WO2022011530A1 - Radio access technology measurement periodicity - Google Patents

Radio access technology measurement periodicity Download PDF

Info

Publication number
WO2022011530A1
WO2022011530A1 PCT/CN2020/101788 CN2020101788W WO2022011530A1 WO 2022011530 A1 WO2022011530 A1 WO 2022011530A1 CN 2020101788 W CN2020101788 W CN 2020101788W WO 2022011530 A1 WO2022011530 A1 WO 2022011530A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio access
access technology
measurement periodicity
rat
connectivity
Prior art date
Application number
PCT/CN2020/101788
Other languages
French (fr)
Inventor
Kuo-Chun Lee
Sharda RANJAN
Naga Chandan Babu Gudivada
Peng Cheng
Xipeng Zhu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/101788 priority Critical patent/WO2022011530A1/en
Publication of WO2022011530A1 publication Critical patent/WO2022011530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates generally to wireless communications and more specifically to radio access technology measurement periodicity.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a first radio access technology such as an NR system
  • a second RAT e.g., an LTE system
  • a UE may be configured to communicate concurrently via the first RAT and the second RAT in a dual connectivity scheme.
  • conventional connectivity techniques are deficient.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support radio access technology measurement periodicity.
  • the described techniques may enable a user equipment (UE) to adjust measurement periodicities for one or more radio access technologies (RATs) of a wireless communications system to maintain a balance between power efficiency and communications reliability.
  • the UE may determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT.
  • the UE may adjust the measurement periodicity based on a data throughput demand level for the UE and a reference signal parameter level associated with the second RAT. Based on these conditions, the UE may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT.
  • the UE may reduce a second measurement periodicity for the second RAT to reduce power consumption.
  • the UE may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. For example, the UE may measure one or more signal parameters associated with the first RAT. Based on the signal measurements, the UE may determine to add or remove connectivity for the first RAT. The UE may communicate via control signaling to add or remove the connectivity. When the UE removes the connectivity for the first RAT, the UE may communicate via the second RAT in a single connectivity mode. When the UE adds the connectivity for the first RAT, the UE may communicate via the first and second RATs in a dual connectivity mode.
  • a method of wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described.
  • the method may include adjusting a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicating control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicating via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • the apparatus may include means for adjusting a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicating control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicating via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described.
  • the code may include instructions executable by a processor to adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving at least one measurement configuration that configures the UE with the first measurement periodicity for the first RAT, a second measurement periodicity for the second RAT, or both.
  • communicating the control signaling may include operations, features, means, or instructions for transmitting an add request that requests to add connectivity for the first RAT based on the one or more measurements, and receiving an add response based on the add request.
  • the add response configures the UE to add connectivity for the first RAT.
  • communicating the control signaling may include operations, features, means, or instructions for transmitting a remove request that requests to remove connectivity for the first RAT based on the one or more measurements, and receiving a remove response based on the remove request.
  • the remove response configures the UE to remove connectivity for the first RAT.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a threshold criterion associated with a reference signal parameter of the first RAT, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the threshold criterion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a scaling factor corresponding to the first measurement periodicity based on the threshold criterion, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the scaling factor.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the threshold criterion.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring a signal fluctuation level between a first signal received via a first receive chain of the first RAT and a second signal received via a second receive chain of the first RAT.
  • adjusting the first measurement periodicity further may include operations, features, means, or instructions for adjusting the first measurement periodicity based on the signal fluctuation level satisfying a signal fluctuation threshold.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the signal fluctuation threshold.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring a signal imbalance level between a first signal received via a first receive chain of the first RAT and a second signal received via a second receive chain of the first RAT.
  • adjusting the first measurement periodicity further may include operations, features, means, or instructions for adjusting the first measurement periodicity based on the signal imbalance level satisfying a signal imbalance threshold.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the signal imbalance threshold.
  • adjusting the first measurement periodicity may include operations, features, means, or instructions for increasing the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level.
  • adjusting the first measurement periodicity may include operations, features, means, or instructions for decreasing the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting a second measurement periodicity for the second RAT based on the data throughput demand level of the UE and the reference signal parameter level associated with the second RAT.
  • communicating the control signaling may include operations, features, means, or instructions for communicating the control signaling based on one or more measurements corresponding to the second RAT generated in accordance with the second measurement periodicity.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a connection state at the UE, where adjusting the first measurement periodicity may be further based on determining the connection state.
  • the connection state includes a radio resource control connected mode.
  • the connection state includes a radio resource control idle mode.
  • the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
  • FIGs. 1 and 2 illustrate examples of wireless communications systems that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show diagrams of devices that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • FIG. 6 shows a diagram of a communications manager that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • FIGs. 8 through 10 show flowcharts illustrating methods that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • Some wireless communication systems may include user equipment (UE) communicating with network nodes such as base stations.
  • a UE may communicate with base stations via one or more radio access technologies (RATs) .
  • RATs may include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G fourth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • a UE may be configured to communicate concurrently via a first RAT (e.g., an NR system) and a second RAT (e.g., an LTE system) in a dual connectivity scheme, or via a single RAT in a single connectivity scheme.
  • the UE may add or remove connectivity for a RAT based on one or more signal measurements.
  • the UE may measure one or more signal parameters associated with the RAT.
  • the signal parameters may include a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , a signal to interference plus noise ratio (SINR) , another signal parameter, or any combination thereof.
  • the UE may measure the signal parameters according to a configured measurement periodicity for each RAT.
  • the UE may receive a measurement configuration configuring measurement periodicities, signal measurement thresholds, etc., for one or more RATs.
  • the term "measurement periodicity" may refer to a frequency of measuring signal parameters at the UE. That is, increasing a measurement periodicity may correspond to increasing a quantity of measurements performed within a unit of time, while decreasing a measurement periodicity may correspond to decreasing a quantity of measurements performed within a unit of time.
  • a UE may add a connectivity for a RAT (e.g., NR) based on the signal measurements, but the signal measurements may vary from measurement to measurement of the RAT. Accordingly, the UE may sequentially add and remove the connectivity for the RAT. This may cause a ping pong effect of adding and removing the connectivity multiple times within a relatively short duration, which may increase power consumption and reduce communications efficiency and reliability at the UE.
  • a RAT e.g., NR
  • a UE may adjust measurement periodicities for one or more RATs to maintain a balance between power efficiency and communications reliability.
  • the UE may determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT.
  • the UE may adjust the measurement periodicity based on a data throughput demand for the UE and a signal parameter associated with the second RAT.
  • the UE may determine the data throughput demand exceeds a throughput threshold (e.g., 200 megabit per second (Mbps) ) , where the second RAT may be unable to provide data throughput above the throughput threshold in a single connectivity mode.
  • a throughput threshold e.g. 200 megabit per second (Mbps)
  • the UE may also determine that the signal parameter (e.g., RSRP) associated with a primary cell (PCell) of the second RAT exceeds a signal quality threshold (e.g., -80 decibel-milliwatts (dBm) ) , where the UE may determine that a connection with the second RAT is stable based on the signal parameter exceeding the signal quality threshold. Based on these conditions, the UE may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT (e.g., measure a reference signal of the first RAT more frequently) .
  • a signal quality threshold e.g., -80 decibel-milliwatts (dBm)
  • increasing the first measurement periodicity may enable the UE to quickly add connectivity for the first RAT and operate in a dual connectivity mode (e.g., an Evolved Universal Terrestrial Access (E-UTRA) NR dual connectivity (ENDC) mode) .
  • the UE may adjust (e.g. reduce) a second measurement periodicity for the second RAT to reduce power consumption (e.g., by measuring a reference signal of the second RAT less frequently) .
  • the UE may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. Based on the signal measurements, the UE may determine to add or remove connectivity for the first RAT. The UE may communicate via control signaling to add or remove the connectivity. When the UE removes the connectivity for the first RAT, the UE may communicate via the second RAT in a single connectivity mode. When the UE adds the connectivity for the first RAT, the UE may communicate via the first and second RATs in a dual connectivity mode.
  • the UE may determine a connection state at the UE, such as a Radio Resource Control (RRC) connection state.
  • RRC Radio Resource Control
  • the UE may be in an RRC connected mode or an RRC idle mode.
  • the UE may adjust the measurement periodicities for the RATs based on the connection state at the UE.
  • a UE may to determine to adjust the period of a measurement gap for measuring a NR reference signal to determine when to add an NR connection to operate in dual connectivity mode (e.g., add ENDC) under a set of conditions.
  • the conditions may used for faster NR RAT measurement to permit quicker ENDC addition: (1) the UE is in an RRC connected mode (e.g., RRC_CONNECTED) , not in ENDC yet, (2) the UE has large data demand (e.g., data throughput > Threshold D (Ex 200Mbps) ) , and (3) an LTE PCell has good signal strength (e.g., RSRP > Threshold L (Ex -80 dBm) ) .
  • the UE may reduce LTE measurement frequency and increase NR measurement frequency. Because the NR measurement frequency is increased, the UE may more quickly identify when an NR signal satisfies a threshold for adding a NR cell for operating in a dual connectivity mode.
  • the UE may adjust the first measurement periodicity for the first RAT based on a threshold criterion.
  • the threshold criterion may be associated with an event configured by a network, an example of which is a B1 event.
  • the network may configure the UE with the threshold criterion, for example in an RRC configuration message configuring the first measurement periodicity for the first RAT.
  • the threshold criterion may be associated with a threshold for a signal parameter (e.g., RSRP, RSRQ, SINR, etc. ) .
