WO2021204149A1 - 边链路数据传输方法、装置、设备以及存储介质 - Google Patents

边链路数据传输方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2021204149A1
WO2021204149A1 PCT/CN2021/085809 CN2021085809W WO2021204149A1 WO 2021204149 A1 WO2021204149 A1 WO 2021204149A1 CN 2021085809 W CN2021085809 W CN 2021085809W WO 2021204149 A1 WO2021204149 A1 WO 2021204149A1
Authority
WO
WIPO (PCT)
Prior art keywords
side link
configuration authorization
base station
authorization timer
timer
Prior art date
Application number
PCT/CN2021/085809
Other languages
English (en)
French (fr)
Inventor
刘星
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2021204149A1 publication Critical patent/WO2021204149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a side link data transmission method, device, equipment, and storage medium.
  • the sending device does not directly send communication data to the receiving device through the network device. Since the side link transmission resources of the sending device are still allocated by the base station, the sending device relies on the base station to schedule retransmissions.
  • the sending device increases the interaction with the receiving device, which will cause the transmission delay of the sending device and the scheduling retransmission delay. .
  • the embodiments of the present application provide a side link data transmission method, device, device, and storage medium, which can reduce the transmission delay of the sending device and the scheduling retransmission delay, and have high applicability.
  • an embodiment of the present application provides a side link data transmission method, and the method includes:
  • a negative response is received, and the negative response is sent by the receiving device to indicate that the receiving device fails to decode the communication data;
  • the first configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the first configuration authorization timer.
  • the above method further includes:
  • the second configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the second configuration authorization timer.
  • the foregoing method further includes:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above method further includes:
  • the third configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the third configuration authorization timer.
  • the above method further includes:
  • the fourth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the fourth configuration authorization timer.
  • the above method further includes:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • an embodiment of the present application provides a side link data transmission method, which includes:
  • the above method further includes:
  • the sixth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the sixth configuration authorization timer.
  • the foregoing method further includes:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above method further includes:
  • the seventh configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the seventh configuration authorization timer.
  • the above method further includes:
  • the eighth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the eighth configuration authorization timer.
  • the above method further includes:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • an embodiment of the present application provides a side link data transmission device, which includes:
  • the first receiving module is configured to receive a negative response, and the negative response is sent by a receiving device to indicate that the receiving device fails to decode the communication data;
  • the first processing module is configured to start the first configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the first configuration authorization timer.
  • the above-mentioned first processing module is further configured to:
  • the second configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the second configuration authorization timer.
  • the above-mentioned apparatus further includes a first sending module, and the above-mentioned first sending module is further configured to:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above-mentioned first processing module is further configured to:
  • the third configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the third configuration authorization timer.
  • the above-mentioned first processing module is further configured to:
  • the fourth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the fourth configuration authorization timer.
  • the above-mentioned first receiving module is further configured to:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • an embodiment of the present application provides a side link data transmission device, which includes:
  • the second sending module is used to send a negative response to the base station, where the above-mentioned negative response is used to indicate that the receiving device fails to decode the communication data;
  • the second processing module starts the fifth configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the fifth configuration authorization timer.
  • the above-mentioned second processing module is further configured to:
  • the sixth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the sixth configuration authorization timer.
  • the above-mentioned second sending module is further configured to:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above-mentioned second processing module is further configured to:
  • the seventh configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the seventh configuration authorization timer.
  • the above-mentioned second processing module is further configured to:
  • the eighth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the eighth configuration authorization timer.
  • the foregoing apparatus further includes a second receiving module, and the foregoing second receiving module is further configured to:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • an embodiment of the present application provides a device, which includes a processor and a memory, and the processor and the memory are connected to each other.
  • the memory is used to store a computer program that supports the terminal device to execute the method provided by any one of the foregoing first and second aspects and/or the first and second aspects.
  • the computer program includes program instructions, and the processor It is configured to call the above program instructions to execute the method provided in any one of the possible implementation manners of the above first and second aspects and/or the first and second aspects.
  • the embodiments of the present application provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the first and second aspects and/or the first aspect. , The method provided by any possible implementation of the second aspect.
  • the sending device in the side link communication can have enough time to wait for the base station to schedule retransmission, reducing the transmission delay of the sending device and the scheduling retransmission delay, and has high applicability.
  • Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the first flow of a side link data transmission method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first scenario of side link data transmission provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second flow of a side link data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a second scenario of side link data transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the third process of a side link data transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a third scenario of side link data transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the fourth process of a side link data transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fourth scenario of side link data transmission provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fifth process of a side link data transmission method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fifth scenario of side link data transmission provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a side link data transmission device provided by an embodiment of the present application.
  • FIG. 13 is another schematic structural diagram of a side link data transmission device provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • user equipment 120 communicates with a base station (Base Station, BS) 110.
  • Base Station Base Station
  • the link between the user equipment 120 and the base station 110 is called an uplink (Uplink, UL).
  • DL Downlink
  • the user equipment 120 directly communicates with the user equipment 130, and the link between the user equipment 120 and the user equipment 130 is called a direct link. (sidelink, SL).
  • the user equipment 120 is referred to as a transmitting equipment (Transmitter User Equipment, Tx UE), and the user equipment 120 is referred to as a receiving equipment (Receiver User Equipment, Rx UE).
  • Tx UE transmitting equipment
  • Rx UE receiving equipment
  • the user equipment 120 may send communication data to the user equipment 130 based on the side link resources allocated by the base station 110.
  • the transmission resources or SL grant on the side link can be allocated by the base station 110 through Downlink Control Information (DCI), that is, the base station 110 dynamically schedules the transmission resources on the side link; it can also be passed by the base station 110 Periodic resources allocated by radio resource control (Radio Resource Control, RRC) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the user equipment 120 In the uplink, the user equipment 120 directly sends the communication data to the base station 110, and the base station 110 can judge whether it needs to be retransmitted according to whether the decoding is successful. Since the side link transmission resources are allocated by the base station 110, the user equipment 120 needs to wait for the user equipment 130 to send the communication data to the user equipment 130 based on the side link transmission resources. After the PSFCH sends a negative acknowledgement (non-acknowledge, NACK), it forwards the negative acknowledgement to the base station 110 through the Physical Uplink Control Channel (PUCCH), so that the base station 110 can schedule the user equipment 120 to retransmit.
  • NACK Non-acknowledge
  • the network structure in the embodiments of the present application can be applied to 5G (5Generation) communication systems, 4G and 3G communication systems, and various new communication systems in the future, such as 6G and 7G.
  • the network architecture provided in the embodiments of this application includes, but is not limited to, a relay network architecture, a dual-link architecture, a vehicle-to-everything architecture, etc., which can be specifically determined according to actual application scenarios. Do restrictions.
  • the base station in the embodiment of the present application is a device deployed in a radio access network (Radio Access Network, RAN) to provide wireless communication functions.
  • a radio access network Radio Access Network, RAN
  • equipment that provides base station functions in 2G networks such as Base Transceiver Station (BTS); equipment that provides base station functions in 3G networks, such as NodeB; equipment that provides base station functions in 4G networks, For example, evolved NodeB (eNB); in Wireless Local Area Networks (WLAN), the equipment that provides base station functions is access point (AP), 5G New Radio (NR) ) In the gNB, which provides base station functions, and the evolving Node B (ng-eNB).
  • BTS Base Transceiver Station
  • NodeB equipment that provides base station functions in 3G networks
  • NodeB equipment that provides base station functions in 4G networks
  • eNB evolved NodeB
  • WLAN Wireless Local Area Networks
  • AP access point
  • NR 5G New Radio
  • the gNB and the terminal use NR technology for communication
  • the ng-eNB and the terminal use the evolved UMTS Terrestrial Radio Access (Evolved Universal Terrestrial Radio Access, E-UTRA) technology for communication.
  • E-UTRA evolved Universal Terrestrial Radio Access
  • Both gNB and ng-eNB can be connected.
  • the base station in the embodiment of the present application also includes equipment that provides base station functions in a new communication system in the future, which can be specifically determined according to actual application scenarios, and is not limited here.
  • the aforementioned core network may be an evolved packet core (EPC), 5G Core Network (5G core network), or a new type of core network in the future communication system.
  • the 5G Core Network is composed of a set of devices, and implements access and mobility management functions (Access and Mobility Management Function, AMF) for functions such as mobility management, and provides functions such as packet routing and forwarding and QoS (Quality of Service) management.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • P-GW Packed Management Function
  • P-GW Packed Data Network Gateway
  • the user equipment in the embodiments of this application may be an access terminal, a user unit, a user station, a mobile station, a mobile station (Mobile Station, MS), a remote station, a remote terminal, a mobile device, and a user terminal , Terminal Equipment (Terminal Equipment), wireless communication equipment, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., can also be specifically determined according to actual application scenarios, and there is no restriction here.
  • PLMN Public Land Mobile Network
  • FIG. 2 is a schematic diagram of the first flow of the side link data transmission method provided by an embodiment of the present application.
  • the side link data transmission method shown in FIG. 2 may include the following step S201.
  • S201 Receive a negative response and start a first configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the first configuration authorization timer.
  • the sending device can send communication data to the receiving device based on the side link transmission resources, and the receiving device can decode the communication data and after the decoding fails, send a negative to the sending device through the physical side link feedback channel. answer.
  • a negative response is used to indicate that the receiving device fails to decode the communication data.
  • the sending device forwards the negative response to the base station through the physical uplink control channel to request the base station to schedule retransmission.
  • the first configuration authorization timer can be started to not use the side link transmission resources that belong to the same hybrid automatic repeat request (Hybrid Automatic Repeat Request, HARQ) process during the running time of the first configuration authorization timer. Pre-configured authorization for side links.
  • Hybrid Automatic Repeat Request Hybrid Automatic Repeat Request
  • the configuration authorization timer activated by the sending device includes the activation of the configuration authorization timer by the sending device in the non-running state, and also includes the restart of the configuration authorization timer by the sending device.
  • the action of starting or restarting the configuration authorization timer for the sending device is simply referred to as starting the configuration authorization timer, which will not be described in detail below.
  • FIG. 3 is a schematic diagram of a first scenario of side link data transmission provided by an embodiment of the present application.
  • the sending device starts the first configuration authorization timer after receiving the negative response sent by the receiving device through the physical side link feedback channel.
  • the first configuration authorization timer is configured by the downlink control information sent by the base station, that is, the base station configures the sending device through the downlink control information to start the first configuration authorization timer after receiving a negative response.
  • the time period from when the sending device receives the negative response to sending the negative response to the base station is the running time of the first configuration authorization timer.
  • the running time of the first configuration authorization timer is configured by the radio resource control signaling sent by the base station.
  • the running time of the first configuration authorization timer may also be within the time period from when the negative response is received to the first preset time point after the negative response is sent to the base station, so as to ensure that the base station will not schedule During the period when the sending device performs retransmission or receives the new side link transmission resource allocated by the base station, it does not use the side link pre-configuration authorization that belongs to the same hybrid automatic repeat request process as the side link transmission resource for transmitting communication data.
  • the aforementioned preset time point can be determined according to actual application scenarios, and is not limited here.
  • FIG. 4 is a schematic diagram of the second flow of the side link data transmission method provided by an embodiment of the present application.
  • the side link data transmission method shown in FIG. 4 may include the following steps S401 to S402.
  • S401 Receive a negative response and start a first configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the first configuration authorization timer.
  • step S401 can refer to the implementation manner shown in step S201 in FIG. 2, and details are not described herein again.
  • S402 Send a negative response to the base station, and start the second configuration authorization timer, so as not to use the side link pre-configuration authorization during the running time of the second configuration authorization timer.
  • the sending device after receiving the negative response sent by the receiving device through the physical side link feedback channel, the sending device needs to forward the negative response to the base station through the physical uplink control channel, so that the base station can reassign a new side link. Road transmission resources. Since the sending device is sending a negative response to the base station, it takes a certain time for the base station to re-allocate new side link transmission resources to the sending device, or to determine that the base station no longer performs retransmission scheduling.
  • the sending device is sending to the base station through the physical uplink control channel.
  • the second configuration authorization timer can be started, so as not to use the side link pre-configuration that belongs to the same hybrid automatic repeat request process as the side link transmission resource that transmits the communication data during the running time of the second configuration authorization timer Authorization.
  • FIG. 5 is a schematic diagram of a second scenario of side link data transmission provided by an embodiment of the present application.
  • the sending device may start the second configuration authorization timer.
  • the second configuration grant timer is configured by the downlink control information sent by the base station, that is, the base station configures the sending device through the downlink control information to start the second configuration grant timer after sending a negative response to the base station through the physical uplink control channel.
  • the running time of the second configuration authorization timer is the time period from the second preset time point after sending a negative response to the base station.
  • the running time of the second configuration authorization timer can ensure that the sending device can successfully transfer
  • the negative response is sent to the base station to ensure that the base station will not schedule the sending device to retransmit or receive new side link transmission resources allocated by the base station.
  • the running time of the second configuration authorization timer is configured by the radio resource control signaling sent by the base station.
  • FIG. 6 is a schematic diagram of the third process of the side link data transmission method provided by an embodiment of the present application.
  • the side link data transmission method shown in FIG. 6 may include the following steps S601 to S603.
  • the sending device may send communication data to the receiving device based on the side link transmission resources.
  • the side link transmission resources may be dynamically allocated by the base station through downlink control information, or may be periodic resources configured by the base station through radio resource control signaling, which can be specifically determined based on actual application scenarios, and is not limited here.
  • the sending device Since it takes a certain amount of time for the sending device to send communication data to the receiving device based on the side link transmission resources after receiving the side link transmission resources allocated by the base station, and if the sending device fails to send the communication data to the receiving device, it uses the The side link transmission resources that send the communication data belong to the same hybrid automatic repeat request process, which will cause the communication data to be cleared. Therefore, after receiving the side link transmission resource allocated by the base station, the sending device can start the third configuration authorization timer so as not to use the side link transmission resource for sending the communication data during the running time of the third configuration authorization timer It belongs to the same hybrid automatic retransmission request process.
  • S602. Receive a negative response and start a first configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the first configuration authorization timer.
  • S603 Send a negative response to the base station, and start the second configuration authorization timer, so as not to use the side link pre-configuration authorization during the running time of the second configuration authorization timer.
  • steps S602 to S603 can refer to the implementation manners shown in steps S401 to S402 in FIG. 4, and details are not described herein again.
  • FIG. 7 is a schematic diagram of a third scenario of side link data transmission provided by an embodiment of the present application.
  • the sending device after receiving the side link transmission resources allocated by the base station, the sending device can start the third configuration authorization timer, and the base station configures the sending device to start after receiving the side link transmission resources allocated by the base station through downlink control information.
  • the authorization timer configures the authorization timer.
  • the running time of the third configuration authorization timer is from receiving the side link transmission resource allocated by the base station to sending communication data to the receiving device.
  • the running time of the third configuration authorization timer is configured by the radio resource control signaling sent by the base station.
  • FIG. 8 is a schematic diagram of the fourth process of the side link data transmission method provided by an embodiment of the present application.
  • the side link data transmission method shown in FIG. 8 may include the following steps S801 to S804.
  • step S801 can refer to the implementation manner shown in step S601 in FIG. 6, which will not be repeated here.
  • S802 Send communication data to the receiving device based on the side link transmission resource, and start the fourth configuration authorization timer, so as not to use the side link pre-configuration authorization during the running time of the fourth configuration authorization timer.
  • the sending device since the sending device sends the communication data to the receiving device, if the sending device uses the side link to transmit the communication data before the communication data is successfully sent or before the receiving device decodes the communication data successfully.
  • the transmission resources belong to the pre-configured authorization of the same hybrid automatic retransmission request process, which will cause the previously sent communication data to be cleared, or cause the sending device to wait for a long time for retransmission scheduling. Therefore, after the sending device sends communication data to the receiving device based on the side link transmission resources, it can start the fourth configuration authorization timer so as not to use the side link that transmits the communication data during the running time of the fourth configuration authorization timer.
  • the transmission resource belongs to other transmission resources of the same hybrid automatic repeat request process.
  • S804 Send a negative response to the base station, and start the second configuration authorization timer, so as not to use the side link pre-configuration authorization during the running time of the second configuration authorization timer.
  • steps S803 to S804 can refer to the implementation manners shown in steps S602 to S603 in FIG. 6, and details are not described herein again.
  • FIG. 9 is a schematic diagram of a fourth scenario of side link data transmission provided by an embodiment of the present application.
  • the sending device can start the fourth configuration authorization timer after sending communication data to the receiving device based on the side link transmission resources, and the fourth configuration authorization timer is configured by the downlink control information sent by the base station, that is, the base station uses the downlink control information configuration.
  • the control information configuration sending device starts the fourth configuration authorization timer after sending the communication data to the receiving device.
  • the running time of the fourth configuration authorization timer is from when the communication data is sent to the receiving device to when the receiving device sends a negative response indicating decoding failure, or until a certain period of time (specifically can be determined according to the actual application scenario, here No restriction) to ensure that the receiving device decodes successfully.
  • the running time of the fourth configuration authorization timer is configured by the radio resource control signaling sent by the base station.
  • the sending device in the side link communication can have enough time to wait for the base station to schedule retransmission, reducing the transmission delay of the sending device and the scheduling retransmission delay, and has high applicability.
  • FIG. 10 is a schematic diagram of a fifth process of a side link data transmission method provided by an embodiment of the present application.
  • the side link data transmission method shown in FIG. 10 may include the following step S101.
  • the base station allocates side link transmission resources to the sending device, and the sending device sends communication data to the receiving device based on the side link transmission resources.
  • the receiving device fails to decode the communication data, it will send a negative response to the sending device through the physical side link feedback channel to indicate that the receiving device has failed to decode the communication data.
  • the sending device can send the negative response to the base station through the physical uplink control channel so that the base station allocates new side link transmission resources. Since the sending device is sending a negative response to the base station, it takes a certain time for the base station to re-allocate new side link transmission resources to the sending device or to determine that the base station no longer performs retransmission scheduling.
  • the sending device in order to ensure that the sending device can successfully send a negative response to the base station, and to ensure that the base station does not schedule the sending device to retransmit or the receiving device can receive the new side link transmission resources allocated by the base station, the sending device is using the physical uplink control channel After sending a negative response to the base station, the fifth configuration authorization timer can be started, so as not to use the side link transmission resources that belong to the same hybrid automatic repeat request process during the running time of the fifth configuration authorization timer. Road pre-configuration authorization.
  • FIG. 11 is a schematic diagram of a fifth scenario of side link data transmission provided by an embodiment of the present application.
  • the sending device after sending a negative response to the base station, the sending device can start the fifth configuration authorization timer.
  • the fifth configuration grant timer is configured by the downlink control information sent by the base station, that is, the base station configures the sending device through the downlink control information to start the fifth configuration grant timer after sending a negative response to the base station through the physical uplink control channel.
  • the running time of the fifth configuration authorization timer is the time period from the fifth preset time point after sending a negative response to the base station.
  • the running time of the fifth configuration authorization timer can ensure that the sending device can successfully transfer
  • the negative response is sent to the base station to ensure that the base station will not schedule the sending device to retransmit or receive new side link transmission resources allocated by the base station.
  • the running time of the fifth configuration authorization timer is configured by the radio resource control signaling sent by the base station.
  • the sixth configuration authorization timer can be started to be within the running time of the sixth configuration authorization timer Do not use side link pre-configuration authorization.
  • the specific implementation manner of the sixth configuration authorization timer refer to the implementation manner shown in step S201 in FIG. 2, and details are not described herein again.
  • the sending device may also start the seventh configuration authorization timer after receiving the side link transmission resources allocated by the base station, so as not to use the side link pre-configuration authorization during the running time of the seventh configuration authorization timer.
  • the sending device may start the eighth configuration authorization timer after sending communication data to the receiving device based on the side link transmission resources, so as not to use the side link pre-configuration authorization during the running time of the eighth configuration authorization timer.
  • the seventh configuration authorization timer refer to the implementation manner shown in step S601 in FIG. 6, and details are not described herein again.
  • the specific implementation manner of the eighth configuration authorization timer refer to the implementation manner shown in step S802 in FIG. 8, and details are not described herein again.
  • the sending device in the side link communication can have enough time to wait for the base station to schedule retransmission, reducing the transmission delay of the sending device and the scheduling retransmission delay, and has high applicability.
  • FIG. 12 is a schematic structural diagram of a side link data transmission apparatus provided by an embodiment of the present application.
  • the device 1 provided in the embodiment of the present application includes:
  • the first receiving module 11 is configured to receive a negative response, and the negative response is sent by a receiving device to indicate that the receiving device fails to decode the communication data;
  • the first processing module 12 is configured to start the first configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the above-mentioned first configuration authorization timer.
  • the above-mentioned first processing module 12 is further configured to:
  • the second configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the second configuration authorization timer.
  • the foregoing apparatus 1 further includes a first sending module 13, and the foregoing first sending module 13 is further configured to:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above-mentioned first processing module 12 is further configured to:
  • the third configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the third configuration authorization timer.
  • the above-mentioned first processing module 12 is further configured to:
  • the fourth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the fourth configuration authorization timer.
  • the above-mentioned first receiving module 11 is further configured to:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • the above-mentioned device 1 can execute the implementation manners provided in each step in Figure 2, Figure 4, Figure 6 and/or Figure 8 through its built-in functional modules.
  • Ways, I won’t repeat them here.
  • the sending device in the side link communication can have enough time to wait for the base station to schedule retransmission, reducing the transmission delay of the sending device and the scheduling retransmission delay, and has high applicability.
  • FIG. 13 is another schematic structural diagram of a side link data transmission apparatus provided by an embodiment of the present application.
  • the device 2 provided by the embodiment of the present application includes:
  • the second sending module 21 is configured to send a negative response to the base station, where the negative response is used to indicate that the receiving device fails to decode the communication data;
  • the second processing module 22 starts the fifth configuration authorization timer so as not to use the side link pre-configuration authorization during the running time of the fifth configuration authorization timer.
  • the above-mentioned second processing module 22 is further configured to:
  • the sixth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the sixth configuration authorization timer.
  • the above-mentioned second sending module 21 is further configured to:
  • the communication data is sent to the receiving device based on the side link transmission resource, and the side link transmission resource is allocated by the base station.
  • the above-mentioned second processing module 22 is further configured to:
  • the seventh configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the seventh configuration authorization timer.
  • the above-mentioned second processing module 22 is further configured to:
  • the eighth configuration authorization timer is started, so that the side link pre-configuration authorization is not used during the running time of the eighth configuration authorization timer.
  • the foregoing apparatus 2 further includes a second receiving module 23, and the foregoing second receiving module 23 is further configured to:
  • the side link pre-configuration authorization and the side link transmission resource belong to the same hybrid automatic repeat request process.
  • the foregoing device 2 can execute the implementation manners provided in each step in FIG. 10 through its built-in functional modules.
  • the foregoing device 2 can execute the implementation manners provided in each step in FIG. 10 through its built-in functional modules.
  • the implementation manners provided in the foregoing steps and details are not described herein again.
  • the sending device in the side link communication can have enough time to wait for the base station to schedule retransmission, reducing the transmission delay of the sending device and the scheduling retransmission delay, and has high applicability.
  • the device 1000 in this embodiment may include a processor 1001, a network interface 1004, and a memory 1005.
  • the device 1000 may also include a user interface 1003, and at least one communication bus 1002.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display screen (Display) and a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the memory 1005 may also be at least one storage device located far away from the foregoing processor 1001.
  • the memory 1005, which is a computer-readable storage medium may include an operating system, a network communication module, a user interface module, and a device control application program.
  • the network interface 1004 can provide network communication functions; and the user interface 1003 is mainly used to provide an input interface for the user; and the processor 1001 can be used to call the device control application stored in the memory 1005 ,
  • the side link output transmission method corresponding to Fig. 2, Fig. 4, Fig. 6, Fig. 8 and Fig. 10 which will not be repeated here.
  • the description of the beneficial effects of using the same method will not be repeated.
  • the aforementioned processor 1001 may be a central processing unit (CPU), and the processor may also be other general-purpose processors or digital signal processors (DSP). , Application specific integrated circuit (ASIC), ready-made programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory may include a read-only memory and a random access memory, and provides instructions and data to the processor. A part of the memory may also include a non-volatile random access memory. For example, the memory can also store device type information.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program and is executed by a processor to implement each step in FIG. 2, FIG. 4, FIG. 6, FIG. 8, and/or FIG. 10.
  • a computer-readable storage medium that stores a computer program and is executed by a processor to implement each step in FIG. 2, FIG. 4, FIG. 6, FIG. 8, and/or FIG. 10.
  • the foregoing computer-readable storage medium may be an internal storage unit of the task processing apparatus provided in any of the foregoing embodiments, such as a hard disk or memory of an electronic device.
  • the computer-readable storage medium may also be an external storage device of the electronic device, such as a plug-in hard disk, a smart media card (SMC), or a secure digital (SD) card equipped on the electronic device. Flash card, etc.
  • the above-mentioned computer-readable storage medium may also include magnetic disks, optical disks, read-only memory (ROM) or random access memory (RAM), etc.
  • the computer-readable storage medium may also include both an internal storage unit of the electronic device and an external storage device.
  • the computer-readable storage medium is used to store the computer program and other programs and data required by the electronic device.
  • the computer-readable storage medium can also be used to temporarily store data that has been output or will be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种边链路数据传输方法、装置、设备以及存储介质,该方法包括:接收否定应答,否定应答由接收设备发送,用于表示接收设备对通信数据解码失败;启动第一配置授权定时器,以在第一配置授权定时器的运行时间内不使用边链路预配置授权。采用本申请实施例,可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。

Description

边链路数据传输方法、装置、设备以及存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种边链路数据传输方法、装置、设备以及存储介质。
背景技术
随着移动通信的迅速发展,以基站为中心的传统蜂窝网络系统的通信方式存在了较大的局限性,因此设备到设备的通信模式日益受到广泛关注。
在物物直连通信模式下,发送设备不通过网络设备直接向接收设备发送通信数据。由于发送设备的边链路传输资源仍然由基站分配,因此发送设备依赖于基站进行调度重传。但是现有的物物直连(边链路传输)技术中,相较于传统的蜂窝网络,发送设备增加了与接收设备的交互,因此会造成发送设备的传输时延和调度重传时延。
发明内容
本申请实施例提供一种边链路数据传输方法、装置、设备以及存储介质,可减少发送设备的传输时延和调度重传时延,适用性高。
第一方面,本申请实施例提供一种边链路数据传输方法,该方法包括:
接收否定应答,上述否定应答由接收设备发送,用于表示上述接收设备对通信数据解码失败;
启动第一配置授权定时器,以在上述第一配置授权定时器的运行时间内不使用边链路预配置授权。
结合第一方面,在一种可能的实施方式中,上述方法还包括:
向基站发送上述否定应答;
启动第二配置授权定时器,以在上述第二配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第一方面,在一种可能的实施方式中,上述接收否定应答之前,上述方法还包括:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输资源由基站分配。
结合第一方面,在一种可能的实施方式中,上述方法还包括:
接收上述边链路传输资源;
启动第三配置授权定时器,以在上述第三配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第一方面,在一种可能的实施方式中,上述方法还包括:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第四配置授权定时器,以在上述第四配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第一方面,在一种可能的实施方式中,上述方法还包括:
在上述第二配置授权定时器运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
结合第一方面,在一种可能的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
第二方面,本申请实施例提供了一种边链路数据传输方法,该方法包括:
向基站发送否定应答,上述否定应答用于表示接收设备对通信数据解码失败;
启动第五配置授权定时器,以在上述第五配置授权定时器的运行时间内不使用边链路预配置授权。
结合第二方面,在一种可能的实施方式中,上述方法还包括:
接收否定应答,上述否定应答由上述接收设备发送;
启动第六配置授权定时器,以在上述第六配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第二方面,在一种可能的实施方式中,上述接收否定应答之前,上述方法还包括:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输 资源由基站分配。
结合第二方面,在一种可能的实施方式中,上述方法还包括:
接收上述边链路传输资源;
启动第七配置授权定时器,以在上述第七配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第二方面,在一种可能的实施方式中,上述方法还包括:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第八配置授权定时器,以在上述第八配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第二方面,在一种可能的实施方式中,上述方法还包括:
在上述第五配置授权定时器的运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
结合第二方面,在一种可能的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
第三方面,本申请实施例提供了一种边链路数据传输装置,该装置包括:
第一接收模块,用于接收否定应答,上述否定应答由接收设备发送,用于表示上述接收设备对通信数据解码失败;
第一处理模块,用于启动第一配置授权定时器,以在上述第一配置授权定时器的运行时间内不使用边链路预配置授权。
结合第三方面,在一种可能的实施方式中,上述第一处理模块还用于:
向基站发送上述否定应答;
启动第二配置授权定时器,以在上述第二配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第三方面,在一种可能的实施方式中,上述装置还包括第一发送模块,上述第一发送模块还用于:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输资源由基站分配。
结合第三方面,在一种可能的实施方式中,上述第一处理模块还用于:
接收上述边链路传输资源;
启动第三配置授权定时器,以在上述第三配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第三方面,在一种可能的实施方式中,上述第一处理模块还用于:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第四配置授权定时器,以在上述第四配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第三方面,在一种可能的实施方式中,上述第一接收模块还用于:
在上述第二配置授权定时器运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
结合第三方面,在一种可能的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
第四方面,本申请实施例提供了一种边链路数据传输装置,该装置包括:
第二发送模块,用于向基站发送否定应答,上述否定应答用于表示接收设备对通信数据解码失败;
第二处理模块,启动第五配置授权定时器,以在上述第五配置授权定时器的运行时间内不使用边链路预配置授权。
结合第四方面,在一种可能的实施方式中,上述第二处理模块还用于:
接收否定应答,上述否定应答由上述接收设备发送;
启动第六配置授权定时器,以在上述第六配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第四方面,在一种可能的实施方式中,上述第二发送模块还用于:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输资源由基站分配。
结合第四方面,在一种可能的实施方式中,上述第二处理模块还用于:
接收上述边链路传输资源;
启动第七配置授权定时器,以在上述第七配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第四方面,在一种可能的实施方式中,上述第二处理模块还用于:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第八配置授权定时器,以在上述第八配置授权定时器的运行时间内不使用上述边链路预配置授权。
结合第四方面,在一种可能的实施方式中,上述装置还包括第二接收模块,上述第二接收模块还用于:
在上述第五配置授权定时器的运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
结合第四方面,在一种可能的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
第五方面,本申请实施例提供了一种设备,该设备包括处理器和存储器,该处理器和存储器相互连接。该存储器用于存储支持该终端设备执行上述第一、第二方面和/或第一、第二方面任一种可能的实现方式提供的方法的计算机程序,该计算机程序包括程序指令,该处理器被配置用于调用上述程序指令,执行上述第一、第二方面和/或第一、第二方面任一种可能的实施方式所提供的方法。
第六方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行以实现上述第一、第二方面和/或第一、第二方面任一种可能的实施方式所提供的方法。
在本申请实施例中,通过设置配置授权定时器可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的网络架构示意图;
图2是本申请实施例提供的边链路数据传输方法的第一流程示意图;
图3是本申请实施例提供的边链路数据传输的第一场景示意图;
图4是本申请实施例提供的边链路数据传输方法的第二流程示意图;
图5是本申请实施例提供的边链路数据传输的第二场景示意图;
图6是本申请实施例提供的边链路数据传输方法的第三流程示意图;
图7是本申请实施例提供的边链路数据传输的第三场景示意图;
图8是本申请实施例提供的边链路数据传输方法的第四流程示意图;
图9是本申请实施例提供的边链路数据传输的第四场景示意图;
图10是本申请实施例提供的边链路数据传输方法的第五流程示意图;
图11是本申请实施例提供的边链路数据传输的第五场景示意图;
图12是本申请实施例提供的边链路数据传输装置的一结构示意图;
图13是本申请实施例提供的边链路数据传输装置的另一结构示意图;
图14是本申请实施例提供的设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,图1是本申请实施例提供的网络架构示意图。在图1中,在传统的蜂窝网络中,用户设备120和基站(Base Station,BS)110进行通信,此时用户设备120和基站110之间的链路被称为上行链路(Uplink,UL)或下行链路(Downlink,DL)。而在物物直连通信技术或边链路通信技术(Sidelink,SL)中,用户设备120直接和用户设备130进行通信,用户设备120和用户 设备130之间的链路称为直连链路(sidelink,SL)。其中,在边链路通信技术中,用户设备120称为发送设备(Transmitter User Equipment,Tx UE),用户设备120称为接收设备(Receiver User Equipment,Rx UE)。
其中,用户设备120基于基站110分配的边链路资源可向用户设备130发送通信数据。并且边链路上传输资源或者叫授权(SL grant)可以是基站110通过下行控制信息(Downlink Control Information,DCI)分配,即基站110动态调度边链路上的传输资源;也可以是基站110通过无线资源控制(Radio Resource Control,RRC)信令分配的周期性的资源。
上行链路中,用户设备120直接将通信数据发送至基站110,基站110能通过自己是否解码成功判断是否需要重传。由于边链路传输资源是由基站110分配的,用户设备120在基于边链路传输资源将通信数据发送至用户设备130后,需要等待用户设备130在物理边链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)发送否定应答(non-acknowledge,NACK)之后,再通过物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)转发否定应答给基站110,基站110才能调度用户设备120重传。
其中,本申请实施例中的网络结构可适用于5G(5Generation)通信系统,还可适用于4G、3G通信系统,还可适用于未来新的各种通信系统,例如6G、7G等。
本申请实施例提供中的网络架构包括但不限于中继网络架构、双链接架构、车辆到任何物体的通信(Vehicle-to-Everything)架构等架构,具体可根据实际应用场景确定,在此不做限制。
本申请实施例中的基站是一种部署在无线接入网(Radio Access Network,RAN)用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备,如基地无线收发站(Base Transceiver Station,BTS);3G网络中提供基站功能的设备,如节点B(NodeB);在4G网络中提供基站功能的设备,如演进的节点B(evolved NodeB,eNB);在无线局域网络(Wireless Local Area Networks,WLAN)中,提供基站功能的设备为接入点(access point,AP),5G新无线(New Radio,NR)中的提供基站功能的设备gNB,以及继续演进的节点B(ng-eNB)。其中gNB和终端之间采用NR技术进行通信,ng-eNB 和终端之间采用进化的UMTS陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)技术进行通信,gNB和ng-eNB均可连接到5G核心网。本申请实施例中的基站还包含在未来新的通信系统中提供基站功能的设备等,具体可根据实际应用场景确定,在此不做限制。
其中,上述核心网可以是演进型分组核心网(evolved packet core,EPC)、5G Core Network(5G核心网),还可以是未来通信系统中的新型核心网。5G Core Network由一组设备组成,并实现移动性管理等功能的接入和移动性管理功能(Access and Mobility Management Function,AMF)、提供数据包路由转发和QoS(Quality of Service)管理等功能的用户面功能(User Plane Function,UPF)、提供会话管理、IP地址分配和管理等功能的会话管理功能(Session Management Function,SMF)等。EPC可由提供移动性管理、网关选择等功能的MME、提供数据包转发等功能的Serving Gateway(S-GW)、提供终端地址分配、速率控制等功能的PDN Gateway(P-GW)组成。
本申请实施例中的用户设备(发送设备或者接收设备)可以是接入终端、用户单元、用户站、移动站、移动台(Mobile Station,MS)、远方站、远程终端、移动设备、用户终端、终端设备(Terminal Equipment)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,具体也可根据实际应用场景确定,在此不做限制。
本申请实施例提供的边链路数据传输方法(为方便描述,以下简称本申请实施例提供的方法)可适用于边连接通信技术中的发送设备。参见图2,图2是本申请实施例提供的边链路数据传输方法的第一流程示意图。图2所示的边链路数据传输方法可包括如下步骤S201。
S201、接收否定应答,启动第一配置授权定时器,以在第一配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,发送设备可基于边链路传输资源向接收设备发送通信数据,接收设备可对通信数据进行解码并在解码失败后,通过物理边链路反馈信道向发送设备发送否定应答。其中,否定应答用于表示接收设备对通信数据解码失败。发送设备通过物理上行控制信道向基站转发否定应答,以请求基站调度重传。由于发送设备从边链路反馈信道接收否定应答至基于否定应答请求基站调度重传的过程中需要一定的时间,为确保发送设备能将否定应答成功发送至基站,发送设备在接收到否定应答后可启动第一配置授权定时器以在第一配置授权定时器的运行时间内,不使用与传输通信数据的边链路传输资源属于同一混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程的边链路预配置授权。
在本申请实施例中,发送设备启动配置授权定时器包括发送设备对配置授权定时器在未运行状态下的启动,也包括发送设备对配置授权定时器进行的重启。为方便描述,针对发送设备启动或者重启配置授权定时器的动作简称为启动配置授权定时器,以下不再赘述。
参见图3,图3是本申请实施例提供的边链路数据传输的第一场景示意图。在图3中,发送设备在接收到接收设备通过物理边链路反馈信道发送的否定应答后,启动第一配置授权定时器。其中,第一配置授权定时器由基站发送的下行控制信息配置,即基站通过下行控制信息配置发送设备在接收到否定应答后启动第一配置授权定时器。其中,发送设备从接收到否定应答开始,到向基站发送否定应答为止的时间段为第一配置授权定时器的运行时间。并且第一配置授权定时器的运行时间由基站发送的无线资源控制信令配置。
可选地,第一配置授权定时器的运行时间还可以为从接收到否定应答开始至向基站发送否定应答后的第一预设时间点为止的时间段内,以确保在确定基站不会调度发送设备进行重传或者接收到基站分配的新的边链路传输资源期间内,不使用与传输通信数据的边链路传输资源属于同一混合自动重传请求进程的边链路预配置授权。其中,上述预设时间点可根据实际应用场景确定,在此不做限制。
参见图4,图4是本申请实施例提供的边链路数据传输方法的第二流程示意图。图4所示的边链路数据传输方法可包括如下步骤S401至S402。
S401、接收否定应答,启动第一配置授权定时器,以在第一配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,步骤S401的具体实施方式可参见图2中步骤S201所示的实施方式,在此不再赘述。
S402、向基站发送否定应答,启动第二配置授权定时器,以在第二配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,发送设备在接收到接收设备通过物理边链路反馈信道发送的否定应答之后,需要将否定应答通过物理上行控制信道转发至基站,以使基站重新分配新的边链路传输资源。由于发送设备在将否定应答发送至基站,以使基站重新向发送设备分配新的边链路传输资源,或者确定基站不再进行重传调度需要一定的时间。因此为了确保发送设备可成功将否定应答发送至基站,并确保基站不会调度发送设备进行重传或者接收到基站分配的新的边链路传输资源,发送设备在通过物理上行控制信道向基站发送否定应答之后可启动第二配置授权定时器,以在第二配置授权定时器的运行时间内不使用与传输通信数据的边链路传输资源属于同一混合自动重传请求进程的边链路预配置授权。
参见图5,图5是本申请实施例提供的边链路数据传输的第二场景示意图。在图5中,发送设备在向基站发送否定应答之后,可启动第二配置授权定时器。并且第二配置授权定时器由基站发送的下行控制信息配置,即基站通过下行控制信息配置发送设备在通过物理上行控制信道向基站发送否定应答后启动第二配置授权定时器。其中,第二配置授权定时器的运行时间为从向基站发送否定应答开始后的第二预设时间点为止的时间段,在第二配置授权定时器的运行时间内可确保发送设备可成功将否定应答发送至基站,并确保基站不会调度发送设备进行重传或者接收到基站分配的新的边链路传输资源。其中,第二配置授权定时器的运行时间由基站发送的无线资源控制信令配置。
参见图6,图6是本申请实施例提供的边链路数据传输方法的第三流程示意图。图6所示的边链路数据传输方法可包括如下步骤S601至S603。
S601、接收边链路传输资源,启动第三配置授权定时器,以在第三配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,发送设备在接收到基站分配的边链路传输资源后,可基于边链路传输资源向接收设备发送通信数据。其中,边链路传输资源可以是基站通过下行控制信息动态分配,也可以是基站通过无线资源控制信令配置的周期性资源,具体可基于实际应用场景确定,在此不做限制。
由于发送设备在接收到基站分配的边链路传输资源至基于边链路传输资源向接收设备发送通信数据需要一定的时间,并且如果发送设备在未成功将通信数据发送至接收设备时,使用与发送该通信数据的边链路传输资源属于同一混合自动重传请求进程,会导致该通信数据被清空。因此,发送设备在接收到基站分配的边链路传输资源之后可启动第三配置授权定时器,以在第三配置授权定时器的运行时间内不使用与发送该通信数据的边链路传输资源属于同一混合自动重传请求进程。
S602、接收否定应答,启动第一配置授权定时器,以在第一配置授权定时器的运行时间内不使用边链路预配置授权。
S603、向基站发送否定应答,启动第二配置授权定时器,以在第二配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,步骤S602至S603的具体实施方式可参见图4中步骤S401至S402所示的实现方式,在此不再赘述。
参见图7,图7是本申请实施例提供的边链路数据传输的第三场景示意图。在图7中,发送设备接收到基站分配的边链路传输资源之后,可启动第三配置授权定时器,并且基站通过下行控制信息配置发送设备在接收到基站分配的边链路传输资源后启动第三配置授权定时器。其中,第三配置授权定时器的运行时间为从接收到基站分配的边链路传输资源开始至向接收设备发送通信数据为止。并且第三配置授权定时器的运行时间由基站发送的无线资源控制信令配置。
参见图8,图8是本申请实施例提供的边链路数据传输方法的第四流程示意图。图8所示的边链路数据传输方法可包括如下步骤S801至S804。
S801、接收边链路传输资源,启动第三配置授权定时器,以在第三配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,步骤S801的具体实施方式可参见图6中步骤 S601所示的实现方式,在此不再赘述。
S802、基于边链路传输资源向接收设备发送通信数据,启动第四配置授权定时器,以在第四配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,由于发送设备将通信数据发送至接收设备后,如果在通信数据发送成功之前或者在接收设备对通信数据解码成功之前,发送设备使用了与传输通信数据的边链路传输资源属于同一混合自动重传请求进程的预配置授权,会导致之前发送的通信数据被清空,或者导致发送设备长时间等待重传调度。因此,发送设备在基于边链路传输资源向接收设备发送通信数据后,可启动第四配置授权定时器,以在第四配置授权定时器的运行时间内不使用与传输通信数据的边链路传输资源属于同一混合自动重传请求进程的其他传输资源。
S803、接收否定应答,启动第一配置授权定时器,以在第一配置授权定时器的运行时间内不使用边链路预配置授权。
S804、向基站发送否定应答,启动第二配置授权定时器,以在第二配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,步骤S803至S804的具体实施方式可参见图6中步骤S602至S603所示的实现方式,在此不再赘述。
参见图9,图9是本申请实施例提供的边链路数据传输的第四场景示意图。在图9中,发送设备在基于边链路传输资源向接收设备发送通信数据之后可启动第四配置授权定时器,并且第四配置授权定时器由基站发送的下行控制信息配置,即基站通过下行控制信息配置发送设备在向接收设备发送通信数据后启动第四配置授权定时器。其中,第四配置授权定时器的运行时间为从向接收设备发送通信数据开始至接收设备发送用于表示解码失败的否定应答为止,或者到一定时间段(具体可根据实际应用场景确定,在此不做限制)为止以确保接收设备解码成功。并且第四配置授权定时器的运行时间由基站发送的无线资源控制信令配置。
在本申请实施例中,通过设置配置授权定时器可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。
参见图10,图10是本申请实施例提供的边链路数据传输方法的第五流程示意图。图10所示的边链路数据传输方法可包括如下步骤S101。
S101、向基站发送否定应答,启动第五配置授权定时器,以在第五配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,基站向发送设备分配边链路传输资源,发送设备基于边链路传输资源向接收设备发送通信数据。当接收设备对通信数据解码失败后会通过物理边链路反馈信道向发送设备发送否定应答,以表示接收设备对通信数据解码失败。进而发送设备可将否定应答通过物理上行控制信道发送至基站以使基站分配新的边链路传输资源。由于发送设备在将否定应答发送至基站,以使基站重新向发送设备分配新的边链路传输资源或者确定基站不再进行重传调度需要一定的时间。因此为了确保发送设备可成功将否定应答发送至基站,并确保基站不会调度发送设备进行重传或者接收设备可接收到基站分配的新的边链路传输资源,发送设备在通过物理上行控制信道向基站发送否定应答之后可启动第五配置授权定时器,以在第五配置授权定时器的运行时间内不使用与传输通信数据的边链路传输资源属于同一混合自动重传请求进程的边链路预配置授权。
参见图11,图11是本申请实施例提供的边链路数据传输的第五场景示意图。在图11中,发送设备在向基站发送否定应答之后,可启动第五配置授权定时器。并且第五配置授权定时器由基站发送的下行控制信息配置,即基站通过下行控制信息配置发送设备在通过物理上行控制信道向基站发送否定应答后启动第五配置授权定时器。其中,第五配置授权定时器的运行时间为从向基站发送否定应答开始后的第五预设时间点为止的时间段,在第五配置授权定时器的运行时间内可确保发送设备可成功将否定应答发送至基站,并确保基站不会调度发送设备进行重传或者接收到基站分配的新的边链路传输资源。其中,第五配置授权定时器的运行时间由基站发送的无线资源控制信令配置。
可选地,在第五配置授权定时器参与的情况下,当发送设备接收到接收设备发送的否定应答后,可启动第六配置授权定时器,以在第六配置授权定时器的运行时间内不使用边链路预配置授权。其中,第六配置授权定时器的具体实施方式可参见图2中步骤S201所示的实现方式,在此不再赘述。
可选地,发送设备还可在接收到基站分配的边链路传输资源后启动第七配置授权定时器,以在第七配置授权定时器的运行时间内不使用边链路预配置授权。或者,发送设备在基于边链路传输资源向接收设备发送通信数据后可启动第八配置授权定时器,以在第八配置授权定时器的运行时间内不使用边链路预配置授权。其中,第七配置授权定时器的具体实施方式可参见图6中步骤S601所示的实现方式,在此不再赘述。其中,第八配置授权定时器的具体实施方式可参见图8中步骤S802所示的实现方式,在此也不再赘述。
在本申请实施例中,通过设置配置授权定时器可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。
参见图12,图12是本申请实施例提供的边链路数据传输装置的一结构示意图。本申请实施例提供的装置1包括:
第一接收模块11,用于接收否定应答,上述否定应答由接收设备发送,用于表示上述接收设备对通信数据解码失败;
第一处理模块12,用于启动第一配置授权定时器,以在上述第一配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,上述第一处理模块12还用于:
向基站发送上述否定应答;
启动第二配置授权定时器,以在上述第二配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述装置1还包括第一发送模块13,上述第一发送模块13还用于:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输资源由基站分配。
在一些可行的实施方式中,上述第一处理模块12还用于:
接收上述边链路传输资源;
启动第三配置授权定时器,以在上述第三配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述第一处理模块12还用于:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第四配置授权定时器,以在上述第四配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述第一接收模块11还用于:
在上述第二配置授权定时器运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
在一些可行的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
具体实现中,上述装置1可通过其内置的各个功能模块执行如上述图2、图4、图6和/或图8中各个步骤所提供的实现方式,具体可参见上述各个步骤所提供的实现方式,在此不再赘述。
在本申请实施例中,通过设置配置授权定时器可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。
参见图13,图13是本申请实施例提供的边链路数据传输装置的另一结构示意图。本申请实施例提供的装置2包括:
第二发送模块21,用于向基站发送否定应答,上述否定应答用于表示接收设备对通信数据解码失败;
第二处理模块22,启动第五配置授权定时器,以在上述第五配置授权定时器的运行时间内不使用边链路预配置授权。
在一些可行的实施方式中,上述第二处理模块22还用于:
接收否定应答,上述否定应答由上述接收设备发送;
启动第六配置授权定时器,以在上述第六配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述第二发送模块21还用于:
基于边链路传输资源向上述接收设备发送上述通信数据,上述边链路传输资源由基站分配。
在一些可行的实施方式中,上述第二处理模块22还用于:
接收上述边链路传输资源;
启动第七配置授权定时器,以在上述第七配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述第二处理模块22还用于:
基于上述边链路传输资源向上述接收设备发送上述通信数据;
启动第八配置授权定时器,以在上述第八配置授权定时器的运行时间内不使用上述边链路预配置授权。
在一些可行的实施方式中,上述装置2还包括第二接收模块23,上述第二接收模块23还用于:
在上述第五配置授权定时器的运行时间内接收上述基站分配的新的边链路传输资源,以基于上述新的边链路传输资源向上述接收设备重新发送上述通信数据。
在一些可行的实施方式中,上述边链路预配置授权与上述边链路传输资源属于同一混合自动重传请求进程。
具体实现中,上述装置2可通过其内置的各个功能模块执行如上述图10中各个步骤所提供的实现方式,具体可参见上述各个步骤所提供的实现方式,在此不再赘述。
在本申请实施例中,通过设置配置授权定时器可使边链路通信中的发送设备有足够时间等待基站调度重传,减少发送设备的传输时延和调度重传时延,适用性高。
参见图14,图14是本申请实施例提供的设备的结构示意图。如图14所示,本实施例中的设备1000可以包括:处理器1001,网络接口1004和存储器1005,此外,上述设备1000还可以包括:用户接口1003,和至少一个通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。其中,用户接口1003可以包括显示屏(Display)、键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1005可选的还可以是至少一个位于远离前述处理器1001 的存储装置。如图14所示,作为一种计算机可读存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及设备控制应用程序。
在图14所示的设备1000中,网络接口1004可提供网络通讯功能;而用户接口1003主要用于为用户提供输入的接口;而处理器1001可以用于调用存储器1005中存储的设备控制应用程序,以实现前文图2、图4、图6、图8以及图10对应的边链路输出传输方法,在此不再赘述。另外,对采用相同方法的有益效果描述,也不再进行赘述。
应当理解,在一些可行的实施方式中,上述处理器1001可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,被处理器执行以实现图2、图4、图6、图8和/或图10中各个步骤所提供的方法,具体可参见上述各个步骤所提供的实现方式,在此不再赘述。
上述计算机可读存储介质可以是前述任一实施例提供的任务处理装置的内部存储单元,例如电子设备的硬盘或内存。该计算机可读存储介质也可以是该电子设备的外部存储设备,例如该电子设备上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。上述计算机可读存储介质还可以包括磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。进一步地,该计算机可读存储介质还可以既包括该电子设备的内部存储单元也包括外部存储设备。该计算机可读存储介质用于存储该计算机程序以及该电子设备所需的其他程序和数据。该计算机可读存储介质还可以用于暂时地存 储已经输出或者将要输出的数据。
本申请的权利要求书和说明书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置展示该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (10)

  1. 一种边链路数据传输方法,其特征在于,所述方法包括:
    接收否定应答,所述否定应答由接收设备发送,用于表示所述接收设备对通信数据解码失败;
    启动第一配置授权定时器,以在所述第一配置授权定时器的运行时间内不使用边链路预配置授权。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向基站发送所述否定应答;
    启动第二配置授权定时器,以在所述第二配置授权定时器的运行时间内不使用所述边链路预配置授权。
  3. 根据权利要求1或2所述的方法,其特征在于,所述接收否定应答之前,所述方法还包括:
    基于边链路传输资源向所述接收设备发送所述通信数据,所述边链路传输资源由基站分配。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收所述边链路传输资源;
    启动第三配置授权定时器,以在所述第三配置授权定时器的运行时间内不使用所述边链路预配置授权。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    基于所述边链路传输资源向所述接收设备发送所述通信数据;
    启动第四配置授权定时器,以在所述第四配置授权定时器的运行时间内不使用所述边链路预配置授权。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述第二配置授权定时器的运行时间内接收所述基站分配的新的边链 路传输资源,以基于所述新的边链路传输资源向所述接收设备重新发送所述通信数据。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,所述边链路预配置授权与所述边链路传输资源属于同一混合自动重传请求进程。
  8. 一种边链路数据传输装置,其特征在于,所述装置包括:
    接收模块,用于接收否定应答,所述否定应答由接收设备发送,用于表示所述接收设备对通信数据解码失败;
    处理模块,用于启动第一配置授权定时器,以在所述第一配置授权定时器的运行时间内不使用边链路预配置授权。
  9. 一种设备,其特征在于,包括处理器和存储器,所述处理器和存储器相互连接;
    所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1至7任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1至7任一项所述的方法。
PCT/CN2021/085809 2020-04-10 2021-04-07 边链路数据传输方法、装置、设备以及存储介质 WO2021204149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280332.5A CN113517954B (zh) 2020-04-10 2020-04-10 边链路数据传输方法、装置、设备以及存储介质
CN202010280332.5 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021204149A1 true WO2021204149A1 (zh) 2021-10-14

Family

ID=78022405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085809 WO2021204149A1 (zh) 2020-04-10 2021-04-07 边链路数据传输方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN113517954B (zh)
WO (1) WO2021204149A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906578A (zh) * 2019-01-31 2019-06-18 北京小米移动软件有限公司 目标下行信号的接收方法、装置、设备及系统
US20190268935A1 (en) * 2018-05-10 2019-08-29 Intel Corporation Configured grant uplink (ul) transmission in new radio unlicensed (nr-u)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622311B (zh) * 2016-06-28 2018-04-21 宏達國際電子股份有限公司 處理上鏈路傳輸的裝置及方法
US10652861B2 (en) * 2018-07-03 2020-05-12 Nokia Technologies Oy Uplink grant-free transmission enhancement for latency and reliability
KR102627291B1 (ko) * 2018-08-07 2024-01-23 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Harq 송신을 용이하게 하기 위한 방법 및 디바이스
CN110830177B (zh) * 2018-08-10 2021-03-30 华为技术有限公司 一种混合自动重传请求传输方法和装置
CN110958086B (zh) * 2019-11-28 2021-09-03 北京邮电大学 一种数据传输方法、装置、电子设备以及介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190268935A1 (en) * 2018-05-10 2019-08-29 Intel Corporation Configured grant uplink (ul) transmission in new radio unlicensed (nr-u)
CN109906578A (zh) * 2019-01-31 2019-06-18 北京小米移动软件有限公司 目标下行信号的接收方法、装置、设备及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Discussion on resource allocation for sidelink HARQ ACK/NACK report", 3GPP DRAFT; R2-1916039, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817590 *
SPREADTRUM COMMUNICATIONS: "Remaining issues in NR sidelink mode 1 resource allocation", 3GPP DRAFT; R1-2000421, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 15 February 2020 (2020-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051853293 *

Also Published As

Publication number Publication date
CN113517954B (zh) 2023-07-18
CN113517954A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
US20220368467A1 (en) Harq process management method and apparatus, terminal, and storage medium
JP4324678B2 (ja) 無線通信システムにおける受信側の再確立時にタイマーを処理する方法及び装置
EP2169871B1 (en) Method and apparatus of handling a timer for triggering buffer status report
JP2020509671A (ja) データ伝送方法、関連するデバイス、及びシステム
EP3512290B1 (en) Message transmission method, device and system
JP2010045790A (ja) Ttiバンドルの再送を処理する方法及び通信装置
WO2018233470A1 (zh) 一种数据传输方法、通信设备和数据传输系统
WO2019201249A1 (zh) 通信方法、通信装置及可读存储介质
WO2021035535A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020143731A1 (zh) 用于传输数据的方法、通信设备和网络设备
CN107836128B (zh) 用于控制信息传送的方法和设备
KR20090016419A (ko) 동적 무선자원 할당방법에서 harq를 제어하는 방법
WO2021022567A1 (zh) 传输数据的方法和终端设备
WO2022151060A1 (zh) 数据接收方法、装置和系统
US20230036504A1 (en) Method and apparatus for resource reservation for nr sidelink
WO2021026846A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020062302A1 (zh) 一种混合自动重传请求处理方法、终端设备及存储介质
WO2021204149A1 (zh) 边链路数据传输方法、装置、设备以及存储介质
WO2018126410A1 (zh) 数据传输方法及终端与网络设备
WO2022061751A1 (en) Method and apparatus for multicast and broadcast services
JP7318800B2 (ja) データ伝送の方法及び装置、通信システム
WO2021022518A1 (zh) 上行数据的重传方法、装置及设备
CN116711247A (zh) 数据传输方法及通信装置
WO2019192452A1 (zh) 一种信息传输方法、装置及可读存储介质
WO2023274315A1 (zh) 一种资源确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21785378

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21785378

Country of ref document: EP

Kind code of ref document: A1