WO2021203294A1 - 光学器件、光学器件的检测方法、激光雷达以及可移动设备 - Google Patents

光学器件、光学器件的检测方法、激光雷达以及可移动设备 Download PDF

Info

Publication number
WO2021203294A1
WO2021203294A1 PCT/CN2020/083755 CN2020083755W WO2021203294A1 WO 2021203294 A1 WO2021203294 A1 WO 2021203294A1 CN 2020083755 W CN2020083755 W CN 2020083755W WO 2021203294 A1 WO2021203294 A1 WO 2021203294A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
effective area
section
cross
Prior art date
Application number
PCT/CN2020/083755
Other languages
English (en)
French (fr)
Inventor
吴敬阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080019196.2A priority Critical patent/CN113841063A/zh
Priority to PCT/CN2020/083755 priority patent/WO2021203294A1/zh
Publication of WO2021203294A1 publication Critical patent/WO2021203294A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements

Definitions

  • This application relates to an optical device, a detection method of an optical device, a laser radar, and a movable device.
  • laser Lida has been widely used in various types of movable equipment such as unmanned aerial vehicles and vehicles.
  • movable equipment such as unmanned aerial vehicles and vehicles.
  • drones can be widely used in online cruises, ruins detection, agricultural production observation, industrial surveying and exploration, and assisted unmanned driving, etc. field.
  • Lidar is an optical instrument that uses lasers to measure distances. It usually emits lasers actively, and uses the reflected light from the laser to hit the object to calculate the distance between the instrument and the object. Therefore, a large number of laser radars usually need to be set up. optical instrument. For example, filters, reflectors, windows, etc.
  • an optical coating is usually provided on the surface of the optical device.
  • the optical device In the production process of optical devices, in the case of coating defects or dirt in the optical coating, the optical device is often judged as a defective product, which is not conducive to the reasonable control of the production yield and production cost of flat optical parts.
  • embodiments of the present application provide an optical device, a detection method of an optical device, a laser radar, and a movable device.
  • an embodiment of the present application provides an optical device, the optical device comprising: a device body and an optical coating film arranged on the device body; the boundary of the optical coating film is arranged around the optical effective area, and the optical device The effective area is used to envelop the outer contour of the light cross section; wherein the light cross section is a cross section formed by the light contacting the optical coating.
  • the area of the optical effective region is greater than or equal to the area of the light cross section.
  • the shape of the optical effective area matches the shape of the light cross section.
  • the shape of the optical effective area is a polygon.
  • the light cross section includes a transmission cross section and a reflection cross section.
  • the corresponding optical effective area is the transmission effective area
  • the corresponding optical effective area is the reflection effective area.
  • the light cross section is the transmission cross section or the reflection cross section.
  • the optical cross section is the transmission cross section and the reflection cross section
  • the optical effective area includes the transmission effective area and the reflection effective area.
  • the transmission cross section and the reflection cross section are independent of each other, and the transmission effective area and the reflection effective area are independent of each other.
  • the transmission cross section and the reflection cross section partially overlap to form an overlap area, and the optically effective area corresponding to the overlap area is the transmission effective area or the reflection effective area.
  • one of the ray cross-sections envelopes the other ray cross-section
  • the optical effective area corresponding to another ray cross section is nested in the optical effective area corresponding to one ray cross section.
  • the light includes static light and dynamic light
  • the cross section of the light is a cross section formed by the light projected onto the optical coating
  • the cross section of the light is a cross section formed by the movement track of the light on the optical coating.
  • the light includes at least one of a circular columnar light, a square columnar light, a circular cone-shaped light, a square cone-shaped light, a special-shaped light column, and a special-shaped light cone.
  • the shape of the optical effective area corresponds to the shape and movement state of the light.
  • the optical effective area is an octagon.
  • the optical effective area is a quadrilateral.
  • the optical effective area is a quadrilateral.
  • the optical effective area is a quadrilateral.
  • the optical effective area is an octagon.
  • the optical effective area is a quadrilateral.
  • the propagation direction of the light is perpendicular to the optical coating or set at a preset angle.
  • the optical coating is provided with an optical effective area contour line, and the area within the contour line is the optical effective area.
  • the optical device is at least one of a flat mirror, a convex lens or a concave lens.
  • the optical device is at least one of a reflective device, a transmissive device, and a window device.
  • an embodiment of the present application also provides a detection method of an optical device, including:
  • the quality information it is determined whether the optical device is qualified.
  • an embodiment of the present application also provides a laser radar, the laser radar includes: a laser, a detector, and the above-mentioned optical device; wherein,
  • the laser is used to send incident laser light, and the detector is used to detect the reflected laser light returned after the incident laser light is reflected by a target;
  • the optical device is arranged on an optical path formed by the incident laser light and/or the reflected laser light.
  • an embodiment of the present application also provides a movable device, the movable device includes: a device main body and the above-mentioned lidar; wherein,
  • the lidar is fixed on the main body of the device.
  • the boundary of the optical coating of the optical device may be arranged around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, therefore, when the quality of the coating corresponding to the optical effective area is qualified , Then the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified.
  • the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced.
  • the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • FIG. 1 shows a schematic diagram of a lateral structure of an optical device according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the front structure of an optical device according to an embodiment of the present application
  • FIG. 3 shows one of the schematic diagrams of the front structure of the optical device of the embodiment of the present application
  • FIG. 4 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application
  • FIG. 5 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application
  • FIG. 6 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 7 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 8A shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 8B shows one of the front structural schematic diagrams of the optical device of the embodiment of the present application.
  • FIG. 9A shows one of the front structural schematic diagrams of the optical device according to the embodiment of the present application.
  • FIG. 9B shows one of the front structural schematic diagrams of the optical device of the embodiment of the present application.
  • FIG. 10 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 11A shows one of the schematic diagrams of the front structure of the optical device of the embodiment of the present application.
  • FIG. 11B shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 12A shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 12B shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 13 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 14 shows one of the schematic diagrams of the front structure of the optical device of the embodiment of the present application.
  • FIG. 15 shows one of the schematic diagrams of the front structure of the optical device according to the embodiment of the present application.
  • FIG. 16 shows one of the front structural schematic diagrams of the optical device of the embodiment of the present application.
  • FIG. 17 shows a flow chart of the steps of a method for detecting an optical device according to an embodiment of the present application
  • FIG. 18 shows a schematic structural diagram of a lidar according to an embodiment of the present application.
  • FIG. 19 shows a schematic structural diagram of a movable device according to an embodiment of the present application.
  • 10-device body 11-optical coating, 20-laser, 21-detector, 22-optical device, 23-target, 100-device body, 200-lidar, A-light section, A1-transmission section, A2 -Reflective cross section, B-ray, S-optical effective area, S1-transmission effective area, S2-reflection effective area.
  • the embodiments of the present application provide an optical device.
  • the optical device may include, but is not limited to, any one of a reflective device, a transmissive device, and a window device.
  • the optical device may be a reflective sheet, a reflective mirror, a transmissive mirror, a translucent sheet, a light filter, or a window sheet, etc., which are not limited in the embodiments of the present application.
  • the optical device may be a window, filter or reflector in the lidar.
  • the window is usually located outside the device or product, and protects the components inside the device or product.
  • the filter is usually located near the laser emitting device and the laser receiving device, which can reduce the optical noise.
  • the reflector can be flexibly placed in any place where the light path passes inside the lidar, so as to reflect light and achieve the required light path design.
  • the optical device may include: a device body 10 and an optical coating 11 arranged on the device body 10; the boundary of the optical coating 11 is arranged around the optically effective area S, and the optically effective area S may be used to envelop the light cross-section A Outer contour; where the light cross-section A is the cross-section formed by the light B and the optical coating 11 in contact.
  • the type of the optical coating 11 of the optical device can be determined according to its function.
  • the optical coating 11 on the surface may be an antireflection film or a band-pass film; the optical device is a reflective sheet In the case, in order to realize the function of reflection, the optical coating 11 on the surface may be a reflective film.
  • the embodiments of the present application may not limit the specific content of the optical coating 11.
  • the light cross section A may be a cross section formed by the light projected on the optical device in contact with the optical coating 11 on its surface.
  • the position of the optical device in a specific optical instrument is different, and the corresponding light cross section A is also different.
  • the embodiment of the present application may not limit the specific content of the light cross section A.
  • the boundary of the optical coating 11 may be set around the optically effective area S, and the optically effective area S may be used to envelop the outer contour of the light section A. Since the cross-section A of the light beam projected to the optical device or emitted from the optical device in contact with the optical coating 11 is located in the optical effective area S, the quality of the coating corresponding to the optical effective area S is qualified. , The function of the optical coating 11 can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating 11 on the device body 10 is detected, only the coating quality corresponding to the optical effective area S can be detected.
  • the quality of the optical coating 11 can be considered to be qualified. In this way, on the one hand, the quality inspection of the entire optical coating 11 can be avoided, and the inspection workload can be reduced. On the one hand, it is also possible to appropriately relax the manufacturing process conditions of the optical coating 11 to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • the optical coating 11 can still be used normally, and the optical device can also be judged to be a good product. In this way, the yield of the optical device can be improved, which is beneficial to the cost control of the optical device.
  • the boundary of the optically effective area S can be formed on the outer surface, inner surface or in the optically coated film 11 during the processing of the optically coated film 11 by silk screen printing.
  • the specific position of S on the optical coating 11 may not be limited.
  • the area of the optically effective area S is greater than or equal to the area of the light section A, so that the optically effective area S can sufficiently envelop the outer contour of the light section A.
  • the optical effective area S is usually greater than or at least equal to these.
  • the cross-section of the light and all the areas that have been in contact with the light, so that these areas in contact with the light can fall within the range of the optically effective area S.
  • the shape of the optical effective area S matches the shape of the light cross section A, so that the area of the optical effective area S outside the light cross section A is smaller, so that the optical fiber can be reduced.
  • the area of the effective area S in turn, can reduce the detection amount of the optical coating 11 during quality inspection, and increase the yield of the optical device.
  • the shape of the optical effective area S and the shape of the light section A can be matched as follows: the shape of the optical effective area S is the same as the shape of the optical section A, or the shape of the optical effective area S is similar to the shape of the optical section A.
  • the shape of the optically effective area S may be polygonal, so as to facilitate the formation of the optically effective area S, and when the quality inspection of the coating corresponding to the optically effective area S is performed, it is convenient for the optical The boundary of the effective area is measured.
  • the polygonal optically effective area S is easier to process compared to a circular, elliptical, or special-shaped pattern with curved edges.
  • the polygonal optically effective area S is easier to determine and measure the boundary, so that the quality of the coating in the optically effective area S can be easily detected.
  • the polygon may include, but is not limited to, a triangle, a quadrilateral, a hexagon, etc.
  • the embodiment of the present application may not limit the specific type of the polygon.
  • the light section A may include a transmission section and a reflection section.
  • the specific type of light cross section A is determined according to the contact mode of the light with the optical coating 11. If the light needs to pass through the optical coating 11, these light cross-sections are called transmission cross-sections; if the light needs to be reflected on the optical coating 11, these light cross-sections are called reverse cross-sections.
  • the light section A is usually a transmission section, and for reflectors, the light section A can be a plated reflection section.
  • its ray cross-section A may be the transmission cross-section or the reflection cross-section, or the superposition, cross-combination or nesting of multiple transmission cross-sections and multiple reflection cross-sections.
  • the corresponding optical effective area S when the light section A is the transmission section, the corresponding optical effective area S may be the transmission effective area; when the light section A is the reflection section, the corresponding optical effective area S can be the effective reflection area. That is, according to the type of light cross-section A on the optical device, its optical effective area S may be the transmission effective area or the reflection effective area, or it may be the superposition, cross combination or embedding of the two effective areas. set.
  • the optically effective area S thereof may be the transmission effective area S1 accordingly.
  • the optically effective area S thereof may correspondingly be the reflective effective area S2.
  • the optically effective area S of the optical device can be correspondingly It includes a transmission effective area S1 and a reflection effective area S2, and the transmission effective area A1 and the reflection effective area A2 are independent of each other.
  • the optically effective area of the optical device S correspondingly may include the transmission effective area S1 and the reflection effective area S2, and the optically effective area corresponding to the overlapping area A0 may be set as the transmission effective area S1 and the reflection effective area S2 according to the actual situation.
  • the optical section A of the optical device includes a transmission section A1 and a reflection section A2, and in the transmission section A1 and the reflection section A2, one of the ray section envelopes the other ray section; then the transmission section In the effective area S1 and the reflective effective area S2, the optical effective area corresponding to the other ray cross section is nested in the optical effective area corresponding to one ray cross section.
  • the effective reflection area S2 corresponding to the reflection section A2 is nested in the transmission effective area S1 corresponding to the transmission section A1.
  • the optical device according to claim 1, wherein the light includes static light and dynamic light;
  • the light cross section A when the light contacting the optical coating 11 is static light, that is, when the propagation direction of the light B is fixed, the light cross section A is the cross section formed by the light projected onto the optical coating 11 (such as 1); in the case where the light in contact with the optical coating 11 is a dynamic light, the light cross section A is a cross section formed by the movement track of the light on the optical coating 11.
  • the optical section A is a section formed by the movement track of the light B on the optical coating 11.
  • the optical section A is a section formed by the movement track of the light B on the optical coating 11 .
  • the light B may include at least one of a circular columnar light, a square columnar light, a circular cone-shaped light, a square cone-shaped light, a special-shaped light column, and a special-shaped light cone.
  • the special-shaped light beam may be a light beam with an irregular cross-sectional shape
  • the special-shaped light cone may be a light cone with an irregular cross-sectional shape.
  • the shape of the optical effective area corresponds to the shape and movement state of the light.
  • the propagation direction of the light B is fixed, and the shape of the optical effective area S is an octagon.
  • the shape of the optical effective area S is all It is a quadrilateral.
  • the light B may be a square columnar light.
  • the propagation direction of the light B is fixed, and the shape of the optical effective area S may be a quadrilateral.
  • the shape of the optical effective area S is a quadrilateral.
  • the shape of the optical effective area S is a quadrilateral.
  • the shape of the optical effective area S may be an octagon.
  • the shape of the optical effective area S may be a quadrilateral.
  • the shape of the light B may include but is not limited to any of the above embodiments.
  • the optical effective area corresponding to each shape of the light B may not be limited to the above. Any of the embodiments.
  • the propagation direction of the light B may be perpendicular to the optical coating 11 or set at a preset angle. Specifically, when the propagation direction of the light B and the optical coating 11 are set at a preset angle, it can be considered that the propagation direction of the light B is inclined to the surface of the optical coating 11.
  • the propagation direction of the light B and the optical coating 11 may be perpendicular.
  • the light B is a cylindrical light
  • the angle between the propagation direction of the light B and the optical coating 11 is different, a different shape of the light cross-section A will be obtained, and correspondingly, the shape of the corresponding optical effective area S Also different.
  • the cross section A of the light may be elliptical.
  • the diameter of the cylinder is D and the angle between the surface of the optical coating 11 and the propagation direction of the light B is ⁇
  • the length of the minor axis of the ellipse is equal to the diameter D of the cylinder
  • the major axis of the ellipse is equal to D/sin( ⁇ ).
  • the light cross section A may be a quadrilateral.
  • the cross section A of the ray can be elliptical; when the ray B is a square cone-shaped ray, and the propagation direction of the ray B is When inclined to the optical coating 11, the light cross section A may be quadrilateral.
  • the optical coating 11 may be provided with a contour line of the optically effective area S, and the area within the contour line is the optically effective area S.
  • the contour line of the optically effective area S can be formed by processes such as silk screen printing and etching, and the area within the contour line is determined as the optically effective area.
  • the range of the optical effective area S can be easily determined, and the quality inspection accuracy of the optical coating 11 can be improved.
  • contour line of the optical effective area S may be a physical line or a virtual line, and the specific type of the contour line of the optical effective area S may not be limited in the present application.
  • the optical device may be at least one of a flat mirror, a convex lens or a concave lens, and the specific type of the optical device may not be limited in the present application.
  • optical device described in the embodiments of the present application may at least include the following advantages:
  • the boundary of the optical coating film may be arranged around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, therefore, when the quality of the coating corresponding to the optical effective area is qualified , Then the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified.
  • the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced.
  • the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • the application also provides a detection method of an optical device, which is used to detect the quality of the optical coating on the surface of the optical device.
  • the optical device may be the optical device described in the foregoing embodiments.
  • FIG. 17 there is shown a step flow chart of an optical device detection method of the present application. As shown in FIG. 17, the method may specifically include:
  • Step S11 Obtain quality information in the optical effective area of the optical coating of the optical device.
  • the surface of the optical device may be provided with an optical coating, and the boundary of the optical coating may be set around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, the quality of the coating corresponding to the optical effective area is qualified In this case, the function of the optical coating can be realized. Therefore, in the embodiment of the present application, when the quality of the optical coating of the optical device is detected, only the quality of the corresponding coating in the optical effective area can be detected, so that the workload of detection can be reduced. .
  • Step S12 Determine whether the optical device is qualified according to the quality information.
  • the coating corresponding to the optical effective area In the embodiment of the present application, since the cross-section of the light projected to or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, the coating corresponding to the optical effective area In the case of qualified quality, the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified. In this way, on the one hand, the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced. On the one hand, the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • optical device detection method described in the embodiments of the present application may specifically include the following advantages:
  • the boundary of the optical coating film may be arranged around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, therefore, when the quality of the coating corresponding to the optical effective area is qualified , Then the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified.
  • the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced.
  • the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • the embodiment of the application also provides a lidar.
  • the lidar 200 may include: a laser 20, a detector 21, and the above-mentioned optical device 22; wherein the laser 20 may be used for transmitting For incident laser light, the detector 21 may be used to detect the reflected laser light returned after the incident laser light is reflected by the target 23; the optical device 22 may be arranged on the optical path formed by the incident laser light and/or the reflected laser light.
  • optical device 22 may be the optical device 22 described in the foregoing embodiments, and details are not repeated here.
  • the lidar may also include an information processing system, which may be electrically connected to the laser 20 and the detector 21, respectively, and the information processing system may be used to detect the incident laser light and the reflected laser light detected by the detector 21. , The characteristic quantities such as the position and speed of the target 23 are obtained.
  • the laser 20 may be at least one of a carbon dioxide laser, a neodymium-doped yttrium aluminum garnet laser, a semiconductor laser, a wavelength tunable solid-state laser, and an optical beam expander unit.
  • the detector 21 may be at least one of a photomultiplier tube, a semiconductor photodiode, an avalanche photodiode, an infrared and visible light multi-element detecting device. The specific types of the laser 20 and the detector 21 may not be limited in this application.
  • the optical device 22 may be arranged on the optical path formed by the incident laser light and/or the reflected laser light.
  • the optical device 22 may be any one of a window, a filter, or a reflector in a lidar.
  • the window is usually located outside the device or product, and protects the components inside the device or product.
  • the filter is usually located near the laser emitting device and the laser receiving device, which can reduce the optical noise.
  • the reflector can be flexibly placed in any place where the light path passes inside the lidar, so as to reflect light and achieve the required light path design.
  • the boundary of the optical coating of the optical device may be arranged around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, therefore, when the quality of the coating corresponding to the optical effective area is qualified , Then the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified.
  • the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced.
  • the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • This application also provides a movable device, which may include, but is not limited to, unmanned aerial vehicles, vehicles, movable platforms, or movable furniture products (such as sweeping robots) and other devices capable of changing displacements.
  • a movable device which may include, but is not limited to, unmanned aerial vehicles, vehicles, movable platforms, or movable furniture products (such as sweeping robots) and other devices capable of changing displacements.
  • the application embodiment does not limit the specific content of the mobile device.
  • the movable device includes: a device main body 100 and the above-mentioned laser radar 200.
  • the device main body 100 may be the structural main body of the movable device.
  • the device body 100 may be the body of the drone, and when the movable device is a vehicle, the device body may be a body.
  • the position, speed and other characteristic quantities of the target can be obtained, so as to detect the distance, orientation, height, speed, attitude, and even shape of the target. .
  • the laser radar 200 may include the optical devices of the above-mentioned various embodiments.
  • the optical device may be any one of a window, a filter, or a reflector in a lidar.
  • the window is usually located outside the device or product, and protects the components inside the device or product.
  • the filter is usually located near the laser emitting device and the laser receiving device, which can reduce the optical noise.
  • the reflector can be flexibly placed in any place where the light path passes inside the lidar, so as to reflect light and achieve the required light path design.
  • the boundary of the optical coating of the optical device may be arranged around the optically effective area, and the optically effective area may be used to envelop the outer contour of the light cross-section. Since the cross-section of the light projected on or emitted from the optical device and the optical coating in contact with the optical coating is located in the optical effective area, therefore, when the quality of the coating corresponding to the optical effective area is qualified , Then the function of the optical coating can be realized. In this way, in the manufacturing process of the optical device, when the quality of the optical coating on the device body is detected, only the coating quality corresponding to the optical effective area can be detected. When the quality of the coating corresponding to the optical effective area is qualified, the quality of the optical coating can be considered qualified.
  • the quality inspection of the entire optical coating can be avoided, and the inspection workload can be reduced.
  • the manufacturing process conditions of the optical coating can also be appropriately relaxed to improve the yield of the optical device, which is beneficial to the cost control of the optical device.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种光学器件(22)、光学器件的检测方法、激光雷达(200)以及可移动设备,其中,光学器件(22)包括:器件本体(10)和设置在器件本体(10)上的光学镀膜(11);光学镀膜(11)设置有光学有效区(S),光学有效区包络光线截面(A)的外轮廓;其中,光线截面(A)为光线(B)与光学镀膜(11)接触形成的截面。该方法可以避免对整个光学镀膜进行质量检测,减少检测的工作量,还可以适当的放宽光学镀膜的制造工艺条件,提高光学器件的良品率,有利于光学器件的成本控制。

Description

光学器件、光学器件的检测方法、激光雷达以及可移动设备 技术领域
本申请涉及一种光学器件、一种光学器件的检测方法、一种激光雷达以及一种可移动设备。
背景技术
随着激光测距技术的高速发展,激光利达被广泛地应用在了无人机、车辆等各类可移动设备上。例如,通过在无人机上搭载激光雷达来提升无人机的空间探测能力,可以使得无人机被广泛应用于在线巡航、遗迹废墟探测、农业生产观察、工业测绘与勘探以及辅助无人驾驶等领域。
激光雷达是一种利用激光进行测距的光学仪器,通常会主动发射激光,并利用激光打到物体上的反射光来计算仪器与物体之间的距离,因此,激光雷达上通常需要设置大量的光学器件。例如,滤光片、反光片以及窗口片等。
传统的技术中,为了实现光学器件的光学功能,其表面上通常设置光学镀膜。在光学器件的生产过程中,在光学镀膜出现镀膜缺陷或者脏污的情况下,光学器件往往会被判断为不良品,不利于平面光学件的生产良率和生产成本的合理控制。
发明内容
为了解决或者至少部分解决上述问题,本申请实施例提供了一种光学器件、一种光学器件的检测方法、一种激光雷达以及一种可移动设备。
第一方面,本申请实施例提供了一种光学器件,所述光学器件包括:器件本体和设置在所述器件本体上的光学镀膜;所述光学镀膜的边界围绕光学有效区设置,所述光学有效区用于包络光线截面的外轮廓;其中,所述光线截面为光线与所述光学镀膜接触形成的截面。
可选地,所述光学有效区的面积大于或者等于所述光线截面的面积。
可选地,所述光学有效区的形状与所述光线截面的形状匹配。
可选地,所述光学有效区的形状为多边形。
可选地,所述光线截面包括透射截面和反射截面。
可选地,在所述光线截面为所述透射截面的情况下,其对应的光学有效区为透射有效区;
在所述光线截面为所述反射截面的情况下,其对应的光学有效区为反射有效区。
可选地,所述光线截面为所述透射截面或所述反射截面。
可选地,所述光学截面为所述透射截面和所述反射截面;
所述光学有效区包括所述透射有效区和所述反射有效区。
可选地,所述透射截面和所述反射截面相互独立,所述透射有效区和所述反射有效区相互独立。
可选地,所述透射截面与所述反射截面部分重叠形成重叠区域,所述重叠区域对应的光学有效区为所述透射有效区或者所述反射有效区。
可选地,所述透射截面和所述反射截面中,其中一个光线截面包络另一个光线截面;
则所述透射有效区和所述反射有效区中,另一个光线截面对应的光学有效区嵌套在一个光线截面对应的光学有效区内。
可选地,所述光线包括静态光线和动态光线;
在所述光线为静态光线的情况下,所述光线截面为所述光线投射到所述光学镀膜上形成的截面;
在所述光线为动态光线的情况,所述光线截面为所述光线在所述光学镀膜上的运动轨迹形成的截面。
可选地,所述光线包括圆形柱状光线、方形柱状光线、圆形锥状光线、方形锥状光线、异形光柱和异形光锥中的至少一种。
可选地,所述光学有效区的形状与所述光线的形状和运动状态对应。
可选地,在所述光线为圆形柱状光线且为静态光线的情况下,所述光学有效区为八边形。
可选地,所述光线为圆形柱状光线且为动态光线的情况下,所述光学有效区为四边形。
可选地,在所述光线为方形柱状光线且为静态光线的情况下,所述光学有效区为四边形。
可选地,在所述光线为方形柱状光线且为动态光线的情况下,所述光学有效区为四边形。
可选地,在所述光线为圆形锥状光线且为静态光线的情况下,所述光学有效区为八边形。
可选地,在所述光线为方形锥状光线且为静态光线的情况下,所述光学有效区为四边形。
可选地,所述光线的传播方向与所述光学镀膜垂直或者成预设夹角设置。
可选地,所述光学镀膜上设置有光学有效区轮廓线,所述轮廓线内的区域为所述光学有效区。
可选地,所述光学器件为平面镜、凸透镜或者凹透镜中的至少一种。
可选地,所述光学器件为反射器件、透射器件和窗口器件中的至少一种。
第二方面,本申请实施例还提供了一种光学器件的检测方法,包括:
获取光学器件的光学镀膜的光学有效区内的质量信息;
根据所述质量信息,判断所述光学器件是否合格。
第三方面,本申请实施例还提供了一种激光雷达,所述激光雷达包括:激光器、探测器以及上述光学器件;其中,
所述激光器用于发送入射激光,所述探测器用于探测所述入射激光经目标物反射后返回的反射激光;
所述光学器件设置在所述入射激光和/或所述反射激光形成的光学路径上。
第四方面,本申请实施例还提供了一种可移动设备,所述可移动设备包括:设备主体以及上述激光雷达;其中,
所述激光雷达固定在所述设备主体上。
本申请实施例中,所述光学器件的光学镀膜的边界可以围绕所述光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例的光学器件的侧向结构示意图;
图2示出了本申请实施例的光学器件的正向结构示意图;
图3示出了本申请实施例的光学器件的正向结构示意图之一;
图4示出了本申请实施例的光学器件的正向结构示意图之一;
图5示出了本申请实施例的光学器件的正向结构示意图之一;
图6示出了本申请实施例的光学器件的正向结构示意图之一;
图7示出了本申请实施例的光学器件的正向结构示意图之一;
图8A示出了本申请实施例的光学器件的正向结构示意图之一;
图8B示出了本申请实施例的光学器件的正向结构示意图之一;
图9A示出了本申请实施例的光学器件的正向结构示意图之一;
图9B示出了本申请实施例的光学器件的正向结构示意图之一;
图10示出了本申请实施例的光学器件的正向结构示意图之一;
图11A示出了本申请实施例的光学器件的正向结构示意图之一;
图11B示出了本申请实施例的光学器件的正向结构示意图之一;
图12A示出了本申请实施例的光学器件的正向结构示意图之一;
图12B示出了本申请实施例的光学器件的正向结构示意图之一;
图13示出了本申请实施例的光学器件的正向结构示意图之一;
图14示出了本申请实施例的光学器件的正向结构示意图之一;
图15示出了本申请实施例的光学器件的正向结构示意图之一;
图16示出了本申请实施例的光学器件的正向结构示意图之一;
图17示出了本申请实施例的一种光学器件的检测方法的步骤流程图;
图18示出了本申请实施例的激光雷达的结构示意图;
图19示出了本申请实施例的可移动设备的结构示意图。
附图标记说明:
10-器件本体,11-光学镀膜,20-激光器,21-探测器,22-光学器件,23-目标物,100-设备主体,200-激光雷达,A-光线截面,A1-透射截面,A2-反射截面,B-光线,S-光学有效区,S1-透射有效区,S2-反射有效区。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供了一种光学器件,所述光学器件可以包括但不局限于反射器件、透射器件和窗口器件中的任意一种。具体的,所述光学器件可以为反光片、反射镜、透射镜、透光片、滤光片、或者窗口片等,,本申请实 施例对此不做限定。
例如,在光学仪器激光雷达中,所述光学器件可以为激光雷达中的窗口片、滤光片或者反光片。具体的,窗口片通常位于器件、产品的外部,对器件或产品内部的部件起保护作用。滤光片通常位于激光发射器件和激光接收器件附近,可减小的光噪声。反光片可以灵活放置于激光雷达内部任何光路经过的地方,从而反射光线,实现所需的光路设计。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参照图1,示出了本申请实施例的一种光学器件的侧向结构示意图,参照图2,示出了本申请实施例的光学器件的正向结构示意图。具体的,所述光学器件可以包括:器件本体10和设置在器件本体10上的光学镀膜11;光学镀膜11的边界围绕光学有效区S设置,光学有效区S可以用于包络光线截面A的外轮廓;其中,光线截面A为光线B与光学镀膜11接触形成的截面。
在实际应用中,所述光学器件的光学镀膜11的类型可以根据其功能确定。
例如,在所述光学器件为滤光片的情况下,为了实现减小的光噪声的功能,其表面的光学镀膜11可以为镀增透膜或带通膜;在所述光学器件为反射片的情况下,为了实现反射的功能,其表面的光学镀膜11可以为反光膜。本申请实施例对于光学镀膜11的具体内容可以不做限定。
具体的,光线截面A可以为投射到所述光学器件上的光线与其表面的光学镀膜11接触形成的截面。在实际应用中,所述光学器件在具体的光学仪器中的位置不同,其对应的光线截面A也不同,本申请实施例对于光线截面A的具体内容可以不做限定。
本申请实施例中,光学镀膜11的边界可以围绕光学有效区S设置,光学有效区S可以用于包络光线截面A的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与光学镀膜11接触的光线截面A都位于光学有效区S内,因此,在光学有效区S对应的镀膜的质量合格的情况下,即可实现光学镀膜11的功能。这样,在所述光学器件的制造过程中,在对器件本体10上的光学镀膜11的质量进行检测时,仅检测光学有效区S对应的镀膜质量即可。在光学有效区S对应的镀膜质量合格的情况下,即可认为光学镀膜11的质量是合格的,这样,一方面,可以避免对整个光学镀膜11进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽光学镀膜11的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
例如,在光学有效区S对应的镀膜质量合格,而光学有效区S之外的镀膜出现缺陷或者脏污的情况下,光学镀膜11仍可以正常使用,所述光学器件也可以被判断为良品,这样,就可以提高所述光学器件的良品率,有利于所述光学器件的成本控制。
在实际应用中,光学有效区S的边界可以在光学镀膜11的加工过程中,通过丝印等工艺形成于光学镀膜11的外表面、内表面或者光学镀膜11内,本申请实施例对于光学有效区S在光学镀膜11上的具体位置可以不做限定。
本申请实施例中,光学有效区S的面积大于或者等于光线截面A的面积,以使得光学有效区S可以充分地包络光线截面A的外轮廓。
具体的,在所述光学器件用于激光雷达的情况下,若激光雷达的出射光或入射光与所述光学器件表面的光学镀膜11发生接触,其光学有效区S通常要大于或者至少等于这些光线的截面及其接触过的所有区域,以使得这些与光线接触的区域能够落入光学有效区S的范围内。
在本申请的一种可选实施例中,光学有效区S的形状与光线截面A的形状匹配,以使光线截面A之外的光学有效区S的面积较小,这样,就可以减小光学有效区S的面积,进而,可以减小光学镀膜11在进行质量检测时的检测量,以及,提高所述光学器件的良品率。
具体的,光学有效区S的形状与光线截面A的形状匹配可以为:光学有效区S的形状与光学截面A的形状相同,或者,光学有效区S的形状与光学截面A的形状近似。
在本申请的一种可选实施例中,光学有效区S的形状可以为多边形,以便于光学有效区S的形成,以及,在对光学有效区S对应的镀膜进行质量检测时,便于对光学有效区的边界进行测量。
在实际应用中,在光学镀膜11上形成光学有效区S时,相对于圆形、椭圆形或者有曲线边缘构成的异形图形,多边形的光学有效区S更易于加工,而且,相对于圆形、椭圆形或者有曲线边缘构成的异形图形来说,多边形的光学有效区S更易于进行边界的判定和测量,这样,就可以便于对光学有效区S内的镀膜的质量进行检测。
具体的,所述多边形可以包括但不局限于三角形、四边形、六边形等,本申请实施例对于所述多边形的具体类型可以不做限定。
本申请实施例中,光线截面A可以包括透射截面和反射截面。在实际应用中,根据光线与光学镀膜11的接触方式,确定光线截面A的具体类型。若光线需要需要透过光学镀膜11,则称为这些光线截面为透射截面;若光线需要在光学镀膜11发生反射,则称这些光线截面为反截面。
例如,对于窗口片和滤光片来说,其光线截面A通常为透射截面,对 于反光片来说,其光线截面A则可为镀反射截面。
在实际应用中,对于同一个光学器件来说,其光线截面A可能是所述透射截面或者所述反射截面,也可能是多个透射截面和多个反射截面的叠加、交叉组合或嵌套。
在实际应用中,在光线截面A为所述透射截面的情况下,其对应的光学有效区S可以为透射有效区;在光线截面A为所述反射截面的情况下,其对应的光学有效区S可以为反射有效区。也即,根据所述光学器件上的光线截面A的类型,其光学有效区S可能是所述透射有效区或者所述反射有效区,也可能是这两种有效区的叠加、交叉组合或嵌套。
如图3所示,在所述光学器件的光线截面A仅包括透射截面A1的情况下,其光学有效区S相应地可以为透射有效区S1。
如图4所示,在所述光学器件的光学截面A仅包括反射截面A2的情况下,其光学有效区S相应的可以为反射有效区S2。
如图5所示,在所述光学器件的光学截面A包括透射截面A1和反射截面A2,且透射截面A1和反射截面A2相互独立的情况下,所述光学器件的光学有效区S相应的可以包括透射有效区S1和反射有效区S2,且透射有效区A1和反射有效区A2相互独立。
如图6所示,在所述光学器件的光学截面A包括透射截面A1和反射截面A2,且透射截面A1和反射截面A2部分重叠形成重叠区域A0的情况下,所述光学器件的光学有效区S相应的可以包括透射有效区S1和反射有效区S2上,且重叠区域A0对应的光学有效区可以根据实际情况被设置成透射有效区S1和反射有效区S2。
本申请实施例中,在所述光学器件的光学截面A包括透射截面A1和反射截面A2,且透射截面A1和反射截面A2中,其中一个光线截面包络另一个光线截面的情况下;则透射有效区S1和反射有效区S2中,另一个光线截面对应的光学有效区嵌套在一个光线截面对应的光学有效区内。
例如,如图7所示,在透射截面A1包络反射截面A2的情况下,则反射截面A2对应的反射有效区S2嵌套在透射截面A1对应的透射有效区S1内。
根据权利要求1所述的光学器件,其特征在于,所述光线包括静态光线和动态光线;
本申请实施例中,在与光学镀膜11接触的光线为静态光线的情况下,即光线B的传播方向固定的情况下,光线截面A为所述光线投射到光学镀膜11上形成的截面(如图1所示);在与光学镀膜11接触的光线为动态光线的情况,光线截面A为所述光线在光学镀膜11上的运动轨迹形成的截面。
例如,如图8A-8B所示,在投射到光学镀膜11上的光线B为传播方向发生平移的动态光线情况下,光学截面A为光线B在光学镀膜11上的运动轨迹形成的截面。
又如,如图9A-9B所示,在投射到光学镀膜11上的光线B为传播方向发生平移的动态光线的情况下,光学截面A为光线B在光学镀膜11上的运动轨迹形成的截面。
具体的,光线B可以包括圆形柱状光线、方形柱状光线、圆形锥状光线、方形锥状光线、异形光柱和异形光锥中的至少一种。其中,所述异形光柱可以为截面形状不规则的光柱,所述异形光锥可以为截面形状不规则的光锥。
本申请实施例中,所述光学有效区的形状与所述光线的形状和运动状态对应。
示例的,如图1所示,在光线B为圆形柱状光线且为静态光线的情况下,光线B的传播方向固定,光学有效区S的形状为八边形。
示例地,如图8A-8B、9A-9B所示,在光线B为圆形柱状光线且为动态光线的情况下,无论光线B的传播方向是发生平移还是偏转,光学有效区S的形状皆为四边形。
示例地,如图10所示,光线B可以为方形柱状光线,在光线B方形柱状光线且为静态光线的情况下,光线B的传播方向固定,光学有效区S的形状可以为四边形。
示例地,如图11A-11B所示,在光线B为方形柱状光线,且光线B为传播方向发生平移的动态光线情况下,光学有效区S的形状为四边形。
示例地,如图12A-12B所示,在所述光线为方形柱状光线,且光线B为传播方向发生偏转的动态光线情况下,光学有效区S的形状为四边形。
示例地,如图13所示,在光线B为圆形锥状光线且为静态光线的情况下,即光线B的传播方向固定的情况下,光学有效区S的形状可以为八边形。
示例地,如图14所示,在光线B为方形锥状光线且为静态光线的情况下,即光线B的传播方向固定的情况下,光学有效区S的形状可以为四边形。
可以理解的是,本申请实施例中,光线B的形状可以包括但不局限于上述实施例中的任意一种,同理,每种形状的光线B对应的光学有效区也可以不局限于上述实施例中的任意一种。
本申请实施例中,光线B的传播方向可以与光学镀膜11垂直或者成预设夹角设置。具体的,在光线B的传播方向与光学镀膜11成预设夹角设置的情况下,可以认为光线B的传播方向倾斜于光学镀膜11的表面。
如图2、8A、10、11A所示的光学器件中,光线B的传播方向与光学镀膜11可以垂直。
具体地,在光线B为柱状光线的情况下,光线B的传播方向与光学镀膜11之间的夹角不同,将得到不同形状的光线截面A,相应的,其对应的光学有效区S的形状也不同。
示例地,如图15所示,当光线B为圆柱状光线,且光线B的传播方向倾斜于光学镀膜11设置的情况下,光线截面A可以为椭圆形。当圆柱直径为D,光学镀膜11的表面与光线B的传播方向的夹角为θ时,该椭圆的短轴长度等于圆柱的直径D,椭圆的长轴等于D/sin(θ)。
示例地,如图16所示,当光线B为方形柱状光线,且光线B的传播方向倾斜于光学镀膜11设置的情况下,光线截面A可以为四边形。
此外,当光线B为圆形柱状光线,且光线B的传播方向倾斜于光学镀膜11设置的情况下,光线截面A可以为椭圆形;当光线B为方形锥状光线,且光线B的传播方向倾斜于光学镀膜11的情况下,光线截面A可以为四边形。
本申请实施例中,光学镀膜11上可以设置有光学有效区S的轮廓线,所述轮廓线内的区域为光学有效区S。
具体的,在光学镀膜11的加工过程中,可以通过丝印、刻蚀等工艺形成光学有效区S的轮廓线,并将所述轮廓线内的区域确定为光学有效区,这样,在对光学镀膜11的质量进行检测时,可以便于确定光学有效区S的范围,提高光学镀膜11的质量检测精度。
当然,光学有效区S的轮廓线可以是实体的线,也可以是虚拟的线,本申请对于光学有效区S的轮廓线的具体类型可以不做限定。
本申请实施例中,所述光学器件可以为平面镜、凸透镜或者凹透镜中的至少一种,本申请对于所述光学器件的具体类型可以不做限定。
综上,本申请实施例所述的光学器件至少可以包括以下优点:
本申请实施例中,所述光学镀膜的边界可以围绕所述光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
本申请还提供了一种光学器件的检测方法,用于检测所述光学器件表面的光学镀膜的质量。该光学器件可以为上述各实施例描述的光学器件。
参照图17,示出了本申请的一种光学器件的检测方法的步骤流程图,如图17所示,所述方法具体可以包括:
步骤S11:获取光学器件的光学镀膜的光学有效区内的质量信息。
本申请实施例中,所述光学器件的表面可以设置有光学镀膜,所述光学镀膜的边界可以围绕光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于所述光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。因此,本申请实施例中,在对所述光学器件的光学镀膜的质量进行检测时,可以仅检测所述光学有效区内对应的镀膜的质量即可,这样,就可以减小检测的工作量。
本实施例中,所述光学器件的具体结构及应用示例参照前述各实施例即可,在此不做赘述。
步骤S12:根据所述质量信息,判断所述光学器件是否合格。
本申请实施例中,由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
综上,本申请实施例所述的光学器件的检测方法具体可以包括以下优点:
本申请实施例中,所述光学镀膜的边界可以围绕所述光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜 进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
本申请实施例还提供了一种激光雷达。
参照图18,示出了本申请的一种激光雷达的结构示意图,如图18所示,激光雷达200可以包括:激光器20、探测器21以及上述光学器件22;其中,激光器20可以用于发送入射激光,探测器21可以用于探测所述入射激光经目标物23反射后返回的反射激光;光学器件22可以设置在所述入射激光和/或所述反射激光形成的光学路径上。
需要说明的是,光学器件22可以为上述各实施例描述的光学器件22,在此不再重复赘述。
具体的,在激光器20发送的入射激光投射到目标物23上之后,可以在目标物23上发生反射,返回反射激光。探测器21可以用于探测所述反射激光。所述激光雷达还可以包括信息处理系统,所述信息处理系统可以分别与激光器20、探测器21电连接,所述信息处理系统可以用于根据所述入射激光和探测器21探测到的反射激光,得到目标物23的位置、速度等特征量。
可选地,激光器20可以为二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元中的至少一种。探测器21可以为光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件中的至少一种。本申请对于激光器20和探测器21的具体类型可以不做限定。
具体的,在所述激光雷达中,光学器件22可以设置在所述入射激光和/或所述反射激光形成的光学路径上。示例的,光学器件22可以为激光雷达中的窗口片、滤光片或者反光片中的任意一种。具体的,窗口片通常位于器件、产品的外部,对器件或产品内部的部件起保护作用。滤光片通常位于激光发射器件和激光接收器件附近,可减小的光噪声。反光片可以灵活放置于激光雷达内部任何光路经过的地方,从而反射光线,实现所需的光路设计。
本申请实施例中,所述光学器件的光学镀膜的边界可以围绕所述光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况 下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
本申请还提供了一种可移动设备,所述可移动设备可以包括但不局限于无人机、车辆、可移动平台或者可移动家具产品(例如扫地机器人)等能够发生位移变化的设备,本申请实施例对于所述可移动设备的具体内容不做限定。
参照图19,示出了本申请的一种激光雷达的结构示意图,如图19所示,所述可移动设备包括:设备主体100以及上述激光雷达200。
具体的,设备主体100可以为所述可移动设备的结构主体。
例如,在所述可移动设备为无人机的情况下,设备主体100可以为所述无人机的机身,在所述可移动设备为车辆的情况下,所述设备主体可以为车身。
本申请实施例中,通过在设备主体100上搭载所述激光雷达200,可以得到目标物的位置、速度等特征量,以探测到目标物的距离、方位、高度、速度、姿态、甚至形状等。
激光雷达200中可以包括上述各个实施例的光学器件。具体地,所述光学器件可以为激光雷达中的窗口片、滤光片或者反光片中的任意一种。具体的,窗口片通常位于器件、产品的外部,对器件或产品内部的部件起保护作用。滤光片通常位于激光发射器件和激光接收器件附近,可减小的光噪声。反光片可以灵活放置于激光雷达内部任何光路经过的地方,从而反射光线,实现所需的光路设计。
本申请实施例中,所述光学器件的光学镀膜的边界可以围绕所述光学有效区设置,所述光学有效区可以用于包络光线截面的外轮廓。由于投射到所述光学器件或者从所述光学器件上射出的光线与所述光学镀膜接触的光线截面都位于光学有效区内,因此,在所述光学有效区对应的镀膜的质量合格的情况下,即可实现所述光学镀膜的功能。这样,在所述光学器件的制造过程中,在对所述器件本体上的光学镀膜的质量进行检测时,仅检测所述光学有效区对应的镀膜质量即可。在所述光学有效区对应的镀膜质量合格的情况下,即可认为所述光学镀膜的质量是合格的,这样,一方面,可以避免对整个光学镀膜进行质量检测,减少检测的工作量,另一方面,还可以适当的放宽所述光学镀膜的制造工艺条件,提高所述光学器件的良品率,有利于所述光学器件的成本控制。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说 明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (27)

  1. 一种光学器件,其特征在于,所述光学器件包括:器件本体和设置在所述器件本体上的光学镀膜;所述光学镀膜的边界围绕光学有效区设置,所述光学有效区用于包络光线截面的外轮廓;其中,所述光线截面为光线与所述光学镀膜接触形成的截面。
  2. 根据权利要求1所述的光学器件,其特征在于,所述光学有效区的面积大于或者等于所述光线截面的面积。
  3. 根据权利要求1所述的光学器件,其特征在于,所述光学有效区的形状与所述光线截面的形状匹配。
  4. 根据权利要求1所述的光学器件,其特征在于,所述光学有效区的形状为多边形。
  5. 根据权利要求1所述的光学器件,其特征在于,所述光线截面包括透射截面和反射截面。
  6. 根据权利要求5所述的光学器件,其特征在于,在所述光线截面为所述透射截面的情况下,其对应的光学有效区为透射有效区;
    在所述光线截面为所述反射截面的情况下,其对应的光学有效区为反射有效区。
  7. 根据权利要求6所述的光学器件,其特征在于,所述光线截面为所述透射截面或所述反射截面。
  8. 根据权利要求6所述的光学器件,其特征在于,所述光学截面为所述透射截面和所述反射截面;
    所述光学有效区包括所述透射有效区和所述反射有效区。
  9. 根据权利要求8所述的光学器件,其特征在于,所述透射截面和所述反射截面相互独立,所述透射有效区和所述反射有效区相互独立。
  10. 根据权利要求8所述的光学器件,其特征在于,所述透射截面与所述反射截面部分重叠形成重叠区域,所述重叠区域对应的光学有效区为所述透射有效区或者所述反射有效区。
  11. 根据权利要求8所述的光学器件,其特征在于,所述透射截面和所述反射截面中,其中一个光线截面包络另一个光线截面;
    则所述透射有效区和所述反射有效区中,另一个光线截面对应的 光学有效区嵌套在一个光线截面对应的光学有效区内。
  12. 根据权利要求1所述的光学器件,其特征在于,所述光线包括静态光线和动态光线;
    在所述光线为静态光线的情况下,所述光线截面为所述光线投射到所述光学镀膜上形成的截面;
    在所述光线为动态光线的情况,所述光线截面为所述光线在所述光学镀膜上的运动轨迹形成的截面。
  13. 根据权利要求1所述的光学器件,其特征在于,所述光线包括圆形柱状光线、方形柱状光线、圆形锥状光线、方形锥状光线、异形光柱和异形光锥中的至少一种。
  14. 根据权利要求1所述的光学器件,其特征在于,所述光学有效区的形状与所述光线的形状和运动状态对应。
  15. 根据权利要求14所述的光学器件,其特征在于,在所述光线为圆形柱状光线且为静态光线的情况下,所述光学有效区为八边形。
  16. 根据权利要求14所述的光学器件,其特征在于,在所述光线为圆形柱状光线且为动态光线的情况下,所述光学有效区为四边形。
  17. 根据权利要求14所述的光学器件,其特征在于,在所述光线为方形柱状光线且为静态光线的情况下,所述光学有效区为四边形。
  18. 根据权利要求14所述的光学器件,其特征在于,在所述光线为方形柱状光线且为动态光线的情况下,所述光学有效区为四边形。
  19. 根据权利要求14所述的光学器件,其特征在于,在所述光线为圆形锥状光线且为静态光线的情况下,所述光学有效区为八边形。
  20. 根据权利要求14所述的光学器件,其特征在于,在所述光线为方形锥状光线且为静态光线的情况下,所述光学有效区为四边形。
  21. 根据权利要求1所述的光学器件,其特征在于,所述光线的传播方向与所述光学镀膜垂直或者成预设夹角设置。
  22. 根据权利要求1所述的光学器件,其特征在于,所述光学镀膜上设置有光学有效区轮廓线,所述轮廓线内的区域为所述光学有效区。
  23. 根据权利要求1所述的光学器件,其特征在于,所述光学器件为平面镜、凸透镜或者凹透镜中的至少一种。
  24. 根据权利要求1所述的光学器件,其特征在于,所述光学器件为反射器件、透射器件和窗口器件中的至少一种。
  25. 一种光学器件的检测方法,其特征在于,包括:
    获取光学器件的光学镀膜的光学有效区内的质量信息;
    根据所述质量信息,判断所述光学器件是否合格。
  26. 一种激光雷达,其特征在于,所述激光雷达包括:激光器、探测器以及权利要求1至24任一项所述的光学器件;其中,
    所述激光器用于发送入射激光,所述探测器用于探测所述入射激光经目标物反射后返回的反射激光;
    所述光学器件设置在所述入射激光和/或所述反射激光形成的光学路径上。
  27. 一种可移动设备,其特征在于,所述可移动设备包括:设备主体以及权利要求26所述的激光雷达;其中,
    所述激光雷达固定在所述设备主体上。
PCT/CN2020/083755 2020-04-08 2020-04-08 光学器件、光学器件的检测方法、激光雷达以及可移动设备 WO2021203294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080019196.2A CN113841063A (zh) 2020-04-08 2020-04-08 光学器件、光学器件的检测方法、激光雷达以及可移动设备
PCT/CN2020/083755 WO2021203294A1 (zh) 2020-04-08 2020-04-08 光学器件、光学器件的检测方法、激光雷达以及可移动设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083755 WO2021203294A1 (zh) 2020-04-08 2020-04-08 光学器件、光学器件的检测方法、激光雷达以及可移动设备

Publications (1)

Publication Number Publication Date
WO2021203294A1 true WO2021203294A1 (zh) 2021-10-14

Family

ID=78022487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083755 WO2021203294A1 (zh) 2020-04-08 2020-04-08 光学器件、光学器件的检测方法、激光雷达以及可移动设备

Country Status (2)

Country Link
CN (1) CN113841063A (zh)
WO (1) WO2021203294A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282445A (ja) * 1997-04-07 1998-10-23 Ricoh Co Ltd 光学素子
CN105892212A (zh) * 2016-06-08 2016-08-24 上海晟智电子科技有限公司 一种栅格状反射镜及其实现方法
CN106814083A (zh) * 2015-11-30 2017-06-09 宁波舜宇光电信息有限公司 滤波片缺陷检测系统及其检测方法
CN107852130A (zh) * 2015-07-15 2018-03-27 圣奥古斯丁加拿大电气有限公司 用于包括收集部和对准控制部的太阳能组件的光学透光元件及其对准方法
CN108490510A (zh) * 2018-05-03 2018-09-04 浙江舜宇光学有限公司 镀膜治具及镀膜方法
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202205A (ja) * 1997-10-16 1999-07-30 Canon Inc 光学素子及びそれを用いた光学系
SG104264A1 (en) * 2000-02-10 2004-06-21 Matsushita Electric Ind Co Ltd Lens, manufacturing method thereof, and optical device using the same lens
KR100860018B1 (ko) * 2007-07-04 2008-09-25 한국광기술원 레이저 반점 감소장치
CN101598819B (zh) * 2008-06-04 2012-10-10 鸿富锦精密工业(深圳)有限公司 镀膜镜片制作方法
CN103744134A (zh) * 2014-01-17 2014-04-23 峻立科技股份有限公司 遮光阵列透镜及其制造方法
CN107209304B (zh) * 2015-01-19 2020-06-16 Agc株式会社 光学装置及光学构件
CN109931817B (zh) * 2017-12-15 2021-07-09 中国空空导弹研究院 抗激光损伤自适应防护装置和应用该装置的光学探测系统
CN212872882U (zh) * 2020-04-08 2021-04-02 深圳市大疆创新科技有限公司 光学器件、激光雷达以及可移动设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282445A (ja) * 1997-04-07 1998-10-23 Ricoh Co Ltd 光学素子
CN107852130A (zh) * 2015-07-15 2018-03-27 圣奥古斯丁加拿大电气有限公司 用于包括收集部和对准控制部的太阳能组件的光学透光元件及其对准方法
CN106814083A (zh) * 2015-11-30 2017-06-09 宁波舜宇光电信息有限公司 滤波片缺陷检测系统及其检测方法
CN105892212A (zh) * 2016-06-08 2016-08-24 上海晟智电子科技有限公司 一种栅格状反射镜及其实现方法
CN108490510A (zh) * 2018-05-03 2018-09-04 浙江舜宇光学有限公司 镀膜治具及镀膜方法
CN110658509A (zh) * 2018-06-28 2020-01-07 探维科技(北京)有限公司 基于一维衍射光学元件doe的激光雷达系统

Also Published As

Publication number Publication date
CN113841063A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2020151539A1 (zh) 一种激光雷达系统
US20210215825A1 (en) Distance detection device
US20230103212A1 (en) LIDAR Systems with Multi-faceted Mirrors
CN109001747B (zh) 一种无盲区激光雷达系统
CN108375762B (zh) 激光雷达及其工作方法
JPH01131407A (ja) 反射円錐体の角度を測定する装置及び方法
US10649071B2 (en) Scanning optical system and radar
AU2007265639B2 (en) Apparatus and method for measuring sidewall thickness of non-round transparent containers
WO2021203294A1 (zh) 光学器件、光学器件的检测方法、激光雷达以及可移动设备
CN212872882U (zh) 光学器件、激光雷达以及可移动设备
JPH02110356A (ja) ライン状光源を用いた欠陥検査装置
WO2020062256A1 (zh) 一种光束扫描系统、距离探测装置及电子设备
US10048492B2 (en) Scanning optical system and radar
TW201736628A (zh) 光學檢查系統、用於處理在可撓性基板上之材料的處理系統、以及一種檢查可撓性基板的方法
CN107991062B (zh) 基于光纤耦合的光斑检测方法和系统
CN210514770U (zh) 一种改变菲涅尔透镜光路的结构
JP2019007885A (ja) 反射鏡、多重反射セル、ガス濃度モニタ及び反射鏡の製造方法
JPS6358135A (ja) 管内面形状測定装置
EP0425365B1 (fr) Dispositif optique de correction des défauts introduits par un hublot sphérique utilisé hors d'axe
CN216748067U (zh) 一种收发光路隔离的激光雷达扫描头
CN113607092B (zh) 一种光线小角度测量方法及系统
WO2019227448A1 (zh) 距离探测装置
JPH0743120A (ja) 管状本体の内部において移動点検手段を支持するための装置
CN215297840U (zh) 一种激光接收物镜
WO2023019441A1 (zh) 一种收发光学系统、激光雷达、终端设备、方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929713

Country of ref document: EP

Kind code of ref document: A1