WO2021203722A1 - 负载接入检测方法、开关电路与电池管理系统 - Google Patents

负载接入检测方法、开关电路与电池管理系统 Download PDF

Info

Publication number
WO2021203722A1
WO2021203722A1 PCT/CN2020/133455 CN2020133455W WO2021203722A1 WO 2021203722 A1 WO2021203722 A1 WO 2021203722A1 CN 2020133455 W CN2020133455 W CN 2020133455W WO 2021203722 A1 WO2021203722 A1 WO 2021203722A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
detection point
circuit
load
Prior art date
Application number
PCT/CN2020/133455
Other languages
English (en)
French (fr)
Inventor
张旭
马行
王兴昌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20922484.9A priority Critical patent/EP3922503B1/en
Priority to US17/479,505 priority patent/US12009682B2/en
Publication of WO2021203722A1 publication Critical patent/WO2021203722A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present application relate to the field of circuit technology, and in particular, to a load access detection method, a switch circuit, and a battery management system.
  • the charging and discharging field effect transistors in the battery pack are in a normally closed state, when the battery pack is connected to the vehicle body, the interface between the vehicle body base and the battery pack may spark and burn, which poses a safety hazard.
  • the purpose of the embodiments of the present application is to provide a load connection detection method, a switch circuit, and a battery management system, which can avoid the ignition and ablation problems that occur when the battery pack is connected to the load circuit.
  • the embodiments of the present application provide a load access detection method, including: detecting the voltage of a first detection point, the first detection point is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor; Detect the voltage of the second detection point.
  • the second detection point and the first detection point are shorted; if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is less than or Equal to the preset voltage threshold, the switch circuit is controlled to enter the pre-charge mode, and the load capacitor in the load circuit is pre-charged through the battery pack.
  • the charging current of the switch circuit in the pre-charge mode is less than the charging current of the switch circuit in the charging mode.
  • the embodiment of the present application also provides a battery management system, including: a detection unit for detecting the voltage of a first detection point, the first detection point is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor; the detection unit is also Used to detect the voltage of the second detection point, when the battery pack is connected to the load circuit, the second detection point is short-circuited with the first detection point; the processing unit is used for the voltage between the first detection point and the second detection point When the voltage difference is less than or equal to the preset voltage threshold, the switch circuit is controlled to enter the pre-charge mode, and the load capacitor in the load circuit is pre-charged through the battery pack. The charging current of the switch circuit in the pre-charge mode is less than that of the switch circuit. Charging current in charging mode.
  • the embodiment of the present application also provides a switch circuit, including: a first switch, a second switch, and a third switch; the first switch is connected in parallel with the second switch, the first switch is connected in series with the third switch, and the second switch is connected to the The three switches are connected in series through at least one resistor; the switch circuit is configured to enter the pre-charge mode according to the control of the battery management system; the switch circuit is also configured to pre-charge the load capacitor in the load circuit through the battery pack; the switch circuit is in the pre-charge mode The lower charging current is less than the charging current of the switching circuit in the charging mode.
  • the embodiment of the present application also provides a load access detection method, which is applied to the above-mentioned switch circuit.
  • the method includes: according to the control of the battery management system, the switch circuit enters the precharge mode; The load capacitor is pre-charged; the charging current of the switch circuit in the pre-charge mode is less than the charging current of the switch circuit in the charging mode; according to the control of the battery management system, the switch circuit enters the pre-charge mode, including: if the voltage at the first detection point The voltage difference between the voltage at the second detection point is less than or equal to the preset voltage threshold, the switch circuit is controlled by the battery management system to enter the pre-charge mode; the voltage at the first detection point is detected by the battery management module, and the first detection The point is electrically connected to the positive pole of the battery pack in the battery pack through a jumper resistor; the voltage of the second detection point is detected by the battery management module, and the second detection point is short-circuited with the first detection point when the battery pack is connected to the load circuit.
  • the embodiment of the present application also provides a load access detection system, including the above-mentioned battery management system and a switch circuit.
  • the implementation of this application first detects the voltage at the first detection point, which is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor, and then detects the voltage at the second detection point, and the battery When the package is connected to the load circuit, the second detection point is shorted to the first detection point. Therefore, if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is less than or equal to the preset voltage threshold, it means The battery pack is connected to the load circuit, and the switch circuit is controlled to enter the pre-charging mode, and the load capacitor in the load circuit is pre-charged through the battery pack.
  • the charging current of the switching circuit in the pre-charging mode is less than the charging current of the switching circuit in the charging mode , Which can avoid the spark and ablation problems that occur when the battery pack is connected to the load circuit.
  • Pre-charging includes: if the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to the preset voltage threshold within the first preset time period, controlling the switch circuit to enter the pre-charging mode and pass The battery pack precharges the load capacitance in the load circuit. In this embodiment, the influence of voltage instability on the load access detection is avoided, and the anti-shake of the voltage detection is realized.
  • the switch circuit includes a first switch, a second switch, and a third switch; turning off the second switch, turning on the charging direction of the first switch and turning on the charging direction of the third switch forms the charging mode of the switch circuit; turning off the second switch A switch that turns on the charging direction of the second switch and turns on the charging direction of the third switch to form the precharge mode of the switch circuit; the first switch is connected in parallel with the second switch; the first switch is connected in series with the third switch; the second switch is connected with The third switch is connected in series through at least one resistor.
  • This embodiment provides a specific structure of the switching circuit and the formation of the pre-charging mode and charging mode of the switching circuit.
  • controlling the switch circuit to enter the pre-charge mode and pre-charging the load capacitor in the load circuit through the battery pack includes: controlling the switch circuit to maintain the pre-charge mode for the second preset period of time, and pre-charging the load capacitor through the battery pack .
  • the time that the switch circuit is controlled to maintain the precharge mode is the second preset duration, so that the battery pack is controlled to precharge the load capacitor for the second preset duration.
  • the method further includes: if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is greater than the voltage threshold, determining that an access failure has occurred.
  • the processing unit is configured to control the switch circuit to enter the pre-charge mode when the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to a preset voltage threshold within the first preset time period , Pre-charge the load capacitance in the load circuit through the battery pack.
  • the switch circuit includes a first switch, a second switch, and a third switch, the first switch is connected in parallel with the second switch; the first switch is connected in series with the third switch; the second switch is connected in series with the third switch through at least one resistor; the processing unit Specifically used to turn off the first switch, turn on the charging direction of the second switch and turn on the charging direction of the third switch to form the pre-charge mode of the switch circuit; the processing unit is specifically used to turn off the second switch and turn on the first switch The charging direction of the switch and the charging direction of turning on the third switch form the charging mode of the switch circuit.
  • processing unit is configured to control the switch circuit to maintain the pre-charge mode for the second preset period of time, and pre-charge the load capacitor through the battery pack.
  • processing unit is further configured to determine that an access failure occurs when the voltage difference between the voltage at the first detection point and the voltage at the second detection point is greater than the voltage threshold.
  • the switch circuit is configured to enter the pre-charge mode according to the control of the battery management system, specifically: the first switch is configured to be off, the charging direction of the second switch is configured to be on, and the charging direction of the third switch is configured To turn on, the pre-charge mode of the switch circuit is formed.
  • the switch circuit is also configured such that the second switch is configured to be off, the charging direction of the first switch is configured to be on, and the charging direction of the third switch is configured to be on, forming a charging mode of the switch circuit.
  • Fig. 1 is a schematic circuit diagram of a load access detection system according to the first embodiment of the present application
  • FIG. 2 is a specific flowchart of the load access detection method according to the first embodiment of the present application
  • Fig. 3 is a block diagram of a battery management system according to a second embodiment of the present application.
  • Fig. 4 is a block diagram of a battery management system according to a second embodiment of the present application.
  • the load access detection system at least includes a battery management system BMS (Battery Management System, BMS for short) 10 ⁇ 20 ⁇ And switch circuit 20.
  • BMS Battery Management System
  • FIG. 1 also includes a battery pack 30 and a load circuit 40.
  • the battery management system 10 is used at least to detect and manage the battery pack 30.
  • the switch circuit 20 includes a first switch, a second switch, and a third switch.
  • the second switch and the third switch are connected in series through at least one resistor (the second switch and the third switch are connected in series through the resistor R2 as an example in FIG. 1).
  • the switch is connected in parallel with the second switch, and the first switch is connected in series with the third switch.
  • the switch circuit 20 may be a part of the battery pack 30, but it is not limited to this, and the switch circuit 20 may also be provided outside the battery pack 30.
  • the first switch, the second switch, and the third switch may be field effect transistors.
  • the first switch, the second switch, and the third switch all include MOS transistors and diodes connected in parallel (this is an example in the figure).
  • the first switch includes a MOS transistor Q1 and a diode D1
  • the second switch It includes a MOS tube Q2 and a diode D2
  • the third switch includes a MOS tube Q3 and a diode D3.
  • the switch may be a switching device such as an insulated gate bipolar transistor (IGBT) or a metal-oxide semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET).
  • IGBT insulated gate bipolar transistor
  • MOSFET Metal-oxide semiconductor field-effect transistor
  • the battery pack 30 at least includes a battery pack 301 and a battery pack interface 302, and the battery pack 301 is charged and discharged through the switch circuit 20.
  • the switch circuit 20 can turn on the charging circuit or the discharging circuit under the control of the BMS10.
  • the BMS 10, the switch circuit 20, and the battery pack 30 can be combined with each other based on application scenarios, which is not limited in the embodiment of the present application.
  • the load circuit 40 at least includes a load capacitor C1, a load component 401, and a load interface 402.
  • the battery pack interface 302 and the load interface 402 match each other.
  • the battery pack interface 302 is inserted into the load interface 402, so that the battery pack 30 is connected to the load circuit 40.
  • Step 101 Detect the voltage of a first detection point, which is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor.
  • Step 102 Detect the voltage of the second detection point, and when the battery pack is connected to the load circuit, the second detection point and the first detection point are short-circuited.
  • Step 103 If the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to the preset voltage threshold, the switch circuit is controlled to enter the precharge mode, and the battery pack is used as the load circuit The load capacitance of the switch circuit is precharged, and the charging current of the switch circuit in the precharge mode is smaller than the charging current of the switch circuit in the charging mode.
  • the first detection point is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor.
  • the jumper resistor can ensure that the battery pack will not discharge high current through the jumper resistor, which reduces power consumption and ensures safety.
  • the resistance value of the jumper resistor can be megohm level.
  • the first detection point is located in the battery pack interface 302, and the BMS 10 detects the voltage of the first detection point.
  • the second detection point is located in the battery pack interface 302.
  • the second detection point may be suspended or grounded through at least one resistor, and the second detection point may also be referred to as a load access detection point.
  • the second detection point and the first detection point can be short-circuited.
  • the BMS10 detects the voltage of the second detection point. Because when the battery pack 30 is connected to the load circuit 40, the second detection point is shorted to the first detection point. Theoretically, the voltage of the first detection point is the same as the voltage of the second detection point. , But there are actually measurement errors. To avoid misjudgment, the voltage threshold can be set. If the voltage at the first detection point and the voltage at the second detection point are less than or equal to the preset voltage threshold, it can be considered that the battery pack 30 is connected to the load circuit 40. Wherein, the positive pole of the battery pack in the battery pack is led out through a jumper resistor, so that the BMS 10 can detect whether the battery pack 30 is connected to the load circuit 40.
  • the voltage of the first detection point and the voltage of the second detection point should be approximately equal.
  • the voltage threshold is preset in the BMS10.
  • the voltage difference between the voltages of the points should be less than the voltage threshold, for example, the voltage difference is less than or equal to 1V.
  • BMS10 calculates the voltage difference between the voltage of the first detection point and the voltage of the second detection point.
  • the BMS 10 determines whether the voltage difference is less than or equal to the preset voltage threshold; if the voltage difference is less than or equal to the preset voltage threshold, the BMS 10 controls the switch circuit 20 at this time Enter the pre-charge mode to pre-charge the load capacitor C1 in the load circuit 40; if the voltage difference is greater than the preset voltage threshold, the BMS 10 controls the first switch, the second switch, and the third switch of the switch circuit 20 to keep off Open state.
  • the first detected voltage is much larger than the voltage of the second detection point, so the BMS 10 can recognize that the battery pack 30 is not connected to the load circuit 40.
  • the first switch, the second switch, and the third switch of the battery pack 30 are controlled to remain in the off state, thereby avoiding the safety problem of the battery pack 30 being discharged to the outside.
  • the switch circuit 20 has three modes, namely: a pre-charge mode, a charging mode, and a discharging mode. Specifically: in the pre-charge mode, the first switch is in the off state, and the charging direction of the second switch is in the In the on state, the charging direction of the third switch is in the on state; in the charging mode, the second switch is in the off state, the charging direction of the first switch is in the on state, and the charging direction of the third switch is in the on state; In the discharge mode, the second switch is in the off state, the discharge direction of the first switch is in the on state, and the discharge direction of the third switch is in the on state. Wherein, if the first switch and the third switch are both field-effect transistors, the first switch and the third switch can be collectively referred to as switching field-effect transistors.
  • the BMS 10 controls the switch circuit 20 to enter the pre-charge mode
  • the load capacitor C1 in the load circuit 40 is precharged.
  • the BMS 10 continuously detects and compares the voltage at the first detection point with the voltage at the second detection point during the first preset time period. If the voltage is within the first preset time period, the voltage The difference is always less than or equal to the preset voltage threshold, the BMS 10 controls the switch circuit 20 to enter the pre-charge mode, and the load capacitor C1 in the load circuit 40 is pre-charged through the battery pack 30.
  • the first preset duration is not specifically limited, for example, it is 2S. Among them, by setting the first preset time period, the influence of voltage instability on the load access detection can be avoided, and the anti-shake of the voltage detection can be realized.
  • the BMS 10 controls the switch circuit 20 to enter the pre-charge mode, that is, controls the first switch to remain off, controls the second switch to conduct in the charging direction, and controls the third switch to conduct in the charging direction.
  • the battery pack 30 The second switch, resistor R2, and third switch are connected to the load capacitor C1, and the battery pack 30 precharges the load capacitor C1. Due to the existence of the resistor R2, the charging current of the switch circuit 20 in the precharge mode is smaller than that of the switch circuit. Charging current in charging mode.
  • the BMS 10 can control the switch circuit 20 to maintain the precharge mode for a second preset period of time, and precharge the load capacitor C1 through the battery pack 30, that is, control the switch circuit 20 to maintain the precharge mode for the second time.
  • the preset time period is thereby controlled to control the battery pack 30 to precharge the load capacitor C1 for the second preset time period.
  • the second preset duration can be set according to the capacitance value of the load capacitor C1.
  • the BMS 10 controls the switch circuit 20 to end the pre-charge mode after the load capacitor C1 is charged, and controls the switch circuit 20 to enter the charging mode or the discharging mode according to the currently connected circuit; for example, when the battery pack 30 When the electric vehicle is connected, the BMS 10 controls the switch circuit 2 to enter the discharge mode. At this time, the battery pack 30 supplies power to the load component 3 in the load circuit 40 through the discharge direction of the first switch and the third switch; when the battery pack 30 is connected to the charging pile At this time, the BMS 10 controls the switch circuit 20 to enter the charging mode. At this time, the charging pile charges the battery pack 30 through the charging directions of the first switch and the third switch.
  • the voltage difference between the voltage at the first detection point and the voltage at the second detection point of the BMS 10 is greater than the preset voltage threshold, and it is determined that a connection failure has occurred, that is, the battery pack 30 is connected to the load circuit 40. Fault.
  • the access fault may be a disconnection fault in the load circuit 40.
  • the BMS 10 calculates the difference between the voltage of the first detection point and the voltage of the second detection point. If the voltage difference is greater than the preset voltage threshold, it is determined that the battery pack 30 is connected to the load circuit 40 to be faulty, and the BMS 10 controls the first switch, the second switch, and the third switch of the switch circuit 20 to keep off. Open state.
  • the BMS 10 may send a fault prompt message on the display screen of the electric vehicle.
  • this embodiment first detects the voltage at the first detection point, which is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor, and then detects the voltage at the second detection point, and the battery pack When the load circuit is connected, the second detection point is short-circuited with the first detection point. Therefore, if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is less than or equal to the preset voltage threshold, the battery The package is connected to the load circuit, and the switch circuit is controlled to enter the pre-charge mode, and the load capacitor in the load circuit is pre-charged through the battery package.
  • the charging current of the switch circuit in the pre-charge mode is less than the charging current of the switch circuit in the charging mode. It can avoid the spark and ablation problems that occur when the battery pack is connected to the load circuit. At the same time, it is possible to avoid the generation of a large inrush current from impacting the switching circuit, ensuring the service life of the switching circuit, and improving safety.
  • the second embodiment of the present application provides a battery management system for executing the method in the foregoing embodiment.
  • FIG. 1 is an example diagram of the circuit structure of the load access detection system applied by the battery management system of this embodiment.
  • the battery management system BMS10 includes a detection unit 101 and a processing unit 102.
  • the detection unit 101 is used to detect the voltage of a first detection point, which is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor.
  • the detection unit 101 is also used to detect the voltage of the second detection point, and the second detection point is short-circuited with the first detection point when the battery pack is connected to the load circuit.
  • the processing unit 102 is configured to control the electrical switch circuit 20 to enter the pre-charge mode when the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to the preset voltage threshold, and the battery pack 30
  • the load capacitor C1 in the load circuit 40 is precharged, and the charging current of the switching circuit 20 in the precharging mode is smaller than the charging current of the switching circuit 20 in the charging mode.
  • the processing unit 102 is configured to control the switch if the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to a preset voltage threshold within a first preset time period
  • the circuit 20 enters the pre-charge mode to pre-charge the load capacitor C1 in the load circuit 40.
  • the BMS 10 continuously detects the voltage of the first detection point and the voltage of the second detection point.
  • the BMS 10 controls the electric switch circuit 20 to enter the pre-charge mode, and the load capacitor C1 in the load circuit 40 is pre-charged through the battery pack 30.
  • the first preset duration is not specifically limited, for example, 2S.
  • the BMS10 controls the switch circuit 20 to enter the precharge mode, that is, controls the first switch to remain off, controls the second switch to conduct in the charging direction, and controls the third switch to conduct in the charging direction.
  • the battery pack 30 passes through the second switch, The resistor R2 and the third switch are connected to the load capacitor C1 to pre-charge the load capacitor C1. Due to the existence of the resistor R2, the charging current of the switch circuit 20 in the precharge mode is smaller than the charging current of the switch circuit in the charging mode.
  • the BMS 10 can control the switch circuit 20 to maintain the precharge mode for the second preset period of time to precharge the load capacitor C1, that is, control the switch circuit 20 to maintain the precharge mode for the second preset period of time, thereby controlling
  • the battery pack 30 performs pre-charging for the load capacitor C1 for a second preset duration.
  • the second preset duration can be set according to the capacitance value of the load capacitor C1.
  • the processing unit 102 is further configured to determine that a connection failure has occurred if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is greater than a preset voltage threshold, that is, the battery pack 30 is connected The load circuit 40 has failed. Specifically, when the battery pack 30 is connected to the load circuit 40, the processing unit 102 of the BMS 10 obtains the voltage difference between the voltage of the first detection point and the voltage of the second detection point detected by the detection unit 101, and then calculates the first The voltage difference between the voltage at the detection point and the voltage at the second detection point.
  • the battery pack is determined When 30 is connected to the load circuit 40, a failure occurs, and the processing unit 102 controls the first switch, the second switch, and the third switch of the switch circuit 20 to keep off.
  • the processing unit 102 of the BMS 10 may send a fault prompt message on the display screen after determining that the battery pack 30 is connected to the load circuit 40 and is faulty.
  • This embodiment provides a BMS.
  • the BMS detects and compares the voltage at the first detection point and the voltage at the second detection point. The voltage at the first detection point and the voltage at the second detection point.
  • the switch circuit is controlled to enter the pre-charge mode, and the load capacitor in the load circuit is pre-charged through the battery pack.
  • the charging current of the switch circuit in the pre-charge mode is less than The charging current of the switching circuit in the charging mode.
  • each unit involved in this embodiment is a logical unit.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units.
  • the combination of units is realized.
  • the battery management system includes at least one processor 103 (one is taken as an example in FIG. 4); and, a memory 104 communicatively connected with the at least one processor 103;
  • the instructions executed by the processor 103 are executed by the at least one processor 103, so that the at least one processor 103 can execute the method in the foregoing embodiment.
  • the processor 103 and the memory 104 may be connected by a bus or in other ways.
  • the memory 104 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules.
  • the processor 103 executes various functional applications and data processing of the device by running non-volatile software programs, instructions, and modules stored in the memory 104, that is, implements the load access detection method in any of the foregoing method embodiments.
  • the memory 104 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store filters and the like.
  • the memory 104 may include a high-speed random access memory 104, and may also include a non-volatile memory 104, such as 104 pieces of at least one magnetic disk memory, a flash memory device, or other non-volatile solid-state memories 104.
  • the memory 104 may optionally include a memory 104 remotely provided with respect to the processor 103, and these remote memories 104 may be connected to an external device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • One or more modules are stored in the memory 104, and when executed by one or more processors 103, the load access detection method in any of the foregoing method embodiments is executed.
  • the above-mentioned equipment can execute the method provided in the embodiment of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • the method provided in the embodiment of the present application please refer to the method provided in the embodiment of the present application.
  • the program is stored in a storage medium and includes several instructions to enable one A device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) executes all or part of the steps of the method in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .
  • the third embodiment of the present application provides a switch circuit (the switch circuit 20 shown in FIG. 1), which includes a first switch, a second switch, and a third switch.
  • the second switch and the third switch are connected in series through at least one resistor ( In FIG. 1, the second switch and the third switch are connected in series through the resistor R2 as an example), the first switch is connected in parallel with the second switch, and the first switch is connected in series with the third switch.
  • the switch circuit is configured to enter the pre-charge mode according to the control of the battery management system
  • the switching circuit is also configured to pre-charge the load capacitance in the load circuit through the battery pack; the charging current of the switching circuit in the pre-charging mode is less than the charging current of the switching circuit in the charging mode.
  • the BMS detects the voltage at the first detection point, which is electrically connected to the positive electrode of the battery pack in the battery pack through a jumper resistor; the BMS detects the voltage at the second detection point, when the battery pack is connected to the load circuit The second detection point is shorted to the first detection point; if the voltage difference between the voltage of the first detection point and the voltage of the second detection point is less than or equal to the preset voltage threshold, the BMS controls the switch circuit to enter the pre-charge Mode, pre-charge the load capacitance in the load circuit through the battery pack.
  • the switch circuit 20 has three modes, namely: pre-charging mode, charging mode and discharging mode. Specifically: in the pre-charging mode, the first switch is in the off state, the charging direction of the second switch is in the on state, and the second switch is in the on state. The charging direction of the three switches is in the on state; in the charging mode, the second switch is in the off state, the charging direction of the first switch is in the on state, and the charging direction of the third switch is in the on state; in the discharging mode, The second switch is in the off state, the discharge direction of the first switch is in the on state, and the discharge direction of the third switch is in the on state.
  • the first switch, the second switch, and the third switch of the switch circuit 20 may be Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the switch circuit usually only includes a first switch and a third switch connected in series, and only realizes the function of charging and discharging.
  • the first switch and the third switch are usually called charge and discharge switches.
  • the first switch and the third switch may also be referred to as charging and discharging field effect transistors. Since the charging and discharging field effect transistors in the battery pack are in a normally closed state, when the battery pack is connected to the car body, the interface between the car body base and the battery pack will ignite and ablate, posing safety hazards; at the same time, there will be more The large inrush current impacts the charging and discharging field effect transistors, and affects the life of the charging and discharging field effect transistors.
  • the BMS detects and compares the voltage at the first detection point and the voltage at the second detection point.
  • the voltage difference between the voltage at the first detection point and the voltage at the second detection point is less than or equal to
  • the switch circuit is controlled to enter the pre-charge mode, and the load capacitor in the load circuit is pre-charged through the battery pack.
  • the charging current of the switch circuit in the pre-charge mode is less than the charging current of the switch circuit in the charging mode .
  • the fourth embodiment of the present application provides a load access detection system, which at least includes the battery management system 10 and the switch circuit 20 of the foregoing embodiment. Please refer to Figure 1 for the circuit of the load access detection system, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种负载接入检测方法、开关电路与电池管理系统,涉及电路技术领域。负载接入检测方法包括:检测第一检测点的电压,第一检测点通过跨接电阻R1与电池包(30)中电池组(301)的正极电连接;检测第二检测点的电压,在电池包(30)接入负载电路(40)时第二检测点与第一检测点短接;若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路(20)进入预充模式,通过电池包(30)为负载电路(40)中的负载电容C1进行预充电,开关电路(20)在预充模式下的充电电流小于开关电路(20)在充电模式下的充电电流。

