WO2021217577A1 - Failure threshold for a secondary cell group - Google Patents

Failure threshold for a secondary cell group Download PDF

Info

Publication number
WO2021217577A1
WO2021217577A1 PCT/CN2020/088267 CN2020088267W WO2021217577A1 WO 2021217577 A1 WO2021217577 A1 WO 2021217577A1 CN 2020088267 W CN2020088267 W CN 2020088267W WO 2021217577 A1 WO2021217577 A1 WO 2021217577A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary cell
cell group
scg
reference signal
receive power
Prior art date
Application number
PCT/CN2020/088267
Other languages
French (fr)
Inventor
Chaofeng HUI
Li Tan
Yuankun ZHU
Fojian ZHANG
Hao Zhang
Jian Li
Pan JIANG
Quanling ZHANG
Meng Liu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/088267 priority Critical patent/WO2021217577A1/en
Publication of WO2021217577A1 publication Critical patent/WO2021217577A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the following relates generally to wireless communications and more specifically to a failure threshold for a secondary cell group (SCG) .
  • SCG secondary cell group
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long-Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long-Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may have multiple subscriptions to provide different network connections to different radio access technologies. Some techniques for establishing these network connections can be improved.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support a failure threshold for a secondary cell group (SCG) .
  • the described techniques provide for an anchor cell configuring a user equipment (UE) with an SCG.
  • the anchor cell may select an SCG with which to configure the UE and indicate the selected SCG to the UE.
  • the anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., a reference signal receive power (RSRP) ) .
  • RSRP reference signal receive power
  • the UE may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor reference signal received quality (RSRQ) or a poor a signal to noise ratio (SNR) .
  • the UE may indicate the SCG failure to the anchor cell.
  • the anchor cell may continue to select a same SCG and the UE may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
  • the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs with different SCGs.
  • the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs with the SCG until expiration of the timer.
  • the anchor cell may configure UEs with other SCGs that may be associated with better RSRQs or SNRs.
  • a method of wireless communication at an anchor cell may include receiving, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, incrementing a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfiguring the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the apparatus may include means for receiving, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, incrementing a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfiguring the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • a non-transitory computer-readable medium storing code for wireless communication at an anchor cell is described.
  • the code may include instructions executable by a processor to receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for starting a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity, and refraining from configuring the UE or other UEs with the first SCG until expiration of the timer.
  • incrementing the counter may include operations, features, means, or instructions for receiving additional indications of SCG failure from additional UEs, and incrementing the counter for receipt of each additional indication.
  • reconfiguring the UE with the second SCG further may include operations, features, means, or instructions for receiving, from the UE, a first measurement report indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, where the first RSRP may be greater than the second RSRP, and transmitting, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP may be greater than the second RSRP.
  • determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity further may include operations, features, means, or instructions for evaluating the quantity of SCG failures within a predetermined period of time.
  • the SCG failure may be based on a SNR of the first SCG.
  • the anchor cell includes a Long-Term Evolution (LTE) anchor cell and the first SCG and the second SCG include fifth generation (5G) cells.
  • LTE Long-Term Evolution
  • 5G fifth generation
  • FIG. 1 illustrates an example of a system for wireless communications that supports a failure threshold for a secondary cell group (SCG) in accordance with aspects of the present disclosure.
  • SCG secondary cell group
  • FIG. 2 illustrates an example of a wireless communications system that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show flowcharts illustrating methods that support a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • an anchor cell may configure a user equipment (UE) with a secondary cell group (SCG) .
  • the anchor cell may select an SCG with which to configure the UE and indicate the selected SCG to the UE.
  • the anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., a reference signal receive power (RSRP) ) .
  • RSRP reference signal receive power
  • the UE may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor reference signal received quality (RSRQ) or a poor a signal to noise ratio (SNR) .
  • the UE may indicate the SCG failure to the anchor cell.
  • the anchor cell may continue to select a same SCG and the UE may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
  • the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs with different SCGs.
  • the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs with the SCG until expiration of the timer.
  • the anchor cell may configure UEs with other SCGs that may be associated with better RSRQs or SNRs.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a failure threshold for an SCG.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long-Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long-Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a UE 115 may connect to different cells to connect to different networks.
  • a first cell e.g., an LTE cell
  • a second cell may enable a UE 115 to connect to an NR network.
  • a UE 115 may connect to more than one cell.
  • a UE 115 may connect to an anchor cell for a standalone connection to a network (e.g., the UE 115 may connect to an LTE anchor cell for a standalone connection to an LTE network) .
  • the UE 115 may additionally connect to an additional cell, or SCG, for a non-standalone connection to a second network (e.g., the UE 115 may connect to a 5G cell for a non-standalone connection to an NR network) .
  • the UE 115 may receive control signaling for each cell from the anchor cell.
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • an anchor cell may configure a UE 115 with an SCG.
  • the anchor cell may select an SCG with which to configure the UE 115 and indicate the selected SCG to the UE 115.
  • the anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., an RSRP) .
  • the UE 115 may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor RSRQ or a poor a SNR.
  • the UE 115 may indicate the SCG failure to the anchor cell.
  • the anchor cell may continue to select a same SCG and the UE 115 may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
  • the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs 115 with different SCGs.
  • the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs 115 with the SCG until expiration of the timer.
  • the anchor cell may configure UEs 115 with other SCGs that may be associated with better RSRQs or SNRs.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a UE 115-a, which may be an example of a UE 115 as described with reference to FIG. 1.
  • the wireless communications system 200 may include an anchor cell 205 and SCGs 210, which may be examples of anchor cells and SCGs as described with reference to FIG. 1.
  • the anchor cell 205 and SCGs 210 may be associated with a same base station. Additionally or alternatively, one or more of the anchor cell 205 and the SCGs 210 may be associated with different base stations.
  • the UE 115-a may communicate with a first wireless network (e.g., an LTE network, an NR network) by a communication link 215 with the anchor cell 205.
  • the anchor cell 205 may provide the UE 115-awith a standalone connection to the first network.
  • the UE 115-a may be configured to additionally connect to a second wireless network (e.g., the UE 115-amay be configured for evolved universal terrestrial radio access network NR –dual connectivity (ENDC) ) .
  • the UE 115-a may be an example of a dual-subscriber identity module (SIM) , or multi-SIM UE 115.
  • the UE 115-a may include a first SIM and a second SIM.
  • the first SIM may provide a first subscription and the second SIM may provide a second subscription.
  • the UE 115-a may communicate with the first wireless network via the first subscription and may simultaneously communicate with the second wireless network via the second subscription.
  • SIM dual-subscriber
  • the anchor cell 205 may configure the UE 115-awith an additional non-standalone connection to the second wireless network by a communication link 220 with an SCG 210.
  • the anchor cell 205 may transmit a radio resource control (RRC) reconfiguration measurement requesting a measurement report from the UE 115-a.
  • RRC radio resource control
  • the UE 115-a may measure and report one or more metrics associated with each of the SCGs 210.
  • the UE 115-a may detect and report (e.g., to the anchor cell 205) one or more of an RSRP, RSRQ, and SNR for each of the SCGs 210.
  • the anchor cell 205 may receive the measurement report and select one of the SCGs 210 to be used by the UE 115-a.
  • the anchor cell 205 may select SCG 210-a based on SCG 210-ahaving a highest reported RSRP (e.g., from the RSRPs reported within the measurement report) .
  • the anchor cell 205 may indicate the SCG 210-a to the UE 115-ain an RRC reconfiguration message.
  • the UE 115-a may thus attempt to add the SCG 210-a.
  • the UE 115-a may monitor for a physical broadcast channel (PBCH) transmission from the SCG 210-a via communication link 220-a.
  • PBCH physical broadcast channel
  • the UE 115-a may fail to decode the PBCH transmission from the SCG 210-a and fail to add the SCG 210-a.
  • PBCH physical broadcast channel
  • the UE 115-a may fail to add the SCG 210-a due one or more metrics associated with the communication link 220-abeing unsatisfactory.
  • the communication link 220-a may be experience interference and may thus be associated with a low RSRP or low SNR.
  • the UE 115-a may indicate the SCG failure associated with the SCG 210-a to the anchor cell 205.
  • the anchor cell 205 may receive the indication of the SCG failure from the UE 115-a and increment a counter associated with the SCG 210-a. In some cases, the Each time the anchor cell 205 receives an indication of an SCG failure associated with the SCG 210-a(e.g., from the UE 115-a or another UE 115) , the anchor cell 205 may increment the counter. Additionally, each time the anchor cell 205 receives an indication of an SCG failure associated with the SCG 210-b (e.g., from the UE 115-a or another UE 115) , the anchor cell 205 may increment a different counter associated with the SCG 210-b.
  • the anchor cell 205 may increment a different counter associated with the SCG 210-b.
  • the counter may indicate a quantity of SCG failures associated with the SCG 210-a within a predetermined period of time. That is, the anchor cell 205 may periodically refresh the counter. Additionally or alternatively, the anchor cell 205 may adjust the counter based on the predetermined period of time.
  • the anchor cell 205 may compare the quantity of SCG failures indicated by the counter to a threshold quantity. If the quantity of SCG failures indicated by the counter associated with the SCG 210-a is less than the threshold quantity, the anchor cell 205 may continue to indicate, to the UE 115-a, the SCG 210 associated with a highest RSRP. Alternatively, if the quantity of SCG failures indicated by the counter associated with the SCG 210-a is greater than the threshold quantity, the anchor cell 205 may refrain from configuring the UE 115-a and other UEs 115 with the SCG 210-a.
  • the anchor cell 205 may refrain from configuring UEs 115 with the SCG 210-afor a defined period of time. For example, the anchor cell 205 may initiate a timer upon determining that the quantity of SCG failures associated with the SCG 210-a exceeds the threshold quantity and may refrain from configuring UEs 115 with the SCG 210-a until an expiration of the timer.
  • the anchor cell 205 may configure the UE 115-a to add an SCG 210 associated with a next-highest RSRP. For example, although an RSRP associated with the communication link 220-a with the SCG 210-a may be greater than an RSRP associated with the communication link 220-b with the SCG 210-b, the anchor cell 205 may select the SCG 210-b and indicate SCG 210-b to the UE 115-a based on the SCG 210-b having a next-highest reported RSRP. In some cases, the communication link 220-b may be associated with a better RSRQ or SNR (e.g., when compared to the communication link 220-a) and the UE 115-a may thus be capable of adding the SCG 210-b.
  • FIG. 3 illustrates an example of a process flow 300 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the process flow 300 may implement aspects of wireless communications system 100 and 200.
  • the process flow 300 includes UE 115-b, anchor cell 205-b, and SCGs 210.
  • UE 115-a may be an example of UEs 115 as described with reference to FIGs. 1 and 2.
  • the anchor cell 205-b and SCGs 210 may be examples of anchor cells and SCGs, respectively, described with reference to FIGs. 1 and 2.
  • the anchor cell 205-b may be an LTE cell configured to connect the UE 115-b to an LTE network.
  • the SCGs 210 may be 5G SCGs 210 configured to connect the UE 115-b to an NR network.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-b and anchor cell 205-b may perform an attach procedure. After performing the attach procedure, the UE 115-b may be attached to the anchor cell 205-b and may be connected to a first wireless network by the anchor cell 205-b.
  • the UE 115-b may be configured to additionally connect to a second wireless network (e.g., the UE 115-a may be configured for ENDC) .
  • the anchor cell 205-b may perform Procedure 1 to enable the UE 115-b to add one of the SCGs 210 and connect to the second wireless network.
  • the anchor cell 205-b may transmit a measurement report request to the UE 115-b at 310.
  • the measurement report request may be an RRC reconfiguration message (e.g., a measObjectNR message) .
  • the UE 115-b may transmit the measurement report to the anchor cell 205-b.
  • the UE 115-b may detect one or more of an RSRP, RSRQ, and SNR for each of the SCGs 210.
  • the UE 115-b may include the detected measurements in the measurement report.
  • the anchor cell 205-b may transmit an SCG indication to the UE 115-b.
  • the SCG indication may be an RRC reconfiguration message indicating one of the SCGs 210.
  • the anchor cell 205-b may select one of the SCGs 210 based on the SCG 210 with a highest reported RSRP.
  • the measurement report may include an RSRP associated with the SCG 210-c and an RSRP associated with the SCG 210-d. In a case that the RSRP associated with the SCG 210-c is higher than the RSRP associated with SCG 210-d, the anchor cell 205-b may indicate the SCG 210-c by the SCG indication.
  • the UE 115-b may attempt to add the indicated SCG 210. For example, if the SCG indication indicates SCG 210-c, the UE 115-b may attempt to decode a PBCH transmission from SCG 210-c. In some cases, however, a communication link between UE 115-b and SCG 210-c may be associated with interference such that the UE 115-b is unable to decode a PBCH transmission from the SCG 210-c. Thus, the UE 115-b may detect an SCG failure associated with SCG 210-c.
  • the UE 115-b may transmit an SCG failure indication to the anchor cell 205-b at 330.
  • the anchor cell 205-b may increment a counter associated with the SCG 210-c based on receiving the SCG failure indication.
  • the counter may indicate a quantity of SCG failures associated with the SCG 210-a. That is, the anchor cell 205-b may receive, from the UE 115-b or another UE 115, an SCG failure indication associated with the SCG 210-c at a time different than 330 (e.g., prior to 330, after 330) and may increment the counter based on receiving that SCG failure indication.
  • the anchor cell 205-b may compare the quantity of SCG failures indicated by the counter to a threshold quantity. If the anchor cell 205-b determines that the quantity of SCG failures is less than the threshold quantity, the anchor cell 205-b may proceed to 340 and loop Procedure 1. That is, the anchor cell 205-b may transmit another measurement report request, receive another measurement report from the UE 115-b, and indicate the SCG 210 with the highest reported RSRP.
  • the anchor cell 205-b determines that the quantity of SCG failures is greater than the threshold quantity, the anchor cell 205-b exit Procedure 1 and may reconfigure the UE 115-b with the SCG 210-d. For example, the anchor cell 205-b may initiate a timer and may refrain from configuring the UE 115-b or other UEs 115 with the SCG 210-c until an expiration of the timer.
  • the UE 115-b may transmit a measurement report to the anchor cell 205-b.
  • the measurement report may indicate that the SCG 210-c has a higher reported RSRP than the SCG 210-d, but the anchor cell 205-b may refrain from selecting the SCG 210-c until the timer expires.
  • the anchor cell 205-b may transmit an SCG indication to the UE 115-b indicating SCG 210-d to the UE 115-b.
  • the UE 115-b may transmit an RRC reconfiguration complete indication to the anchor cell 205-b.
  • the UE 115-b may attempt successfully decode a PBCH transmission from the SCG 210-d and may transmit the RRC reconfiguration complete indication based on successfully decoding the PBCH transmission.
  • the UE 115-b may perform a random access procedure with the SCG 210-d.
  • the UE 115-b and the SCG 210-d may exchange message 1, message 2, message 3, and message 4 during the random access procedure.
  • the UE 115-b and the SCG 210-d may have successfully set of the RRC connection.
  • the UE 115-b may be connected to the second wireless network (e.g., an NR network) by the SCG 210-d.
  • the second wireless network e.g., an NR network
  • FIG. 4 shows a block diagram 400 of a device 405 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of an anchor cell as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a failure threshold for an SCG, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or an anchor cell as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 540.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a failure threshold for an SCG, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include an SCG failure manager 520, a counter component 525, a threshold manager 530, and a reconfiguration manager 535.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the SCG failure manager 520 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG.
  • the counter component 525 may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication.
  • the threshold manager 530 may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity.
  • the reconfiguration manager 535 may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the transmitter 540 may transmit signals generated by other components of the device 505.
  • the transmitter 540 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 540 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 540 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include an SCG failure manager 610, a counter component 615, a threshold manager 620, a reconfiguration manager 625, and a timing component 630. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the SCG failure manager 610 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG. In some cases, the SCG failure is based on an SNR of the first SCG. In some instances, the anchor cell includes an LTE anchor cell and the first SCG and the second SCG include 5G cells.
  • the counter component 615 may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication. In some examples, the counter component 615 may receive additional indications of SCG failure from additional UEs. In some cases, the counter component 615 may increment the counter for receipt of each additional indication.
  • the threshold manager 620 may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity. In some examples, the threshold manager 620 may evaluate the quantity of SCG failures within a predetermined period of time.
  • the reconfiguration manager 625 may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity. In some examples, the reconfiguration manager 625 may refrain from configuring the UE or other UEs with the first SCG until expiration of the timer. In some cases, the reconfiguration manager 625 may receive, from the UE, a first measurement report indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, where the first RSRP is greater than the second RSRP. In some instances, the reconfiguration manager 625 may transmit, to the UE, an RRC reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP is greater than the second RSRP.
  • the timing component 630 may start a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or an anchor cell as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, a network communications manager 715, a transceiver 720, an antenna 725, memory 730, a processor 740, and an inter-station communications manager 745. These components may be in electronic communication via one or more buses (e.g., bus 750) .
  • buses e.g., bus 750
  • the communications manager 710 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the network communications manager 715 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof.
  • the memory 730 may store computer-readable code 735 including instructions that, when executed by a processor (e.g., the processor 740) cause the device to perform various functions described herein.
  • a processor e.g., the processor 740
  • the memory 730 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting a failure threshold for an SCG) .
  • the inter-station communications manager 745 may manage communications with other anchor cell, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other anchor cells. For example, the inter-station communications manager 745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 745 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between anchor cells.
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the operations of method 800 may be implemented by an anchor cell or its components as described herein.
  • the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • an anchor cell may execute a set of instructions to control the functional elements of the anchor cell to perform the functions described below. Additionally or alternatively, an anchor cell may perform aspects of the functions described below using special-purpose hardware.
  • the anchor cell may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG.
  • the operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by an SCG failure manager as described with reference to FIGs. 4 through 7.
  • the anchor cell may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication.
  • the operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a counter component as described with reference to FIGs. 4 through 7.
  • the anchor cell may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity.
  • the operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
  • the anchor cell may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the operations of 820 may be performed according to the methods described herein. In some examples, aspects of the operations of 820 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by an anchor cell or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • an anchor cell may execute a set of instructions to control the functional elements of the anchor cell to perform the functions described below. Additionally or alternatively, an anchor cell may perform aspects of the functions described below using special-purpose hardware.
  • the anchor cell may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by an SCG failure manager as described with reference to FIGs. 4 through 7.
  • the anchor cell may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a counter component as described with reference to FIGs. 4 through 7.
  • the anchor cell may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
  • the anchor cell may start a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a timing component as described with reference to FIGs. 4 through 7.
  • the anchor cell may refrain from configuring the UE or other UEs with the first SCG until expiration of the timer.
  • the operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
  • the anchor cell may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • the operations of 930 may be performed according to the methods described herein. In some examples, aspects of the operations of 930 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
  • Example 1 A method for wireless communication at an anchor cell, comprising: receiving, at the anchor cell and from a user equipment (UE) , an indication of an SCG failure associated with communications between the UE and a first SCG; incrementing a counter indicating a quantity of SCG failures associated with the first SCG based at least in part on receiving the indication; determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity; and reconfiguring the UE with a second SCG based at least in part on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
  • UE user equipment
  • Example 2 The method of example 1, further comprising: starting a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity; and refraining from configuring the UE or other UEs with the first SCG until expiration of the timer.
  • Example 3 The method of any of examples 1 or 2, wherein incrementing the counter comprises: receiving additional indications of SCG failure from additional UEs; and incrementing the counter for receipt of each additional indication.
  • Example 4 The method of any examples 1 to 3, wherein reconfiguring the UE with the second SCG further comprises: receiving, from the UE, a first measurement report indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, wherein the first RSRP is greater than the second RSRP; and transmitting, to the UE, an RRC reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP is greater than the second RSRP.
  • Example 5 The method of any examples 1 to 4, wherein determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity further comprises: evaluating the quantity of SCG failures within a predetermined period of time.
  • Example 6 The method of any examples 1 to 5, wherein the SCG failure is based at least in part on an SNR of the first SCG.
  • Example 7 The method of any examples 1 to 6, wherein the anchor cell comprises an LTE anchor cell and the first SCG and the second SCG comprise 5G cells.
  • LTE, LTE-A, LTE-APro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-APro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-APro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. An anchor cell may receive, from a user equipment (UE), an indication of a secondary cell group (SCG) failure associated with communications between the UE and a first SCG. The anchor cell may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication. The anchor cell may then determine that the quantity of SCG failures associated with the first SCG (e.g., indicated by the timer) exceeds a threshold quantity. Based on the quantity of SCG failures exceeding the threshold quantity, the anchor cell may start a timer and refrain from configuring the UE or other UEs with the first SCG until expiration of the timer. Additionally, the anchor cell may reconfigure the UE with a second SCG based on the quantity of SCG failures exceeding the threshold quantity.

Description

FAILURE THRESHOLD FOR A SECONDARY CELL GROUP
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to a failure threshold for a secondary cell group (SCG) .
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long-Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may have multiple subscriptions to provide different network connections to different radio access technologies. Some techniques for establishing these network connections can be improved.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support a failure threshold for a secondary cell group (SCG) . Generally, the described techniques provide for an anchor cell configuring a user equipment (UE) with an SCG. For example, the anchor cell may select an SCG with which to configure the UE and indicate the selected SCG to the UE. The anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., a reference signal receive power  (RSRP) ) . In some cases, the UE may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor reference signal received quality (RSRQ) or a poor a signal to noise ratio (SNR) . Here, the UE may indicate the SCG failure to the anchor cell. In some wireless communications systems, the anchor cell may continue to select a same SCG and the UE may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
In some other wireless communications systems, the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs with different SCGs. For example, the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs with the SCG until expiration of the timer. Thus, the anchor cell may configure UEs with other SCGs that may be associated with better RSRQs or SNRs.
A method of wireless communication at an anchor cell is described. The method may include receiving, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, incrementing a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfiguring the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
An apparatus for wireless communication at an anchor cell is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the  indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
Another apparatus for wireless communication at an anchor cell is described. The apparatus may include means for receiving, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, incrementing a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfiguring the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
A non-transitory computer-readable medium storing code for wireless communication at an anchor cell is described. The code may include instructions executable by a processor to receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for starting a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity, and refraining from configuring the UE or other UEs with the first SCG until expiration of the timer.
In some cases of the method, apparatuses, and non-transitory computer-readable medium described herein, incrementing the counter may include operations, features, means, or instructions for receiving additional indications of SCG failure from additional UEs, and incrementing the counter for receipt of each additional indication.
In some instances of the method, apparatuses, and non-transitory computer-readable medium described herein, reconfiguring the UE with the second SCG further may include operations, features, means, or instructions for receiving, from the UE, a first  measurement report indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, where the first RSRP may be greater than the second RSRP, and transmitting, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP may be greater than the second RSRP.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity further may include operations, features, means, or instructions for evaluating the quantity of SCG failures within a predetermined period of time.
In some cases of the method, apparatuses, and non-transitory computer-readable medium described herein, the SCG failure may be based on a SNR of the first SCG.
In some instances of the method, apparatuses, and non-transitory computer-readable medium described herein, the anchor cell includes a Long-Term Evolution (LTE) anchor cell and the first SCG and the second SCG include fifth generation (5G) cells.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports a failure threshold for a secondary cell group (SCG) in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support a failure threshold for an SCG in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports a failure threshold for an SCG in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show flowcharts illustrating methods that support a failure threshold for an SCG in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, an anchor cell may configure a user equipment (UE) with a secondary cell group (SCG) . The anchor cell may select an SCG with which to configure the UE and indicate the selected SCG to the UE. The anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., a reference signal receive power (RSRP) ) . In some cases, the UE may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor reference signal received quality (RSRQ) or a poor a signal to noise ratio (SNR) . Here, the UE may indicate the SCG failure to the anchor cell. In some wireless communications systems, the anchor cell may continue to select a same SCG and the UE may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
In some other wireless communications systems, the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs with different SCGs. For example, the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs with the SCG until expiration of the timer. Thus, the anchor cell may configure UEs with other SCGs that may be associated with better RSRQs or SNRs.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also described in the context of a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to a failure threshold for an SCG.
FIG. 1 illustrates an example of a wireless communications system 100 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long-Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-APro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a  carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol  period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some cases, a UE 115 may connect to different cells to connect to different networks. For example, a first cell (e.g., an LTE cell) may enable a UE  115 to connect to an LTE network. In another example, a second cell (e.g., a fifth generation (5G) cell) may enable a UE 115 to connect to an NR network. A UE 115 may connect to more than one cell. For example, a UE 115 may connect to an anchor cell for a standalone connection to a network (e.g., the UE 115 may connect to an LTE anchor cell for a standalone connection to an LTE network) . Here, the UE 115 may additionally connect to an additional cell, or SCG, for a non-standalone connection to a second network (e.g., the UE 115 may connect to a 5G cell for a non-standalone connection to an NR network) . In some cases, the UE 115 may receive control signaling for each cell from the anchor cell.
In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared  to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining  the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In wireless communications system 100, an anchor cell may configure a UE 115 with an SCG. The anchor cell may select an SCG with which to configure the UE 115 and indicate the selected SCG to the UE 115. The anchor cell may select the SCG based on a first metric associated with the SCG reported by the UE (e.g., an RSRP) . In some cases, the UE 115 may repeatedly fail to add the selected SCG due to one or more poor second metrics such as a poor RSRQ or a poor a SNR. Here, the UE 115 may indicate the SCG failure to the anchor cell. In some other wireless communications systems, the anchor cell may continue to select a same SCG and the UE 115 may continue to indicate SCG failures associated with the selected SCG to the anchor cell.
Alternatively, in wireless communications system 100, the anchor cell may track a quantity of SCG failures associated with each SCG and refrain from selecting an SCG associated with repeated failures. For example, the anchor cell may increment a counter indicating a quantity of SCG failures associated with each SCG each time the anchor cell receives an SCG failure indication associated with the SCG. The anchor cell may then compare the quantity of SCG failures associated with the SCG (e.g., indicated by the counter) to a threshold quantity. In a case that the quantity of SCG failures associated with an SCG exceeds the threshold quantity, the anchor cell may reconfigure UEs 115 with different SCGs. For example, the anchor cell start a timer upon determining that the quantity of SCG failures exceeds the threshold and refrain from configuring UEs 115 with the SCG until expiration of the timer. Thus, the anchor cell may configure UEs 115 with other SCGs that may be associated with better RSRQs or SNRs.
FIG. 2 illustrates an example of a wireless communications system 200 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. In some examples, the wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include a UE 115-a, which may be an example of a UE 115 as described with reference to FIG. 1. Additionally, the wireless communications system 200 may include an anchor cell 205 and SCGs 210, which may be examples of anchor cells and SCGs as described with reference to FIG. 1. In some cases, the anchor cell 205 and SCGs 210 may be associated with a same base station. Additionally or alternatively, one or more of the anchor cell 205 and the SCGs 210 may be associated with different base stations.
The UE 115-amay communicate with a first wireless network (e.g., an LTE network, an NR network) by a communication link 215 with the anchor cell 205. Here, the anchor cell 205 may provide the UE 115-awith a standalone connection to the first network. The UE 115-amay be configured to additionally connect to a second wireless network (e.g., the UE 115-amay be configured for evolved universal terrestrial radio access network NR –dual connectivity (ENDC) ) . For example, the UE 115-amay be an example of a dual-subscriber identity module (SIM) , or multi-SIM UE 115. For example, the UE 115-amay include a first SIM and a second SIM. The first SIM may provide a first subscription and the second SIM may provide a second subscription. The UE 115-amay communicate with the first wireless network via the first subscription and may simultaneously communicate with the second wireless network via the second subscription.
The anchor cell 205 may configure the UE 115-awith an additional non-standalone connection to the second wireless network by a communication link 220 with an SCG 210. For example, the anchor cell 205 may transmit a radio resource control (RRC) reconfiguration measurement requesting a measurement report from the UE 115-a. In response, the UE 115-amay measure and report one or more metrics associated with each of the SCGs 210. For example, the UE 115-a may detect and report (e.g., to the anchor cell 205) one or more of an RSRP, RSRQ, and SNR for each of the SCGs 210. The anchor cell 205 may receive the measurement report and select one of the SCGs 210 to be used by the UE 115-a. For example, the anchor cell 205 may select SCG 210-a based on SCG 210-ahaving a highest reported RSRP (e.g., from the RSRPs reported within the measurement report) . The anchor cell 205 may indicate the SCG 210-a to the UE 115-ain an RRC reconfiguration  message. The UE 115-a may thus attempt to add the SCG 210-a. For example, the UE 115-amay monitor for a physical broadcast channel (PBCH) transmission from the SCG 210-a via communication link 220-a. In some cases, the UE 115-a may fail to decode the PBCH transmission from the SCG 210-a and fail to add the SCG 210-a. The UE 115-a may fail to add the SCG 210-a due one or more metrics associated with the communication link 220-abeing unsatisfactory. For example, the communication link 220-a may be experience interference and may thus be associated with a low RSRP or low SNR. The UE 115-a may indicate the SCG failure associated with the SCG 210-a to the anchor cell 205.
The anchor cell 205 may receive the indication of the SCG failure from the UE 115-a and increment a counter associated with the SCG 210-a. In some cases, the Each time the anchor cell 205 receives an indication of an SCG failure associated with the SCG 210-a(e.g., from the UE 115-a or another UE 115) , the anchor cell 205 may increment the counter. Additionally, each time the anchor cell 205 receives an indication of an SCG failure associated with the SCG 210-b (e.g., from the UE 115-a or another UE 115) , the anchor cell 205 may increment a different counter associated with the SCG 210-b. In some cases, the counter may indicate a quantity of SCG failures associated with the SCG 210-a within a predetermined period of time. That is, the anchor cell 205 may periodically refresh the counter. Additionally or alternatively, the anchor cell 205 may adjust the counter based on the predetermined period of time.
After incrementing the counter associated with the SCG 210-a, the anchor cell 205 may compare the quantity of SCG failures indicated by the counter to a threshold quantity. If the quantity of SCG failures indicated by the counter associated with the SCG 210-a is less than the threshold quantity, the anchor cell 205 may continue to indicate, to the UE 115-a, the SCG 210 associated with a highest RSRP. Alternatively, if the quantity of SCG failures indicated by the counter associated with the SCG 210-a is greater than the threshold quantity, the anchor cell 205 may refrain from configuring the UE 115-a and other UEs 115 with the SCG 210-a. The anchor cell 205 may refrain from configuring UEs 115 with the SCG 210-afor a defined period of time. For example, the anchor cell 205 may initiate a timer upon determining that the quantity of SCG failures associated with the SCG 210-a exceeds the threshold quantity and may refrain from configuring UEs 115 with the SCG 210-a until an expiration of the timer.
While the anchor cell 205 refrains from configuring UE 115-a and other UEs 115 with the SCG 210-a, the anchor cell 205 may configure the UE 115-a to add an SCG 210 associated with a next-highest RSRP. For example, although an RSRP associated with the communication link 220-a with the SCG 210-a may be greater than an RSRP associated with the communication link 220-b with the SCG 210-b, the anchor cell 205 may select the SCG 210-b and indicate SCG 210-b to the UE 115-a based on the SCG 210-b having a next-highest reported RSRP. In some cases, the communication link 220-b may be associated with a better RSRQ or SNR (e.g., when compared to the communication link 220-a) and the UE 115-a may thus be capable of adding the SCG 210-b.
FIG. 3 illustrates an example of a process flow 300 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. In some examples, the process flow 300 may implement aspects of  wireless communications system  100 and 200. The process flow 300 includes UE 115-b, anchor cell 205-b, and SCGs 210. UE 115-amay be an example of UEs 115 as described with reference to FIGs. 1 and 2. Additionally, the anchor cell 205-b and SCGs 210 may be examples of anchor cells and SCGs, respectively, described with reference to FIGs. 1 and 2. In some cases, the anchor cell 205-b may be an LTE cell configured to connect the UE 115-b to an LTE network. Additionally, the SCGs 210 may be 5G SCGs 210 configured to connect the UE 115-b to an NR network. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 305, the UE 115-b and anchor cell 205-b may perform an attach procedure. After performing the attach procedure, the UE 115-b may be attached to the anchor cell 205-b and may be connected to a first wireless network by the anchor cell 205-b.
In some cases, the UE 115-b may be configured to additionally connect to a second wireless network (e.g., the UE 115-a may be configured for ENDC) . Thus, the anchor cell 205-b may perform Procedure 1 to enable the UE 115-b to add one of the SCGs 210 and connect to the second wireless network. To initiate Procedure 1, the anchor cell 205-b may transmit a measurement report request to the UE 115-b at 310. The measurement report request may be an RRC reconfiguration message (e.g., a measObjectNR message) . Based on receiving the measurement report request, the UE 115-b may transmit the measurement  report to the anchor cell 205-b. For example, the UE 115-b may detect one or more of an RSRP, RSRQ, and SNR for each of the SCGs 210. The UE 115-b may include the detected measurements in the measurement report.
At 320, the anchor cell 205-b may transmit an SCG indication to the UE 115-b. The SCG indication may be an RRC reconfiguration message indicating one of the SCGs 210. For example, the anchor cell 205-b may select one of the SCGs 210 based on the SCG 210 with a highest reported RSRP. For example, the measurement report may include an RSRP associated with the SCG 210-c and an RSRP associated with the SCG 210-d. In a case that the RSRP associated with the SCG 210-c is higher than the RSRP associated with SCG 210-d, the anchor cell 205-b may indicate the SCG 210-c by the SCG indication.
Based on receiving the SCG indication, the UE 115-b may attempt to add the indicated SCG 210. For example, if the SCG indication indicates SCG 210-c, the UE 115-b may attempt to decode a PBCH transmission from SCG 210-c. In some cases, however, a communication link between UE 115-b and SCG 210-c may be associated with interference such that the UE 115-b is unable to decode a PBCH transmission from the SCG 210-c. Thus, the UE 115-b may detect an SCG failure associated with SCG 210-c.
Based on detecting the SCG failure associated with the SCG 210-c, the UE 115-b may transmit an SCG failure indication to the anchor cell 205-b at 330. The anchor cell 205-b may increment a counter associated with the SCG 210-c based on receiving the SCG failure indication. In some cases, the counter may indicate a quantity of SCG failures associated with the SCG 210-a. That is, the anchor cell 205-b may receive, from the UE 115-b or another UE 115, an SCG failure indication associated with the SCG 210-c at a time different than 330 (e.g., prior to 330, after 330) and may increment the counter based on receiving that SCG failure indication.
At 335, the anchor cell 205-b may compare the quantity of SCG failures indicated by the counter to a threshold quantity. If the anchor cell 205-b determines that the quantity of SCG failures is less than the threshold quantity, the anchor cell 205-b may proceed to 340 and loop Procedure 1. That is, the anchor cell 205-b may transmit another measurement report request, receive another measurement report from the UE 115-b, and indicate the SCG 210 with the highest reported RSRP.
Alternatively, if the anchor cell 205-b determines that the quantity of SCG failures is greater than the threshold quantity, the anchor cell 205-b exit Procedure 1 and may reconfigure the UE 115-b with the SCG 210-d. For example, the anchor cell 205-b may initiate a timer and may refrain from configuring the UE 115-b or other UEs 115 with the SCG 210-c until an expiration of the timer.
At 345, the UE 115-b may transmit a measurement report to the anchor cell 205-b. In some cases, the measurement report may indicate that the SCG 210-c has a higher reported RSRP than the SCG 210-d, but the anchor cell 205-b may refrain from selecting the SCG 210-c until the timer expires. Thus, at 350 the anchor cell 205-b may transmit an SCG indication to the UE 115-b indicating SCG 210-d to the UE 115-b.
At 355, the UE 115-b may transmit an RRC reconfiguration complete indication to the anchor cell 205-b. For example, the UE 115-b may attempt successfully decode a PBCH transmission from the SCG 210-d and may transmit the RRC reconfiguration complete indication based on successfully decoding the PBCH transmission.
At 360, the UE 115-b may perform a random access procedure with the SCG 210-d. For example, the UE 115-b and the SCG 210-d may exchange message 1, message 2, message 3, and message 4 during the random access procedure.
At 365, the UE 115-b and the SCG 210-d may have successfully set of the RRC connection. Thus, the UE 115-b may be connected to the second wireless network (e.g., an NR network) by the SCG 210-d.
FIG. 4 shows a block diagram 400 of a device 405 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of an anchor cell as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a failure threshold for an SCG, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of  aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the  transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
FIG. 5 shows a block diagram 500 of a device 505 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or an anchor cell as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 540. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a failure threshold for an SCG, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include an SCG failure manager 520, a counter component 525, a threshold manager 530, and a reconfiguration manager 535. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The SCG failure manager 520 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG.
The counter component 525 may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication.
The threshold manager 530 may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity.
The reconfiguration manager 535 may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
The transmitter 540 may transmit signals generated by other components of the device 505. In some examples, the transmitter 540 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 540 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 540 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include an SCG failure manager 610, a counter component 615, a threshold manager 620, a reconfiguration manager 625, and a timing component 630. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The SCG failure manager 610 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG. In some cases, the SCG failure is based on an SNR of the first SCG. In some instances, the anchor cell includes an LTE anchor cell and the first SCG and the second SCG include 5G cells.
The counter component 615 may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication. In some examples, the counter component 615 may receive additional indications of SCG failure from additional UEs. In some cases, the counter component 615 may increment the counter for receipt of each additional indication.
The threshold manager 620 may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity. In some examples, the threshold manager 620 may evaluate the quantity of SCG failures within a predetermined period of time.
The reconfiguration manager 625 may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity. In some examples, the reconfiguration manager 625 may refrain from configuring the UE or other UEs with the first SCG until expiration of the timer. In some cases, the  reconfiguration manager 625 may receive, from the UE, a first measurement report indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, where the first RSRP is greater than the second RSRP. In some instances, the reconfiguration manager 625 may transmit, to the UE, an RRC reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP is greater than the second RSRP.
The timing component 630 may start a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or an anchor cell as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, a network communications manager 715, a transceiver 720, an antenna 725, memory 730, a processor 740, and an inter-station communications manager 745. These components may be in electronic communication via one or more buses (e.g., bus 750) .
The communications manager 710 may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG, increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication, determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity, and reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
The network communications manager 715 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 715 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.  The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof. The memory 730 may store computer-readable code 735 including instructions that, when executed by a processor (e.g., the processor 740) cause the device to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting a failure threshold for an SCG) .
The inter-station communications manager 745 may manage communications with other anchor cell, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other anchor cells. For example, the inter-station communications manager 745 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 745 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between anchor cells.
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be  stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a flowchart illustrating a method 800 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The operations of method 800 may be implemented by an anchor cell or its components as described herein. For example, the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, an anchor cell may execute a set of instructions to control the functional elements of the anchor cell to perform the functions described below. Additionally or alternatively, an anchor cell may perform aspects of the functions described below using special-purpose hardware.
At 805, the anchor cell may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG. The operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by an SCG failure manager as described with reference to FIGs. 4 through 7.
At 810, the anchor cell may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication. The operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a counter component as described with reference to FIGs. 4 through 7.
At 815, the anchor cell may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity. The operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
At 820, the anchor cell may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity. The operations of 820 may be performed according to the methods described herein. In some  examples, aspects of the operations of 820 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
FIG. 9 shows a flowchart illustrating a method 900 that supports a failure threshold for an SCG in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by an anchor cell or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, an anchor cell may execute a set of instructions to control the functional elements of the anchor cell to perform the functions described below. Additionally or alternatively, an anchor cell may perform aspects of the functions described below using special-purpose hardware.
At 905, the anchor cell may receive, at the anchor cell and from a UE, an indication of an SCG failure associated with communications between the UE and a first SCG. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by an SCG failure manager as described with reference to FIGs. 4 through 7.
At 910, the anchor cell may increment a counter indicating a quantity of SCG failures associated with the first SCG based on receiving the indication. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a counter component as described with reference to FIGs. 4 through 7.
At 915, the anchor cell may determine that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
At 920, the anchor cell may start a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a timing component as described with reference to FIGs. 4 through 7.
At 925, the anchor cell may refrain from configuring the UE or other UEs with the first SCG until expiration of the timer. The operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
At 930, the anchor cell may reconfigure the UE with a second SCG based on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity. The operations of 930 may be performed according to the methods described herein. In some examples, aspects of the operations of 930 may be performed by a reconfiguration manager as described with reference to FIGs. 4 through 7.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Example 1: A method for wireless communication at an anchor cell, comprising: receiving, at the anchor cell and from a user equipment (UE) , an indication of an SCG failure associated with communications between the UE and a first SCG; incrementing a counter indicating a quantity of SCG failures associated with the first SCG based at least in part on receiving the indication; determining that the quantity of SCG failures associated with the first SCG exceeds a threshold quantity; and reconfiguring the UE with a second SCG based at least in part on the quantity of SCG failures associated with the first SCG exceeding the threshold quantity.
Example 2: The method of example 1, further comprising: starting a timer upon determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity; and refraining from configuring the UE or other UEs with the first SCG until expiration of the timer.
Example 3: The method of any of examples 1 or 2, wherein incrementing the counter comprises: receiving additional indications of SCG failure from additional UEs; and incrementing the counter for receipt of each additional indication.
Example 4: The method of any examples 1 to 3, wherein reconfiguring the UE with the second SCG further comprises: receiving, from the UE, a first measurement report  indicating a first RSRP associated with the first SCG and a second RSRP associated with the second SCG, wherein the first RSRP is greater than the second RSRP; and transmitting, to the UE, an RRC reconfiguration message reconfiguring the UE with the second SCG even though the first RSRP is greater than the second RSRP.
Example 5: The method of any examples 1 to 4, wherein determining that the quantity of SCG failures associated with the first SCG exceeds the threshold quantity further comprises: evaluating the quantity of SCG failures within a predetermined period of time.
Example 6: The method of any examples 1 to 5, wherein the SCG failure is based at least in part on an SNR of the first SCG.
Example 7: The method of any examples 1 to 6, wherein the anchor cell comprises an LTE anchor cell and the first SCG and the second SCG comprise 5G cells.
Although aspects of an LTE, LTE-A, LTE-APro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-APro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-APro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller,  microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with  lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the  disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (28)

  1. A method for wireless communication at an anchor cell, comprising:
    receiving, at the anchor cell and from a user equipment (UE) , an indication of a secondary cell group failure associated with communications between the UE and a first secondary cell group;
    incrementing a counter indicating a quantity of secondary cell group failures associated with the first secondary cell group based at least in part on receiving the indication;
    determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds a threshold quantity; and
    reconfiguring the UE with a second secondary cell group based at least in part on the quantity of secondary cell group failures associated with the first secondary cell group exceeding the threshold quantity.
  2. The method of claim 1, further comprising:
    starting a timer upon determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity; and
    refraining from configuring the UE or other UEs with the first secondary cell group until expiration of the timer.
  3. The method of claim 1, wherein incrementing the counter comprises:
    receiving additional indications of secondary cell group failure from additional UEs; and
    incrementing the counter for receipt of each additional indication.
  4. The method of claim 1, wherein reconfiguring the UE with the second secondary cell group further comprises:
    receiving, from the UE, a first measurement report indicating a first reference signal receive power associated with the first secondary cell group and a second reference signal receive power associated with the second secondary cell group, wherein the first reference signal receive power is greater than the second reference signal receive power; and
    transmitting, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second secondary cell group even though the first reference signal receive power is greater than the second reference signal receive power.
  5. The method of claim 1, wherein determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity further comprises:
    evaluating the quantity of secondary cell group failures within a predetermined period of time.
  6. The method of claim 1, wherein the secondary cell group failure is based at least in part on a signal to noise ratio of the first secondary cell group.
  7. The method of claim 1, wherein the anchor cell comprises a Long-Term Evolution (LTE) anchor cell and the first secondary cell group and the second secondary cell group comprise fifth generation (5G) cells.
  8. An apparatus for wireless communication at an anchor cell, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, at the anchor cell and from a user equipment (UE) , an indication of a secondary cell group failure associated with communications between the UE and a first secondary cell group;
    increment a counter indicating a quantity of secondary cell group failures associated with the first secondary cell group based at least in part on receiving the indication;
    determine that the quantity of secondary cell group failures associated with the first secondary cell group exceeds a threshold quantity; and
    reconfigure the UE with a second secondary cell group based at least in part on the quantity of secondary cell group failures associated with the first secondary cell group exceeding the threshold quantity.
  9. The apparatus of claim 8, wherein the instructions are further executable by the processor to cause the apparatus to:
    start a timer upon determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity; and
    refrain from configuring the UE or other UEs with the first secondary cell group until expiration of the timer.
  10. The apparatus of claim 8, wherein the instructions to increment the counter are executable by the processor to cause the apparatus to:
    receive additional indications of secondary cell group failure from additional UEs; and
    increment the counter for receipt of each additional indication.
  11. The apparatus of claim 8, wherein the instructions to reconfigure the UE with the second secondary cell group further are executable by the processor to cause the apparatus to:
    receive, from the UE, a first measurement report indicating a first reference signal receive power associated with the first secondary cell group and a second reference signal receive power associated with the second secondary cell group, wherein the first reference signal receive power is greater than the second reference signal receive power; and
    transmit, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second secondary cell group even though the first reference signal receive power is greater than the second reference signal receive power.
  12. The apparatus of claim 8, wherein the instructions to determine that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity further are executable by the processor to cause the apparatus to:
    evaluate the quantity of secondary cell group failures within a predetermined period of time.
  13. The apparatus of claim 8, wherein the secondary cell group failure is based at least in part on a signal to noise ratio of the first secondary cell group.
  14. The apparatus of claim 8, wherein the anchor cell comprises a Long-Term Evolution (LTE) anchor cell and the first secondary cell group and the second secondary cell group comprise fifth generation (5G) cells.
  15. An apparatus for wireless communication at an anchor cell, comprising:
    means for receiving, at the anchor cell and from a user equipment (UE) , an indication of a secondary cell group failure associated with communications between the UE and a first secondary cell group;
    means for incrementing a counter indicating a quantity of secondary cell group failures associated with the first secondary cell group based at least in part on receiving the indication;
    means for determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds a threshold quantity; and
    means for reconfiguring the UE with a second secondary cell group based at least in part on the quantity of secondary cell group failures associated with the first secondary cell group exceeding the threshold quantity.
  16. The apparatus of claim 15, further comprising:
    means for starting a timer upon determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity; and
    means for refraining from configuring the UE or other UEs with the first secondary cell group until expiration of the timer.
  17. The apparatus of claim 15, wherein the means for incrementing the counter comprises:
    means for receiving additional indications of secondary cell group failure from additional UEs; and
    means for incrementing the counter for receipt of each additional indication.
  18. The apparatus of claim 15, wherein the means for reconfiguring the UE with the second secondary cell group further comprises:
    means for receiving, from the UE, a first measurement report indicating a first reference signal receive power associated with the first secondary cell group and a second reference signal receive power associated with the second secondary cell group, wherein the first reference signal receive power is greater than the second reference signal receive power; and
    means for transmitting, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second secondary cell group even though the first reference signal receive power is greater than the second reference signal receive power.
  19. The apparatus of claim 15, wherein the means for determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity further comprises:
    means for evaluating the quantity of secondary cell group failures within a predetermined period of time.
  20. The apparatus of claim 15, wherein the secondary cell group failure is based at least in part on a signal to noise ratio of the first secondary cell group.
  21. The apparatus of claim 15, wherein the anchor cell comprises a Long-Term Evolution (LTE) anchor cell and the first secondary cell group and the second secondary cell group comprise fifth generation (5G) cells.
  22. A non-transitory computer-readable medium storing code for wireless communication at an anchor cell, the code comprising instructions executable by a processor to:
    receive, at the anchor cell and from a user equipment (UE) , an indication of a secondary cell group failure associated with communications between the UE and a first secondary cell group;
    increment a counter indicating a quantity of secondary cell group failures associated with the first secondary cell group based at least in part on receiving the indication;
    determine that the quantity of secondary cell group failures associated with the first secondary cell group exceeds a threshold quantity; and
    reconfigure the UE with a second secondary cell group based at least in part on the quantity of secondary cell group failures associated with the first secondary cell group exceeding the threshold quantity.
  23. The non-transitory computer-readable medium of claim 22, wherein the instructions are further executable to:
    start a timer upon determining that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity; and
    refrain from configuring the UE or other UEs with the first secondary cell group until expiration of the timer.
  24. The non-transitory computer-readable medium of claim 22, wherein the instructions to increment the counter are executable to:
    receive additional indications of secondary cell group failure from additional UEs; and
    increment the counter for receipt of each additional indication.
  25. The non-transitory computer-readable medium of claim 22, wherein the instructions to reconfigure the UE with the second secondary cell group further are executable to:
    receive, from the UE, a first measurement report indicating a first reference signal receive power associated with the first secondary cell group and a second reference signal receive power associated with the second secondary cell group, wherein the first reference signal receive power is greater than the second reference signal receive power; and
    transmit, to the UE, a radio resource control reconfiguration message reconfiguring the UE with the second secondary cell group even though the first reference signal receive power is greater than the second reference signal receive power.
  26. The non-transitory computer-readable medium of claim 22, wherein the instructions to determine that the quantity of secondary cell group failures associated with the first secondary cell group exceeds the threshold quantity further are executable to:
    evaluate the quantity of secondary cell group failures within a predetermined period of time.
  27. The non-transitory computer-readable medium of claim 22, wherein the secondary cell group failure is based at least in part on a signal to noise ratio of the first secondary cell group.
  28. The non-transitory computer-readable medium of claim 22, wherein the anchor cell comprises a Long-Term Evolution (LTE) anchor cell and the first secondary cell group and the second secondary cell group comprise fifth generation (5G) cells.
PCT/CN2020/088267 2020-04-30 2020-04-30 Failure threshold for a secondary cell group WO2021217577A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088267 WO2021217577A1 (en) 2020-04-30 2020-04-30 Failure threshold for a secondary cell group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088267 WO2021217577A1 (en) 2020-04-30 2020-04-30 Failure threshold for a secondary cell group

Publications (1)

Publication Number Publication Date
WO2021217577A1 true WO2021217577A1 (en) 2021-11-04

Family

ID=78373156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088267 WO2021217577A1 (en) 2020-04-30 2020-04-30 Failure threshold for a secondary cell group

Country Status (1)

Country Link
WO (1) WO2021217577A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215826A1 (en) * 2014-01-30 2015-07-30 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
WO2016064334A1 (en) * 2014-10-20 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting failure indications for secondary cell group failure
WO2018203710A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Methods and systems for reporting a secondary node failure in dual connectivity networks
US20200015236A1 (en) * 2018-07-05 2020-01-09 Asustek Computer Inc. Method and apparatus for performing random access resource selection in new radio access technology-unlicensed (nr-u) cells in a wireless communication system
WO2020064095A1 (en) * 2018-09-26 2020-04-02 Nokia Technologies Oy Paging control in a non-homogenous network scenario

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150215826A1 (en) * 2014-01-30 2015-07-30 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
WO2016064334A1 (en) * 2014-10-20 2016-04-28 Telefonaktiebolaget L M Ericsson (Publ) Prohibiting failure indications for secondary cell group failure
WO2018203710A1 (en) * 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Methods and systems for reporting a secondary node failure in dual connectivity networks
US20200015236A1 (en) * 2018-07-05 2020-01-09 Asustek Computer Inc. Method and apparatus for performing random access resource selection in new radio access technology-unlicensed (nr-u) cells in a wireless communication system
WO2020064095A1 (en) * 2018-09-26 2020-04-02 Nokia Technologies Oy Paging control in a non-homogenous network scenario

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "SCG recovery upon SN failure for EN-DC", 3GPP DRAFT; R2-1707417 SCG RECOVERY UPON SN FAILURE FOR EN-DC V01, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Qingdao, China; 20170627 - 20170629, 17 June 2017 (2017-06-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051307445 *

Similar Documents

Publication Publication Date Title
US11219027B2 (en) Methods for beam management in millimeter wave relays
US11395155B2 (en) Virtual serving beam tracking in millimeter wave wireless systems
US20210314853A1 (en) Sharing system information among multiple cells
US11800441B2 (en) Differentiation between standalone and non-standalone cells in a wireless communications system
US11706726B2 (en) Dynamic monitoring modes for synchronization signal block transmissions
US20210410013A1 (en) Indication of operating configuration priorities
WO2021203282A1 (en) Slot format for intra-frequency cross link interference measurement
US20240056918A1 (en) Vehicle-to-everything cell reselection
US11728945B2 (en) Uplink reference signal bundling techniques in wireless communications
US20230319716A1 (en) Radio frequency band scanning for multiple subscriber identification modules
US11363471B2 (en) Data-aided beam management
US20210298084A1 (en) Exposure-dependent random access channel procedure selection
WO2021068883A1 (en) Broadcast group identifier for multicast messages
WO2021046933A1 (en) Internode measurement configuration signaling
WO2021217577A1 (en) Failure threshold for a secondary cell group
US20210345232A1 (en) Physical cell identifier limit configuration
US20230231681A1 (en) Enhancing throughput performance in multi-sim modems
US11974155B2 (en) Techniques for time alignment of measurement gaps and frequency hops
US11758592B2 (en) Implicit beam indication
US11937144B2 (en) Cooperative user equipment switching
US11770861B2 (en) Two-step random access procedure for a backhaul node
US11272496B2 (en) Narrowband retuning in wireless communications
WO2021203399A1 (en) Enhanced service acquisition for wireless communications
WO2021253283A1 (en) Service recovery techniques for wireless communications systems
US20230199816A1 (en) Aggressor network node determination to apply restriction rule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934005

Country of ref document: EP

Kind code of ref document: A1