  • the UE may determine the signal parameter threshold is relatively high, and the UE may decrease the first measurement periodicity for the first RAT.
  • the UE may determine the signal parameter threshold is relatively low, and the UE may increase the first measurement periodicity for the first RAT to increase a likelihood of adding connectivity for the first RAT. In some examples, the UE may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity and to reduce power consumption.
  • the UE may determine the UE is in an RRC_CONNECTED mode, ENDC is enabled at the UE, and an LTE PCell has good signal strength.
  • the UE may adjust an NR measurement periodicity (which may be referred to as an L2NR search/measurement periodicity) based on B1 threshold criteria (e.g., a b1-ThresholdNR-r15, an nr-RSRP-r15, etc. ) of a B1 event configured by the network in an RRC configuration message configuring the NR measurement periodicity.
  • B1 threshold criteria e.g., a b1-ThresholdNR-r15, an nr-RSRP-r15, etc.
  • a signal parameter e.g., RSRP, RSRQ, SINR, etc.
  • the UE may decrease the L2NR search/measurement periodicity.
  • the UE may increase the L2NR search/measurement periodicity to give a better chance of 5G NR addition.
  • the UE may reduce an LTE inter-RAT (IRAT) measurement (e.g., decrease an LTE measurement periodicity) based on increasing the L2NR search/measurement periodicity.
  • IRAT LTE inter-RAT
  • the UE may determine a scaling factor corresponding to the first measurement periodicity. For example, the UE may apply the scaling factor to the first measurement periodicity (e.g., as configured by a measurement configuration) to determine an adjusted first measurement periodicity and to adjust how frequently the UE measures reference signals of the first RAT. In some examples, the UE may increase or decrease the scaling factor based on the threshold criterion, for example to compensate for a power demand at the UE.
  • the UE may adjust the first measurement periodicity for the first RAT based on a signal stability. For example, the UE may monitor a signal fluctuation level, a signal imbalance level, or both, based on one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) . In some examples, the UE may determine that the signal fluctuation level on a first receive chain satisfies a signal fluctuation threshold. Additionally or alternatively, the UE may determine that the signal imbalance level between the first receive chain and a second receive chain satisfies a signal imbalance threshold.
  • the UE may increase the first measurement periodicity for the first RAT to determine a signal associated with the first RAT is stable before adding connectivity for the first RAT to avoid a ping pong effect.
  • the UE may receive a configuration identifying the signal fluctuation threshold, the signal imbalance threshold, or both.
  • the UE may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity for the first RAT and to reduce power consumption.
  • the UE may determine the UE is in an RRC_CONNECTED mode, ENDC is enabled at the UE, and an LTE PCell has good signal strength.
  • the UE may increase or decrease the L2NR search/measurement periodicity with a change in an RSRP fluctuation or imbalance, which may be seen in a live communication condition. Additional parameters, such as RSRQ, SINR, etc., may also be applied together with the RSRP.
  • the UE may determine an RSRP fluctuation is high (e.g., a fluctuation of more than 10 decibels (dB) , according to a measurement configuration) .
  • dB decibels
  • the UE may determine there is a high imbalance (e.g., an imbalance of more than 5 dB) between the primary receive path and a diversity receive chain. Based on the monitoring, the UE may increase the L2NR search/measurement periodicity to ensure a signal is stable before adding NR connectivity rather than facing release after the UE and the network invest signaling to add the NR connectivity. In some examples, the UE may receive a configuration identifying the signal fluctuation threshold, the signal imbalance threshold, or both. In some examples, the UE may reduce an LTE IRAT measurement based on increasing the L2NR search/measurement periodicity.
  • a high imbalance e.g., an imbalance of more than 5 dB
  • the UE may operate in a single connectivity (e.g., standalone) mode in LTE, for example when the UE has moved out of 5G coverage. However, the UE may continue to perform L2NR IRAT measurements in an RRC idle mode to determine whether to add NR connectivity. The UE may determine to adjust (e.g., decrease) the L2NR search/measurement periodicity based on monitoring the NR signal stability, for example to reduce power consumption.
  • a single connectivity e.g., standalone
  • the UE may continue to perform L2NR IRAT measurements in an RRC idle mode to determine whether to add NR connectivity.
  • the UE may determine to adjust (e.g., decrease) the L2NR search/measurement periodicity based on monitoring the NR signal stability, for example to reduce power consumption.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to radio access technology measurement periodicity.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be an LTE network, an LTE-A network, an LTE-A Pro network, an NR network, or any combination thereof.
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the "device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • carrier may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an E-UTRA absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different RATs.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • transport channels may be mapped to physical channels.
  • a UE 115 may adjust measurement periodicities for one or more RATs of the wireless communications system 100 to maintain a balance between power efficiency and communications reliability.
  • the UE 115 may determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT.
  • the UE 115 may adjust the measurement periodicity based on a data throughput demand level for the UE 115 and a reference signal parameter level associated with the second RAT. Based on these conditions, the UE 115 may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT.
  • the UE 115 may reduce a second measurement periodicity for the second RAT to reduce power consumption.
  • the UE 115 may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. For example, the UE 115 may measure one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) associated with the first RAT. Based on the signal measurements, the UE 115 may determine to add or remove connectivity for the first RAT. The UE 115 may communicate via control signaling to add or remove the connectivity. When the UE 115 removes the connectivity for the first RAT, the UE 115 may communicate via the second RAT in a single connectivity mode. When the UE 115 adds the connectivity for the first RAT, the UE 115 may communicate via the first and second RATs in a dual connectivity mode.
  • signal parameters e.g., RSRP, RSRQ, SINR, etc.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of the wireless communication system 100.
  • the wireless communications system 200 may include base stations 205 and a UE 215, which may be examples of the corresponding devices described with reference to FIG. 1.
  • the base stations 205 illustrated in FIG. 2 may represent components of a single base station 205, or each base station 205 may represent a distinct device.
  • Each base station 205 may provide communication coverage for a geographic coverage area 210.
  • a base station 205-a may support communications 230-a via a first RAT (e.g., an NR system) over a geographic coverage area 210-a.
  • a base station 205-b may support communications 230-b via a second RAT (e.g., an LTE system) over a geographic coverage area 210-b.
  • the base stations 205 may communicate with one another over backhaul links 220.
  • the UE 215 may adjust measurement periodicities for one or more RATs to maintain a balance between power efficiency and communications reliability.
  • the UE 215 may determine a periodicity for measuring the first RAT to add or remove connectivity for the first RAT alongside the second RAT. For example, the UE 215 may adjust the measurement periodicity based on a data throughput demand for the UE 215 and a signal parameter associated with the second RAT. Based on these conditions, the UE 215 may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT. In some examples, increasing the first measurement periodicity may enable the UE 215 to quickly add connectivity for the first RAT and operate in a dual connectivity mode (e.g., an ENDC mode) . In some examples, the UE 215 may reduce a second measurement periodicity for the second RAT to reduce power consumption.
  • a dual connectivity mode e.g., an ENDC mode
  • the UE 215 may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. Based on the signal measurements, the UE 215 may determine to add or remove connectivity for the first RAT. The UE 215 may communicate via control signaling 225 to add or remove the connectivity.
  • the UE 215 may transmit an add request to the base station 205-a in control signaling 225-a to add connectivity for the first RAT based on the signal measurements.
  • the base station 205-a may transmit an add response in the control signaling 225-a configuring the UE 215 to add the connectivity for the first RAT.
  • the UE 215 may communicate with the base stations 205 in communications 230 via the first RAT and the second RAT in a dual connectivity mode.
  • the UE 215 may transmit a remove request to the base station 205-a in the control signaling 225-a to remove connectivity for the first RAT based on the signal measurements.
  • the base station 205-a may transmit a remove response in the control signaling 225-a configuring the UE 215 to remove the connectivity for the first RAT.
  • the UE 215 may communicate with the base station 205-b in communications 230-b via the second RAT in a single connectivity mode, which may be referred to as a standalone mode.
  • the UE 215 may determine a connection state at the UE 215, such as an RRC connection state. For example, the UE 215 may be in an RRC connected mode or an RRC idle mode. The UE 215 may adjust the measurement periodicities for the RATs based on the connection state at the UE 215.
  • FIG. 3 illustrates an example of a process flow 300 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the process flow 300 may implement aspects of wireless communications systems 100 and 200.
  • the process flow 300 may include example operations associated with one or more base stations 305 or a UE 315, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2.
  • the base stations 305 illustrated in FIG. 3 may represent components of a single base station 305, or each base station 305 may represent a distinct device.
  • a base station 205-a may support communications via a first RAT (e.g., an NR system) .
  • a base station 205-b may support communications via a second RAT (e.g., an LTE system) .
  • a first RAT e.g., an NR system
  • a base station 205-b may support communications via a second RAT (e.g., an LTE system) .
  • the operations between the base stations 305 and the UE 315 may be performed in a different order than the example order shown, or the operations performed by the base stations 305 and the UE 315 may be performed in different orders or at different times. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300.
  • the operations performed by the base stations 305 and the UE 315 may support improvement to the UE 315 connectivity operations and, in some examples, may promote improvements to efficiency and reliability for communications between the base stations 305 and the UE 315, among other benefits.
  • the UE 315 may receive one or more measurement configurations from the base station 305-a, the base station 305-b, or both.
  • the measurement configurations may configure measurement periodicities, signal measurement thresholds, etc., for the first RAT, the second RAT, or both.
  • the measurement configurations may be received in an RRC configuration message.
  • the UE 315 may determine a connection state at the UE 315, such as an RRC connection state. For example, the UE 315 may be in an RRC connected mode or an RRC idle mode.
  • the UE 315 may monitor a signal stability for the first RAT. For example, the UE 315 may measure a signal fluctuation level, a signal imbalance level, or both, based on measurement of one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) .
  • signal parameters e.g., RSRP, RSRQ, SINR, etc.
  • the UE 315 may determine one or more thresholds, such as a threshold criterion, a signal fluctuation threshold, a signal imbalance threshold, etc.
  • the threshold criterion may be associated with an event configured by the base stations 305.
  • the UE 315 may determine the thresholds based on the received measurement configurations.
  • the UE 315 may include multiple sets of circuitry that define multiple receive paths.
  • the UE 315 may include multiple antenna panels and may receive a same transmission at the different antenna panels. Each antenna panel may be part of one or more receive chains and define one or more receive paths.
  • the UE 315 may compare the same transmission received via the different receive chains to identify a signal fluctuation between a first signal received on a first receive chain and a second signal received on a second receive chain, where each of the first and second signals include the same transmission.
  • the UE 315 may determine that the signal fluctuation level on the first receive chain satisfies the signal fluctuation threshold. Additionally or alternatively, the UE 315 may determine that the signal imbalance level between the first receive chain and the second receive chain satisfies a signal imbalance threshold.
  • the UE 315 may adjust a first measurement periodicity for the first RAT associated with the base station 305-a. For example, the UE 315 may increase the first measurement periodicity for the first RAT to increase a likelihood of adding connectivity for the first RAT.
  • the UE 315 may adjust the first measurement periodicity based on a data throughput demand level for the UE 315 and a reference signal parameter level associated with the second RAT. For example, the UE 315 may adjust the first measurement periodicity based on determining that the UE 315 is in an RRC_CONNECTED mode, the UE 315 has a large data demand, and an LTE PCell (e.g., a PCell of the base station 305-b) has a good signal strength.
  • an LTE PCell e.g., a PCell of the base station 305-b
  • the UE 315 may adjust the first measurement periodicity for the first RAT based on the threshold criterion. In some examples, the UE 315 may determine a scaling factor corresponding to the first measurement periodicity. The UE 315 may increase or decrease the scaling factor based on the threshold criterion, for example to compensate for a power demand at the UE 315. In some examples, the UE 315 may increase the first measurement periodicity for the first RAT to ensure a signal associated with the first RAT is stable before adding connectivity for the first RAT to avoid a ping pong effect. In some examples, the UE 315 may adjust the first measurement periodicity based on monitoring the signal stability for the first RAT.
  • the UE 315 may adjust a second measurement periodicity for the second RAT associated with the base station 305-b. For example, the UE 315 may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity and to reduce power consumption.
  • the UE 315 may monitor for and receive reference signals from the base stations 305 in accordance with the adjusted measurement periodicities.
  • the UE 315 may generate signal measurements for the first RAT according to the adjusted first measurement periodicity based on the received reference signals.
  • the UE 315 may generate signal measurements for the second RAT according to the adjusted second measurement periodicity.
  • the UE 315 may determine to add or remove connectivity for the first RAT. For example, the UE 315 may determine, based on the signal measurements, that a signal strength associated with the second RAT is sufficient for the UE 315 to operate in a dual connectivity mode.
  • the UE 315 may communicate control signaling to add or remove connectivity for the first RAT to operate the UE 315 in one of a single connectivity mode or a dual connectivity mode.
  • the UE 315 may communicate the control signaling based on generating the signal measurements for the first RAT according to the adjusted first measurement periodicity.
  • the UE 315 may transmit an add request to the base station 305-a in control signaling to add connectivity for the first RAT based on the signal measurements.
  • the base station 305-a may transmit an add response in the control signaling configuring the UE 315 to add the connectivity for the first RAT.
  • the UE 315 may transmit a remove request to the base station 305-a in the control signaling to remove connectivity for the first RAT based on the signal measurements.
  • the base station 305-a may transmit a remove response in the control signaling configuring the UE 315 to remove the connectivity for the first RAT.
  • the UE 315 may communicate with the base stations 305 based on communicating the control signaling. For example, based on adding the connectivity for the first RAT, the UE 315 may communicate with the base stations 305 in via the first RAT and the second RAT in a dual connectivity mode. Alternatively, based on removing the connectivity for the first RAT, the UE 315 may communicate with the base station 305-b via the second RAT in a single connectivity mode, which may be referred to as a standalone mode.
  • the operations performed by the base stations 305 and the UE 315 may support improvement to connectivity establishment operations and, in some examples, may promote improvements to efficiency and reliability for communications between the base station 305 and the UE 315, among other benefits.
  • FIG. 4 shows a diagram 400 of a device 405 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio access technology measurement periodicity, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology, communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity, and communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
  • the communications manager 415 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may allow the device 405 to save power and increase battery life by communicating with one or more base stations 105 (as shown in FIG. 1) more efficiently.
  • the device 405 may efficiently communicate with the base stations 105 based on adjusting measurement periodicities and adding or removing connectivity for RATs.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a diagram 500 of a device 505 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 535.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio access technology measurement periodicity, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a measurement periodicity manager 520, a connectivity manager 525, and a signaling manager 530.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the measurement periodicity manager 520 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology.
  • the connectivity manager 525 may communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity.
  • the signaling manager 530 may communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
  • the transmitter 535 may transmit signals generated by other components of the device 505.
  • the transmitter 535 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 535 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a diagram 600 of a communications manager 605 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a measurement periodicity manager 610, a connectivity manager 615, a signaling manager 620, a measurement configuration manager 625, a threshold manager 630, a signal fluctuation monitoring component 635, a signal imbalance monitoring component 640, and a connection state component 645.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the measurement periodicity manager 610 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology. In some examples, the measurement periodicity manager 610 may adjust the first measurement periodicity based on a signal fluctuation level satisfying a signal fluctuation threshold. In some examples, the measurement periodicity manager 610 may adjust the first measurement periodicity based on a signal imbalance level satisfying a signal imbalance threshold.
  • the measurement periodicity manager 610 may increase the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level. In some examples, the measurement periodicity manager 610 may decrease the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level. In some examples, the measurement periodicity manager 610 may adjust a second measurement periodicity for the second radio access technology based on the data throughput demand level of the UE and the reference signal parameter level associated with the second radio access technology. In some cases, the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
  • the connectivity manager 615 may communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity. In some examples, the connectivity manager 615 may communicate the control signaling based on one or more measurements corresponding to the second radio access technology generated in accordance with the second measurement periodicity.
  • the connectivity manager 615 may transmit an add request that requests to add connectivity for the first radio access technology based on the one or more measurements. In some examples, the connectivity manager 615 may receive an add response based on the add request. In some cases, the add response configures the UE to add connectivity for the first radio access technology.
  • the connectivity manager 615 may transmit a remove request that requests to remove connectivity for the first radio access technology based on the one or more measurements. In some examples, the connectivity manager 615 may receive a remove response based on the remove request. In some cases, the remove response configures the UE to remove connectivity for the first radio access technology.
  • the signaling manager 620 may communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
  • the measurement configuration manager 625 may receive at least one measurement configuration that configures the UE with the first measurement periodicity for the first radio access technology, a second measurement periodicity for the second radio access technology, or both.
  • the threshold manager 630 may determine a threshold criterion associated with a reference signal parameter of the first radio access technology, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the threshold criterion. In some examples, the threshold manager 630 may determine a scaling factor corresponding to the first measurement periodicity based on the threshold criterion, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the scaling factor. In some examples, the threshold manager 630 may receive signaling indicating the threshold criterion.
  • the signal fluctuation monitoring component 635 may monitor a signal fluctuation level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology. In some examples, the signal fluctuation monitoring component 635 may receive signaling indicating the signal fluctuation threshold.
  • the signal imbalance monitoring component 640 may monitor a signal imbalance level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology. In some examples, the signal imbalance monitoring component 640 may receive signaling indicating the signal imbalance threshold.
  • the connection state component 645 may determine a connection state at the UE, where adjusting the first measurement periodicity is further based on determining the connection state.
  • the connection state includes a radio resource control connected mode.
  • the connection state includes a radio resource control idle mode.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology, communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity, and communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting radio access technology measurement periodicity) .
  • the processor 740 of the device 705 may reduce power consumption and increase communications efficiency based on adjusting measurement periodicities for one or more RATs.
  • the processor 740 of the device 705 may reconfigure parameters for determining a data throughput demand and generating signal measurements.
  • the processor 740 of the device 705 may turn on one or more processing units for measuring signal parameters, increase a processing clock, or a similar mechanism within the device 705.
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the operations of method 800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may adjust a first measurement periodicity for a first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with a second RAT.
  • the operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity.
  • the operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • the operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may determine a threshold criterion associated with a reference signal parameter of a first RAT.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
  • the UE may adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE, a reference signal parameter level associated with a second RAT, and the threshold criterion.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may monitor a signal fluctuation or imbalance level between a first signal received via a first receive chain of a first RAT and a second signal received via a second receive chain of the first RAT.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a signal fluctuation monitoring component as described with reference to FIGs. 4 through 7.
  • the UE may adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with a second RAT.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
  • the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • the term "and/or, " when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may adjust measurement periodicities for one or more radio access technologies (RATs) to maintain a balance between power efficiency and communications reliability. The UE may determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT. For example, the UE may adjust the measurement periodicity based on a data throughput demand level for the UE and a reference signal parameter level associated with the second RAT. Based on these conditions, the UE may adjust a first measurement periodicity for the first RAT. The UE may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. Based on the signal measurements, the UE may determine to add or remove connectivity for the first RAT to operate in a single or dual connectivity mode.

Description

RADIO ACCESS TECHNOLOGY MEASUREMENT PERIODICITY
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to radio access technology measurement periodicity.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A first radio access technology (RAT) , such as an NR system, may be deployed alongside a second RAT (e.g., an LTE system) . A UE may be configured to communicate concurrently via the first RAT and the second RAT in a dual connectivity scheme. However, for some use cases, conventional connectivity techniques are deficient.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support radio access technology measurement periodicity. Generally, the described techniques may enable a user equipment (UE) to adjust measurement periodicities for one or more radio access technologies (RATs) of a wireless communications system to maintain a balance between power efficiency and communications reliability. The UE may  determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT. For example, the UE may adjust the measurement periodicity based on a data throughput demand level for the UE and a reference signal parameter level associated with the second RAT. Based on these conditions, the UE may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT. In some examples, the UE may reduce a second measurement periodicity for the second RAT to reduce power consumption.
The UE may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. For example, the UE may measure one or more signal parameters associated with the first RAT. Based on the signal measurements, the UE may determine to add or remove connectivity for the first RAT. The UE may communicate via control signaling to add or remove the connectivity. When the UE removes the connectivity for the first RAT, the UE may communicate via the second RAT in a single connectivity mode. When the UE adds the connectivity for the first RAT, the UE may communicate via the first and second RATs in a dual connectivity mode.
A method of wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described. The method may include adjusting a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicating control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicating via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
An apparatus for wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicate  control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
Another apparatus for wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described. The apparatus may include means for adjusting a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicating control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicating via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
A non-transitory computer-readable medium storing code for wireless communications at a UE including a first RAT and a second RAT that differs from the first RAT, the method including is described. The code may include instructions executable by a processor to adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with the second RAT, communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity, and communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving at least one measurement configuration that configures the UE with the first measurement periodicity for the first RAT, a second measurement periodicity for the second RAT, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating the control signaling may include operations, features, means, or instructions for transmitting an add request that requests to add connectivity for the first RAT based on the one or more measurements, and receiving an add response based on the add request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the add response configures the UE to add connectivity for the first RAT.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating the control signaling may include operations, features, means, or instructions for transmitting a remove request that requests to remove connectivity for the first RAT based on the one or more measurements, and receiving a remove response based on the remove request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the remove response configures the UE to remove connectivity for the first RAT.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a threshold criterion associated with a reference signal parameter of the first RAT, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the threshold criterion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a scaling factor corresponding to the first measurement periodicity based on the threshold criterion, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the scaling factor.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the threshold criterion.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring a signal fluctuation level between a first signal received via a first receive chain of the first RAT and a second signal received via a second receive chain of the first RAT.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the first measurement periodicity further may include operations, features, means, or instructions for adjusting the first measurement periodicity based on the signal fluctuation level satisfying a signal fluctuation threshold.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the signal fluctuation threshold.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for monitoring a signal imbalance level between a first signal received via a first receive chain of the first RAT and a second signal received via a second receive chain of the first RAT.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the first measurement periodicity further may include operations, features, means, or instructions for adjusting the first measurement periodicity based on the signal imbalance level satisfying a signal imbalance threshold.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving signaling indicating the signal imbalance threshold.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the first measurement periodicity may include operations, features, means, or instructions for increasing the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the first measurement periodicity may include operations, features, means, or instructions for decreasing the first measurement periodicity  based on the data throughput demand level of the UE and the reference signal parameter level.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for adjusting a second measurement periodicity for the second RAT based on the data throughput demand level of the UE and the reference signal parameter level associated with the second RAT.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, communicating the control signaling may include operations, features, means, or instructions for communicating the control signaling based on one or more measurements corresponding to the second RAT generated in accordance with the second measurement periodicity.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a connection state at the UE, where adjusting the first measurement periodicity may be further based on determining the connection state.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the connection state includes a radio resource control connected mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the connection state includes a radio resource control idle mode.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 and 2 illustrate examples of wireless communications systems that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show diagrams of devices that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
FIG. 6 shows a diagram of a communications manager that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure.
FIGs. 8 through 10 show flowcharts illustrating methods that support radio access technology measurement periodicity in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communication systems may include user equipment (UE) communicating with network nodes such as base stations. A UE may communicate with base stations via one or more radio access technologies (RATs) . RATs may include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
A UE may be configured to communicate concurrently via a first RAT (e.g., an NR system) and a second RAT (e.g., an LTE system) in a dual connectivity scheme, or via a single RAT in a single connectivity scheme. The UE may add or remove connectivity for a RAT based on one or more signal measurements. For example, the UE may measure one or more signal parameters associated with the RAT. The signal parameters may include a reference signal received power (RSRP) , a reference signal received quality (RSRQ) , a signal to interference plus noise ratio (SINR) , another signal parameter, or any combination thereof. The UE may measure the signal parameters according to a configured measurement  periodicity for each RAT. For example, the UE may receive a measurement configuration configuring measurement periodicities, signal measurement thresholds, etc., for one or more RATs. As used herein, the term "measurement periodicity" may refer to a frequency of measuring signal parameters at the UE. That is, increasing a measurement periodicity may correspond to increasing a quantity of measurements performed within a unit of time, while decreasing a measurement periodicity may correspond to decreasing a quantity of measurements performed within a unit of time.
In some examples, a UE may add a connectivity for a RAT (e.g., NR) based on the signal measurements, but the signal measurements may vary from measurement to measurement of the RAT. Accordingly, the UE may sequentially add and remove the connectivity for the RAT. This may cause a ping pong effect of adding and removing the connectivity multiple times within a relatively short duration, which may increase power consumption and reduce communications efficiency and reliability at the UE.
According to the techniques described herein, a UE may adjust measurement periodicities for one or more RATs to maintain a balance between power efficiency and communications reliability. The UE may determine a periodicity for measuring a first RAT to add or remove connectivity for the first RAT alongside a second RAT. For example, the UE may adjust the measurement periodicity based on a data throughput demand for the UE and a signal parameter associated with the second RAT. For example, the UE may determine the data throughput demand exceeds a throughput threshold (e.g., 200 megabit per second (Mbps) ) , where the second RAT may be unable to provide data throughput above the throughput threshold in a single connectivity mode. The UE may also determine that the signal parameter (e.g., RSRP) associated with a primary cell (PCell) of the second RAT exceeds a signal quality threshold (e.g., -80 decibel-milliwatts (dBm) ) , where the UE may determine that a connection with the second RAT is stable based on the signal parameter exceeding the signal quality threshold. Based on these conditions, the UE may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT (e.g., measure a reference signal of the first RAT more frequently) . In some examples, increasing the first measurement periodicity may enable the UE to quickly add connectivity for the first RAT and operate in a dual connectivity mode (e.g., an Evolved Universal Terrestrial Access (E-UTRA) NR dual connectivity (ENDC) mode) . In some examples, the UE may adjust (e.g.  reduce) a second measurement periodicity for the second RAT to reduce power consumption (e.g., by measuring a reference signal of the second RAT less frequently) .
The UE may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. Based on the signal measurements, the UE may determine to add or remove connectivity for the first RAT. The UE may communicate via control signaling to add or remove the connectivity. When the UE removes the connectivity for the first RAT, the UE may communicate via the second RAT in a single connectivity mode. When the UE adds the connectivity for the first RAT, the UE may communicate via the first and second RATs in a dual connectivity mode.
In some examples, the UE may determine a connection state at the UE, such as a Radio Resource Control (RRC) connection state. For example, the UE may be in an RRC connected mode or an RRC idle mode. The UE may adjust the measurement periodicities for the RATs based on the connection state at the UE.
In an example, a UE may to determine to adjust the period of a measurement gap for measuring a NR reference signal to determine when to add an NR connection to operate in dual connectivity mode (e.g., add ENDC) under a set of conditions. For example, the conditions may used for faster NR RAT measurement to permit quicker ENDC addition: (1) the UE is in an RRC connected mode (e.g., RRC_CONNECTED) , not in ENDC yet, (2) the UE has large data demand (e.g., data throughput > Threshold D (Ex 200Mbps) ) , and (3) an LTE PCell has good signal strength (e.g., RSRP > Threshold L (Ex -80 dBm) ) . When the UE identifies that these three conditions are met, the UE may reduce LTE measurement frequency and increase NR measurement frequency. Because the NR measurement frequency is increased, the UE may more quickly identify when an NR signal satisfies a threshold for adding a NR cell for operating in a dual connectivity mode.
In some examples, the UE may adjust the first measurement periodicity for the first RAT based on a threshold criterion. The threshold criterion may be associated with an event configured by a network, an example of which is a B1 event. The network may configure the UE with the threshold criterion, for example in an RRC configuration message configuring the first measurement periodicity for the first RAT. The threshold criterion may be associated with a threshold for a signal parameter (e.g., RSRP, RSRQ, SINR, etc. ) . In some examples, the UE may determine the signal parameter threshold is relatively high, and  the UE may decrease the first measurement periodicity for the first RAT. Alternatively or additionally, the UE may determine the signal parameter threshold is relatively low, and the UE may increase the first measurement periodicity for the first RAT to increase a likelihood of adding connectivity for the first RAT. In some examples, the UE may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity and to reduce power consumption.
In an example, the UE may determine the UE is in an RRC_CONNECTED mode, ENDC is enabled at the UE, and an LTE PCell has good signal strength. The UE may adjust an NR measurement periodicity (which may be referred to as an L2NR search/measurement periodicity) based on B1 threshold criteria (e.g., a b1-ThresholdNR-r15, an nr-RSRP-r15, etc. ) of a B1 event configured by the network in an RRC configuration message configuring the NR measurement periodicity. In some examples, if the b1-ThresholdNR-r15 for a signal parameter (e.g., RSRP, RSRQ, SINR, etc. ) is high (e.g., an RSRP threshold of -95 dBm) , the UE may decrease the L2NR search/measurement periodicity. Alternatively or additionally, if the b1-ThresholdNR-r15 for a signal parameter is low (e.g., an RSRP threshold of -118 dBm) , the UE may increase the L2NR search/measurement periodicity to give a better chance of 5G NR addition. In some examples, the UE may reduce an LTE inter-RAT (IRAT) measurement (e.g., decrease an LTE measurement periodicity) based on increasing the L2NR search/measurement periodicity.
In some examples, the UE may determine a scaling factor corresponding to the first measurement periodicity. For example, the UE may apply the scaling factor to the first measurement periodicity (e.g., as configured by a measurement configuration) to determine an adjusted first measurement periodicity and to adjust how frequently the UE measures reference signals of the first RAT. In some examples, the UE may increase or decrease the scaling factor based on the threshold criterion, for example to compensate for a power demand at the UE.
In some examples, the UE may adjust the first measurement periodicity for the first RAT based on a signal stability. For example, the UE may monitor a signal fluctuation level, a signal imbalance level, or both, based on one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) . In some examples, the UE may determine that the signal fluctuation level on a first receive chain satisfies a signal fluctuation threshold. Additionally or alternatively,  the UE may determine that the signal imbalance level between the first receive chain and a second receive chain satisfies a signal imbalance threshold. Based on the monitoring, the UE may increase the first measurement periodicity for the first RAT to determine a signal associated with the first RAT is stable before adding connectivity for the first RAT to avoid a ping pong effect. In some examples, the UE may receive a configuration identifying the signal fluctuation threshold, the signal imbalance threshold, or both. In some examples, the UE may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity for the first RAT and to reduce power consumption.
In an example, the UE may determine the UE is in an RRC_CONNECTED mode, ENDC is enabled at the UE, and an LTE PCell has good signal strength. The UE may increase or decrease the L2NR search/measurement periodicity with a change in an RSRP fluctuation or imbalance, which may be seen in a live communication condition. Additional parameters, such as RSRQ, SINR, etc., may also be applied together with the RSRP. For example, the UE may determine an RSRP fluctuation is high (e.g., a fluctuation of more than 10 decibels (dB) , according to a measurement configuration) . Additionally or alternatively, the UE may determine there is a high imbalance (e.g., an imbalance of more than 5 dB) between the primary receive path and a diversity receive chain. Based on the monitoring, the UE may increase the L2NR search/measurement periodicity to ensure a signal is stable before adding NR connectivity rather than facing release after the UE and the network invest signaling to add the NR connectivity. In some examples, the UE may receive a configuration identifying the signal fluctuation threshold, the signal imbalance threshold, or both. In some examples, the UE may reduce an LTE IRAT measurement based on increasing the L2NR search/measurement periodicity.
In some examples, the UE may operate in a single connectivity (e.g., standalone) mode in LTE, for example when the UE has moved out of 5G coverage. However, the UE may continue to perform L2NR IRAT measurements in an RRC idle mode to determine whether to add NR connectivity. The UE may determine to adjust (e.g., decrease) the L2NR search/measurement periodicity based on monitoring the NR signal stability, for example to reduce power consumption.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described  with reference to a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to radio access technology measurement periodicity.
FIG. 1 illustrates an example of a wireless communications system 100 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be an LTE network, an LTE-A network, an LTE-A Pro network, an NR network, or any combination thereof. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly  (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the "device" may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term "carrier" may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using  carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an E-UTRA absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of  the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different RATs.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer  (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming  operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the RRC protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
According to the techniques described herein, a UE 115 may adjust measurement periodicities for one or more RATs of the wireless communications system 100 to maintain a balance between power efficiency and communications reliability. The UE 115 may determine a periodicity for measuring a first RAT to add or remove connectivity for the first  RAT alongside a second RAT. For example, the UE 115 may adjust the measurement periodicity based on a data throughput demand level for the UE 115 and a reference signal parameter level associated with the second RAT. Based on these conditions, the UE 115 may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT. In some examples, the UE 115 may reduce a second measurement periodicity for the second RAT to reduce power consumption.
The UE 115 may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. For example, the UE 115 may measure one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) associated with the first RAT. Based on the signal measurements, the UE 115 may determine to add or remove connectivity for the first RAT. The UE 115 may communicate via control signaling to add or remove the connectivity. When the UE 115 removes the connectivity for the first RAT, the UE 115 may communicate via the second RAT in a single connectivity mode. When the UE 115 adds the connectivity for the first RAT, the UE 115 may communicate via the first and second RATs in a dual connectivity mode.
FIG. 2 illustrates an example of a wireless communications system 200 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. In some examples, the wireless communications system 200 may implement aspects of the wireless communication system 100. For example, the wireless communications system 200 may include base stations 205 and a UE 215, which may be examples of the corresponding devices described with reference to FIG. 1. In some examples, the base stations 205 illustrated in FIG. 2 may represent components of a single base station 205, or each base station 205 may represent a distinct device.
Each base station 205 may provide communication coverage for a geographic coverage area 210. For example, a base station 205-a may support communications 230-a via a first RAT (e.g., an NR system) over a geographic coverage area 210-a. Similarly, a base station 205-b may support communications 230-b via a second RAT (e.g., an LTE system) over a geographic coverage area 210-b. The base stations 205 may communicate with one another over backhaul links 220.
The UE 215 may adjust measurement periodicities for one or more RATs to maintain a balance between power efficiency and communications reliability. The UE 215  may determine a periodicity for measuring the first RAT to add or remove connectivity for the first RAT alongside the second RAT. For example, the UE 215 may adjust the measurement periodicity based on a data throughput demand for the UE 215 and a signal parameter associated with the second RAT. Based on these conditions, the UE 215 may determine to adjust (e.g., increase) a first measurement periodicity for the first RAT. In some examples, increasing the first measurement periodicity may enable the UE 215 to quickly add connectivity for the first RAT and operate in a dual connectivity mode (e.g., an ENDC mode) . In some examples, the UE 215 may reduce a second measurement periodicity for the second RAT to reduce power consumption.
The UE 215 may perform signal measurements for the first RAT according to the adjusted first measurement periodicity. Based on the signal measurements, the UE 215 may determine to add or remove connectivity for the first RAT. The UE 215 may communicate via control signaling 225 to add or remove the connectivity.
In some examples, the UE 215 may transmit an add request to the base station 205-a in control signaling 225-a to add connectivity for the first RAT based on the signal measurements. In response to the add request, the base station 205-a may transmit an add response in the control signaling 225-a configuring the UE 215 to add the connectivity for the first RAT. Based on adding the connectivity for the first RAT, the UE 215 may communicate with the base stations 205 in communications 230 via the first RAT and the second RAT in a dual connectivity mode.
In some examples, the UE 215 may transmit a remove request to the base station 205-a in the control signaling 225-a to remove connectivity for the first RAT based on the signal measurements. In response to the remove request, the base station 205-a may transmit a remove response in the control signaling 225-a configuring the UE 215 to remove the connectivity for the first RAT. Based on removing the connectivity for the first RAT, the UE 215 may communicate with the base station 205-b in communications 230-b via the second RAT in a single connectivity mode, which may be referred to as a standalone mode.
In some examples, the UE 215 may determine a connection state at the UE 215, such as an RRC connection state. For example, the UE 215 may be in an RRC connected mode or an RRC idle mode. The UE 215 may adjust the measurement periodicities for the RATs based on the connection state at the UE 215.
FIG. 3 illustrates an example of a process flow 300 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. In some examples, the process flow 300 may implement aspects of  wireless communications systems  100 and 200. For example, the process flow 300 may include example operations associated with one or more base stations 305 or a UE 315, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2. In some examples, the base stations 305 illustrated in FIG. 3 may represent components of a single base station 305, or each base station 305 may represent a distinct device. A base station 205-a may support communications via a first RAT (e.g., an NR system) . Similarly, a base station 205-b may support communications via a second RAT (e.g., an LTE system) .
In the following description of the process flow 300, the operations between the base stations 305 and the UE 315 may be performed in a different order than the example order shown, or the operations performed by the base stations 305 and the UE 315 may be performed in different orders or at different times. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300. The operations performed by the base stations 305 and the UE 315 may support improvement to the UE 315 connectivity operations and, in some examples, may promote improvements to efficiency and reliability for communications between the base stations 305 and the UE 315, among other benefits.
In some examples, at 320 the UE 315 may receive one or more measurement configurations from the base station 305-a, the base station 305-b, or both. The measurement configurations may configure measurement periodicities, signal measurement thresholds, etc., for the first RAT, the second RAT, or both. In some examples, the measurement configurations may be received in an RRC configuration message.
In some examples, at 325 the UE 315 may determine a connection state at the UE 315, such as an RRC connection state. For example, the UE 315 may be in an RRC connected mode or an RRC idle mode. In some examples, at 330 the UE 315 may monitor a signal stability for the first RAT. For example, the UE 315 may measure a signal fluctuation level, a signal imbalance level, or both, based on measurement of one or more signal parameters (e.g., RSRP, RSRQ, SINR, etc. ) .
In some examples, at 335 the UE 315 may determine one or more thresholds, such as a threshold criterion, a signal fluctuation threshold, a signal imbalance threshold, etc. The threshold criterion may be associated with an event configured by the base stations 305. In some examples, the UE 315 may determine the thresholds based on the received measurement configurations.
In some examples, the UE 315 may include multiple sets of circuitry that define multiple receive paths. For example, the UE 315 may include multiple antenna panels and may receive a same transmission at the different antenna panels. Each antenna panel may be part of one or more receive chains and define one or more receive paths. The UE 315 may compare the same transmission received via the different receive chains to identify a signal fluctuation between a first signal received on a first receive chain and a second signal received on a second receive chain, where each of the first and second signals include the same transmission. In some examples, the UE 315 may determine that the signal fluctuation level on the first receive chain satisfies the signal fluctuation threshold. Additionally or alternatively, the UE 315 may determine that the signal imbalance level between the first receive chain and the second receive chain satisfies a signal imbalance threshold.
At 340, the UE 315 may adjust a first measurement periodicity for the first RAT associated with the base station 305-a. For example, the UE 315 may increase the first measurement periodicity for the first RAT to increase a likelihood of adding connectivity for the first RAT. The UE 315 may adjust the first measurement periodicity based on a data throughput demand level for the UE 315 and a reference signal parameter level associated with the second RAT. For example, the UE 315 may adjust the first measurement periodicity based on determining that the UE 315 is in an RRC_CONNECTED mode, the UE 315 has a large data demand, and an LTE PCell (e.g., a PCell of the base station 305-b) has a good signal strength. In some examples, the UE 315 may adjust the first measurement periodicity for the first RAT based on the threshold criterion. In some examples, the UE 315 may determine a scaling factor corresponding to the first measurement periodicity. The UE 315 may increase or decrease the scaling factor based on the threshold criterion, for example to compensate for a power demand at the UE 315. In some examples, the UE 315 may increase the first measurement periodicity for the first RAT to ensure a signal associated with the first RAT is stable before adding connectivity for the first RAT to avoid a ping pong effect. In  some examples, the UE 315 may adjust the first measurement periodicity based on monitoring the signal stability for the first RAT.
In some examples, at 345, the UE 315 may adjust a second measurement periodicity for the second RAT associated with the base station 305-b. For example, the UE 315 may reduce the second measurement periodicity for the second RAT based on increasing the first measurement periodicity and to reduce power consumption.
At 350, the UE 315 may monitor for and receive reference signals from the base stations 305 in accordance with the adjusted measurement periodicities. At 355, the UE 315 may generate signal measurements for the first RAT according to the adjusted first measurement periodicity based on the received reference signals. In some examples, the UE 315 may generate signal measurements for the second RAT according to the adjusted second measurement periodicity. Based on the signal measurements, the UE 315 may determine to add or remove connectivity for the first RAT. For example, the UE 315 may determine, based on the signal measurements, that a signal strength associated with the second RAT is sufficient for the UE 315 to operate in a dual connectivity mode.
At 360, the UE 315 may communicate control signaling to add or remove connectivity for the first RAT to operate the UE 315 in one of a single connectivity mode or a dual connectivity mode. The UE 315 may communicate the control signaling based on generating the signal measurements for the first RAT according to the adjusted first measurement periodicity. In some examples, the UE 315 may transmit an add request to the base station 305-a in control signaling to add connectivity for the first RAT based on the signal measurements. In response to the add request, the base station 305-a may transmit an add response in the control signaling configuring the UE 315 to add the connectivity for the first RAT. In some examples, the UE 315 may transmit a remove request to the base station 305-a in the control signaling to remove connectivity for the first RAT based on the signal measurements. In response to the remove request, the base station 305-a may transmit a remove response in the control signaling configuring the UE 315 to remove the connectivity for the first RAT.
At 365, the UE 315 may communicate with the base stations 305 based on communicating the control signaling. For example, based on adding the connectivity for the first RAT, the UE 315 may communicate with the base stations 305 in via the first RAT and  the second RAT in a dual connectivity mode. Alternatively, based on removing the connectivity for the first RAT, the UE 315 may communicate with the base station 305-b via the second RAT in a single connectivity mode, which may be referred to as a standalone mode. The operations performed by the base stations 305 and the UE 315 may support improvement to connectivity establishment operations and, in some examples, may promote improvements to efficiency and reliability for communications between the base station 305 and the UE 315, among other benefits.
FIG. 4 shows a diagram 400 of a device 405 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio access technology measurement periodicity, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology, communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity, and communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
The communications manager 415 as described herein may be implemented to realize one or more potential advantages. One implementation may allow the device 405 to  save power and increase battery life by communicating with one or more base stations 105 (as shown in FIG. 1) more efficiently. For example, the device 405 may efficiently communicate with the base stations 105 based on adjusting measurement periodicities and adding or removing connectivity for RATs. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
FIG. 5 shows a diagram 500 of a device 505 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a UE 115 as described herein. The device  505 may include a receiver 510, a communications manager 515, and a transmitter 535. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to radio access technology measurement periodicity, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a measurement periodicity manager 520, a connectivity manager 525, and a signaling manager 530. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The measurement periodicity manager 520 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology.
The connectivity manager 525 may communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity.
The signaling manager 530 may communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
The transmitter 535 may transmit signals generated by other components of the device 505. In some examples, the transmitter 535 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 535 may be an example of aspects of the  transceiver 720 described with reference to FIG. 7. The transmitter 535 may utilize a single antenna or a set of antennas.
FIG. 6 shows a diagram 600 of a communications manager 605 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include a measurement periodicity manager 610, a connectivity manager 615, a signaling manager 620, a measurement configuration manager 625, a threshold manager 630, a signal fluctuation monitoring component 635, a signal imbalance monitoring component 640, and a connection state component 645. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The measurement periodicity manager 610 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology. In some examples, the measurement periodicity manager 610 may adjust the first measurement periodicity based on a signal fluctuation level satisfying a signal fluctuation threshold. In some examples, the measurement periodicity manager 610 may adjust the first measurement periodicity based on a signal imbalance level satisfying a signal imbalance threshold.
In some examples, the measurement periodicity manager 610 may increase the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level. In some examples, the measurement periodicity manager 610 may decrease the first measurement periodicity based on the data throughput demand level of the UE and the reference signal parameter level. In some examples, the measurement periodicity manager 610 may adjust a second measurement periodicity for the second radio access technology based on the data throughput demand level of the UE and the reference signal parameter level associated with the second radio access technology. In some cases, the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
The connectivity manager 615 may communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity. In some examples, the connectivity manager 615 may communicate the control signaling based on one or more measurements corresponding to the second radio access technology generated in accordance with the second measurement periodicity.
In some examples, the connectivity manager 615 may transmit an add request that requests to add connectivity for the first radio access technology based on the one or more measurements. In some examples, the connectivity manager 615 may receive an add response based on the add request. In some cases, the add response configures the UE to add connectivity for the first radio access technology.
In some examples, the connectivity manager 615 may transmit a remove request that requests to remove connectivity for the first radio access technology based on the one or more measurements. In some examples, the connectivity manager 615 may receive a remove response based on the remove request. In some cases, the remove response configures the UE to remove connectivity for the first radio access technology.
The signaling manager 620 may communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
The measurement configuration manager 625 may receive at least one measurement configuration that configures the UE with the first measurement periodicity for the first radio access technology, a second measurement periodicity for the second radio access technology, or both.
The threshold manager 630 may determine a threshold criterion associated with a reference signal parameter of the first radio access technology, where adjusting the first measurement periodicity further includes adjusting the first measurement periodicity based on the threshold criterion. In some examples, the threshold manager 630 may determine a scaling factor corresponding to the first measurement periodicity based on the threshold criterion, where adjusting the first measurement periodicity further includes adjusting the first  measurement periodicity based on the scaling factor. In some examples, the threshold manager 630 may receive signaling indicating the threshold criterion.
The signal fluctuation monitoring component 635 may monitor a signal fluctuation level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology. In some examples, the signal fluctuation monitoring component 635 may receive signaling indicating the signal fluctuation threshold.
The signal imbalance monitoring component 640 may monitor a signal imbalance level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology. In some examples, the signal imbalance monitoring component 640 may receive signaling indicating the signal imbalance threshold.
The connection state component 645 may determine a connection state at the UE, where adjusting the first measurement periodicity is further based on determining the connection state. In some cases, the connection state includes a radio resource control connected mode. In some cases, the connection state includes a radio resource control idle mode.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
The communications manager 710 may adjust a first measurement periodicity for the first radio access technology based on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology, communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first radio access technology  generated in accordance with the first measurement periodicity, and communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based on the control signaling.
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as
Figure PCTCN2020101788-appb-000001
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor. In some cases, a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include random-access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an  FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting radio access technology measurement periodicity) .
The processor 740 of the device 705 (e.g., controlling the receiver 410, the transmitter 420, or the transceiver 720) may reduce power consumption and increase communications efficiency based on adjusting measurement periodicities for one or more RATs. In some examples, the processor 740 of the device 705 may reconfigure parameters for determining a data throughput demand and generating signal measurements. For example, the processor 740 of the device 705 may turn on one or more processing units for measuring signal parameters, increase a processing clock, or a similar mechanism within the device 705.
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a flowchart illustrating a method 800 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The operations of method 800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 805, the UE may adjust a first measurement periodicity for a first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with a second RAT. The operations of 805 may be performed according to the  methods described herein. In some examples, aspects of the operations of 805 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
At 810, the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity. The operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
At 815, the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling. The operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
FIG. 9 shows a flowchart illustrating a method 900 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 905, the UE may determine a threshold criterion associated with a reference signal parameter of a first RAT. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a threshold manager as described with reference to FIGs. 4 through 7.
At 910, the UE may adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE, a reference signal parameter level associated with a second RAT, and the threshold criterion. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of  910 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
At 915, the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
At 920, the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
FIG. 10 shows a flowchart illustrating a method 1000 that supports radio access technology measurement periodicity in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may monitor a signal fluctuation or imbalance level between a first signal received via a first receive chain of a first RAT and a second signal received via a second receive chain of the first RAT. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a signal fluctuation monitoring component as described with reference to FIGs. 4 through 7.
At 1010, the UE may adjust a first measurement periodicity for the first RAT based on a data throughput demand level of the UE and a reference signal parameter level associated with a second RAT. The operations of 1010 may be performed according to the  methods described herein. In some examples, aspects of the operations of 1010 may be performed by a measurement periodicity manager as described with reference to FIGs. 4 through 7.
At 1015, the UE may communicate control signaling to add or remove connectivity for the first RAT to operate the UE in one of a single connectivity mode or a dual connectivity mode based on one or more measurements corresponding to the first RAT generated in accordance with the first measurement periodicity. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a connectivity manager as described with reference to FIGs. 4 through 7.
At 1020, the UE may communicate via the second RAT in the single connectivity mode, or via the first RAT and the second RAT in the dual connectivity mode, based on the control signaling. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a signaling manager as described with reference to FIGs. 4 through 7.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the  description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. As used herein, including in the claims, the term "and/or, " when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, "or" as used in a list of items (for example, a list of items prefaced by a phrase such as "at least one of" or "one or more of" ) indicates a disjunctive list such that, for example, a list of "at least one of A, B, or C" means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, "or" as used in a list of items (e.g., a list of items prefaced by a phrase such as "at least one of" or "one or more of" ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase "based on" shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as "based on condition A" may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase "based on" shall be construed in the same manner as the phrase "based at least in part on. "
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the  similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term "example" used herein means "serving as an example, instance, or illustration, " and not "preferred" or "advantageous over other examples. " The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (48)

  1. A method for wireless communications at a user equipment (UE) comprising a first radio access technology and a second radio access technology that differs from the first radio access technology, the method comprising:
    adjusting a first measurement periodicity for the first radio access technology based at least in part on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology;
    communicating control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based at least in part on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity; and
    communicating via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based at least in part on the control signaling.
  2. The method of claim 1, further comprising:
    receiving at least one measurement configuration that configures the UE with the first measurement periodicity for the first radio access technology, a second measurement periodicity for the second radio access technology, or both.
  3. The method of claim 1, wherein communicating the control signaling comprises:
    transmitting an add request that requests to add connectivity for the first radio access technology based at least in part on the one or more measurements; and
    receiving an add response based at least in part on the add request.
  4. The method of claim 3, wherein the add response configures the UE to add connectivity for the first radio access technology.
  5. The method of claim 1, further wherein communicating the control signaling comprises:
    transmitting a remove request that requests to remove connectivity for the first radio access technology based at least in part on the one or more measurements; and
    receiving a remove response based at least in part on the remove request.
  6. The method of claim 5, wherein the remove response configures the UE to remove connectivity for the first radio access technology.
  7. The method of claim 1, further comprising:
    determining a threshold criterion associated with a reference signal parameter of the first radio access technology, wherein adjusting the first measurement periodicity further comprises adjusting the first measurement periodicity based at least in part on the threshold criterion.
  8. The method of claim 7, further comprising:
    determining a scaling factor corresponding to the first measurement periodicity based at least in part on the threshold criterion, wherein adjusting the first measurement periodicity further comprises adjusting the first measurement periodicity based at least in part on the scaling factor.
  9. The method of claim 7, further comprising:
    receiving signaling indicating the threshold criterion.
  10. The method of claim 1, further comprising:
    monitoring a signal fluctuation level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology.
  11. The method of claim 10, wherein adjusting the first measurement periodicity further comprises:
    adjusting the first measurement periodicity based at least in part on the signal fluctuation level satisfying a signal fluctuation threshold.
  12. The method of claim 11, further comprising:
    receiving signaling indicating the signal fluctuation threshold.
  13. The method of claim 1, further comprising:
    monitoring a signal imbalance level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology.
  14. The method of claim 13, wherein adjusting the first measurement periodicity further comprises:
    adjusting the first measurement periodicity based at least in part on the signal imbalance level satisfying a signal imbalance threshold.
  15. The method of claim 14, further comprising:
    receiving signaling indicating the signal imbalance threshold.
  16. The method of claim 1, wherein adjusting the first measurement periodicity comprises:
    increasing the first measurement periodicity based at least in part on the data throughput demand level of the UE and the reference signal parameter level.
  17. The method of claim 1, wherein adjusting the first measurement periodicity comprises:
    decreasing the first measurement periodicity based at least in part on the data throughput demand level of the UE and the reference signal parameter level.
  18. The method of claim 1, further comprising:
    adjusting a second measurement periodicity for the second radio access technology based at least in part on the data throughput demand level of the UE and the reference signal parameter level associated with the second radio access technology.
  19. The method of claim 18, wherein communicating the control signaling comprises:
    communicating the control signaling based at least in part on one or more measurements corresponding to the second radio access technology generated in accordance with the second measurement periodicity.
  20. The method of claim 1, further comprising:
    determining a connection state at the UE, wherein adjusting the first measurement periodicity is further based at least in part on determining the connection state.
  21. The method of claim 20, wherein the connection state comprises a radio resource control connected mode.
  22. The method of claim 20, wherein the connection state comprises a radio resource control idle mode.
  23. The method of claim 1, wherein the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
  24. An apparatus for wireless communications at a user equipment (UE) comprising a first radio access technology and a second radio access technology that differs from the first radio access technology, the method:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    adjust a first measurement periodicity for the first radio access technology based at least in part on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology;
    communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based at least in part on one or more measurements  corresponding to the first radio access technology generated in accordance with the first measurement periodicity; and
    communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based at least in part on the control signaling.
  25. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive at least one measurement configuration that configures the UE with the first measurement periodicity for the first radio access technology, a second measurement periodicity for the second radio access technology, or both.
  26. The apparatus of claim 24, wherein the instructions to communicate the control signaling are executable by the processor to cause the apparatus to:
    transmit an add request that requests to add connectivity for the first radio access technology based at least in part on the one or more measurements; and
    receive an add response based at least in part on the add request.
  27. The apparatus of claim 26, wherein the add response configures the UE to add connectivity for the first radio access technology.
  28. The apparatus of claim 24, wherein the instructions to communicate the control signaling are executable by the processor to cause the apparatus to:
    transmit a remove request that requests to remove connectivity for the first radio access technology based at least in part on the one or more measurements; and
    receive a remove response based at least in part on the remove request.
  29. The apparatus of claim 28, wherein the remove response configures the UE to remove connectivity for the first radio access technology.
  30. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    the instructions to determine a threshold criterion associated with a reference signal parameter of the first radio access technology, wherein adjusting the first measurement  periodicity further are executable by the processor to cause the apparatus to adjust the first measurement periodicity based at least in part on the threshold criterion.
  31. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    the instructions to determine a scaling factor corresponding to the first measurement periodicity based at least in part on the threshold criterion, wherein adjusting the first measurement periodicity further are executable by the processor to cause the apparatus to adjust the first measurement periodicity based at least in part on the scaling factor.
  32. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive signaling indicating the threshold criterion.
  33. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    monitor a signal fluctuation level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology.
  34. The apparatus of claim 33, wherein the instructions to adjust the first measurement periodicity further are executable by the processor to cause the apparatus to:
    adjust the first measurement periodicity based at least in part on the signal fluctuation level satisfying a signal fluctuation threshold.
  35. The apparatus of claim 34, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive signaling indicating the signal fluctuation threshold.
  36. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    monitor a signal imbalance level between a first signal received via a first receive chain of the first radio access technology and a second signal received via a second receive chain of the first radio access technology.
  37. The apparatus of claim 36, wherein the instructions to adjust the first measurement periodicity further are executable by the processor to cause the apparatus to:
    adjust the first measurement periodicity based at least in part on the signal imbalance level satisfying a signal imbalance threshold.
  38. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive signaling indicating the signal imbalance threshold.
  39. The apparatus of claim 24, wherein the instructions to adjust the first measurement periodicity are executable by the processor to cause the apparatus to:
    increase the first measurement periodicity based at least in part on the data throughput demand level of the UE and the reference signal parameter level.
  40. The apparatus of claim 24, wherein the instructions to adjust the first measurement periodicity are executable by the processor to cause the apparatus to:
    decrease the first measurement periodicity based at least in part on the data throughput demand level of the UE and the reference signal parameter level.
  41. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    adjust a second measurement periodicity for the second radio access technology based at least in part on the data throughput demand level of the UE and the reference signal parameter level associated with the second radio access technology.
  42. The apparatus of claim 41, wherein the instructions to communicate the control signaling are executable by the processor to cause the apparatus to:
    communicate the control signaling based at least in part on one or more measurements corresponding to the second radio access technology generated in accordance with the second measurement periodicity.
  43. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a connection state at the UE, wherein adjusting the first measurement periodicity is further based at least in part on determining the connection state.
  44. The apparatus of claim 43, wherein the connection state comprises a radio resource control connected mode.
  45. The apparatus of claim 43, wherein the connection state comprises a radio resource control idle mode.
  46. The apparatus of claim 24, wherein the reference signal parameter level corresponds to a reference signal receive power, a reference signal receive quality, a signal to interference plus noise ratio, or any combination thereof.
  47. An apparatus for wireless communications at a user equipment (UE) comprising a first radio access technology and a second radio access technology that differs from the first radio access technology, the method comprising, comprising:
    means for adjusting a first measurement periodicity for the first radio access technology based at least in part on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology;
    means for communicating control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual connectivity mode based at least in part on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity; and
    means for communicating via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based at least in part on the control signaling.
  48. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) comprising a first radio access technology and a second radio access technology that differs from the first radio access technology, the method comprising, the code comprising instructions executable by a processor to:
    adjust a first measurement periodicity for the first radio access technology based at least in part on a data throughput demand level of the UE and a reference signal parameter level associated with the second radio access technology;
    communicate control signaling to add or remove connectivity for the first radio access technology to operate the UE in one of a single connectivity mode or a dual  connectivity mode based at least in part on one or more measurements corresponding to the first radio access technology generated in accordance with the first measurement periodicity; and
    communicate via the second radio access technology in the single connectivity mode, or via the first radio access technology and the second radio access technology in the dual connectivity mode, based at least in part on the control signaling.
PCT/CN2020/101788 2020-07-14 2020-07-14 Radio access technology measurement periodicity WO2022011530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101788 WO2022011530A1 (en) 2020-07-14 2020-07-14 Radio access technology measurement periodicity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101788 WO2022011530A1 (en) 2020-07-14 2020-07-14 Radio access technology measurement periodicity

Publications (1)

Publication Number Publication Date
WO2022011530A1 true WO2022011530A1 (en) 2022-01-20

Family

ID=80684859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101788 WO2022011530A1 (en) 2020-07-14 2020-07-14 Radio access technology measurement periodicity

Country Status (1)

Country Link
WO (1) WO2022011530A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140213310A1 (en) * 2013-01-30 2014-07-31 Shu-Ping Yeh Dynamic interference avoidance in integrated multi-radio access technolgies (rat) heterogeneous networks
WO2019006085A1 (en) * 2017-06-30 2019-01-03 Intel Corporation V2x communications using multiple radio access technologies (multi-rat)
US20190053160A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Techniques and apparatuses for power management via cross-rat signaling in a non-standalone configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140213310A1 (en) * 2013-01-30 2014-07-31 Shu-Ping Yeh Dynamic interference avoidance in integrated multi-radio access technolgies (rat) heterogeneous networks
WO2019006085A1 (en) * 2017-06-30 2019-01-03 Intel Corporation V2x communications using multiple radio access technologies (multi-rat)
US20190053160A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Techniques and apparatuses for power management via cross-rat signaling in a non-standalone configuration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TP for TS 36.331 on inter-RAT NR measurement", 3GPP TSG-RAN WG2 #99BIS TDOC R2-1711129, 13 October 2017 (2017-10-13), XP051343137 *
FIBERHOME: "RRM measurements for Dual Connectivity", 3GPP TSG-RAN WG2 MEETING #86 R2-141616, 23 May 2014 (2014-05-23), XP050792764 *

Similar Documents

Publication Publication Date Title
WO2021168848A1 (en) Techniques for selecting and reselecting sidelink relay
US11855685B2 (en) Frequency hopping with slot bundling
US20210076326A1 (en) Signaling to support power utilization modes for power saving
US20210410013A1 (en) Indication of operating configuration priorities
US11576067B2 (en) Transmission imbalance estimation
US20230070642A1 (en) Slot format for intra-frequency cross link interference measurement
US20240056918A1 (en) Vehicle-to-everything cell reselection
US11728945B2 (en) Uplink reference signal bundling techniques in wireless communications
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US11671867B2 (en) Listen before talk type dependent channel measurements for sidelink communications
US11528711B2 (en) Techniques for transport block transmission over multiple slots
US20230247461A1 (en) Measurement reporting timing adjustments
WO2022011489A1 (en) Operation state determining and switching
WO2021056494A1 (en) Method and apparatus for configuring connected mode discontinuous reception (cdrx)
WO2022011530A1 (en) Radio access technology measurement periodicity
US11671378B2 (en) Managing end-to-end delay budget for wireless communications
US11943661B2 (en) Techniques for configuring a bitrate request
US11510209B2 (en) Overheating triggered radio resource management (RRM) relaxation
US20210345232A1 (en) Physical cell identifier limit configuration
WO2021237384A1 (en) Techniques for avoiding frequent handover in small cells
WO2021253283A1 (en) Service recovery techniques for wireless communications systems
WO2021248307A1 (en) Anchor cell selection for non-standalone mode
US20230412338A1 (en) Channel state information reporting and time restriction
US20220191850A1 (en) Control signaling for beam update and reference signals
US20230138717A1 (en) Enhanced paging in wireless backhaul networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945073

Country of ref document: EP

Kind code of ref document: A1