WO2021204247A1 - 一种电子设备 - Google Patents

一种电子设备 Download PDF

Info

Publication number
WO2021204247A1
WO2021204247A1 PCT/CN2021/086170 CN2021086170W WO2021204247A1 WO 2021204247 A1 WO2021204247 A1 WO 2021204247A1 CN 2021086170 W CN2021086170 W CN 2021086170W WO 2021204247 A1 WO2021204247 A1 WO 2021204247A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric body
insulating dielectric
feed
electronic device
insulating
Prior art date
Application number
PCT/CN2021/086170
Other languages
English (en)
French (fr)
Inventor
邾志民
王义金
简宪静
韩永健
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021204247A1 publication Critical patent/WO2021204247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present invention relates to the field of communication technology, and in particular to an electronic device.
  • antennas are generally required to be provided in current electronic devices, so that the electronic devices have functions such as communication and network access.
  • an antenna installation space is generally reserved inside the electronic device, but due to interference from other components of the electronic device, the radiation performance of the antenna of the electronic device is poor.
  • the embodiment of the present invention provides an electronic device to solve the problem that the antenna module of the current electronic device has a narrow band coverage.
  • an embodiment of the present invention provides an electronic device, including: a metal frame, a first insulating dielectric body, and a feeder pin.
  • the metal frame is provided with a accommodating groove, and the first insulating dielectric body Is at least partially disposed in the accommodating groove, a power feeding through hole is opened in the accommodating groove, and the power feeding needle is inserted into the first insulating medium body through the power feeding through hole, and in the Under the action of the excitation signal input by the feeding needle, the first insulating dielectric body generates electromagnetic radiation.
  • the electronic device includes: a metal frame, a first insulating dielectric body, and a feeder pin.
  • the metal frame is provided with a receiving groove, and the first insulating dielectric body is at least partially disposed in the receiving pin.
  • a feeding through hole is opened in the containing slot, the feeding needle is inserted into the first insulating medium body through the feeding through hole, and the excitation signal input by the feeding needle is Under the action, the first insulating dielectric body generates electromagnetic radiation.
  • the feeding needle and the first insulating dielectric body can form a dielectric resonant antenna, and the side walls and the bottom of the accommodating slot can be used as reflectors of the above-mentioned antenna, thereby enhancing the gain of the antenna, that is, enhancing the radiation performance of the antenna;
  • the accommodating slot is provided on the metal frame, the influence of other components of the electronic device on the radiation performance of the antenna can be reduced, thereby further enhancing the radiation performance of the antenna.
  • FIG. 1 is one of the exploded views of the structure of an electronic device provided by an embodiment of the present invention
  • Figure 2 is one of the schematic structural diagrams of an electronic device provided by an embodiment of the present invention.
  • FIG. 3 is a second exploded view of the structure of an electronic device according to an embodiment of the present invention.
  • FIG. 4 is a second structural diagram of an electronic device provided by an embodiment of the present invention.
  • FIG. 5 is the third structural diagram of an electronic device provided by an embodiment of the present invention.
  • FIG. 6 is a reflection coefficient diagram of a dielectric resonant antenna of an electronic device according to an embodiment of the present invention.
  • FIG. 7 is a directional diagram of a dielectric resonant antenna of an electronic device provided by an embodiment of the present invention at 28 GHz;
  • FIG. 8 is a directivity diagram of a dielectric resonant antenna of an electronic device provided by an embodiment of the present invention at 39 GHz.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention, and FIG. 1 may be an enlarged view of the structure of area A shown in FIG. 2.
  • the electronic device includes: a metal frame 10, a first insulating dielectric body 20, and a feeder pin 30.
  • the metal frame 10 is provided with a accommodating groove 11, and the first insulating dielectric body 20 is at least partially disposed In the accommodating groove 11, a feeding through hole 12 is opened in the accommodating groove 11, and the feeding needle 30 is inserted into the first insulating dielectric body 20 through the feeding through hole 12 Under the action of the excitation signal input by the feeding needle 30, the first insulating dielectric body 20 generates electromagnetic radiation.
  • the feeding needle 30 and the first insulating dielectric body 20 can constitute a dielectric resonant antenna, and the side walls and the bottom of the accommodating slot 11 can be used as reflectors of the above antenna, thereby enhancing the gain of the antenna, that is, enhancing the radiation performance of the antenna ;
  • the accommodating slot 11 is opened on the metal frame 10, the influence of other components of the electronic device on the radiation performance of the antenna can be reduced, thereby further enhancing the radiation performance of the antenna.
  • the use of the feeding needle 30 for feeding can reduce the feeding path loss, thereby improving the feeding effect.
  • the feeding needle 30 is insulated from the accommodating groove 11.
  • the first insulating dielectric body 20 in the present application may also be referred to as a dielectric body constituting a dielectric resonant antenna such as a non-conductive medium.
  • the second insulating dielectric body 50 and the third insulating dielectric body 60 in the present application may also be used. It is called a non-conductive medium.
  • the first insulating dielectric body 20 may be all disposed in the accommodating groove 11 or partly disposed in the accommodating groove 11. When the first insulating dielectric body 20 is all disposed in the accommodating groove 11, the first insulating dielectric body 20 can directly contact the bottom of the accommodating groove 11.
  • the first insulating dielectric body 20 is in contact with the accommodating groove 11
  • Other dielectric layers may also be stacked between the groove bottoms.
  • the other dielectric layers may also be non-conductive dielectric layers, and the number of other dielectric layers is not limited here.
  • a signal source may also be provided in the electronic device, and the signal source may be electrically connected to the feeding needle 30, and the signal source may input an excitation signal to the feeding needle 30, so that the excitation input at the feeding needle 30 Under the action of the signal, the first insulating dielectric body 20 can generate electromagnetic radiation.
  • the dielectric resonant antenna provided in this embodiment is a millimeter wave antenna.
  • the first part of the metal frame 10 may be used as a radiator of other communication antennas.
  • the accommodating slot 11 may also be opened on the first part of the metal frame 10. In this way, the dielectric resonant antenna formed by the feeding needle 30 and the first insulating dielectric body 20 in the embodiment of the present invention can share the first part of the metal frame 10 with other communication antennas.
  • the accommodating groove 11 can also be opened in the second part of the metal frame 10, and the second part and the first part are different parts.
  • the dielectric resonant antenna of this embodiment can be installed separately from other communication antennas.
  • the metal frame 10 can be a closed rectangular frame, of course, it can also be an unclosed rectangular frame.
  • the metal frame 10 includes four side frames, but the two adjacent side frames can be filled with an insulating medium. The purpose of insulating two adjacent side frames can be achieved, and the purpose of connecting two adjacent side frames can also be achieved.
  • the electronic device may also include a grounded floor 40.
  • the floor 40 may be connected to each side frame of the metal frame 10, or only connected to a part of the side frame of the metal frame 10. In this way, the metal frame 10 can pass through the floor 40. To achieve the purpose of grounding.
  • the above-mentioned floor 40 can also be referred to as a main upper and a frame, and can be used to fix printed circuit boards and other components.
  • the number of the feed through holes 12 is N, and the number of the feed through holes 12 corresponds to the number of the feed pins 30 one-to-one, and the N is an integer greater than 1. .
  • N is an integer greater than 1
  • the number of feed through holes 12 is at least two, and each feed through hole 12 is provided with a feed pin 30, which can be understood as a feed through hole 12
  • feed pin 30 can be understood as a feed through hole 12
  • At least two feed pins 30 can be electrically connected to the same signal source; as another optional implementation manner, each feed pin 30 can correspond to One signal source is connected, that is, when the number of feeding pins 30 is N, the number of signal sources is also N, and the feeding pins 30 and the signal source are in a one-to-one correspondence.
  • the feed pins 30 in the two feed through holes 12 can form polarization, that is, the two feed pins 30 in the two feed through holes 12 can be a group, and the feed pins 30 in each group
  • the two feed pins 30 form polarization, increase the wireless connection capability of the antenna, reduce the probability of communication disconnection, and increase the communication effect and user experience.
  • the two feed pins 30 in a group constitute a pair of differential feed ports, the two feed pins 30 in the group are polarized.
  • one power feeding needle 30 can also form a polarization separately, and at this time, two power feeding needles 30 can form two polarizations, and the above two polarizations can also be referred to as dual polarizations.
  • the wireless connection capability of the antenna can also be increased, the probability of communication disconnection can be reduced, and the communication effect and user experience can be increased.
  • the number of the feed through holes 12 is at least two, and the number of the feed pins 30 corresponds to the number of the feed through holes 12 in a one-to-one correspondence, thereby enhancing the radiation performance of the antenna.
  • the feeding needle 30 constitutes at least a pair of differential feeding ports.
  • N feed pins 30 may form at least a pair of differential feed ports, and the input signals on the two feed pins 30 forming a pair of differential feed ports have the same amplitude and a phase difference of 180 degrees. .
  • the number of differential feed ports is not limited here.
  • the number of feed pins 30 is 4, two of the four feed pins 30 can form a pair of differential feeds.
  • the other two feed pins 30 do not constitute a differential feed port; of course, the above four feed pins 30 can also form two pairs of differential feed ports respectively.
  • a rectangle can be obtained by connecting the positions of the four feeding pins 30 in sequence, and the four feeding pins 30 can be located at a right angle of the rectangle, and form the two feeding ports of a pair of differential feed ports.
  • the electrical needles 30 can be respectively located at two right-angle positions connected by diagonal lines of the rectangle.
  • every two of the N feed through holes 12 form a through hole group, and each through hole group includes two feed through holes
  • the feeding needle 30 provided in 12 constitutes a differential feeding port.
  • each through-hole group includes two feeding needles 30, and the two feeding needles 30 constitute a differential feeding port, that is, the two feeding needles mentioned above.
  • the input signals of the needle 30 are equal in amplitude and 180 degrees out of phase.
  • the two feeding needles 30 can be connected to the same signal source, so as to better ensure that the amplitudes of the input signals of the feeding needles 30 are equal.
  • the signal source may be a millimeter wave signal source.
  • the feed through holes may include two through hole groups, and the two feed through holes 12 in one through hole group may be located in the same horizontal direction, and the two feed through holes in the through hole group may be located in the same horizontal direction.
  • the connection between the holes 12 can be the first connection (for example: connection B in FIG. 3); and the two feed through holes 12 in the other through hole group can be located in the same vertical direction, and the connection
  • the connection line between the two feed through holes 12 in the hole group may be a second connection line (for example, the connection line C in FIG. 3).
  • the first line and the second line intersect.
  • the intersecting position of the first line and the second line may be located at the middle position of the groove bottom of the accommodating groove 11.
  • the feed pins 30 provided in the above two through hole groups can form a Multiple Input Multiple Output (MIMO) function.
  • MIMO Multiple Input Multiple Output
  • it can also form a dual polarization, which increases the wireless connection capability of the antenna. The probability of communication disconnection is reduced, and the communication effect and user experience are improved.
  • the two feed pins 30 included in each through hole group constitute a differential feed port, the problem that the pattern of the dielectric resonant antenna changes with frequency can be solved, and the maximum radiation direction of the antenna can be guaranteed Consistent, while improving the polarization isolation of dual polarization, thereby enhancing the antenna's radiation performance.
  • the N feedthrough holes 12 are all opened at the bottom of the accommodating groove 11.
  • the processing difficulty is reduced, and at the same time, all the N feed pins 30 can be concentratedly distributed on the bottom of the accommodating groove 11 Therefore, the maximum radiation direction of the antenna can be directed toward a direction away from the groove bottom of the accommodating groove 11, thereby further enhancing the radiation performance of the antenna.
  • a second insulating dielectric body 50 is further provided between the first insulating dielectric body 20 and the side wall of the accommodating groove 11, and the second insulating dielectric body 50 is The dielectric body 50 is arranged around the first insulating dielectric body 20.
  • FIG. 4 can be regarded as a schematic cross-sectional view of the respective components of the electronic device shown in FIG. 3 after assembly
  • FIG. 5 can be regarded as another enlarged view of the area A in FIG. 2.
  • the dielectric constant of the second insulating dielectric body 50 may be smaller than the dielectric constant of the first insulating dielectric body 20.
  • the first insulating dielectric body 20 can be made of a material with a higher dielectric constant (for example, a material with a dielectric constant greater than 10 can usually be selected), and a material with a lower dielectric constant can be selected to make the second insulating dielectric body 50 (for example: Generally, materials with a dielectric constant of less than 10 can be selected). In this way, the antenna can excite the dielectric resonance mode and the resonance mode of the accommodating groove 11, thereby better increasing the bandwidth of the antenna.
  • Figure 6 is the reflection coefficient diagram of the dielectric resonant antenna at this time. From Figure 6, it can be seen that the bandwidth of the antenna can reach 25.9GHz-41.6GHz, which basically covers the third-generation cooperation.
  • the n257, n258, n260, and n261 frequency bands defined by the 3rd Generation Partnership Project (3GPP) can cover the 5th generation mobile networks (5G) millimeter wave frequency bands of the world’s mainstream mobile communications technology, thereby improving users’ Mobile roaming experience.
  • 5G 5th generation mobile networks
  • Figs. 7 is the pattern of the dielectric resonant antenna at 28 GHz
  • Fig. 8 is the pattern of the dielectric resonant antenna at 39 GHz.
  • a second insulating dielectric body 50 is further provided between the first insulating dielectric body 20 and the side wall of the accommodating groove 11, so that the fixing effect of the first insulating dielectric body 20 can be enhanced.
  • the dielectric constant of the first insulating dielectric body 20 is greater than the dielectric constant of the second insulating dielectric body 50.
  • the dielectric constant of the first insulating dielectric body 20 can be relatively high, so that the dielectric resonance mode and the resonance mode of the accommodating slot 11 can be excited, thereby expanding the bandwidth of the dielectric resonance antenna and improving the communication effect.
  • the second insulating dielectric body 50 abuts against the side wall of the accommodating groove 11 and the first insulating dielectric body 20 respectively.
  • the second insulating dielectric body 50 abuts against the side wall of the accommodating groove 11 and the first insulating dielectric body 20 respectively. In this way, the fixing effect on the first insulating dielectric body 20 can be enhanced, and the first insulating body 20 can be avoided.
  • the phenomenon that the medium body 20 is inclined toward the side wall of the containing groove 11 occurs.
  • a third insulating dielectric body 60 is laminated on the surface of the first insulating dielectric body 20 that faces away from the bottom of the accommodating groove 11.
  • the third insulating dielectric body 60 is used to seal the accommodating groove 11, that is, the edges of the third insulating dielectric body 60 can abut against the side wall of the accommodating groove 11, and the third insulating dielectric body 60
  • the insulating dielectric body 60 may be located at the opening of the accommodating groove 11. In this way, the third insulating dielectric body 60 may be located on the same level as the surface of the metal frame 10, that is, the integrity of the metal frame 10 is ensured.
  • the third insulating dielectric body 60 can abut against the first insulating dielectric body 20 and the second insulating dielectric body 50 respectively, so that the supporting effect on the third insulating dielectric body 60 can be better.
  • the third insulating dielectric body 60 by providing the third insulating dielectric body 60, the first insulating dielectric body 20 and the second insulating dielectric body 50 can be protected.
  • the third insulating dielectric body 60 when the third insulating dielectric body 60 is used to seal the accommodating groove 11, the third insulating dielectric body 60 can also ensure the integrity of the surface of the metal frame 10, and can also play a waterproof and dustproof effect.
  • the third insulating dielectric body 60 may be provided with a hollow area, and the surface of the first insulating dielectric body 20 away from the bottom of the accommodating groove 11 may be formed with a protrusion, and the protrusion may be accommodated in the foregoing In the hollow area. In this way, the connection effect between the third insulating dielectric body 60 and the first insulating dielectric body 20 can be enhanced.
  • the dielectric constant of the first insulating dielectric body 20 is greater than the dielectric constant of the third insulating dielectric body 60.
  • the bandwidth of the antenna can also be expanded, thereby improving the communication effect.
  • a second insulating medium 50 is further provided between the first insulating medium body 20 and the side wall of the accommodating groove 11, and the second insulating medium body 50 surrounds the first insulating medium.
  • the body 20 is arranged, and the dielectric constant of the third insulating dielectric body 60 is greater than or equal to the dielectric constant of the second insulating dielectric body 50.
  • the second insulating dielectric body 50 in this embodiment and the second insulating dielectric body 50 in the foregoing embodiment may be the same insulating dielectric body.
  • the dielectric constant of the second insulating dielectric body 50 may be 2.5, and the loss tangent may be 0.005; the dielectric constant of the third insulating dielectric body 60 may be 3, and the loss The angle tangent may be 0.01; the dielectric constant of the first insulating dielectric body 20 may be 21, and the loss tangent may be 0.005.
  • the dielectric constant of the third insulating dielectric body 60 is greater than or equal to the dielectric constant of the second insulating dielectric body 50, in this way, it is ensured that the dielectric constant of the third insulating dielectric body 60 is low. It can ensure that the connection strength of the third insulating dielectric body 50 is good, thereby avoiding the phenomenon that the third insulating dielectric body 60 is easily damaged due to the poor connection strength of the third insulating dielectric body 60.
  • the metal frame 10 is provided with M accommodating grooves 11, and each of the accommodating grooves 11 is provided with the first insulating dielectric body 20 and the feeder For the needle 30, the M containing grooves 11 are arranged in an array, and the M is an integer greater than 1.
  • the metal frame 10 is provided with M accommodating grooves 11, and each accommodating groove 11 is provided with a first insulating dielectric body 20 and a feeding needle 30, the antenna is increased Quantity, which can further enhance the radiation performance of electronic equipment.
  • the M accommodating grooves 11 are arranged in an array, which can make the distribution of the accommodating grooves 11 neater.
  • WMAN wireless intercity networks
  • WWAN wireless wide area networks
  • WLAN wireless local area networks
  • WPAN wireless personal networks
  • MIMO multiple input multiple output
  • RFID radio frequency identification
  • NFC near field communication
  • WPC wireless charging
  • FM and other electronic devices of course, it can also be applied to wearable electronics On devices (such as hearing aids or heart rate regulators, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供一种电子设备,包括:金属边框、第一绝缘介质体和馈电针,所述金属边框上开设有容置槽,所述第一绝缘介质体至少部分设置于所述容置槽内,所述容置槽内开设有馈电通孔,所述馈电针通过所述馈电通孔穿设于所述第一绝缘介质体内,在所述馈电针输入的激励信号的作用下,所述第一绝缘介质体发生电磁辐射。

Description

一种电子设备
相关申请的交叉引用
本申请主张在2020年4月10日在中国提交的中国专利申请号No.202010280833.3的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及通信技术领域,尤其涉及到一种电子设备。
背景技术
随着电子技术的发展,当前电子设备中一般都需要设置有天线,从而使得电子设备具有通信以及访问网络等功能。在实际的使用中,一般在电子设备的内部预留有天线的安装空间,但是由于电子设备的其他部件的干扰,从而导致电子设备的天线的辐射性能较差。
发明内容
本发明实施例提供一种电子设备,以解决当前电子设备的天线模组的波段的覆盖范围较窄的问题。
为了解决上述技术问题,本发明实施例提供了一种电子设备,包括:金属边框、第一绝缘介质体和馈电针,所述金属边框上开设有容置槽,所述第一绝缘介质体至少部分设置于所述容置槽内,所述容置槽内开设有馈电通孔,所述馈电针通过所述馈电通孔穿设于所述第一绝缘介质体内,在所述馈电针输入的激励信号的作用下,所述第一绝缘介质体发生电磁辐射。
在本发明实施例中,电子设备包括:金属边框、第一绝缘介质体和馈电针,所述金属边框上开设有容置槽,所述第一绝缘介质体至少部分设置于所述容置槽内,所述容置槽内开设有馈电通孔,所述馈电针通过所述馈电通孔穿设于所述第一绝缘介质体内,在所述馈电针输入的激励信号的作用下,所述第一绝缘介质体发生电磁辐射。这样,馈电针和第一绝缘介质体可以构成介质谐振天线,而容置槽的侧壁和槽底可以作为上述天线的反射器,从而增 强了天线的增益,即增强了天线的辐射性能;同时由于容置槽开设于金属边框上,可以减少电子设备其他部件对天线的辐射性能造成的影响,从而进一步增强了天线的辐射性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种电子设备的结构爆炸图之一;
图2是本发明实施例提供的一种电子设备的结构示意图之一;
图3是本发明实施例提供的一种电子设备的结构爆炸图之二;
图4是本发明实施例提供的一种电子设备的结构示意图之二;
图5是本发明实施例提供的一种电子设备的结构示意图之三;
图6是本发明实施例提供的一种电子设备的介质谐振天线的反射系数图;
图7是本发明实施例提供的一种电子设备的介质谐振天线在28GHz时的方向图;
图8是本发明实施例提供的一种电子设备的介质谐振天线在39GHz时的方向图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,图1是本发明实施例提供的一种电子设备的结构示意图,且图1可以为图2中所示A区域的结构放大图。如图1所示,电子设备包括:金属边框10、第一绝缘介质体20和馈电针30,所述金属边框10上开设有容置槽11,所述第一绝缘介质体20至少部分设置于所述容置槽11内,所述容 置槽11内开设有馈电通孔12,所述馈电针30通过所述馈电通孔12穿设于所述第一绝缘介质体20内,在所述馈电针30输入的激励信号的作用下,所述第一绝缘介质体20发生电磁辐射。
其中,本发明实施例的工作原理可以参见以下表述:
馈电针30和第一绝缘介质体20可以构成介质谐振天线,而容置槽11的侧壁和槽底可以作为上述天线的反射器,从而增强了天线的增益,即增强了天线的辐射性能;同时由于容置槽11开设于金属边框10上,可以减少电子设备其他部件对天线的辐射性能造成的影响,从而进一步增强了天线的辐射性能。另外,采用馈电针30馈电,可以降低馈电路径损耗,从而可以提升馈电效果。
其中,需要说明的是,馈电针30与容置槽11绝缘设置。
其中,本申请中的第一绝缘介质体20也可以被称作为非导电介质等构成介质谐振天线的介质体,当然,本申请中的第二绝缘介质体50和第三绝缘介质体60也可以被称作为非导电介质。其中,第一绝缘介质体20可以全部设置于容置槽11内,也可以部分设置于容置槽11内。当第一绝缘介质体20全部设置于容置槽11内时,则第一绝缘介质体20可以与容置槽11的槽底直接接触,当然,第一绝缘介质体20与容置槽11的槽底之间还可以层叠设置有其他介质层,当然,其他介质层也可以为非导电介质层,且其他介质层的层数在此不做限定。当第一绝缘介质体20部分设置于容置槽11内时,一部分第一绝缘介质体20伸出容置槽11的槽口,位于容置槽11之外,即第一绝缘介质体20的高度大于容置槽11的深度。
需要说明的是,电子设备中还可以设置有信号源,该信号源可以与馈电针30电连接,则信号源可以向馈电针30输入激励信号,这样,在馈电针30输入的激励信号的作用下,第一绝缘介质体20可以发生电磁辐射。当上述信号源为毫米波信号源时,本实施例提供的介质谐振天线即为毫米波天线。
其中,电子设备上还可以设置有其他通信天线,而金属边框10的第一部分可以作为其他通信天线的辐射体,需要说明的是,容置槽11也可以开设于金属边框10的第一部分上,这样,本发明实施例中馈电针30和第一绝缘介质体20构成的介质谐振天线即可以与其他通信天线共用金属边框10的第一 部分。
当然,容置槽11也可以开设于金属边框10的第二部分,第二部分与第一部分为不同的部分。这样,本实施例的介质谐振天线可以与其他通信天线分开设置。
需要说明的是,上述其他通信天线可以为蜂窝(cellular)天线或者非蜂窝(no-cellular)天线。而金属边框10可以为一个封闭的矩形框,当然,也可以为不封闭的矩形框,例如:金属边框10包括四条侧边框,但是相邻的两条侧边框之间可以通过绝缘介质进行填充,既可以达到将相邻的两条侧边框绝缘设置的目的,也可以达到连接相邻两条侧边框的目的。
当然,也可以只在四条侧边框中某两条相邻的侧边框之间填充绝缘介质,其他侧边框之间不填充绝缘介质。具体设置方式在此不做限定。
另外,参见图2,电子设备还可以包括接地的地板40,地板40可以与金属边框10的各个侧边框连接,或者只与金属边框10的部分侧边框连接,这样,金属边框10通过地板40可以实现接地的目的。当然,上述地板40也可以被称作为主上、框体,可以用于固定印制电路板等部件。
可选地,参见图3,所述馈电通孔12的数量为N个,且所述馈电通孔12与所述馈电针30的数量一一对应,所述N为大于1的整数。
其中,由于N为大于1的整数,则馈电通孔12的数量为至少两个,且每一个馈电通孔12内均穿设有馈电针30,即可以理解为馈电通孔12与馈电针30的数量为一一对应的,则容置槽11内设置有至少两根馈电针30,这样,可以构成多极化,增强天线的辐射性能。
需要说明的是,作为一种可选的实施方式,至少两根馈电针30可以与同一个信号源电连接;作为另一种可选的实施方式,每一根馈电针30均可以对应连接一个信号源,即当馈电针30的数量为N个,则信号源的数量也为N个,且馈电针30和信号源为一一对应。
当N为2时,两个馈电通孔12内的馈电针30可以构成极化,即两个馈电通孔12内的两根馈电针30可以为一组,且每组内的两根馈电针30构成极化,增加天线的无线连接能力,减少通信断线的机率,增加通信效果和用户体验。例如:当一组内的两根馈电针30构成一对差分馈电端口时,则该组内 的两根馈电针30极化。
需要说明的是,一根馈电针30也可以单独构成极化,则此时两根馈电针30可以构成两个极化,上述两个极化也可以被称作为双极化。这样,同样可以增加天线的无线连接能力,减少通信断线的机率,增加通信效果和用户体验。
本发明实施例中,馈电通孔12的数量为至少两个,且馈电针30的数量与馈电通孔12的数量为一一对应,从而增强了天线的辐射性能。
可选地,所述馈电针30构成至少一对差分馈电端口。
需要说明的是,上述N个馈电针30可以构成至少一对差分馈电端口,而构成一对差分馈电端口的两个馈电针30上的输入信号的幅度相等,且相位相差180度。
需要说明的是,差分馈电端口的数量在此不做限定,例如:馈电针30的数量为4个,则4个馈电针30中有2个馈电针30可以构成1对差分馈电端口,而另外的2个馈电针30则不构成差分馈电端口;当然,上述4个馈电针30也可以分别构成2对差分馈电端口。
另外,依次连接上述4个馈电针30的位置可以得到一个矩形,而上述4个馈电针30可以分别位于矩形的1个直角所在的位置,而构成1对差分馈电端口的2个馈电针30可以分别位于矩形的对角线所连接的2个直角位置。
作为一种可选的实施方式,N个所述馈电通孔12中每两个所述馈电通孔12组成一个通孔组,每个所述通孔组包括的两个馈电通孔12内设置的馈电针30构成差分馈电端口。
其中,每个通孔组包括的两个馈电通孔12内设置的馈电针30构成差分馈电端口,即上述通孔组包括两个馈电通孔12,且每个馈电通孔12内均穿设有一根馈电针30,可以理解为:每个通孔组内包括两根馈电针30,而上述两根馈电针30构成差分馈电端口,即上述两根馈电针30的输入信号的幅度相等,且相位相差180度。
而上述两根馈电针30可以均连接至同一个信号源上,从而可以更好的保证上述馈电针30的输入信号的幅度相等。另外,该信号源可以为毫米波信号源。
需要说明的是,馈电通孔可以包括两个通孔组,且一个通孔组中的两个馈电通孔12可以位于同一水平方向上,且该通孔组中的两个馈电通孔12之间的连线可以为第一连线(例如:图3中B连线);而另一个通孔组中的两个馈电通孔12可以位于同一竖直方向上,且该通孔组中的两个馈电通孔12之间的连线可以为第二连线(例如:图3中C连线)。第一连线和第二连线相交。可选地,第一连线和第二连线的相交位置可以位于容置槽11的槽底的中间位置。这样,通过上述两个通孔组内的设置的馈电针30可以形成多进多出(Multiple Input Multiple Output,MIMO)功能,同时,还可以构成双极化,增加了天线的无线连接能力,减少了通信断线的机率,提升了通信效果和用户体验。
本发明实施例中,由于每个通孔组中包括的两根馈电针30构成差分馈电端口,这样,可以解决介质谐振天线方向图随着频率变化这一问题,保证天线的最大辐射方向一致,同时提高双极化的极化隔离度,进而增强了天线的辐射性能。
可选地,N个所述馈电通孔12均开设于所述容置槽11的槽底。
本发明实施例中,由于馈电通孔12均开设于容置槽11的槽底,降低了加工难度,同时还可以使得N个馈电针30均可以集中分布于容置槽11的槽底,从而使得天线的最大辐射方向可以朝向背离容置槽11的槽底的一侧方向,进而进一步加强天线的辐射性能。
可选地,参见图1、3、4和5,所述第一绝缘介质体20与所述容置槽11的侧壁之间还设置有第二绝缘介质体50,且所述第二绝缘介质体50环绕所述第一绝缘介质体20设置。
其中,图4可以被认为是图3中所示电子设备各部件的装配后对应的截面示意图,而图5可以被认为是图2中A区域的另一种结构放大图。
其中,第二绝缘介质体50的介电常数可以小于第一绝缘介质体20的介电常数。可以选择介电常数较高的材料制造第一绝缘介质体20(例如:通常可以选择介电常数大于10的材料),而选择介电常数较低的材料制造第二绝缘介质体50(例如:通常可以选择介电常数小于10的材料)。这样,可以使得天线激励起介质谐振模式以及容置槽11的谐振模式,从而更好的增加天线 的带宽。
当信号源为毫米波信号源时,参见图6,图6为此时介质谐振天线的反射系数图,从图6中可知:天线的带宽可以达到25.9GHz-41.6GHz,基本覆盖第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)已经定义的n257,n258,n260,n261频段,即可以覆盖全球主流第五代移动通信技术(5th generation mobile networks,5G)毫米波频段,从而提升了用户的移动漫游体验。另外,还可以参见图7和图8,图7为介质谐振天线在28GHz时的方向图,而图8为介质谐振天线在39GHz时的方向图。
本发明实施例中,第一绝缘介质体20与容置槽11的侧壁之间还设置有第二绝缘介质体50,这样,可以增强对第一绝缘介质体20的固定效果。
可选地,所述第一绝缘介质体20的介电常数大于所述第二绝缘介质体50的介电常数。这样,即第一绝缘介质体20的介电常数可以较高,从而可以激励起介质谐振模式以及容置槽11的谐振模式,从而扩展了介质谐振天线的带宽,提升通信效果。
作为一种可选的实施方式,所述第二绝缘介质体50分别与所述容置槽11的侧壁和所述第一绝缘介质体20抵接。
本发明实施例中,第二绝缘介质体50分别与容置槽11的侧壁和第一绝缘介质体20抵接,这样,可以增强对第一绝缘介质体20的固定效果,避免第一绝缘介质体20朝向容置槽11的侧壁倾斜的现象的发生。
可选地,参见图1、3和4,所述第一绝缘介质体20上背离所述容置槽11的槽底的表面上层叠设置有第三绝缘介质体60。
其中,作为一种可选的实施方式,第三绝缘介质体60用于封闭容置槽11,即第三绝缘介质体60的边缘可以分别与容置槽11的侧壁抵接,而第三绝缘介质体60可以位于容置槽11的开口处,这样,第三绝缘介质体60可以与金属边框10的表面位于同一水平面上,即保证了金属边框10的完整度。
其中,第三绝缘介质体60可以分别与第一绝缘介质体20和第二绝缘介质体50抵接,这样,可以使得对第三绝缘介质体60的支撑效果较好。
本发明实施例中,通过设置第三绝缘介质体60,从而可以对第一绝缘介质体20和第二绝缘介质体50形成保护。另外,当第三绝缘介质体60用于封 闭容置槽11时,第三绝缘介质体60同时也可以保证金属边框10的表面的完整性,另外还可以起到防水防尘效果。
需要说明的是,第三绝缘介质体60内部可以设置有中空区域,而第一绝缘介质体20背离容置槽11的槽底的表面上可以形成凸起,且该凸起可以容置于上述中空区域内。这样,可以增强第三绝缘介质体60和第一绝缘介质体20之间的连接效果。
可选地,所述第一绝缘介质体20的介电常数大于所述第三绝缘介质体60的介电常数。
本发明实施例中,由于第一绝缘介质体20的介电常数大于第三绝缘介质体60的介电常数,这样,同样可以扩展天线的带宽,从而提升通信效果。
可选地,所述第一绝缘介质体20与所述容置槽11的侧壁之间还设置有第二绝缘介质体50,且所述第二绝缘介质体50环绕所述第一绝缘介质体20设置,所述第三绝缘介质体60的介电常数大于或等于所述第二绝缘介质体50的介电常数。
其中,可以理解的是,本实施例中的第二绝缘介质体50与上述实施例中的第二绝缘介质体50可以为同一个绝缘介质体。
需要说明的是,作为一种可选的实施方式,第二绝缘介质体50的介电常数可以为2.5,损耗角正切可以为0.005;第三绝缘介质体60的介电常数可以为3,损耗角正切可以为0.01;第一绝缘介质体20的介电常数可以为21,损耗角正切可以为0.005。
本发明实施例中,由于第三绝缘介质体60的介电常数大于或等于第二绝缘介质体50的介电常数,这样,在保证第三绝缘介质体60的介电常数较低的情况下,可以保证第三绝缘介质体50的连接强度较好,从而避免第三绝缘介质体60的连接强度较差导致第三绝缘介质体60易被损坏的现象的发生。
可选地,参见图5,所述金属边框10上开设有M个所述容置槽11,每一个所述容置槽11内均设置有所述第一绝缘介质体20和所述馈电针30,M个所述容置槽11阵列分布,所述M为大于1的整数。
本发明实施例中,由于金属边框10开设有M个所述容置槽11,且每一个容置槽11内均设置有第一绝缘介质体20和馈电针30,这样,增加了天线 的数量,从而可以进一步增强电子设备的辐射性能。同时,M个容置槽11阵列分布,可以使得容置槽11的分布更加整洁。
需要说明的是,本发明实施例中给出的各个实施例可以应用于具有无线城际网路(WMAN)、无线广域网路(WWAN)、无线区域网路(WLAN)、无线个人网路(WPAN)、多输入多输出(MIMO)、射频识别(RFID),甚至是近场通信(NFC)、无线充电(WPC),或FM等功能的电子设备上;当然,还可以应用于可佩戴的电子器件(如助听器或心率调整器等)上。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (10)

  1. 一种电子设备,包括:金属边框、第一绝缘介质体和馈电针,所述金属边框上开设有容置槽,所述第一绝缘介质体至少部分设置于所述容置槽内,所述容置槽内开设有馈电通孔,所述馈电针通过所述馈电通孔穿设于所述第一绝缘介质体内,在所述馈电针输入的激励信号的作用下,所述第一绝缘介质体发生电磁辐射。
  2. 根据权利要求1所述的电子设备,其中,所述馈电通孔的数量为N个,且所述馈电通孔与所述馈电针的数量一一对应,所述N为大于1的整数。
  3. 根据权利要求2所述的电子设备,其中,所述馈电针构成至少一对差分馈电端口。
  4. 根据权利要求2或3所述的电子设备,其中,N个所述馈电通孔均开设于所述容置槽的槽底。
  5. 根据权利要求1所述的电子设备,其中,所述第一绝缘介质体与所述容置槽的侧壁之间还设置有第二绝缘介质体,且所述第二绝缘介质体环绕所述第一绝缘介质体设置。
  6. 根据权利要求5所述的电子设备,其中,所述第一绝缘介质体的介电常数大于所述第二绝缘介质体的介电常数。
  7. 根据权利要求1所述的电子设备,其中,所述第一绝缘介质体上背离所述容置槽的槽底的表面上层叠设置有第三绝缘介质体。
  8. 根据权利要求7所述的电子设备,其中,所述第一绝缘介质体的介电常数大于所述第三绝缘介质体的介电常数。
  9. 根据权利要求8所述的电子设备,其中,所述第一绝缘介质体与所述容置槽的侧壁之间还设置有第二绝缘介质体,且所述第二绝缘介质体环绕所述第一绝缘介质体设置,所述第三绝缘介质体的介电常数大于或等于所述第二绝缘介质体的介电常数。
  10. 根据权利要求1所述的电子设备,其中,所述金属边框上开设有M个所述容置槽,每一个所述容置槽内均设置有所述第一绝缘介质体和所述馈电针,M个所述容置槽阵列分布,所述M为大于1的整数。
PCT/CN2021/086170 2020-04-10 2021-04-09 一种电子设备 WO2021204247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280833.3 2020-04-10
CN202010280833.3A CN111478045A (zh) 2020-04-10 2020-04-10 一种电子设备

Publications (1)

Publication Number Publication Date
WO2021204247A1 true WO2021204247A1 (zh) 2021-10-14

Family

ID=71752131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086170 WO2021204247A1 (zh) 2020-04-10 2021-04-09 一种电子设备

Country Status (2)

Country Link
CN (1) CN111478045A (zh)
WO (1) WO2021204247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976596A (zh) * 2022-05-24 2022-08-30 深圳市信维通信股份有限公司 天线模组和通信设备以及天线模组的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478045A (zh) * 2020-04-10 2020-07-31 维沃移动通信有限公司 一种电子设备
CN112467389B (zh) * 2020-11-24 2023-09-05 维沃移动通信有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248890A1 (en) * 2010-04-13 2011-10-13 Samsung Electro-Mechanics Co ., Ltd. Dielectric resonator antenna embedded in multilayer substrate for enhancing bandwidth
CN106684533A (zh) * 2016-12-21 2017-05-17 华南理工大学 介质辐射单元及天线装置
CN110474158A (zh) * 2019-08-30 2019-11-19 维沃移动通信有限公司 一种天线单元及终端设备
CN111478045A (zh) * 2020-04-10 2020-07-31 维沃移动通信有限公司 一种电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104538737A (zh) * 2015-01-28 2015-04-22 中国人民解放军国防科学技术大学 一种宽频带低剖面全向辐射垂直线极化介质谐振天线
US10476164B2 (en) * 2015-10-28 2019-11-12 Rogers Corporation Broadband multiple layer dielectric resonator antenna and method of making the same
US10637127B2 (en) * 2016-11-01 2020-04-28 Lg Electronics Inc. Mobile terminal having an antenna including dielectrics on a circuit board
CN109546332B (zh) * 2018-11-27 2020-03-31 西安交通大学 一种低频段多极化模式的天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248890A1 (en) * 2010-04-13 2011-10-13 Samsung Electro-Mechanics Co ., Ltd. Dielectric resonator antenna embedded in multilayer substrate for enhancing bandwidth
CN106684533A (zh) * 2016-12-21 2017-05-17 华南理工大学 介质辐射单元及天线装置
CN110474158A (zh) * 2019-08-30 2019-11-19 维沃移动通信有限公司 一种天线单元及终端设备
CN111478045A (zh) * 2020-04-10 2020-07-31 维沃移动通信有限公司 一种电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WALSH A G; DEYOUNG C S; LONG S A: "An Investigation of Stacked and Embedded Cylindrical Dielectric Resonator Antennas.", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol. 5, no. 1, 1 December 2006 (2006-12-01), pages 130 - 133, XP011142112, ISSN: 1536-1225, DOI: 10.1109/LAWP.2006.873935 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976596A (zh) * 2022-05-24 2022-08-30 深圳市信维通信股份有限公司 天线模组和通信设备以及天线模组的制造方法

Also Published As

Publication number Publication date
CN111478045A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
US10418725B2 (en) Dual-polarized antenna and antenna array
US11973280B2 (en) Antenna element and terminal device
WO2021204247A1 (zh) 一种电子设备
WO2022002139A1 (zh) 电子设备
CN108886202B (zh) 包含变极化相控阵列天线的无线通信系统
JP7239743B2 (ja) アンテナユニット及び端末機器
KR20200004870A (ko) 통신 장치
KR102554581B1 (ko) 안테나 구조 및 고주파 다중 대역 무선 통신 단말
CN110212283A (zh) 一种天线单元及终端设备
CN110098492A (zh) 一种双极化天线、射频前端装置和通信设备
CN207353447U (zh) 多极化辐射振子及天线
US10148002B2 (en) Horizontally-polarized antenna for microcell coverage having high isolation
US20200203834A1 (en) Perpendicular end fire antennas
CN113540808B (zh) 一种电子设备及天线装置
CN111478048A (zh) 一种天线模组及电子设备
CN213278390U (zh) 天线模组及电子设备
WO2021083212A1 (zh) 天线单元及电子设备
WO2021083220A1 (zh) 天线单元及电子设备
WO2021083213A1 (zh) 天线单元及电子设备
WO2021083218A1 (zh) 天线单元及电子设备
CN114696080A (zh) 端射天线、封装天线和通讯设备
US11682846B2 (en) Antenna device with cell structure and array of antenna devices
CN114336016A (zh) 一种天线结构及电子设备
CN110600867A (zh) 一种天线单元及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784694

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21784694

Country of ref document: EP

Kind code of ref document: A1