Description

负载接入检测方法、开关电路与电池管理系统
相关申请的交叉引用
本申请要求享有于2020年04月09日提交的名称为“负载接入检测方法、开关电路与电池管理系统”的中国专利申请CN202010274684.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请实施例涉及电路技术领域,特别涉及一种负载接入检测方法、开关电路与电池管理系统。
背景技术
随着电池技术的发展,电动车已经成为了行业的发展趋势。动力电池包作为电动车的能源核心,是电动车的关键部件。
在相关技术中,由于电池包中的充放电场效晶体管处于常闭状态,在电池包在接入车体时,车体底座与电池包接口会出现打火烧蚀的情况,存在安全隐患。
发明内容
本申请实施方式的目的在于提供一种负载接入检测方法、开关电路与电池管理系统,能够避免电池包接入负载电路时出现的打火烧蚀问题。
为解决上述技术问题,本申请的实施方式提供了一种负载接入检测方法,包括:检测第一检测点的电压,第一检测点通过跨接电阻与电池包中电池组的正极电连接;检测第二检测点的电压,在电池包接入负载电路 时第二检测点与第一检测点短接;若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流。
本申请的实施方式还提供了一种电池管理系统,包括:检测单元用于检测第一检测点的电压,第一检测点通过跨接电阻与电池包中电池组的正极电连接;检测单元还用于检测第二检测点的电压,在电池包接入负载电路时第二检测点与第一检测点短接;处理单元用于在第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值时,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流。
本申请的实施方式还提供了一种开关电路,包括:第一开关、第二开关以及第三开关;第一开关与第二开关并联,第一开关与第三开关串联,第二开关与第三开关通过至少一个电阻串联;开关电路被配置为根据电池管理系统的控制进入预充模式;开关电路还被配置为通过电池包为负载电路中的负载电容进行预充电;开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流。
本申请的实施方式还提供了一种负载接入检测方法,应用于上述的开关电路,方法包括:根据电池管理系统的控制,开关电路进入预充模式;开关电路通过电池包为负载电路中的负载电容进行预充电;开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流;根据电池管理系统的控制,开关电路进入预充模式,包括:若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,开关电路由电池管理系统控制进入预充模式;第一检测点的电压由电池管理模块 进行检测,第一检测点通过跨接电阻与电池包中电池组的正极电连接;第二检测点的电压由电池管理模块进行检测,在电池包接入负载电路时第二检测点与第一检测点短接。
本申请的实施方式还提供了一种负载接入检测系统,包括上述的电池管理系统与开关电路。
本申请实施方式相对于相关技术而言,先检测第一检测点的电压,第一检测点通过跨接电阻与电池包中电池组的正极电连接,然后检测第二检测点的电压,而电池包接入负载电路时第二检测点与第一检测点短接,由此若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,说明电池包接入了负载电路,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流,能够避免电池包接入负载电路时出现的打火烧蚀问题。
另外,若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,包括:若第一检测点的电压与第二检测点的电压之间的电压差值在第一预设时长内小于或等于预设的电压阈值,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电。本实施方式中,避免电压不稳定对负载接入检测的影响,实现了电压检测的防抖。
另外,开关电路包括第一开关、第二开关以及第三开关;断开第二开关,导通第一开关的充电方向并导通第三开关的充电方向形成开关电路的充电模式;断开第一开关,导通第二开关的充电方向并导通第三开关的充电方向形成开关电路的预充模式;第一开关与第二开关并联;第一开关与第三开关串联;第二开关与第三开关通过至少一个电阻串联。本实施方 式提供了开关电路的一种具体结构以及开关电路的预充模式与充电模式的形成方式。
另外,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,包括:控制开关电路在第二预设时长内保持预充模式,通过电池包为负载电容进行预充电。本实施方式中,控制开关电路保持预充模式的时间为第二预设时长,从而控制电池包为负载电容进行第二预设时长的预充电。
另外,还包括:若第一检测点的电压与第二检测点的电压之间的电压差值大于电压阈值,判定发生接入故障。
另外,处理单元用于在第一检测点的电压与第二检测点的电压之间的电压差值在第一预设时长内小于或等于预设的电压阈值时,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电。
另外,开关电路包括第一开关、第二开关以及第三开关,第一开关与第二开关并联;第一开关与第三开关串联;第二开关与第三开关通过至少一个电阻串联;处理单元具体用于断开第一开关,导通第二开关的充电方向并导通第三开关的充电方向形成开关电路的预充模式;处理单元具体用于断开第二开关,导通第一开关的充电方向并导通第三开关的充电方向形成开关电路的充电模式。
另外,处理单元用于控制开关电路在第二预设时长内保持预充模式,通过电池包为负载电容进行预充电。
另外,处理单元还用于在第一检测点的电压与第二检测点的电压之间的电压差值大于电压阈值时,判定发生接入故障。
另外,开关电路被配置为根据电池管理系统的控制进入预充模式,具体为:第一开关被配置为断开,第二开关的充电方向被配置为导通,第三开关的充电方向被配置为导通,形成开关电路的预充模式。
另外,开关电路还被配置为:第二开关被配置为断开,第一开关的充电方向被配置为导通,第三开关的充电方向被配置为导通,形成开关电路的充电模式。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施方式的负载接入检测系统的电路示意图;
图2是根据本申请第一实施方式的负载接入检测方法的具体流程图;
图3是根据本申请第二实施方式的电池管理系统的模块结构图;
图4是根据本申请第二实施方式的电池管理系统的方框结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
如图1所示,为本实施例的负载接入检测方法所应用的负载接入检 测系统的电路结构示例图,负载接入检测系统至少包括电池管理系统BMS(Battery Management System,简称BMS)10和开关电路20。在图1中还包括电池包30以及负载电路40。
电池管理系统10至少用于对电池包30进行检测和管理。
开关电路20包括第一开关、第二开关以及第三开关,第二开关与第三开关通过至少一个电阻串联(图1中第二开关与第三开关通过电阻R2串联为例),该第一开关与该第二开关并联,该第一开关与该第三开关串联。在一个例子中,开关电路20可以为电池包30的一部分,然不限于此,开关电路20也可以设置在电池包30外。
在一个例子中,第一开关、第二开关以及第三开关可以为场效应晶体管。在一个例子中,第一开关、第二开关以及第三开关均包括并联的MOS管与二极管(图中以此为例),具体的,第一开关包括MOS管Q1与二极管D1、第二开关包括MOS管Q2与二极管D2、第三开关包括MOS管Q3与二极管D3。可选的,开关可以为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)或金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等开关器件。
电池包30至少包括电池组301和电池包接口302,电池组301通过开关电路20进行充放电。其中,开关电路20可以在BMS10的控制下导通充电电路或导通放电电路。
BMS10、开关电路20和电池包30基于应用场景可以相互结合,本申请实施例不对此进行限定。
负载电路40至少包括负载电容C1、负载部件401和负载接口402。
电池包接口302与负载接口402相互匹配。可选的,电池包接口 302插入负载接口402,以使电池包30接入负载电路40。
下面结合图1的负载接入检测系统的电路结构图对本实施例的负载接入检测方法进行详细说明,请参考图2,为BMS执行负载接入检测方法的具体流程图。
步骤101,检测第一检测点的电压,该第一检测点通过跨接电阻与电池包中电池组的正极电连接。
步骤102,检测第二检测点的电压,在该电池包接入负载电路时第二检测点与第一检测点短接。
步骤103,若该第一检测点的电压与该第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路进入预充模式,通过该电池包为负载电路中的负载电容进行预充电,该开关电路在预充模式下的充电电流小于该开关电路在充电模式下的充电电流。
第一检测点通过跨接电阻与电池包中电池组的正极电连接,跨接电阻能够保证电池组不会通过跨接电阻进行大电流放电,降低了功耗,并且保证了安全。可选的,跨接电阻的阻值可以为兆欧级。
示例的,在图1中,第一检测点位于电池包接口302中,BMS10检测第一检测点的电压。
示例的,在图1中,第二检测点位于电池包接口302中。可选的,第二检测点可以悬空或者通过至少一个电阻接地,该第二检测点也可以称为负载接入检测点。
当电池包30接入负载电路40时,即电池包接口302与负载接口402相互连接,通过该负载接口402,可以使该第二检测点与该第一检测点短接。
BMS10检测第二检测点的电压,由于当电池包30接入负载电路40时,第二检测点与第一检测点短接,理论上,第一检测点的电压与第二检 测点的电压相同,但实际上存在测量误差,为避免误判,可以设定电压阈值。若第一检测点的电压与第二检测点的电压小于或等于预设的电压阈值,可以认为该电池包30接入负载电路40。其中,通过跨接电阻将电池包中电池组的正极引出,便于BMS10检测电池包是否30接入负载电路40。
具体而言,当电池包30接入负载电路40时,第一检测点的电压与第二检测点的电压应该近似相等,BMS10中预设有电压阈值,第一检测点的电压与第二检测点的电压之间的电压差值应该小于该电压阈值,例如电压差值小于或等于1V。BMS10在获取了第一检测点的电压与第二检测点的电压后,计算第一检测点的电压与第二检测点的电压之间的电压差值,若计算出的电压差值为负值,则可以取其绝对值作为电压差值;然后,BMS10判断该电压差值是否小于或等于预设的电压阈值;若电压差值小于或等于预设的电压阈值,此时BMS10控制开关电路20进入预充模式为负载电路40中的负载电容C1进行预充电;若电压差值大于预设的电压阈值,此时BMS10控制开关电路20的中第一开关、第二开关、第三开关保持断开状态。另外,若电池包30未接入负载电路40,第一检测的电压是远大于第二检测点的电压,从而BMS10能够识别电池包30未接入负载电路40。控制电池包30的中第一开关、第二开关、第三开关保持断开状态,避免了电池包30对外放电的安全问题。
本实施例中,开关电路20存在三种模式,分别为:预充模式、充电模式与放电模式,具体的:在预充模式下,第一开关处于断开状态、第二开关的充电方向处于导通状态、第三开关的充电方向处于导通状态;在充电模式下,第二开关处于断开状态、第一开关的充电方向处于导通状态、第三开关的充电方向处于导通状态;在放电模式下,第二开关处于断开状态、第一开关的放电方向处于导通状态、第三开关的放电方向处于导 通状态。其中,若第一开关和第三开关均为场效应晶体管,第一开关和第三开关可以统称为开关场效应晶体管。
在一个例子中,若第一检测点的电压与第二检测点的电压之间的电压差值在第一预设时长内小于或等于预设的电压阈值,BMS10控制开关电路20进入预充模式为负载电路40中的负载电容C1进行预充电。具体的,在电池包30接入负载电路40时,BMS10在第一预设时长内持续检测并比较第一检测点的电压与第二检测点的电压,若在第一预设时长内,电压差值始终保持小于或等于预设的电压阈值,则BMS10控制开关电路20进入预充模式,通过电池包30为负载电路40中的负载电容C1进行预充电。在本申请实施例中,对第一预设时长不做具体限定,例如为2S。其中,通过设置第一预设时长,可以避免电压不稳定对负载接入检测的影响,实现了电压检测的防抖。
本实施例中,BMS10控制开关电路20进入预充模式,即控制第一开关保持断开、控制第二开关的充电方向导通、并控制第三开关的充电方向导通,此时电池包30通过第二开关、电阻R2以及第三开关连接到负载电容C1,电池包30为负载电容C1进行预充电,由于电阻R2的存在,使得开关电路20在预充模式下的充电电流小于开关电路在充电模式下的充电电流。可选的,BMS10可以控制开关电路20在第二预设时长内保持预充模式,通过所述电池包30为负载电容C1进行预充电,即控制开关电路20保持预充模式的时间为第二预设时长,从而控制电池包30为负载电容C1进行第二预设时长的预充电。其中,第二预设时长可以根据负载电容C1的电容值来设定。
在一个例子中,BMS10在负载电容C1充电结束后,控制开关电路20结束预充模式,并根据当前接入的电路,控制开关电路20进入充电模式或放电模式;举例来说,当电池包30接入电动车时,BMS10控制开关 电路2进入放电模式,此时电池包30通过第一开关以及第三开关的放电方向为负载电路40中的负载部件3供电;当电池包30接入充电桩时,BMS10控制开关电路20进入充电模式,此时充电桩通过第一开关以及第三开关的充电方向为电池包30充电。
本实施例中,BMS10在第一检测点的电压与第二检测点的电压之间的电压差值大于预设的电压阈值,判定发生接入故障,即该电池包30接入负载电路40发生故障。其中,接入故障可以为负载电路40中发生断线故障。
具体而言,当电池包20接入负载电路30时,BMS10在获取了第一检测点的电压与第二检测点的电压后,计算第一检测点的电压与第二检测点的电压之间的电压差值,若电压差值大于预设的电压阈值,则判定该电池包30接入负载电路40发生故障,BMS10控制开关电路20的中第一开关、第二开关、第三开关保持断开状态。可选的,BMS10在判定该电池包30接入负载电路40发生故障后,可以在电动车的显示屏上发出一个故障提示信息。
本实施方式相对于相关技术而言,先检测第一检测点的电压,第一检测点通过跨接电阻与电池包中电池组的正极电连接,然后检测第二检测点的电压,而电池包接入负载电路时第二检测点与第一检测点短接,由此若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,说明电池包接入了负载电路,控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流,能够避免电池包接入负载电路时出现的打火烧蚀问题。同时,能够避免产生较大的冲击电流冲击开关电路,确保了开关电路的使用寿命,提升了安全性。
本申请第二实施方式提供了一种电池管理系统,用于执行上述实施 例中的方法。请参考图1,为本实施例的电池管理系统所应用的负载接入检测系统的电路结构示例图。请参考图3,电池管理系统BMS10包括检测单元101与处理单元102。
检测单元101用于检测第一检测点的电压,该第一检测点通过跨接电阻与电池包中电池组的正极电连接。
检测单元101还用于检测第二检测点的电压,在该电池包接入负载电路时该第二检测点与该第一检测点短接。
处理单元102用于若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值时,控制电开关电路20进入预充模式,通过该电池包30为负载电路40中的负载电容C1进行预充电,该开关电路20在预充模式下的充电电流小于该开关电路20在充电模式下的充电电流。可选的,BMS10中有预设的电压阈值。
可选的,处理单元102用于若该第一检测点的电压与该第二检测点的电压之间的电压差值在第一预设时长内小于或等于预设的电压阈值,控制该开关电路20进入预充模式为负载电路40中的负载电容C1进行预充电。具体的,当电池包30接入负载电路40时,BMS10持续检测第一检测点的电压与第二检测点的电压,若在第一预设时长内,该第一检测点的电压与该第二检测点的电压差值始终保持小于或等于预设的电压阈值,则BMS10控制电开关电路20进入预充模式,通过电池包30为负载电路40中的负载电容C1进行预充电。其中,在本申请实施例中,对第一预设时长不做具体限定,例如为2S。通过设置第一预设时长,可以避免电压不稳定对负载接入检测的影响,实现了电压检测的防抖。
BMS10控制开关电路20进入预充模式,即控制第一开关保持断开、控制第二开关的充电方向导通、并控制第三开关的充电方向导通,此时电池包30通过第二开关、电阻R2以及第三开关连接到负载电容C1, 为负载电容C1进行预充电,由于电阻R2的存在,使得开关电路20在预充模式下的充电电流小于开关电路在充电模式下的充电电流。可选的,BMS10可以控制开关电路20在第二预设时长内保持预充模式,为负载电容C1进行预充电,即控制开关电路20保持预充模式的时间为第二预设时长,从而控制电池包30为负载电容C1进行第二预设时长的预充电.可选的,第二预设时长可以根据负载电容C1的电容值来设定。
可选的,处理单元102还用于若第一检测点的电压与第二检测点的电压之间的电压差值大于预设的电压阈值,判定发生接入故障,即该电池包30接入负载电路40发生故障。具体的,当电池包30接入负载电路40时,BMS10的处理单元102在获取检测单元101检测的第一检测点的电压与第二检测点的电压之间的电压差值后,计算第一检测点的电压与第二检测点的电压之间的电压差值,若第一检测点的电压与第二检测点的电压之间的电压差值大于预设的电压阈值,则判定该电池包30接入负载电路40发生故障,处理单元102控制开关电路20的中第一开关、第二开关、第三开关保持断开状态。可选的,BMS10的处理单元102在判定该电池包30接入负载电路40发生故障后,可以在的显示屏上发出一个故障提示信息。
本实施例提供了一种BMS,当电池包接入负载电路时,BMS检测并比较第一检测点的电压和第二检测点的电压,在第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值时,控制开关电路进入预充模式,通过电池包的为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流。,通过上述BMS,能够避免电池包接入负载电路时出现的打火烧蚀问题;同时,能够避免产生较大的冲击电流冲击开关电路,确保了开关电路的使用寿命,提升了安全性。
值得一提的是,本实施方式中所涉及到的各单元均为逻辑单元,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。例如,请参考图4,电池管理系统包括至少一个处理器103(图4中以一个为例);以及,与至少一个处理器103通信连接的存储器104;其中,存储器104存储有可被至少一个处理器103执行的指令,指令被至少一个处理器103执行,以使至少一个处理器103能够执行上述的实施例中的方法。
处理器103、存储器104可以通过总线或者其他方式连接。存储器104作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器103通过运行存储在存储器104中的非易失性软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述任意方法实施例中的负载接入检测方法。
存储器104可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储过滤器等。此外,存储器104可以包括高速随机存取存储器104,还可以包括非易失性存储器104,例如至少一个磁盘存储器104件、闪存器件、或其他非易失性固态存储器104件。在一些实施例中,存储器104可选包括相对于处理器103远程设置的存储器104,这些远程存储器104可以通过网络连接至外接设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器104中,当被一个或者多个处理器103执行时,执行上述任意方法实施例中的负载接入检测方法。
上述设备可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申 请实施例所提供的方法。
本领域技术人员可以理解,实现上述负载接入检测方法实施例中的全部或部分步骤是可以基于程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请第三实施方式提供了一种开关电路(如图1所示的开关电路20),包括第一开关、第二开关以及第三开关,第二开关与第三开关通过至少一个电阻串联(图1中第二开关与第三开关通过电阻R2串联为例),该第一开关与该第二开关并联,该第一开关与该第三开关串联。
该开关电路被配置为根据电池管理系统的控制进入预充模式;
该开关电路还被配置为通过电池包为负载电路中的负载电容进行预充电;该开关电路在预充模式下的充电电流小于该开关电路在充电模式下的充电电流。
具体的,BMS检测第一检测点的电压,该第一检测点通过跨接电阻与电池包中电池组的正极电连接;BMS检测第二检测点的电压,在该电池包接入负载电路时第二检测点与第一检测点短接;若该第一检测点的电压与该第二检测点的电压之间的电压差值小于或等于预设的电压阈值,BMS控制开关电路进入预充模式,通过电池包为负载电路中的负载电容进行预充电。
开关电路20存在三种模式,分别为:预充模式、充电模式与放电模式,具体的:在预充模式下,第一开关处于断开状态、第二开关的充电方向处于导通状态、第三开关的充电方向处于导通状态;在充电模式下, 第二开关处于断开状态、第一开关的充电方向处于导通状态、第三开关的充电方向处于导通状态;在放电模式下,第二开关处于断开状态、第一开关的放电方向处于导通状态、第三开关的放电方向处于导通状态。
可选的,开关电路20的第一开关、第二开关以及第三开关可以为金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)。
相关技术中,开关电路通常只包含串联的第一开关与第三开关,仅实现充放电功能。第一开关与第三开关通常称为充放电开关。对于场效晶体管的开关器件,第一开关与第三开关也可以称为充放电场效晶体管。由于电池包中的充放电场效晶体管处于常闭状态,在电池包在接入车体时,车体底座与电池包接口会出现打火烧蚀的情况,存在安全隐患;同时,会存在产生较大的冲击电流冲击充放电场效应晶体管,影响充放电场效应晶体管的寿命。
当电池包接入负载电路时,BMS检测并比较第一检测点的电压和第二检测点的电压,在第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值时,控制开关电路进入预充模式,通过电池包的为负载电路中的负载电容进行预充电,开关电路在预充模式下的充电电流小于开关电路在充电模式下的充电电流。基于上述开关电路,能够避免电池包接入负载电路时出现的打火烧蚀问题;同时,能够避免产生较大的冲击电流冲击开关电路,确保了开关电路的使用寿命,提升了安全性。
本申请第四实施方式提供了一种负载接入检测系统,至少包括前述实施例的电池管理系统10和开关电路20。负载接入检测系统的电路请参考图1,在此不再赘述。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变。

Claims (17)

  1. 一种负载接入检测方法,其特征在于,包括:
    检测第一检测点的电压,所述第一检测点通过跨接电阻与电池包中电池组的正极电连接;
    检测第二检测点的电压,在所述电池包接入负载电路时所述第二检测点与所述第一检测点短接;
    若所述第一检测点的电压与所述第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路进入预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电,所述开关电路在所述预充模式下的充电电流小于所述开关电路在充电模式下的充电电流。
  2. 根据权利要求1所述的负载接入检测方法,其特征在于,所述若所述第一检测点的电压与所述第二检测点的电压之间的电压差值小于或等于预设的电压阈值,控制开关电路进入预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电,包括:
    若所述第一检测点的电压与所述第二检测点的电压之间的电压差值在第一预设时长内小于或等于所述预设的电压阈值,控制所述开关电路进入所述预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电。
  3. 根据权利要求1或2所述的负载接入检测方法,其特征在于,所述开关电路包括第一开关、第二开关以及第三开关;
    断开所述第二开关,导通所述第一开关的充电方向并导通所述第三开关的充电方向形成所述开关电路的充电模式;
    断开所述第一开关,导通所述第二开关的充电方向并导通所述第三开关的充电方向形成所述开关电路的预充模式;
    所述第一开关与所述第二开关并联;所述第一开关与所述第三开关串联;所述第二开关与所述第三开关通过至少一个电阻串联。
  4. 根据权利要求1或2所述的负载接入检测方法,其特征在于,所述控制开关电路进入预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电,包括:
    控制所述开关电路在第二预设时长内保持预充模式,通过所述电池包为所述负载电容进行预充电。
  5. 根据权利要求1所述的负载接入检测方法,其特征在于,还包括:
    若所述第一检测点的电压与所述第二检测点的电压之间的电压差值大于所述电压阈值,判定发生接入故障。
  6. 一种电池管理系统,其特征在于,包括:
    检测单元用于检测第一检测点的电压,所述第一检测点通过跨接电阻与电池包中电池组的正极电连接;
    所述检测单元还用于检测第二检测点的电压,在所述电池包接入负载电路时所述第二检测点与所述第一检测点短接;
    处理单元用于在所述第一检测点的电压与所述第二检测点的电压之间的电压差值小于或等于预设的电压阈值时,控制开关电路进入预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电,所述开关电路在所述预充模式下的充电电流小于所述开关电路在充电模式下的充电电流。
  7. 根据权利要求6所述的电池管理系统,其特征在于,所述处理单元用于在所述第一检测点的电压与所述第二检测点的电压之间的电压差值在第一预设时长内小于或等于所述预设的电压阈值时,控制所述开关电路 进入所述预充模式,通过所述电池包为所述负载电路中的负载电容进行预充电。
  8. 根据权利要求6或7所述的电池管理系统,其特征在于,所述开关电路包括第一开关、第二开关以及第三开关,所述第一开关与所述第二开关并联;所述第一开关与所述第三开关串联;所述第二开关与所述第三开关通过至少一个电阻串联;
    所述处理单元具体用于断开所述第一开关,导通所述第二开关的充电方向并导通所述第三开关的充电方向形成所述开关电路的预充模式;
    所述处理单元具体用于断开所述第二开关,导通所述第一开关的充电方向并导通所述第三开关的充电方向形成所述开关电路的充电模式。
  9. 根据权利要求6或7所述的电池管理系统,其特征在于,所述处理单元用于控制所述开关电路在第二预设时长内保持预充模式,通过所述电池包为所述负载电容进行预充电。
  10. 根据权利要求6所述的电池管理系统,其特征在于,所述处理单元还用于在所述第一检测点的电压与所述第二检测点的电压之间的电压差值大于所述电压阈值时,判定发生接入故障。
  11. 一种开关电路,其特征在于,包括:第一开关、第二开关以及第三开关;
    所述第一开关与所述第二开关并联,所述第一开关与所述第三开关串联,所述第二开关与所述第三开关通过至少一个电阻串联;
    所述开关电路被配置为根据电池管理系统的控制进入预充模式;
    所述开关电路还被配置为通过电池包为负载电路中的负载电容进行预充电;所述开关电路在所述预充模式下的充电电流小于所述开关电路在充电模式下的充电电流。
  12. 根据权利要求11所述的开关电路,其特征在于,所述开关电路被配置为根据电池管理系统的控制进入预充模式,具体为:
    所述第一开关被配置为断开,所述第二开关的充电方向被配置为导通,所述第三开关的充电方向被配置为导通,形成所述开关电路的预充模式。
  13. 根据权利要求11或12所述的开关电路,其特征在于,所述开关电路还被配置为:
    所述第二开关被配置为断开,所述第一开关的充电方向被配置为导通,所述第三开关的充电方向被配置为导通,形成所述开关电路的充电模式。
  14. 一种负载接入检测方法,其特征在于,应用于如权利要求11至13中任一项所述的开关电路,所述方法包括:
    根据电池管理系统的控制,所述开关电路进入预充模式;
    所述开关电路通过电池包为负载电路中的负载电容进行预充电;
    所述开关电路在所述预充模式下的充电电流小于所述开关电路在充电模式下的充电电流;
    所述根据电池管理系统的控制,所述开关电路进入预充模式,包括:
    若第一检测点的电压与第二检测点的电压之间的电压差值小于或等于预设的电压阈值,所述开关电路由所述电池管理系统控制进入预充模式;
    所述第一检测点的电压由所述电池管理模块进行检测,所述第一检测点通过跨接电阻与电池包中电池组的正极电连接;
    所述第二检测点的电压由所述电池管理模块进行检测,在所述电池包接入负载电路时所述第二检测点与所述第一检测点短接。
  15. 根据权利要求14所述的负载接入检测方法,其特征在于,所述开关电路由所述电池管理系统控制进入预充模式,包括:
    所述开关电路在所述电池管理系统控制下,断开所述第一开关,导通所述第二开关的充电方向并导通所述第三开关的充电方向,形成所述开关电路的预充模式。
  16. 根据权利要求14或15所述的负载接入检测方法,其特征在于,所述方法还包括:
    所述开关电路在所述电池管理系统控制下,断开所述第二开关,导通所述第一开关的充电方向并导通所述第三开关的充电方向,形成所述开关电路的充电模式。
  17. 一种负载接入检测系统,其特征在于,包括:权利要求6至10中任一项所述的电池管理系统和权利要求11至13中任一项所述的开关电路。
PCT/CN2020/133455 2020-04-09 2020-12-02 负载接入检测方法、开关电路与电池管理系统 WO2021203722A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20922484.9A EP3922503B1 (en) 2020-04-09 2020-12-02 Load access detection method, switch circuit and battery management system
US17/479,505 US12009682B2 (en) 2020-04-09 2021-09-20 Load access detection method, switch circuit, and battery management system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010274684.XA CN111301173B (zh) 2020-04-09 2020-04-09 负载接入检测方法、开关电路与电池管理系统
CN202010274684.X 2020-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/479,505 Continuation US12009682B2 (en) 2020-04-09 2021-09-20 Load access detection method, switch circuit, and battery management system

Publications (1)

Publication Number Publication Date
WO2021203722A1 true WO2021203722A1 (zh) 2021-10-14

Family

ID=71157505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133455 WO2021203722A1 (zh) 2020-04-09 2020-12-02 负载接入检测方法、开关电路与电池管理系统

Country Status (5)

Country Link
US (1) US12009682B2 (zh)
EP (1) EP3922503B1 (zh)
CN (1) CN111301173B (zh)
HU (1) HUE061022T2 (zh)
WO (1) WO2021203722A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111301173B (zh) * 2020-04-09 2023-12-15 宁德时代新能源科技股份有限公司 负载接入检测方法、开关电路与电池管理系统
EP4071885A1 (en) * 2021-02-09 2022-10-12 Contemporary Amperex Technology Co., Limited Battery charging method, controller, battery management system, battery, and electric apparatus
CN113078719B (zh) * 2021-05-11 2023-04-21 中国煤炭科工集团太原研究院有限公司 矿用蓄电池组的识别方法和系统
CN113311268A (zh) * 2021-05-27 2021-08-27 浙江华消科技有限公司 一种红外发射管寿命检测方法、装置、设备及介质
CN113899954B (zh) * 2021-08-31 2024-04-09 博科能源系统(深圳)有限公司 负载检测方法及电池管理系统
CN114228564B (zh) * 2021-12-30 2023-08-01 广东高标电子科技有限公司 电池包接入检测装置、方法及电动车
CN114221422B (zh) * 2022-02-18 2022-07-15 宁德时代新能源科技股份有限公司 电池组充电系统及其控制方法、装置、单元和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166959A (zh) * 2010-02-26 2011-08-31 三洋电机株式会社 车辆用电源装置和车辆以及车辆侧负载的非接触状态检测方法
CN104553813A (zh) * 2014-12-16 2015-04-29 惠州市亿能电子有限公司 一种电动汽车高压上电电路及其控制方法
CN104865519A (zh) * 2014-09-09 2015-08-26 北汽福田汽车股份有限公司 一种动力电池预充继电器状态诊断方法
CN110239391A (zh) * 2019-05-07 2019-09-17 许继电源有限公司 一种适用于电动汽车的充电方法及充电桩系统
JP2019161816A (ja) * 2018-03-12 2019-09-19 ニチコン株式会社 バッテリ充放電装置
CN111301173A (zh) * 2020-04-09 2020-06-19 宁德时代新能源科技股份有限公司 负载接入检测方法、开关电路与电池管理系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545285B2 (ja) * 2000-06-12 2010-09-15 本田技研工業株式会社 燃料電池車両の起動制御装置
JP4699399B2 (ja) * 2007-02-06 2011-06-08 プライムアースEvエナジー株式会社 電源装置
JP5675045B2 (ja) * 2008-11-26 2015-02-25 三洋電機株式会社 バッテリシステム
US9160041B2 (en) * 2010-07-30 2015-10-13 Byd Company Limited Battery heating circuits and methods using resonance components in series and bridging charge storage components
DE102011013394B4 (de) 2011-03-09 2012-10-04 Audi Ag Batterie für ein Fahrzeug und Verfahren zum Betreiben einer solchen Batterie
KR101536129B1 (ko) * 2011-10-04 2015-07-14 엘지디스플레이 주식회사 유기발광 표시장치
US9350187B2 (en) * 2012-01-09 2016-05-24 Johnson Controls Technology Llc Pre-charging vehicle bus using parallel battery packs
US10076964B2 (en) * 2015-12-15 2018-09-18 Faraday & Future Inc. Pre-charge system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102166959A (zh) * 2010-02-26 2011-08-31 三洋电机株式会社 车辆用电源装置和车辆以及车辆侧负载的非接触状态检测方法
CN104865519A (zh) * 2014-09-09 2015-08-26 北汽福田汽车股份有限公司 一种动力电池预充继电器状态诊断方法
CN104553813A (zh) * 2014-12-16 2015-04-29 惠州市亿能电子有限公司 一种电动汽车高压上电电路及其控制方法
JP2019161816A (ja) * 2018-03-12 2019-09-19 ニチコン株式会社 バッテリ充放電装置
CN110239391A (zh) * 2019-05-07 2019-09-17 许继电源有限公司 一种适用于电动汽车的充电方法及充电桩系统
CN111301173A (zh) * 2020-04-09 2020-06-19 宁德时代新能源科技股份有限公司 负载接入检测方法、开关电路与电池管理系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922503A4 *

Also Published As

Publication number Publication date
CN111301173A (zh) 2020-06-19
EP3922503A1 (en) 2021-12-15
US12009682B2 (en) 2024-06-11
US20220006308A1 (en) 2022-01-06
EP3922503A4 (en) 2022-03-23
HUE061022T2 (hu) 2023-05-28
CN111301173B (zh) 2023-12-15
EP3922503B1 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
WO2021203722A1 (zh) 负载接入检测方法、开关电路与电池管理系统
KR101780396B1 (ko) 배터리 보호 장치 및 방법
CN107894567B (zh) 电池包以及电池包接口状态的检测系统和检测方法
US10116148B2 (en) Secondary-battery protecting integrated circuit, secondary battery protection apparatus, and battery pack
US10389144B2 (en) Battery protection circuit monitoring a state of a charging switch and battery pack including same
US10090689B2 (en) Overcurrent protection circuit and method for limiting discharge current of battery within safety limiting value
JP2017538390A (ja) バッテリー装置
CN111193296B (zh) 一种预充电控制装置和方法
JP2013520949A (ja) 逆接続保護装置及びこれを備えるバックアップ電源
KR20200110615A (ko) 배터리 시스템
KR20150060550A (ko) 이차전지의 보호 회로, 전지 보호 모듈, 전지 팩 및 처리 방법
US10389347B2 (en) Signal based ignition with inductive flyback power
WO2018192224A1 (zh) 电池切换的方法和装置以及供电电路的切换系统和方法
CN111082495A (zh) 一种bms电源系统及其控制方法
KR20200110618A (ko) 배터리 시스템
KR20190094714A (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
US10069312B2 (en) Charging discharging apparatus for super capacitor modules
TW201818632A (zh) 充放電平衡控制裝置及方法
CN113071345B (zh) 一种适合各种电动自行车标准充电器的充电管理系统
KR101647693B1 (ko) 풀다운 회로를 이용한 배터리 관리 시스템의 단선 진단 장치 및 방법
CN211018254U (zh) 一种电池组短路保护电路装置
KR20210052229A (ko) 누전 검출 장치, 누전 검출 방법 및 전기 차량
CN112952924A (zh) 一种电池管理装置以及一种电器装置
CN211296247U (zh) 一种bms电源系统
WO2024116752A1 (ja) 車載用電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020922484

Country of ref document: EP

Effective date: 20210908

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE