CN114791434B - 一种微波破岩系统及其使用方法 - Google Patents

一种微波破岩系统及其使用方法 Download PDF

Info

Publication number
CN114791434B
CN114791434B CN202210433340.8A CN202210433340A CN114791434B CN 114791434 B CN114791434 B CN 114791434B CN 202210433340 A CN202210433340 A CN 202210433340A CN 114791434 B CN114791434 B CN 114791434B
Authority
CN
China
Prior art keywords
microwave
rock breaking
reaction cavity
sample
industrial camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210433340.8A
Other languages
English (en)
Other versions
CN114791434A (zh
Inventor
唐瑞烽
高明忠
谢晶
杨本高
刘军军
李飞
叶思琪
邓虎超
杨尊东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202210433340.8A priority Critical patent/CN114791434B/zh
Publication of CN114791434A publication Critical patent/CN114791434A/zh
Application granted granted Critical
Publication of CN114791434B publication Critical patent/CN114791434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种微波破岩系统及其使用方法,包括微波激励系统、上位机、第一破岩试验装置、第二破岩试验装置、第三破岩试验装置,微波激励系统可与三个试验装置中的任一一个组装连接。第一破岩试验装置包括试验箱、工业摄像机、热成像仪和恒湿机,第二破岩试验装置包括试验箱、三维体积扫描仪、热重传感系统、工业摄像机、热成像仪和恒湿机;第三破岩试验装置包括压力室、矩形波导、红外热成像仪、工业摄像机和油源。本申请通过热成像仪和工业摄像机可实时监测试样的升温情况和表面损伤情况;本申请可模拟现场工程实践中大面积微波照射、围岩应力赋存以及多环境参数耦合的微波破岩试验,对将微波技术应用于工程实际和微波破岩机制探索具有重大意义。

Description

一种微波破岩系统及其使用方法
技术领域
本发明涉及隧道、采矿和岩土工程领域,尤其涉及一种微波破岩系统及其使用方法。
背景技术
由于浅部矿产资源枯竭,资源开发不断走向地球深部,深部矿产资源开采趋于常态,但是随着开采深度的延伸,岩体强度呈非线性增加,传统的机械破岩方法切削破碎岩石极为困难,劳动强度高、效率低,严重制约了深地资源与深地空间开发效率。微波由于升温速率快、环境友好等优点而有望被用于工程岩体破碎领域,解决深部破岩困难大、投入高等问题。
目前已有研究证实微波破岩的可行性,然而现阶段对于微波破岩的探讨均基于腔体加热岩石,对微波作用下岩石破坏机制的认识模糊不清。实际工程中,隧道掘进面积大,且岩体均赋存于原始地应力环境中,与实验室尺度下的微波破岩实验存在明显差异,并且岩体受热的体积膨胀也会对围岩稳定性带来影响,因此为深入探索工程尺度下微波破岩的效果亟需对装置进行革新。
发明内容
本申请为了解决上述技术问题提供一种微波破岩系统及其使用方法。
本申请通过下述技术方案实现:
一种微波破岩系统,包括微波激励系统、上位机、第一破岩试验装置,和/或第二破岩试验装置,和/或第三破岩试验装置,微波激励系统可与三个试验装置组装连接,选择其中任意一个,可组装成不同的微波破岩设备。
第一破岩试验装置包括第一试验箱、工业摄像机A、热成像仪A和第一恒湿机,第一试验箱包括第一反应腔和可开关门,第一恒湿机通过加湿管道和除湿管道与第一反应腔连接;第一反应腔顶部有用于与微波激励系统连接的微波馈口;工业摄像机A、热成像仪A装于第一反应腔内侧顶部;
第二破岩试验装置包括第二试验箱、三维体积扫描仪、热重传感系统、工业摄像机B、热成像仪B和第二恒湿机,第二试验箱包括第二反应腔和可开关门,第二恒湿机通过加湿管道和除湿管道与第二反应腔连接,热重传感系统置于第二反应腔内,第二反应腔内布有所述三维体积扫描仪;第二反应腔的相对两侧有用于与微波激励系统连接的微波馈口,第二反应腔设微波馈口的两侧均安装有工业摄像机B和热成像仪B;
第三破岩试验装置包括压力室、矩形波导、红外热成像仪、工业摄像机C和油源,压力室包括液压油腔体,液压油腔体通过输油管、回油管与油源连接,矩形波导下端连接压力室,矩形波导另一端用于与微波激励系统连接;在矩形波导上开孔设置双通道,红外热成像仪、工业摄像机C分别安装在其中一个通道上。
可选的,第一试验箱连接有装有惰性气体的气罐,第二试验箱连接有惰性气体气罐。通过气罐可以向试验箱内注入惰性气体,排出其内部的空气,避免空气中的氧气在高温下氧化岩石内的某些矿物。惰性气体用于探究有氧、无氧气环境下矿物组成是否会有变化。
可选的,第三破岩试验装置的压力室上安装有加热模块,实现加热液压油以模拟高温特殊环境。
可选的,第三破岩试验装置的压力室上预留声发射通道,声发射通道与配套的声发射系统连接。
一种微波破岩系统的使用方法,包括以下步骤:
将微波激励系统与第一破岩试验装置连接,通过线缆将上位机与热成像仪A、工业摄像机A和第一恒湿机连接;将试样放置在第一反应腔内,确保试样在第一破岩试验装置的微波馈口的正下方;向第一反应腔中通惰性气体,用惰性气体置换成第一反应腔中的空气,设置第一反应腔内环境湿度参数;开启热成像仪A、工业摄像机A和微波激励系统,微波激励系统发出的微波对第一反应腔内的试样进行微波照射试验;
或者,将微波激励系统与第二破岩试验装置连接,通过线缆连接上位机与三维体积扫描仪、热重传感系统、第二恒湿机、工业摄像机B和热成像仪B;热重传感系统调零,将试样放在热重传感系统上,记录初始重量;向第二反应腔中通惰性气体,用惰性气体置换成第二反应腔中的空气;设置第二反应腔的环境湿度参数,然后三维体积扫描仪开始工作,记录试样的初始体积;开启热成像仪B、工业摄像机B和微波激励系统,微波激励系统发出的微波对第二反应腔内的试样进行微波照射试验,三维体积扫描仪全程对试样进行扫描,热重传感系统实时监测试样的重量;
或者,将微波激励系统与第三破岩试验装置连接,用线缆连接上位机与红外热成像仪和工业摄像机C;在试样上贴上位移传感器,将试样置于压力室内;开启红外热成像仪和工业摄像机C;通过油源给压力室进油,当液压油充满压力室内时停止进油;加热模块加热,加热到某一温度后稳定一段时间;随后开始注油加压,加压到某一压力值后,打开直波导和矩形波导上的波导功率计,开启微波激励系统,微波激励系统发出的微波对压力室内的试样进行微波照射试验。
与现有技术相比,本申请具有以下有益效果:
1,本申请通过热成像仪和工业摄像机可以记录和导出试样实时升温情况和表面损伤情况,可更加完整的记录试验过程;
2,本申请的第一破岩试验装置适用于大尺寸方形试样,可对方形试样进行面微波照射;
3,本申请的第一破岩试验装置适用于小尺寸试样,可对试样进行体微波照射;
4,本申请的第三种微波破岩设备可在围压状态下实现微波对自由面的照射,并且可以实现压力室环境的变温、变压,能模拟深部高地应力、高温特殊环境,可实现高温高压状态下的微波作用。
5、本申请可模拟现场工程实践中大面积微波照射、围岩应力赋存以及多环境参数耦合的微波破岩试验,对将微波技术应用于工程实际和微波破岩机制探索具有重大意义,可为微波现场工业性应用奠定坚实的基础。
附图说明
此处所说明的附图用来提供对本申请实施方式的进一步理解,构成本申请的一部分,并不构成对本发明实施方式的限定。
图1是实施例中微波激励系统的结构示意图;
图2是实施例中第一种微波破岩设备的结构示意图;
图3是实施例中第二种微波破岩设备的主视图;
图4是实施例中第二种微波破岩设备的俯视图;
图5是实施例中第三种微波破岩设备的结构示意图;
图6是实施例中压力室的结构示意图;
图7是实施例中岩样置于压力室内的示意图;
图8是实施例中乳胶套的剖视图;
图9是实施例中乳胶套的俯视图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述。显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。通常在此处附图中描述和示出的本发明实施方式的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1-图5所示,本实施例公开的一种微波破岩系统及其使用方法,包括微波激励系统1、第一破岩试验装置2、第二破岩试验装置3、第三破岩试验装置4和上位机5,将微波激励系统1、上位机5分别与三个破岩试验箱装置连接,可组装成三种不同的微波破岩设备。
控制机5可通过线缆与第一破岩试验装置2、第二破岩试验装置3、第三破岩试验装置4连接。特别的,在一些实施例中,上位机5为计算机。
值得说明的是,上位机5可只有一台,使用时,将第一破岩试验装置2,或第二破岩试验装置3,或第三破岩试验装置4与上位机5连接。上位机5也可设三台,三台上位机5分别与第一破岩试验装置2、第二破岩试验装置3、第三破岩试验装置4配套。
微波激励系统1能够发出微波,如图1所示,微波激励系统1包括微波电源11、微波头12、微波源承载平台13、水负载14、环形器15和直波导16,微波电源11和微波头12 安装在微波源承载平台13上,微波电源11可操作地通过线缆与微波头12连接,微波电源11可以智能控制微波输出功率。
直波导16上安装有波导功率计18,波导功率计18可显示实际输出功率和反射功率。直波导16上安装有三销钉17,用于实现阻抗匹配。微波头12 连接有水负载14,使用时,将水管与水负载14连接,以冷却微波头12。微波激励系统1是现有技术,此处不再进行赘述。
可选的,在一些实施例中,微波头12为15KW微波头,微波电源11为15KW微波电源。
微波激励系统1、第一破岩试验装置2、第二破岩试验装置3和第三破岩试验装置4的底部均安装有滚轮。
如图2所示,将微波激励系统1与第一破岩试验装置2连接,可组装成第一种微波破岩设备。
第一破岩试验装置2主要针对大尺寸样品进行面微波照射实验,最大可容纳500*500*500mm的大尺寸方形试样。第一破岩试验装置2包括第一试验箱、工业摄像机A22、热成像仪A23和第一恒湿机24。
第一试验箱包括第一反应腔211、可开关门、外壳213和第一试验箱框架214,第一恒湿机24通过加湿管道241和除湿管道242与第一反应腔211连接。
可选的,在一些实施例中,第一试验箱连接有气罐,第一反应腔211有进气口和出气口,气罐与进气口连接,气罐装有氮气、氩气、氦气或二氧化碳或其他惰性气体。
特别的,在一些实施例中,将气罐与第一恒湿机24连接,利用第一恒湿机24的加湿管道241实现气罐气体输入第一反应腔211内;利用第一恒湿机24的除湿管道242实现第一反应腔211气体的排出。这样避免在第一试验箱上再设进气口和出气口。而且通过第一恒湿机24可控制第一反应腔211内的环境参数,环境参数包括湿度和气体类型构成。
第一反应腔211顶部连接有面弯波导A26,波导用于与微波激励系统1连接,波导管用于传输微波。
可选的,在一些实施例中,第一反应腔211顶部有开口朝下的喇叭状馈口118。面弯波导A26一端与喇叭状馈口118连接,面弯波导A26另一端用于与直波导16连接。喇叭状馈口118可放大照射区域,通过喇叭状馈口118对放置于第一反应腔211内的方形试样6进行面微波照射。
可选的,在一些实施例中,直波导16为BJ26直波导,相对应的面弯波导A26为BJ26E面弯波导。
第一反应腔211顶部安装有工业摄像机A22和热成像仪A23。第一恒湿机24、工业摄像机A22和热成像仪A23均可通过线缆与上位机5连接。位于方形试样6顶部的热成像仪A23和工业摄像机A22可以实时记录和导出方形试样6不同位置的实时升温情况和表面损伤情况。
第一种微波破岩设备的使用方法,包括以下步骤:
将微波电源11通过线缆与微波头12连接,通过线缆将上位机5与热成像仪A23、工业摄像机A22和第一恒湿机24连接,面弯波导A26与直波导16连接,调试好设备确保各功能正常使用;
将方形试样6放置在第一反应腔211内,确保方形试样6在喇叭状馈口118的正下方,实验时应当关闭可开关门,防止微波泄露;
向第一反应腔211中通惰性气体,用惰性气体置换成第一反应腔211中的空气,设置环境湿度参数;
开启水负载14通水以及波导功率计18,通过上位机5打开热成像仪A23和工业摄像机A22;
最后打开微波电源11,设置微波功率,微波激励系统1发出的微波经直波导16和面弯波导A26对方形试样6进行微波照射试验;
试验结束后,先关闭微波电源11,最后关闭水负载14,当波导功率计18显示为0时再打开可开关门。
可选的,在一些实施例中,为防止微波在腔体内反射,在方形试样6前后左右的四个侧面包裹一层铜箔,隔绝微波照射。
通过向第一反应腔211内注入惰性气体,排出其内部的空气,避免空气中的氧气在高温下氧化岩石内的某些矿物。通或者不通惰性气体可用于探究有氧、无氧气环境下矿物组成是否会有变化。
如图3、图4所示,将微波激励系统1与第一破岩试验装置2拆卸,将微波激励系统1与第二破岩试验装置3连接,可组装成第二种微波破岩设备。
第二破岩试验装置3主要针对小尺寸样品进行体微波照射,例如为φ50*100mm、φ25*50mm,50*50*50mm等尺寸的样品。
第二破岩试验装置3包括第二试验箱31、三维体积扫描仪32、热重传感系统33、第二恒湿机34、工业摄像机B37和热成像仪B38。三维体积扫描仪32、热重传感系统33和第二恒湿机34均可通过线缆与上位机5连接。
第二试验箱31包括第二反应腔311和可开关门,第二恒湿机34通过加湿管道和除湿管道与第二反应腔311连接。
热重传感系统33置于第二反应腔311内,用于放置试样。热重传感系统33可以实时传输因升温时试样的质量变化。
第二反应腔311内布有三维体积扫描仪32,可以自动扫描试样并生成三维模型,通过用计算机可计算三维模型的体积。第二反应腔311的相对两侧分别连接有面弯波导B36,第二反应腔311连接有面弯波导B36的两侧均安装工业摄像机B37和热成像仪B38。微波通过面弯波导B36向试样两侧进行照射,反应腔内环境由第二恒湿机34控制。
可选的,在一些实施例中,第二试验箱31连接有气罐,第二反应腔311有进气口和出气口,气罐与进气口连接,气罐装有氮气、氩气、氦气或二氧化碳或其他惰性气体。特别的,在一些实施例中,将气罐与第二恒湿机34连接,利用第二恒湿机34的加湿管道实现气罐气体输入第二反应腔311内;利用第二恒湿机34的除湿管道实现第二反应腔311气体的排出。这样避免在第二试验箱31上再设进气口和出气口。可通过第二恒湿机34可控制第二反应腔311内的湿度和气体类型。
第二种微波破岩设备的使用方法,包括以下步骤:
连接上位机5与三维体积扫描仪32、热重传感系统33、第二恒湿机34、工业摄像机B37和热成像仪B38,确保设备正常运行;
热重传感系统33调零,随即将圆柱试样7放在热重传感系统33上,记录初始重量;
关闭第二试验箱31的可开关门,向第二反应腔311中通惰性气体,用惰性气体置换成第二反应腔311中的空气;
设置环境湿度参数,然后三维体积扫描仪32开始工作,记录圆柱试样7的初始体积;
打开水负载14、热成像仪B38和工业摄像机B37,然后打开微波电源11,设置微波功率,开始试验;
微波激励系统1发出的微波对第二反应腔311内的试样进行微波照射试验;三维体积扫描仪32全程对圆柱试样7进行扫描,热重传感系统33实时监测圆柱试样7的重量;试验结束后导出体积数据、温度数据以及重量数据,和其他相机图像;关闭微波电源11,水负载14,最后打开可开关门。
如图5所示,将微波激励系统1与第三破岩试验装置4连接,可组装成第三种微波破岩设备。
第三破岩试验装置4包括压力室41、承载台42、矩形波导43、红外热成像仪44、工业摄像机C45和油源46。
如图6所示,压力室41分为三个部分,分别为液压油腔体411和上、下两个刚体密封盖412,刚体密封盖412与液压油腔体411通过螺纹固定,密封盖412连接有把手415。液压油腔体411有进油口413和出油口414,进油口413通过输油管与油源46的出油口连接,出油口414通过回油管与油源46的回油口连接。通过油源46可控制压力室41内压力。压力室41的压力可控范围根据需要设置。特别的,压力室41内的压力在0~80MPa范围内可控。
在压力室41外壁安装有加热模块47,加热模块47通过线缆与加热组件48连接,加热组件48包括控制器481,通过控制器481可以智能控制加热模块47的,实现加热液压油以模拟高温特殊环境。压力室41的温度可控范围根据需要设置。特别的,压力室41的温度在0~150℃范围内可控。
矩形波导43一端通过螺栓连接压力室41,压力室41上预留声发射通道,声发射通道与配套的声发射系统(图中未示出)连接。矩形波导43另一端连接面弯波导C49的一端,面弯波导C49用于与微波激励系统1的直波导16连接。
在矩形波导43上开孔设置双通道,红外热成像仪44、工业摄像机C45分别安装在其中一个通道上,用于测量试样不同部位表面实时升温情况以及表面损伤情况,并且配合LVDT位移测量传感器测量微波实时作用时试样应变变化情况(热膨胀效应)。
值得说明的是,矩形波导43的双通道最好分别倾斜设置在矩形波导43的相对两侧。
可选的,在一些实施例中,矩形波导43上安装有波导功率计18。
第三种微波破岩设备的使用方法,包括以下步骤:
连接上位机5与红外热成像仪44、工业摄像机C45、声发射系统,确保设备正常运行;
在试样上贴上位移传感器,用防火布将圆柱试样7包裹住,将包裹好的圆柱试样7置于乳胶套8内,如图8、图9所示,乳胶套8为空心结构,中空部分81用于放置试样7,若试样为圆柱状,乳胶套8为圆筒型,为便于固定乳胶套8,乳胶套8的两端有凸缘82;将带乳胶套8的试样置于压力室41内,用上、下两个刚体密封盖412从轴向将凸缘82与液压油腔体411夹紧,实现乳胶套8与压力室41固定。圆柱试样7的两端最好与刚体密封盖412的外表面平齐,方便微波照射。
打开红外热成像仪44和工业摄像机C45;
如图7所示,通过油源46给压力室41进油,当液压油充满压力室41内时停止进油,液压油填充在乳胶套8与液压油腔体411内壁间的环空内;通过加热组件48控制加热模块47加热,加热到某一温度后稳定半个小时;随后,开始注油加压,加压到某一压力值后,打开直波导16和矩形波导43上的波导功率计18,先打开水负载14,后打开微波电源11和声发射系统,自主调节微波功率开始微波实验;
通过上位机5实时记录声发射数据、红外图像以及工业相机录像,当岩石完全破裂时停止微波实验;实验结束后先关闭微波电源11和微波头12,再卸压,最后关闭水负载14,实验结束。
乳胶套8起密封作用,液压油直接作用于乳胶套8;防火布可防止因岩石高温导致液压油变质。特别的,乳胶套8的中空部分81的直径52mm,岩石直径50mm,圆柱试样7防火布厚度为1mm。
第三种微波破岩设备可在围压状态下实现微波对自由面的照射,并且可以实现压力室41环境的变温、变压,能模拟深部高地应力、高温特殊环境,可实现高温高压状态下的微波作用。
本申请不仅可以实现大尺寸方样微波实验,还将微波破岩系统和常规三轴试验有机结合起来,同时还集成了包括体积扫描、热重监测、环境控制等功能,可模拟现场工程实践中大面积微波照射、围岩应力赋存以及多环境参数耦合的微波破岩试验,对将微波技术应用于工程实际和微波破岩机制探索具有重大意义,可为微波现场工业性应用奠定坚实的基础。
以上的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种微波破岩系统,包括微波激励系统(1)和上位机(5),其特征在于:还包括第三破岩试验装置(4);
第三破岩试验装置(4)包括压力室(41)、矩形波导(43)、红外热成像仪(44)、工业摄像机C(45)和油源(46),压力室(41)包括液压油腔体(411)和上、下两个刚体密封盖(412),液压油腔体(411)有进油口(413)和出油口(414),进油口(413)通过输油管与油源(46)的出油口连接,出油口(414)通过回油管与油源(46)的回油口连接;矩形波导(43)下端连接上方的刚体密封盖(412),矩形波导(43)另一端用于与微波激励系统(1)连接;在矩形波导(43)上开孔设置双通道,红外热成像仪(44)、工业摄像机C(45)分别安装在其中一个通道上;
所述液压油腔体(411)外壁安装有加热模块(47),加热模块(47)通过线缆与加热组件(48)连接,加热组件(48)包括控制器(481);
在试样上贴有位移传感器,用防火布将试样包裹住,将包裹好的试样置于空心结构的乳胶套(8)内,将带乳胶套(8)的试样置于压力室(41)内,乳胶套(8)的两端有凸缘(82),用上、下两个刚体密封盖(412)从轴向将凸缘(82)与液压油腔体(411)夹紧;
还包括第一破岩试验装置(2)和/或第二破岩试验装置(3),第一破岩试验装置(2)包括第一试验箱、工业摄像机A(22)、热成像仪A(23)和第一恒湿机(24),第一试验箱包括第一反应腔(211)和可开关门,第一恒湿机(24)通过加湿管道(241)和除湿管道(242)与第一反应腔(211)连接;第一反应腔(211)顶部有用于与微波激励系统(1)连接的微波馈口;工业摄像机A(22)、热成像仪A(23)装于第一反应腔(211)内侧顶部;
第二破岩试验装置(3)包括第二试验箱(31)、三维体积扫描仪(32)、热重传感系统(33)、工业摄像机B(37)、热成像仪B(38)和第二恒湿机(34),第二试验箱(31)包括第二反应腔(311)和可开关门,第二恒湿机(34)通过加湿管道和除湿管道与第二反应腔(311)连接,热重传感系统(33)置于第二反应腔(311)内,第二反应腔(311)内布有所述三维体积扫描仪(32);第二反应腔(311)的相对两侧有用于与微波激励系统(1)连接的微波馈口,第二反应腔(311)设微波馈口的两侧均安装有工业摄像机B(37)和热成像仪B(38)。
2.根据权利要求1所述的一种微波破岩系统,其特征在于:第一反应腔(211)有进气口和出气口,气罐与第一反应腔(211)的进气口连接,气罐装有惰性气体;
或者第一恒湿机(24)连接气罐,利用第一恒湿机(24)的加湿管道(241)实现气罐气体输入第一反应腔(211)内,利用第一恒湿机(24)的除湿管道(242)实现第一反应腔(211)气体的排出。
3.根据权利要求1所述的一种微波破岩系统,其特征在于:第二反应腔(311)有进气口和出气口,气罐与第二反应腔(311)的进气口连接,气罐装有惰性气体;
或者第二恒湿机(34)连接气罐,利用第二恒湿机(34)的加湿管道实现气罐气体输入第二反应腔(311)内,利用第二恒湿机(34)的除湿管道实现第二反应腔(311)气体的排出。
4.根据权利要求1所述的一种微波破岩系统,其特征在于:第一反应腔(211)的微波馈口为开口朝下的喇叭状馈口(118)。
5.根据权利要求1或4所述的一种微波破岩系统,其特征在于:微波馈口连接有用于连接微波激励系统(1)的直波导(16)的面弯波导;矩形波导(43)上端连接有用于连接微波激励系统(1)的直波导(16)的面弯波导。
6.根据权利要求1所述的一种微波破岩系统,其特征在于:压力室(41)上预留声发射通道,声发射通道与配套的声发射系统连接。
7.根据权利要求1所述的一种微波破岩系统,其特征在于:矩形波导(43)上安装有波导功率计(18)。
8.如权利要求1-7中任一项所述的一种微波破岩系统的使用方法,其特征在于:包括以下步骤:
将微波激励系统(1)与第一破岩试验装置(2)连接,通过线缆将上位机(5)与热成像仪A(23)、工业摄像机A(22)和第一恒湿机(24)连接;将试样放置在第一反应腔(211)内,确保试样在第一破岩试验装置(2)的微波馈口的正下方;向第一反应腔(211)中通惰性气体,用惰性气体置换成第一反应腔(211)中的空气,设置第一反应腔(211)内环境湿度参数;开启热成像仪A(23)、工业摄像机A(22)和微波激励系统(1),微波激励系统(1)发出的微波对第一反应腔(211)内的试样进行微波照射试验;
或者,将微波激励系统(1)与第二破岩试验装置(3)连接,通过线缆连接上位机(5)与三维体积扫描仪(32)、热重传感系统(33)、第二恒湿机(34)、工业摄像机B(37)和热成像仪B(38);热重传感系统(33)调零,将试样放在热重传感系统(33)上,记录初始重量;向第二反应腔(311)中通惰性气体,用惰性气体置换成第二反应腔(311)中的空气;设置第二反应腔(311)的环境湿度参数,然后三维体积扫描仪(32)开始工作,记录试样的初始体积;开启热成像仪B(38)、工业摄像机B(37)和微波激励系统(1),微波激励系统(1)发出的微波对第二反应腔(311)内的试样进行微波照射试验,三维体积扫描仪(32)全程对试样进行扫描,热重传感系统(33)实时监测试样的重量;
或者,将微波激励系统(1)与第三破岩试验装置(4)连接,用线缆连接上位机(5)与红外热成像仪(44)和工业摄像机C(45);在试样上贴上位移传感器,将试样置于压力室(41)内;开启红外热成像仪(44)和工业摄像机C(45);通过油源(46)给压力室(41)进油,当液压油充满压力室(41)内时停止进油;加热模块(47)加热,加热到某一温度后稳定一段时间;随后开始注油加压,加压到某一压力值后,打开直波导(16)和矩形波导(43)上的波导功率计(18),开启微波激励系统(1),微波激励系统(1)发出的微波对压力室(41)内的试样进行微波照射试验。
9.如权利要求8所述的一种微波破岩系统的使用方法,其特征在于:压力室(41)连接有声发射系统,当微波激励系统(1)与第三破岩试验装置(4)连接时,用线缆连接上位机(5)与声发射系统。
CN202210433340.8A 2022-04-24 2022-04-24 一种微波破岩系统及其使用方法 Active CN114791434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210433340.8A CN114791434B (zh) 2022-04-24 2022-04-24 一种微波破岩系统及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210433340.8A CN114791434B (zh) 2022-04-24 2022-04-24 一种微波破岩系统及其使用方法

Publications (2)

Publication Number Publication Date
CN114791434A CN114791434A (zh) 2022-07-26
CN114791434B true CN114791434B (zh) 2024-02-06

Family

ID=82461582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210433340.8A Active CN114791434B (zh) 2022-04-24 2022-04-24 一种微波破岩系统及其使用方法

Country Status (1)

Country Link
CN (1) CN114791434B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116858307B (zh) * 2023-06-29 2023-12-22 西安科技大学 一种微波破岩热损伤及氡析出实时监测试验装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929513A (zh) * 2014-03-21 2015-09-23 中国石油化工集团公司 微波辅助破岩气体钻井装备及气体钻井井壁冻结方法
CN105699196A (zh) * 2016-01-28 2016-06-22 河海大学 岩石渗流-应力-温度-化学耦合流变测试装置及其方法
CN109668754A (zh) * 2019-01-30 2019-04-23 中铁工程装备集团有限公司 适于第四代半、第五代破岩方式的多模式测试实验台
CN111594040A (zh) * 2019-02-19 2020-08-28 中国石油化工股份有限公司 微波破岩试验装置
CN112378808A (zh) * 2020-12-04 2021-02-19 东北大学 一种基于真三轴应力下的微波智能加载致裂硬岩试验系统
CN112577829A (zh) * 2020-12-17 2021-03-30 深圳大学 一种微波作用岩石试件强度测量系统
CN112577410A (zh) * 2020-12-17 2021-03-30 深圳大学 一种微波作用岩石体积变化测量系统及其方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011008894A (es) * 2009-02-23 2011-09-29 Tech Resources Pty Ltd Detectar un mineral dentro de un material.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929513A (zh) * 2014-03-21 2015-09-23 中国石油化工集团公司 微波辅助破岩气体钻井装备及气体钻井井壁冻结方法
CN105699196A (zh) * 2016-01-28 2016-06-22 河海大学 岩石渗流-应力-温度-化学耦合流变测试装置及其方法
CN109668754A (zh) * 2019-01-30 2019-04-23 中铁工程装备集团有限公司 适于第四代半、第五代破岩方式的多模式测试实验台
CN111594040A (zh) * 2019-02-19 2020-08-28 中国石油化工股份有限公司 微波破岩试验装置
CN112378808A (zh) * 2020-12-04 2021-02-19 东北大学 一种基于真三轴应力下的微波智能加载致裂硬岩试验系统
CN112577829A (zh) * 2020-12-17 2021-03-30 深圳大学 一种微波作用岩石试件强度测量系统
CN112577410A (zh) * 2020-12-17 2021-03-30 深圳大学 一种微波作用岩石体积变化测量系统及其方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李涛.微波照射条件下热湿作用岩石强度劣化试验研究.《中国优秀硕士学位论文全文数据库基础科学辑》.2020,(第1期),正文第17页. *
高明忠.场微波作用下岩石体破裂特征及其机制探索.《煤炭学报》.2022,第47卷(第3期),第1132-1133页. *

Also Published As

Publication number Publication date
CN114791434A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
CN114791434B (zh) 一种微波破岩系统及其使用方法
WO2021203453A1 (zh) 一种现场微波破岩模拟系统及模拟方法
Kasevich et al. Pilot testing of a radio frequency heating system for enhanced oil recovery from diatomaceous earth
CN111220452B (zh) 一种煤岩模拟试验用真三轴压力室及其试验方法
Feng et al. A novel true triaxial test system for microwave-induced fracturing of hard rocks
WO2022116229A1 (zh) 一种基于真三轴应力下的微波智能加载致裂硬岩试验系统
CN106769498A (zh) 微波辐射下岩石试样的力‑热耦合加载装置及试验方法
JPH1164202A (ja) せん断強度試験装置およびせん断強度試験方法
CN112763329A (zh) 气固耦合煤岩三轴力学损伤实时探测装置、系统及方法
CN106092512A (zh) 一种辐照、热真空及高低温一体化综合多路在线监测系统
CN104964880A (zh) 一种基于工业ct的加温渗流真三轴试验箱
CN111141606A (zh) 一种破碎岩体试验用试样内部检测单元及使用方法
CN113324838A (zh) 三轴试验装置和系统
Liu et al. Complete stress–strain constitutive model considering crack model of brittle rock
CN108593884B (zh) 轮式thmc-岩石多功能试验仪及轮式岩石试验方法
CN211851843U (zh) 一种现场微波破岩模拟系统
CN112326468A (zh) 精准模拟岩土体动态冲击压缩的三轴实验装置
CN116793782A (zh) 一种多种类深地矿藏原位改质机理模拟装置及方法
Xie et al. Research progress and application of deep in-situ condition preserved coring and testing
CA3142646C (en) Test system for hard rock breaking by microwave intelligent loading based on true triaxial stress
KR101814019B1 (ko) 완충 플레이트가 장착된 이방성 삼축 압축 상태 모사가 가능한 수압파쇄 성능 평가 실험장치 및 이를 이용한 원통형 시편의 수압파쇄 성능 평가 실험방법
CN106353223A (zh) 烃类气体扩散系数测量装置
CN213600665U (zh) 一种裂缝暂堵测试系统及其测试装置
SG192137A1 (en) Fiber optic splicing system
CN115615843A (zh) 一种基于数字孪生的高温承压氢混原位蠕变疲劳试验系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant