WO2021203399A1 - Enhanced service acquisition for wireless communications - Google Patents

Enhanced service acquisition for wireless communications Download PDF

Info

Publication number
WO2021203399A1
WO2021203399A1 PCT/CN2020/084122 CN2020084122W WO2021203399A1 WO 2021203399 A1 WO2021203399 A1 WO 2021203399A1 CN 2020084122 W CN2020084122 W CN 2020084122W WO 2021203399 A1 WO2021203399 A1 WO 2021203399A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
message
tracking area
attach request
Prior art date
Application number
PCT/CN2020/084122
Other languages
French (fr)
Inventor
Chaofeng HUI
Yuankun ZHU
Fojian ZHANG
Hao Zhang
Jian Li
Quanling ZHANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/084122 priority Critical patent/WO2021203399A1/en
Publication of WO2021203399A1 publication Critical patent/WO2021203399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the following relates generally to wireless communications and more specifically to enhanced service acquisition for wireless communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may initially attach to a first LTE cell before performing an attachment procedure with an NR cell supported by the first LTE cell or infrastructure in a non-standalone (NSA) system.
  • the attachment procedure may involve the LTE cell sending a measurement object (MO) message for the NR cell.
  • MO measurement object
  • the UE may attach to a second cell, which may preempt the UE from transmitting a measurement report in response to the NR MO. This may result in the delay of the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell.
  • SCG secondary cell group
  • a user equipment may attach to a first Long Term Evolution (LTE) cell.
  • LTE Long Term Evolution
  • the UE may receive a measurement object (MO) message from the first cell, and may perform a measurement of a new radio (NR) cell supported by the first LTE cell/infrastructure in response to the received MO message.
  • the UE may then initiate a communications procedure (e.g., an attachment procedure with a second LTE cell) which preempts reporting of the measurement of the NR cell.
  • a communications procedure e.g., an attachment procedure with a second LTE cell
  • the UE may transmit a tracking area update (TAU) request to the first cell in order to re-initiate a non-standalone (NSA) registration procedure with the NR cell.
  • TAU tracking area update
  • the UE may receive a second MO message from the first cell in response to the TAU request, and may transmit a measurement report for the NR cell in order to complete the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell.
  • SCG secondary cell group
  • a method of wireless communication at a UE may include transmitting, by the UE in a NSA mode, an attach request to a first cell, receiving a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, performing a measurement of a signal of the second cell in accordance with the MO message, initiating a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmitting, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the apparatus may include means for transmitting, by the UE in a NSA mode, an attach request to a first cell, receiving a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, performing a measurement of a signal of the second cell in accordance with the MO message, initiating a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmitting, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first cell, a second MO message based on the TAU request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring a second signal of the second cell in accordance with the second MO message, and transmitting, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a connection with the second cell based on transmitting the measurement report to the first cell.
  • measuring the second signal may include operations, features, means, or instructions for measuring a channel quality parameter of a reference signal from the second cell.
  • initiating the communications procedure may include operations, features, means, or instructions for initiating an attachment procedure with a third cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a retuning procedure to a first frequency band associated with the third cell, and performing a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  • initiating the attachment procedure with the third cell may include operations, features, means, or instructions for transmitting a second attach request to the third cell, and receiving an attach accept from the third cell in response to the second attach request.
  • the attach request may be transmitted to the first cell via a first data subscriber, and the communications procedure may be performed via a second data subscriber different form the first data subscriber.
  • transmitting the TAU request message may include operations, features, means, or instructions for transmitting a TAU request to the first cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first cell, an acknowledgement message based on transmitting the TAU request message, where the acknowledgement message includes a TAU accept.
  • transmitting the attach request may include operations, features, means, or instructions for transmitting, in the attach request, an indication that the UE may be configured for a dual connectivity mode of operation.
  • transmitting the attach request to the first cell may include operations, features, means, or instructions for transmitting an attach request to a Long-Term Evolution (LTE) cell.
  • LTE Long-Term Evolution
  • performing the measurement of the signal of the second cell may include operations, features, means, or instructions for receiving the signal from a 5th Generation (5G) cell, and performing the measurement of the signal received from the 5G cell.
  • 5G 5th Generation
  • a method of wireless communication at a base station may include receiving, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmitting a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determining an absence in reporting by the UE of a measurement of the second cell, receiving a TAU request message from the UE for triggering a TAU procedure, and transmitting a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determine an absence in reporting by the UE of a measurement of the second cell, receive a TAU request message from the UE for triggering a TAU procedure, and transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • the apparatus may include means for receiving, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmitting a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determining an absence in reporting by the UE of a measurement of the second cell, receiving a TAU request message from the UE for triggering a TAU procedure, and transmitting a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determine an absence in reporting by the UE of a measurement of the second cell, receive a TAU request message from the UE for triggering a TAU procedure, and transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report may be based on the second MO message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  • receiving the TAU request message may include operations, features, means, or instructions for receiving a TAU request for the first cell associated with the base station.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an acknowledgement message based on receiving the TAU request message, where the acknowledgement message includes a TAU accept.
  • receiving the attach request may include operations, features, means, or instructions for receiving, in the attach request, an indication that the UE may be configured for a dual connectivity mode of operation.
  • receiving the attach request may include operations, features, means, or instructions for receiving an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
  • LTE Long-Term Evolution
  • the first MO message includes an indication for the UE to measure a 5th Generation (5G) cell.
  • 5G 5th Generation
  • FIG. 1 illustrates an example of a wireless communications system that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a communications timing diagram that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • FIGs. 13 through 18 show flowcharts illustrating methods that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • a user equipment may initially attach to a Long Term Evolution (LTE) cell before performing an attachment procedure to an NR cell supported by the LTE cell/infrastructure.
  • the attachment procedure may involve the LTE cell sending a measurement object (MO) message for the NR cell.
  • the UE may receive the MO message as a part of a non-standalone (NSA) registration procedure associated with the NR cell (e.g., an NSA + LTE (NSA+L) device) .
  • NSA non-standalone
  • the UE may attach to a second LTE cell (associated with a different SIM for example) , which may preempt the UE from transmitting a measurement report in response to the NR MO. This may cause a delay of the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell.
  • the LTE cell may re-transmit an MO message to the UE at regular intervals (e.g., within ten to twenty seconds) .
  • the LTE cell may not re-transmit an MO message until the next LTE radio resource control (RRC) connection setup.
  • RRC radio resource control
  • failing to report measurement of the NR cell in response to the first MO message received may delay attachment with the NR cell, thereby delaying NR connectivity, increasing overhead of the first LTE as the UE remains camped on the LTE cell until NR connectivity is established, which may negatively impact performance and user experience.
  • a UE may determine that a measurement report for a NR cell has failed to transmit (e.g., based on another procedure preempting transmission of the measurement report) . In such cases, the UE identifies this preemption and triggers a TAU procedure by transmitting a TAU request message. For example, upon identifying that a measurement report for the NR cell has failed to transmit to the first LTE cell (e.g., as a result of the UE attaching to another cell) , the UE may transmit a TAU request message to the first LTE cell in order to re-initiate the SCG addition procedure.
  • the TAU request message triggers a TAU procedure, which may cause the first LTE cell to transmit a second MO message to the UE.
  • the UE may have the opportunity the measure the NR cell and report the measurement results as part of the TAU procedure triggered by the TAU request.
  • the NSA registration procedure may be completed, thereby allowing the secondary cell group (SCG) for the NR cell to be configured successfully.
  • transmitting the TAU request message may allow the UE to re-initiate the SCG addition procedure without the UE having to wait for another NR MO message at a later time.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a communications timing diagram and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to enhanced service acquisition for wireless communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be an LTE network, an LTE-Anetwork, an LTE-A Pro network, or an NR network.
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • a resource element may include one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra- reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, for example in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the UEs 115 and the base stations 105 of the wireless communications system 100 may support communications for enhanced service acquisition for wireless communications.
  • the wireless communications system 100 may support communications which enable the UEs 115 or the base stations 105 to determine that a measurement report of an SCG addition procedure failed to transmit, and to re-initiate the NSA procedure.
  • a UE 115-a may attach to a first LTE cell associated with a first base station 105 of the wireless communications system 100.
  • the UE 115 may measure reference signals received from an NR cell associated with another base station 105 in response to an MO message received from the first base station 105.
  • the UE 115 may then identify that a communications procedure at the UE 115 preempted reporting of the measurement of the NR cell.
  • the UE 115 may transmit a TAU request message to trigger a TAU procedure and re-initiate the SCG addition procedure.
  • the base station 105 may transmit a second MO message, and the UE 115 may successfully report the measurement of the NR cell, thereby completing the SCG addition procedure and allowing the SCG for the NR cell to be configured successfully.
  • the UE 115 may measure a channel quality parameter of the reference signal of the NR cell.
  • the communications procedure which preempts reporting measurement of the NR cell may include an attachment procedure with a second LTE cell associated with a third base station 105.
  • the attachment procedure with the first LTE cell or the measurement of the NR cell may be performed via a first data subscriber, where the attachment procedure with the second LTE cell (e.g., the communications procedure) is performed via a second data subscriber different from the first data subscriber.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • Wireless communications system 200 may include a UE 115-a, a first base station 105-a, a second base station 105-b, and a third base station 105-c, which may be examples of UEs 115 and base stations 105, as described with reference to FIG. 1.
  • UE 115-a and the base stations 105-a, 105-b, 105-c of the wireless communications system 200 may support communications for enhanced service acquisition for wireless communications.
  • the wireless communications system 200 may support communications which enable the UE 115-a or the base stations 105-a, 105-b, 105-c to determine that a measurement report of an NSA registration procedure failed to transmit, and to re-initiate the SCG addition procedure.
  • the first base station 105-a may support communications via a first cell within a first geographic coverage area 110-a
  • the second base station 105-b may support communications via a second cell within a second geographic coverage area 110-b
  • the third base station 105-c may support communications via a third cell within a third geographic coverage area 110-c.
  • the UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an NR link between the UE 115-a and the first base station 105-a.
  • the UE 115-a may communicate with the second base station 105-b and the third base station 105-c using communication link 205-b and communication link 205-c, respectively, which may be examples of NR links between the UE 115-a and the base stations 105-b, 105-c.
  • the communication links 205-a, 205-b, 205-c may include examples of an access link (e.g., a Uu link) .
  • the communication links 205-a, 205-b, 205-c may include bi-directional links that include both uplink and downlink.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a.
  • the UE 115-a may similarly transmit uplink signals to, and receive downlink signals from, the base stations 105-b, 105-c via communication link 205-b and communication link 205-c, respectively.
  • first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-d.
  • the communication link 205-d may include an example of a link between two base stations (e.g., a backhaul link such as an Xn link) .
  • the first base station 105-a and the second base station 105-b may, in some cases, be collocated.
  • the communication link 205-d may include a bi-directional link.
  • the first base station 105-a, the second base station 105-b, and the third base station 105-c may be associated with one or more cells (e.g., the first base station 105-a, the second base station 105-b, and the third base station 105-c may be configured to support communications via one or more cells) .
  • the first base station 105-a may be associated with a first cell
  • the second base station 105-b may be associated with a second cell different from the first cell
  • the third base station 105-c may be associated with a third cell different from the first cell and the second cell.
  • the first base station 105-a may be associated with a first LTE cell
  • the second base station 105-b may be associated with an NR cell supported by the first LTE cell
  • the third base station 105-c may be associated with a second LTE cell different from the first LTE cell.
  • the first base station 105-a, second base station 105-b, or the third base station 105-b may facilitate (e.g., broker) communications between the UE 115-a and another respective base station 105-a, 105-b, 105-c.
  • the UE 115-a may establish a connection with the NR cell (e.g., second base station 105-b) through the first base station 105-a.
  • the NR cell e.g., second base station 105-b
  • the UE 115-a may receive an MO message from the first base station 105-a, where the MO message is received as a SCG addition procedure for attaching to the NR cell (e.g., the second base station 105-b) .
  • the UE 115-a may be configured to measure signals received from the NR cell (e.g., signals from the second base station 105-b) in response to the MO message, and may be configured to report a measurement of the NR cell to the first LTE cell (e.g., first base station 105-a) in order to complete the SCG addition procedure with the NR cell.
  • the UE 115-a may initiate a communications procedure which preempts reporting of the measurement of the signal of the NR cell back to the first LTE cell. For example, upon attaching to the first LTE cell (e.g., first base station 105-a) , the UE 115-a may initiate an attachment procedure with the second LTE cell (e.g., third base station 105-c) which preempts reporting of the measurement of the signal of the NR cell. In some aspects, the UE 115-a may be configured to identify the reporting of the NR cell was preempted, and may transmit a TAU request message to the first LTE cell (e.g., first base station 105-a) to trigger a TAU procedure for the UE 115-a.
  • the first LTE cell e.g., first base station 105-a
  • the UE 115-a may initiate a communications procedure which preempts reporting of the measurement of the signal of the NR cell back to the first LTE cell. For example, upon attaching to
  • the first LTE cell (e.g., first base station 105-a) may then transmit a second MO message to the UE 115-a.
  • the UE 115-a may be configured to measure a second signal of the NR cell (e.g., second signal from the second base station 105-b) , and transmit a measurement report including a measurement of the second signal of the NR cell to the first LTE cell.
  • a second signal of the NR cell e.g., second signal from the second base station 105-b
  • the UE 115-a and the base stations 105-a, 105-b, 105-c may be configured to support communications which enable the UE 115-a or base stations 105-a, 105-b, 105-c to identify a measurement report for an SCG addition procedure was preempted from transmission, and may re-initiate a TAU procedure (SCG addition procedure) by transmitting TAU request messages or MO message based on identifying that transmission of the measurement report was preempted.
  • SCG addition procedure SCG addition procedure
  • FIG. 3 illustrates an example of a communications timing diagram 300 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • communications timing diagram 300 may implement aspects of wireless communications systems 100 or 200.
  • the communications timing diagram 300 may illustrate an example timing of communications between a UE 115 and one or more base stations 105 which enable enhanced service acquisition for wireless communications.
  • the communications timing diagram 300 may illustrate an example timing of communications between a UE 115 and one or more base stations 105 which enable a re-initiation of an SCG addition procedure.
  • the communications timing diagram 300 may illustrate an example timing of communications between the UE 115-a and the first base station 105-a, the second base station 105-b, and the third base station 105-c illustrated in FIG. 2.
  • the first base station 105-a may be associated with a first cell
  • the second base station 105-b may be associated with a second cell
  • the third base station 105-c may be associated with a third cell.
  • the first base station 105-a may be associated with a first LTE cell
  • the second base station 105-b may be associated with an NR cell
  • the third base station 105-c may be associated with a second LTE cell.
  • the UE 115-a may perform an attachment procedure with a first cell (e.g., first LTE cell associated with the first base station 105-a) .
  • the attachment procedure at 310 may include the UE 115-a transmitting an attach request to the first cell, and the first cell transmitting an attach acknowledgement to the UE 115-a in response to the attach request.
  • the attachment procedure at 310 and other communications between the UE 115-a and the first cell may be performed via a first data subscriber.
  • the attachment procedure at 310 and other communications between the UE 115-a and the first cell may be performed via an NSA default data subscriber (DDS) (e.g., NSA DDS 305-a) .
  • DDS NSA default data subscriber
  • the first cell may transmit an MO message to the UE 115-a, where the MO message includes an indication for the UE 115-a to measure signals from a second cell (e.g., NR cell) .
  • the UE 115-a may be configured to measure signals received from the second cell based on receiving the MO message.
  • communications between the UE 115-a and the second cell may be performed via the first data subscriber (e.g., NSA DDS 305-a) .
  • a communications procedure at the UE 115-a may take higher priority over the SCG addition procedure associated with the second cell.
  • an attachment procedure with the third cell e.g., second LTE cell
  • radio resources may allocated to the second attachment procedure over SCG addition procedure.
  • the UE 115-a may perform a retuning procedure at 320 to perform an attachment procedure at 325 with the third cell.
  • the UE 115-a may perform a retuning procedure to one or more frequency bands associated with the third cell in order to perform an attachment procedure with the third cell at 325.
  • the UE 115-a may be “tuned away” from the NSA DDS 305-a at 315.
  • the attachment procedure at 325 may include the UE 115-a transmitting an attach request to the third cell, and the third cell transmitting an attach acknowledgement to the UE 115-a in response to the attach request.
  • the attachment procedure at 325 and other communications between the UE 115-a and the third cell may be performed via a second data subscriber different from the first data subscriber.
  • the attachment procedure at 325 and other communications between the UE 115-a and the third cell may be performed via a non-default data subscriber (nDDS) (e.g., nDDS 305-b) .
  • nDDS non-default data subscriber
  • transmission of a measurement report may be preempted, or otherwise delayed.
  • the UE 115-a may attempt to transmit a measurement report to the first cell, the measurement report indicating the measurement of the signals from the second cell (e.g., NR cell) .
  • the second cell e.g., NR cell
  • the UE 115-a may be tuned away throughout 315 and at 340. Accordingly, the measurement report may fail to be transmitted at 340 based on the attachment procedure being performed at 325.
  • the SCG for the NR cell may fail to be configured successfully at 345.
  • SCG addition procedure may not complete successfully at 345 due to the preempted/delayed transmission of the measurement report at 340.
  • the UE 115-a may perform a retuning procedure upon completion of the attachment procedure with the third cell.
  • the UE 115-a may perform the retuning procedure to one or more frequency bands associated with the first cell following the completion of the attachment procedure with the third cell.
  • the IMS registration procedure may be performed via the NSA DDS 305-a, and may authenticate the UE 115-a with the first LTE cell.
  • the process flow 300 may proceed to 355.
  • the LTE RRC connection may be released to disconnect the UE 115-a from the first LTE cell and allow the UE 115-a to connect or attach to another cell (e.g., an NR cell) .
  • the UE 115-a may receive a second MO message from the first cell.
  • the first cell may transmit the second MO message after the RRC connection is released at 350.
  • the first cell may not transmit the second MO message for some time after the RRC connection is released.
  • the time for the RRC connection to be released may vary and as such, the second MO message (and therefore SCG addition) may not take place for a given amount of time, thereby delaying the SCG addition procedure.
  • communications timing diagram 300 may proceed to 365 upon completion of the IMS registration at 350.
  • the UE 115-a may transmit a TAU request message to the first cell in order to trigger a TAU procedure between the UE 115-a and the first cell and to re-initiate the SCG addition procedure with the second cell (e.g., NR cell) .
  • the UE 115-a may determine the preemption of the measurement report at 340 (e.g., which, as shown in this example, is caused by the attachment procedure 325) .
  • the UE 115-a may be configured to transmit a TAU request message in order to trigger the TAU procedure at 365.
  • the first cell may transmit a second MO message in response to the TAU request message (e.g., as part of the TAU procedure) .
  • the second MO message may include an indication for the UE 115-a to measure signals from the second cell.
  • the UE 115-a may then measure signals from the second cell, and transmit a measurement report to the first cell in order to complete the SCG addition procedure.
  • the SCG for the NR cell may be successfully configured.
  • triggering the TAU procedure in response to preemption of the transmission of the measurement report may decrease the amount of time for completing the SCG addition procedure for the second cell.
  • the first cell e.g., first LTE cell
  • the first cell may re-transmit an MO message to the UE at regular intervals (e.g., within ten to twenty seconds) .
  • the first cell may not re-transmit an MO message until the next LTE RRC connection setup.
  • the UE 115-a may expedite the SCG addition procedure by transmitting the TAU procedure in response to preemption of the transmission of the measurement report, and triggering the TAU procedure.
  • FIG. 4 illustrates an example of a process flow 400 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications systems 100, 200, or 300.
  • process flow 400 may illustrate determining an indication of a measurement was prevented from transmission, and transmitting a TAU request based on the preemption in order to trigger a TAU procedure, as described with reference to FIGs. 1–3.
  • process flow 400 may include a UE 115-a, a first base station 105-a, a second base station 105-b, and a third base station 105-c, which may be examples of corresponding devices as described herein.
  • the UE 115-a and the base stations 105-a, 105-b, 105-c illustrated in FIG. 4 may be examples of the UE 115-a, the first base station 105-a, the second base station 105-b, and the third base station 105-c illustrated in FIG. 2.
  • the first base station 105-a may be associated with a first LTE cell (e.g., first LTE cell, or LTE Cell 1)
  • the second bases station 105-b may be associated with an NR/5G cell
  • the third base station 105-c may be associated with a second LTE cell (e.g., second LTE cell, or LTE Cell 2)
  • the second cell e.g., second base station 105-b
  • the first cell e.g., the first base station 105-a
  • the first cell e.g., the first base station 105-a
  • process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-a may transmit an attach request to the first base station 105-a.
  • the UE 115-a may transmit the attach request to the first base station 105-a (e.g., first LTE cell) while operating in an NSA mode of operation.
  • the UE 115-a may transmit the attach request to the first base station 105-a via the communication link 205-aillustrated in FIG. 2.
  • the attach request may be transmitted via a first data subscriber. For example, as shown in FIG. 4, the UE 115-a may transmit the attach request via an NSA DDS.
  • the first base station 105-a may transmit an attach accept to the UE 115-a.
  • the first base station 105-a may transmit the attach accept to the UE 115-a based on the attach request.
  • the attach request and the attach accept may be transmitted as part of an attachment procedure between the UE 115-a and the first base station 105-a (e.g., first LTE cell) .
  • the UE 115-a and the first base station 105-a may perform a capability negotiation procedure associated with the UE 115-a.
  • the UE 115-a and the first base station 105-a may exchange signaling in order to determine capabilities (e.g., NSA capabilities, dual connectivity capabilities) of the UE 115-a.
  • the UE 115-a may transmit an indication that the UE 115-a is configured for a dual connectivity mode of operation.
  • the indication that the UE 115-a is configured for a dual connectivity mode of operation may be transmitted within the attach request at 405.
  • the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including a MO message for measurement of a second cell (e.g., NR cell) .
  • the first base station 105-a may transmit the MO message (e.g., RRC reconfiguration message) to the UE 115-a based on the attach request.
  • the MO message may include an indication for the UE 115-a to measure signals from the second base station 105-b (e.g., NR/5G cell) .
  • the MO message may be transmitted via the NSA DDS.
  • the UE may transmit an attach request to the third base station 105-c (e.g., second LTE cell) .
  • the UE 115-a may transmit the attach request to the third base station 105-c via the communication link 205-c illustrated in FIG. 2.
  • the attach request may be transmitted via a second data subscriber different from the first data subscriber. For example, as shown in FIG. 4, the UE 115-a may transmit the attach request via a nDDS.
  • the UE 115-a-a may perform a first retuning procedure to a first frequency band associated with the third cell prior to transmitting the attach request to the third base station 105-c.
  • the UE 115-a may be configured to perform a first retuning procedure to the first frequency band associated with the third cell (e.g., third base station 105-c) in order to perform the attachment procedure with the third cell.
  • the third base station 105-c may transmit an attach accept to the UE 115-a.
  • the third base station 105-c may transmit the attach accept to the UE 115-a based on the attach request.
  • the attach request and the attach accept may be transmitted as part of an attachment procedure between the UE 115-a and the third base station 105-a (e.g., second LTE cell) .
  • the attachment procedure between the UE 115-a and the third base station 105-c may illustrate an example of a “communications procedure” which preempts transmission of a measurement report.
  • the communications procedure (e.g., attachment procedure with the second LTE cell) which preempts subsequent transmission of the measurement report may be performed via a second data subscriber (e.g., nDDS) which is different from the first data subscriber (e.g., NSA DDS) .
  • a second data subscriber e.g., nDDS
  • NSA DDS the first data subscriber
  • the UE 115-a may perform a second retuning procedure to a second frequency band associated with the first cell.
  • the UE 115-a may be configured to perform a second retuning procedure to the second frequency band associated with the first cell or second cell (e.g., first base station 105-a, second base station 105-b) after performing the attachment procedure with the third cell.
  • the UE 115-a may receive one or more signals from the second cell (e.g., second base station 105-b) .
  • the UE 115-a may receive one or more reference signals from an NR/5G cell.
  • the signals may be transmitted from the second base station 105-b to the UE 115-a via the first data subscriber (e.g., NSA DDS) .
  • the first data subscriber e.g., NSA DDS
  • the UE 115-a may perform a measurement of the signal of the second cell.
  • the measurement of the signal of the second cell may be performed in accordance with the MO message received at 420.
  • measuring the signal of the second cell may include measuring one or more channel quality parameters of a reference signal received from the second cell.
  • Channel quality parameters measured at 440 may include any channel quality parameter known in the art including, but not limited to, reference signal received power (RSRP) , reference signal received quality (RSRQ) , a signal-to-noise ratio (SNR) , and the like.
  • an indication of the measurement of the signals of the second cell may be preempted (e.g., fail) from transmitting from the UE 115-a to the first cell.
  • the indication may include any indication of the measurement of the signals of the second cell known in the art including, but not limited to, a measurement report.
  • the indication of the measurement of the second cell (e.g., measurement report) may be preempted from transmitting due to one or more other communications procedures conducted by the UE 115-a.
  • the UE 115-a the attachment procedure between the UE 115-a and the third cell (e.g., third base station 105-c) at 435-430 may take priority over the SCG addition procedure with the second cell, and may therefore take radio resources and preempt the transmission of the measurement report at 445.
  • the third cell e.g., third base station 105-c
  • the UE 115-a may be configured to determine that the indication (e.g., measurement report) was preempted (or otherwise failed) from transmitting at 445.
  • the first base station 105-a may be configured to determine an absence in reporting by the UE 115-a of the measurement of the second cell (e.g., determine an absence of the measurement report) .
  • an IMS registration procedure may be performed between the first cell and the third cell.
  • the IMS registration procedure may be carried out via the second data subscriber (e.g., nDDS) .
  • the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message removing the MO message which was previously sent for measurement of the second cell (e.g., NR cell) .
  • the first base station 105-a may remove the MO message based on the absence of a measurement report or some other indication associated with the measurement of the second cell received from the UE 115-a.
  • the RRC reconfiguration message may be transmitted via the NSA DDS.
  • the UE 115-a may transmit a TAU request message to the first cell, the TAU request message for triggering a tracking update procedure for the UE 115-a.
  • the TAU request message may include a TAU request.
  • the TAU request message may be transmitted to the first cell based on preemption of the transmission of the indication (e.g., measurement report) at 445.
  • the UE 115-a may transmit the TAU request message in order to re-initiate the SCG addition procedure with the second cell.
  • the first cell may transmit an acknowledgement message to the UE 115-a.
  • the acknowledgement message may be transmitted based on the TAU request message received at 460.
  • the acknowledgement message may include a TAU accept.
  • the first cell e.g., first base station 105-a
  • the first cell may transmit a TAU accept in response to the TAU request.
  • the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including a second MO message for measurement of the second cell (e.g., NR cell) .
  • the first base station 105-a may transmit the second MO message (e.g., RRC reconfiguration message) to the UE 115-a based on the TAU request message received at 460.
  • the first cell may transmit the second MO message based on an absence in reporting from the UE 115-a the measurement of the second cell (e.g., absence of a measurement report received from the UE 115-a) .
  • the second MO message may include an indication for the UE 115-a to measure signals from the second base station 105-b (e.g., NR/5G cell) .
  • the MO message may be transmitted via the NSA DDS.
  • the UE 115-a may receive one or more signals from the second cell (e.g., second base station 105-b) .
  • the UE 115-a may receive one or more signals from an NR/5G cell.
  • the signals may be transmitted from the second base station 105-b to the UE 115-a via the first data subscriber (e.g., NSA DDS) .
  • the first data subscriber e.g., NSA DDS
  • the UE 115-a may perform a measurement of the signal of the second cell.
  • the measurement of the signal of the second cell may be performed in accordance with the second MO message received at 470.
  • measuring the signal of the second cell may include measuring one or more channel quality parameters of a reference signal received from the second cell.
  • the channel quality parameters measured at 480 may include any channel quality parameter known in the art including, but not limited to, RSRP, RSRQ, SNR, and the like.
  • the UE 115-a may not measure signals from the second cell at 480.
  • the UE 115-a may be configured to store the measurements or channel quality parameters measured at 440 such that the UE 115-a does not re-measure the signals at 480.
  • measuring the signals from the second cell at 480 may provide a more recent and accurate measurement of the signals from the second cell.
  • an indication of the measurement of the signals of the second cell may transmitted from the UE 115-a to the first cell.
  • the UE 115-a may transmit a measurement report to the first cell, where the measurement report includes an indication of the measurement of the signals of the second cell.
  • the measurement report transmitted at 485 may be based upon the measurements performed at 480.
  • the measurement report transmitted at 485 may be based upon the measurements performed at 440.
  • the measurement report transmitted at 485 may be based upon the measurements performed at 440.
  • the first cell may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including an indication that the SCG for the second cell has been configured successfully (e.g., that the SCG for the second cell has been successfully added) .
  • the UE 115-a may establish a connection with the second cell (e.g., second base station 105-b) based on transmitting the measurement report to the first cell at 485.
  • the first cell may establish the connection between the UE 115-aand the second cell (e.g., second base station 105-b) supported by the first base station 105-a.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 510 and transmitter 520 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
  • analog components e.g., amplifiers, filters, antennas
  • the communications manager 515 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 505 to determine that a measurement report for an SCG addition procedure was preempted from transmitting. Based on receiving determining that the measurement report failed to be transmitted, the device 405 may transmit a TAU request message in order to trigger a tracking update procedure and re-initiate the SCG addition procedure.
  • the device 505 may be configured to expedite the SCG addition procedure by triggering the transmission of an additional MO message, rather than having to wait for the next LTE RCC connection setup procedure. Accordingly, aspects of the present disclosure may allow the device 505 to establish NR/5G connectivity more quickly as compared to conventional techniques, thereby improving wireless communications and overall user experience.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 645.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include an attach transmitter 620, a measurement object receiver 625, a measurement manager 630, a communications module 635, and a TAU transmitter 640.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the attach transmitter 620 may transmit, by the UE in a NSA mode, an attach request to a first cell.
  • the measurement object receiver 625 may receive an MO message from the first cell based on the attach request, the MO message for measurement of a second cell.
  • the measurement manager 630 may perform a measurement of a signal of the second cell in accordance with the MO message.
  • the communications module 635 may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell.
  • the TAU transmitter 640 may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the transmitter 645 may transmit signals generated by other components of the device 605.
  • the transmitter 645 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 645 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 645 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include an attach transmitter 710, a measurement object receiver 715, a measurement manager 720, a communications module 725, a TAU transmitter 730, a measurement report transmitter 735, a tuning manager 740, an attach accept receiver 745, and a TAU receiver 750.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the attach transmitter 710 may transmit, by the UE in a NSA mode, an attach request to a first cell. In some examples, the attach transmitter 710 may transmit a second attach request to the third cell. In some examples, the attach transmitter 710 may transmit, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation. In some examples, the attach transmitter 710 may transmit an attach request to an LTE cell. In some cases, the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber. The attach accept receiver 745 may receive an attach accept from the third cell in response to the second attach request.
  • the measurement object receiver 715 may receive an MO message from the first cell based on the attach request, the MO message for measurement of a second cell. In some examples, the measurement object receiver 715 may receive, from the first cell, a second MO message based on the TAU request message. The measurement manager 720 may perform a measurement of a signal of the second cell in accordance with the MO message. In some examples, the measurement manager 720 may measure a second signal of the second cell in accordance with the second MO message. In some examples, the measurement manager 720 may measure a channel quality parameter of a reference signal from the second cell. In some examples, the measurement manager 720 may perform the measurement of the signal received from the 5G cell.
  • the communications module 725 may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. In some examples, the communications module 725 may establish a connection with the second cell based on transmitting the measurement report to the first cell. In some examples, the communications module 725 may initiate an attachment procedure with a third cell. In some examples, the communications module 725 may receive the signal from a 5G cell.
  • the TAU transmitter 730 may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the TAU transmitter 730 may transmit a TAU request to the first cell.
  • the TAU receiver 750 may receive, from the first cell, an acknowledgement message based on transmitting the TAU request message, where the acknowledgement message includes a TAU accept.
  • the measurement report transmitter 735 may transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  • the tuning manager 740 may perform a retuning procedure to a first frequency band associated with the third cell. In some examples, the tuning manager 740 may perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may transmit, by the UE in a NSA mode, an attach request to a first cell, receive an MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the measurement object message, initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting enhanced service acquisition for wireless communications) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, transmit a MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell, determine an absence in reporting by the UE of a measurement of the second cell, and receive a TAU request message from the UE for triggering a TAU procedure.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include an attach request receiver 1020, a measurement object transmitter 1025, a measurement object manager 1030, and a TAU receiver 1035.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the attach request receiver 1020 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station.
  • the measurement object transmitter 1025 may transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell and transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • the measurement object manager 1030 may determine an absence in reporting by the UE of a measurement of the second cell.
  • the TAU receiver 1035 may receive a TAU request message from the UE for triggering a TAU procedure.
  • the transmitter 1040 may transmit signals generated by other components of the device 1005.
  • the transmitter 1040 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1040 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include an attach request receiver 1110, a measurement object transmitter 1115, a measurement object manager 1120, a TAU receiver 1125, a measurement report receiver 1130, a communications module 1135, and a TAU transmitter 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the attach request receiver 1110 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station. In some examples, the attach request receiver 1110 may receive, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation. In some examples, the attach request receiver 1110 may receive an attach request for an LTE cell supported by the base station.
  • the measurement object transmitter 1115 may transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell.
  • the first MO message includes an indication for the UE to measure a 5G cell.
  • the measurement object transmitter 1115 may transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
  • the measurement object manager 1120 may determine an absence in reporting by the UE of a measurement of the second cell.
  • the measurement report receiver 1130 may receive, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report is based on the second MO message.
  • the communications module 1135 may establish, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  • the TAU receiver 1125 may receive a TAU request message from the UE for triggering a TAU procedure. In some examples, the TAU receiver 1125 may receive a TAU request for the first cell associated with the base station.
  • the TAU transmitter 1140 may transmit, to the UE, an acknowledgement message based on receiving the TAU request message, where the acknowledgement message includes a TAU accept.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first measurement MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, transmit a MO object message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell, determine an absence in reporting by the UE of a measurement of the second cell, and receive a TAU request message from the UE for triggering a TAU procedure.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1240
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting enhanced service acquisition for wireless communications) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may transmit, by the UE in a NSA mode, an attach request to a first cell.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
  • the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
  • the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may transmit, by the UE in a NSA mode, an attach request to a first cell.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
  • the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
  • the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive, from the first cell, a second measurement object message based on the TAU request message.
  • the operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
  • the UE may measure a second signal of the second cell in accordance with the second measurement object message.
  • the operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  • the operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a measurement report transmitter as described with reference to FIGs. 5 through 8.
  • the UE may establish a connection with the second cell based on transmitting the measurement report to the first cell.
  • the operations of 1445 may be performed according to the methods described herein. In some examples, aspects of the operations of 1445 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may transmit, by the UE in a NSA mode, an attach request to a first cell.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
  • the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
  • the UE may initiate an attachment procedure with a third cell.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • the UE may perform a retuning procedure to a first frequency band associated with the third cell.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a tuning manager as described with reference to FIGs. 5 through 8.
  • the UE may perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a tuning manager as described with reference to FIGs. 5 through 8.
  • the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may transmit, by the UE in a NSA mode, an attach request to a first cell.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
  • the UE may receive a reference signal from a 5th Generation (5G) cell.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • the UE may perform the measurement of the signal received from the 5G cell.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
  • the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a communications module as described with reference to FIGs. 5 through 8.
  • the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
  • the operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein.
  • a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by an attach request receiver as described with reference to FIGs. 9 through 12.
  • the base station may transmit a first measurement object message based on the attach request, the first measurement object message including an indication for the UE to measure a second cell.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
  • the base station may determine an absence in reporting by the UE of a measurement of the second cell.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a measurement object manager as described with reference to FIGs. 9 through 12.
  • the base station may receive a TAU request message from the UE for triggering a TAU procedure.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
  • the base station may transmit a second measurement object message to the UE based on the TAU request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein.
  • a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an attach request receiver as described with reference to FIGs. 9 through 12.
  • the base station may transmit a first measurement object message based on the attach request, the first measurement object message including an indication for the UE to measure a second cell.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
  • the base station may determine an absence in reporting by the UE of a measurement of the second cell.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a measurement object manager as described with reference to FIGs. 9 through 12.
  • the base station may receive a TAU request message from the UE for triggering a TAU procedure.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
  • the base station may transmit a second measurement object message to the UE based on the TAU request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report is based on the second measurement object message.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a measurement report receiver as described with reference to FIGs. 9 through 12.
  • the base station may establish, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  • the operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by a communications module as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • DSP digital signal processor
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a measurement object (MO) message received from a first cell, and perform a measurement of a signal of a second cell in accordance with the MO message. The UE may initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell. In some aspects, the UE may transmit a tracking area update (TAU) request message to the first cell based on the preemption of the transmission of the indication, the TAU request message for triggering a tracking area update procedure for the UE.

Description

ENHANCED SERVICE ACQUISITION FOR WIRELESS COMMUNICATIONS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to enhanced service acquisition for wireless communications.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may initially attach to a first LTE cell before performing an attachment procedure with an NR cell supported by the first LTE cell or infrastructure in a non-standalone (NSA) system. The attachment procedure may involve the LTE cell sending a measurement object (MO) message for the NR cell. After performing measurement of the NR cell, the UE may attach to a second cell, which may preempt the UE from transmitting a measurement report in response to the NR MO. This may result in the delay of the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support enhanced service acquisition for wireless communications. Generally, a user equipment (UE) may attach to a first Long Term Evolution (LTE) cell. The UE may receive a measurement object (MO) message from the first cell, and may perform a measurement of a new radio (NR) cell supported by the first LTE cell/infrastructure in response to the received MO message. The UE may then initiate a communications procedure (e.g., an attachment procedure with a second LTE cell) which preempts reporting of the measurement of the NR cell. Subsequently, the UE may transmit a tracking area update (TAU) request to the first cell in order to re-initiate a non-standalone (NSA) registration procedure with the NR cell. The UE may receive a second MO message from the first cell in response to the TAU request, and may transmit a measurement report for the NR cell in order to complete the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell.
A method of wireless communication at a UE is described. The method may include transmitting, by the UE in a NSA mode, an attach request to a first cell, receiving a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, performing a measurement of a signal of the second cell in accordance with the MO message, initiating a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmitting, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmit, based on preemption of the  transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for transmitting, by the UE in a NSA mode, an attach request to a first cell, receiving a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, performing a measurement of a signal of the second cell in accordance with the MO message, initiating a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmitting, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first cell, a second MO message based on the TAU request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring a second signal of the second cell in accordance with the second MO message, and transmitting, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing a connection with the second cell based on transmitting the measurement report to the first cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, measuring the second signal may include operations, features, means, or instructions for measuring a channel quality parameter of a reference signal from the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, initiating the communications procedure may include operations, features, means, or instructions for initiating an attachment procedure with a third cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing a retuning procedure to a first frequency band associated with the third cell, and performing a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, initiating the attachment procedure with the third cell may include operations, features, means, or instructions for transmitting a second attach request to the third cell, and receiving an attach accept from the third cell in response to the second attach request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the attach request may be transmitted to the first cell via a first data subscriber, and the communications procedure may be performed via a second data subscriber different form the first data subscriber.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the TAU request message may include operations, features, means, or instructions for transmitting a TAU request to the first cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first cell, an acknowledgement message based on transmitting the TAU request message, where the acknowledgement message includes a TAU accept.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the attach request may include operations, features, means, or instructions for transmitting, in the attach request, an indication that the UE may be configured for a dual connectivity mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the attach request to the first cell may include operations, features, means, or instructions for transmitting an attach request to a Long-Term Evolution (LTE) cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the measurement of the signal of the second cell may include operations, features, means, or instructions for receiving the signal from a 5th Generation (5G) cell, and performing the measurement of the signal received from the 5G cell.
A method of wireless communication at a base station is described. The method may include receiving, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmitting a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determining an absence in reporting by the UE of a measurement of the second cell, receiving a TAU request message from the UE for triggering a TAU procedure, and transmitting a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determine an absence in reporting by the UE of a measurement of the second cell, receive a TAU request message from the UE for triggering a TAU procedure, and transmit a second MO message to the UE  based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for receiving, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmitting a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determining an absence in reporting by the UE of a measurement of the second cell, receiving a TAU request message from the UE for triggering a TAU procedure, and transmitting a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, determine an absence in reporting by the UE of a measurement of the second cell, receive a TAU request message from the UE for triggering a TAU procedure, and transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report may be based on the second MO message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for establishing, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the TAU request message may include  operations, features, means, or instructions for receiving a TAU request for the first cell associated with the base station.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, an acknowledgement message based on receiving the TAU request message, where the acknowledgement message includes a TAU accept.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the attach request may include operations, features, means, or instructions for receiving, in the attach request, an indication that the UE may be configured for a dual connectivity mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the attach request may include operations, features, means, or instructions for receiving an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first MO message includes an indication for the UE to measure a 5th Generation (5G) cell.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a communications timing diagram that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
FIGs. 13 through 18 show flowcharts illustrating methods that support enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) may initially attach to a Long Term Evolution (LTE) cell before performing an attachment procedure to an NR cell supported by the LTE cell/infrastructure. The attachment procedure may involve the LTE cell sending a measurement object (MO) message for the NR cell. In this regard, the UE may receive the MO message as a part of a non-standalone (NSA) registration procedure associated with the NR cell (e.g., an NSA + LTE (NSA+L) device) . In the case of a dual subscriber identity module (SIM) UE, however, after performing measurement of the NR cell, the UE may attach to a second LTE cell (associated with a different SIM for example) , which may preempt the UE from transmitting a measurement report in response to the NR MO. This may  cause a delay of the NSA registration procedure (e.g., secondary cell group (SCG) addition procedure) with the NR cell. In some cases, the LTE cell may re-transmit an MO message to the UE at regular intervals (e.g., within ten to twenty seconds) . However, in other cases, the LTE cell may not re-transmit an MO message until the next LTE radio resource control (RRC) connection setup. Accordingly, failing to report measurement of the NR cell in response to the first MO message received may delay attachment with the NR cell, thereby delaying NR connectivity, increasing overhead of the first LTE as the UE remains camped on the LTE cell until NR connectivity is established, which may negatively impact performance and user experience.
To prevent delay in an SCG addition procedure with an NR cell, a UE may determine that a measurement report for a NR cell has failed to transmit (e.g., based on another procedure preempting transmission of the measurement report) . In such cases, the UE identifies this preemption and triggers a TAU procedure by transmitting a TAU request message. For example, upon identifying that a measurement report for the NR cell has failed to transmit to the first LTE cell (e.g., as a result of the UE attaching to another cell) , the UE may transmit a TAU request message to the first LTE cell in order to re-initiate the SCG addition procedure. The TAU request message triggers a TAU procedure, which may cause the first LTE cell to transmit a second MO message to the UE. As such, the UE may have the opportunity the measure the NR cell and report the measurement results as part of the TAU procedure triggered by the TAU request. Upon successfully reporting the measurement of the NR cell, the NSA registration procedure may be completed, thereby allowing the secondary cell group (SCG) for the NR cell to be configured successfully. In some aspects, transmitting the TAU request message may allow the UE to re-initiate the SCG addition procedure without the UE having to wait for another NR MO message at a later time.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a communications timing diagram and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to enhanced service acquisition for wireless communications.
FIG. 1 illustrates an example of a wireless communications system 100 that supports enhanced service acquisition for wireless communications in accordance with  aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be an LTE network, an LTE-Anetwork, an LTE-A Pro network, or an NR network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio  base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may include one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of  symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an  identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra- reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150.  The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, for example in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include  downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The UEs 115 and the base stations 105 of the wireless communications system 100 may support communications for enhanced service acquisition for wireless  communications. For instance, the wireless communications system 100 may support communications which enable the UEs 115 or the base stations 105 to determine that a measurement report of an SCG addition procedure failed to transmit, and to re-initiate the NSA procedure.
For example, in some aspects, a UE 115-a may attach to a first LTE cell associated with a first base station 105 of the wireless communications system 100. The UE 115 may measure reference signals received from an NR cell associated with another base station 105 in response to an MO message received from the first base station 105. The UE 115 may then identify that a communications procedure at the UE 115 preempted reporting of the measurement of the NR cell. Upon identifying reporting of the measurement of the NR cell was preempted, the UE 115 may transmit a TAU request message to trigger a TAU procedure and re-initiate the SCG addition procedure. Subsequently, the base station 105 may transmit a second MO message, and the UE 115 may successfully report the measurement of the NR cell, thereby completing the SCG addition procedure and allowing the SCG for the NR cell to be configured successfully.
In some aspects, the UE 115 may measure a channel quality parameter of the reference signal of the NR cell. In some cases, the communications procedure which preempts reporting measurement of the NR cell may include an attachment procedure with a second LTE cell associated with a third base station 105. In some aspects, the attachment procedure with the first LTE cell or the measurement of the NR cell may be performed via a first data subscriber, where the attachment procedure with the second LTE cell (e.g., the communications procedure) is performed via a second data subscriber different from the first data subscriber.
FIG. 2 illustrates an example of a wireless communications system 200 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include a UE 115-a, a first base station 105-a, a second base station 105-b, and a third base station 105-c, which may be examples of UEs 115 and base stations 105, as described with reference to FIG. 1.
In some aspects, UE 115-a and the base stations 105-a, 105-b, 105-c of the wireless communications system 200 may support communications for enhanced service acquisition for wireless communications. In particular, the wireless communications system 200 may support communications which enable the UE 115-a or the base stations 105-a, 105-b, 105-c to determine that a measurement report of an NSA registration procedure failed to transmit, and to re-initiate the SCG addition procedure.
The first base station 105-a may support communications via a first cell within a first geographic coverage area 110-a, the second base station 105-b may support communications via a second cell within a second geographic coverage area 110-b, and the third base station 105-c may support communications via a third cell within a third geographic coverage area 110-c.
The UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of an NR link between the UE 115-a and the first base station 105-a. Similarly, the UE 115-a may communicate with the second base station 105-b and the third base station 105-c using communication link 205-b and communication link 205-c, respectively, which may be examples of NR links between the UE 115-a and the base stations 105-b, 105-c. In some cases, the communication links 205-a, 205-b, 205-c may include examples of an access link (e.g., a Uu link) . The communication links 205-a, 205-b, 205-c may include bi-directional links that include both uplink and downlink. For example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a. The UE 115-a may similarly transmit uplink signals to, and receive downlink signals from, the base stations 105-b, 105-c via communication link 205-b and communication link 205-c, respectively.
In some aspects, first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-d. In some cases, the communication link 205-d may include an example of a link between two base stations (e.g., a backhaul link such as an Xn link) . The first base station 105-a and the second base station  105-b may, in some cases, be collocated. The communication link 205-d may include a bi-directional link.
In some aspects, the first base station 105-a, the second base station 105-b, and the third base station 105-c may be associated with one or more cells (e.g., the first base station 105-a, the second base station 105-b, and the third base station 105-c may be configured to support communications via one or more cells) . For example, in some aspects, the first base station 105-a may be associated with a first cell, the second base station 105-b may be associated with a second cell different from the first cell, and the third base station 105-c may be associated with a third cell different from the first cell and the second cell. For instance, in some aspects, the first base station 105-a may be associated with a first LTE cell, the second base station 105-b may be associated with an NR cell supported by the first LTE cell, and the third base station 105-c may be associated with a second LTE cell different from the first LTE cell.
In some aspects, the first base station 105-a, second base station 105-b, or the third base station 105-b may facilitate (e.g., broker) communications between the UE 115-a and another respective base station 105-a, 105-b, 105-c. For example, upon establishing a connection with the first LTE cell via the first base station 105-a, the UE 115-a may establish a connection with the NR cell (e.g., second base station 105-b) through the first base station 105-a. For instance, upon attaching to the first LTE cell (e.g., first base station 105-a) , the UE 115-a may receive an MO message from the first base station 105-a, where the MO message is received as a SCG addition procedure for attaching to the NR cell (e.g., the second base station 105-b) . The UE 115-a may be configured to measure signals received from the NR cell (e.g., signals from the second base station 105-b) in response to the MO message, and may be configured to report a measurement of the NR cell to the first LTE cell (e.g., first base station 105-a) in order to complete the SCG addition procedure with the NR cell.
In some aspects, the UE 115-a may initiate a communications procedure which preempts reporting of the measurement of the signal of the NR cell back to the first LTE cell. For example, upon attaching to the first LTE cell (e.g., first base station 105-a) , the UE 115-a may initiate an attachment procedure with the second LTE cell (e.g., third base station 105-c) which preempts reporting of the measurement of the signal of the NR cell. In some aspects, the UE 115-a may be configured to identify the reporting of the NR cell was preempted, and  may transmit a TAU request message to the first LTE cell (e.g., first base station 105-a) to trigger a TAU procedure for the UE 115-a. The first LTE cell (e.g., first base station 105-a) may then transmit a second MO message to the UE 115-a. Upon receiving the second MO message, the UE 115-a may be configured to measure a second signal of the NR cell (e.g., second signal from the second base station 105-b) , and transmit a measurement report including a measurement of the second signal of the NR cell to the first LTE cell.
Accordingly, in some aspects, the UE 115-a and the base stations 105-a, 105-b, 105-c may be configured to support communications which enable the UE 115-a or base stations 105-a, 105-b, 105-c to identify a measurement report for an SCG addition procedure was preempted from transmission, and may re-initiate a TAU procedure (SCG addition procedure) by transmitting TAU request messages or MO message based on identifying that transmission of the measurement report was preempted. Aspects of the present disclosure may be further shown and described with reference to FIGs. 3 and 4.
FIG. 3 illustrates an example of a communications timing diagram 300 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. In some examples, communications timing diagram 300 may implement aspects of  wireless communications systems  100 or 200. The communications timing diagram 300 may illustrate an example timing of communications between a UE 115 and one or more base stations 105 which enable enhanced service acquisition for wireless communications. In particular, the communications timing diagram 300 may illustrate an example timing of communications between a UE 115 and one or more base stations 105 which enable a re-initiation of an SCG addition procedure.
In some aspects, the communications timing diagram 300 may illustrate an example timing of communications between the UE 115-a and the first base station 105-a, the second base station 105-b, and the third base station 105-c illustrated in FIG. 2. The first base station 105-a may be associated with a first cell, the second base station 105-b may be associated with a second cell, and the third base station 105-c may be associated with a third cell. For instance, the first base station 105-a may be associated with a first LTE cell, the second base station 105-b may be associated with an NR cell, and the third base station 105-c may be associated with a second LTE cell.
At 310, the UE 115-a may perform an attachment procedure with a first cell (e.g., first LTE cell associated with the first base station 105-a) . In some aspects, the attachment procedure at 310 may include the UE 115-a transmitting an attach request to the first cell, and the first cell transmitting an attach acknowledgement to the UE 115-a in response to the attach request. In some aspects, the attachment procedure at 310 and other communications between the UE 115-a and the first cell may be performed via a first data subscriber. For instance, the attachment procedure at 310 and other communications between the UE 115-a and the first cell may be performed via an NSA default data subscriber (DDS) (e.g., NSA DDS 305-a) .
At 335, the first cell may transmit an MO message to the UE 115-a, where the MO message includes an indication for the UE 115-a to measure signals from a second cell (e.g., NR cell) . Accordingly, in some aspects, the UE 115-a may be configured to measure signals received from the second cell based on receiving the MO message. In some aspects, communications between the UE 115-a and the second cell (e.g., NR cell) may be performed via the first data subscriber (e.g., NSA DDS 305-a) .
In some aspects, a communications procedure at the UE 115-a may take higher priority over the SCG addition procedure associated with the second cell. For example, an attachment procedure with the third cell (e.g., second LTE cell) may take higher priority over the SCG addition procedure. Accordingly, radio resources may allocated to the second attachment procedure over SCG addition procedure. In this regard, upon completion of the attachment procedure at 310, the UE 115-a may perform a retuning procedure at 320 to perform an attachment procedure at 325 with the third cell. In some aspects, the UE 115-a may perform a retuning procedure to one or more frequency bands associated with the third cell in order to perform an attachment procedure with the third cell at 325. In this regard, the UE 115-a may be “tuned away” from the NSA DDS 305-a at 315.
In some aspects, the attachment procedure at 325 may include the UE 115-a transmitting an attach request to the third cell, and the third cell transmitting an attach acknowledgement to the UE 115-a in response to the attach request. In some aspects, the attachment procedure at 325 and other communications between the UE 115-a and the third cell may be performed via a second data subscriber different from the first data subscriber. For instance, the attachment procedure at 325 and other communications between the UE  115-a and the third cell may be performed via a non-default data subscriber (nDDS) (e.g., nDDS 305-b) .
At 340, transmission of a measurement report may be preempted, or otherwise delayed. For example, at 340, the UE 115-a may attempt to transmit a measurement report to the first cell, the measurement report indicating the measurement of the signals from the second cell (e.g., NR cell) . However, due to the fact that the attachment procedure with the third cell took priority over the SCG addition procedure, the UE 115-a may be tuned away throughout 315 and at 340. Accordingly, the measurement report may fail to be transmitted at 340 based on the attachment procedure being performed at 325.
Further, because the measurement report failed to transmit at 340, the SCG for the NR cell may fail to be configured successfully at 345. In this regard, SCG addition procedure may not complete successfully at 345 due to the preempted/delayed transmission of the measurement report at 340.
At 330, the UE 115-a may perform a retuning procedure upon completion of the attachment procedure with the third cell. The UE 115-a may perform the retuning procedure to one or more frequency bands associated with the first cell following the completion of the attachment procedure with the third cell.
At 350, an IMS registration procedure is performed. The IMS registration procedure may be performed via the NSA DDS 305-a, and may authenticate the UE 115-a with the first LTE cell.
According to some conventional techniques, following IMS registration at 350, the process flow 300 may proceed to 355. At 355, the LTE RRC connection may be released to disconnect the UE 115-a from the first LTE cell and allow the UE 115-a to connect or attach to another cell (e.g., an NR cell) . At 360, the UE 115-a may receive a second MO message from the first cell. In some aspects, the first cell may transmit the second MO message after the RRC connection is released at 350. In other cases, the first cell may not transmit the second MO message for some time after the RRC connection is released. Further, depending on the circumstances, the time for the RRC connection to be released may vary and as such, the second MO message (and therefore SCG addition) may not take place for a given amount of time, thereby delaying the SCG addition procedure.
Comparatively, according to some aspects of the present disclosure, communications timing diagram 300 may proceed to 365 upon completion of the IMS registration at 350. At 365, the UE 115-a may transmit a TAU request message to the first cell in order to trigger a TAU procedure between the UE 115-a and the first cell and to re-initiate the SCG addition procedure with the second cell (e.g., NR cell) . For example, the UE 115-a may determine the preemption of the measurement report at 340 (e.g., which, as shown in this example, is caused by the attachment procedure 325) . The UE 115-a may be configured to transmit a TAU request message in order to trigger the TAU procedure at 365. Subsequently, the first cell may transmit a second MO message in response to the TAU request message (e.g., as part of the TAU procedure) . The second MO message may include an indication for the UE 115-a to measure signals from the second cell. The UE 115-a may then measure signals from the second cell, and transmit a measurement report to the first cell in order to complete the SCG addition procedure. In this regard, upon successful transmission of the measurement report to the first cell, the SCG for the NR cell may be successfully configured.
In some aspects, triggering the TAU procedure in response to preemption of the transmission of the measurement report may decrease the amount of time for completing the SCG addition procedure for the second cell. For example, in some cases, the first cell (e.g., first LTE cell) may re-transmit an MO message to the UE at regular intervals (e.g., within ten to twenty seconds) . However, in other cases, the first cell may not re-transmit an MO message until the next LTE RRC connection setup. In this regard, the UE 115-a may expedite the SCG addition procedure by transmitting the TAU procedure in response to preemption of the transmission of the measurement report, and triggering the TAU procedure.
FIG. 4 illustrates an example of a process flow 400 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communications systems  100, 200, or 300. For example, process flow 400 may illustrate determining an indication of a measurement was prevented from transmission, and transmitting a TAU request based on the preemption in order to trigger a TAU procedure, as described with reference to FIGs. 1–3.
In some cases, process flow 400 may include a UE 115-a, a first base station 105-a, a second base station 105-b, and a third base station 105-c, which may be examples of corresponding devices as described herein. In particular, the UE 115-a and the base stations 105-a, 105-b, 105-c illustrated in FIG. 4 may be examples of the UE 115-a, the first base station 105-a, the second base station 105-b, and the third base station 105-c illustrated in FIG. 2. In some aspects, the first base station 105-a may be associated with a first LTE cell (e.g., first LTE cell, or LTE Cell 1) , the second bases station 105-b may be associated with an NR/5G cell, and the third base station 105-c may be associated with a second LTE cell (e.g., second LTE cell, or LTE Cell 2) . In some aspects, the second cell (e.g., second base station 105-b) may be associated with or supported by the first cell (e.g., the first base station 105-a) in that the first cell is configured to facilitate a connection between the UE 115-a and the second cell.
In some examples, the operations illustrated in process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 405, the UE 115-a may transmit an attach request to the first base station 105-a. In some aspects, the UE 115-a may transmit the attach request to the first base station 105-a (e.g., first LTE cell) while operating in an NSA mode of operation. In some aspects, the UE 115-a may transmit the attach request to the first base station 105-a via the communication link 205-aillustrated in FIG. 2. In some aspects, the attach request may be transmitted via a first data subscriber. For example, as shown in FIG. 4, the UE 115-a may transmit the attach request via an NSA DDS.
At 410, the first base station 105-a may transmit an attach accept to the UE 115-a. The first base station 105-a may transmit the attach accept to the UE 115-a based on the attach request. In some cases, the attach request and the attach accept may be transmitted as part of an attachment procedure between the UE 115-a and the first base station 105-a (e.g., first LTE cell) .
At 415, the UE 115-a and the first base station 105-a may perform a capability negotiation procedure associated with the UE 115-a. For example, the UE 115-a and the first base station 105-a may exchange signaling in order to determine capabilities (e.g., NSA capabilities, dual connectivity capabilities) of the UE 115-a. For instance, the UE 115-a may transmit an indication that the UE 115-a is configured for a dual connectivity mode of operation. In some aspects, the indication that the UE 115-a is configured for a dual connectivity mode of operation may be transmitted within the attach request at 405.
At 420, the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including a MO message for measurement of a second cell (e.g., NR cell) . The first base station 105-a may transmit the MO message (e.g., RRC reconfiguration message) to the UE 115-a based on the attach request. In some aspects, the MO message may include an indication for the UE 115-a to measure signals from the second base station 105-b (e.g., NR/5G cell) . In some aspects, the MO message may be transmitted via the NSA DDS.
At 425, the UE may transmit an attach request to the third base station 105-c (e.g., second LTE cell) . In some aspects, the UE 115-a may transmit the attach request to the third base station 105-c via the communication link 205-c illustrated in FIG. 2. In some aspects, the attach request may be transmitted via a second data subscriber different from the first data subscriber. For example, as shown in FIG. 4, the UE 115-a may transmit the attach request via a nDDS.
In some aspects, the UE 115-a-a may perform a first retuning procedure to a first frequency band associated with the third cell prior to transmitting the attach request to the third base station 105-c. For example, as shown in FIG. 3, the UE 115-a may be configured to perform a first retuning procedure to the first frequency band associated with the third cell (e.g., third base station 105-c) in order to perform the attachment procedure with the third cell.
At 430, the third base station 105-c may transmit an attach accept to the UE 115-a. The third base station 105-c may transmit the attach accept to the UE 115-a based on the attach request. In some cases, the attach request and the attach accept may be transmitted as part of an attachment procedure between the UE 115-a and the third base station 105-a (e.g., second LTE cell) . Generally, the attachment procedure between the UE 115-a and the third  base station 105-c may illustrate an example of a “communications procedure” which preempts transmission of a measurement report. In this regard, the communications procedure (e.g., attachment procedure with the second LTE cell) which preempts subsequent transmission of the measurement report may be performed via a second data subscriber (e.g., nDDS) which is different from the first data subscriber (e.g., NSA DDS) .
In some aspects, after performing the attach procedure with the third cell (e.g., transmitting the attach request and receiving the attach accept) , the UE 115-a may perform a second retuning procedure to a second frequency band associated with the first cell. For example, as shown in FIG. 3, the UE 115-a may be configured to perform a second retuning procedure to the second frequency band associated with the first cell or second cell (e.g., first base station 105-a, second base station 105-b) after performing the attachment procedure with the third cell.
At 435, the UE 115-a may receive one or more signals from the second cell (e.g., second base station 105-b) . For example, the UE 115-a may receive one or more reference signals from an NR/5G cell. In some aspects, the signals may be transmitted from the second base station 105-b to the UE 115-a via the first data subscriber (e.g., NSA DDS) .
At 440, the UE 115-a may perform a measurement of the signal of the second cell. The measurement of the signal of the second cell may be performed in accordance with the MO message received at 420. In some aspects, measuring the signal of the second cell may include measuring one or more channel quality parameters of a reference signal received from the second cell. Channel quality parameters measured at 440 may include any channel quality parameter known in the art including, but not limited to, reference signal received power (RSRP) , reference signal received quality (RSRQ) , a signal-to-noise ratio (SNR) , and the like.
At 445, an indication of the measurement of the signals of the second cell may be preempted (e.g., fail) from transmitting from the UE 115-a to the first cell. The indication may include any indication of the measurement of the signals of the second cell known in the art including, but not limited to, a measurement report. In some aspects, the indication of the measurement of the second cell (e.g., measurement report) may be preempted from transmitting due to one or more other communications procedures conducted by the UE 115-a. For example, the UE 115-a the attachment procedure between the UE 115-a and the  third cell (e.g., third base station 105-c) at 435-430 may take priority over the SCG addition procedure with the second cell, and may therefore take radio resources and preempt the transmission of the measurement report at 445.
In some aspects, the UE 115-a may be configured to determine that the indication (e.g., measurement report) was preempted (or otherwise failed) from transmitting at 445. Conversely, the first base station 105-a may be configured to determine an absence in reporting by the UE 115-a of the measurement of the second cell (e.g., determine an absence of the measurement report) .
At 450, an IMS registration procedure may be performed between the first cell and the third cell. In some aspects, the IMS registration procedure may be carried out via the second data subscriber (e.g., nDDS) .
At 455, the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message removing the MO message which was previously sent for measurement of the second cell (e.g., NR cell) . In some aspects, the first base station 105-a may remove the MO message based on the absence of a measurement report or some other indication associated with the measurement of the second cell received from the UE 115-a. The RRC reconfiguration message may be transmitted via the NSA DDS.
At 460, the UE 115-a may transmit a TAU request message to the first cell, the TAU request message for triggering a tracking update procedure for the UE 115-a. The TAU request message may include a TAU request. In some aspects, the TAU request message may be transmitted to the first cell based on preemption of the transmission of the indication (e.g., measurement report) at 445. In some aspects, the UE 115-a may transmit the TAU request message in order to re-initiate the SCG addition procedure with the second cell.
At 465, the first cell may transmit an acknowledgement message to the UE 115-a. The acknowledgement message may be transmitted based on the TAU request message received at 460. In some aspects, the acknowledgement message may include a TAU accept. For example, as shown in FIG. 4, the first cell (e.g., first base station 105-a) may transmit a TAU accept in response to the TAU request.
At 470, the first base station 105-a may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including a second MO message for  measurement of the second cell (e.g., NR cell) . The first base station 105-a may transmit the second MO message (e.g., RRC reconfiguration message) to the UE 115-a based on the TAU request message received at 460. Additionally or alternatively, the first cell may transmit the second MO message based on an absence in reporting from the UE 115-a the measurement of the second cell (e.g., absence of a measurement report received from the UE 115-a) . In some aspects, the second MO message may include an indication for the UE 115-a to measure signals from the second base station 105-b (e.g., NR/5G cell) . In some aspects, the MO message may be transmitted via the NSA DDS.
At 475, the UE 115-a may receive one or more signals from the second cell (e.g., second base station 105-b) . For example, the UE 115-a may receive one or more signals from an NR/5G cell. In some aspects, the signals may be transmitted from the second base station 105-b to the UE 115-a via the first data subscriber (e.g., NSA DDS) .
At 480, the UE 115-a may perform a measurement of the signal of the second cell. The measurement of the signal of the second cell may be performed in accordance with the second MO message received at 470. In some aspects, measuring the signal of the second cell may include measuring one or more channel quality parameters of a reference signal received from the second cell. As noted previously herein, the channel quality parameters measured at 480 may include any channel quality parameter known in the art including, but not limited to, RSRP, RSRQ, SNR, and the like.
In additional or alternative aspects, the UE 115-a may not measure signals from the second cell at 480. In particular, the UE 115-a may be configured to store the measurements or channel quality parameters measured at 440 such that the UE 115-a does not re-measure the signals at 480. However, it is further noted herein that measuring the signals from the second cell at 480 may provide a more recent and accurate measurement of the signals from the second cell.
At 485, an indication of the measurement of the signals of the second cell may transmitted from the UE 115-a to the first cell. For example, the UE 115-a may transmit a measurement report to the first cell, where the measurement report includes an indication of the measurement of the signals of the second cell. In some aspects, the measurement report transmitted at 485 may be based upon the measurements performed at 480. In additional or alternative examples, the measurement report transmitted at 485 may be based upon the  measurements performed at 440. For example, in cases where the UE 115-a does not perform additional measurements at 480, the measurement report transmitted at 485 may be based upon the measurements performed at 440.
At 490, the first cell may transmit an RRC reconfiguration message to the UE 115-a, the RRC reconfiguration message including an indication that the SCG for the second cell has been configured successfully (e.g., that the SCG for the second cell has been successfully added) . In this regard, the UE 115-a may establish a connection with the second cell (e.g., second base station 105-b) based on transmitting the measurement report to the first cell at 485. In some aspects, the first cell may establish the connection between the UE 115-aand the second cell (e.g., second base station 105-b) supported by the first base station 105-a.
FIG. 5 shows a block diagram 500 of a device 505 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may transmit, by the UE in a NSA mode, an attach request to a first cell, receive a MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the MO message, initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
In some examples, the communications manager 515 may be implemented as an integrated circuit or chipset for a mobile device modem, and the receiver 510 and transmitter 520 may be implemented as analog components (e.g., amplifiers, filters, antennas) coupled with the mobile device modem to enable wireless transmission and reception over one or more bands.
The communications manager 515 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 505 to determine that a measurement report for an SCG addition procedure was preempted from  transmitting. Based on receiving determining that the measurement report failed to be transmitted, the device 405 may transmit a TAU request message in order to trigger a tracking update procedure and re-initiate the SCG addition procedure.
As such, the device 505 may be configured to expedite the SCG addition procedure by triggering the transmission of an additional MO message, rather than having to wait for the next LTE RCC connection setup procedure. Accordingly, aspects of the present disclosure may allow the device 505 to establish NR/5G connectivity more quickly as compared to conventional techniques, thereby improving wireless communications and overall user experience.
FIG. 6 shows a block diagram 600 of a device 605 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 645. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include an attach transmitter 620, a measurement object receiver 625, a measurement manager 630, a communications module 635, and a TAU transmitter 640. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The attach transmitter 620 may transmit, by the UE in a NSA mode, an attach request to a first cell. The measurement object receiver 625 may receive an MO message from the first cell based on the attach request, the MO message for measurement of a second  cell. The measurement manager 630 may perform a measurement of a signal of the second cell in accordance with the MO message.
The communications module 635 may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. The TAU transmitter 640 may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
The transmitter 645 may transmit signals generated by other components of the device 605. In some examples, the transmitter 645 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 645 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 645 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include an attach transmitter 710, a measurement object receiver 715, a measurement manager 720, a communications module 725, a TAU transmitter 730, a measurement report transmitter 735, a tuning manager 740, an attach accept receiver 745, and a TAU receiver 750. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The attach transmitter 710 may transmit, by the UE in a NSA mode, an attach request to a first cell. In some examples, the attach transmitter 710 may transmit a second attach request to the third cell. In some examples, the attach transmitter 710 may transmit, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation. In some examples, the attach transmitter 710 may transmit an attach request to an LTE cell. In some cases, the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber. The attach accept receiver 745 may receive an attach accept from the third cell in response to the second attach request.
The measurement object receiver 715 may receive an MO message from the first cell based on the attach request, the MO message for measurement of a second cell. In some examples, the measurement object receiver 715 may receive, from the first cell, a second MO message based on the TAU request message. The measurement manager 720 may perform a measurement of a signal of the second cell in accordance with the MO message. In some examples, the measurement manager 720 may measure a second signal of the second cell in accordance with the second MO message. In some examples, the measurement manager 720 may measure a channel quality parameter of a reference signal from the second cell. In some examples, the measurement manager 720 may perform the measurement of the signal received from the 5G cell.
The communications module 725 may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. In some examples, the communications module 725 may establish a connection with the second cell based on transmitting the measurement report to the first cell. In some examples, the communications module 725 may initiate an attachment procedure with a third cell. In some examples, the communications module 725 may receive the signal from a 5G cell.
The TAU transmitter 730 may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. In some examples, the TAU transmitter 730 may transmit a TAU request to the first cell. The TAU receiver 750 may receive, from the first cell, an acknowledgement message based on transmitting the TAU request message, where the acknowledgement message includes a TAU accept. The measurement report transmitter 735 may transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
The tuning manager 740 may perform a retuning procedure to a first frequency band associated with the third cell. In some examples, the tuning manager 740 may perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include  components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may transmit, by the UE in a NSA mode, an attach request to a first cell, receive an MO message from the first cell based on the attach request, the MO message for measurement of a second cell, perform a measurement of a signal of the second cell in accordance with the measurement object message, initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell, and transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020084122-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting enhanced service acquisition for wireless communications) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a block diagram 900 of a device 905 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 905.  The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, transmit a MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell, determine an absence in reporting by the UE of a measurement of the second cell, and receive a TAU request message from the UE for triggering a TAU procedure. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the  transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1040. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to enhanced service acquisition for wireless communications, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include an attach request receiver 1020, a measurement object transmitter 1025, a measurement object manager 1030, and a TAU receiver 1035. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The attach request receiver 1020 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station. The measurement object transmitter 1025 may transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell and transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell. The measurement object manager 1030 may determine an absence in reporting by the UE of a measurement of the second cell. The TAU receiver 1035 may receive a TAU request message from the UE for triggering a TAU procedure.
The transmitter 1040 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1040 may be collocated with a receiver 1010  in a transceiver module. For example, the transmitter 1040 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1040 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include an attach request receiver 1110, a measurement object transmitter 1115, a measurement object manager 1120, a TAU receiver 1125, a measurement report receiver 1130, a communications module 1135, and a TAU transmitter 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The attach request receiver 1110 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station. In some examples, the attach request receiver 1110 may receive, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation. In some examples, the attach request receiver 1110 may receive an attach request for an LTE cell supported by the base station.
The measurement object transmitter 1115 may transmit a first MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell. In some cases, the first MO message includes an indication for the UE to measure a 5G cell. In some examples, the measurement object transmitter 1115 may transmit a second MO message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell. The measurement object manager 1120 may determine an absence in reporting by the UE of a measurement of the second cell. The measurement report receiver 1130 may receive, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report is based on the second MO message. The communications module 1135 may establish, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
The TAU receiver 1125 may receive a TAU request message from the UE for triggering a TAU procedure. In some examples, the TAU receiver 1125 may receive a TAU  request for the first cell associated with the base station. The TAU transmitter 1140 may transmit, to the UE, an acknowledgement message based on receiving the TAU request message, where the acknowledgement message includes a TAU accept.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station, transmit a first measurement MO message based on the attach request, the first MO message including an indication for the UE to measure a second cell, transmit a MO object message to the UE based on the TAU request message and the absence in reporting by the UE, the second MO message including a second indication for the UE to measure the second cell, determine an absence in reporting by the UE of a measurement of the second cell, and receive a TAU request message from the UE for triggering a TAU procedure.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting enhanced service acquisition for wireless communications) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240  but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1305, the UE may transmit, by the UE in a NSA mode, an attach request to a first cell. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
At 1310, the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
At 1315, the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
At 1320, the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a communications module as described with reference to FIGs. 5 through 8.
At 1325, the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1405, the UE may transmit, by the UE in a NSA mode, an attach request to a first cell. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
At 1410, the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
At 1415, the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
At 1420, the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1420 may be performed by a communications module as described with reference to FIGs. 5 through 8.
At 1425, the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
At 1430, the UE may receive, from the first cell, a second measurement object message based on the TAU request message. The operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
At 1435, the UE may measure a second signal of the second cell in accordance with the second measurement object message. The operations of 1435 may be performed according to the methods described herein. In some examples, aspects of the operations of 1435 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
At 1440, the UE may transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal. The operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a measurement report transmitter as described with reference to FIGs. 5 through 8.
At 1445, the UE may establish a connection with the second cell based on transmitting the measurement report to the first cell. The operations of 1445 may be performed according to the methods described herein. In some examples, aspects of the operations of 1445 may be performed by a communications module as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its  components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1505, the UE may transmit, by the UE in a NSA mode, an attach request to a first cell. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
At 1510, the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
At 1515, the UE may perform a measurement of a signal of the second cell in accordance with the measurement object message. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
At 1520, the UE may initiate an attachment procedure with a third cell. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a communications module as described with reference to FIGs. 5 through 8.
At 1525, the UE may perform a retuning procedure to a first frequency band associated with the third cell. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a tuning manager as described with reference to FIGs. 5 through 8.
At 1530, the UE may perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell. The operations of 1530 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1530 may be performed by a tuning manager as described with reference to FIGs. 5 through 8.
At 1535, the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. The operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein. Additionally or alternatively, a UE may perform aspects of the functions described herein using special-purpose hardware.
At 1605, the UE may transmit, by the UE in a NSA mode, an attach request to a first cell. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by an attach transmitter as described with reference to FIGs. 5 through 8.
At 1610, the UE may receive a measurement object message from the first cell based on the attach request, the measurement object message for measurement of a second cell. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a measurement object receiver as described with reference to FIGs. 5 through 8.
At 1615, the UE may receive a reference signal from a 5th Generation (5G) cell. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a communications module as described with reference to FIGs. 5 through 8.
At 1620, the UE may perform the measurement of the signal received from the 5G cell. The operations of 1620 may be performed according to the methods described herein. In  some examples, aspects of the operations of 1620 may be performed by a measurement manager as described with reference to FIGs. 5 through 8.
At 1625, the UE may initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a communications module as described with reference to FIGs. 5 through 8.
At 1630, the UE may transmit, based on preemption of the transmission of the indication, a TAU request message for triggering a TAU procedure for the UE. The operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
FIG. 17 shows a flowchart illustrating a method 1700 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
At 1705, the base station may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by an attach request receiver as described with reference to FIGs. 9 through 12.
At 1710, the base station may transmit a first measurement object message based on the attach request, the first measurement object message including an indication for the UE to measure a second cell. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be  performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
At 1715, the base station may determine an absence in reporting by the UE of a measurement of the second cell. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a measurement object manager as described with reference to FIGs. 9 through 12.
At 1720, the base station may receive a TAU request message from the UE for triggering a TAU procedure. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
At 1725, the base station may transmit a second measurement object message to the UE based on the TAU request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
FIG. 18 shows a flowchart illustrating a method 1800 that supports enhanced service acquisition for wireless communications in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
At 1805, the base station may receive, from a UE in a NSA mode, an attach request for a first cell associated with the base station. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an attach request receiver as described with reference to FIGs. 9 through 12.
At 1810, the base station may transmit a first measurement object message based on the attach request, the first measurement object message including an indication for the UE to measure a second cell. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
At 1815, the base station may determine an absence in reporting by the UE of a measurement of the second cell. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a measurement object manager as described with reference to FIGs. 9 through 12.
At 1820, the base station may receive a TAU request message from the UE for triggering a TAU procedure. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
At 1825, the base station may transmit a second measurement object message to the UE based on the TAU request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a measurement object transmitter as described with reference to FIGs. 9 through 12.
At 1830, the base station may receive, from the UE, a measurement report including the measurement of the second cell, where receiving the measurement report is based on the second measurement object message. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a measurement report receiver as described with reference to FIGs. 9 through 12.
At 1835, the base station may establish, based on receiving the measurement report, a connection between the UE and the second cell supported by the base station. The operations of 1835 may be performed according to the methods described herein. In some  examples, aspects of the operations of 1835 may be performed by a communications module as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software  executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example  step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (88)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    transmitting, by the UE in a non-standalone mode, an attach request to a first cell;
    receiving a measurement object message from the first cell based at least in part on the attach request, the measurement object message for measurement of a second cell;
    performing a measurement of a signal of the second cell in accordance with the measurement object message;
    initiating a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell; and
    transmitting, based at least in part on preemption of the transmission of the indication, a tracking area update request message for triggering a tracking area update procedure for the UE.
  2. The method of claim 1, further comprising:
    receiving, from the first cell, a second measurement object message based at least in part on the tracking area update request message.
  3. The method of claim 2, further comprising:
    measuring a second signal of the second cell in accordance with the second measurement object message; and
    transmitting, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  4. The method of claim 3, further comprising:
    establishing a connection with the second cell based at least in part on transmitting the measurement report to the first cell.
  5. The method of claim 3, wherein measuring the second signal comprises:
    measuring a channel quality parameter of a reference signal from the second cell.
  6. The method of claim 1, wherein initiating the communications procedure comprises:
    initiating an attachment procedure with a third cell.
  7. The method of claim 6, further comprising:
    performing a retuning procedure to a first frequency band associated with the third cell; and
    performing a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  8. The method of claim 6, wherein initiating the attachment procedure with the third cell comprises:
    transmitting a second attach request to the third cell; and
    receiving an attach accept from the third cell in response to the second attach request.
  9. The method of claim 1, wherein the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber.
  10. The method of claim 1, wherein transmitting the tracking area update request message comprises:
    transmitting a tracking area update request to the first cell.
  11. The method of claim 1, further comprising:
    receiving, from the first cell, an acknowledgement message based at least in part on transmitting the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  12. The method of claim 1, wherein transmitting the attach request comprises:
    transmitting, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  13. The method of claim 1, wherein transmitting the attach request to the first cell comprises:
    transmitting an attach request to a Long-Term Evolution (LTE) cell.
  14. The method of claim 1, wherein performing the measurement of the signal of the second cell comprises:
    receiving the signal from a 5th Generation (5G) cell; and
    performing the measurement of the signal received from the 5G cell.
  15. A method for wireless communication at a base station, comprising:
    receiving, from a UE in a non-standalone mode, an attach request for a first cell associated with the base station;
    transmitting a first measurement object message based at least in part on the attach request, the first measurement object message including an indication for the UE to measure a second cell;
    determining an absence in reporting by the UE of a measurement of the second cell;
    receiving a tracking area update request message from the UE for triggering a tracking area update procedure; and
    transmitting a second measurement object message to the UE based at least in part on the tracking area update request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  16. The method of claim 15, further comprising:
    receiving, from the UE, a measurement report including the measurement of the second cell, wherein receiving the measurement report is based at least in part on the second measurement object message.
  17. The method of claim 16, further comprising:
    establishing, based at least in part on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  18. The method of claim 15, wherein receiving the tracking area update request message comprises:
    receiving a tracking area update request for the first cell associated with the base station.
  19. The method of claim 15, further comprising:
    transmitting, to the UE, an acknowledgement message based at least in part on receiving the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  20. The method of claim 15, wherein receiving the attach request comprises:
    receiving, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  21. The method of claim 15, wherein receiving the attach request comprises:
    receiving an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
  22. The method of claim 15, wherein the first measurement object message includes an indication for the UE to measure a 5th Generation (5G) cell.
  23. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, by the UE in a non-standalone mode, an attach request to a first cell;
    receive a measurement object message from the first cell based at least in part on the attach request, the measurement object message for measurement of a second cell;
    perform a measurement of a signal of the second cell in accordance with the measurement object message;
    initiate a communications procedure that preempts reporting of an indication of the measurement of the signal of the second cell; and
    transmit, based at least in part on preemption of the transmission of the indication, a tracking area update request message for triggering a tracking area update procedure for the UE.
  24. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first cell, a second measurement object message based at least in part on the tracking area update request message.
  25. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    measure a second signal of the second cell in accordance with the second measurement object message; and
    transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  26. The apparatus of claim 25, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish a connection with the second cell based at least in part on transmitting the measurement report to the first cell.
  27. The apparatus of claim 25, wherein the instructions to measure the second signal are executable by the processor to cause the apparatus to:
    measure a channel quality parameter of a reference signal from the second cell.
  28. The apparatus of claim 23, wherein the instructions to initiate the communications procedure are executable by the processor to cause the apparatus to:
    initiate an attachment procedure with a third cell.
  29. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform a retuning procedure to a first frequency band associated with the third cell; and
    perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  30. The apparatus of claim 28, wherein the instructions to initiate the attachment procedure with the third cell are executable by the processor to cause the apparatus to:
    transmit a second attach request to the third cell; and
    receive an attach accept from the third cell in response to the second attach request.
  31. The apparatus of claim 23, wherein the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber.
  32. The apparatus of claim 23, wherein the instructions to transmit the tracking area update request message are executable by the processor to cause the apparatus to:
    transmit a tracking area update request to the first cell.
  33. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first cell, an acknowledgement message based at least in part on transmitting the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  34. The apparatus of claim 23, wherein the instructions to transmit the attach request are executable by the processor to cause the apparatus to:
    transmit, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  35. The apparatus of claim 23, wherein the instructions to transmit the attach request to the first cell are executable by the processor to cause the apparatus to:
    transmit an attach request to a Long-Term Evolution (LTE) cell.
  36. The apparatus of claim 23, wherein the instructions to perform the measurement of the signal of the second cell are executable by the processor to cause the apparatus to:
    receive the signal from a 5th Generation (5G) cell; and
    perform the measurement of the signal received from the 5G cell.
  37. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a UE in a non-standalone mode, an attach request for a first cell associated with the base station;
    transmit a first measurement object message based at least in part on the attach request, the first measurement object message including an indication for the UE to measure a second cell;
    determine an absence in reporting by the UE of a measurement of the second cell;
    receive a tracking area update request message from the UE for triggering a tracking area update procedure; and
    transmit a second measurement object message to the UE based at least in part on the tracking area update request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  38. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, a measurement report including the measurement of the second cell, wherein receiving the measurement report is based at least in part on the second measurement object message.
  39. The apparatus of claim 38, wherein the instructions are further executable by the processor to cause the apparatus to:
    establish, based at least in part on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  40. The apparatus of claim 37, wherein the instructions to receive the tracking area update request message are executable by the processor to cause the apparatus to:
    receive a tracking area update request for the first cell associated with the base station.
  41. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, an acknowledgement message based at least in part on receiving the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  42. The apparatus of claim 37, wherein the instructions to receive the attach request are executable by the processor to cause the apparatus to:
    receive, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  43. The apparatus of claim 37, wherein the instructions to receive the attach request are executable by the processor to cause the apparatus to:
    receive an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
  44. The apparatus of claim 37, wherein the first measurement object message includes an indication for the UE to measure a 5th Generation (5G) cell.
  45. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for transmitting, by the UE in a non-standalone mode, an attach request to a first cell;
    means for receiving a measurement object message from the first cell based at least in part on the attach request, the measurement object message for measurement of a second cell;
    means for performing a measurement of a signal of the second cell in accordance with the measurement object message;
    means for initiating a communications procedure that preempts reporting of the measurement of the signal of the second cell; and
    means for transmitting, based at least in part on preemption of the transmission of the indication, a tracking area update request message for triggering a tracking area update procedure for the UE.
  46. The apparatus of claim 45, further comprising:
    means for receiving, from the first cell, a second measurement object message based at least in part on the tracking area update request message.
  47. The apparatus of claim 46, further comprising:
    means for measuring a second signal of the second cell in accordance with the second measurement object message; and
    means for transmitting, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  48. The apparatus of claim 47, further comprising:
    means for establishing a connection with the second cell based at least in part on transmitting the measurement report to the first cell.
  49. The apparatus of claim 47, wherein the means for measuring the second signal comprises:
    means for measuring a channel quality parameter of a reference signal from the second cell.
  50. The apparatus of claim 45, wherein the means for initiating the communications procedure comprises:
    means for initiating an attachment procedure with a third cell.
  51. The apparatus of claim 50, further comprising:
    means for performing a retuning procedure to a first frequency band associated with the third cell; and
    means for performing a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  52. The apparatus of claim 50, wherein the means for initiating the attachment procedure with the third cell comprises:
    means for transmitting a second attach request to the third cell; and
    means for receiving an attach accept from the third cell in response to the second attach request.
  53. The apparatus of claim 45, wherein the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber.
  54. The apparatus of claim 45, wherein the means for transmitting the tracking area update request message comprises:
    means for transmitting a tracking area update request to the first cell.
  55. The apparatus of claim 45, further comprising:
    means for receiving, from the first cell, an acknowledgement message based at least in part on transmitting the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  56. The apparatus of claim 45, wherein the means for transmitting the attach request comprises:
    means for transmitting, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  57. The apparatus of claim 45, wherein the means for transmitting the attach request to the first cell comprises:
    means for transmitting an attach request to a Long-Term Evolution (LTE) cell.
  58. The apparatus of claim 45, wherein the means for performing the measurement of the signal of the second cell comprises:
    means for receiving the signal from a 5th Generation (5G) cell; and
    means for performing the measurement of the signal received from the 5G cell.
  59. An apparatus for wireless communication at a base station, comprising:
    means for receiving, from a UE in a non-standalone mode, an attach request for a first cell associated with the base station;
    means for transmitting a first measurement object message based at least in part on the attach request, the first measurement object message including an indication for the UE to measure a second cell;
    means for determining an absence in reporting by the UE of a measurement of the second cell;
    means for receiving a tracking area update request message from the UE for triggering a tracking area update procedure; and
    means for transmitting a second measurement object message to the UE based at least in part on the tracking area update request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  60. The apparatus of claim 59, further comprising:
    means for receiving, from the UE, a measurement report including the measurement of the second cell, wherein receiving the measurement report is based at least in part on the second measurement object message.
  61. The apparatus of claim 60, further comprising:
    means for establishing, based at least in part on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  62. The apparatus of claim 59, wherein the means for receiving the tracking area update request message comprises:
    means for receiving a tracking area update request for the first cell associated with the base station.
  63. The apparatus of claim 59, further comprising:
    means for transmitting, to the UE, an acknowledgement message based at least in part on receiving the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  64. The apparatus of claim 59, wherein the means for receiving the attach request comprises:
    means for receiving, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  65. The apparatus of claim 59, wherein the means for receiving the attach request comprises:
    means for receiving an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
  66. The apparatus of claim 59, wherein the first measurement object message includes an indication for the UE to measure a 5th Generation (5G) cell.
  67. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    transmit, by the UE in a non-standalone mode, an attach request to a first cell;
    receive a measurement object message from the first cell based at least in part on the attach request, the measurement object message for measurement of a second cell;
    perform a measurement of a signal of the second cell in accordance with the measurement object message;
    initiate a communications procedure that preempts reporting of the measurement of the signal of the second cell; and
    transmit, based at least in part on preemption of the transmission of the indication, a tracking area update request message for triggering a tracking area update procedure for the UE.
  68. The non-transitory computer-readable medium of claim 67, wherein the instructions are further executable to:
    receive, from the first cell, a second measurement object message based at least in part on the tracking area update request message.
  69. The non-transitory computer-readable medium of claim 68, wherein the instructions are further executable to:
    measure a second signal of the second cell in accordance with the second measurement object message; and
    transmit, to the first cell, a measurement report including a measurement of the second signal after measuring the second signal.
  70. The non-transitory computer-readable medium of claim 69, wherein the instructions are further executable to:
    establish a connection with the second cell based at least in part on transmitting the measurement report to the first cell.
  71. The non-transitory computer-readable medium of claim 69, wherein the instructions to measure the second signal are executable to:
    measure a channel quality parameter of a reference signal from the second cell.
  72. The non-transitory computer-readable medium of claim 67, wherein the instructions to initiate the communications procedure are executable to:
    initiate an attachment procedure with a third cell.
  73. The non-transitory computer-readable medium of claim 72, wherein the instructions are further executable to:
    perform a retuning procedure to a first frequency band associated with the third cell; and
    perform a second retuning procedure to a second frequency band associated with the first cell following the completion of the attachment procedure with the third cell.
  74. The non-transitory computer-readable medium of claim 72, wherein the instructions to initiate the attachment procedure with the third cell are executable to:
    transmit a second attach request to the third cell; and
    receive an attach accept from the third cell in response to the second attach request.
  75. The non-transitory computer-readable medium of claim 67, wherein the attach request is transmitted to the first cell via a first data subscriber, and the communications procedure is performed via a second data subscriber different form the first data subscriber.
  76. The non-transitory computer-readable medium of claim 67, wherein the instructions to transmit the tracking area update request message are executable to:
    transmit a tracking area update request to the first cell.
  77. The non-transitory computer-readable medium of claim 67, wherein the instructions are further executable to:
    receive, from the first cell, an acknowledgement message based at least in part on transmitting the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  78. The non-transitory computer-readable medium of claim 67, wherein the instructions to transmit the attach request are executable to:
    transmit, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  79. The non-transitory computer-readable medium of claim 67, wherein the instructions to transmit the attach request to the first cell are executable to:
    transmit an attach request to a Long-Term Evolution (LTE) cell.
  80. The non-transitory computer-readable medium of claim 67, wherein the instructions to perform the measurement of the signal of the second cell are executable to:
    receive the signal from a 5th Generation (5G) cell; and
    perform the measurement of the signal received from the 5G cell.
  81. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    receive, from a UE in a non-standalone mode, an attach request for a first cell associated with the base station;
    transmit a first measurement object message based at least in part on the attach request, the first measurement object message including an indication for the UE to measure a second cell;
    determine an absence in reporting by the UE of a measurement of the second cell;
    receive a tracking area update request message from the UE for triggering a tracking area update procedure; and
    transmit a second measurement object message to the UE based at least in part on the tracking area update request message and the absence in reporting by the UE, the second measurement object message including a second indication for the UE to measure the second cell.
  82. The non-transitory computer-readable medium of claim 81, wherein the instructions are further executable to:
    receive, from the UE, a measurement report including the measurement of the second cell, wherein receiving the measurement report is based at least in part on the second measurement object message.
  83. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    establish, based at least in part on receiving the measurement report, a connection between the UE and the second cell supported by the base station.
  84. The non-transitory computer-readable medium of claim 81, wherein the instructions to receive the tracking area update request message are executable to:
    receive a tracking area update request for the first cell associated with the base station.
  85. The non-transitory computer-readable medium of claim 81, wherein the instructions are further executable to:
    transmit, to the UE, an acknowledgement message based at least in part on receiving the tracking area update request message, wherein the acknowledgement message comprises a tracking area update accept.
  86. The non-transitory computer-readable medium of claim 81, wherein the instructions to receive the attach request are executable to:
    receive, in the attach request, an indication that the UE is configured for a dual connectivity mode of operation.
  87. The non-transitory computer-readable medium of claim 81, wherein the instructions to receive the attach request are executable to:
    receive an attach request for a Long-Term Evolution (LTE) cell supported by the base station.
  88. The non-transitory computer-readable medium of claim 81, wherein the first measurement object message includes an indication for the UE to measure a 5th Generation (5G) cell.
PCT/CN2020/084122 2020-04-10 2020-04-10 Enhanced service acquisition for wireless communications WO2021203399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084122 WO2021203399A1 (en) 2020-04-10 2020-04-10 Enhanced service acquisition for wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/084122 WO2021203399A1 (en) 2020-04-10 2020-04-10 Enhanced service acquisition for wireless communications

Publications (1)

Publication Number Publication Date
WO2021203399A1 true WO2021203399A1 (en) 2021-10-14

Family

ID=78023835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084122 WO2021203399A1 (en) 2020-04-10 2020-04-10 Enhanced service acquisition for wireless communications

Country Status (1)

Country Link
WO (1) WO2021203399A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018213688A1 (en) * 2017-05-19 2018-11-22 Qualcomm Incorporated Options to provide a network icon in non-standalone mode
WO2019102681A1 (en) * 2017-11-21 2019-05-31 Kddi株式会社 Base station device, terminal device, control method and program
CN110267301A (en) * 2019-05-31 2019-09-20 长安大学 Terminal capability acquisition methods in a kind of doubly-linked welding system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018213688A1 (en) * 2017-05-19 2018-11-22 Qualcomm Incorporated Options to provide a network icon in non-standalone mode
WO2019102681A1 (en) * 2017-11-21 2019-05-31 Kddi株式会社 Base station device, terminal device, control method and program
CN110267301A (en) * 2019-05-31 2019-09-20 长安大学 Terminal capability acquisition methods in a kind of doubly-linked welding system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Control Plane handling and procedures to support Dual Connectivity Role Switch (DCRS) based HO", 3GPP DRAFT; R2-1905783, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051729282 *

Similar Documents

Publication Publication Date Title
US20200350977A1 (en) Multi-panel control channel order, initial access, and handover
US11778527B2 (en) Reporting for conditional primary secondary cell addition or change
US11363656B2 (en) Techniques for indicating full configuration to a secondary node in dual connectivity
US11729841B2 (en) Truncated identification indicators
US11711826B2 (en) On-demand multicast control channel messages
WO2021203282A1 (en) Slot format for intra-frequency cross link interference measurement
WO2021026802A1 (en) Timing advance adjustment for downlink carrier aggregation
US20230247461A1 (en) Measurement reporting timing adjustments
WO2022011489A1 (en) Operation state determining and switching
WO2021168641A1 (en) Fast radio link failure trigger
WO2021056494A1 (en) Method and apparatus for configuring connected mode discontinuous reception (cdrx)
WO2021203399A1 (en) Enhanced service acquisition for wireless communications
WO2021253283A1 (en) Service recovery techniques for wireless communications systems
US11770861B2 (en) Two-step random access procedure for a backhaul node
US11974155B2 (en) Techniques for time alignment of measurement gaps and frequency hops
WO2021203375A1 (en) Connectivity with non-standalone cells
WO2021195822A1 (en) Techniques for mitigating endc device data stall
WO2022052037A1 (en) Configuring route selection policies
WO2021217577A1 (en) Failure threshold for a secondary cell group
WO2021232420A1 (en) Disabling dual connectivity at a multi-subscriber identity module user equipment
WO2021195911A1 (en) Connecting to multi-radio access technology service in non-standalone mode
WO2023150954A1 (en) Restricted ue assistance for minimization of drive test and quality of experience measurement alignment
WO2021212453A1 (en) Service recovery techniques for wireless communications systems
WO2022011530A1 (en) Radio access technology measurement periodicity
US20230262754A1 (en) Coverage enhancement for contention free random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930577

Country of ref document: EP

Kind code of ref document: A1