatus provided by another embodiment of this application.
  • embodiments of the present application provide a downlink reference signal processing method, device, and readable storage medium.
  • the core idea of the downlink signal processing method provided by the embodiments of the present application is to determine whether the downlink reference signal is valid by determining whether the UE is configured to monitor the first type of PDCCH, or by receiving the downlink signal or monitoring the PDCCH or the time when the synchronization signal block is occupied. Domain resources, and determine whether the downlink reference signal is valid according to the received downlink signal or the time domain resources occupied by the PDCCH or the synchronization signal block, as well as the time domain resources occupied by the downlink reference signal configured by the high-level signaling, and reduce it by the above method The complexity of the UE is improved, and the system overhead is optimized.
  • the downlink reference signal may be used for measurement purposes, for example, a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the fact that the downlink reference signal is valid is equivalent to that the downlink reference signal is present (existing, present, presence), or usable (useful), or needs to be measured.
  • the UE determining that the downlink reference signal is valid for a certain period of time is equivalent to the UE determining that the downlink reference signal is invalid outside a certain period of time, or the UE does not expect the reference signal to be valid outside a certain period of time, or the UE is outside a certain period of time It is not necessary to measure the downlink reference signal.
  • Fig. 1 is a schematic diagram of an exemplary application scenario of an embodiment of the present application.
  • the communication system 100 includes: a network device 101 and a user equipment 102.
  • the network device 101 and the user device 102 may use one or more air interface technologies to communicate.
  • the network device 101 may be a base station, or various wireless access points, or may refer to a device that communicates with user equipment through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and Internet protocol (IP) packets to each other, and serve as a router between the wireless terminal and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (Base Transceiver Station, BTS) in Global System of Mobile communication (GSM) or Code Division Multiple Access (CDMA), or it can be a Broadband Code Division Multiple Access (BTS).
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Broadband Code Division Multiple Access
  • the base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA) can also be the evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or access point , Or the base station gNB in the 5G network, etc., which are not limited here.
  • User equipment 102 also known as terminal equipment, which can be a wireless terminal or a wired terminal.
  • a wireless terminal can be a device that provides voice and/or other service data connectivity to users, and is a handheld device with wireless connection function. , Or other processing equipment connected to the wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal For example, they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), The access terminal (Access Terminal), user terminal (User Terminal), and user agent (User Agent) are not limited here.
  • the above-mentioned communication system 100 may be a Long Term Evolution (LTE) communication system, a 5G communication system, or other communication systems in the future, which is not limited here.
  • LTE Long Term Evolution
  • 5G 5th Generation
  • other communication systems in the future which is not limited here.
  • the following example is the CSI-RS as the downstream reference signal for detailed description.
  • FIG. 2 is a flowchart of a downlink reference signal processing method provided by an embodiment of this application. This method can be executed by the downlink reference signal processing apparatus provided in the embodiment of the present application, and the apparatus can be implemented by software and/or hardware. For example, the apparatus can be part or all of the above-mentioned user equipment, and the user equipment is the execution subject below.
  • the downlink reference signal processing method is described. As shown in FIG. 2, the method in the embodiment of the present application may include:
  • the UE can determine whether the downlink reference signal is valid by determining whether the UE is configured to monitor the first type of PDCCH.
  • the first type of PDCCH is a type 3-PDCCH scrambled by the slot format indication-radio network temporary identity (Slot Format Indication-Radio Network Tempory Identity, SFI-RNTI).
  • the first type of PDCCH usually adopts DCI format 2-0.
  • the first type of PDCCH may also be referred to as a PDCCH with SFI-RNTI scrambled with DCI format 2-0.
  • the UE is not configured to monitor the first type of PDCCH, it is determined that the downlink reference signal is invalid; if the UE is configured to monitor the first type of PDCCH, but the UE does not detect the PDCCH, then it is determined that the downlink reference signal is invalid.
  • the CSI-RS is determined to be invalid; when the UE is configured to monitor DCI format 2-0, but DCI format 2-0 is not detected, Then it is determined that the CSI-RS is invalid.
  • the foregoing method can enable the UE to determine whether the downlink reference signal is valid, reduce the complexity of the UE, and optimize the system overhead.
  • the UE may receive PDSCH or monitor PDCCH or monitor synchronization signal blocks, and according to the received PDSCH or detected PDCCH or detected synchronization signal block time domain resources and downlink reference signal occupation time. Domain resources, to determine whether the downlink reference signal is valid.
  • the UE can determine whether the downlink reference signal is valid, and can also reduce the complexity of the UE and optimize the system overhead.
  • FIG. 3 is a flowchart of a downlink reference signal processing method provided by another embodiment of this application.
  • the UE monitors the PDCCH and determines whether the downlink reference signal CSI-RS is valid according to the detected PDCCH.
  • the method of this embodiment includes:
  • S202 Determine whether the downlink reference signal is valid according to the detected PDCCH.
  • the UE can still determine whether the CSI-RS is valid .
  • a downlink transmission burst when a group of downlink transmission bursts from a base station does not have an interval greater than 16 microseconds, then this group of downlink transmissions is a downlink transmission burst.
  • the base station occupies the channel in a downlink transmission burst, the UE can determine whether the CSI-RS is valid according to the downlink transmission burst.
  • the CSI-RS may be a periodic (Periodic) or a semi-persistent (Semi Persistent) CSI-RS.
  • the periodic or semi-persistent CSI-RS may be pre-configured, such as semi-statically configured, semi-statically configured and dynamically activated.
  • the UE needs to monitor the PDCCH. Then, the UE can determine whether the CSI-RS is valid according to whether the detected PDCCH and the CSI-RS belong to the same downlink transmission burst.
  • a possible implementation is to determine the PDCCH and CSI-RS detected by the UE if the last OFDM symbol in the time domain resources occupied by the PDCCH detected by the UE and the time domain resources occupied by the CSI-RS are less than or equal to the preset time.
  • the RS belongs to the same downlink transmission burst, that is, the CSI-RS is valid. If the time interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than the preset time, it is determined that the CSI-RS is invalid; ,
  • the preset time is determined according to the downlink transmission burst.
  • the preset time is 16 microseconds.
  • the time domain resources occupied by the detected PDCCH are continuous with the time domain resources occupied by the CSI-RS, it is determined that the CSI-RS is valid; if the time domain resources occupied by the detected PDCCH are If it is not continuous with the time domain resources occupied by the CSI-RS, it is determined that the CSI-RS is invalid.
  • the time interval between consecutive symbols can be regarded as zero. Therefore, the above method can also be understood as if the UE detects a PDCCH, then the UE can determine The CSI-RS and the PDCCH (or the CORESET corresponding to the PDCCH) belong to the same downlink transmission burst or the CSI-RS is valid, where the CSI-RS and the PDCCH (or the CORESET corresponding to the PDCCH) are consecutive in symbols .
  • Symbol continuity can also be understood as time domain resources or time domain symbols are continuous.
  • the CSI-RS is determined Valid; if the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, the CSI-RS is determined to be invalid.
  • the CSI-RS is determined Valid; if the interval between the first OFDM symbol in the time domain resources occupied by the detected PDCCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, the CSI-RS is determined to be invalid.
  • Another possible implementation is to determine that the CSI-RS is valid if the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is less than a preset threshold. ; If the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the CSI-RS is determined. The RS is valid; if the interval between the first OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the base station may occupy the channel by sending a reserved signal (Reserved signal) or other signals/channels. Therefore, if the UE detects a PDCCH, the UE can determine that the CSI-RS and the PDCCH (CORESET corresponding to the PDCCH) belong to the same downlink transmission burst or the CSI-RS is valid, where the CSI-RS and the PDCCH ( Or, the time interval of (the end of CORESET) corresponding to the PDCCH is less than X symbols, and X is a positive integer.
  • the time domain resources occupied by the detected PDCCH can be understood as the control resource set (CORESET) to which the detected PDCCH belongs or the time domain resource of the control resource set to which the detected PDCCH belongs.
  • CORESET control resource set
  • the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the CSI-RS have at least part of the same time domain resources, it is determined that the CSI-RS is valid; If the time domain resource and the time domain resource occupied by the CSI-RS do not have the same time domain resource, it is determined that the CSI-RS is invalid.
  • a CSI-RS can use one symbol in the PDCCH (or CORESET corresponding to the PDCCH), that is to say, the CSI-RS and the PDCCH (or CORESET corresponding to the PDCCH) are frequency division multiplexed (Frequency Division Multiplexed, FDM ), at this time, CSI-RS and PDCCH (or CORESET corresponding to PDCCH) also belong to a downlink transmission burst.
  • FDM Frequency Division Multiplexed
  • the UE can determine that the CSI-RS and the PDCCH (or the CORESET corresponding to the PDCCH) belong to the same downlink transmission burst or that the CSI-RS is valid, where the CSI-RS and the PDCCH (Or the CORESET corresponding to the PDCCH) has at least one identical symbol.
  • the PDCCH may belong to Type 0-Physical Downlink Control Channel Common Search Space (Type 0-Physical Downlink Control Channel Common Search Space, Type 0-PDCCH CSS), and is mainly used to schedule System Information Block 1 (System Information Block).
  • Type 0-Physical Downlink Control Channel Common Search Space Type 0-Physical Downlink Control Channel Common Search Space, Type 0-PDCCH CSS
  • System Information Block 1 System Information Block
  • SIB1 physical downlink shared channel
  • PDSCH Physical Downlink Share Channel, PDSCH Physical Downlink Share Channel
  • PDSCH Physical Downlink Share Channel
  • Type1-PDCCH CSS Type 1-Physical Downlink Control Channel Common Search Space
  • RAR Random Access Response
  • Type2-PDCCH CSS Type2-Physical Downlink Control Channel Common Search Space
  • PDSCH Physical Downlink Control Channel
  • USS UE specific Search Space
  • the detected PDCCH and the CSI-RS are in one slot, and the CSI-RS and the detected PDCCH belong to a downlink transmission burst.
  • the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the CSI-RS are in the same time slot, it is determined that the CSI-RS is valid; if the time domain occupied by the detected PDCCH is If the resource and the time domain resource occupied by the CSI-RS are not in the same time slot, it is determined that the CSI-RS is invalid.
  • the UE can determine that the detected PDCCH and the CSI-RS belong to the same downlink transmission burst, and further determine that the CSI-RS is valid.
  • Another possible implementation is to determine that the CSI-RS is valid if the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the CSI-RS are in the first half time slot or the second half time slot of the same time slot; If the time domain resources occupied by the received PDCCH and the time domain resources occupied by the CSI-RS are not in the first half time slot or the second half time slot of the same time slot, it is determined that the CSI-RS is invalid.
  • the downlink transmission burst may be less than one slot, for example, half a slot, (starting from symbol 0 to symbol 6, or starting from symbol 7 to symbol 13). Therefore, the UE can determine whether the CSI-RS is valid according to whether the detected PDCCH and the CSI-RS are in the same half slot, which can be the first half slot or the second half slot. Specifically, if the PDCCH and the CSI-RS detected by the UE are in the same half-slot, the CSI-RS is determined to be valid; if the PDCCH and the CSI-RS detected by the UE are not in the same half-slot, then the CSI-RS is determined invalid.
  • the UE can determine whether the CSI-RS is valid.
  • the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the CSI-RS are in the same multiple time slots or multiple half time slots, then it is determined that the CSI-RS is valid; if the time domain occupied by the detected PDCCH is If the resource and the time domain resource occupied by the CSI-RS are not in the same multiple time slots or multiple half time slots, it is determined that the CSI-RS is invalid. This can increase the total COT duration when the time slot duration is short.
  • the UE may also include the UE judging whether the CSI-RS is valid in the frequency domain.
  • the UE determines that the CSI-RS is valid only when the resources of the CSI-RS are restricted to a resource block set (Resource Block Set, RB-set), otherwise, it determines that the CSI-RS is invalid.
  • the resource block set overlaps with the control resource set to which the detected PDCCH belongs.
  • the UE detects the PDCCH and determines whether the downlink reference signal is valid according to the relationship between the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the downlink reference signal configured by the higher layer signaling.
  • the example method can reduce the complexity of the system.
  • FIG. 4 is a flowchart of a downlink reference signal processing method provided by another embodiment of this application.
  • the UE receives the PDSCH and determines whether the downlink reference signal CSI-RS is valid according to the received PDSCH.
  • the method of this embodiment includes:
  • S302 Determine whether the downlink reference signal is valid according to the received PDSCH.
  • the UE can be scheduled to receive the PDSCH, and the UE can determine whether the PDSCH and the CSI-RS belong to the same downlink transmission burst according to the time domain resources occupied by the received PDSCH, that is, determine whether the CSI-RS is valid.
  • a possible implementation manner if the time interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is less than or equal to the preset time interval, then Determine that the CSI-RS is valid; if the time interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than the preset time interval, then the CSI-RS is determined RS is invalid; the preset time interval is determined according to the downlink transmission burst.
  • the preset time interval is 16 microseconds.
  • the UE can determine that the CSI-RS and the PDSCH belong to the same downlink transmission burst or that the CSI-RS is valid, where the CSI-RS and the PDSCH (of End)
  • the time interval is not more than 16 microseconds.
  • Another possible implementation is that if the time domain resources occupied by the received PDSCH are continuous with the time domain resources occupied by the CSI-RS, the CSI-RS is determined to be valid; if the time domain resources occupied by the received PDSCH are the same as those occupied by the CSI-RS If the time domain resources are not continuous, it is determined that the CSI-RS is invalid.
  • the UE can determine that the CSI-RS and the PDSCH belong to the same downlink transmission burst or that the CSI-RS is valid, where the CSI-RS and the PDSCH symbol Is continuous.
  • the CSI-RS is valid if the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is less than a preset threshold, it is determined that the CSI-RS is valid ; If the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the CSI-RS is valid If the interval between the first OFDM symbol in the time domain resources occupied by the received PDSCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the CSI-RS is valid if the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is less than a preset threshold, it is determined that the CSI-RS is valid; If the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the last OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the CSI-RS is determined Valid; if the interval between the first OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the UE can determine that the CSI-RS and the PDSCH belong to the same downlink transmission burst or that the CSI-RS is valid, where the CSI-RS and the PDSCH (of The time interval of end) is less than X symbols, and X is a positive integer.
  • the CSI-RS is determined to be valid; if the time domain occupied by the received PDSCH If the resource does not have the same time domain resource as the time domain resource occupied by the CSI-RS, it is determined that the CSI-RS is invalid.
  • the UE can determine that the CSI-RS and the PDSCH belong to the same downlink transmission burst or the CSI-RS is valid, and the CSI-RS and the PDSCH have at least An identical symbol.
  • the UE can determine that the CSI-RS and the PDSCH belong to the same downlink transmission burst or the CSI-RS is valid, and the PDSCH and the CSI-RS overlap .
  • the PDSCH may be the PDSCH of SIB1; or, it may be the PDSCH of RAR; or, it may be the PDSCH of paging message (paging message); or, it may be the PDSCH of scheduling unicast.
  • the type of PDSCH There is no restriction on the type of PDSCH.
  • the received PDSCH and the CSI-RS are in one slot, and the CSI-RS and the received PDSCH belong to a downlink transmission burst.
  • the CSI-RS is determined to be valid; if the time domain resources occupied by the received PDSCH are the same as the CSI-RS If the time domain resources occupied by the RS are not in the same time slot, it is determined that the CSI-RS is invalid.
  • the UE can determine that the received PDSCH and the CSI-RS belong to the same downlink transmission burst, and further determine that the CSI-RS is valid.
  • Another possible implementation is that if the time domain resources occupied by the received PDSCH and the time domain resources occupied by the CSI-RS are in the first half slot or the second half slot of the same slot, the CSI-RS is determined to be valid; The time domain resources occupied by the PDSCH and the time domain resources occupied by the CSI-RS are not in the first half time slot or the second half time slot of the same time slot, and the CSI-RS is determined to be invalid.
  • the downlink transmission burst may be less than one slot, for example, half a slot, (starting from symbol 0 to symbol 6, or starting from symbol 7 to symbol 13). Therefore, the UE can determine whether the CSI-RS is valid according to whether the received PDSCH and the CSI-RS are in the same half slot, which can be the first half slot or the second half slot.
  • the UE can determine that the CSI-RS and the received PDSCH belong to the same downlink transmission burst, and then determine that the CSI-RS is valid; if the PDSCH received by the UE is If it is not in the same half-slot as the CSI-RS, the UE can determine that the CSI-RS and the received PDSCH belong to the same downlink transmission burst, and then determine that the CSI-RS is invalid.
  • the UE can determine whether the CSI-RS is valid. If the time domain resources occupied by the received PDSCH and the time domain resources occupied by the CSI-RS are in the same multiple time slots or multiple half time slots, the CSI-RS is determined to be valid; if the time domain resources occupied by the received PDSCH are the same as the CSI -If the time domain resources occupied by the RS are not in the same multiple time slots or multiple half time slots, it is determined that the CSI-RS is invalid. This can increase the total COT duration when the time slot duration is short.
  • the UE may also include the UE judging whether the CSI-RS is valid in the frequency domain.
  • the UE determines that the CSI-RS is valid only when the resources of the CSI-RS are restricted to the resource block set (Resource Block Set, RB-set), otherwise, the CSI-RS is determined to be invalid, and the resource block The set overlaps with the received PDSCH.
  • the resource block set Resource Block Set, RB-set
  • the UE receives the PDSCH and determines whether the downlink reference signal is valid according to the relationship between the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal configured by the higher layer signaling.
  • the method can reduce the complexity of the UE and optimize the system overhead.
  • FIG. 5 is a flowchart of a downlink reference signal processing method provided by another embodiment of this application.
  • the UE monitors the synchronization signal block and determines whether the downlink reference signal CSI-RS is valid according to the detected synchronization signal block.
  • the method of this embodiment includes:
  • S402 Determine whether the downlink reference signal is valid according to the detected synchronization signal block.
  • the UE needs to monitor the synchronization signal block. Therefore, a downlink transmission burst can be determined according to the detected synchronization signal block to determine whether the CSI-RS is valid.
  • a possible implementation manner if the time interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the CSI-RS is less than or equal to the preset time CSI-RS is determined to be valid; if the time interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the CSI-RS is greater than the preset time Interval, it is determined that the CSI-RS is invalid; wherein, the preset time interval is determined according to the downlink transmission burst.
  • the preset time interval is 16 microseconds.
  • the UE can determine that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or the CSI-RS is valid, where the CSI-RS and the synchronization signal block are valid. (The end of)
  • the time interval is not more than 16 microseconds.
  • the CSI-RS is determined to be valid; if the detected synchronization signal block occupied time domain resources If it is not continuous with the time domain resources occupied by the CSI-RS, it is determined that the CSI-RS is invalid.
  • the time interval between consecutive symbols can be regarded as zero. Therefore, the above method can also be understood as if the UE detects a synchronization signal block, then the UE can It is determined that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or the CSI-RS is valid, where the CSI-RS and the synchronization signal block are symbol-consecutive. Symbol continuity can also be understood as time domain resources or time domain symbols are continuous.
  • the CSI is determined -RS is valid; if the interval between the last OFDM symbol in the time domain resource occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resource occupied by the CSI-RS is greater than or equal to the preset threshold, the CSI-RS is determined invalid.
  • the CSI is determined -RS is valid; if the interval between the first OFDM symbol in the time domain resource occupied by the detected synchronization signal block and the last OFDM symbol in the time domain resource occupied by the CSI-RS is greater than or equal to the preset threshold, the CSI-RS is determined invalid.
  • the CSI- The RS is valid; if the interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the last OFDM symbol in the time domain resources occupied by the CSI-RS is greater than or equal to the preset threshold, it is determined that the CSI-RS is invalid.
  • the CSI-RS is valid; if the interval between the first OFDM symbol in the time domain resource occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resource occupied by the CSI-RS is greater than or equal to the preset threshold, the CSI is determined -RS is invalid.
  • the base station may occupy the channel by sending a reserved signal (Reserved signal) or other signals/channels. Therefore, if the UE detects a synchronization signal block, the UE can determine that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or that the CSI-RS is valid.
  • the time interval of end) is less than X symbols, and X is a positive integer.
  • the time domain resources occupied by the detected synchronization signal block and the time domain resources occupied by the CSI-RS have at least part of the same time domain resources, it is determined that the CSI-RS is valid; If the time domain resources occupied by the signal block and the time domain resources occupied by the CSI-RS do not have the same time domain resources, it is determined that the CSI-RS is invalid.
  • a CSI-RS can use one symbol of the synchronization signal block (generally 4 symbols), that is to say, the CSI-RS and the synchronization signal block are frequency division multiplexed (Frequency Division Multiplexed, FDM). At this time, the CSI-RS and the synchronization signal block are frequency division multiplexed.
  • the synchronization signal block also belongs to a downlink transmission burst. Therefore, if the UE detects a synchronization signal block, the UE can determine that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or that the CSI-RS is valid, and the CSI-RS and the synchronization signal block have at least An identical symbol.
  • the time domain resource occupied by the detected synchronization signal block is in the same time slot as the time domain resource occupied by the CSI-RS, it is determined that the CSI-RS is valid; if the detected synchronization signal block is occupied If the time domain resource and the time domain resource occupied by the CSI-RS are not in the same time slot, it is determined that the CSI-RS is invalid.
  • the synchronization signal block may not be in the same time slot as the Type0-PDCCH.
  • the base station can send CSI-RS in the time slot of the synchronization signal block.
  • the UE detects a synchronization signal block, the UE can determine that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or that the CSI-RS is valid, where the CSI-RS and the synchronization signal block belong to The same time slot.
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the CSI-RS are in the first half slot or the second half slot of the same slot, it is determined that the CSI-RS is valid; If the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the CSI-RS are not in the first half slot and the second half slot of the same slot, it is determined that the CSI-RS is invalid.
  • the UE can determine that the CSI-RS and the synchronization signal block belong to the same downlink transmission burst or the CSI-RS is valid, where the CSI-RS and the synchronization signal block are valid. They belong to the same half slot, and the half slot is, for example, the first half slot or the second half slot.
  • the foregoing manner can be limited to the burst transmission window.
  • the UE can determine whether the CSI-RS is valid. If the time domain resources occupied by the detected synchronization signal block and the time domain resources occupied by the CSI-RS are in the same multiple time slots or multiple half time slots, the CSI-RS is determined to be valid; if the detected synchronization signal block is occupied If the time domain resources of the CSI-RS and the time domain resources occupied by the CSI-RS are not in the same multiple time slots or multiple half time slots, it is determined that the CSI-RS is invalid. This can increase the total COT duration when the time slot duration is short.
  • the UE may also include the UE judging whether the CSI-RS is valid in the frequency domain.
  • the UE determines that the CSI-RS is valid only when the resources of the CSI-RS are restricted to the resource block set (Resource Block Set, RB-set), otherwise, the CSI-RS is determined to be invalid, and the resource block The set overlaps with the detected sync signal block.
  • the resource block set Resource Block Set, RB-set
  • the UE only determines that the CSI-RS that has a Quasi Colocation (QCL) relationship with the synchronization signal block is valid.
  • the QCL relationship can be Type A-Quasi Colocation (Type A QCL) relationship, or Type B-Quasi Colocation (Type B QCL) relationship, or Type C-Quasi Colocation (Type B QCL) relationship ( TypeC Quasi Colocation, TypeC QCL) relationship, or Type D- Quasi Colocation (TypeD Quasi Colocation, TypeD QCL) relationship, or equal average received power (average receive power), etc.
  • the UE can only determine whether the CSI-RS that has a beam direction relationship with the detected synchronization signal block is valid, and the complexity of the UE is reduced.
  • the UE monitors the synchronization signal block, and determines whether the downlink reference signal is valid according to the relationship between the time domain resources occupied by the detected synchronization signal block and the time domain resources occupied by the downlink reference signal configured by high-level signaling
  • the complexity of the UE can be reduced and the system overhead can be optimized.
  • FIG. 6 is a schematic structural diagram of a downlink reference signal processing apparatus provided by an embodiment of this application.
  • the downlink reference signal processing apparatus 200 provided in this embodiment includes: a processing module 201.
  • the processing module 201 is used to determine whether the downlink reference signal is valid or invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is invalid if it is not configured to monitor the first type of physical downlink control channel PDCCH;
  • the first type of PDCCH is type 3-PDCCH scrambled by SFI-RNTI.
  • the processing module 201 is specifically configured to: if the time interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than Or equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected PDCCH is continuous with the time domain resource occupied by the downlink reference signal; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than a preset threshold , It is determined that the downlink reference signal is valid; and,
  • the interval between the last OFDM symbol in the time domain resources occupied by the detected PDCCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than or equal to the preset threshold, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the downlink reference signal have at least part of the same time domain resources; and ,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are in the same time slot; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine the downlink if the time domain resource occupied by the detected PDCCH and the time domain resource occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot The reference signal is valid; and,
  • the time domain resources occupied by the detected PDCCH and the time domain resources occupied by the downlink reference signal are not in the first half time slot or the second half time slot of the same time slot, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to: if the time interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than or Is equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the time interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than the preset time interval, determining that the downlink reference signal is invalid;
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH is continuous with the time domain resource occupied by the downlink reference signal; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than a preset threshold, Then it is determined that the downlink reference signal is valid; and,
  • the interval between the last OFDM symbol in the time domain resources occupied by the received PDSCH and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than or equal to the preset threshold, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal are in the same time slot; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine the downlink reference if the time domain resource occupied by the received PDSCH and the time domain resource occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot The signal is valid; and,
  • the time domain resources occupied by the received PDSCH and the time domain resources occupied by the downlink reference signal belong to the first half time slot and the second half time slot of the same time slot, respectively, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine the time between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal If the interval is less than or equal to the preset time interval, it is determined that the downlink reference signal is valid; and,
  • the time interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than the preset time interval, determining that the downlink reference signal is invalid;
  • the preset time interval is determined according to the downlink transmission burst.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected synchronization signal block is continuous with the time domain resource occupied by the downlink reference signal;
  • the time domain resource occupied by the detected synchronization signal block is not continuous with the time domain resource occupied by the downlink reference signal, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to: if the interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is less than the preset Set the threshold to determine that the downlink reference signal is valid; and,
  • the interval between the last OFDM symbol in the time domain resources occupied by the detected synchronization signal block and the first OFDM symbol in the time domain resources occupied by the downlink reference signal is greater than or equal to the preset threshold, it is determined that the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal have at least part of the same time domain resource ;as well as,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to determine that the downlink reference signal is valid if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are in the same time slot; and,
  • the downlink reference signal is invalid.
  • the processing module 201 is specifically configured to: if the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are in the first half slot or the second half slot of the same slot, then Confirm that the downlink reference signal is valid; and,
  • the time domain resource occupied by the detected synchronization signal block and the time domain resource occupied by the downlink reference signal are not in the first half slot and the second half slot of the same slot, it is determined that the downlink reference signal is invalid.
  • the preset time interval is 16 microseconds.
  • the downlink reference signal processing apparatus further includes a detection module 202, where the detection module 202 can be used to monitor PDCCH, receive PDSCH, and monitor synchronization signal blocks.
  • the downlink reference signal processing apparatus provided in this embodiment can be used to execute the technical solutions in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the electronic device 300 provided in this embodiment includes: a memory 301 and a processor 302;
  • the memory 301 may be an independent physical unit, and may be connected to the processor 302 through a bus 303.
  • the memory 301 and the processor 302 may also be integrated together, implemented by hardware, and so on.
  • the memory 301 is used to store program instructions, and the processor 302 calls the program instructions to perform the operations of any of the method embodiments in FIGS. 2 to 5 above.
  • the foregoing apparatus 300 may also only include the processor 302.
  • the memory 301 for storing programs is located outside the device 300, and the processor 302 is connected to the memory through circuits/wires for reading and executing programs stored in the memory.
  • the processor 302 may be a central processing unit (CPU), a network processor (Network Processor, NP), or a combination of a CPU and NP.
  • CPU central processing unit
  • NP Network Processor
  • the processor 302 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (Programmable Logic Device, PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable logic gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • the memory 301 may include volatile memory (Volatile Memory), such as random access memory (Random-Access Memory, RAM); the memory may also include non-volatile memory (Non-volatile Memory), such as flash memory (Flash Memory). ), a hard disk (Hard Disk Drive, HDD) or a solid-state drive (Solid-state Drive, SSD); the memory may also include a combination of the above types of memory.
  • volatile memory such as random access memory (Random-Access Memory, RAM)
  • non-volatile Memory such as flash memory (Flash Memory).
  • flash memory Flash Memory
  • HDD hard disk
  • SSD solid-state drive
  • FIG. 8 is a schematic structural diagram of a downlink reference signal processing apparatus provided by another embodiment of this application.
  • the downlink reference signal processing apparatus 1200 provided in this embodiment may be, for example, a computer, a tablet device, a personal digital assistant, or the like.
  • the downstream reference signal processing apparatus 1200 may include one or more of the following components: a processing component 102, a memory 104, a power supply component 106, a multimedia component 108, an audio component 1010, and an input/output (I/O) interface 1012 , The sensor component 1014, and the communication component 1016.
  • the processing component 102 generally controls the overall operations of the downstream reference signal processing device 1200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 102 may include one or more processors 1020 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 102 may include one or more modules to facilitate the interaction between the processing component 102 and other components.
  • the processing component 102 may include a multimedia module to facilitate the interaction between the multimedia component 108 and the processing component 102.
  • the memory 104 is configured to store various types of data to support the operation of the downlink reference signal processing apparatus 1200. Examples of these data include instructions for any application or method operating on the downlink reference signal processing device 1200, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 106 provides power for various components of the downlink reference signal processing device 1200.
  • the power supply component 106 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the downstream reference signal processing apparatus 1200.
  • the multimedia component 108 includes a screen providing an output interface between the downlink reference signal processing apparatus 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 108 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 104 or transmitted via the communication component 1016.
  • the audio component 1010 further includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 102 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1014 includes one or more sensors, which are used to provide the downlink reference signal processing device 1200 with state evaluation in various aspects.
  • the sensor component 1014 can detect the on/off status of the downstream reference signal processing device 1200 and the relative positioning of the components.
  • the component is the display and keypad of the downstream reference signal processing device 1200, and the sensor component 1014 can also detect the downstream reference
  • the position of a component of the signal processing device 1200 or the downlink reference signal processing device 1200 changes, the presence or absence of user contact with the downlink reference signal processing device 1200, the orientation or acceleration/deceleration of the downlink reference signal processing device 1200 and the downlink reference signal processing device 1200 The temperature changes.
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the downlink reference signal processing apparatus 1200 and other devices.
  • the downlink reference signal processing apparatus 1200 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G or 4G, or a combination thereof.
  • the communication component 1016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 may further include a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the downlink reference signal processing device 1200 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD) , Field Programmable Gate Array (FPGA), controller, microcontroller, microprocessor or other electronic components to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components to implement the above methods.
  • the present invention also provides a computer-readable storage medium, wherein the computer-readable storage medium includes a program, and when the program is executed by a processor, it executes the atomic instruction sequence modification method of any of the above embodiments.
  • a person of ordinary skill in the art can understand that all or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a computer readable storage medium. When the program is executed, it executes the steps including the foregoing method embodiments; and the foregoing storage medium includes: ROM, RAM, magnetic disk, or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种下行参考信号处理方法、装置及可读存储介质,其中,该方法通过确定UE是否被配置监听第一类PDCCH,确定下行参考信号是否有效,或者,通过接收下行信号或监听PDCCH或者监听同步信号块占用的时域资源,并根据接收的下行信号或监听PDCCH或者监听同步信号块占用的时域资源,以及高层信令配置的下行参考信号占用的时域资源,确定下行参考信号是否有效,通过上述方式减小了UE的复杂度,优化系统开销。

Description

下行参考信号处理方法、装置及可读存储介质
本申请要求于2020年04月10日提交中国专利局、申请号为2020102815500、申请名称为“下行参考信号处理方法、装置及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种下行参考信号处理方法、装置及可读存储介质。
背景技术
在非授权频谱中,基站仅仅在侦听到信道空闲时,才能够发送下行信号。当基站配置用户设备(User Equipment,UE)监听类型3-物理下行控制信道公共搜索空间(Type3-Physical Downlink Control Channel Common Search Space,Type3-PDCCH CSS)或DCI format 2-0,且UE检测到Type3-PDCCH CSS或DCI format 2-0时,UE通过下行控制信息(Downlink Control Information,DCI)内容可以知道信道占据时间(Channel Occupancy Time,COT)的信息,从而确定半静态配置的CSI-RS在COT内是有效的。实际上,UE还要根据DCI format 2-0中的时隙格式指示(Slot Format Indicator,SFI)信息,确定半静态配置的CSI-RS是否被SFI所“取消”(canceled),比如SFI指示某个符号是上行符号,那么该符号上的CSI-RS被取消。但是,当基站没有配置UE监听DCI format 2-0,UE也就无法知道COT的信息,也就无法确定半静态配置的CSI-RS是否有效。这种情形例如:基站无法通过广播信令给空闲态UE配置DCI format 2-0(一般来说,基站只能通过专用RRC信令给UE配置DCI format 2-0)。当基站配置UE监听DCI format 2-0,但某些时候即使有信号发送也不发送DCI format 2-0,UE也就无法知道COT的信息,也就无法确定半静态配置的CSI-RS是否有效。这种情形例如:基站采用类型2或类型2A的下行信道接入过程(Type2/2A downlink channel access procedure)或先听后说类型2(Listen Before Talk Category 2,LBT Cat 2)发送发现突发(discovery burst,其中发现突发至少包含同步信号块,可以包含调度SIB1的PDCCH和承载SIB1的PDSCH和/或CSI-RS),但不包含DCI format 2-0。
发明内容
本申请实施例提供一种下行参考信号处理方法、装置及可读存储介质,以确定下行参考信号有效或无效。
第一方面,本申请实施例提供一种下行参考信号处理方法,包括:
确定下行参考信号有效或者无效。
可选地,确定下行参考信号有效或者无效,包括:
若未被配置为监听第一类物理下行控制信道PDCCH时,确定所述下行参考信号无效;或者,
若确定被配置为监听所述第一类PDCCH,且未检测到所述第一类PDCCH时,则 确定所述下行参考信号无效。
可选地,所述第一类PDCCH为由SFI-RNTI加扰的类型3-PDCCH。
可选地,所述确定下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占 用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源分别属于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确 定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述确定所述下行参考信号有效或者无效,包括:
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
可选地,所述预设时间间隔为16微秒。
第二方面,本申请实施例提供一种下行参考信号处理装置,包括:
处理模块,用于确定下行参考信号有效或者无效。
可选地,所述处理模块,具体用于若未被配置为监听第一类物理下行控制信道PDCCH时,则确定所述下行参考信号无效;
或者,若被配置为监听所述第一类PDCCH,且未检测到所述第一类PDCCH时,则确定所述下行参考信号无效。
可选地,所述第一类PDCCH为由SFI-RNTI加扰的类型3-PDCCH。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间 间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不连续, 则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源分别属于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
其中,所述预设时间间隔是根据下行传输突发确定的。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述 下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
可选地,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
可选地,所述预设时间间隔为16微秒。
第三方面,本申请实施例提供一种电子设备,包括:存储器、处理器以及计算机程序指令;
所述存储器存储所述计算机程序指令;
所述处理器执行所述计算机程序指令,以执行第一方面任一项所述的方法。
第四方面,本申请实施例提供一种可读存储介质,包括:程序;
所述程序被处理器执行时,以执行第一方面任一项所述的方法。
本申请实施例提供一种下行参考信号处理方法、装置及可读存储介质,通过确定UE是否被配置监听第一类PDCCH,确定下行参考信号是否有效,或者,通过接收下行信号或监听PDCCH或者监听同步信号块占用的时域资源,并根据接收的下行信号或监听PDCCH或者监听同步信号块占用的时域资源,以及高层信令配置的下行参考信号占用的时域资源,确定下行参考信号是否有效,通过上述方式减小了UE的复杂度,优化系统开销。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例示出的一种应用场景的示意图;
图2为本申请一实施例提供的下行参考信号处理方法的流程图;;
图3为本申请另一实施例提供的下行参考信号处理方法的流程图;
图4为本申请另一实施例提供的下行参考信号处理方法的流程图;
图5为本申请一实施例提供的下行参考信号处理装置的结构示意图;
图6为本申请另一实施例提供的下行参考信号处理装置的结构示意图;
图7为本申请一实施例提供的电子设备的结构示意图;
图8为本申请另一实施例提供的下行参考信号处理装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在非授权频谱中,若基站没有配置UE监听DCI format 2-0,或者UE未检测到DCI format 2-0时,UE如何确定半静态配置的CSI-RS是否有效,是亟待解决的问题。为解决该问题,本申请实施例提供一种下行参考信号处理方法、装置及可读存储介质。
本申请实施例提供的下行信号处理方法核心构思在于:通过确定UE是否被配置监听第一类PDCCH,确定下行参考信号是否有效,或者,通过接收下行信号或监听PDCCH或者监听同步信号块占用的时域资源,并根据接收的下行信号或监听PDCCH或者监听同步信号块占用的时域资源,以及高层信令配置的下行参考信号占用的时域资源,确定下行参考信号是否有效,通过上述方式减小了UE的复杂度,优化系统开销。
在本方案中,该下行参考信号可以是用于测量用途,例如为信道状态信息参考信号(Channel State Information–Reference Signal,CSI-RS)。该下行参考信号是有效的等同于下行参考信号是存在的(existing,present,presence),或者可用的(useful),或者需要测量的。UE确定下行参考信号在某段时间内有效的也等价于UE确定下行参考信号某段时间外是无效的,或者UE不期望参考信号某段时间外是有效的,或者UE在某段时间外是不需要测量下行参考信号。
以下,对本申请实施例的示例性应用场景进行介绍。
本申请实施例提供的下行参考信号处理方法可以通过本申请实施例提供的下行参考信号处理装置执行,本申请实施例提供的下行参考信号处理装置可以是用户设备的部分或者全部。图1是本申请实施例示例性的一种应用场景的示意图。如图1所示,该通信系统100包括:网络设备101和用户设备102。网络设备101和用户设备102可以使用一个或多个空口技术进行通信。
网络设备101:可以是基站,或者各种无线接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与用户设备进行通信的设备。基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通讯(Global System of Mobile  communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者5G网络中的基站gNB等,在此并不限定。
用户设备102:也称为终端设备,该终端设备可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。
需要说明的是,上述通信系统100可以是长期演进(Long Term Evolution,LTE)通信系统,也可以是5G通信系统,还可以是未来其他通信系统,在此不作限制。
需要说明的是,以下实施例中,均以下行参考信号为CSI-RS为例进行详细说明。
图2为本申请一实施例提供的下行参考信号处理方法的流程图。该方法可以由本申请实施例提供的下行参考信号处理装置执行,该装置可以通过软件和/或硬件的方式实现,例如:该装置可以是上述用户设备的部分或全部,下面以用户设备为执行主体对下行参考信号处理方法进行说明,如图2所示,本申请实施例中的方法可以包括:
S101、确定下行参信号有效或者无效。
一种可能的实现方式,UE可通过确定UE是否被配置监听第一类PDCCH,确定下行参考信号是否有效。
可选地,第一类PDCCH为由时隙格式指示-无线网络临时标识(Slot Format Indication-Radio Network Tempory Identity,SFI-RNTI)加扰的类型3-PDCCH。第一类PDCCH通常采用DCI format 2-0。第一类PDCCH又可以称为携带DCI format 2-0的SFI-RNTI加扰的PDCCH。
具体地,若UE未被配置为监听第一类PDCCH,则确定下行参考信号无效;若UE被配置为监听第一类PDCCH,但UE未检测到PDCCH,则确定下行参考信号无效。也就是说,UE未被配置为监听DCI format 2-0的情况下,则确定CSI-RS无效;UE被配置为监听DCI format 2-0,但未检测到DCI format 2-0的情况下,则确定CSI-RS无效。
上述方式能够实现UE确定下行参考信号是否有效,且能够减小UE的复杂度,优化系统开销。
另一种可能的实现方式,UE可通过接收PDSCH或者监听PDCCH或者监听同步信号块,并根据接收的PDSCH或者检测的PDCCH或者检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源,确定下行参考信号是否有效。
通过上述方式能够实现UE确定下行参考信号是否有效,还能够减小UE的复杂度,优化系统开销。
下面通过几个具体的实施例,对上述通过接收PDSCH或者监听PDCCH或者监听同步信号块,确定下行参考信号是否有效的具体实现方式进行详细介绍。
实施例二
图3为本申请另一实施例提供的下行参考信号处理方法的流程图。本实施例中,UE通过监听PDCCH,并根据检测到的PDCCH确定下行参考信号CSI-RS是否有效。如图3所示,本实施例的方法包括:
S201、监听PDCCH。
S202、根据检测到的PDCCH,确定下行参考信号是否有效。
在一些情况下,即使UE没有被配置为监听DCI format 2-0,或者,UE被配置为监听DCI format 2-0,但未检测到DCI format 2-0,UE依然能够确定CSI-RS是否有效。根据下行传输突发的定义,当一组来自基站的下行传输突发没有大于16微秒的间隔,那么这一组下行传输为一个下行传输突发。当假设一个下行传输突发内基站是占据信道的,那么,UE可根据下行传输突发确定CSI-RS是否有效。所述CSI-RS可以为周期(Periodic)或半持续(Semi Persistent)的CSI-RS。周期或半持续的CSI-RS可以是预先配置好的,比如半静态配置的、半静态配置动态激活的。
通常UE需要监听PDCCH,那么,UE可根据检测到的PDCCH与CSI-RS是否属于同一下行传输突发,确定CSI-RS是否有效。
一种可能的实现方式,若UE检测到的PDCCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源,小于或等于预设时间,则确定UE检测到的PDCCH与CSI-RS属于同一下行传输突发,即CSI-RS有效。若检测到的PDCCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间,则确定所述CSI-RS无效;其中,所述预设时间是根据下行传输突发确定的。
可选地,该预设时间为16微秒。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源与所述CSI-RS占用的时域资源连续,则确定所述CSI-RS有效;若检测到的PDCCH占用的时域资源与所述CSI-RS占用的时域资源不连续,则确定所述CSI-RS无效。
在一个正交频分复用(Orthogonal Frequency Division Modulation,OFDM)系统中,连续符号间的时间间隔可视为零,因此,上述方式也可以理解为,如果UE检测到一个PDCCH,那么UE可以确定CSI-RS与该PDCCH(或该PDCCH对应的CORESET)属于同一个下行传输突发或者CSI-RS是有效的,其中,该CSI-RS与该PDCCH(或该PDCCH对应的CORESET)是符号连续的。符号连续也可以理解为时域资源或时域符号是连续的。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源中最后一个OFDM 符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
也就是说,PDCCH与CSI-RS之间可以有X个符号的时间间隔,基站可以通过发送保留信号(Reserved signal)或其他的信号/信道来占据信道。因此,如果UE检测到一个PDCCH,那么UE可以确定CSI-RS与该PDCCH(该PDCCH对应的CORESET)属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDCCH(或该PDCCH对应的CORESET)(的结束)的时间间隔小于X个符号,X为正整数。
本文中,检测到的PDCCH占用的时域资源可以理解为检测到的PDCCH所属的控制资源集(Control Resource set,CORESET)或检测到的PDCCH所属的控制资源集的时域资源。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源存在至少部分相同的时域资源,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源不存在相同的时域资源,则确定CSI-RS无效。
也就是说,一个CSI-RS可以使用PDCCH(或PDCCH对应的CORESET)中的一个符号,也就是说CSI-RS与PDCCH(或PDCCH对应的CORESET)是频分复用的(Frequency Division Multiplexed,FDM),此时CSI-RS与PDCCH(或PDCCH对应的CORESET)也属于一个下行传输突发。因此,如果UE检测到一个PDCCH,那么UE可以确定CSI-RS与该PDCCH(或该PDCCH对应的CORESET)属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDCCH(或该PDCCH对应的CORESET)至少具有一个相同的符号。
上述任一种实现方式中,PDCCH可以属于类型0-物理下行控制信道公共搜索空间(Type0-Physical Downlink Control Channel Common Search Space,Type0-PDCCH CSS),主要用于调度系统信息块1(System Information Block,SIB1)的物理下行共 享信道(PDSCH Physical Downlink Share Channel,PDSCH);或者,可以属于类型1-物理下行控制信道公共搜索空间(Type1-Physical Downlink Control Channel Common Search Space,Type1-PDCCH CSS),主要用于调度随机接入响应(Random Access Response,RAR)的PDSCH;或者,可以是类型2-物理下行控制信道公共搜索空间(Type2-Physical Downlink Control Channel Common Search Space,Type2-PDCCH CSS),主要用于调度寻呼消息(paging message)的PDSCH;或者,可以属于UE指定搜索空间(UE specific Search Space,USS),主要用于调度单播(unicast)的PDSCH。本申请不限制PDCCH的类型。
在另一些情况下,可认为检测到的PDCCH与CSI-RS在一个时隙(slot)内,则该CSI-RS与检测到的PDCCH属于一个下行传输突发。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源处于同一时隙,则确定所述CSI-RS有效;若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源不处于同一时隙,则确定CSI-RS无效。
也就是说,若UE检测到的PDCCH与CSI-RS属于同一时隙,则UE可以确定检测到的PDCCH与CSI-RS属于同一下行传输突发,则进一步确定CSI-RS有效。
另一种可能的实现方式,若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定CSI-RS有效;若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源不处于同一时隙的前半时隙或后半时隙,则确定CSI-RS无效。
对于高频段上的非授权频谱,下行传输突发可能小于一个时隙,例如半个时隙,(从符号0开始至符号6,或者从符号7开始至符号13)。因此,UE可根据检测到的PDCCH与CSI-RS是否处于同一个半时隙,该半时隙可以为前半时隙或后半时隙,确定CSI-RS是否有效。具体地,若UE检测到的PDCCH与CSI-RS处于同一个半时隙,则确定CSI-RS有效;若UE检测到的PDCCH与CSI-RS不处于同一个半时隙,则确定CSI-RS无效。
在另一些情况下,可以认为CSI-RS与检测到的PDCCH在多个时隙或多个半时隙内的话,CSI-RS与PDCCH属于一个下行传输突发。相应地,UE可以确定CSI-RS是否有效。检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源处于相同的多个时隙或多个半时隙,则确定所述CSI-RS有效;若检测到的PDCCH占用的时域资源与CSI-RS占用的时域资源不处于相同的多个时隙或多个半时隙,则确定CSI-RS无效。这样可以在时隙持续时间较短时,增加总的COT持续时间。
上述确定方法中,还可以包括UE判断CSI-RS在频域上是否有效。上述确定方法中,仅当CSI-RS的资源限制在资源块集合(Resource Block Set,RB-set)中时,UE才确定CSI-RS有效,否则,确定CSI-RS无效,其中CSI-RS所述资源块集合与检测到的PDCCH所属的控制资源集有重叠。
本实施例中,UE通过检测PDCCH,并根据检测到的PDCCH占用的时域资源与高层信令配置的下行参考信号占用的时域资源之间的关系,确定下行参考信号是否有效,通过本实施例的方法,能够减小系统的复杂度。
实施例三
图4为本申请另一实施例提供的下行参考信号处理方法的流程图。本实施例中,UE通过接收PDSCH,并根据接收的PDSCH确定下行参考信号CSI-RS是否有效。如图4所示,本实施例的方法包括:
S301、接收PDSCH。
S302、根据接收的PDSCH,确定下行参考信号是否有效。
在一些情况下,UE可以被调度接收PDSCH,则UE可根据接收的PDSCH占用的时域资源,确定PDSCH与CSI-RS是否属于同一个下行传输突发,即确定CSI-RS是否有效。
一种可能的实现方式,若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定CSI-RS有效;若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间间隔,则确定CSI-RS无效;其中,预设时间间隔是根据下行传输突发确定的。
可选地,预设时间间隔为16微秒。
也就是说,如果UE(被调度去)接收一个PDSCH,那么UE可以确定CSI-RS与该PDSCH属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDSCH(的结束)时间间隔不大于16微秒。
另一种可能的实现方式,若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源连续,则确定CSI-RS有效;若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源不连续,则确定CSI-RS无效。
也就是说,如果UE(被调度去)接收一个PDSCH,那么UE可以确定CSI-RS与该PDSCH属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDSCH的符号是连续的。
另一种可能的实现方式,若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若接收的PDSCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若接收的PDSCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若接收的PDSCH占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若接收的PDSCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若接收的PDSCH占用的时域资源中第一个OFDM符号与CSI-RS占用的时域 资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
也就是说,如果UE(被调度去)接收一个PDSCH,那么UE可以确定CSI-RS与该PDSCH属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDSCH(的结束)的时间间隔小于X个符号,X为正整数。
另一种可能的实现方式,若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源存在至少部分相同的时域资源,则确定CSI-RS有效;若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源不存在相同的时域资源,则确定CSI-RS无效。
也就是说,如果UE(被调度去)接收一个PDSCH,那么UE可以确定CSI-RS与该PDSCH属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该PDSCH至少具有一个相同的符号。
也就是说,如果UE(被调度去)接收一个PDSCH,那么UE可以确定CSI-RS与该PDSCH属于同一个下行传输突发或者CSI-RS是有效的,其中该PDSCH与该CSI-RS有重叠。
上述任一种可能的实现方式中,PDSCH可以为SIB1的PDSCH;或者,可以为RAR的PDSCH;或者,可以为寻呼消息(paging message)的PDSCH;或者,可以为调度单播的PDSCH。这里不限制PDSCH的类型。
在另一些情况下,可认为接收的PDSCH与CSI-RS在一个时隙(slot)内,则该CSI-RS与接收的PDSCH属于一个下行传输突发。
另一种可能的实现方式,若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源处于同一时隙,则确定CSI-RS有效;若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源不处于同一时隙,则确定CSI-RS无效。
也就是说,若UE接收的PDSCH与CSI-RS属于同一时隙,则UE可以确定接收的PDSCH与CSI-RS属于同一下行传输突发,则进一步确定CSI-RS有效。
另一种可能的实现方式,若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定CSI-RS有效;若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源不处于同一时隙的前半时隙或后半时隙,则确定CSI-RS无效。
对于高频段上的非授权频谱,下行传输突发可能小于一个时隙,例如半个时隙,(从符号0开始至符号6,或者从符号7开始至符号13)。因此,UE可根据接收的PDSCH与CSI-RS是否处于同一个半时隙,该半时隙可以为前半时隙或后半时隙,确定CSI-RS是否有效。
具体地,若UE接收的PDSCH与CSI-RS处于同一个半时隙,则UE可以确定CSI-RS与该接收的PDSCH属于同一下行传输突发,则确定CSI-RS有效;若UE接收的PDSCH与CSI-RS不处于同一个半时隙,则UE可以确定CSI-RS与该接收的PDSCH属于同一下行传输突发,则确定CSI-RS无效。
在另一些情况下,可以认为CSI-RS与接收的PDSCH在多个时隙或多个半时隙内的话,CSI-RS与PDSCH属于一个下行传输突发。相应地,UE可以确定CSI-RS是否有效。若接收的PDSCH占用的时域资源与CSI-RS占用的时域资源处于相同的多个时隙或多个半时隙,则确定CSI-RS有效;若接收的PDSCH占用的时域资源与CSI-RS 占用的时域资源不处于相同的多个时隙或多个半时隙,则确定CSI-RS无效。这样可以在时隙持续时间较短时,增加总的COT持续时间。
上述确定方法中,还可以包括UE判断CSI-RS在频域上是否有效。上述确定方法中,仅当CSI-RS的资源限制在资源块集合(Resource Block Set,RB-set)中时,UE才确定CSI-RS有效,否则,确定CSI-RS无效,其中所述资源块集合与接收的PDSCH有重叠。
本实施例中,UE通过接收PDSCH,并根据接收的PDSCH占用的时域资源与高层信令配置的下行参考信号占用的时域资源之间的关系,确定下行参考信号是否有效,通过本实施例的方法,能够减小UE的复杂度,优化系统开销。
实施例四
图5为本申请另一实施例提供的下行参考信号处理方法的流程图。本实施例中,UE通过监听同步信号块,并根据检测到的同步信号块确定下行参考信号CSI-RS是否有效。参照图5所示,本实施例的方法包括:
S401、监听同步信号块。
S402、根据检测到的同步信号块,确定下行参考信号是否有效。
在一些情况下,UE需要监听同步信号块,因此,可根据检测到的同步信号块来确定一个下行传输突发,确定CSI-RS是否有效。
一种可能的实现方式,若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间间隔,则确定CSI-RS无效;其中,预设时间间隔是根据下行传输突发确定的。
可选地,预设时间间隔为16微秒。
也就是说,如果UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该同步信号块(的结束)时间间隔不大于16微秒。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源连续,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源不连续,则确定CSI-RS无效。
在正交频分复用(Orthogonal Frequency Division Modulation,OFDM)系统中,连续符号间的时间间隔可视为零,因此,上述方式也可以理解为,若UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中,该CSI-RS与该同步信号块是符号连续的。符号连续也可以理解为时域资源或时域符号是连续的。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源中最后一个OFDM符号与CSI-RS占用的时域资源中最后一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源中第一个OFDM符号与CSI-RS占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定CSI-RS无效。
也就是说,同步信号块与CSI-RS之间可以有X个符号的时间间隔,基站可以通过发送保留信号(Reserved signal)或其他的信号/信道来占据信道。因此,如果UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该同步信号块(的结束)的时间间隔小于X个符号,X为正整数。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源存在至少部分相同的时域资源,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源不存在相同的时域资源,则确定CSI-RS无效。
一个CSI-RS可以使用同步信号块(一般4个符号)中的一个符号,也就是说CSI-RS与同步信号块是频分复用的(Frequency Division Multiplexed,FDM),此时CSI-RS与同步信号块也属于一个下行传输突发。因此,如果UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该同步信号块至少具有一个相同的符号。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源处于同一时隙,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源不处于同一时隙,则确定CSI-RS无效。
在某些情形下,如Type0-PDCCH监听时机与候选同步信号块索引关系中变量M=1或2,或者变量O=2或5或7时,同步信号块可以与Type0-PDCCH不在一个时隙中,此时基站可以在同步信号块的时隙中发送CSI-RS。这样的话,如果UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该同步信号块属于同一个时隙。
另一种可能的实现方式,若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定CSI-RS有效;若检测到的同步 信号块占用的时域资源与CSI-RS占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定CSI-RS无效。
也就是说,如果UE检测到一个同步信号块,那么UE可以确定CSI-RS与该同步信号块属于同一个下行传输突发或者CSI-RS是有效的,其中该CSI-RS与该同步信号块属于同一个半时隙,该半时隙例如为前半时隙或后半时隙。
在上述任一种可能的实现方式中,由于同步信号块仅仅在发现突发发送窗口(discovery burst transmission window)内发送,所以上述方式可以限制在突发发送窗口内。
在另一些情况下,可以认为CSI-RS与检测到的同步信号块在多个时隙或多个半时隙内的话,CSI-RS与同步信号块属于一个下行传输突发。相应地,UE可以确定CSI-RS是否有效。若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源处于相同的多个时隙或多个半时隙,则确定CSI-RS有效;若检测到的同步信号块占用的时域资源与CSI-RS占用的时域资源不处于相同的多个时隙或多个半时隙,则确定CSI-RS无效。这样可以在时隙持续时间较短时,增加总的COT持续时间。
上述确定方法中,还可以包括UE判断CSI-RS在频域上是否有效。上述确定方法中,仅当CSI-RS的资源限制在资源块集合(Resource Block Set,RB-set)中时,UE才确定CSI-RS有效,否则,确定CSI-RS无效,其中所述资源块集合与检测到的同步信号块有重叠。
上述确定方法中,可以进一步限定,UE仅仅确定与同步信号块有拟共站址(Quasi Colocation,QCL)关系的CSI-RS有效。其中,QCL关系可以为类型A-拟共站址(TypeA Quasi Colocation,TypeA QCL)关系、或类型B-拟共站址(TypeB Quasi Colocation,TypeB QCL)关系、或类型C-拟共站址(TypeC Quasi Colocation,TypeC QCL)关系、或类型D-拟共站址(TypeD Quasi Colocation,TypeD QCL)关系、或相等的平均接收功率(average receive power)等。这样,UE仅仅可以判定的与检测到的同步信号块具有波束方向关系的CSI-RS是否有效,减小UE复杂度。
本实施例中,UE通过监听同步信号块,并根据检测到的同步信号块占用的时域资源与高层信令配置的下行参考信号占用的时域资源之间的关系,确定下行参考信号是否有效,通过本实施例的方法,能够减小UE的复杂度,优化系统开销。
在实际应用中,上述各实施例的方法可以单独使用,也可以结合使用,本申请实施例对此不作限制。
图6为本申请一实施例提供的下行参考信号处理装置的结构示意图。参照图6所示,本实施例提供的下行参考信号处理装置200包括:处理模块201。
其中,处理模块201,用于确定下行参考信号有效或者无效。
在一些可能的设计中,处理模块201,具体用于若未被配置为监听第一类物理下行控制信道PDCCH时,则确定下行参考信号无效;
或者,若被配置为监听第一类PDCCH,且未检测到第一类PDCCH时,则确定下行参考信号无效。
在一些可能的设计中,第一类PDCCH为由SFI-RNTI加扰的类型3-PDCCH。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资 源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间间隔,则确定下行参考信号无效;
其中,预设时间间隔是根据下行传输突发确定的。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源连续,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源不连续,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源不存在相同的时域资源,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源处于同一时隙,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源不处于同一时隙,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定下行参考信号有效;以及,
若检测到的PDCCH占用的时域资源与下行参考信号占用的时域资源不处于同一时隙的前半时隙或后半时隙,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间间隔,则确定下行参考信号无效;
其中,预设时间间隔是根据下行传输突发确定的。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源连续,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源不连续,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源不存在相同的时域资源,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源处于同一时隙,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源不处于同一时隙,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定下行参考信号有效;以及,
若接收的PDSCH占用的时域资源与下行参考信号占用的时域资源分别属于同一时隙的前半时隙以及后半时隙,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于预设时间间隔,则确定下行参考信号无效;
其中,预设时间间隔是根据下行传输突发确定的。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源连续,则确定下行参考信号有效;以及
若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源不连续,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源中最后一个OFDM符号与下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于预设阈值,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时 域资源与下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源不存在相同的时域资源,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源处于同一时隙,则确定下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源不处于同一时隙,则确定下行参考信号无效。
在一些可能的设计中,处理模块201,具体用于若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定下行参考信号有效;以及,
若检测到的同步信号块占用的时域资源与下行参考信号占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定下行参考信号无效。
在一些可能的设计中,预设时间间隔为16微秒。
在一些情况下,下行参考信号处理装置还包括检测模块202,其中,检测模块202可以用于监听PDCCH,接收PDSCH以及监听同步信号块。
本实施例提供的下行参考信号处理装置可以用于执行上述任一方法实施例中的技术方案,其实现原理以及技术效果类似,此处不再赘述。
图7为本申请一实施例提供的电子设备的结构示意图。参照图7所示,本实施例提供的电子设备300包括:存储器301和处理器302;
存储器301可以是独立的物理单元,与处理器302可以通过总线303连接。存储器301、处理器302也可以集成在一起,通过硬件实现等。
存储器301用于存储程序指令,处理器302调用该程序指令,执行以上图2至图5任一方法实施例的操作。
可选地,当上述实施例的方法中的部分或全部通过软件实现时,上述装置300也可以只包括处理器302。用于存储程序的存储器301位于装置300之外,处理器302通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器302可以是中央处理器(Central Processing Unit,CPU),网络处理器(Network Processor,NP)或者CPU和NP的组合。
处理器302还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC),可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
存储器301可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random-Access Memory,RAM);存储器也可以包括非易失性存储器(Non-volatile Memory),例如快闪存储器(Flash Memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-state Drive,SSD);存储器还可以包括上述种类的存储器的组合。
图8为本申请另一实施例提供的下行参考信号处理装置的结构示意图。本实施例提供的下行参考信号处理装置1200例如可以是计算机,平板设备,个人数字助理等。
参照图8所示,下行参考信号处理装置1200可以包括以下一个或多个组件:处理组件102,存储器104,电源组件106,多媒体组件108,音频组件1010,输入/输出(I/O)接口1012,传感器组件1014,以及通信组件1016。
处理组件102通常控制下行参考信号处理装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件102可以包括一个或多个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件102可以包括一个或多个模块,便于处理组件102和其他组件之间的交互。例如,处理组件102可以包括多媒体模块,以方便多媒体组件108和处理组件102之间的交互。
存储器104被配置为存储各种类型的数据以支持在下行参考信号处理装置1200的操作。这些数据的示例包括用于在下行参考信号处理装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件106为下行参考信号处理装置1200的各种组件提供电力。电源组件106可以包括电源管理系统,一个或多个电源,及其他与为下行参考信号处理装置1200生成、管理和分配电力相关联的组件。
多媒体组件108包括在所述下行参考信号处理装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件108包括一个前置摄像头和/或后置摄像头。当目标物的三维模型构建装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当下行参考信号处理装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器104或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为下行参考信号处理装置1200提 供各个方面的状态评估。例如,传感器组件1014可以检测到下行参考信号处理装置1200的打开/关闭状态,组件的相对定位,例如所述组件为下行参考信号处理装置1200的显示器和小键盘,传感器组件1014还可以检测下行参考信号处理装置1200或下行参考信号处理装置1200一个组件的位置改变,用户与下行参考信号处理装置1200接触的存在或不存在,下行参考信号处理装置1200方位或加速/减速和下行参考信号处理装置1200的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于下行参考信号处理装置1200和其他设备之间有线或无线方式的通信。下行参考信号处理装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G或4G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1016还可以包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,下行参考信号处理装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
本发明还提供一种计算机可读存储介质,其中,计算机可读存储介质中包括程序,程序在被处理器执行时,以执行以上任一实施例的原子性指令序列修改方法。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (46)

  1. 一种下行参考信号处理方法,其特征在于,包括:
    确定下行参考信号有效或者无效。
  2. 根据权利要求1所述的方法,其特征在于,确定下行参考信号有效或者无效,包括:
    若未被配置为监听第一类物理下行控制信道PDCCH时,确定所述下行参考信号无效;或者,
    若确定被配置为监听所述第一类PDCCH,且未检测到所述第一类PDCCH时,则确定所述下行参考信号无效。
  3. 根据权利要求2所述的方法,其特征在于,所述第一类PDCCH为由时隙格式指示-无线网络临时标识SFI-RNTI加扰的类型3-PDCCH。
  4. 根据权利要求1所述的方法,其特征在于,所述确定下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源中最后一个正交频分复用OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  5. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
  6. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  7. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不存在 相同的时域资源,则确定所述下行参考信号无效。
  8. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  9. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号无效。
  10. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的物理下行共享信道PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  11. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
  12. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  13. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源存在至少 部分相同的时域资源,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
  14. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  15. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源分别属于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
  16. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  17. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
  18. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  19. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效 或者无效,包括:
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
  20. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  21. 根据权利要求1所述的方法,其特征在于,所述确定所述下行参考信号有效或者无效,包括:
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
  22. 根据权利要求4、10以及16中任一项所述的方法,其特征在于,所述预设时间间隔为16微秒。
  23. 一种下行信号处理装置,其特征在于,包括:
    处理模块,用于确定下行参考信号有效或者无效。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若未被配置为监听第一类物理下行控制信道PDCCH时,则确定所述下行参考信号无效;
    或者,若被配置为监听所述第一类PDCCH,且未检测到所述第一类PDCCH时,则确定所述下行参考信号无效。
  25. 根据权利要求24所述的装置,其特征在于,所述第一类PDCCH为由时隙格式指示-无线网络临时标识SFI-RNTI加扰的类型3-PDCCH。
  26. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源中最后一个正交频分复用OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  27. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不连续, 则确定所述下行参考信号无效。
  28. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  29. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
  30. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  31. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
    若检测到的PDCCH占用的时域资源与所述下行参考信号占用的时域资源不处于所述同一时隙的前半时隙或后半时隙,则确定所述下行参考信号无效。
  32. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的物理下行共享信道PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  33. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
  34. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源中最后一个OFDM符号与所述下行参考信号占 用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  35. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相同的时域资源,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
  36. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  37. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
    若接收的PDSCH占用的时域资源与所述下行参考信号占用的时域资源分别属于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
  38. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔小于或等于预设时间间隔,则确定所述下行参考信号有效;以及,
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号之间的时间间隔大于所述预设时间间隔,则确定所述下行参考信号无效;
    其中,所述预设时间间隔是根据下行传输突发确定的。
  39. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源连续,则确定所述下行参考信号有效;以及
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不连续,则确定所述下行参考信号无效。
  40. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔小于预设阈值,则确定所述下行参考信号有效;以及,
    若检测到的同步信号块占用的时域资源中最后一个OFDM符号与所述下行参考信号占用的时域资源中第一个OFDM符号的间隔大于或等于所述预设阈值,则确定所述下行参考信号无效。
  41. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源存在至少部分相 同的时域资源,则确定所述下行参考信号有效;以及,
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不存在相同的时域资源,则确定所述下行参考信号无效。
  42. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙,则确定所述下行参考信号有效;以及,
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙,则确定所述下行参考信号无效。
  43. 根据权利要求23所述的装置,其特征在于,所述处理模块,具体用于若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源处于同一时隙的前半时隙或后半时隙,则确定所述下行参考信号有效;以及,
    若检测到的同步信号块占用的时域资源与所述下行参考信号占用的时域资源不处于同一时隙的前半时隙以及后半时隙,则确定所述下行参考信号无效。
  44. 根据权利要求26、32以及38中任一项所述的装置,其特征在于,所述预设时间间隔为16微秒。
  45. 一种电子设备,其特征在于,包括:存储器、处理器以及计算机程序指令;
    所述存储器存储所述计算机程序指令;
    所述处理器执行所述计算机程序指令,以执行如权利要求1至22中任一项所述的方法。
  46. 一种可读存储介质,其特征在于,包括:程序;
    所述程序被处理器执行时,以执行如权利要求1至22中任一项所述的方法。
PCT/CN2021/086261 2020-04-10 2021-04-09 下行参考信号处理方法、装置及可读存储介质 WO2021204266A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21785694.7A EP4135249A4 (en) 2020-04-10 2021-04-09 METHOD AND DEVICE FOR PROCESSING A DOWNLINK REFERENCE SIGNAL, AND READABLE STORAGE MEDIUM
US17/917,939 US20230155777A1 (en) 2020-04-10 2021-04-09 Method and apparatus for processing downlink reference signal, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281550.0 2020-04-10
CN202010281550.0A CN113517966B (zh) 2020-04-10 2020-04-10 下行参考信号处理方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021204266A1 true WO2021204266A1 (zh) 2021-10-14

Family

ID=78022817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086261 WO2021204266A1 (zh) 2020-04-10 2021-04-09 下行参考信号处理方法、装置及可读存储介质

Country Status (4)

Country Link
US (1) US20230155777A1 (zh)
EP (1) EP4135249A4 (zh)
CN (1) CN113517966B (zh)
WO (1) WO2021204266A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349460A (zh) * 2013-07-25 2015-02-11 中兴通讯股份有限公司 上下行配置信息通知、获取方法以及基站和用户设备
US20190141693A1 (en) * 2017-11-08 2019-05-09 Samsung Electronics Co., Ltd Method and apparatus for beam management in the unlicensed spectrum

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882279B1 (ko) * 2014-12-23 2018-07-26 엘지전자 주식회사 비면허 대역을 지원하는 무선 접속 시스템에서 향상된 물리 하향링크 제어채널을 송수신하는 방법 및 이를 지원하는 장치
US10091659B2 (en) * 2015-05-08 2018-10-02 Samsung Electronics Co., Ltd. Methods and apparatus for partial subframe transmission and broadcast channel on unlicensed spectrum in a licensed assisted access (LAA) cell
CN107404370B (zh) * 2016-05-18 2021-02-12 华为技术有限公司 参考信号配置方法及装置
WO2020029286A1 (zh) * 2018-08-10 2020-02-13 Oppo广东移动通信有限公司 一种信号传输方法及装置、终端、网络设备
CN110932828B (zh) * 2018-09-19 2022-07-15 维沃移动通信有限公司 消息接收方法、消息发送方法、终端设备和网络侧设备
CN110856180B (zh) * 2019-11-08 2022-02-11 展讯通信(上海)有限公司 数据接收方法及装置、存储介质、终端
WO2021203298A1 (en) * 2020-04-08 2021-10-14 Apple Inc. Channel state information feedback in wireless communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349460A (zh) * 2013-07-25 2015-02-11 中兴通讯股份有限公司 上下行配置信息通知、获取方法以及基站和用户设备
US20190141693A1 (en) * 2017-11-08 2019-05-09 Samsung Electronics Co., Ltd Method and apparatus for beam management in the unlicensed spectrum

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MODERATOR (LENOVO): "Summary of email discussion [100b-e-NR-unlic-NRU- DL_Signals_and_Channels-03] on CSI-RS", 3GPP DRAFT; R1-2002788, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 1 May 2020 (2020-05-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051879488 *
QUALCOMM INCORPORATED: "Email discussion for [100e-NR-unlic-NRU-InitSignalsChannels-03]", 3GPP DRAFT; R1-2001258, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200224 - 20200306, 1 March 2020 (2020-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051858369 *
VIVO: "Remaining issues on physical DL channel design in unlicensed spectrum", 3GPP DRAFT; R1-2001650, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051873249 *

Also Published As

Publication number Publication date
US20230155777A1 (en) 2023-05-18
EP4135249A1 (en) 2023-02-15
EP4135249A4 (en) 2023-10-04
CN113517966B (zh) 2023-08-29
CN113517966A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
US11191085B2 (en) Method and apparatus for coordinating in-device coexistence interference, user equipment and communication device
EP3965338B1 (en) Information transmission method and apparatus, and computer readable storage medium
EP3595371B1 (en) Method for signal transmission and device
US20220217660A1 (en) Information transmission method and apparatus and computer-readable storage medium
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
US20240187082A1 (en) Default beam determination method and apparatus, and communication device
JP6703180B2 (ja) データ伝送方法、装置、コンピュータプログラム、および、記録媒体
WO2022001850A1 (zh) 资源指示方法、装置及通信设备
WO2022236626A1 (zh) 系统消息的传输方法、装置及通信设备
US20240073870A1 (en) Bandwidth part switching method, and communication device
WO2021243711A1 (zh) 信道接入方法、信道接入装置及存储介质
CN112075113A (zh) 资源配置方法、装置、通信设备和存储介质
JP2024516949A (ja) サイドリンクフィードバックリソースの決定方法、端末及びネットワーク側機器
JP2023528613A (ja) 無線通信方法及び装置、端末及び記憶媒体
CN113517963B (zh) 上行信号或信道处理方法、装置及可读存储介质
US20220279524A1 (en) Pusch receiving method and device, pusch sending method and device
WO2022012592A1 (zh) 反馈信息传输方法、装置、终端及网络侧设备
WO2021204266A1 (zh) 下行参考信号处理方法、装置及可读存储介质
WO2022205003A1 (zh) 默认波束的确定方法、装置及通信设备
WO2023245503A1 (zh) 一种监听方法、发送方法、装置、设备以及可读存储介质
WO2022178787A1 (zh) 信道传输方法及装置、存储介质
US20240155645A1 (en) Method and apparatus for transmitting configuration information of physical downlink control channel, and storage medium
WO2022188023A1 (zh) 信息处理方法、装置、通信设备及存储介质
US20220386157A1 (en) Channel measurement method and apparatus, and communication device
WO2022194216A1 (zh) 信息确定方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785694

Country of ref document: EP

Effective date: 20221110