WO2021203453A1 - 一种现场微波破岩模拟系统及模拟方法 - Google Patents

一种现场微波破岩模拟系统及模拟方法 Download PDF

Info

Publication number
WO2021203453A1
WO2021203453A1 PCT/CN2020/085069 CN2020085069W WO2021203453A1 WO 2021203453 A1 WO2021203453 A1 WO 2021203453A1 CN 2020085069 W CN2020085069 W CN 2020085069W WO 2021203453 A1 WO2021203453 A1 WO 2021203453A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
rock
breaking test
test cabin
rock sample
Prior art date
Application number
PCT/CN2020/085069
Other languages
English (en)
French (fr)
Inventor
高明忠
谢晶
杨本高
陆彤
彭高友
王飞
王明耀
刘军军
刘依婷
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2021203453A1 publication Critical patent/WO2021203453A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C37/00Other methods or devices for dislodging with or without loading
    • E21C37/18Other methods or devices for dislodging with or without loading by electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Definitions

  • the invention belongs to the fields of tunnels, mining and geotechnical engineering, and relates to an on-site microwave rock breaking simulation system and a simulation method.
  • the current indoor research is based on a multi-mode or single-mode resonant cavity.
  • microwaves can be reflected back and forth and fully act on all surfaces of the rock sample, which does not conform to the actual situation of field engineering practice.
  • engineering practice when the rock mass is broken, it is faced with a tunnel face. The microwave only acts on one section of the rock mass, and the other sections of the rock mass are affected by the confining pressure. It can be seen that the existing indoor test methods cannot accurately simulate the field conditions. On the one hand, it is impossible to make the microwave act on only one surface of the rock sample. On the other hand, it does not consider the influence of the confining pressure on other sections.
  • the reference of the best working conditions obtained by the laboratory test method to the microwave rock breaking in engineering practice needs to be improved, and it is difficult to effectively guide the actual microwave rock breaking work.
  • the purpose of the present invention is to provide an on-site microwave rock breaking simulation system and a simulation method in view of the deficiencies of the prior art, so as to more realistically simulate on-site microwave rock breaking working conditions and improve the obtained optimal critical working conditions of microwave rock breaking
  • the accuracy of the system can be used to guide the microwave rock breaking work more effectively in engineering practice.
  • the on-site microwave rock breaking simulation system includes a microwave source, a still tube, a circulator, a water load, a rock breaking test chamber, a microwave barrier and confining pressure loading system, and a data acquisition system;
  • One end of the waveguide is connected with the microwave exit port of the microwave source, the other end is connected with the microwave entrance port of the circulator, the microwave exit port of the circulator is connected with the microwave entrance port of the rock breaking test cabin, and the water load connection port of the circulator Connect with water load;
  • the microwave blocking and confining pressure loading system is composed of five jacks, five microwave blocking front plates, and four microwave blocking side plates; a cubic rock sample is placed in the rock breaking test chamber, and one side of the rock sample is The microwave irradiation surface used for receiving microwave irradiation treatment.
  • the other five surfaces of the rock sample are surrounded by microwave blocking front plates, and each microwave blocking front plate is correspondingly installed at the end of each jack, and each jack corresponds to the rock breaking test cabin.
  • the five sides of the inner rock sample are installed.
  • the end of each jack and the microwave blocking front plate are located in the rock breaking test chamber, so that each microwave blocking front plate can be respectively connected with the rock sample except the microwave irradiation surface under the control of the jack.
  • the other five surfaces are attached to realize the loading of microwave blocking and confining pressure on the corresponding surface.
  • the height of the rock sample in the rock breaking test chamber can be adjusted by adjusting the jack located under the rock sample; each microwave blocking side plate penetrates The side walls of the rock-breaking test cabin extend into the rock-breaking test cabin and are connected to the four edges of the microwave irradiation surface of the rock sample respectively. The gap between the irradiation surface and the inner wall of the rock breaking test cabin is closed;
  • the data acquisition system includes a sensor, a transmission cable, and a terminal device that receives the signal collected by the sensor.
  • the sensor is installed on the surface of the rock sample, and the transmission cable passes through the cut-off waveguide hole on the wall of the rock breaking test cabin to connect the sensor with Connection of terminal equipment outside the rock test chamber.
  • the end of the jack is connected to the microwave barrier positive plate through a trapezoidal body adapter.
  • the size of the contact surface of the trapezoid adapter and the microwave blocking front plate is the same as the size of the microwave blocking front plate.
  • the side of the microwave blocking plate in contact with the rock sample Equipped with cable installation slots in order to avoid adversely affecting or destroying the transmission cable of the sensor when the confining pressure is applied through the microwave blocking plate, the side of the microwave blocking plate in contact with the rock sample Equipped with cable installation slots.
  • the transmission cables connected to the sensors are led out of the microwave barrier through the cable installation slots and pass through the cut-off waveguide holes on the wall of the rock-breaking test cabin to connect the sensors to the terminal equipment located outside the rock-breaking test cabin. connect.
  • the cable installation slot penetrates through a set of mutually parallel side surfaces of the microwave blocking front plate, so that the transmission cable connected to the sensor is led out from the edge of the microwave blocking front plate.
  • the cut-off waveguide hole can attenuate a large amount of microwaves when they are transmitted to the hole position, so as to prevent the microwave from being transmitted to the outside of the rock breaking test cabin.
  • the cut-off waveguide hole is an existing commercially available product, and it can also be customized in the market as required.
  • the size of two parallel microwave blocking front plates is larger than the size of the side surface of the rock sample (referred to as the big front plate)
  • the size of the other three microwave blocking front plates is the same as the size of the side of the rock sample (called small front plates).
  • the size of two parallel microwave blocking positive plates can be fixed, and the other three microwave blocking positive plates (small positive plates) can be made into different sizes. Multiple sets of specifications are selected according to the size of the rock sample during the test.
  • the trapezoid adapters are also made into multiple sets of different sizes, and the trapezoidal adapters and the end of the jack and the microwave barrier plate are all detachable connections, so that you can choose the corresponding method when replacing the rock sample.
  • the size of the trapezoidal head adapter and the microwave barrier positive plate are reconnected to the top of the jack.
  • the microwave blocking plate is detachably connected to the top of the jack, and the microwave blocking plate is adjusted according to the size of the rock sample or the microwave blocking plate of the corresponding size is selected. Connect with the end of the jack.
  • the rock breaking test cabin is in the shape of a cuboid, and the microwave blocking side plates respectively penetrate the upper, lower, front and rear side walls of the rock breaking test cabin to extend into the rock breaking test cabin.
  • the microwave blocking side plate is retractable relative to the side wall of the rock breaking test cabin.
  • the part of the microwave blocking side plate located in the rock breaking test cabin is rectangular; the height of the microwave blocking side plate passing through the front and rear side walls of the rock breaking test cabin is the same
  • the distance between the upper and lower side walls of the rock breaking test cabin is the same (called the large side plate), and the width of the microwave blocking side plate passing through the upper and lower side walls of the rock breaking test cabin is the same as the side of the rock sample
  • the width is the same (called small side panels); or, the width of the microwave blocking side panels passing through the upper and lower side walls of the rock breaking test cabin is the same as the distance between the front and rear side walls of the rock breaking test cabin (called This is the large side plate), and the width of the microwave blocking side plate passing through the front and rear side walls of the rock breaking test cabin is the same as the side width of the rock sample (called the small side plate).
  • the part of the small side plate located in the rock breaking test cabin can be made into
  • the "up, down, front, and back" of the rock sample in the present invention refers to the orientation of the rest of the surface other than the surface on which the sample receives microwave irradiation. It is relatively speaking, and is required for clear explanation. Unrestricted meaning.
  • the microwave blocking front plate and the microwave blocking side plate are metal plates, and the thickness of the metal plates is sufficient to block microwaves.
  • the wall of the rock breaking test cabin is also made of metal plates. The main reason why metal plates block microwaves is that they can reflect microwaves.
  • the sensors include a temperature sensor, a pressure sensor, a strain sensor, and an acoustic emission sensor.
  • the inner wall of the rock breaking test cabin is provided with a camera and an infrared thermal imager for monitoring the morphological change of the microwave irradiation surface of the rock sample and the rock sample The temperature changes. Furthermore, the camera and the infrared thermal imager are installed on the inner wall where the microwave entrance of the rock breaking test cabin is located. Connection of terminal equipment outside the rock test chamber.
  • a door that can be opened and closed is provided on the side wall of the rock breaking test cabin.
  • the cabin door is arranged above the rock sample or on the side wall of the rock breaking test cabin on the front, rear, left and right sides.
  • the microwave source is a solid-state microwave source.
  • the water load and the microwave source itself have a water-cooled structure.
  • the microwave source and water load with a water-cooled structure can be purchased directly from the market. When the microwave source and water load are working, they should be Flowing cold water is introduced into the water-cooled structure to prevent the equipment from overheating and damage.
  • the microwave enters the circulator from the still-pipe, and enters the rock-breaking test chamber through the circulator only in one direction.
  • the circulator is made of materials that do not absorb and transmit microwaves.
  • the circulator and water load are complementary products of the microwave source, which can be produced by the manufacturer directly supporting the microwave source.
  • the present invention also provides an on-site microwave rock breaking simulation method, which includes the following steps:
  • the transmission cables connected to the sensors are led out from the cut-off waveguide hole on the side wall of the rock breaking test cabin and connected to the terminal equipment located outside the rock breaking test cabin; when the on-site microwave rock breaking simulation system includes a camera and an infrared thermal imager , It is also necessary to connect the transmission cable connected with the camera and the infrared thermal imager through the cut-off waveguide hole on the wall of the rock-breaking test cabin to connect to the terminal equipment located outside the rock-breaking test cabin;
  • step S4 After the test of step S3 is completed, turn off the microwave source, turn off all the terminal equipment located outside the rock breaking test cabin, open the rock breaking test cabin, take out the rock sample and replace the rock sample, repeat the operation of steps S1 to S3, and proceed to the next time experiment.
  • the computer supporting the microwave source has its own control program to control the working mode of the microwave source.
  • the microwave rock breaking of rock masses under different confining pressures can be simulated indoors according to the specific environment of the site, and the temperature change data and stress of the rock masses at different distances from the microwave source can be obtained.
  • Change data, strain change data, etc. by acquiring real-time acoustic emission data under the action of microwaves, the evolution characteristics of pores in the rock body during microwave action can be obtained, and real-time monitoring can be achieved through the camera and infrared thermal imager set on the inner wall of the rock breaking test cabin The shape change and temperature change of the surface of the rock mass irradiated by the microwave during the action of the microwave.
  • This method solves the problem that the prior art cannot apply confining pressure to the rock mass and the microwave reciprocates on multiple surfaces of the rock mass during the indoor simulation test, and breaks through the lack of effective means in the prior art to monitor the heating and stress under the real-time action of microwaves.
  • the bottleneck of data such as strain and acoustic emission, in conjunction with subsequent mechanical tests, can obtain the best microwave operating conditions that truly reflect on-site engineering practices. It is of great significance to the field engineering application of microwave rock breaking.
  • the present invention provides an on-site microwave rock breaking simulation system.
  • the device can simulate the action of microwave on the working surface indoors. Through the microwave blocking and confining pressure loading system, the microwave can only act on one side of the rock sample. , Simulating the microwave irradiation of the tunnel face in the actual project, and at the same time applying confining pressure to the surface that is not irradiated by the microwave, so as to be closer to the real engineering situation.
  • the simulation system provided by the present invention can prevent microwave reciprocating reflection from fully acting on the rock sample, and at the same time solves the problem that the prior art cannot apply confining pressure to the rock sample Insufficiency of the in-house test based on the on-site microwave rock breaking simulation system provided by the present invention to obtain the best critical operating conditions, which is beneficial to improve the accuracy of the test and the reference of the obtained test data, and can improve the practical engineering Guiding role.
  • the on-site microwave rock breaking simulation system provided by the present invention is equipped with a variety of sensors to obtain the temperature, stress, strain and other physical characteristics change data of the rock sample during the microwave action, and can also obtain the pore evolution characteristic data in the rock body during the microwave action. , And information such as the morphological change and temperature change of the surface of the rock sample irradiated by the microwave, and the data is obtained in real time through the signal transmission channel, so as to monitor the data during the real-time action of the microwave, which is helpful for the analysis of the rock damage mechanism during the microwave action. Research is of great significance.
  • the present invention also provides an on-site microwave rock breaking simulation method, which can perform indoor microwave rock breaking on rock masses under different confining pressures according to the specific environment of the site. Simulation, obtain temperature change data, stress change data, strain change data, etc. of the rock mass at different distances from the microwave source. By obtaining real-time acoustic emission data under the action of microwaves, the characteristics of pore evolution in the rock mass during microwave action can be obtained.
  • the camera and infrared thermal imager installed on the inner wall of the rock-breaking test cabin can also monitor the morphological changes and temperature changes of the surface of the rock mass irradiated by the microwave during the action of the microwave in real time.
  • This method solves the problem that the prior art cannot apply confining pressure to the rock mass and the microwave reciprocates on multiple surfaces of the rock mass during the indoor simulation test, and breaks through the lack of effective means in the prior art to monitor the heating and stress under the real-time action of microwaves.
  • the bottleneck of data such as strain and acoustic emission, combined with subsequent mechanical tests, can obtain the best microwave operating conditions that truly reflect on-site engineering practices, and can provide more scientific guidance for the on-site engineering application of microwave rock breaking.
  • Figure 1 is a schematic structural diagram of the on-site microwave rock breaking simulation system described in Example 1.
  • Example 2 is a schematic diagram of the working process of the microwave blocking and confining pressure loading system of the on-site microwave rock breaking simulation system described in Example 1.
  • Example 3 is a schematic diagram of the structure of the large positive plate of the microwave blocking front plate of the on-site microwave rock breaking simulation system described in Example 1, wherein (A) is a front view, and (B) is a side view.
  • Example 4 is a schematic diagram of the structure of the small front plate of the microwave barrier front plate of the on-site microwave rock breaking simulation system described in Example 1, wherein (A) is a front view, and (B) is a side view.
  • Fig. 5 is a schematic diagram of the small side plate, the large side plate and their working conditions of the microwave blocking side plate of the on-site microwave rock breaking simulation system described in Example 1, and the diagrams (A), (B), and (C) are the small sides. Schematic diagram of board, large side board and their working state.
  • the on-site microwave rock breaking simulation system of this embodiment includes a microwave source 1, a still-wave tube 2, a circulator 3, a water load 4, a rock breaking test cabin 5, a microwave barrier and confining pressure loading system, and a data acquisition system.
  • the microwave source is a solid microwave source with a water-cooled structure.
  • the water load also has a water-cooled structure. When the microwave source and water load are working, flowing cold water should be introduced into their water-cooled structure to prevent the equipment from overheating and damage.
  • the water load can be purchased directly from the market.
  • One end of the waveguide 2 is connected to the microwave exit port of the microwave source 1, and the other end is connected to the microwave entrance port of the circulator 3.
  • the microwave exit port of the circulator 3 is connected to the microwave entrance port of the rock breaking test cabin 5, and the circulator
  • the water load connection port of 3 is connected to the water load 4.
  • the microwave blocking and confining pressure loading system is composed of five jacks 6, five microwave blocking front plates 7, and four microwave blocking side plates 8. Both the microwave blocking front plate and the microwave blocking side plates are metal plates, and the rock breaking test chamber The walls are also metal plates.
  • a cubic rock sample 9 is placed in the rock breaking test cabin. One surface of the rock sample 9 is a microwave irradiation surface for receiving microwave irradiation treatment, and the other five surfaces of the rock sample are surrounded by a microwave blocking front plate.
  • the size of two parallel microwave blocking positive plates is larger than the size of the side surface of the rock sample 9, and the dimensions of the other three microwave blocking positive plates are the same as the size of the side surface of the rock sample 9
  • the size of the microwave blocking front plate located on the front and back sides of the rock sample is larger than the size of the side surface of the rock sample 9, which is located at the top, bottom, and left sides of the rock sample.
  • the size of the microwave blocking front plate is the same as the size of the rock sample 9.
  • Each microwave blocking front plate 7 is respectively installed at the end of each jack through a trapezoidal body adapter 11, and the size of the contact surface of the trapezoidal body adapter 11 and the microwave blocking front plate is consistent with the size of the microwave blocking front plate 7 so that The confining pressure applied to the rock sample by the jack is more uniform.
  • the jacks are installed corresponding to the five surfaces of the rock sample in the rock breaking test cabin.
  • the end of each jack and the microwave barrier front plate are located in the rock breaking test chamber, so that the microwave barrier front plates can be connected to the rock under the control of the jack.
  • the five surfaces of the sample except the microwave irradiation surface are bonded together to realize the microwave blocking and confining pressure loading on the corresponding surface.
  • the rock sample in the rock breaking test chamber can be adjusted.
  • Height During the test, adjust the height of the rock sample so that the microwave irradiation surface faces the microwave entrance of the rock breaking test cabin.
  • the rock breaking test cabin 5 is in the shape of a cuboid, and its front side wall is provided with a door that can be opened and closed to facilitate the insertion and removal of rock samples.
  • the microwave blocking side plates 8 respectively pass through the upper and lower parts of the rock breaking test cabin.
  • the gaps provided on the lower, front and rear side walls for the microwave barrier side panels to pass through extend into the rock breaking test chamber, and the microwave barrier side panels 8 penetrate the gaps provided on the side walls of the rock break test chamber to extend into the rock breaking test.
  • the inside of the cabin is connected with the four edges of the microwave irradiation surface of the rock sample respectively.
  • the part of the microwave blocking side plate in the rock breaking test cabin is rectangular, passing through the microwave blocking side plates of the front and rear side walls of the rock breaking test cabin.
  • the height of is consistent with the distance between the upper and lower side walls of the rock breaking test cabin, and the width of the microwave blocking side plates passing through the upper and lower side walls of the rock breaking test cabin is consistent with the side width of the rock sample.
  • the microwave blocking side plate is retractable relative to the side wall of the rock breaking test cabin. By adjusting the penetration depth of each microwave blocking side plate in the rock breaking test cabin, the rock sample can be placed on the plane where the microwave irradiation surface of the rock sample is located. The gap between the microwave irradiation surface and the inner wall of the rock-breaking test cabin is closed.
  • the data acquisition system includes a sensor, a transmission cable, and a terminal device that receives the signal collected by the sensor.
  • the sensor is installed on the surface of the rock sample, and the side of the microwave blocking front plate 7 that contacts the rock sample is provided with a cable installation slot 12 ,
  • the cable installation slot 12 penetrates a set of parallel sides of the microwave blocking front plate, so that the transmission cables connected to the sensors are led out from the edge of the microwave blocking front plate, and the transmission cables connected to the sensors are installed through the cables
  • the groove 12 leads out the microwave barrier front plate and passes through the cut-off waveguide hole 10 on the wall of the rock breaking test cabin to connect the sensor with the terminal equipment located outside the rock breaking test cabin.
  • the sensors include temperature sensors, pressure sensors, strain sensors, and acoustic emission sensors.
  • the inner wall of the rock breaking test cabin is provided with a camera 13 and an infrared thermal imager 14 for monitoring the shape change of the microwave irradiation surface of the rock sample and the temperature change of the rock sample during the action of the microwave.
  • the camera and the infrared thermal imager are installed in the breaking On the inner wall where the microwave entrance of the rock test cabin is located, the camera and the infrared thermal imager pass through the cut-off waveguide hole 10 on the wall of the rock break test cabin through a transmission cable to connect to the terminal equipment located outside the rock test cabin.
  • using the simulation system described in embodiment 1 to simulate on-site microwave rock breaking includes the following steps:
  • the transmission cables connected to each sensor are led out of the microwave barrier front plate through the cable installation slot and pass through the cut-off waveguide hole on the wall of the rock breaking test bulkhead.
  • the sensor is connected with the terminal equipment located outside the rock-breaking test cabin; the transmission cable connected with the camera and the infrared thermal imager is connected to the terminal equipment located outside the rock-breaking test cabin through the cut-off waveguide hole on the wall of the rock-breaking test cabin.
  • step S4 After the test of step S3 is completed, turn off the solid-state microwave source, turn off all the terminal equipment located outside the rock-breaking test cabin, open the rock-breaking test cabin, take out the rock sample and replace the rock sample (the rock sample can be changed or not. Size), repeat steps S1 to S3 (the conditions of microwave action can be changed), and proceed to the next experiment.
  • the microwave rock breaking of rock masses under different confining pressures can be simulated indoors according to the specific environment of the site, and the temperature change data and stress of the rock masses at different distances from the microwave source can be obtained.
  • Change data, strain change data, etc. by acquiring real-time acoustic emission data under the action of microwaves, the evolution characteristics of pores in the rock body during microwave action can be obtained, and real-time monitoring can be achieved through the camera and infrared thermal imager set on the inner wall of the rock breaking test cabin The shape change and temperature change of the surface of the rock mass irradiated by the microwave during the action of the microwave. With subsequent mechanical tests, the best microwave operating conditions that truly reflect on-site engineering practices can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种现场微波破岩模拟系统及现场微波破岩模拟方法,现场微波破岩模拟系统包括微波源(1)、导波管(2)、环形器(3)、水负载(4)、破岩试验舱(5)、微波阻隔和围压加载系统以及数据采集系统;微波阻隔和围压加载系统由千斤顶(6)、微波阻隔正板(7)和微波阻隔侧板(8)构成;各微波阻隔正板(7)将位于破岩试验舱(5)内的岩石试样(9)除接受微波照射处理的微波照射面外的其余面包围,在岩石试样(9)的微波照射面所处平面上各微波阻隔侧板(8)将岩石试样(9)的微波照射面与破岩试验舱(5)内壁之间的间隙封闭,使微波只作用于岩石试样(9)的一面,对应于工程实践中所面临的掌子面。

Description

一种现场微波破岩模拟系统及模拟方法 技术领域
本发明属于隧道、采矿和岩土工程领域,涉及一种现场微波破岩模拟系统及模拟方法。
背景技术
随着工业的发展,地球浅部资源逐渐开采殆尽,人类对资源的开采不断向深部进发。但是,随着开采深度的延伸,岩体强度呈非线性增加,传统的机械破岩方法严重制约了深地资源的开采效率,增加了开采成本。微波由于升温速率快、无二次污染等优点而有望被用于工程岩体破碎领域,用以突破传统机械破岩的瓶颈。现有研究也已论证了微波破岩的可行性,并且通过室内研究、数值模拟等手段证实,在综合考虑经济以及破岩效率的情况下,微波破岩技术在实际运用中存在着最佳临界作用工况,最佳临界作用工况的获取可为现场工程实践提供指导。
然而,现阶段的室内研究均是基于多模或单模谐振腔体来完成的,在腔体内微波可以往复反射充分作用于岩石试样的各个面,这并不符合现场工程实践的实际情况。在工程实践中,开展岩体破碎工作时所面临的是一个掌子面,微波作用时只作用于岩体的一个断面,岩体的其他断面均受到围压的影响。由此可见,现有室内试验方法并不能准确模拟现场工况,一方面无法使微波仅作用于岩石试样的一个面,另一方面也未考虑到围压对其他断面的影响,因此根据现有室内试验方法所获取的最佳作用工况对工程实践中的微波破岩的可参考性还有待提高,难以有效地指导实际的微波破岩工作。
发明内容
本发明的目的在于针对现有技术的不足,提供一种现场微波破岩模拟系统及模拟方法,以更真实地模拟现场微波破岩工况,提高所获取的微波破岩最佳临界作用工况的准确性,以在工程实践中更有效地指导微波破岩工作。
本发明提供的现场微波破岩模拟系统,包括微波源、导波管、环形器、水负载、破岩试验舱、微波阻隔和围压加载系统、以及数据采集系统;
所述导波管一端与微波源的微波出射口连接、另一端与环形器的微波入射端口连接,环形器的微波出射端口与破岩试验舱的微波入射口连接,环形器的水负载连接端口与水负载连接;
所述微波阻隔和围压加载系统由五个千斤顶、五块微波阻隔正板、四块微波阻隔侧板构 成;破岩试验舱内放置有呈立方体的岩石试样,岩石试样的一个面是用于接受微波照射处理的微波照射面,岩石试样的其他五个面被微波阻隔正板包围,各微波阻隔正板分别对应地安装在各千斤顶的端部,各千斤顶分别对应破岩试验舱内岩石试样的五个面安装,各千斤顶的端部连同微波阻隔正板位于破岩试验舱内,使各微波阻隔正板在千斤顶的控制下能分别与岩石试样的除微波照射面外的其他五个面贴合,实现对对应面的微波阻隔和围压的加载,通过调整位于岩石试样下方的千斤顶可调整岩石试样在破岩试验舱内的高度;各微波阻隔侧板穿过破岩试验舱的侧壁伸入破岩试验舱内与岩石试样的微波照射面的四个边沿分别相接,在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭;
所述数据采集系统包括传感器、传输线缆和接受传感器采集的信号的终端设备,传感器贴合岩石试样表面安装,传输线缆穿过破岩试验舱壁面上的截止波导孔将传感器与位于破岩试验舱外部的终端设备连接。
进一步地,上述现场微波破岩模拟系统的技术方案中,为了使通过千斤顶向岩石试样施加围压时施力更加均匀,避免应力集中,千斤顶的端部通过梯形体转接头与微波阻隔正板连接,梯形体转接头与微波阻隔正板接触的面的尺寸与微波阻隔正板的尺寸一致。
进一步地,上述现场微波破岩模拟系统的技术方案中,为了避免通过微波阻隔正板施加围压时对传感器的传输线缆造成不利影响或破坏,微波阻隔正板与岩石试样接触的一面上设有线缆安装槽,与各传感器相连的传输线缆通过线缆安装槽引出微波阻隔正板后穿过破岩试验舱壁面上的截止波导孔将传感器与位于破岩试验舱外部的终端设备连接。更进一步地,所述线缆安装槽贯通微波阻隔正板的一组相互平行的侧面,以便于将于传感器相连的传输线缆从微波阻隔正板的边缘引出。
上述现场微波破岩模拟系统的技术方案中,所述截止波导孔能够使微波传达至孔位置时大量衰减,从而避免微波传到破岩试验舱外。截止波导孔为现有市售商品,也可于市场根据需要定制。
进一步地,上述现场微波破岩模拟系统的技术方案中,五块微波阻隔正板中,其中两块相互平行的微波阻隔正板的尺寸大于岩石试样的侧面的尺寸(称之为大正板),另外三块微波阻隔正板的尺寸与岩石试样的侧面的尺寸一致(称之为小正板)。
根据进行破岩试验的岩石试样的尺寸的不同,可固定其中两块相互平行微波阻隔正板的尺寸(大正板),将其他三块微波阻隔正板(小正板)的尺寸制作成不同规格的多组,在试 验时根据岩石试样的尺寸选用。此时,梯形体转接头也相应制作成不同尺寸的多组,并且梯形体转接头与千斤顶的端部和微波阻隔正板之间均为可拆卸连接方式,以便在更换岩试样时选择对应尺寸的梯形头转接头和微波阻隔正板,重新连接在千斤顶端部。
进一步地,上述现场微波破岩模拟系统的即使方案中,所述微波阻隔正板与千斤顶端部为可拆卸连接,根据岩石试样的尺寸调节或选用对应尺寸的微波阻隔板后将微波阻隔板与千斤顶的端部连接。
进一步地,上述现场微波破岩模拟系统的技术方案中,破岩试验舱呈长方体形,微波阻隔侧板分别穿过破岩试验舱的上、下、前、后侧壁伸入破岩试验舱内,微波阻隔侧板相对于破岩试验舱的侧壁可伸缩,通过调整各微波阻隔侧板在破岩试验舱内的伸入深度可在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭。破岩试验舱的侧壁上设有供微波阻隔侧板穿过的缝隙。
进一步地,上述现场微波破岩模拟系统的技术方案中,微波阻隔侧板位于破岩试验舱内的部分呈矩形;穿过破岩试验舱的前、后侧壁的微波阻隔侧板的高度与破岩试验舱的上、下侧壁之间的距离一致(称之为大侧板),且穿过破岩试验舱的上、下侧壁的微波阻隔侧板的宽度与岩石试样的侧面宽度一致(称之为小侧板);或者,穿过破岩试验舱的上、下侧壁的微波阻隔侧板的宽度与破岩试验舱的前、后侧壁之间的距离一致(称之为大侧板),且穿过破岩试验舱的前、后侧壁的微波阻隔侧板的宽度与岩石试样的侧面宽度一致(称之为小侧板)。根据进行破岩试验的岩石试样的尺寸的不同,可将小侧板位于破岩试验舱内的部分制作成尺寸不同规格的多组,在试验时根据岩石试样的尺寸选用。
本发明中所述的岩石试样的“上、下、前、后”是指试样接收微波照射的面以外其余面的方位的指代,是相对而言的,为清楚说明的需要,并无限定意义。
进一步地,上述现场微波破岩模拟系统的技术方案中,所述微波阻隔正板和微波阻隔侧板为金属板,金属板的厚度以能够阻隔微波即可。破岩实验舱的壁面也为金属板。金属板阻隔微波的主要原因是金属板可以使微波进行反射。
进一步地,上述现场微波破岩模拟系统的技术方案中,所述传感器包括温度传感器、压力传感器、应变传感器以及声发射传感器。
进一步地,上述现场微波破岩模拟系统的技术方案中,所述破岩试验舱内壁设有摄像头和红外热成像仪,用于监测微波作用时岩石试样微波照射面的形态变化和岩石试样的温度变化。更进一步地,摄像头和红外热成像仪安装在破岩试验舱的微波入射口所在的内壁上,摄 像头和红外热成像仪通过传输线缆穿过破岩试验舱壁面上的截止波导孔与位于破岩试验舱外部的终端设备连接。
进一步地,上述现场微波破岩模拟系统的技术方案中,为了方便放入和取出岩石试样,在所述破岩试验舱的侧壁上设有可以打开和关闭的舱门,优选地,所述舱门设置在岩石试样上方或者是前、后、左、右方面的破岩试验舱的侧壁上。
进一步地,上述现场微波破岩模拟系统的技术方案中,所述微波源为固态微波源。
上述现场微波破岩模拟系统的技术方案中,水负载和微波源本身具有水冷结构,可直接从市场购买带水冷结构的微波源以及水负载,在微波源和水负载工作时,应向它们的水冷结构中通入流动的冷水以防止设备过热而损坏。微波从导波管进入环形器,只单向的通过环形器在进入破岩试验舱,环形器由不吸微波、不透微波的材料制作。环形器、水负载是微波源的配套产品,可由厂家直接配套微波源一起生产。
基于上述现场微波破岩模拟系统,本发明还提供了一种现场微波破岩模拟方法,包括以下步骤:
S1:打开破岩试验舱,将表面粘贴了传感器的岩石试样置于位于破岩试验舱内下方的微波阻隔正板上,根据岩石试样的尺寸调整该放置了岩石试样的微波阻隔正板的高度,使岩石试样的微波照射面正对破岩试验舱的微波入射口;将位于岩石试样上方的微波阻隔正板调节至与岩石试样的上表面贴合;调整其他三块微波阻隔正板的位置使它们分别与岩石试样的另外三个表面贴合、暴露微波照射面;
将与各传感器相连的传输线缆由破岩试验舱侧壁上的截止波导孔引出并与位于破岩试验舱外部的终端设备连接;当现场微波破岩模拟系统包括摄像头和红外热成像仪时,还需要将与摄像头和红外热成像仪相连的传输线缆穿过破岩试验舱壁面上的截止波导孔与位于破岩试验舱外部的终端设备连接;
S2:调整各微波阻隔侧板在破岩试验舱内的伸入深度使微波阻隔侧板在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭;
S3:关闭破岩试验舱,开启所有位于破岩试验舱外的终端设备,调整五个千斤顶对岩石试样施加围压,围压施加完毕后,开启微波源,并通过与微波源配套的电脑对微波源进行程序操作控制,微波由微波源发射,通过导波管进入环形器,通过环形器进入破岩试验舱对岩石试样的微波照射面进行作用,被岩石试样和微波阻隔侧板反射回来的微波进入水负载被吸收;实时记录微波对微波照射面进行作用的过程中,通过传感器,或者是传感器、摄像头和 红外热成像仪采集到的数据;
S4:步骤S3的测试完成后,关闭微波源,关闭所有位于破岩试验舱外的终端设备,打开破岩试验舱取出岩石试样并更换岩石试样,重复S1~S3步骤操作,进行下一次实验。
上述现场微波破岩模拟方法的技术方案中,微波源配套的电脑中自带有控制程序对微波源的工作方式进行控制。
通过本发明提供的现场微波破岩模拟方法,可针对现场具体环境,对处于不同围压下岩体的微波破岩进行室内模拟,获取距微波源不同距离处的岩体的温度变化数据、应力变化数据、应变变化数据等,通过获取实时微波作用下的声发射数据,可以获得微波作用时岩体内孔隙演化特征,通过破岩试验舱内壁设置的摄像头和红外热成像仪,还可以实时监测微波作用时岩体被微波照射的面的形态变化和温度变化。该方法解决了现有技术在室内模拟试验时无法对岩体施加围压以及微波往复作用于岩体的多个面的问题,突破了现有技术缺乏有效手段监测微波实时作用下的升温、应力应变及声发射等数据的瓶颈,配合后续的力学试验,能够获取真正反应现场工程实践的最佳微波作用工况。对微波破岩的现场工程应用具有重大的意义。
与现有技术相比,本发明提供的技术方案产生了以下有益的技术效果:
1.本发明提供了一种现场微波破岩模拟系统,该装置可实现在室内模拟现场工作面的微波作用情况,通过微波阻隔和围压加载系统,可使微波只作用于岩石试样的一面,模拟实际工程中的微波照射掌子面,同时对未受微波照射的面施加围压,从而更贴近真实工程情况。与现有技术采用的多模或单模谐振腔体相比,本发明提供的模拟系统可避免微波往复反射充分作用于岩石试样,同时也解决了现有技术无法对岩石试样施加围压的不足,以本发明提供的现场微波破岩模拟系统为基础进行室内试验来获取最佳临界作用工况,有利于提高试验的准确性和获取的试验数据的可参考性,能提高对实际工程的指导作用。
2.本发明提供的现场微波破岩模拟系统中设有多种传感器获取微波作用时岩石试样的温度、应力、应变等物理特性变化数据,还能获取微波作用时岩体内孔隙演化特征数据,以及岩石试样被微波照射的面的形态变化和温度变化等信息,并通过信号传输通道实时获取数据,从而对微波实时作用时的数据进行监测,有助于对微波作用时岩石损伤机制的研究,意义极大。
3.以本发明提供的现场微波破岩模拟系统为基础,本发明还提供了现场微波破岩模拟方法,该方法可针对现场具体环境,对处于不同围压下岩体的微波破岩进行室内模拟,获取距 微波源不同距离处的岩体的温度变化数据、应力变化数据、应变变化数据等,通过获取实时微波作用下的声发射数据,可以获得微波作用时岩体内孔隙演化特征,通过破岩试验舱内壁设置的摄像头和红外热成像仪,还可以实时监测微波作用时岩体被微波照射的面的形态变化和温度变化。该方法解决了现有技术在室内模拟试验时无法对岩体施加围压以及微波往复作用于岩体的多个面的问题,突破了现有技术缺乏有效手段监测微波实时作用下的升温、应力应变及声发射等数据的瓶颈,配合后续的力学试验,能够获取真正反应现场工程实践的最佳微波作用工况,可为微波破岩的现场工程应用提供更科学的指导。
附图说明
图1为实施例1所述现场微波破岩模拟系统的结构示意图。
图2为实施例1所述现场微波破岩模拟系统的微波阻隔和围压加载系统的工作过程示意图。
图3为实施例1所述现场微波破岩模拟系统的微波阻隔正板的大正板的结构示意图,其中的(A)为主视图,(B)图为侧视图。
图4为实施例1所述现场微波破岩模拟系统的微波阻隔正板的小正板结构示意图,其中的(A)为主视图,(B)图为侧视图。
图5为实施例1所述现场微波破岩模拟系统的微波阻隔侧板的小侧板、大侧板以及它们的工作状态示意图,其中的(A)(B)(C)图分别为小侧板、大侧板和它们的工作状态示意图。
图中,1—微波源、2—导波管、3—环形器、4—水负载、5—破岩试验舱、6—千斤顶、7—微波阻隔正板、8—微波阻隔侧板、9—岩石试样、10—截止波导孔、11—梯形体转接头、12—线缆安装槽、13—摄像头、14—红外热成像仪。
具体实施方式
以下通过实施例对本发明提供的现场微波破岩模拟系统及模拟方法作进一步说明。有必要指出,以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,所属领域技术人员根据上述发明内容,对本发明做出一些非本质的改进和调整进行具体实施,仍属于本发明保护的范围。
实施例1
本实施例所述现场微波破岩模拟系统,包括微波源1、导波管2、环形器3、水负载4、破岩试验舱5、微波阻隔和围压加载系统、以及数据采集系统。微波源为带水冷结构的固态 微波源,水负载也具有水冷结构,在微波源和水负载工作时,应向它们的水冷结构中通入流动的冷水以防止设备过热而损坏,固态微波源和水负载可直接从市场购买。
所述导波管2一端与微波源1的微波出射口连接、另一端与环形器3的微波入射端口连接,环形器3的微波出射端口与破岩试验舱5的微波入射口连接,环形器3的水负载连接端口与水负载4连接。
所述微波阻隔和围压加载系统由五个千斤顶6、五块微波阻隔正板7、四块微波阻隔侧板8构成,微波阻隔正板和微波阻隔侧板均为金属板,破岩实验舱的壁面也为金属板。破岩试验舱内放置有呈立方体的岩石试样9,岩石试样9的一个面是用于接受微波照射处理的微波照射面,岩石试样的其他五个面被微波阻隔正板包围。五块微波阻隔正板7中,其中两块相互平行的微波阻隔正板的尺寸大于岩石试样9的侧面的尺寸,另外三块微波阻隔正板的尺寸与岩石试样9的侧面的尺寸一致,对于本实施例而言,位于岩石试样前、后两个面处的微波阻隔正板的尺寸大于岩石试样9的侧面的尺寸,位于岩石试样上、下、左三个面处的微波阻隔正板的尺寸与岩石试样9的尺寸一致。各微波阻隔正板7通过梯形体转接头11分别对应地安装在各千斤顶的端部,梯形体转接头11与微波阻隔正板接触的面的尺寸与微波阻隔正板7的尺寸一致,以使通过千斤顶向岩石试样施加围压更加均匀。各千斤顶分别对应破岩试验舱内岩石试样的五个面安装,各千斤顶的端部连同微波阻隔正板位于破岩试验舱内,使各微波阻隔正板在千斤顶的控制下能够分别与岩石试样的除微波照射面外的其他五个面贴合,实现对对应面的微波阻隔和围压的加载,通过调整位于岩石试样下方的千斤顶可调整岩石试样在破岩试验舱内的高度,在试验时调整岩石试样的高度使其微波照射面正对破岩试验舱的微波入射口。所述破岩试验舱5呈长方体形,其前侧壁上设有可以打开和关闭的舱门以方便放入和取出岩石试样,微波阻隔侧板8分别穿过破岩试验舱的上、下、前、后侧壁上设置的供微波阻隔侧板穿过的缝隙伸入破岩试验舱内,微波阻隔侧板8穿过破岩试验舱的侧壁上设置的缝隙伸入破岩试验舱内与岩石试样的微波照射面的四个边沿分别相接,微波阻隔侧板位于破岩试验舱内的部分呈矩形,穿过破岩试验舱的前、后侧壁的微波阻隔侧板的高度与破岩试验舱的上、下侧壁之间的距离一致,且穿过破岩试验舱的上、下侧壁的微波阻隔侧板的宽度与岩石试样的侧面宽度一致。微波阻隔侧板相对破岩试验舱的侧壁可伸缩,通过调整各微波阻隔侧板在破岩试验舱内的伸入深度可在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭。
所述数据采集系统包括传感器、传输线缆和接受传感器采集的信号的终端设备,传感器 贴合岩石试样表面安装,微波阻隔正板7与岩石试样接触的一面上设有线缆安装槽12,线缆安装槽12贯通微波阻隔正板的一组相互平行的侧面,以便于将于传感器相连的传输线缆从微波阻隔正板的边缘引出,与各传感器相连的传输线缆通过线缆安装槽12引出微波阻隔正板后穿过破岩试验舱壁面上的截止波导孔10将传感器与位于破岩试验舱外部的终端设备连接。所述传感器包括温度传感器、压力传感器、应变传感器以及声发射传感器。所述破岩试验舱内壁设有摄像头13和红外热成像仪14,用于监测微波作用时岩石试样微波照射面的形态变化和岩石试样的温度变化,摄像头和红外热成像仪安装在破岩试验舱的微波入射口所在的内壁上,摄像头和红外热成像仪通过传输线缆穿过破岩试验舱壁面上的截止波导孔10与位于破岩试验舱外部的终端设备连接。
实施例2
本实施例中,采用实施例1所述模拟系统模拟现场微波破岩,包括以下步骤:
S1:在岩石试样的表面粘贴传感器,打开破岩试验舱的舱门,将表面粘贴了传感器的岩石试样置于位于破岩试验舱内下方的微波阻隔正板上,根据岩石试样的尺寸调整该放置了岩石试样的微波阻隔正板的高度,使岩石试样的微波照射面正对破岩试验舱的微波入射口;将位于岩石试样上方的微波阻隔正板调节至与岩石试样的上表面贴合;调整其他三块微波阻隔正板的位置使它们分别与岩石试样的另外三个表面贴合、暴露微波照射面。
在调整微波阻隔正板与岩石试样表面的距离的过程中,将与各传感器相连的传输线缆通过线缆安装槽引出微波阻隔正板后穿过破岩试验舱壁面上的截止波导孔将传感器与位于破岩试验舱外部的终端设备连接;将与摄像头和红外热成像仪相连的传输线缆穿过破岩试验舱壁面上的截止波导孔与位于破岩试验舱外部的终端设备连接。
S2:调整各微波阻隔侧板在破岩试验舱内的伸入深度使微波阻隔侧板在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭。
S3:关闭破岩试验舱的舱门,开启所有位于破岩试验舱外的终端设备,调整五个千斤顶对岩石试样施加围压,围压施加完毕后,开启固态微波源,并通过与固态微波源配套的电脑对固态微波源进行程序操作控制,微波由固态微波源发射,通过导波管进入环形器,通过环形器进入破岩试验舱对岩石试样的微波照射面进行作用,被岩石试样和微波阻隔侧板反射回来的微波进入水负载被吸收。在固态微波源和水负载工作时,应向它们的水冷结构中通入流动的冷水以防止设备过热而损坏。实时记录微波对微波照射面进行作用的过程中,通过传感器、摄像头和红外热成像仪采集到的数据。
S4:步骤S3的测试完成后,关闭固态微波源,关闭所有位于破岩试验舱外的终端设备,打开破岩试验舱取出岩石试样并更换岩石试样(可改变或不改变岩石试样的尺寸),重复S1~S3步骤操作(可改变微波作用的条件),进行下一次实验。
通过本发明提供的现场微波破岩模拟方法,可针对现场具体环境,对处于不同围压下岩体的微波破岩进行室内模拟,获取距微波源不同距离处的岩体的温度变化数据、应力变化数据、应变变化数据等,通过获取实时微波作用下的声发射数据,可以获得微波作用时岩体内孔隙演化特征,通过破岩试验舱内壁设置的摄像头和红外热成像仪,还可以实时监测微波作用时岩体被微波照射的面的形态变化和温度变化。配合后续的力学试验,能够获取真正反应现场工程实践的最佳微波作用工况。

Claims (10)

  1. 一种现场微波破岩模拟系统,其特征在于,包括微波源(1)、导波管(2)、环形器(3)、水负载(4)、破岩试验舱(5)、微波阻隔和围压加载系统、以及数据采集系统;
    所述导波管(2)一端与微波源的微波出射口连接、另一端与环形器(3)的微波入射端口连接,环形器的微波出射端口与破岩试验舱(5)的微波入射口连接,环形器的水负载连接端口与水负载(4)连接;
    所述微波阻隔和围压加载系统由五个千斤顶(6)、五块微波阻隔正板(7)、四块微波阻隔侧板(8)构成;破岩试验舱内放置有呈立方体的岩石试样(9),岩石试样(9)的一个面是用于接受微波照射处理的微波照射面,岩石试样的其他五个面被微波阻隔正板包围,各微波阻隔正板分别对应地安装在各千斤顶的端部,各千斤顶分别对应破岩试验舱内岩石试样的五个面安装,各千斤顶的端部连同微波阻隔正板位于破岩试验舱内,使各微波阻隔正板在千斤顶的控制下能分别与岩石试样的除微波照射面外的其他五个面贴合,实现对对应面的微波阻隔和围压的加载,通过调整位于岩石试样下方的千斤顶可调整岩石试样在破岩试验舱内的高度;各微波阻隔侧板(8)穿过破岩试验舱的侧壁伸入破岩试验舱内与岩石试样的微波照射面的四个边沿分别相接,在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭;
    所述数据采集系统包括传感器、传输线缆和接受传感器采集的信号的终端设备,传感器贴合岩石试样表面安装,传输线缆穿过破岩试验舱壁面上的截止波导孔(10)将传感器与位于破岩试验舱外部的终端设备连接。
  2. 根据权利要求1所述现场微波破岩模拟系统,其特征在于,千斤顶的端部通过梯形体转接头(11)与微波阻隔正板连接,梯形体转接头与微波阻隔正板接触的面的尺寸与微波阻隔正板的尺寸一致。
  3. 根据权利要求1所述现场微波破岩模拟系统,其特征在于,微波阻隔正板(7)与岩石试样接触的一面上设有线缆安装槽(12),与各传感器相连的传输线缆通过线缆安装槽引出微波阻隔正板后穿过破岩试验舱壁面上的截止波导孔(10)将传感器与位于破岩试验舱外部的终端设备连接。
  4. 根据权利要求1至3中任一权利要求所述现场微波破岩模拟系统,其特征在于,五块微波阻隔正板(7)中,其中两块相互平行的微波阻隔正板的尺寸大于岩石试样(9)的侧面的尺寸,另外三块微波阻隔正板的尺寸与岩石试样(9)的侧面的尺寸一致。
  5. 根据权利要求1至3中任一权利要求所述现场微波破岩模拟系统,其特征在于,破岩试验舱呈长方体形,微波阻隔侧板分别穿过破岩试验舱的上、下、前、后侧壁伸入破岩试验 舱内,微波阻隔侧板相对于破岩试验舱的侧壁可伸缩,通过调整各微波阻隔侧板在破岩试验舱内的伸入深度可在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭。
  6. 根据权利要求5所述现场微波破岩模拟系统,其特征在于,微波阻隔侧板位于破岩试验舱内的部分呈矩形;穿过破岩试验舱的前、后侧壁的微波阻隔侧板的高度与破岩试验舱的上、下侧壁之间的距离一致,且穿过破岩试验舱的上、下侧壁的微波阻隔侧板的宽度与岩石试样的侧面宽度一致;或者,穿过破岩试验舱的上、下侧壁的微波阻隔侧板的宽度与破岩试验舱的前、后侧壁之间的距离一致,且穿过破岩试验舱的前、后侧壁的微波阻隔侧板的宽度与岩石试样的侧面宽度一致。
  7. 根据权利要求1至3中任一权利要求所述现场微波破岩模拟系统,其特征在于,所述微波阻隔正板和微波阻隔侧板为金属板。
  8. 根据权利要求1至3中任一权利要求所述现场微波破岩模拟系统,其特征在于,所述传感器包括温度传感器、压力传感器、应变传感器以及声发射传感器。
  9. 根据权利要求1至3中任一权利要求所述现场微波破岩模拟系统,其特征在于,所述破岩试验舱内壁设有摄像头(13)和红外热成像仪(14),用于监测微波作用时岩石试样微波照射面的形态变化和岩石试样的温度变化。
  10. 基于权利要求1至9中任一权利要求所述现场微波破岩模拟系统的现场微波破岩模拟方法,其特征在于,包括以下步骤:
    S1:打开破岩试验舱,将表面粘贴了传感器的岩石试样置于位于破岩试验舱内下方的微波阻隔正板上,根据岩石试样的尺寸调整该放置了岩石试样的微波阻隔正板的高度,使岩石试样的微波照射面正对破岩试验舱的微波入射口;将位于岩石试样上方的微波阻隔正板调节至与岩石试样的上表面贴合;调整其他三块微波阻隔正板的位置使它们分别与岩石试样的另外三个表面贴合、暴露微波照射面;
    将与各传感器相连的传输线缆由破岩试验舱侧壁上的截止波导孔引出并与位于破岩试验舱外部的终端设备连接;当现场微波破岩模拟系统包括摄像头和红外热成像仪时,还需要将与摄像头和红外热成像仪相连的传输线缆穿过破岩试验舱壁面上的截止波导孔与位于破岩试验舱外部的终端设备连接;
    S2:调整各微波阻隔侧板在破岩试验舱内的伸入深度使微波阻隔侧板在岩石试样的微波照射面所处的平面上将岩石试样的微波照射面与破岩试验舱内壁之间的间隙封闭;
    S3:关闭破岩试验舱,开启所有位于破岩试验舱外的终端设备,调整五个千斤顶对岩石 试样施加围压,围压施加完毕后,开启微波源,并通过与微波源配套的电脑对微波源进行程序操作控制,微波由微波源发射,通过导波管进入环形器,通过环形器进入破岩试验舱对岩石试样的微波照射面进行作用,被岩石试样和微波阻隔侧板反射回来的微波进入水负载被吸收;实时记录微波对微波照射面进行作用的过程中,通过传感器,或者是传感器、摄像头和红外热成像仪采集到的数据;
    S4:步骤S3的测试完成后,关闭微波源,关闭所有位于破岩试验舱外的终端设备,打开破岩试验舱取出岩石试样并更换岩石试样,重复S1~S3步骤操作,进行下一次实验。
PCT/CN2020/085069 2020-04-08 2020-04-16 一种现场微波破岩模拟系统及模拟方法 WO2021203453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010267084.0 2020-04-08
CN202010267084.0A CN111350504A (zh) 2020-04-08 2020-04-08 一种现场微波破岩模拟系统及模拟方法

Publications (1)

Publication Number Publication Date
WO2021203453A1 true WO2021203453A1 (zh) 2021-10-14

Family

ID=71193185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085069 WO2021203453A1 (zh) 2020-04-08 2020-04-16 一种现场微波破岩模拟系统及模拟方法

Country Status (2)

Country Link
CN (1) CN111350504A (zh)
WO (1) WO2021203453A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112768A (zh) * 2021-11-19 2022-03-01 中国铁建重工集团股份有限公司 一种高聚能联合破障试验系统及方法
CN114893177A (zh) * 2022-06-21 2022-08-12 中国矿业大学 用于模拟地热系统干热岩的注水压裂剪切试验系统
US20220412855A1 (en) * 2020-12-04 2022-12-29 Northeastern University Test system for hard rock breaking by microwave intelligent loading based on true triaxial stress
CN117738665A (zh) * 2024-02-21 2024-03-22 太原理工大学 一种辅助开采矿岩的分级加载微波聚焦辐射装置和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111764821B (zh) * 2020-08-03 2023-04-14 四川大学 一种微波水射流协同破岩方法与装置
CN112483086B (zh) * 2020-10-30 2022-02-08 北京科技大学 一种瞬间电脉冲致使金属矿层碎裂的系统及使用方法
CN112343511B (zh) * 2020-11-25 2022-02-11 东北大学 一种基于微波加热液氮冷却的冷热冲击破岩装置及方法
CN112781956A (zh) * 2020-12-31 2021-05-11 西南石油大学 一种模拟微波破碎深部花岗岩的设备与方法
CN113464128B (zh) * 2021-07-21 2023-04-25 四川大学 一种模拟月基环境钻进过程微波辅助破岩装置及其方法
CN114354384A (zh) * 2022-01-05 2022-04-15 哈尔滨工业大学 一维自密封辐照松弛全自动检测装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112287A (ja) * 1983-11-21 1985-06-18 新日本無線株式会社 マイクロ波照射装置
CN106597529A (zh) * 2016-12-16 2017-04-26 青岛海之源智能技术有限公司 一种用于研究地震中岩石开裂过程微波辐射变化实验装置
CN108678761A (zh) * 2018-05-11 2018-10-19 东北大学 一种基于真三轴加载的岩石微波致裂试验装置
CN109856165A (zh) * 2019-03-29 2019-06-07 西安建筑科技大学 一种微波对土性质影响的试验装置及试验方法
CN110362955A (zh) * 2019-07-25 2019-10-22 四川大学 岩质高边坡稳定性分析三维地质力学模型试验方法及应用
CN110389137A (zh) * 2019-08-23 2019-10-29 中南大学 微波破岩试验装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999469A (en) * 1990-04-02 1991-03-12 Raytheon Company Apparatus for microwave heating test coupons
CN103412054B (zh) * 2013-07-26 2015-11-04 中国矿业大学 煤岩单轴压缩声发射试验的传感器固定试验架及使用方法
CN103983513B (zh) * 2014-05-22 2016-03-02 中国矿业大学 一种采用红外辐射观测煤岩裂隙发育过程的装置及方法
CN106769498A (zh) * 2016-11-22 2017-05-31 东北大学 微波辐射下岩石试样的力‑热耦合加载装置及试验方法
CN108535090B (zh) * 2017-03-06 2021-05-04 中石化石油工程技术服务有限公司 一种真三轴射流破岩模拟实验装置
CN207197948U (zh) * 2017-08-06 2018-04-06 吉林大学 用于真三轴水力压裂模拟实验的微波加热装置
CN108931538A (zh) * 2018-06-29 2018-12-04 中国科学院合肥物质科学研究院 一种利用微波开展岩石钻孔研究的实验装置
CN108871130B (zh) * 2018-06-29 2024-05-17 中国地质大学(北京) 一种可实现孔壁密封的等离子体爆破岩石机械装置
CN211851843U (zh) * 2020-04-08 2020-11-03 四川大学 一种现场微波破岩模拟系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112287A (ja) * 1983-11-21 1985-06-18 新日本無線株式会社 マイクロ波照射装置
CN106597529A (zh) * 2016-12-16 2017-04-26 青岛海之源智能技术有限公司 一种用于研究地震中岩石开裂过程微波辐射变化实验装置
CN108678761A (zh) * 2018-05-11 2018-10-19 东北大学 一种基于真三轴加载的岩石微波致裂试验装置
CN109856165A (zh) * 2019-03-29 2019-06-07 西安建筑科技大学 一种微波对土性质影响的试验装置及试验方法
CN110362955A (zh) * 2019-07-25 2019-10-22 四川大学 岩质高边坡稳定性分析三维地质力学模型试验方法及应用
CN110389137A (zh) * 2019-08-23 2019-10-29 中南大学 微波破岩试验装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220412855A1 (en) * 2020-12-04 2022-12-29 Northeastern University Test system for hard rock breaking by microwave intelligent loading based on true triaxial stress
US11965860B2 (en) * 2020-12-04 2024-04-23 Northeastern University Test system for hard rock breaking by microwave intelligent loading based on true triaxial stress
CN114112768A (zh) * 2021-11-19 2022-03-01 中国铁建重工集团股份有限公司 一种高聚能联合破障试验系统及方法
CN114893177A (zh) * 2022-06-21 2022-08-12 中国矿业大学 用于模拟地热系统干热岩的注水压裂剪切试验系统
CN114893177B (zh) * 2022-06-21 2023-09-26 中国矿业大学 用于模拟地热系统干热岩的注水压裂剪切试验系统
CN117738665A (zh) * 2024-02-21 2024-03-22 太原理工大学 一种辅助开采矿岩的分级加载微波聚焦辐射装置和方法
CN117738665B (zh) * 2024-02-21 2024-04-23 太原理工大学 一种辅助开采矿岩的分级加载微波聚焦辐射装置和方法

Also Published As

Publication number Publication date
CN111350504A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2021203453A1 (zh) 一种现场微波破岩模拟系统及模拟方法
WO2022116229A1 (zh) 一种基于真三轴应力下的微波智能加载致裂硬岩试验系统
CN203287341U (zh) 瓦斯不均匀分布爆炸实验装置
WO2020133729A1 (zh) 真实采动应力影响下煤岩体的力学行为和渗流特性原位测试方法及系统
CN103868993B (zh) 岩石三轴单样法多级屈服点的声学判别方法及装置
CN106769498A (zh) 微波辐射下岩石试样的力‑热耦合加载装置及试验方法
CN206594108U (zh) 一种水力压裂裂缝声波‑声发射主被动联合检测系统
CN211851843U (zh) 一种现场微波破岩模拟系统
CN108931445A (zh) 一种微波辐射下岩石动态力学性质实验装置
CN107807135B (zh) 一种透明材料内置裂纹起裂预警及扩展实时监测的方法
CN207516361U (zh) 一种基于煤岩破裂失稳的多参量前兆特征监测实验装置
CN113376057B (zh) 黏度和凝固特性可控的注浆可视化测试系统
CN108776177A (zh) 一种判别工程现场不同层位岩性的声发射系统及方法
WO2022127088A1 (zh) 一种微波作用岩石试件强度测量系统
CN105486835A (zh) 一种膨胀软岩巷道围岩损伤相似模拟试验装置及试验方法
CN113092280A (zh) 一种高温高压压裂试验装置
Fan et al. Study on dynamic loading characteristics and energy evolution of sandstone with double cracks
CN113776931A (zh) 一种基于dic技术的页岩可视化压裂实验装置及方法
US11965860B2 (en) Test system for hard rock breaking by microwave intelligent loading based on true triaxial stress
CN114791434B (zh) 一种微波破岩系统及其使用方法
US11906481B1 (en) Grouting and water-plugging device for fractured rock in mine coupling state, and test method
CN116256492A (zh) 一种煤与瓦斯突出物理模拟实验装置及实验方法
CN115290752A (zh) 微波参数主动调节旋转致裂深部硬岩装置及其使用方法
CN213903056U (zh) 一种研究深部花岗岩微波破碎的实验装置
CN106442147A (zh) 蒸汽或水压致裂固结试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929990

Country of ref document: EP

Kind code of ref document: A1