WO2021203967A1 - 一种资源指示方法及相关设备 - Google Patents

一种资源指示方法及相关设备 Download PDF

Info

Publication number
WO2021203967A1
WO2021203967A1 PCT/CN2021/082490 CN2021082490W WO2021203967A1 WO 2021203967 A1 WO2021203967 A1 WO 2021203967A1 CN 2021082490 W CN2021082490 W CN 2021082490W WO 2021203967 A1 WO2021203967 A1 WO 2021203967A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
sub
ack
harq
pucch
Prior art date
Application number
PCT/CN2021/082490
Other languages
English (en)
French (fr)
Inventor
李军
焦淑蓉
花梦
高飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21784270.7A priority Critical patent/EP4117213A4/en
Publication of WO2021203967A1 publication Critical patent/WO2021203967A1/zh
Priority to US17/959,684 priority patent/US20230038049A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a resource indication method and related equipment.
  • Hybrid automatic repeat request is a combination of forward error correction (Forward Error Correction, EFC) technology and automatic repeat request (Automatic Repeat Request, ARQ) technology for error control. So as to ensure the retransmission method of communication quality.
  • EFC Forward Error Correction
  • ARQ Automatic Repeat Request
  • the receiving end is a user equipment (UE) and the transmitting end is a base station.
  • the base station may use the following methods to indicate to the UE the time slot (slot) and physical uplink control channel (PUCCH) resources used for HARQ-ACK feedback.
  • the base station may send downlink control information (Downlink Control Information, DCI) to the UE.
  • DCI Downlink Control Information
  • K1 is included in the DCI.
  • the UE may determine the HARQ-ACK feedback slot according to the value of K1 in the DCI.
  • the DCI also includes indication information of the PUCCH resource, and the indication information includes the identification ID of the PUCCH resource, the starting position of the PUCCH resource in the aforementioned slot, and the length of the PUCCH resource.
  • the UE may determine the PUCCH resource used for HARQ-ACK feedback according to the indication information.
  • HARQ-ACK codebooks are processed in units of slots, that is, one HARQ-ACK codebook is transmitted in one slot. Each slot includes 14 symbols.
  • the aforementioned DCI may include DCI format 1_0 (DCI format 1_0) and DCI format 1_1 (DCI format 1_1). Both DCI 1_0 and DCI 1_1 can be applied to the HARQ-ACK transmission scheme in the Rel-15 standard.
  • the Rel-16 standard proposes a sub-slot scheme.
  • a slot can be divided into several parts. For example, a slot can be divided into 2 sub-slots, and each sub-slot includes 7 symbols; or, a slot can be divided into 7 sub-slots, each A sub-slot includes 2 symbols.
  • the HARQ-ACK codebook can be fed back in units of sub-slots. That is, one sub-slot can transmit one HARQ-ACK codebook.
  • DCI 1_0 is not applicable to the sub-slot HARQ-ACK transmission scheme.
  • the present application provides a resource indication method and related equipment, so that the terminal device can send HARQ-ACK on the PUCCH resource of at least one sub-slot according to the PUCCH resource indicated in the DCI, thereby improving the flexibility of the terminal device in responding to the DCI.
  • this application provides a resource indication method, which can be applied to a terminal device, and the method may include: the terminal device can receive DCI from a network device, and the DCI is used to indicate a time slot for the terminal device to transmit HARQ-ACK. After receiving the aforementioned DCI, the terminal device may send the aforementioned HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot, where the time slot includes at least two sub-slots.
  • the aforementioned terminal device receives the DCI used to indicate the time slot for transmitting HARQ-ACK, and can send HARQ-ACK to the network device on the PUCCH resource of the time slot indicated by the DCI.
  • the terminal device may send HARQ-ACK to the network device on the PUCCH resource of at least one sub-slot of the time slot. That is, the terminal device may send HARQ-ACK on the PUCCH resource of one sub-slot of the timeslot, or may send HARQ-ACK on the PUCCH resource of multiple sub-slots of the timeslot. In this way, the flexibility of the terminal device to send HARQ-ACK to the network device can be improved.
  • one slot can include 14 symbols.
  • One sub-slot can include 7 symbols, and then one slot can include 2 sub-slots.
  • one sub-slot may include 2 symbols, and then one slot may include 7 sub-slots.
  • the foregoing terminal device sending HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot may include: PUCCH of the terminal device in the first sub-slot of the time slot HARQ-ACK is sent on the resource, the first sub-slot is one of at least one sub-slot of the time slot; or the terminal device sends HARQ-ACK on the PUCCH resource of the time slot, that is, the terminal device is in the time slot
  • the HARQ-ACK is sent on the PUCCH resources of the multiple sub-slots included.
  • the DCI received by the terminal device also indicates the PUCCH resource for the terminal device to transmit HARQ-ACK.
  • the terminal device sends HARQ-ACK on the PUCCH resource in the first sub-slot of the time slot, and the first sub-slot is One sub-slot of at least one sub-slot of the time slot.
  • the terminal device sends HARQ-ACK on the PUCCH resource of the time slot.
  • the terminal device may send HARQ-ACK on the PUCCH resource of one sub-slot (such as the first sub-slot) of the above-mentioned time slot.
  • the PUCCH resource corresponding to the transmission HARQ-ACK indicated by the DCI occupies part or all of the resources in at least two sub-slots, it means that the PUCCH resource occupied by the terminal device for transmitting HARQ-ACK corresponds to the symbols in the at least two sub-slots resource. That is, the length of the PUCCH resource exceeds the boundary of one sub-slot, for example, the length of the PUCCH resource spans two sub-slots.
  • the terminal device can send HARQ-ACK on the PUCCH resource of the above-mentioned time slot.
  • the PUCCH resources of the aforementioned time slot include resources corresponding to symbols in multiple sub-slots in the time slot.
  • the first sub-slot may be the Nth sub-slot predefined in at least two sub-slots.
  • N is a positive integer.
  • the terminal device may obtain the first sub-slot from the network device.
  • the terminal device may determine the predefined first sub-slot from the protocol.
  • the terminal device can be in a predefined sub-slot of the above-mentioned time slot.
  • the HARQ-ACK is sent on the PUCCH resource (such as the first sub-slot).
  • the foregoing first sub-slot may also be designated by the network device to the terminal device.
  • the terminal device may receive indication information from the network device, where the indication information is used to indicate the sub-slot for the terminal device to transmit HARQ-ACK, that is, the first sub-slot.
  • the terminal device may determine the first sub-slot according to the indication information.
  • the above-mentioned indication information is included in the DCI.
  • the network device can carry the instruction information in the DCI and send it to the terminal device.
  • This design method provides a specific way for the terminal device to receive the instruction information from the network device.
  • the indication information includes an index of a control channel element (Control Channel Element, CCE).
  • CCE Control Channel Element
  • the foregoing terminal device may also receive a first PUCCH configuration parameter from a network device, where the first PUCCH configuration parameter includes the length of a sub-slot.
  • One slot can include 14 symbols.
  • One sub-slot can include 7 symbols, and then one slot can include 2 sub-slots.
  • one sub-slot may include 2 symbols, and then one slot may include 7 sub-slots.
  • the terminal device can determine how many resources in the sub-slots are occupied by the PUCCH resource.
  • this application also provides a resource indication method, which can be applied to a network device, and the method may include: the network device sends DCI to the terminal device, and the DCI is used to indicate the time slot for the terminal device to transmit HARQ-ACK, where , The time slot includes at least two sub-time slots.
  • the network device receives the HARQ-ACK from the terminal device in the PUCCH resource of at least one sub-slot of the time slot.
  • the DCI sent by the network device indicates the time slot in which the terminal device transmits the HARQ-ACK
  • the network device can receive the HARQ-ACK sent by the terminal device in the PUCCH resource of at least one sub-slot of the time slot.
  • the network device may receive HARQ-ACK on the PUCCH resource of one sub-slot of the timeslot, or may receive HARQ-ACK on multiple PUCCH resources of the timeslot. In this way, the network device can flexibly configure PUCCH resources for transmitting HARQ-ACK according to requirements.
  • the network device when the PUCCH resource occupies part or all of the resources in a sub-slot, the network device receives the HARQ-ACK from the terminal device on the PUCCH resource in the first sub-slot; or When the PUCCH resource in the first DCI occupies part or all of the resources of each sub-slot of at least two sub-slots, the network device receives the HARQ-ACK from the terminal device on the PUCCH resource of the time slot.
  • the first sub-slot may be the Nth sub-slot predefined in at least two sub-slots, where N is a positive integer.
  • the network device may indicate the first sub-time slot in the time slot to the terminal device, or the network device and the terminal device may agree on the first sub-time slot in the time slot.
  • the network device may send indication information to the terminal device, where the indication information is used to indicate the sub-slot for the terminal device to transmit HARQ-ACK.
  • the above-mentioned first sub-slot may be designated by the network device to the terminal device.
  • the network device sends instruction information to the terminal device, and the instruction information is used to indicate the sub-slot for the terminal device to transmit HARQ-ACK.
  • the indication information is included in the DCI.
  • the network device can carry the instruction information in the DCI and send it to the terminal device. This design method provides a specific way for the terminal device to receive the instruction information from the network device.
  • the indication information includes an index of a Control Channel Element (CCE).
  • CCE Control Channel Element
  • the network device sends the first PUCCH configuration parameter to the terminal device, and the first PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a resource indication method, which can be applied to a terminal device.
  • the method may include: the terminal device receives a first PUCCH configuration parameter from a network device, and the first PUCCH configuration parameter is used to configure the initial PUCCH resources in Bandwidth Part (BWP).
  • BWP Bandwidth Part
  • the terminal device may also receive the DCI from the network device, and the DCI is used to indicate the time slot for transmitting HARQ-ACK.
  • the terminal device can send HARQ-ACK on the PUCCH resource of the time slot by activating the BWP.
  • the first PUCCH configuration parameter is used to configure PUCCH resources in the initial BWP
  • the activated BWP is the BWP currently used by the terminal device. That is, the terminal device receives the first PUCCH configuration parameter, and the terminal device can use the activated BWP to send HARQ-ACK on the PUCCH resource of the time slot. This can prevent the terminal device from switching the BWP, thereby improving the efficiency of the terminal device to send HARQ-ACK.
  • the terminal device may also receive a second PUCCH configuration parameter from the network device, where the second PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a resource indication method, which can be applied to a network device, and the method can include: the network device can send a first PUCCH configuration parameter to a terminal device, and the first PUCCH configuration parameter is used to configure the initial BWP PUCCH resources in.
  • the network device may also send DCI to the terminal device, and the DCI may be used to indicate the time slot for transmitting HARQ-ACK.
  • the network device can also receive the HARQ-ACK from the terminal device on the PUCCH resource of the time slot by activating the BWP.
  • the network device may also send the second PUCCH configuration parameter to the terminal device, where the second PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a terminal device, which can be used to implement the method in the first aspect and any one of its possible design manners.
  • the terminal device may include a receiving unit and a sending unit; the receiving unit is used to receive DCI from the network device, the DCI is used to indicate the time slot for the terminal device to transmit HARQ-ACK, and the DCI may also indicate PUCCH resources.
  • the sending unit is configured to send the HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot indicated by the DCI, where the time slot includes at least two sub-slots.
  • the sending unit when the sending unit is configured to send the HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot indicated by the DCI, the sending unit is specifically configured to: The PUCCH resource in a DCI occupies part or all of the resources in one sub-slot, and the transmitting unit sends HARQ-ACK on the PUCCH resource in the first sub-slot of the time slot; or, when the PUCCH resource in the first DCI occupies at least two sub-slots For part or all of the resources of each sub-slot in the time slot, the sending unit sends HARQ-ACK on the PUCCH resource of the time slot.
  • the foregoing first sub-slot may be the Nth sub-slot predefined in a time slot, where N is a positive integer.
  • the receiving unit may also be used to receive instruction information from a network device.
  • the indication information is used to indicate the sub-slot for the terminal device to transmit HARQ-ACK.
  • the receiving unit may also be configured to receive the first PUCCH configuration parameter from the network device, where the first PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a network device, which can be used to implement the above-mentioned second aspect and the method in any one of its possible design manners.
  • the terminal device may include a receiving unit and a sending unit; the sending unit is used to send DCI to the terminal device, the DCI is used to indicate the time slot for the terminal device to transmit HARQ-ACK, and the DCI is also used to indicate PUCCH resources, where the time slot includes At least two sub-slots.
  • the receiving unit is configured to receive the HARQ-ACK from the terminal device in the HARQ-ACK time slot of at least one sub-slot of the time slot.
  • the receiving unit is configured to receive the HARQ-ACK from the terminal device in the HARQ-ACK time slot of at least one sub-slot of the time slot, the receiving unit is specifically configured to The PUCCH resource occupies part or all of the resources in one sub-slot, and the HARQ-ACK from the terminal device is received on the PUCCH resource in the first sub-slot; or, when the PUCCH resource in the first DCI occupies each of at least two sub-slots For part or all of the resources of each sub-slot, the HARQ-ACK from the terminal device is received on the PUCCH resource of the time slot.
  • the sending unit is further configured to send the first PUCCH configuration parameter to the terminal device, where the first PUCCH configuration parameter includes the length of the sub-slot.
  • the present application also provides a terminal device, which can be used to implement the above-mentioned third aspect and the method in any one of its possible design manners.
  • the terminal device may include a receiving unit and a sending unit; the receiving unit is used to receive the first PUCCH configuration parameter from the network device, and the first PUCCH configuration parameter is used to configure the PUCCH resource in the initial bandwidth part (BWP) .
  • the receiving unit is also used to receive DCI from the network device, where the DCI is used to indicate the time slot for transmitting HARQ-ACK.
  • the sending unit is used to send HARQ-ACK on the PUCCH resource of the time slot by activating the BWP.
  • the receiving unit is further configured to receive the second PUCCH configuration parameter from the network device, and the first PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a network device, which can be used to implement the foregoing fourth aspect and the method in any one of its possible design manners.
  • the network device may include a receiving unit and a sending unit; the sending unit is used to send the first PUCCH configuration parameter to the terminal device, and the first PUCCH configuration parameter is used to configure the PUCCH resource in the initial BWP.
  • the sending unit is also used to send DCI to the terminal device, and the DCI may be used to indicate the time slot for transmitting HARQ-ACK.
  • the receiving unit is used to receive the HARQ-ACK from the terminal device on the PUCCH resource of the time slot by activating the BWP.
  • the sending unit is further configured to send the second PUCCH configuration parameter to the terminal device, and the first PUCCH configuration parameter includes the length of the sub-slot.
  • this application also provides a terminal device.
  • the terminal device may include: a processor, a memory, and a communication interface; the memory and the communication interface are coupled with the processor, and the memory is used to store computer program codes, and the computer program codes include computer instructions.
  • the memory includes a non-volatile storage medium, when the processor executes the computer instructions, the terminal device executes the above-mentioned first aspect and any one of its possible design methods, and the third aspect and any one of its possible design methods method.
  • the present application also provides a network device, which may include: a processor, a memory, and a communication interface; the memory and the communication interface are coupled with the processor, and the memory is used to store computer program codes, and the computer program codes include computer instructions ,
  • the memory includes a non-volatile storage medium, when the processor executes the computer instructions, the terminal device executes the above-mentioned second aspect and any of its possible design methods, and the fourth aspect and any of its possible design methods method.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium includes computer instructions.
  • the device can execute the first, second, and Three aspects, the fourth aspect and any of the possible design methods.
  • the present application also provides a communication device, including a processor and an interface circuit, the processor is configured to communicate with other devices through the interface circuit and execute the method provided in any of the above aspects.
  • the processor includes one or more.
  • this application also provides a communication device, including a processor, configured to call a program stored in a memory to execute the method provided in any one of the above aspects.
  • the memory can be located inside the device or outside the device.
  • the processor can be one or more processors.
  • the technical effects brought by the readable storage medium, the twelfth aspect, and the communication device provided by the thirteenth aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect, which will not be repeated here. .
  • Figure 1 is a schematic diagram of a system architecture provided by this application.
  • FIG. 2 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of sub-slot division according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of an acknowledgement feedback HARQ-ACK time slot provided by an embodiment of the application.
  • FIG. 6 is a flow chart for confirming resources on the time slot for HARQ-ACK feedback according to an embodiment of the application
  • FIG. 7 is a schematic diagram of PUCCH resources of a time slot occupied by HARQ-ACK according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of PUCCH resource occupation according to an embodiment of the application.
  • FIG. 9A is a first flowchart of a resource indication method provided by an embodiment of this application.
  • FIG. 9B is a second flowchart of a resource indication method provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another PUCCH resource occupation according to an embodiment of the application.
  • FIG. 11A is a schematic diagram of another PUCCH resource occupation according to an embodiment of the application.
  • FIG. 11B is a schematic diagram of another PUCCH resource occupation according to an embodiment of the application.
  • FIG. 12 is a flowchart of a resource indication method provided by an embodiment of this application.
  • FIG. 13 is a flowchart of another resource indication method provided by an embodiment of this application.
  • FIG. 14 is a schematic diagram 1 of the structural composition of a device provided by an embodiment of this application.
  • FIG. 15 is a second schematic diagram of the structural composition of a device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present embodiment, unless otherwise specified, “plurality” means two or more.
  • the embodiment of the present application provides a resource indication method, which may be applied in a process in which a terminal device feeds back HARQ-ACK to a network device.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the application.
  • the system architecture may include one or more terminal devices and network devices. As shown in FIG. 1, the system architecture includes: a terminal device 10 and a network device 20.
  • the terminal device 10 and the network device 20 can perform data transmission.
  • the network device 20 may send the downlink control information DCI to the terminal device 10; the terminal device 10 may receive the DCI from the network device 20, and feed back the DCI reception status information (for example, HARQ-ACK) to the network device.
  • the DCI reception status information for example, HARQ-ACK
  • the aforementioned network device 20 may specifically be a base station, for example, a wireless communication base station (Base Station, BS) or a base station controller. Among them, the base station may also be called a wireless access point, a transceiver station, a relay station, a cell, a transmit and receive point (Transmit and Receive Port, TRP), and so on.
  • the network device 20 is a device deployed in a wireless access network to provide wireless communication functions for terminal devices. It can be connected to the terminal device 10, receive data sent by the terminal device 10 and send it to the core network device.
  • the main functions of the network device 20 include the following one or more functions: management of wireless resources, compression of Internet Protocol (IP) headers, encryption of user data streams, and mobility management node (Mobility Management Entity) when the user equipment is attached. , MME) selection, routing user plane data to the Service Gateway (SGW), organization and transmission of paging messages, organization and transmission of broadcast messages, measurement for mobility or scheduling, and configuration of measurement reports, etc. .
  • the network device 20 may include various forms of cellular base stations, home base stations, cells, wireless transmission points, macro base stations, micro base stations, relay stations, wireless access points, and so on.
  • the names of base stations may be different.
  • they are called evolved NodeBs (eNBs or eNodeBs).
  • eNBs evolved NodeBs
  • eNodeBs evolved NodeBs
  • the base station Node B
  • gNB base station
  • CU CU
  • DU wireless local access system
  • Access Point access point
  • the network device 20 may be another device that provides wireless communication functions for terminal devices.
  • a network device a device that provides a terminal device with a wireless communication function.
  • FIG. 2 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • the base station may include at least one processor 21, a memory 22, a communication interface 23, and a bus 24.
  • the processor 21 is the control center of the base station, and may be a processor or a collective name for multiple processing elements.
  • the processor 21 is a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present application
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • microprocessors Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the processor 21 can execute various functions of the base station by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • the processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the base station may include multiple processors, such as the processor 21 and the processor 25 shown in FIG. 2.
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 22 may be a read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 22 may exist independently, and is connected to the processor 21 through the bus 24.
  • the memory 22 may also be integrated with the processor 21.
  • the memory 22 is used to store a software program for executing the solution of the present application, and the processor 21 controls the execution.
  • the communication interface 23 is used to communicate with other devices or communication networks. For example, it is used to communicate with communication networks such as Ethernet, radio access network (RAN), and wireless local area networks (WLAN).
  • the communication interface 23 may include all or part of the baseband processor, and may also optionally include an RF processor.
  • the RF processor is used for sending and receiving RF signals
  • the baseband processor is used for processing the baseband signal converted from the RF signal or the baseband signal about to be converted into the RF signal.
  • the bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation on the base station, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • the terminal device 10 refers to a device that includes wireless transceiver functions and can cooperate with network side devices such as access network devices and/or core network devices to provide users with communication services.
  • the terminal device 10 may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks or the Internet via a wireless access network (e.g., Radio Access Network, RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone), or a computer.
  • Wireless terminals can also be called systems, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, and access points. Remote Terminal, Access Terminal, User Terminal, User Agent, Subscriber Station (SS), Customer Premises Equipment (CPE), UE Wait.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Wireless terminals can also be called systems, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, and access points. Remote Terminal, Access Terminal, User Terminal, User Agent, Subscriber Station (SS), Customer Premises Equipment (CPE), UE Wait.
  • CPE Customer Premises Equipment
  • the terminal device may be a mobile phone, a tablet computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a netbook, a Personal Digital Assistant (PDA), and so on.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the terminal device 10 is a mobile phone as an example.
  • FIG. 3 is a schematic structural diagram of a terminal device 10 (eg, UE) provided in an embodiment of this application.
  • the terminal device 10 may include at least one processor 11, a memory 12, a communication interface 13, and a bus 14.
  • the processor 11 may be one processor, or may be a collective term for multiple processing elements.
  • the processor 11 may be a general-purpose CPU, or may be an ASIC, or one or more integrated circuits used to control program execution of the solution of the application, such as one or more DSPs, or, one or more FPGAs.
  • the processor 11 can execute various functions of the UE by running or executing a software program stored in the memory 12 and calling data stored in the memory 12.
  • the processor 11 may include one or more CPUs.
  • the processor 11 includes CPU0 and CPU1.
  • the UE may include multiple processors.
  • a processor 11 and a processor 15 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 12 can be ROM or other types of static storage devices that can store static information and instructions, RAM or other types of dynamic storage devices that can store information and instructions, or it can be EEPROM, CD-ROM or other optical disk storage, or optical disk storage. (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 12 may exist independently, and is connected to the processor 11 through the bus 14. The memory 12 may also be integrated with the processor 11.
  • the communication interface 13 is used to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, etc.
  • the communication interface 13 may include a receiving unit to implement a receiving function, and a sending unit to implement a sending function.
  • the bus 14 may be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only a thick line is used in FIG. 3 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation on the UE, and may include more or fewer components than shown in the figure, or a combination of some components, or a different component arrangement.
  • the UE may also include a battery, a camera, a Bluetooth module, a global positioning system (Global Positioning System, GPS) module, a display screen, etc., which will not be repeated here.
  • GPS Global Positioning System
  • DCI Downlink control information DCI: carried by the downlink physical control channel PDCCH, control information sent by network equipment (e.g., base station) to terminal equipment (e.g., UE), DCI can include uplink and downlink resource allocation, HARQ information, and power control And other information.
  • the format of DCI in the embodiment of this application includes DCI 1_0, DCI 1_1, DCI 1_2, and so on.
  • the size of each domain in DCI 1_0 is fixed, that is, the size of a certain domain cannot be configured through radio resource control (Radio Resource Control, RRC).
  • RRC Radio Resource Control
  • the total number of bits in DCI 1_0 is fixed, and the number of bits in each field is also fixed.
  • the PDSCH-to-HARQ_feedback timing indicator in DCI 1_0 has a fixed size of 3 bits.
  • DCI 1_0 can be sent to the terminal device, because DCI 1_0 will not be affected by the RRC configuration. In this way, the terminal device receives the DCI 1_0, and can use the DCI 1_0 to fall back to the state before the RRC configures the DCI information. Therefore, DCI 1_0 can also be called fallback DCI.
  • the size of some domains in DCI 1_1 will be affected by the RRC configuration, that is, the size of some domains in DCI 1_1 is variable.
  • the PDSCH to HARQ feedback timing indicator in DCI 1_1 the size of this field can be 0 bit or 1 bit or 2 bits or 3 bits. In other words, the size of DCI 1_1 will change due to the configuration of RRC.
  • Orthogonal Frequency-Division Multiplexing (OFDM) symbols included in a slot slot is 14, and the number of the symbols can be 0-13. Among them, in the time domain, these symbols are continuous. In the embodiment of the present application, one symbol in the time slot may be one PUCCH resource.
  • OFDM Orthogonal Frequency-Division Multiplexing
  • Sub-slot A time slot can be divided into multiple parts, and each part is a sub-slot. As shown in (a) and (b) in Figure 4, where (a) in Figure 4 represents a sub-slot with 7 symbols, then a slot can be divided into two sub-slots; (b) in Figure 4 ) Represents a sub-slot of 2 symbols, and a slot can be divided into seven sub-slots. It should be understood that the main difference between a sub-slot and a time slot lies in the number of symbols included, and the sub-slot can also be expressed in other terms, which is not limited in the present invention.
  • the sub-slot can also be referred to as a 2-symbol time slot; if the length of the sub-slot is equal to 7, the sub-slot can also be referred to as a 7-symbol time slot.
  • the sub-slot is still taken as an example for description.
  • the terminal device When the terminal device receives the DCI from the network device, the terminal device sends HARQ-ACK to the network device. When the terminal device needs to feed back multiple HARQ-ACK bits to the network device, these HARQ-ACK bits can form a codebook. In other words, the codebook includes multiple HARQ-ACK bit information.
  • services with different delays may correspond to different codebooks, and different codebooks may have different priorities. For example, high-latency services (such as URLLC) correspond to high-priority codebooks, and services with low latency requirements (such as eMBB) correspond to low-priority codebooks.
  • a PUCCH resource includes a starting physical resource block (PRB: physical resource block), the number of PRBs, a starting symbol index, and the number of symbols.
  • PRB physical resource block
  • the base station can send downlink control information DCI to the UE through a Physical Downlink Control Channel (PDCCH).
  • DCI 1_0 indicates the time slot interval between the physical downlink shared channel (PDSCH) and HARQ-ACK transmission.
  • the PDSCH to HARQ feedback timing indicator field in DCI 1_0 indicates that the slot interval is K1
  • the UE can determine to transmit HARQ-ACK according to the slot interval between PDSCH and HARQ-ACK indicated in DCI 1_0 (ie K1) Time slot. Therefore, the UE can transmit HARQ-ACK to the base station on the PUCCH resource of the time slot.
  • the base station sends DCI 1_0 to the UE, the UE receives the PDSCH, and the PDSCH ends in the time slot slot n.
  • Figure 5 it is a schematic diagram of the UE determining the time slot for transmitting HARQ-ACK to the base station. Assuming that K1 in DCI 1_0 is 4, the UE can determine, according to K1 in DCI 1_0, that the time slot for sending HARQ-ACK to the base station is slot n+K1, that is, slot n+4. Therefore, the UE transmits HARQ-ACK in slot n+4.
  • the UE determines the time slot for transmitting HARQ-ACK, it also needs to determine the PUCCH resource used to transmit HARQ-ACK in this time slot, and then transmit HARQ-ACK on the PUCCH resource of this time slot.
  • the DCI 1_0 may include the PUCCH resource index, and the UE may determine the PUCCH resource used to transmit HARQ-ACK according to the PUCCH resource index.
  • the UE can determine the resource set for transmitting the PUCCH resource according to the number of bits of uplink control information (UCI), and then the UE in the resource set determines the PUCCH resource according to the PUCCH resource index indicated in DCI 1_0.
  • UCI uplink control information
  • FIG. 6 it is a flowchart of a method for UE to determine PUCCH resources for transmitting HARQ-ACK.
  • the method may include step 601 and step 602.
  • Step 601 The UE determines a PUCCH resource set according to the number of information bits of the UCI.
  • UCI is the uplink control information sent by the UE to the base station.
  • the UE can obtain the number of information bits in the UCI. For example, the UE receives the DCI from the base station, and when the UE transmits UCI information to the base station in response to the DCI, the UE determines the number of information bits of the UCI after generating the UCI.
  • the UE when the UE is in the range of a cell that the base station communicates with, the UE can use the PUCCH cell configuration parameter (PUCCH-ConfigCommon) of the base station. Since only one PUCCH resource set is configured in the PUCCH cell configuration parameter, the UE only needs to use the PUCCH resource set configured by the PUCCH cell configuration parameter, and the PUCCH resource set does not need to be determined by the number of information bits of the UCI.
  • PUCCH cell configuration parameter PUCCH cell configuration parameter
  • the UE when the UE receives the PUCCH configuration parameter (PUCCH-Config) from the base station, the UE can determine a PUCCH resource set in the PUCCH configuration parameter according to the number of information bits of the UCI.
  • PUCCH-Config the PUCCH configuration parameter
  • the UE can select an unused PUCCH resource set.
  • OUCI represents the number of information bits in UCI.
  • the UE chooses the first PUCCH resource set; when 2 ⁇ OUCI ⁇ N2, the UE chooses the second PUCCH resource set; when N2 ⁇ OUCI ⁇ N3, the UE chooses the third PUCCH resource set; N3 ⁇ OUCI ⁇ 1706, then the UE selects the fourth PUCCH resource set.
  • the PUCCH resource set is configured by the base station for the UE, and the specific values of N2 and N3 are set when the base station configures the PUCCH resource set for the UE.
  • the maximum number of bits of the first PUCCH resource set and the fourth PUCCH resource set does not need to be set, and N2 and N3 are both less than or equal to 1706.
  • the PUCCH is a physical uplink control channel, which is used to send uplink control information UCI, such as HARQ-ACK information.
  • the PUCCH resource configuration of the base station includes the cell level (PUCCH-ConfigCommon) and the UE level (PUCCH-Config).
  • the cell-level PUCCH configuration is a PUCCH configuration parameter that can be used by all UEs in the cell range of the base station, and the UE-level PUCCH configuration is a PUCCH parameter specially configured by the base station for the UE.
  • the PUCCH-Config configured by the base station for the UE may include at most 4 PUCCH resource sets.
  • OUCI information bits
  • Step 602 The UE determines the resources in the above-mentioned resource set according to the PUCCH resource index in DCI 1_0.
  • the UE may determine a PUCCH resource in the resource set according to the PUCCH resource index in DCI 1_0.
  • each PUCCH resource in PUCCH-Config is configured by the base station for the UE.
  • PUCCH-Config can configure the identifier (ID), starting position S and length L of each resource.
  • the UE may determine the PUCCH resource in the resource set according to the PUCCH resource index in DCI 1_0.
  • the PUCCH resource index may be the ID of the PUCCH resource.
  • FIG. 7 it is a schematic diagram of confirming PUCCH resources in a time slot.
  • the UE can determine the time slot for sending HARQ-ACK to the base station as slot n+K1 according to K1 in DCI 1_0.
  • the PUCCH resource of the time slot occupied by the UE sending HARQ-ACK to the base station is shown in FIG. 7.
  • the start bit S and the length L of the PUCCH resource are calculated according to the slot, and the boundary of the PUCCH resource configured by the base station for the UE does not exceed the boundary of the slot.
  • the boundary of the PUCCH resource can be calculated by S+L. Since the slot has 14 symbols at most, S+L ⁇ 14.
  • the UE determines the PUCCH resource in the PUCCH-ConfigCommon of the base station.
  • the UE may determine the PUCCH resource configured by PUCCH-ConfigCommon according to the PUCCH resource index in DCI 1_0.
  • only one resource set is configured in PUCCH-ConfigCommon, and the resource set includes the index of each PUCCH resource.
  • the PUCCH resource can be determined by the index of the PUCCH resource. As shown in Table 1 below, it is a schematic diagram of PUCCH-ConfigCommon configuration.
  • Resource block offset in the above table Indicates that the initial BWP is divided by 4 and rounded down.
  • the resource set configured by PUCCH-ConfigCommon includes 16 PUCCH resources, and each resource corresponds to an index.
  • PUCCH-ConfigCommon configures PUCCH resources on the initial BWP (Initial BWP), that is, the aforementioned PUCCH resources are on the initial BWP.
  • the UE can send HARQ-ACK to the base station on the PUCCH resource of the slot.
  • the UE when the UE sends a codebook composed of multiple HARQ-ACK bits to the base station, the UE can transmit the codebook through a PUCCH resource in the time slot, specifically the code is transmitted on the PUCCH resource indicated by the newly received DCI Book.
  • the first HARQ-ACK bit is the HARQ-ACK bit of the PDSCH scheduled by the first DCI, and the first DCI indicates the PUCCH
  • the time slots for the UE to feed back the service to the base station are also different.
  • URLLC Ultra-Reliable and Low-Latency Communication
  • eMBB enhanced Mobile Broadband
  • each task will generate a codebook, and the priorities of the two codebooks are different.
  • the base station may configure a PUCCH-Config parameter for the codebook of each service.
  • a time slot can be divided into multiple sub-slots. As shown in FIG. 4, one slot can be divided into two 7-symbol sub-slots, or one symbol can be divided into seven 2-symbol sub-slots.
  • the PUCCH-Config sent by the base station to the UE includes the length of the sub-slot, so that the UE feeds back HARQ-ACK according to the length of the sub-slot of the PUCCH-Config.
  • the length of the sub-slot configured in PUCCH-Config can be 7 symbols, 2 symbols, 3 symbols, and so on.
  • the base station can configure PUCCH-Config for services that do not require time delay, and the length of the sub-slots of the two services can be different. Therefore, the UE can generate two codebooks according to the information configured in PUCCH-Config, and the two codebooks can both be codebooks fed back in units of slots, or codebooks fed back in units of sub-slots. Or one is a codebook that is fed back in slot, and the other is a codebook that is fed back in sub-slot.
  • the UE can transmit HARQ-ACK to the base station on the PUCCH resource of the sub-slot according to the PUCCH-Config.
  • multiple HARQ-ACK information bits can form a HARQ-ACK codebook (codebook).
  • the UE sends the HARQ-ACK codebook to the base station in units of sub-slots. That is, one sub-slot corresponds to one codebook.
  • the UE sends the HARQ-ACK codebook to the base station in units of time slots. That is, one slot corresponds to one codebook.
  • the UE receives the PUCCH-Config from the base station, and the UE sets the parameters of the sub-slots in the PUCCH-Config according to the parameter settings of the sub-slots in the PUCCH-Config, and the UE may send HARQ-ACK to the base station with one sub-slot corresponding to one codebook. If the UE receives the PUCCH-Config from the base station and the UE receives the DCI 1_0 from the base station, the UE needs to use a slot corresponding to a codebook to send HARQ-ACK to the base station according to the DCI 1_0.
  • PUCCH-Config sets a codebook corresponding to a sub-slot to send HARQ-ACK to the base station, the UE cannot determine in which sub-slot in the time slot the HARQ-ACK should be transmitted. Assuming that the UE feeds back to the base station in units of time slots, the UE also cannot determine the PUCCH resources used for HARQ-ACK feedback in the time slot according to DCI 1_0.
  • the embodiment of the present application provides a resource indication method, which can be applied to a communication transmission process between a terminal device and a network device.
  • the terminal device is a UE (for example, a mobile phone) and the network device is a base station as an example to illustrate the resource indication method.
  • the method may include step 901a to step 904a.
  • the base station can be used to send PDSCH or PDCCH to the UE, and can receive uplink data channels sent by the UE, such as physical uplink shared channel (PUSCH) and PUCCH.
  • PUSCH physical uplink shared channel
  • the UE can be used to send PUSCH and PUCCH; the UE can also be used to receive PDSCH and PDCCH sent by the base station.
  • Step 901a The base station sends DCI to the UE, and the DCI is used to indicate the time slot for the terminal device to transmit HARQ-ACK.
  • the DCI information is DCI 1_0 as an example.
  • DCI 1_0 indicates K1
  • the time slot for transmitting HARQ-ACK is slot n+K1 where the PDSCH ends in slot n, and the PDSCH is scheduled by DCI 1_0.
  • Step 902a The UE receives the DCI from the base station and determines the time slot for transmitting HARQ-ACK indicated by the DCI.
  • Step 903a The UE sends HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot indicated by the DCI.
  • the DCI 1_0 sent by the base station may also include a PUCCH resource indicator field, such as a PUCCH resource indicator.
  • the indicator field may indicate a PUCCH resource index.
  • the UE may determine a PUCCH resource according to the PUCCH resource index, including the PUCCH resource index. The starting position and length of the PUCCH resource.
  • the UE may transmit HARQ-ACK to the base station on the PUCCH resource of the first sub-slot, where the first sub-slot refers to at least one of the time slots One of the sub-slots. If the PUCCH resource exceeds the boundary of one sub-slot, the UE may transmit HARQ-ACK to the base station on the PUCCH resources of multiple sub-slots.
  • the manner in which the UE determines the time slot may be as shown in FIG. 5.
  • the PUCCH resource exceeds the boundary of the sub-slot, it means that the duration of the PUCCH crosses the boundary of the sub-slot, that is, the start symbol and the end symbol of the PUCCH are on two different sub-slots.
  • the start symbol of PUCCH is in the first sub-slot (sub-slot 0 in Figure 4 (a))
  • the end symbol of PUCCH is in the second sub-slot (such as sub-slot 0 in Figure 4 (a)).
  • the PUCCH resource occupies symbols 4, 5, 6, and 7, the symbol 4 belongs to sub-slot 0, and the symbol 7 belongs to sub-slot 1.
  • the number of symbols occupied by PUCCH resources exceeds the boundary of sub-slot 0. If both the start symbol and the end symbol of the PUCCH are in the same sub-slot (as shown in sub-slot 0 in (a) in Figure 4), the PUCCH resource does not exceed the boundary of the sub-slot.
  • the base station can configure PUCCH resources that exceed the boundary of the sub-slot for use by DCI 1_0.
  • the base station may also configure the DCI 1_0 with PUCCH resources that do not exceed the boundary of the sub-slot. Whether the specific base station configures the boundary of the sub-slot or does not exceed the boundary is the base station's own implementation, which is not limited in the present invention.
  • the UE may transmit HARQ-ACK on the PUCCH resource of one sub-slot. Or, the UE may transmit HARQ-ACK on PUCCH resources of multiple sub-slots.
  • the UE when the PUCCH resource occupies part or all of the resources in a sub-slot, the UE sends HARQ-ACK on the PUCCH resource in the first sub-slot of the time slot, and the first sub-slot is at least one of the time slots. One of the sub-slots. Or, when the PUCCH resource occupies part or all of the resources of each sub-slot in at least two sub-slots, the UE sends HARQ-ACK on the PUCCH resource of the time slot.
  • the PUCCH resource may be a PUCCH resource indicated by the DCI, or may be a PUCCH resource configured by the base station.
  • Sending HARQ-ACK on the PUCCH resource of the sub-slot can be understood as taking the start symbol of the sub-slot as a reference.
  • the reference symbol is symbol 0. If it is in sub-slot 1, the reference symbol is symbol 7.
  • the PUCCH resource occupied by the UE to transmit HARQ-ACK is a resource corresponding to a symbol in a sub-slot. That is, the length of the PUCCH resource does not exceed the boundary of one sub-slot.
  • the UE may send HARQ-ACK on the PUCCH resource in a sub-slot (such as the first sub-slot) of the above-mentioned time slot.
  • the PUCCH resource occupies part or all of the resources of each sub-slot in at least two sub-slots, it means that the PUCCH resource occupied by the UE for transmitting HARQ-ACK is the resource corresponding to the symbols in the at least two sub-slots. That is, the length of the PUCCH resource exceeds the boundary of one sub-slot, for example, the length of the PUCCH resource spans two sub-slots.
  • the UE can send HARQ-ACK on the PUCCH resource of the above-mentioned time slot.
  • the PUCCH resources of the aforementioned time slot include resources corresponding to symbols in multiple sub-slots in the time slot.
  • the UE transmits HARQ-ACK on the PUCCH resource of the first sub-slot in the time slot.
  • the PUCCH resource indicated by the PUCCH resource index in DCI 1_0 can be determined in one sub-slot, and the UE can transmit HARQ-ACK to the base station in one sub-slot.
  • the UE and the base station may predefine the first sub-slot.
  • the first sub-slot is any one of a plurality of sub-slots that may be one slot.
  • the UE receives the PUCCH-Config parameter sent by the base station, and the PUCCH-Config parameter indicates that a slot is divided into two 7-symbol sub-slots, as shown in Figure 4 (a), the predefined first sub-slot
  • the time slot may be sub-slot 0, or the predefined first sub-slot may be sub-slot 1.
  • the first sub-slot is the Nth sub-slot predefined in the at least two sub-slots, where N is a positive integer, and N may be equal to 1 or 2 or 3 or 4 or 5 or 6 or 7 .
  • the UE may receive indication information transmitted by the base station, and the indication information is used to indicate which sub-slot of the time slot the UE transmits HARQ-ACK on the PUCCH resource.
  • the indication information may be included in DCI 1_0, for example, the number of redundant bits in the PUCCH resource indication field in DCI 1_0 is used as the indication information.
  • the PUCCH resource set contains only 2 PUCCH resources
  • 1 bit in the PUCCH resource indicator (PRI) field is used to indicate which PUCCH resource is
  • the other 2 bits of PRI are used to indicate which sub Time slot, that is, the first sub-time slot is determined.
  • the first sub-slot may also be determined through the index of the Control Channel Element (CCE).
  • the CCE may be the first CCE of the PDCCH or the nth CCE.
  • the UE transmits HARQ-ACK on PUCCH resources of multiple sub-slots in the time slot.
  • the PUCCH resource corresponding to the transmission HARQ-ACK indicated by DCI 1_0 occupies part or all of the resources of each sub-slot in at least two sub-slots, and the UE transmits on the PUCCH resources of multiple sub-slots in the time slot. HARQ-ACK. Therefore, the base station uses the PUCCH resource configured on the slot as the boundary.
  • the UE may determine which sub-slots on the time slot to use according to the index of the PUCCH resource in DCI 1_0, and transmit HARQ-ACK on the determined PUCCH resources of the multiple sub-slots.
  • the length of a sub-slot is 2 symbols, and one slot includes 7 sub-slots.
  • the starting position of the PUCCH resource corresponding to the index of the PUCCH resource in DCI 1_0 is 3, and L is 4.
  • the UE may determine, according to the index of the PUCCH resource, to transmit HARQ-ACK at bits 3, 4, 5, and 6 of the time slot.
  • the sub-slots corresponding to bits 3, 4, 5, and 6 of the time slot include: sub-slot 1, sub-slot 2, and sub-slot 3.
  • the UE can determine which sub-slots on the time slot are used in a slot manner.
  • Step 904a The base station determines the PUCCH resource, and receives HARQ-ACK on the PUCCH resource.
  • the DCI sent by the base station to the UE is DCI 1_1
  • DCI 1_1 since DCI 1_1 transmits HARQ-ACK to the base station in units of sub-slots, generally the length of the PUCCH resource indicated by the PUCCH resource index in DCI 1_1 is less than or Equal to the length of the sub-slot. If the length of the PUCCH resource indicated by the PUCCH resource index in DCI 1_1 is greater than the length of the sub-slot, the UE may remove symbols on the PUCCH resource that exceed the sub-slot indicated by the sub-slot length.
  • the UE when the UE determines that the PUCCH resource exceeds the boundary of the sub-slot, the UE can re-determine the starting position and length of the PUCCH resource.
  • the starting position corresponding to the index of the PUCCH resource is S1, and the length is L1.
  • the UE may determine that the starting position of the updated PUCCH resource is S2 and the length is L2 according to a preset rule.
  • L2 f2(L1,N), where f2(L1,N) represents L1mod N, that is, divide S1 by N and take the remainder. It is understandable that here f1 and f2 are a function, which can represent the operational relationship between S1 and N, and here f1(S1, N) represents S1 mod N as an example.
  • the UE may also jointly determine the first sub-slot according to the PRI in the DCI 1_0 and the CCE sent by the base station. For example, sub-slots can be grouped, CCE indicates which group it is, and PRI indicates which sub-slot in the group. Other ways are also possible.
  • a PUCCH resource of one sub-slot can be used to send the codebook of the URLLC service to the base station.
  • the base station may first send the PUCCH configuration parameter to the UE, and the PUCCH configuration parameter may indicate the length of the sub-slot.
  • the UE can transmit HARQ-ACK in units of sub-slots according to the length of the sub-slot indicated by the PUCCH configuration parameter.
  • FIG. 9B it is a flowchart of a resource indication method provided in an embodiment of this application. The method may include step 901b to step 906b.
  • step 903b to step 906b in FIG. 9B are the same as step 901a to step 904a in the foregoing embodiment, and will not be repeated here.
  • Step 901b The base station sends a first PUCCH configuration parameter to the UE, where the first PUCCH configuration parameter includes the length of a sub-slot.
  • the first PUCCH configuration parameter is: PUCCH-Config.
  • PUCCH-Config includes the length of the sub-slot configured by the base station.
  • the PUCCH-Config may also include the starting position and length of the PUCCH resource, so that the base station can feed back HARQ-ACK according to the PUCCH resource in the PUCCH-Config parameter.
  • Step 902b The UE receives the first PUCCH configuration parameter from the base station, and determines the length of the sub-slot in the first configuration parameter.
  • the UE may feed back HARQ-ACK according to the length of the sub-slot indicated in the PUCCH-Config, and feed back HARQ-ACK according to the PUCCH resource in the PUCCH-Config parameter.
  • PUCCH-Config corresponds to a BWP
  • the PUCCH-ConfigCommon parameter corresponds to an initial BWP.
  • the base station may also set the BWP corresponding to the PUCCH-Config.
  • one UE may include 4 BWPs, and the base station may set corresponding PUCCH configuration parameters for each BWP.
  • the UE uses only one BWP and calls the PUCCH resource configured by the base station for the BWP.
  • the above-mentioned UE receives the DCI used to indicate the time slot for transmitting HARQ-ACK, and can send HARQ-ACK to the network device on the PUCCH resource of the time slot indicated by the DCI.
  • the UE may send HARQ-ACK to the network device on the PUCCH resource of at least one sub-slot of the time slot. That is, the UE may send HARQ-ACK on the PUCCH resource of one sub-slot of the timeslot, or may send HARQ-ACK on the PUCCH resource of multiple sub-slots of the timeslot. In this way, the flexibility of the UE to send HARQ-ACK to the network device can be improved.
  • the embodiment of the present application also provides a resource indication method. As shown in FIG. 12, the method may include step 1201 to step 1206.
  • Step 1201 The base station sends a first PUCCH configuration parameter to the UE, where the first PUCCH configuration parameter is used to configure PUCCH resources in the initial BWP.
  • the first PUCCH configuration parameter here is different from the first PUCCH configuration parameter in the foregoing embodiment, and the first PUCCH configuration parameter here is a cell-level PUCCH configuration parameter.
  • the PUCCH resource configured by the PUCCH-ConfigCommon parameter is invoked through the initial BWP, and the PUCCH-ConfigCommon indicates that the HARQ-ACK is transmitted to the base station in units of time slots.
  • Step 1202 The UE receives the first PUCCH configuration parameter from the base station, where the first PUCCH configuration parameter is used to configure the PUCCH resource in the initial BWP.
  • the UE when the UE receives the first PUCCH configuration parameter from the base station, it needs to determine the PUCCH resource in the initial BWP corresponding to the PUCCH-ConfigCommon and transmit HARQ-ACK.
  • Step 1203 The base station sends DCI to the UE.
  • the DCI may be used to indicate the time slot for transmitting HARQ-ACK.
  • the DCI information is DCI 1_0 as an example.
  • the UE determines to send HARQ-ACK to the base station in units of time slots.
  • Step 1204 The UE receives the DCI from the base station, and the DCI may be used to indicate the time slot for transmitting HARQ-ACK.
  • the UE may also determine the resource for transmitting HARQ-ACK according to the PUCCH resource index in DCI 1_0. In this way, the UE can transmit HARQ-ACK on the corresponding PUCCH resource on the time slot indicated by DCI 1_0 under the indication of DCI 1_0.
  • Step 1205 The UE sends HARQ-ACK on the PUCCH resource of the time slot by activating the BWP.
  • the active BWP is the BWP currently being used by the UE.
  • the UE currently uses the active BWP to transmit HARQ-ACK to the base station. If the base station transmits HARQ-ACK according to the initial BWP indicated by PUCCH-ConfigCommon, the BWP needs to be switched. Since the handover of the BWP will affect the stability of the communication between the UE and the base station, the UE can transmit HARQ-ACK to the base station on the activated BWP.
  • the UE can transmit HARQ-ACK by activating the BWP.
  • Step 1206 The base station determines the PUCCH resource, and receives HARQ-ACK on the PUCCH resource.
  • step 1206 is the same as step 906b in the foregoing embodiment, and will not be repeated here.
  • the embodiment of the present application also provides a resource indication method. As shown in FIG. 13, the method may include step 1301 to step 1308.
  • Step 1301 The base station sends the first PUCCH configuration parameter to the UE, where the first PUCCH configuration parameter is used to configure the PUCCH resource in the initial BWP.
  • the first PUCCH configuration parameter is a PUCCH-ConfigCommon parameter.
  • the PUCCH resource configured by the PUCCH-ConfigCommon parameter is called through the initial BWP.
  • Step 1302 The UE receives the first PUCCH configuration parameter from the base station, where the first PUCCH configuration parameter is used to configure the PUCCH resource in the initial BWP.
  • step 1301 and step 1302 are the same as the above step 1201 and step 1202, and will not be repeated here.
  • Step 1303 The base station sends a second PUCCH configuration parameter to the UE, where the second PUCCH configuration parameter includes the length of the sub-slot.
  • the second PUCCH configuration parameter is a UE-level PUCCH configuration parameter.
  • Step 1304 The UE receives the second PUCCH configuration parameter from the base station, and determines the length of the sub-slot in the second configuration parameter.
  • Step 1305 The base station sends DCI to the UE.
  • the DCI is used to indicate the time slot for the UE to transmit HARQ-ACK.
  • Step 1306 The UE receives the DCI from the base station, and determines the time slot for transmitting HARQ-ACK indicated by the DCI.
  • step 1303 to step 1306 are the same as steps 901 to 904 in the foregoing embodiment, and will not be repeated here.
  • Step 1307 The UE sends HARQ-ACK on the PUCCH resource of at least one sub-slot of the time slot indicated by the DCI by activating the BWP.
  • Step 1308 The base station determines the PUCCH resource, and receives HARQ-ACK on the PUCCH resource.
  • step 1307 and step 1308 are the same as the above step 1205 and step 1206, and will not be repeated here.
  • the base station pre-configures the UE with cell-level PUCCH configuration parameters, and the base station again configures the UE with UE-level PUCCH configuration parameters.
  • DCI 1_0 can send HARQ-ACK on the PUCCH resource of the time slot indicated by DCI 1_0 by activating the BWP.
  • the above-mentioned network equipment and terminal equipment include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiment of the present application provides a terminal device, and divides the terminal device into functional modules according to the above method example.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing.
  • Module The above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the terminal device or network device 1400 in the embodiment of the present application includes a receiving unit 1401 and a sending unit 1402.
  • the receiving unit 1402 is used to perform the steps performed by the terminal device or UE in the foregoing method embodiment, such as step 902a, step 902b, step 904b, step 1202, step 1204, etc., and/or used in this document Other processes of the described technique.
  • the sending unit 1402 is configured to execute the steps performed by the terminal device or the UE in the foregoing method embodiment, such as step 903a, step 905b, step 1205, etc., and/or other processes used in the technology described herein.
  • the receiving unit 1402 is used to perform the steps performed by the network device in the above method embodiment, for example, step 904a, step 906b, step 1206, etc., and/or other processes used in the technology described herein .
  • the sending unit 1402 is configured to execute the steps performed by the network device in the foregoing method embodiment in the foregoing method embodiment, such as step 901a, step 901b, step 903b, step 1201, step 1203, and/or for the technology described herein Other processes.
  • the aforementioned terminal device or network device 1400 includes but is not limited to the unit modules listed above.
  • the specific functions that can be implemented by the above functional units also include but are not limited to the functions corresponding to the method steps described in the above examples.
  • the terminal device 1400 please refer to the detailed descriptions of the corresponding method steps. The embodiments will not be repeated here.
  • the terminal device or network device 1500 in this embodiment of the present application includes a processing module 1501, a storage module 1502, and a communication module 1503.
  • the processing module 1501 is used to control and manage the device 1500.
  • the storage module 1502 is used to store the program code and data of the device 1900.
  • the communication module 1503 is used to communicate with other devices. For example, the communication module is used to receive or send data to other devices.
  • the processing module 1501 may be a processor or a controller, for example, a CPU, a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (ASIC), and a field programmable Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 1503 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 1502 may be a memory.
  • the processing module 1501 is a processor (the processor 11 and the processor 15 shown in FIG. 3)
  • the communication module 1504 is an RF circuit (the communication interface 13 shown in FIG. 3)
  • the storage module 1502 is a memory (as shown in FIG. 3).
  • the device provided in this application may be the UE shown in FIG. 3.
  • the foregoing processor, communication interface, and memory may be coupled together through a bus.
  • the embodiment of the present application also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute any method provided in the above method embodiments, for example, any one of the attachments in FIG. 9A, FIG. 12, and FIG. The relevant method steps in the figure are realized.
  • the device 1400, device 1500, computer storage medium or computer program product provided in this application are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding method provided above. The beneficial effects of the method will not be repeated here.
  • an embodiment of the present application provides a communication device, which may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the resource indication methods provided in the above method embodiments method.
  • the processing element can execute part or all of the steps executed by the terminal device or network device in the first way: calling the program stored in the storage element; or in the second way: through the integrated logic of the hardware in the processor element
  • the circuit combined with instructions executes some or all of the steps executed by the terminal device or the network device; of course, it is also possible to combine the first method and the second method to execute some or all of the steps executed by the terminal device or the network device.
  • the interface circuit can be a transceiver or an input/output interface.
  • the communication device may further include a memory for storing instructions executed by the above-mentioned one processing element or storing input data required by the operating instructions of the processing element or storing data generated after the operating instructions of the processing element.
  • the communication device may be a chip or a chip system.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源指示方法及相关设备,本申请实施例涉及通信技术领域。通过实施本申请实施例提供的方法,使得终端设备可以通过至少一个子时隙的PUCCH资源发送HARQ-ACK,这样,可以提高终端设备向网络设备发送HARQ-ACK的灵活性。该资源指示方法可以应用于终端设备,该方法可以包括:终端设备可以接收来自网络设备的DCI,该DCI用于指示终端设备传输HARQ-ACK的时隙。并且,终端设备接收到上述DCI之后,可以在DCI所指示的时隙的至少一个子时隙的PUCCH资源上发送上述HARQ-ACK,其中,该时隙包括至少两个子时隙。也就是说,终端设备可以在该时隙的一个子时隙的PUCCH资源上发送HARQ-ACK,也可以在该时隙的多个子时隙的PUCCH资源上发送HARQ-ACK。

Description

一种资源指示方法及相关设备
本申请要求于2020年4月10日提交国家知识产权局、申请号为202010281207.6、发明名称为“一种资源指示方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种资源指示方法及相关设备。
背景技术
混合自动重传请求(hybrid automatic repeat request,HARQ)是一种结合了前向纠错(Forward Error Correction,EFC)技术与自动重传请求(Automatic Repeat Request,ARQ)技术,用于进行差错控制,从而确保通信质量的重传方法。
以接收端是用户设备(user equipment,UE),发送端是基站为例。基站可以采用以下方式向UE指示用于反馈HARQ-ACK的时隙(slot)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源。其中,基站可以向UE发送下行控制信息(Downlink Control Information,DCI)。该DCI中包括K1。UE可以根据DCI中的K1的值确定反馈HARQ-ACK的slot。该DCI中还包括PUCCH资源的指示信息,该指示信息包括PUCCH资源的标识ID、该PUCCH资源在上述slot的起始位置,以及该PUCCH资源的长度。UE可以根据该指示信息确定用于反馈HARQ-ACK的PUCCH资源。
其中,当需要反馈多个HARQ-ACK时,多个HARQ-ACK信息比特就组成了一个HARQ-ACK码本(codebook)。在Rel-15标准中,HARQ-ACK码本都是以slot为单位进行处理的,即一个slot传输一个HARQ-ACK码本。每个slot包括14个符号。其中,上述DCI可以包括DCI格式1_0(DCI format 1_0)和DCI格式1_1(DCI format 1_1)。DCI 1_0和DCI 1_1均可以适用于Rel-15标准中的HARQ-ACK传输方案。
Rel-16标准提出一种子时隙(sub-slot)的方案。该方案中可以将一个slot分为好几部分,如可以将一个slot分为2个sub-slot,每个sub-slot包括7个符号;或者,可以将一个slot分为7个sub-slot,每个sub-slot包括2个符号。在该sub-slot的方案中,可以以sub-slot为单位反馈HARQ-ACK码本。即一个sub-slot可传输一个HARQ-ACK码本。但是,DCI 1_0并不适用于sub-slot的HARQ-ACK传输方案。
发明内容
本申请提供一种资源指示方法及相关设备,使得终端设备可以根据DCI中指示的PUCCH资源,通过至少一个子时隙的PUCCH资源上发送HARQ-ACK,从而提高了终端设备响应DCI的灵活性。
为实现上述技术目的,本申请采用如下技术方案:
第一方面,本申请提供一种资源指示方法,该方法可以应用于终端设备,该方法可以包括:终端设备可以接收来自网络设备的DCI,DCI用于指示终端设备传输HARQ-ACK的时隙。终端设备接收到上述DCI之后,可以在时隙的至少一个子时隙 的PUCCH资源上发送上述HARQ-ACK,其中,时隙包括至少两个子时隙。
可以理解的,上述终端设备接收到用于指示传输HARQ-ACK的时隙的DCI,则可以在该DCI所指示的时隙的PUCCH资源上向网络设备发送HARQ-ACK。具体的,终端设备可以在该时隙的至少一个子时隙的PUCCH资源上向网络设备发送HARQ-ACK。也就是说,终端设备可以在该时隙的一个子时隙的PUCCH资源上发送HARQ-ACK,也可以在该时隙的多个子时隙的PUCCH资源上发送HARQ-ACK。这样,可以提高终端设备向网络设备发送HARQ-ACK的灵活性。
其中,一个时隙可以包括14个符号。一个子时隙可以包括7个符号,则一个时隙可以包括2个子时隙。或者,一个子时隙可以包括2个符号,则一个时隙可以包括7个子时隙。
在第一方面的一种可能的设计方式中,上述终端设备在时隙的至少一个子时隙的PUCCH资源上发送HARQ-ACK,可以包括:终端设备在时隙的第一子时隙的PUCCH资源上发送HARQ-ACK,第一子时隙是时隙的至少一个子时隙中的一个子时隙;或者,终端设备在时隙的PUCCH资源上发送HARQ-ACK,即终端设备在时隙包括的多个子时隙的PUCCH资源上发送HARQ-ACK。
在第一方面的另一种可能的设计方式中,终端设备接收到的DCI还指示终端设备传输HARQ-ACK的PUCCH资源。当DCI指示的传输HARQ-ACK的PUCCH资源占用一个子时隙中的部分或全部资源,则终端设备在时隙的第一子时隙的PUCCH资源上发送HARQ-ACK,第一子时隙是时隙的至少一个子时隙中的一个子时隙。或者,当DCI指示的传输HARQ-ACK的PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,则终端设备在时隙的PUCCH资源上发送HARQ-ACK。
具体地说,如果DCI指示的传输HARQ-ACK所对应的PUCCH资源占用一个子时隙中的部分或全部资源,则表示终端设备传输HARQ-ACK所占用的PUCCH资源是一个子时隙内的符号对应的资源。即PUCCH资源的长度未超过一个子时隙的边界。在这种情况下,终端设备可以在上述时隙的一个子时隙(如第一子时隙)的PUCCH资源上发送HARQ-ACK。
如果DCI指示的传输HARQ-ACK所对应的PUCCH资源占用至少两个子时隙中的部分或全部资源,则表示终端设备传输HARQ-ACK所占用的PUCCH资源是至少两个子时隙内的符号对应的资源。即PUCCH资源的长度超过了一个子时隙的边界,如该PUCCH资源的长度跨越两个子时隙。在这种情况下,终端设备可以在上述时隙的PUCCH资源上发送HARQ-ACK。其中,上述时隙的PUCCH资源包括该时隙中多个子时隙内的符号对应的资源。
在第一方面的另一种可能的设计方式中,第一子时隙可以是至少两个子时隙中预定义的第N个子时隙。其中,N为正整数。
其中,终端设备可以从网络设备获取该第一子时隙。或者,终端设备可以从协议中确定该预定义的第一子时隙。
也就是说,如果PUCCH资源占用一个子时隙中的部分或全部资源,即PUCCH资源的长度未超过一个子时隙的边界;那么,终端设备可以在上述时隙的预定义的一个子时隙(如第一子时隙)的PUCCH资源上发送HARQ-ACK。
在第一方面的另一种可能的设计方式中,上述第一子时隙还可以是由网络设备向终端设备指定的。具体的,终端设备可以接收来自网络设备的指示信息,该指示信息用于指示终端设备传输HARQ-ACK的子时隙,即第一子时隙。终端设备则可以根据该指示信息确定第一子时隙。
在第一方面的另一种可能的设计方式中,上述指示信息包含于DCI中。也就是说,网络设备可以将该指示信息携带在DCI中向终端设备发送。该设计方式给出终端设备接收来自网络设备的指示信息的一种具体方式。
在第一方面的另一种可能的设计方式中,指示信息包括控制信道单元(Control Channel Element,CCE)的索引。也就是说,网络设备可以通过CCE的索引向终端设备发送上述指示信息。该设计方式给出终端设备接收来自网络设备的指示信息的一种具体方式。
在第一方面的另一种可能的设计方式中,上述终端设备还可以接收来自网络设备的第一PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。一个时隙可以包括14个符号。一个子时隙可以包括7个符号,则一个时隙可以包括2个子时隙。或者,一个子时隙可以包括2个符号,则一个时隙可以包括7个子时隙。其中,根据子时隙的长度,终端设备可以判断PUCCH资源占用多少个子时隙中的资源。
第二方面,本申请还提供一种资源指示方法,该方法可以应用于网络设备,该方法可以包括:网络设备向终端设备发送DCI,DCI用于指示终端设备传输HARQ-ACK的时隙,其中,时隙中包括至少两个子时隙。网络设备在时隙的至少一个子时隙的PUCCH资源接收来自终端设备的HARQ-ACK。
可以理解的,网络设备发送的DCI指示终端设备传输HARQ-ACK的时隙,网络设备可以在该时隙的至少一个子时隙的PUCCH资源接收终端设备发送的HARQ-ACK。具体的,网络设备可以在该时隙的一个子时隙的PUCCH资源上接收HARQ-ACK,也可以在该时隙的多个PUCCH资源上接收HARQ-ACK。这样,网络设备可以根据需求灵活配置传输HARQ-ACK的PUCCH资源。
在第二方面的一种可能的设计方式中,当PUCCH资源占用一个子时隙中的部分或全部资源,网络设备在第一子时隙的PUCCH资源上接收来自终端设备的HARQ-ACK;或者,当第一DCI中PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,网络设备在时隙的PUCCH资源上接收来自终端设备的HARQ-ACK。
在第二方面的另一种可能的设计方式中,第一子时隙可以是至少两个子时隙中预定义的第N个子时隙,其中,N为正整数。
其中,网络设备可以向终端设备指示时隙中的第一子时隙,或者,网络设备可以和终端设备约定时隙中的第一子时隙。
在第二方面的另一种可能的设计方式中,网络设备可以向终端设备发送指示信息,其中,指示信息用于指示终端设备传输HARQ-ACK的子时隙。
上述第一子时隙可以是由网络设备向终端设备指定的。如,网络设备向终端设备发送指示信息,指示信息用于指示终端设备传输HARQ-ACK的子时隙。
在第二方面的另一种可能的设计方式中,指示信息包含于DCI中。也就是说,网络设备可以将该指示信息携带在DCI中向终端设备发送。该设计方式给出终端设备接 收来自网络设备的指示信息的一种具体方式。
在第二方面的另一种可能的设计方式中,指示信息包括控制信道单元(Control Channel Element,CCE)的索引。也就是说,网络设备可以通过CCE的索引中向终端设备发送上述指示信息。该设计方式给出终端设备接收来自网络设备的指示信息的一种具体方式。
在第二方面的另一种可能的设计方式中,网络设备向终端设备发送第一PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
第三方面,本申请还提供一种资源指示方法,该方法可以应用于终端设备,该方法可以包括:终端设备接收到来自网络设备的第一PUCCH配置参数,第一PUCCH配置参数用于配置初始部分带宽(Bandwidth Part,BWP)中的PUCCH资源。终端设备还可以接收来自网络设备的DCI,该DCI用于指示传输HARQ-ACK的时隙。终端设备可以通过激活BWP,在时隙的PUCCH资源上发送HARQ-ACK。
其中,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源,激活BWP是终端设备当前使用的BWP。也就是说,终端设备接收到第一PUCCH配置参数,终端设备可以使用激活BWP,在时隙的PUCCH资源上发送HARQ-ACK。这样可以避免终端设备切换BWP,从而可以提高终端设备发送HARQ-ACK的效率。
在第三方面的一种可能的设计方式中,终端设备还可以接收来自网络设备的第二PUCCH配置参数,第二PUCCH配置参数包括子时隙的长度。
第四方面,本申请还提供一种资源指示方法,该方法可以应用于网络设备,该方法可以包括:网络设备可以向终端设备发送第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。网络设备还可以向终端设备发送DCI,该DCI可以用于指示传输HARQ-ACK的时隙。网络设备还可以通过激活BWP,在时隙的PUCCH资源上接收来自终端设备的HARQ-ACK。
在第四方面的一种可能的设计方式中,网络设备还可以向终端设备发送第二PUCCH配置参数,第二PUCCH配置参数包括子时隙的长度。
第五方面,本申请还提供一种终端设备,该终端设备可以用于实施上述第一方面及其任一种可能的设计方式中的方法。该终端设备可以包括接收单元和发送单元;接收单元,用于接收来自网络设备的DCI,DCI用于指示终端设备传输HARQ-ACK的时隙,该DCI还可以指示PUCCH资源。发送单元,用于在DCI所指示的时隙的至少一个子时隙的PUCCH资源上发送上述HARQ-ACK,其中,时隙包括至少两个子时隙。
在第五方面的一种可能的设计方式中,上述发送单元用于在DCI所指示的时隙的至少一个子时隙的PUCCH资源上发送上述HARQ-ACK时,发送单元具体用于,当第一DCI中PUCCH资源占用一个子时隙中的部分或全部资源,发送单元在时隙的第一子时隙的PUCCH资源上发送HARQ-ACK;或者,当第一DCI中PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,发送单元在时隙的PUCCH资源上发送HARQ-ACK。
第五方面的另一种可能的设计方式中,上述第一子时隙可以是一个时隙中预定义的第N个子时隙,其中,N为正整数。
第五方面的另一种可能的设计方式中,接收单元,还可以用于接收来自网络设备 的指示信息。其中,指示信息用于指示终端设备传输HARQ-ACK的子时隙。
第五方面的另一种可能的设计方式中,接收单元,还可以用于接收来自网络设备的第一PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
第六方面,本申请还提供一种网络设备,该终端设备可以用于实施上述第二方面及其任一种可能的设计方式中的方法。该终端设备可以包括接收单元和发送单元;发送单元,用于向终端设备发送DCI,DCI用于指示终端设备传输HARQ-ACK的时隙,DCI还用于指示PUCCH资源,其中,时隙中包括至少两个子时隙。接收单元,用于在时隙的至少一个子时隙的HARQ-ACK的时隙接收来自终端设备的HARQ-ACK。
第六方面的一种可能的设计方式中,接收单元,用于在时隙的至少一个子时隙的HARQ-ACK的时隙接收来自终端设备的HARQ-ACK时,接收单元,具体用于当PUCCH资源占用一个子时隙中的部分或全部资源,在第一子时隙的PUCCH资源上接收来自终端设备的HARQ-ACK;或者,当第一DCI中PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,在时隙的PUCCH资源上接收来自终端设备的HARQ-ACK。
第六方面的另一种可能的设计方式中,发送单元,还用于向终端设备发送第一PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
第七方面,本申请还提供一种终端设备,该终端设备可以用于实施上述第三方面及其任一种可能的设计方式中的方法。该终端设备可以包括接收单元和发送单元;接收单元,用于接收到来自网络设备的第一PUCCH配置参数,第一PUCCH配置参数用于配置初始部分带宽(band width part,BWP)中的PUCCH资源。接收单元,还用于接收来自网络设备的DCI,该DCI用于指示传输HARQ-ACK的时隙。发送单元,用于通过激活BWP,在时隙的PUCCH资源上发送HARQ-ACK。
第七方面的一种可能的设计方式中,接收单元,还用于接收来自网络设备的第二PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
第八方面,本申请还提供一种网络设备,该网络设备可以用于实施上述第四方面及其任一种可能的设计方式中的方法。该网络设备可以包括接收单元和发送单元;发送单元,用于向终端设备发送第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。发送单元,还用于向终端设备发送DCI,该DCI可以用于指示传输HARQ-ACK的时隙。接收单元,用于通过激活BWP,在时隙的PUCCH资源上接收来自终端设备的HARQ-ACK。
第八方面的一种可能的设计方式中,发送单元,还用于向终端设备发送第二PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
第九方面,本申请还提供一种终端设备,该终端设备可以包括:处理器、存储器和通信接口;存储器和通信接口与处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,存储器包括非易失性存储介质,当处理器执行计算机指令时,使终端设备执行上述第一方面及其任一种可能的设计方式,第三方面及其任一种可能的设计方式中的方法。
第十方面,本申请还提供一种网络设备,该网络设备可以包括:处理器、存储器和通信接口;存储器和通信接口与处理器耦合,存储器用于存储计算机程序代码,计 算机程序代码包括计算机指令,存储器包括非易失性存储介质,当处理器执行计算机指令时,使终端设备执行上述第二方面及其任一种可能的设计方式,第四方面及其任一种可能的设计方式中的方法。
第十一方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当计算机指令在设备上运行时,使得设备可以执行上述第一方面、第二方面、第三方面、第四方面及其任一种可能的设计方式中的方法。
第十二方面,本申请还提供了一种通信装置,包括处理器和接口电路,所述处理器用于通过接口电路与其它装置通信,并执行以上任一方面提供的方法。该处理器包括一个或多个。
第十三方面,本申请还提供一种通信装置,包括处理器,用于调用存储器中存储的程序,以执行以上任一方面提供的方法。该存储器可以位于该装置之内,也可以位于该装置之外。且该处理器可以是一个或多个处理器。
本申请实施例第五方面、第六方面、第七方面、第八方面及其任一种可能的设计方式,以及第九方面的终端设备,第十方面的网络设备以及第十一方面的计算机可读存储介质、第十二方面、第十三方面提供的通信装置所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请提供的一种系统架构示意图;
图2为本申请实施例提供的一种网络设备的结构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例提供的一种子时隙划分示意图;
图5为本申请实施例提供的一种确认反馈HARQ-ACK时隙的示意图;
图6为本申请实施例提供的一种确认反馈HARQ-ACK的时隙上的资源的流程图;
图7为本申请实施例提供的一种HARQ-ACK占用的时隙的PUCCH资源的示意图;
图8为本申请实施例提供的一种PUCCH资源占用示意图;
图9A为本申请实施例提供的一种资源指示方法的流程图一;
图9B为本申请实施例提供的一种资源指示方法的流程图二;
图10为本申请实施例提供的另一PUCCH资源占用示意图;
图11A为本申请实施例提供的另一PUCCH资源占用示意图;
图11B为本申请实施例提供的另一PUCCH资源占用示意图;
图12为本申请实施例提供的一种资源指示方法的流程图;
图13为本申请实施例提供的另一资源指示方法的流程图;
图14为本申请实施例提供的一种设备的结构组成示意图一;
图15为本申请实施例提供的一种设备的结构组成示意图二。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供一种资源指示方法,该方法可以应用于终端设备向网络设备反馈HARQ-ACK的过程中。
请参考图1,图1为本申请实施例提供的一种系统架构的示意图。该系统架构中可以包括一个或多个终端设备和网络设备。如图1所示,该系统架构中包括:终端设备10和网络设备20。
其中,终端设备10和网络设备20可以进行数据传输。示例性的,网络设备20可以向终端设备10发送下行控制信息DCI;终端设备10可以接收来自网络设备20的DCI,并向网络设备反馈DCI的接收状态信息(如,HARQ-ACK)。
可以理解的,本申请实施例提供的资源指示方法可以应用于新无线(new radio,NR)系统中。上述的网络设备20具体可以是基站,例如,无线通信的基站(Base Station,BS)或基站控制器等。其中,基站也可以称为无线接入点,收发站,中继站,小区,发送接收点(Transmit and Receive Port,TRP)等等。具体的,网络设备20是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,其可以与终端设备10进行连接,接收终端设备10发送的数据并发送给核心网设备。网络设备20的主要功能包括如下一个或多个功能:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行移动管理节点(Mobility Management Entity,MME)的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的测量及测量报告的配置等等。网络设备20可以包括各种形式的蜂窝基站、家庭基站、小区、无线传输点、宏基站、微基站、中继站、无线接入点等等。
在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(evolved NodeB,eNB或eNodeB),在第3代移动通信技术(the third Generation Telecommunication,3G)系统中,称为基站(Node B),在NR系统中,称为gNB,CU,DU等等,在无线本地接入系统中,称为接入点(Access Point)。随着通信技术的演进,这一名称可能会变化。此外,在其它可能的情况下,网络设备20可以是其它为终端设备提供无线通信功能的装置。为方便描述,本申请实施例中,将为终端设备提供无线通信功能的装置称为网络设备。
请参考图2,为本申请实施例提供的一种基站的结构示意图,如图2所示,基站可以包括至少一个处理器21,存储器22、通信接口23、总线24。
处理器21是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图2中所示的 处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,存储器22用于存储执行本申请方案的软件程序,并由处理器21来控制执行。
通信接口23,用于与其他设备或通信网络通信。如用于与以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等通信网络通信。通信接口23可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
终端设备10指的是包含无线收发功能,可以与接入网设备和/或核心网设备等网络侧设备配合为用户提供通讯服务的设备。终端设备10可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,Radio Access Network,RAN)与一个或多个核心网或者互联网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、 用户代理(User Agent)、用户站(Subscriber Station,SS)、用户端设备(Customer Premises Equipment,CPE)、UE等。例如,该终端设备可以手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、上网本、个人数字助理(Personal Digital Assistant,PDA)等等。作为一种实施例,如图1所示,本申请实施例的系统架构示意图中以终端设备10是手机为例示出。
请参考图3,为本申请实施例提供的一种终端设备10(如,UE)的结构示意图。如图3所示,终端设备10中可以包括至少一个处理器11、存储器12、通信接口13和总线14。
处理器11可以是一个处理器,也可以是多个处理元件的统称。例如,处理器11可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本申请方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器11可以通过运行或执行存储在存储器12内的软件程序,以及调用存储在存储器12内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器11可以包括一个或多个CPU。例如,如图3所示,处理器11包括CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器。例如,如图3所示,包括处理器11和处理器15。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器12可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器12可以是独立存在,通过总线14与处理器11相连接。存储器12也可以和处理器11集成在一起。
通信接口13,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口13可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线14,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、全球定位系统(Global Position System,GPS)模块、显示屏等,在此不再赘述。
以下将对本申请实施例涉及的术语进行介绍。
(1)下行控制信息DCI:由下行物理控制信道PDCCH承载,网络设备(如,基站)发给终端设备(如,UE)的控制信息,DCI中可以包括上下行资源分配、HARQ信息、功率控制等信息。本申请实施例中DCI的格式包括DCI 1_0,DCI 1_1和DCI 1_2 等。
其中,DCI 1_0中每个域的大小是固定的,即不能通过无线资源控制(Radio Resource Control,RRC)来配置某个域的大小。也就是说,DCI 1_0的总比特数是固定的,且每个域的比特数也是固定的。例如,DCI 1_0中的PDSCH到HARQ反馈定时指示(PDSCH-to-HARQ_feedback timing indicator),这个域的大小是固定的3比特。需要说明的,如果通过RRC配置其它DCI格式中某个域的大小时,则可以向终端设备发送DCI 1_0,因为DCI 1_0不会受到RRC配置的影响。这样,终端设备接收到DCI 1_0,可以通过DCI 1_0回退到RRC配置DCI信息之前的状态。因此,DCI 1_0也可以被称为回退DCI。
其中,DCI 1_1中某些域的大小会受到RRC配置的影响,即DCI 1_1中某些域的大小是可变的。例如,DCI 1_1中的PDSCH到HARQ反馈定时指示,这个域的大小可以是0比特或者1比特或者2比特或者3比特。也就是说,DCI 1_1的大小会因为RRC的配置而改变。
(2)时隙:本申请实施例中,一个时隙slot包含的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号数为14个,其符号的编号可以是0到13。其中,在时域上,这些符号是连续的。本申请实施例中,时隙中的一个符号可以是一个PUCCH资源。
(3)子时隙(sub-slot):一个时隙可以被分为多个部分,每个部分都是一个sub-slot。如图4中的(a)和(b)所示,其中,图4中(a)表示7符号的sub-slot,则一个时隙可以被分为两个sub-slot;图4中(b)表示2符号的sub-slot,则一个时隙可以被分为七个sub-slot。应当理解,子时隙和时隙的主要区别在于包含的符号个数不同,子时隙也可以用其它术语来表述,本发明不做限定。特别的,如果子时隙的长度等于2,子时隙也可以称为2符号的时隙;如果子时隙的长度等于7,子时隙也可以称为7符号的时隙。本发明中,还是以子时隙为例进行说明。
(4)码本:终端设备接收到来自网络设备的DCI,则终端设备向网络设备发送HARQ-ACK。当终端设备需要向网络设备反馈多个HARQ-ACK的比特时,这些HARQ-ACK比特可以组成一个码本。也就是说,码本是包括多个HARQ-ACK比特信息。本申请实施例中,时延性不同的业务可以对应不同的码本,并且不同的码本之间可以有不同的优先级。例如,高时延的业务(例如URLLC)对应高优先级的码本,时延要求不高的业务(例如eMBB)对应低优先级的码本。
(5)PUCCH资源:一个PUCCH资源包括起始物理资源块(PRB:physical resource block),PRB的个数,起始符号索引(starting symbol index)以及符号个数等。
一般而言,基站可以通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向UE发送下行控制信息DCI。当基站向UE发送DCI 1_0时,DCI 1_0指示物理下行共享信道(Physical downlink shared channel,PDSCH)和传输HARQ-ACK之间的时隙间隔。例如,DCI 1_0中的PDSCH到HARQ反馈定时指示域指示该时隙间隔为K1,则UE可以根据DCI 1_0中指示的PDSCH和HARQ-ACK之间的时隙间隔(即K1)确定传输HARQ-ACK的时隙。由此,UE可以在该时隙的PUCCH资源上向基站传输HARQ-ACK。
示例性的,基站向UE发送DCI 1_0,UE接收到PDSCH,PDSCH在时隙slot n结束。如图5所示,为UE确定向基站传输HARQ-ACK的时隙的示意图。假设DCI 1_0中的K1为4,则UE可以根据DCI 1_0中的K1确定出向基站发送HARQ-ACK的时隙为slot n+K1,即slot n+4。因此,UE在时隙slot n+4上传输HARQ-ACK。
可以理解的,当UE确定传输HARQ-ACK的时隙之后,还需要确定出在该时隙上传输HARQ-ACK使用的PUCCH资源,然后在该时隙的PUCCH资源上传输HARQ-ACK。其中,DCI 1_0中可以包括PUCCH资源索引,UE可以根据PUCCH资源索引确定出传输HARQ-ACK使用的PUCCH资源。
具体地说,UE可以根据上行控制信息(Uplink control information,UCI)的比特数确定出传输PUCCH资源的资源集,进而UE在该资源集中,根据DCI 1_0中指示的PUCCH资源索引确定PUCCH资源。
示例性的,如图6所示,为UE确定传输HARQ-ACK的PUCCH资源的方法的流程图。该方法可以包括步骤601和步骤602。
步骤601:UE根据UCI的信息比特数确定一个PUCCH资源集。
其中,UCI是UE向基站发送的上行控制信息。当UE向基站发送UCI时,UE可以获取UCI中的信息比特数。例如,UE接收到来自基站的DCI,当UE响应于DCI向基站传输UCI信息,则UE生成UCI之后确定出UCI的信息比特数。
需要说明的,UE处于基站通信的小区范围时,UE可以使用基站的PUCCH小区配置参数(PUCCH-ConfigCommon)。由于PUCCH小区配置参数中仅配置一个PUCCH资源集,则UE使用PUCCH小区配置参数配置的PUCCH资源集即可,则不需要通过UCI的信息比特数确定PUCCH资源集。
可以理解的,当UE接收到来自基站的PUCCH配置参数(PUCCH-Config),则UE可以根据UCI的信息比特数确定出PUCCH配置参数中的一个PUCCH资源集。
其中,UCI中的信息比特数不同,则UE可以选择不用的PUCCH资源集。
示例性的:OUCI表示UCI中的信息比特数。当OUCI≤2,则UE选择第一个PUCCH资源集;当2<OUCI≤N2,则UE选择第二个PUCCH资源集;当N2<OUCI≤N3,则UE选择第三个PUCCH资源集;当N3<OUCI≤1706,则UE选择第四个PUCCH资源集。
其中,PUCCH资源集是基站为UE配置的,N2和N3的具体数值是基站为UE配置PUCCH资源集的时候设置的。第一个PUCCH资源集和第四PUCCH资源集的最大比特数是不需要设置的,并且,N2和N3均小于或等于1706。
可以理解的,PUCCH是物理上行控制信道,用于发送上行控制信息UCI,例如HARQ-ACK信息等。基站的PUCCH资源配置包括小区级(PUCCH-ConfigCommon)和UE级(PUCCH-Config)。小区级的PUCCH配置是基站的小区范围中的UE都可以使用的PUCCH配置参数,UE级的PUCCH配置是基站为UE专门配置的PUCCH参数。
示例性的,基站为UE配置的PUCCH-Config中最多可以包括4个PUCCH资源集。
如,第一个PUCCH资源集(PUCCH-ResourceSetId=0)。可以包含至多32个PUCCH资源,且调用第一个PUCCH资源集的条件为UCI的信息比特数(OUCI)小于等于2。
第二个PUCCH资源集(PUCCH-ResourceSetId=1),可以包含至多8个PUCCH资源,且调用第二个PUCCH资源集的条件为2<OUCI≤N2。其中,N2是由基站配置的,配置的值必须是4的倍数,并且N2小于等于1706,如果基站没有配置N2的数值,则N2=1706。如果N2=1706,基站为UE配置的PUCCH-Config中只包括2个资源集。
第三个PUCCH资源集(PUCCH-ResourceSetId=2),可以包含至多8个PUCCH资源,且调用第三个PUCCH资源集的条件为N2<OUCI≤N3。其中,N3是由基站配置的,配置的值必须是4的倍数,并且N3小于等于1706,如果基站没有配置N3的数值,则N3=1706。如果N3=1706,基站为UE配置的PUCCH-Config中只包括3个资源集。
第四个PUCCH资源集(PUCCH-ResourceSetId=3),可以包含至多8个PUCCH资源,且调用第四个PUCCH资源集的条件为N3<OUCI≤1706。其中,第四个PUCCH资源集对应的UCI的最大信息比特数为1706,不需要基站配置。
步骤602:UE根据DCI 1_0中的PUCCH资源索引确定出上述资源集中的资源。
在第一种情况中,基站向UE发送的PUCCH-Config,UE可以根据DCI 1_0中的PUCCH资源索引确定出资源集的一个PUCCH资源。
可以理解的,PUCCH-Config中的每个PUCCH资源都是基站为UE配置的。其中,PUCCH-Config可以配置每个资源的标识(Identifier,ID)、起始位置S和长度L等。UE可以根据DCI 1_0中的PUCCH资源索引确定出资源集中的PUCCH资源。例如,PUCCH资源索引可以是该PUCCH资源的ID。
示例性的,如图7所示,为确认时隙中PUCCH资源的示意图。以DCI 1_0中的K1为4,则UE可以根据DCI 1_0中的K1确定出向基站发送HARQ-ACK的时隙为slot n+K1为例。假设UE根据DCI 1_0确定出PUCCH资源的起始位S=2,L=2,则UE向基站发送HARQ-ACK占用的时隙的PUCCH资源如图7示意。
需要说明的是,Rel-15标准协议中,PUCCH资源的起始位S和长度L,都是按照slot来算的,并且基站为UE配置的PUCCH资源的边界不会超过slot的边界。PUCCH资源的边界可以通过S+L计算得到,由于slot最多有14个符号,则S+L≤14。如图8所示的PUCCH资源占用示意图,其中,图8中(a)表示ID=0的PUCCH资源,ID=0,S=2,L=2。图8中(b)表示ID=1的PUCCH资源,ID=1,S=10,L=3。
在第二种情况中,UE在基站的PUCCH-ConfigCommon中确定出PUCCH资源。UE可以根据DCI 1_0中的PUCCH资源索引确定PUCCH-ConfigCommon配置的PUCCH资源。
示例性的,PUCCH-ConfigCommon中仅配置一个资源集,该资源集中包括每个PUCCH资源的索引。通过PUCCH资源的索引可以确定出该PUCCH资源。如下表1所示,为PUCCH-ConfigCommon配置的示意。
表1:PUCCH-ConfigCommon中PUCCH资源的集合
Figure PCTCN2021082490-appb-000001
Figure PCTCN2021082490-appb-000002
上述表格中资源块偏移量
Figure PCTCN2021082490-appb-000003
表示对初始BWP除以4进行下取整。
其中,PUCCH-ConfigCommon配置的资源集合中包括16个PUCCH的资源,以及每个资源对应一个索引。并且,PUCCH-ConfigCommon配置的是初始BWP(Initial BWP)上的PUCCH资源,也就是说,上述PUCCH资源是在初始BWP上。
可以理解的,当UE确定DCI 1_0在对应时隙中PUCCH资源,则UE可以在slot的PUCCH资源上向基站发送HARQ-ACK。
其中,UE向基站发送多个HARQ-ACK比特组成的一个码本时,UE可以通过时隙上的一个PUCCH资源传输该码本,具体是在最新收到的DCI指示的PUCCH资源上传输该码本。例如,以一个slot上发送一个码本为例,两个HARQ-ACK比特组成一个码本,第一HARQ-ACK比特是第一个DCI调度的PDSCH的HARQ-ACK比特,第一个DCI指示PUCCH资源为S=2,L=2;第二HARQ-ACK比特是第二个DCI调度的PDSCH的HARQ-ACK比特,第二个DCI指示的PUCCH资源为S=6,L=2。则UE可以在S=6,L=2处的PUCCH资源上发送2比特的HARQ-ACK,也就是说,UE以slot为单位,在slot的一个PUCCH资源(S=6,L=2对应的PUCCH资源)上传输码本,该码本包含2比特的HARQ-ACK比特信息。
需要说明的,在UE使用的过程中,当UE执行不同的业务时,由于不同业务的对时延的要求不同,则UE向基站反馈该业务的时隙也不同。例如,UE执行超低时延高可靠通信(Ultra Reliable and Low Latency Communication,URLLC)业务时,URLLC对时延的要求高,则UE可以为该业务设置高优先级的码本。UE执行增强移动宽带(enhanced Mobile Broadband,eMBB)业务时,eMBB对时延的要求较低,UE为eMBB业务设置低优先级的码本,相比于URLLC业务的码本而言。也就是说,UE在执行上述两个任务时,每个任务都会产生一个码本,且两个码本的优先级不同。具体地说,基站为了保证上述两个业务都可以在满足时延要求的情况下进行,则基站可以针对每个业务的码本分别配置一个PUCCH-Config参数。
在Rel-16标准协议中,可以将一个时隙分为多个子时隙(sub-slot)。如图4中所示,可以将一个时隙分为两个7符号的子时隙,或者,将一个符号分为七个2符号的子时隙。可以理解的,基站向UE发送的PUCCH-Config中包括子时隙的长度,使得UE根据PUCCH-Config的子时隙的长度反馈HARQ-ACK。例如,PUCCH-Config中配置的子时隙的长度可以是7符号,2符号或3符号等。由此,基站可以为不用时延的业务配置PUCCH-Config,则两个业务的子时隙的长度可以不同。因此,UE可以根据PUCCH-Config中配置的信息产生两个码本,且两个码本中可以均为以slot为单位反馈的码本,也可以是以sub-slot为单位反馈的码本,或者一个是以slot为单位反馈的码本,一个是以sub-slot为单位反馈的码本。
其中,UE接收到来自基站的PUCCH-Config,则UE可以根据PUCCH-Config在子时隙的PUCCH资源上向基站传输HARQ-ACK。当UE需要向基站发送多个HARQ-ACK时,多个HARQ-ACK信息的比特可以组成一个HARQ-ACK码本(codebook)。
可以理解的,在Rel-16标准协议中,UE以子时隙为单位向基站发送HARQ-ACK码本。即一个sub-slot对应一个码本。在Rel-15标准协议中,UE以时隙为单位向基站发送HARQ-ACK码本。即一个slot对应一个码本。
示例性的,UE接收到来自基站的PUCCH-Config,UE根据PUCCH-Config中的子时隙的参数设置,则UE可以以一个sub-slot对应一个码本向基站发送HARQ-ACK。如果UE接收到来自基站的PUCCH-Config,UE接收到来自基站的DCI 1_0,UE按照DCI 1_0需要以slot对应一个码本向基站发送HARQ-ACK。由于PUCCH-Config设置的是以sub-slot对应一个码本向基站发送HARQ-ACK,则UE无法确定HARQ-ACK应该在时隙中的哪个sub-slot中传输HARQ-ACK。假设UE按照时隙为单位向基站反馈,则UE也无法根据DCI 1_0确定时隙上用于反馈HARQ-ACK的PUCCH资源。
本申请实施例提供一种资源指示方法,该方法可以应用于终端设备和网络设备通信传输的过程中。本申请实施例中以终端设备是UE(如,手机),网络设备是基站为例,对资源指示方法进行说明。如图9A所示,该方法可以包括步骤901a-步骤904a。
其中,基站可以用于向UE发送PDSCH,或者PDCCH,并且可以接收UE发送的上行数据信道,例如物理上行共享信道(physical uplink shared channel,PUSCH),以及PUCCH等。UE可以用于发送PUSCH以及PUCCH;UE还可以用于接收基站发送的PDSCH和PDCCH。
步骤901a:基站向UE发送DCI,DCI用于指示终端设备传输HARQ-ACK的时隙。
本申请实施例中,以DCI信息为DCI 1_0为例。也就是说,DCI 1_0指示K1,则传输HARQ-ACK的时隙为slot n+K1,其中,PDSCH在slot n结束,该PDSCH是DCI 1_0调度的。
步骤902a:UE接收到来自基站的DCI,并确定该DCI所指示的传输HARQ-ACK的时隙。
步骤903a:UE在DCI所指示的时隙的至少一个子时隙的PUCCH资源上发送HARQ-ACK。
可以理解的,基站发送的DCI 1_0中还可以包括PUCCH资源指示域,例如PUCCH resource indicator,该指示域可以指示一个PUCCH资源的索引,UE可以根据该PUCCH资源的索引确定出一个PUCCH资源,包括该PUCCH资源的起始位置和长度。
如果PUCCH资源未超过一个子时隙的边界,则UE可以在第一子时隙的PUCCH资源上向基站传输HARQ-ACK,其中,所述第一子时隙是指所述时隙的至少一个子时隙中的一个子时隙。如果PUCCH资源超过一个子时隙的边界,则UE可以在多个子时隙的PUCCH资源上向基站传输HARQ-ACK。UE确定时隙的方式可以如图5所示。
其中,PUCCH资源超过子时隙的边界是说,PUCCH的持续时间跨过了子时隙的边界,即PUCCH的起始符号和结束符号在两个不同的子时隙上。例如PUCCH的起始符号在第一子时隙(如图4中(a)中的sub-slot 0),PUCCH的结束符号在第二子时隙(如图4中(a)中的sub-slot 1)。示例性的,PUCCH资源的起始位置为4,长度为4,则PUCCH资源占用符号4、5、6、7,符号4属于sub-slot 0,符号7属于sub-slot 1。也就是说,PUCCH资源占用的符号数超过了sub-slot 0的边界。如果PUCCH的起始符号和结束符号都在同一个子时隙内(如图4中(a)中的sub-slot 0),则PUCCH资源未超过子时隙的边界。如图10所示,一个PUCCH资源索引指示的为第一PUCCH资源,第一PUCCH资源的ID=0,S=1,L=2。一个PUCCH资源索引指示的为第二PUCCH资源,第二PUCCH资源的ID=1,S=5,L=3。其中,ID=0的PUCCH资源未超过子时隙边界,ID=1的PUCCH资源超过子时隙边界。
可以理解的,由于DCI 1_0用于指示UE以时隙为单位向基站反馈HARQ-ACK,因此基站可以配置超过子时隙边界的PUCCH资源给DCI 1_0使用。或者,基站也可以为DCI 1_0配置不超过子时隙边界的PUCCH资源,具体基站是配置超过子时隙的边界还是不超过,属于基站自己的实现,本发明不做限定。
具体的,UE可以在一个子时隙的PUCCH资源上传输HARQ-ACK。或者,UE可以在多个子时隙的PUCCH资源上传输HARQ-ACK。
示例性的,当PUCCH资源占用一个子时隙中的部分或全部资源,则UE在时隙的第一子时隙的PUCCH资源上发送HARQ-ACK,第一子时隙是时隙的至少一个子时隙中的一个子时隙。或者,当PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,则UE在时隙的PUCCH资源上发送HARQ-ACK。
具体的,该PUCCH资源可以是DCI指示的PUCCH资源,也可以是基站配置的PUCCH资源。在时隙的PUCCH资源上发送HARQ-ACK,可以理解为以时隙的起始符号(i.e.符号0)为参考来确定PUCCH资源。例如,如果PUCCH资源的S=2,L=3,则PUCCH占据的符号为符号2,3,4。如果PUCCH资源的S=6,L=4,则PUCCH占据的符号为符号6,7,8,9。在子时隙的PUCCH资源上发送HARQ-ACK,可以理解为是以子时隙的起始符号为参考。例如,如果在子时隙0上,则参考符号为符号0。如果在子时隙1上,则参考符号为符号7,这里假设子时隙的长度为7。例如S=2,L=2,则PUCCH占据的符号为符号9,10。
具体地说,如果PUCCH资源占用一个子时隙中的部分或全部资源,则表示UE传输HARQ-ACK所占用的PUCCH资源是一个子时隙内的符号对应的资源。即PUCCH资源的长度未超过一个子时隙的边界。在这种情况下,UE可以在上述时隙的一个子时 隙(如第一子时隙)的PUCCH资源上发送HARQ-ACK。
如果PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,则表示UE传输HARQ-ACK所占用的PUCCH资源是至少两个子时隙内的符号对应的资源。即PUCCH资源的长度超过了一个子时隙的边界,如该PUCCH资源的长度跨越两个子时隙。在这种情况下,UE可以在上述时隙的PUCCH资源上发送HARQ-ACK。其中,上述时隙的PUCCH资源包括该时隙中多个子时隙内的符号对应的资源。
在第一种情况中,UE在时隙中的第一子时隙的PUCCH资源上传输HARQ-ACK。
也就是说,可以在一个子时隙中确定出DCI 1_0中的PUCCH资源索引所指示的PUCCH资源,则UE可以在一个子时隙上向基站传输HARQ-ACK。
在一种实施例中,由于一个时隙中包括至少两个子时隙,UE与基站可以预先定义第一子时隙。第一子时隙是可以是一个时隙的多个子时隙中的任一个子时隙。例如,UE接收到基站发送的PUCCH-Config参数,PUCCH-Config参数指示将一个时隙分为2个7符号的子时隙,如图4中(a)所示,则预定义的第一子时隙可以是sub-slot 0,或者,预定义的第一子时隙可以是sub-slot 1。或者,第一子时隙为所述至少两个子时隙中预定义的第N个子时隙,其中,所述N为正整数,N可以等于1或者2或者3或者4或者5或者6或者7。
在另一种实施例中,UE可以接收基站传输的指示信息,指示信息用于指示UE在时隙中的哪一个子时隙的PUCCH资源上传输HARQ-ACK。
其中,指示信息可以包含在DCI 1_0中,如以DCI 1_0中PUCCH资源指示域的冗余比特数作为该指示信息。例如,当PUCCH资源集中仅仅包含2个PUCCH资源时,PUCCH资源指示(PUCCH resource indicator,PRI)域中的1比特用来指示是哪一个PUCCH资源,用PRI的另外2比特来指示是哪一个子时隙,即确定出第一子时隙。例如,PRI的另外2比特=01,则确定在第一子时隙sub-slot 1上发送HARQ-ACK。或者,还可以通过控制信道单元(Control Channel Element,CCE)的索引,来确定第一子时隙。具体的,该CCE可以是PDCCH的第一个CCE,也可以是第n个CCE。
如图11A所示,一个PUCCH资源索引指示的为第一PUCCH资源,第一PUCCH资源的ID=0,S=1,L=2。一个PUCCH资源索引指示的为第二PUCCH资源,第二PUCCH资源的ID=1,S=5,L=2。也就是说,两个PUCCH资源索引所指示的PUCCH资源未超过子时隙的边界。
在第二种情况中,UE在时隙中的多个子时隙的PUCCH资源上传输HARQ-ACK。
可以理解的,DCI 1_0指示的传输HARQ-ACK所对应的PUCCH资源占用至少两个子时隙中每个子时隙的部分或全部资源,则UE在时隙中的多个子时隙的PUCCH资源上传输HARQ-ACK。因此,基站是以slot为边界配置的PUCCH资源。
示例性的,UE可以根据DCI 1_0中的PUCCH资源的索引确定出使用时隙上哪几个子时隙,并在确定出的多个子时隙的PUCCH资源上传输HARQ-ACK。如,子时隙的长度为2符号,一个时隙中包括7个子时隙。假设DCI 1_0中的PUCCH资源的索引对应的PUCCH资源的起始位置为3,L为4。UE可以根据该PUCCH资源的索引确定出在时隙的第3、4、5、6位传输HARQ-ACK。其中,时隙的第3、4、5、6位对应的子时隙包括:sub-slot 1、sub-slot 2和sub-slot 3。
也就是说,当在时隙中的多个子时隙的PUCCH资源上传输HARQ-ACK,则UE可以采用slot的方式确定出使用时隙上哪些子时隙。
示例性的,如图11B所示,一个PUCCH资源索引指示的为第一PUCCH资源,第一PUCCH资源的ID=0,S=1,L=2。一个PUCCH资源索引指示的为第二PUCCH资源,第二PUCCH资源的ID=1,S=5,L=3。也就是说,DCI 1_0中的PUCCH资源索引所指示的PUCCH资源超过子时隙的边界。
步骤904a:基站确定PUCCH资源,并在PUCCH资源上接收HARQ-ACK。
需要说明的,假设基站向UE发送的DCI是DCI 1_1,由于DCI 1_1是以子时隙为单位向基站传输HARQ-ACK,一般DCI 1_1中的PUCCH资源索引所指示的PUCCH资源的长度是小于或等于子时隙的长度。如果DCI 1_1中PUCCH资源索引所指示的PUCCH资源的长度是大于子时隙的长度,则UE可以去除PUCCH资源上超过子时隙长度所指示的子时隙的符号。
其中,当UE确定PUCCH资源超过了子时隙的边界,则UE可以重新确定PUCCH资源的起始位置和长度。示例性的,PUCCH资源的索引对应的起始位置为S1,长度为L1。UE可以根据预设规则确定出更新后的PUCCH资源的起始位置为S2,长度为L2。其预设规则可以为:假设子时隙的长度为N,S2=f1(S1,N),其中,f1(S1,N)表示S1mod N,即S1除以N并取余数。L2=f2(L1,N),其中,f2(L1,N)表示L1mod N,即S1除以N并取余数。可以理解的,此处f1和f2为一个函数,可以表示S1和N的运算关系,此处f1(S1,N)表示S1mod N为示例。
在一种可能的实施方式中,UE还可以根据DCI 1_0中的PRI和基站发送的CCE共同确定出第一子时隙。例如,可以将子时隙分组,CCE指示是哪一组,PRI指示是该分组中的哪一个子时隙。其它方式也可以。
需要说明的是,对于时延性要求较高的业务,如URLLC业务,可以在使用一个子时隙的PUCCH资源向基站发送URLLC业务的码本。例如,UE接收到的URLLC任务的DCI信息,DCI信息中包括1个PUCCH资源索引,且第一PUCCH资源索引对应第一PUCCH资源的S=1,L=2;UE之后又收到一个DCI,指示第二PUCCH资源索引,第二PUCCH资源索引对应第二PUCCH资源的S=4,L=2;UE可以使用第一子时隙中的第二PUCCH资源的S=4,L=2传输该码本。
在一些实施方式中,基站可以先向UE发送PUCCH配置参数,PUCCH配置参数可以指示子时隙的长度。这样,UE可以根据PUCCH配置参数所指示的子时隙的长度,并以子时隙为单位传输HARQ-ACK。如图9B所示,为本申请实施例提供的资源指示方法的流程图,该方法可以包括步骤901b-步骤906b。
需要说明的,图9B中的步骤903b-步骤906b与上述实施例中的步骤901a-步骤904a相同,此处不予赘述。
步骤901b:基站向UE发送第一PUCCH配置参数,第一PUCCH配置参数包括子时隙的长度。
其中,第一PUCCH配置参数为:PUCCH-Config。PUCCH-Config包括基站配置的子时隙的长度。
可以理解的,PUCCH-Config中还可以包括PUCCH资源的起始位置和长度,使得 基站可以根据PUCCH-Config参数中的PUCCH资源反馈HARQ-ACK。
步骤902b:UE接收来自基站的第一PUCCH配置参数,确定第一配置参数中子时隙的长度。
其中,UE接收到PUCCH-Config之后,UE可以根据PUCCH-Config中指示的子时隙的长度反馈HARQ-ACK,并且根据PUCCH-Config参数中的PUCCH资源反馈HARQ-ACK。
需要说明的,PUCCH-Config对应于一个BWP,由于PUCCH-ConfigCommon参数对应于初始BWP。基站在设置PUCCH-Config参数时,还可以设置对应于PUCCH-Config的BWP。示例性的,一个UE可以包括4个BWP,基站可以为每个BWP设置对应的PUCCH配置参数。基站和UE通信的过程中,UE仅使用一个BWP,并调用基站为该BWP配置的PUCCH资源。
本申请实施例提供的方法中,上述UE接收到用于指示传输HARQ-ACK的时隙的DCI,则可以在该DCI所指示的时隙的PUCCH资源上向网络设备发送HARQ-ACK。具体的,UE可以在该时隙的至少一个子时隙的PUCCH资源上向网络设备发送HARQ-ACK。也就是说,UE可以在该时隙的一个子时隙的PUCCH资源上发送HARQ-ACK,也可以在该时隙的多个子时隙的PUCCH资源上发送HARQ-ACK。这样,可以提高了UE向网络设备发送HARQ-ACK的灵活性。
本申请实施例还提供一种资源指示方法,如图12所示,该方法可以包括步骤1201-步骤1206。
步骤1201:基站向UE发送第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。
其中,此处的第一PUCCH配置参数与上述实施例中的第一PUCCH配置参数不同,此处的第一PUCCH配置参数是小区级的PUCCH配置参数。PUCCH-ConfigCommon参数配置的PUCCH资源是通过初始BWP调用的,并且,PUCCH-ConfigCommon指示以时隙为单位向基站传输HARQ-ACK。
步骤1202:UE接收到来自基站的第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。
可以理解的,当UE接收到来自基站的第一PUCCH配置参数,则需要在PUCCH-ConfigCommon对应的初始BWP确定PUCCH资源并传输HARQ-ACK。
步骤1203:基站向UE发送DCI,该DCI可以用于指示传输HARQ-ACK的时隙。
本申请实施例中,以DCI信息为DCI 1_0为例。UE确定按照时隙为单位向基站发送HARQ-ACK。
步骤1204:UE接收到来自基站的DCI,该DCI可以用于指示传输HARQ-ACK的时隙。
其中,UE还可以根据DCI 1_0中的PUCCH资源索引确定出传输HARQ-ACK的资源。这样,UE可以在DCI 1_0的指示下,在DCI 1_0指示的时隙上对应的PUCCH资源传输HARQ-ACK。
步骤1205:UE通过激活BWP,在时隙的PUCCH资源上发送HARQ-ACK。
可以理解的,激活BWP是UE当前正在使用的BWP。也就是说,UE当前使用激 活BWP向基站传输HARQ-ACK。如果基站按照PUCCH-ConfigCommon所指示的初始BWP传输HARQ-ACK,则需要切换BWP。由于切换BWP会影响UE和基站通信的稳定性,则UE可以在激活BWP上向基站传输HARQ-ACK。
由于基站可以为每个BWP配置PUCCH资源,则UE可以通过激活BWP传输HARQ-ACK。
步骤1206:基站确定PUCCH资源,并在PUCCH资源上接收HARQ-ACK。
其中,步骤1206与上述实施例中的步骤906b相同,此处不与赘述。
本申请实施例还提供一种资源指示方法,如图13所示,该方法可以包括步骤1301-步骤1308。
步骤1301:基站向UE发送第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。
其中,第一PUCCH配置参数是PUCCH-ConfigCommon参数。PUCCH-ConfigCommon参数配置的PUCCH资源是通过初始BWP调用的。
步骤1302:UE接收到来自基站的第一PUCCH配置参数,第一PUCCH配置参数用于配置初始BWP中的PUCCH资源。
其中,步骤1301和步骤1302与上述步骤1201和步骤1202相同,此处不予赘述。
步骤1303:基站向UE发送第二PUCCH配置参数,第二PUCCH配置参数包括子时隙的长度。
其中,第二PUCCH配置参数时UE级的PUCCH配置参数。
步骤1304:UE接收来自基站的第二PUCCH配置参数,确定第二配置参数中子时隙的长度。
步骤1305:基站向UE发送DCI,DCI用于指示UE传输HARQ-ACK的时隙。
步骤1306:UE接收到来自基站的DCI,并确定该DCI所指示的传输HARQ-ACK的时隙。
其中,步骤1303-步骤1306与上述实施例中的步骤901-904相同,此处不予赘述。
步骤1307:UE通过激活BWP,在DCI所指示的时隙的至少一个子时隙的PUCCH资源上发送HARQ-ACK。
步骤1308:基站确定PUCCH资源,并在PUCCH资源上接收HARQ-ACK。
其中,步骤1307和步骤1308与上述步骤1205和步骤1206相同,此处不予赘述。
需要说明的,基站预先给UE配置的是小区级的PUCCH配置参数,基站再次给UE配置的是UE级的PUCCH配置参数。当UE接收到来自基站的DCI 1_0,由于DCI 1_0是以时隙为单位向基站反馈HARQ-ACK,DCI 1_0可以通过激活BWP在DCI 1_0指示的时隙的PUCCH资源上发送HARQ-ACK。
可以理解的是,上述网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施 例的范围。
本申请实施例提供一种终端设备,根据上述方法示例对上述终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,如图14所示,本申请实施例将终端设备或网络设备1400包括接收单元1401和发送单元1402。
当设备1400是终端设备时,接收单元1402用于执行上述方法实施例中终端设备或UE执行的步骤,例如步骤902a、步骤902b、步骤904b、步骤1202、步骤1204等,和/或用于本文所描述的技术的其它过程。发送单元1402用于执行上述方法实施例中终端设备或UE执行的步骤,例如步骤903a、步骤905b、步骤1205等,和/或用于本文所描述的技术的其它过程。
当设备1400是网络设备时,接收单元1402用于执行上述方法实施例中网络设备执行的步骤,例如的步骤904a,步骤906b、步骤1206等,和/或用于本文所描述的技术的其它过程。发送单元1402用于执行上述方法实施例中执行上述方法实施例中网络设备执行的步骤,例如步骤901a、步骤901b,步骤903b,步骤1201、步骤1203,和/或用于本文所描述的技术的其它过程。
当然,上述终端设备或网络设备1400包括但不限于上述所列举的单元模块。并且,上述功能单元的具体所能够实现的功能也包括但不限于上述实例所述的方法步骤对应的功能,终端设备1400的其他单元的详细描述可以参考其所对应方法步骤的详细描述,本申请实施例这里不再赘述。
在采用对应各个功能划分各个功能模块的情况下,如图15所示,本申请实施例将终端设备或网络设备1500包括处理模块1501、存储模块1502和通信模块1503。
该处理模块1501用于对设备1500进行控制管理。该存储模块1502,用于保存设备1900的程序代码和数据。通信模块1503用于与其他设备通信。如通信模块用于接收或者向其他设备发送的数据。
其中,处理模块1501可以是处理器或控制器,例如可以是CPU,通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1503可以是收发器、收发电路或通信接口等。存储模块1502可以是存储器。
当处理模块1501为处理器(如图3所示的处理器11和处理器15),通信模块1504为RF电路(如图3所示的通信接口13),存储模块1502为存储器(如图3所示的存储器12)时,本申请所提供的设备可以为图3所示的UE。其中,上述处理器、通信接口和存储器可以通过总线耦合在一起。
本申请实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述方法实施例提供的任一方法,例如图9A、图12和图13中任一附图中的相关方法步骤实现。
其中,本申请提供的设备1400、设备1500、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
在又一种实现中,本申请实施例中提供了一种通信装置,可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种资源指示方法方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备或网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备或网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备或网络设备执行的部分或全部步骤。可以理解的是,接口电路可以为收发器或输入输出接口。可选的,该通信装置还可以包括存储器,用于存储上述一个处理元件执行的指令或存储处理元件运行指令所需要的输入数据或存储处理元件运行指令后产生的数据。该通信装置可以是芯片或芯片系统。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请 各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种资源指示方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI用于指示终端设备传输混合自动重传请求确认HARQ-ACK的时隙;
    在所述时隙的至少一个子时隙的物理上行控制信道PUCCH资源上发送所述HARQ-ACK,其中,所述时隙包括至少两个子时隙。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述时隙的至少一个子时隙的PUCCH资源上发送所述HARQ-ACK,包括:
    在第一子时隙的PUCCH资源上发送所述HARQ-ACK,所述第一子时隙是所述时隙的至少一个子时隙中的一个;或者,
    在所述时隙的PUCCH资源上发送所述HARQ-ACK。
  3. 根据权利要求2所述的方法,其特征在于,所述第一子时隙为所述至少两个子时隙中预定义的第N个子时隙,其中,所述N为正整数。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据来自网络设备的指示信息确定所述第一子时隙,所述指示信息用于指示所述终端设备传输所述HARQ-ACK的子时隙。
  5. 根据权利要求4所述的方法,其特征在于,所述指示信息包含于所述DCI中。
  6. 根据权利要求4或5所述的方法,其特征在于,所述指示信息包括控制信道单元CCE的索引。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第一PUCCH配置参数,所述第一PUCCH配置参数包括子时隙的长度。
  8. 一种资源指示方法,其特征在于,包括:
    发送下行控制信息DCI,所述DCI用于指示终端设备传输混合自动重传请求确认HARQ-ACK的时隙,其中,所述时隙包括至少两个子时隙;
    在所述时隙的至少一个子时隙的物理上行控制信道PUCCH资源上接收来自所述终端设备的所述HARQ-ACK。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在第一子时隙的PUCCH资源上接收来自所述终端设备的所述HARQ-ACK,所述第一子时隙是所述时隙的至少一个子时隙中的一个;或者,
    在所述时隙的PUCCH资源上接收来自所述终端设备的所述HARQ-ACK。
  10. 根据权利要求9所述的方法,其特征在于,所述第一子时隙为所述至少两个子时隙中预定义的第N个子时隙,其中,所述N为正整数。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示终端设备传输所述HARQ-ACK的子时隙。
  12. 根据权利要求11所述的方法,其特征在于,所述指示信息包含于所述DCI中。
  13. 根据权利要求11或12所述的方法,其特征在于,所述指示信息包括控制信道单元CCE的索引。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一PUCCH配置参数,所述第一PUCCH配置参数包括子时隙的长度。
  15. 一种资源指示方法,其特征在于,包括:
    接收来自网络设备的第一物理上行控制信道PUCCH配置参数,所述第一PUCCH配置参数用于配置初始部分带宽BWP中的PUCCH资源;
    接收来自所述网络设备的下行控制信息DCI,所述DCI用于指示传输混合自动重传请求确认HARQ-ACK的时隙;
    通过激活所述BWP,在所述时隙的PUCCH资源上发送HARQ-ACK。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二PUCCH配置参数,所述第二PUCCH配置参数包括子时隙的长度。
  17. 一种资源指示方法,其特征在于,包括:
    向终端设备发送第一物理上行控制信道PUCCH配置参数,所述第一PUCCH配置参数用于配置初始部分带宽BWP中的PUCCH资源;
    向所述终端设备发送下行控制信息DCI,所述DCI用于指示传输混合自动重传请求确认HARQ-ACK的时隙;
    通过激活所述BWP,在所述时隙的PUCCH资源上接收来自所述终端设备的HARQ-ACK。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二PUCCH配置参数,所述第二PUCCH配置参数包括子时隙的长度。
  19. 一种通信装置,其特征在于,包括:接收单元和发送单元;
    所述接收单元用于,接收下行控制信息DCI,所述DCI用于指示终端设备传输混合自动重传请求确认HARQ-ACK的时隙;
    所述发送单元用于,在所述时隙的至少一个子时隙的物理上行控制信道PUCCH资源上发送所述HARQ-ACK,其中,所述时隙包括至少两个子时隙。
  20. 根据权利要求19所述的通信装置,其特征在于,所述发送单元用于,在所述时隙的至少一个子时隙的物理上行控制信道PUCCH资源上发送所述HARQ-ACK时,所述发送单元具体用于:
    在第一子时隙的PUCCH资源上发送所述HARQ-ACK,所述第一子时隙是所述时隙的至少一个子时隙中的一个;或者,
    在所述时隙的PUCCH资源上发送所述HARQ-ACK。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一子时隙为所述至少两个子时隙中预定义的第N个子时隙,其中,所述N为正整数。
  22. 根据权利要求20所述的通信装置,其特征在于,所述通信装置还包括确定单元;
    所述确定单元用于,根据来自网络设备的指示信息确定所述第一子时隙,所述指示信息用于指示所述终端设备传输所述HARQ-ACK的子时隙。
  23. 根据权利要求22所述的通信装置,其特征在于,所述指示信息包含于所述DCI中。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述指示信息包括控制信道单元CCE的索引。
  25. 根据权利要求19-24任一项所述的通信装置,其特征在于,所述接收单元还用于,接收来自网络设备的第一PUCCH配置参数,所述第一PUCCH配置参数包括子时隙的长度。
  26. 一种通信装置,其特征在于,包括:发送单元和接收单元;
    所述发送单元用于,发送下行控制信息DCI,所述DCI用于指示终端设备传输混合自动重传请求确认HARQ-ACK的时隙,其中,所述时隙包括至少两个子时隙;
    所述接收单元用于,在所述时隙的至少一个子时隙的物理上行控制信道PUCCH资源上接收来自所述终端设备的所述HARQ-ACK。
  27. 根据权利要求26所述的通信装置,其特征在于,所述接收单元还用于,
    在第一子时隙的PUCCH资源上接收来自所述终端设备的所述HARQ-ACK,所述第一子时隙是所述时隙的至少一个子时隙中的一个;或者,
    在所述时隙的PUCCH资源上接收来自所述终端设备的所述HARQ-ACK。
  28. 根据权利要求27所述的通信装置,其特征在于,所述第一子时隙为所述至少两个子时隙中预定义的第N个子时隙,其中,所述N为正整数。
  29. 根据权利要求27所述的通信装置,其特征在于,所述发送单元还用于,
    向所述终端设备发送指示信息,所述指示信息用于指示终端设备传输所述
    HARQ-ACK的子时隙。
  30. 根据权利要求29所述的通信装置,其特征在于,所述指示信息包含于所述DCI中。
  31. 根据权利要求29或30所述的通信装置,其特征在于,所述指示信息包括控制信道单元CCE的索引。
  32. 根据权利要求26-31任一项所述的通信装置,其特征在于,所述发送单元还用于,向所述终端设备发送第一PUCCH配置参数,所述第一PUCCH配置参数包括子时隙的长度。
  33. 一种通信设备,其特征在于,包括接收单元和发送单元;
    所述接收单元用于,接收来自网络设备的第一物理上行控制信道PUCCH配置参数,所述第一PUCCH配置参数用于配置初始部分带宽BWP中的PUCCH资源;以及,接收来自所述网络设备的下行控制信息DCI,所述DCI用于指示传输混合自动重传请求确认HARQ-ACK的时隙;
    所述发送单元用于,通过激活所述BWP,在所述时隙的PUCCH资源上发送HARQ-ACK。
  34. 根据权利要求33所述的通信设备,其特征在于,所述接收单元还用于,接收来自所述网络设备的第二PUCCH配置参数,所述第二PUCCH配置参数包括子时隙的长度。
  35. 一种通信装置,其特征在于,包括发送单元和接收单元;
    所述发送单元用于,向终端设备发送第一物理上行控制信道PUCCH配置参数,所述第一PUCCH配置参数用于配置初始部分带宽BWP中的PUCCH资源;以及,向所述终端设备发送下行控制信息DCI,所述DCI用于指示传输混合自动重传请求确认HARQ-ACK的时隙;
    所述接收单元用于,通过激活所述BWP,在所述时隙的PUCCH资源上接收来自所述终端设备的HARQ-ACK。
  36. 根据权利要求35所述的通信装置,其特征在于,所述发送单元还用于,向所述终端设备发送第二PUCCH配置参数,所述第二PUCCH配置参数包括子时隙的长度。
  37. 一种通信装置,其特征在于,包含于终端设备,包括:处理器、存储器和通信接口;所述存储器和所述通信接口与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述存储器包括非易失性存储介质,当所述处理器执行所述计算机指令时,使所述通信装置执行如权利要求1-7、15-16中任一项权利要求中所述的方法。
  38. 一种通信装置,其特征在于,包含于网络设备,包括:处理器、存储器和通信接口;所述存储器和所述通信接口与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,所述存储器包括非易失性存储介质,当所述处理器执行所述计算机指令时,使所述通信装置执行如权利要求8-14、17-18中任一项权利要求中所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在设备上运行时,使得所述设备执行如权利要求1-18中任一项所述的方法。
  40. 一种芯片系统,其特征在于,所述芯片系统应用于包括触摸屏的通信装置;所述芯片系统包括一个或多个接口电路和一个或多个处理器;所述接口电路和所述处理器通过线路互联;所述接口电路用于从所述通信装置的存储器接收信号,并向所述处理器发送所述信号,所述信号包括所述存储器中存储的计算机指令;当所述处理器执行所述计算机指令时,所述通信装置执行如权利要求1-18中任一项所述的方法。
  41. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-18中任一项所述的方法。
PCT/CN2021/082490 2020-04-10 2021-03-23 一种资源指示方法及相关设备 WO2021203967A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21784270.7A EP4117213A4 (en) 2020-04-10 2021-03-23 RESOURCE INDICATION METHOD AND ASSOCIATED EQUIPMENT
US17/959,684 US20230038049A1 (en) 2020-04-10 2022-10-04 Resource indication method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010281207.6A CN113541877A (zh) 2020-04-10 2020-04-10 一种资源指示方法及相关设备
CN202010281207.6 2020-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/959,684 Continuation US20230038049A1 (en) 2020-04-10 2022-10-04 Resource indication method and related device

Publications (1)

Publication Number Publication Date
WO2021203967A1 true WO2021203967A1 (zh) 2021-10-14

Family

ID=78022937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082490 WO2021203967A1 (zh) 2020-04-10 2021-03-23 一种资源指示方法及相关设备

Country Status (4)

Country Link
US (1) US20230038049A1 (zh)
EP (1) EP4117213A4 (zh)
CN (1) CN113541877A (zh)
WO (1) WO2021203967A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230053490A1 (en) * 2021-08-18 2023-02-23 Qualcomm Incorporated Feedback transmissions on uplink resources of bandwidth parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535608A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 上行传输资源确定方法、装置和系统
WO2020027143A1 (en) * 2018-08-03 2020-02-06 Sharp Kabushiki Kaisha Harq-ack timing and pucch resource determination for ultra-low latency pdsch transmission

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020012056A (es) * 2018-05-11 2021-01-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Método para transmitir señal de enlace ascendente y dispositivo de terminal.
WO2020027579A1 (ko) * 2018-07-31 2020-02-06 엘지전자 주식회사 무선 통신 시스템에서 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027143A1 (en) * 2018-08-03 2020-02-06 Sharp Kabushiki Kaisha Harq-ack timing and pucch resource determination for ultra-low latency pdsch transmission
CN110535608A (zh) * 2019-07-31 2019-12-03 中兴通讯股份有限公司 上行传输资源确定方法、装置和系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on HARQ-ACK codebook determination with BWP switch", 3GPP DRAFT; R1-1910312 DISCUSSION ON HARQ-ACK CODEBOOK DETERMINATION WITH BWP SWITCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789117 *
CMCC: "Discussion on UCI enhancements for URLLC", 3GPP DRAFT; R1-1912539, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823473 *
OPPO: "UCI enhancements for URLLC", 3GPP DRAFT; R1-1904043, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 April 2019 (2019-04-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 6, XP051707088 *
SPREADTRUM COMMUNICATIONS: "Discussion on UCI enhancements for URLLC", 3GPP DRAFT; R1-1906358 DISCUSSION ON UCI ENHANCEMENTS FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727808 *

Also Published As

Publication number Publication date
EP4117213A4 (en) 2023-09-06
EP4117213A1 (en) 2023-01-11
CN113541877A (zh) 2021-10-22
US20230038049A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US10736139B2 (en) Uplink control information transmission method and apparatus
US20240032037A1 (en) Information transmission method, terminal device, and network device
AU2019459712B2 (en) Wireless communication method and device
WO2021238545A1 (zh) 信息传输方法及装置
US10873430B2 (en) Signal sending method and apparatus
WO2018027918A1 (zh) 上行信道发送方法和装置
WO2020163986A1 (zh) 一种资源指示方法、终端设备及网络设备
WO2020087545A1 (zh) 一种上行控制信息确定方法和通信设备
WO2021203967A1 (zh) 一种资源指示方法及相关设备
EP3641440B1 (en) Uplink control channel transmission method, terminal, base station and device
WO2020199032A1 (zh) 一种通信方法及设备
WO2022218223A1 (zh) 载波切换的传输处理方法及装置
WO2022117102A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2022206356A1 (zh) 复用传输方法、装置及存储介质
EP4283904A1 (en) Uci multiplexing transmission method and apparatus, and storage medium
WO2022117103A1 (zh) 上行控制信息传输方法、接收方法、终端和网络设备
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
WO2021262071A1 (en) Enhanced hybrid arq (harq) for a wireless network
TW202017424A (zh) 用於非授權頻譜的通訊方法、終端設備和網路設備
WO2022155924A1 (zh) 无线通信方法、终端设备和网络设备
WO2023207397A1 (zh) 一种dci确定方法、设备及装置
WO2022206344A1 (zh) 一种信道复用方法、装置及通信设备
WO2022148404A1 (zh) 数据传输方法、数据传输装置、通信设备及存储介质
WO2022237462A1 (zh) 上行信道的传输方法及相关装置
WO2023159646A1 (zh) 一种无线通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021784270

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE