WO2021201595A1 - 접합 렌즈 및 이를 구비한 촬상 장치 - Google Patents

접합 렌즈 및 이를 구비한 촬상 장치 Download PDF

Info

Publication number
WO2021201595A1
WO2021201595A1 PCT/KR2021/004001 KR2021004001W WO2021201595A1 WO 2021201595 A1 WO2021201595 A1 WO 2021201595A1 KR 2021004001 W KR2021004001 W KR 2021004001W WO 2021201595 A1 WO2021201595 A1 WO 2021201595A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
bonding
optical lens
adhesive
effective surface
Prior art date
Application number
PCT/KR2021/004001
Other languages
English (en)
French (fr)
Inventor
정필선
안치호
오지현
강찬구
Original Assignee
주식회사 에이스솔루텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이스솔루텍 filed Critical 주식회사 에이스솔루텍
Publication of WO2021201595A1 publication Critical patent/WO2021201595A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly

Definitions

  • the present invention relates to a bonding lens and an imaging device having the same.
  • Cameras (imaging devices) used in mobile devices such as cell phones require ultra-small size and high performance comparable to digital single-lens reflex cameras (DSL cameras). Accordingly, a camera lens used in a mobile device uses an aspherical lens to realize compact and high performance. Recently, as the thickness of a mobile device such as a mobile phone is getting thinner, a camera lens for a mobile device applied is also required to be ultra-slim with a high pixel. However, the conventional method of assembling the aspherical lenses in the barrel has a limit in realizing the performance.
  • An object to be solved is to provide a bonding lens capable of securing optical performance while implementing an optical system composed of a plurality of lenses to be ultra-slim.
  • An object to be solved is to provide a bonding lens capable of simplifying an assembly process.
  • An object to be solved is to provide an ultra-thin imaging device by implementing an optical system in a compact manner.
  • the technical problem to be solved is not limited to the technical problems as described above, and other technical problems may exist.
  • the bonding lens to which at least two optical lenses are bonded has a first effective surface, a second effective surface opposite to the first effective surface, and a first extending from the periphery of the second effective surface a first optical lens having an adhesive surface; and a second optical lens bonded to the first optical lens, the second optical lens having a third effective surface, a second adhesive surface extending from the outer periphery of the third effective surface, and a fourth effective surface opposite to the third effective surface;
  • a gap is formed between the second effective surface of the first optical lens and the third effective surface of the second optical lens, and the first adhesive surface and the second adhesive surface are bonded to each other by an adhesive.
  • the second effective surface and the third effective surface may have different shapes.
  • the size of the gap between the second effective surface and the third effective surface may vary in a radial direction perpendicular to the optical axis.
  • At least one of the second effective surface and the third effective surface may be an aspherical surface.
  • the second effective surface and the third effective surface may be planar.
  • At least one of the first adhesive surface and the second adhesive surface may have a concave step in which a side closer to the optical axis is concave.
  • the first adhesive surface has 1-1 and 1-2 adhesive surfaces defining a concave step
  • the second adhesive surface is bonded to the 1-1 and 1-2 adhesive surfaces, respectively. It has 2-1 and 2-2 adhesive surfaces, and the 2-2 adhesive surface may be at least a portion of an end surface of the second optical lens.
  • the first adhesive surface has 1-1, 1-2, and 1-3 adhesive surfaces defining a concave step
  • the second adhesive surface has a 2-1-th bonding surface defining a convex step.
  • 2-2 and 2-3 adhesive surfaces and the 1-1, 1-2 and 1-3 adhesive surfaces are respectively the 2-1, 2-2 and 2-3 adhesive surfaces and may be connected.
  • the mechanical outer diameters of the at least two optical lenses need not be the same.
  • the mechanical outer diameter of the first optical lens may be the same as or different from the mechanical outer diameter of the second optical lens.
  • the bonding lens may further include a third optical lens bonded to the second optical lens.
  • the second optical lens includes a third adhesive surface extending from the periphery of the fourth effective surface
  • the third optical lens includes a fifth effective surface and a second optical lens extending from the periphery of the fifth effective surface has a fourth adhesive surface and a sixth effective surface opposite to the fifth effective surface, wherein a gap is formed between the fourth effective surface of the second optical lens and a fifth effective surface of the third optical lens, the third adhesive surface and The fourth adhesive surface may be bonded to each other by an adhesive.
  • At least one of the third adhesive surface and the fourth adhesive surface may have a concave step in which a side closer to the optical axis is concave.
  • the outer mechanical diameter of the third optical lens may be the same as or different from at least some of the mechanical outer diameter of the first optical lens and the second optical lens.
  • the first optical lens and the second optical lens may be formed of a plastic material.
  • the gap may be filled with a gap filling material.
  • the gap fill material may be a photocurable material.
  • the gap fill material may be an optical bonding material.
  • the gap fill material may be the same material as the adhesive.
  • the gap filling material may have a refractive index different from the refractive index of the first optical lens and the refractive index of the second optical lens.
  • the gap filling material may have a refractive index of 1.0 or greater and 2.0 or less.
  • the gap filling material may have a refractive index of 1.4 or more and 1.6 or less.
  • an edge of at least one of the first adhesive surface and the second adhesive surface may be chamfered.
  • annular groove may be formed along the circumference of at least one of the first and second adhesive surfaces.
  • an elongated groove may be formed in at least one of the first adhesive surface and the second adhesive surface along the thickness direction.
  • the distance of the gap may be adjusted according to the shape of at least one of the first adhesive surface and the second adhesive surface.
  • At least one of the first adhesive surface and the second adhesive surface may have two or more stepped shapes.
  • the imaging device includes a lens optical system including a bonding lens; and an image sensor for capturing an image formed by the lens optical system, wherein the bonded lens includes a first effective surface, a second effective surface opposite to the first effective surface, and an outer periphery of the second effective surface.
  • a first optical lens having a first adhesive surface; and a second optical lens bonded to the first optical lens, the second optical lens having a third effective surface, a second adhesive surface extending from the outer periphery of the third effective surface, and a fourth effective surface opposite to the third effective surface;
  • a gap is formed between the second effective surface of the first optical lens and the third effective surface of the second optical lens, and the first adhesive surface and the second adhesive surface are bonded to each other by an adhesive.
  • the mobile device includes a main body; And as built in the body, the lens optical system including a junction lens; and an image sensor for capturing an image formed by the lens optical system, wherein the conjugated lens has a first effective surface, a second effective surface opposite to the first effective surface, and a second a first optical lens having a first adhesive surface extending from an outer periphery of the effective surface; and a second optical lens bonded to the first optical lens, the second optical lens having a third effective surface, a second adhesive surface extending from the outer periphery of the third effective surface, and a fourth effective surface opposite to the third effective surface; A gap is formed between the second effective surface of the first optical lens and the third effective surface of the second optical lens, and the first adhesive surface and the second adhesive surface are bonded to each other by an adhesive.
  • the bonding lens according to the present disclosure can implement high performance while being ultra-small and ultra-slim.
  • the bonding lens according to the present disclosure is advantageous in controlling optical aberration while minimizing the distance between the lens and the lens and using an optical bonding material.
  • the manufacturing method of the bonding lens according to the present disclosure is advantageous in realizing product performance by constantly managing the optical axis and distance between the lens and the lens.
  • the bonding lens according to the present disclosure may be treated as one lens by bonding two or more lenses, it is possible to suppress or minimize the misalignment problem of the optical axis that may occur in the assembly process.
  • the bonding lens according to the present disclosure is fixed to the barrel or the lens holder in a state in which two or more lenses are bonded, assembly thereof may be easy, and precision may be reduced.
  • An imaging device having a bonding lens according to the present disclosure can improve performance and resolution.
  • the structure of the junction lens according to the present disclosure can be advantageously applied to an imaging device.
  • FIG. 1 is a cross-sectional view schematically showing a bonding lens according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of area A of FIG. 1 .
  • FIG 3 is a cross-sectional view schematically showing a bonding lens according to a second embodiment of the present invention.
  • FIG. 4 is an enlarged view of area B of FIG. 3 .
  • FIG. 5 is a cross-sectional view schematically showing a bonding lens according to a third embodiment of the present invention.
  • FIG. 6 is an enlarged view of area C of FIG. 5 .
  • FIG. 7 is a cross-sectional view schematically showing a bonding lens according to a fourth embodiment of the present invention.
  • FIG. 8 is an enlarged view of area D of FIG. 7 .
  • FIG. 9 is a cross-sectional view schematically showing a bonding lens according to a fifth embodiment of the present invention.
  • FIG. 10 is an enlarged view of area E of FIG. 9 .
  • FIG. 11 is a cross-sectional view schematically showing a bonding lens according to a sixth embodiment of the present invention.
  • FIG. 12 is an enlarged view of area F of FIG. 11 .
  • FIG. 13 is a cross-sectional view schematically showing a bonding lens according to a seventh embodiment of the present invention.
  • FIG. 14 is an enlarged view of area G of FIG. 13 .
  • 15 is a cross-sectional view schematically showing a bonding lens according to an eighth embodiment of the present invention.
  • FIG. 16 is an enlarged view of region H of FIG. 15 .
  • 17 is a cross-sectional view schematically showing a bonding lens according to a ninth embodiment of the present invention.
  • 19 is a plan view schematically showing a bonding lens according to a tenth embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of the bonding lens of FIG. 19 taken along line I-I.
  • 21 is a plan view schematically showing a bonding lens according to an eleventh embodiment of the present invention.
  • FIG. 22 is a cross-sectional view of the bonding lens of FIG. 21 taken along line II-II.
  • FIG. 23 is a plan view schematically showing a bonding lens according to a twelfth embodiment of the present invention.
  • FIG. 24 is a cross-sectional view of the bonding lens of FIG. 23 taken along line III-III.
  • 25 is a plan view schematically showing a first lens of a bonding lens according to a thirteenth embodiment of the present invention.
  • 26 shows a case with a first arrangement of a bonding lens according to a thirteenth embodiment of the present invention.
  • Fig. 27 shows a case with the second arrangement of the bonding lens according to the thirteenth embodiment of the present invention.
  • FIG. 31 is a perspective view schematically illustrating an imaging device including a bonding lens according to an embodiment of the present invention.
  • mechanical outer diameter of an optical lens means an outer diameter that includes both an effective area (effective diameter) and an ineffective area (ie, an end) in an optical lens.
  • the expression "concave step” is used to mean that the side closer to the optical axis is concavely stepped compared to the side farther from the optical axis.
  • the expression "convex step” is used to mean that the side closer to the optical axis is convexly stepped compared to the side farther from the optical axis.
  • FIG. 1 is a cross-sectional view schematically showing a bonding lens according to a first embodiment of the present invention
  • FIG. 2 is an enlarged view of area A of FIG. 1 .
  • the bonding lens of the present embodiment is a lens in which first and second optical lenses 10 and 20 are bonded.
  • the first optical lens 10 has a first effective surface 11 , a second effective surface 12 opposite to the first effective surface 11 , and a first extending from the outer periphery of the second effective surface 12 . It has an adhesive surface (14).
  • both the first and second effective surfaces 11 and 12 may be formed as aspherical surfaces. In another embodiment, any one of the first effective surface 11 and the second effective surface 12 may be an aspherical surface. Of course, it is not excluded that both the first and second effective surfaces 11 and 12 are spherical.
  • the first and second effective surfaces 11 and 12 are located in a first effective region R1 that defines the refractive power of the first optical lens 10, and the outside of the first effective region R1 is a first ratio It becomes the effective area R2.
  • the first end 13 of the first optical lens 10 is located in the first ineffective region R2.
  • a first adhesive surface 14 is formed in an area extending from the outer periphery of the second effective surface 12 among the first ineffective area R2 of the first optical lens 10 .
  • the second optical lens 20 is bonded to the first optical lens 10 , and includes a third effective surface 21 , a fourth effective surface 22 opposite to the third effective surface 21 , and a third It has a second adhesive surface (24) extending from the outer periphery of the effective surface (21).
  • the first effective surface 11 may be an incident surface of the bonding lens, and the fourth effective surface 22 may be an exit surface of the bonding lens. In another embodiment, the first effective surface 11 may be an exit surface of the bonding lens, and the fourth effective surface 22 may be an incident surface of the bonding lens.
  • both the third and fourth effective surfaces 21 and 22 may be formed as aspherical surfaces. In another embodiment, any one of the third effective surface 21 and the fourth effective surface 22 may be an aspherical surface. Of course, it is not excluded that both the third and fourth effective surfaces 21 and 22 are spherical.
  • the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 may have different shapes.
  • both the second effective surface 12 and the third effective surface 21 are aspherical, and may have different aspheric coefficients.
  • one of the second effective surface 12 and the third effective surface 21 may be an aspherical surface, and the other may be a spherical surface.
  • one of the second effective surface 12 and the third effective surface 21 may be an aspherical surface, and the other may be a planar surface.
  • both the second effective surface 12 and the third effective surface 21 are spherical, and may have different sizes of radii of curvature.
  • the third and fourth effective surfaces 21 and 22 are located in a second effective region R3 that defines the refractive power of the second optical lens 20, and the outer edge of the second effective region R3 is the second ratio. It becomes the effective area R4.
  • the second end 23 of the second optical lens 20 is located in the second ineffective region R4.
  • a second adhesive surface 24 is formed in a region extending from the outer periphery of the third effective surface 21 among the second ineffective regions R2 of the second optical lens 20 .
  • the first adhesive surface 14 and the second adhesive surface 24 are bonded to each other by an adhesive 50 .
  • the adhesive 50 may be, for example, a photocurable adhesive.
  • the mechanical outer diameter of the first optical lens 10 is larger than the mechanical outer diameter of the second optical lens 20 .
  • the first adhesive surface 14 of the first optical lens 10 is formed with a concave step, and the second adhesive surface 24 of the second optical lens 20 is sandwiched by the first adhesive surface 14 . attached to the state.
  • the mechanical outer diameter of the first optical lens 10 may be understood as a diameter up to the end face 13a of the first end 13 of the first optical lens 10 .
  • the mechanical outer diameter of the second optical lens 20 may be understood as a diameter up to the end face 23a of the second end 23 of the second optical lens 20 .
  • the concave step of the first adhesive surface 14 means that the side closer to the optical axis OA is concavely stepped compared to the side farther from the optical axis OA.
  • the first bonding surface 14 has a 1-1 bonding surface 14a and a 1-2 bonding surface 14b defining such a concave step.
  • Each of the 1-1 bonding surface 14a and the 1-2 bonding surface 14b may be a flat surface.
  • the second bonding surface 24 has a 2-1 bonding surface 24a and a 2-2 bonding surface 24b.
  • the 2-1 adhesive surface 24a is formed to extend from the third effective surface 21 and may be flat.
  • the 2-2 adhesive surface 24b may be a part of the end surface 23a of the second optical lens 20 and may be flat.
  • the 2-2 adhesive surface 24b may be the end surface 23a of the second optical lens 20 .
  • the 2-1 bonding surface 24a and the 2-2 bonding surface 24b are bonded to the 1-1 bonding surface 14a and the 1-2 bonding surface 14b, respectively.
  • a gap 40 is formed between the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 .
  • the size d of the gap 40 may vary in a radial direction perpendicular to the optical axis OA.
  • the size d of the gap 40 is the second effective surface 12 of the first optical lens 10 and the third effective surface of the second optical lens 20 with respect to a direction parallel to the optical axis OA.
  • the distance between the first optical lens 10 and the second optical lens 20 may be reduced as much as possible. That is, the second effective surface 12 of the first optical lens 10 and the third effective surface 13 of the second optical lens 20 may be configured to be as close to each other as possible.
  • the size of the gap 40 at some points of the effective region R1 may be 0 to a value close to 0.
  • the gap 40 may be filled with a gap filling material.
  • the gap fill material may be an optical bonding material.
  • the gap filling material may be a photocurable material, but is not limited thereto.
  • the gap fill material may be, but is not limited to, the same material as the adhesive.
  • the first optical lens 10 and the second optical lens 20 may be formed of a plastic material, but is not limited thereto.
  • the gap filling material has a refractive index different from the refractive index of the first optical lens 10 and the refractive index of the second optical lens 20 .
  • the gap fill material may have a refractive index of greater than 1.0 and less than or equal to 2.0.
  • the gap filling material may have a refractive index of 1.4 or more and 1.6 or less.
  • first optical lens 10 and the second optical lens 20 may have refractive indices of 1.4 or more and 2.0 or less.
  • the first end 13 of the first optical lens 10 is It may be a site that is bound to the city).
  • the second end 23 of the second optical lens 20 may also be a portion coupled to the barrel (not shown) together with the first end 13 of the first optical lens 10 .
  • the bonding lens according to the present embodiment is advantageous in optical aberration control by minimizing the gap between the first optical lens 10 and the second optical lens 20 and using an optical bonding material as a gap filling material.
  • FIG. 3 is a cross-sectional view schematically showing a bonding lens according to a second embodiment of the present invention
  • FIG. 4 is an enlarged view of area B of FIG. 3 .
  • the bonding lens of this embodiment is a lens in which the first optical lens 10 and the second optical lens 20 are bonded, similarly to the above-described embodiment.
  • both the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 are flat, and the second optical lens 20 ) is different from the first embodiment in that the mechanical outer diameter of the first optical lens 10 is larger than that of the first optical lens 10 , and this difference will be mainly described.
  • the second adhesive surface 24 of the second optical lens 20 has a concave step is formed, and the first adhesive surface 14 of the first optical lens 10 is bonded while being sandwiched by the second adhesive surface 24 .
  • the second bonding surface 24 includes a 2-1 bonding surface 24a and a 2-2 bonding surface 24b defining a concave step.
  • the 2-1 adhesive surface 24a of the second adhesive surface 24 remains on the third effective surface 21 as it is. It may be formed to extend flatly.
  • the 1-1 bonding surface 14a of the first bonding surface 14 may be formed to extend flatly from the second effective surface 12 as it is.
  • the 1-1 adhesive surface 14a may be stepped with respect to the second effective surface 12
  • the 2-1 adhesive surface 24a may also be stepped with respect to the third effective surface 21 . have.
  • the spacing of the gaps 40 is constant with respect to the radial direction perpendicular to the optical axis.
  • the 1-1 bonding surface 14a and the 2-1 bonding surface 24a maintain the gap 40, and the 1-2 bonding surface 14b and the 2-2 bonding surface 24b are formed.
  • the silver is bonded by an adhesive (50).
  • the gap 40 may be filled with a gap filling material, and the gap filling material may be an optical bonding material (adhesive).
  • the 1-1 bonding surface 14a and the 2-1 bonding surface 24a belonging to the ineffective area are formed by a gap filling material (optical bonding material) while maintaining the gap of the gap 40 . can be joined.
  • the first optical lens 10 and the second optical lens 20 are formed between the 1-2 adhesive surface 14b and the 2-2 second adhesive surface 14b. It is joined only by the adhesive 50 between the adhesive surfaces 24b.
  • the terms 1-1 adhesive surface 14a and 2-1 adhesive surface 24a are used in this embodiment, it may not mean that the terms are used for bonding.
  • FIG. 5 is a cross-sectional view schematically showing a bonding lens according to a third embodiment of the present invention
  • FIG. 6 is an enlarged view of region C of FIG. 5 .
  • the bonding lens of the present embodiment is a lens in which the first optical lens 10 and the second optical lens 20 are bonded, as in the first and second embodiments described above.
  • this embodiment is different from the above-described first and second embodiments in that the mechanical outer diameter of the first optical lens 10 and the mechanical outer diameter of the second optical lens 20 are the same. It will be explained focusing on
  • the mechanical outer diameter of the first optical lens 10 and the mechanical outer diameter of the second optical lens 20 are the same.
  • the end face 13a of the first end 13 of the first optical lens 10 and the end face 23a of the second end 23 of the second optical lens 20 are located on the same plane. can do.
  • the first adhesive surface 14 of the first optical lens 10 may have a convex step
  • the second adhesive surface 24 of the second optical lens 20 may have a concave step.
  • the first bonding surface 14 may include a 1-1 bonding surface 14a, a 1-2 bonding surface 14b, and a 1-3 bonding surface 14c defining a convex step.
  • the second bonding surface 24 includes a 2-1 bonding surface 24a, a 2-2 bonding surface 24b, and a 2-3 bonding surface 24c defining a concave step.
  • the first optical lens 10 and the second optical lens 20 are adhered by the adhesive 50 in a state where the convex step of the first adhesive surface 14 is sandwiched by the concave step of the second adhesive surface 24 .
  • the 1-1 bonding surface 14a, the 1-2 bonding surface 14b, and the 1-3 bonding surface 14c are the 2-1 bonding surface 24a and the 2-2 bonding surface, respectively. (24b), the adhesive 50 is adhered to the 2-3rd bonding surface 24c.
  • the first end 13 of the first optical lens 10 and the second end 23 of the second optical lens 20 may integrally form an end of an adhesive lens and be coupled to a barrel (not shown).
  • FIG. 7 is a cross-sectional view schematically showing a bonding lens according to a fourth embodiment of the present invention
  • FIG. 8 is an enlarged view of region D of FIG. 7 .
  • the bonding lens of this embodiment is a triple lens in which the first optical lens 10 , the second optical lens 20 , and the third optical lens 30 are bonded.
  • the present embodiment can be understood as a configuration in which the third optical lens 30 is additionally bonded to the bonded lenses of the first to third embodiments described above, so the overlapping description will be omitted and the differences will be mainly described. do.
  • the first optical lens 10 has a first effective surface 11 , a second effective surface 12 opposite to the first effective surface 11 , and a first extending from the outer periphery of the second effective surface 12 . It has an adhesive surface (14).
  • the second optical lens 20 is bonded to the first optical lens 10 and the third optical lens 30 on both sides, and has a third effective surface 21 and a third effective surface 21 opposite to the third effective surface 21 . It has four effective surfaces (22), a second adhesive surface (24) extending from the outer periphery of the third effective surface (21), and a third adhesive surface (25) extending from the outer periphery of the fourth effective surface (22).
  • the third optical lens 30 includes a fifth effective surface 31 , a sixth effective surface 32 opposite to the fifth effective surface 31 , and a fourth extending from the outer periphery of the fifth effective surface 31 . It has an adhesive surface (34).
  • the first effective surface 11 may be an incident surface of the junction lens, and the sixth effective surface 32 may be an exit surface of the junction lens. In another embodiment, the first effective surface 11 may be an exit surface of the junction lens, and the sixth effective surface 32 may be an incident surface of the junction lens.
  • both the fifth and sixth effective surfaces 31 and 32 of the third lens 30 may be formed as aspherical surfaces. In another embodiment, any one of the fifth effective surface 31 and the sixth effective surface 32 may be an aspherical surface. Of course, it is not excluded that both the fifth and sixth effective surfaces 31 and 32 are spherical.
  • the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 may have different shapes.
  • the fourth effective surface 22 of the second optical lens 20 and the fifth effective surface 31 of the third optical lens 30 may have different shapes.
  • both the fourth effective surface 22 and the fifth effective surface 31 are aspherical, and may have different aspheric coefficients.
  • one of the fourth effective surface 22 and the fifth effective surface 31 may be an aspherical surface, and the other may be a spherical surface.
  • any one of the fourth effective surface 22 and the fifth effective surface 31 may be an aspherical surface, and the other may be a planar surface.
  • both the second effective surface 12 and the third effective surface 21 are spherical, and may have different sizes of radii of curvature.
  • both the second effective surface 12 and the third effective surface 21 may be planar.
  • the first adhesive surface 14 and the second adhesive surface 24 are bonded to each other by the adhesive 50 , and similarly the third adhesive surface 25 and the fourth adhesive surface 34 are also bonded to each other by the adhesive 50 . are joined
  • the mechanical outer diameter of the second optical lens 20 is larger than the mechanical outer diameter of the first and third optical lenses 10 and 30 .
  • the second end 23 of the second optical lens 20 projects with respect to the first and third ends 13 , 33 of the first and third optical lenses 10 , 30 .
  • both the second bonding surface 24 and the third bonding surface 25 of the second optical lens 20 are formed with concave steps.
  • the first adhesive surface 14 of the first optical lens 10 is bonded while being sandwiched by the second adhesive surface 24 of the second optical lens 20
  • the fourth adhesive surface of the third optical lens 30 . (34) is bonded while being sandwiched in the third adhesive surface (34) of the second optical lens (20).
  • the mechanical outer diameter of the first optical lens 10 and the mechanical outer diameter of the third optical lens 30 may be the same as or different from each other.
  • the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 may have different shapes.
  • the fourth effective surface 22 of the second optical lens 20 and the fifth effective surface 31 of the third optical lens 30 may have different shapes.
  • a first gap 41 is formed between the second effective surface 12 of the first optical lens 10 and the third effective surface 21 of the second optical lens 20 , and the second optical lens 20 .
  • a second gap 42 is formed between the fourth effective surface 22 of the , and the fifth effective surface 31 of the third optical lens 30 .
  • the size of the first gap 41 may vary in a radial direction perpendicular to the optical axis OA.
  • the size of the second gap 42 may also vary in a radial direction perpendicular to the optical axis OA.
  • the first and second gaps 40 may be filled with the first and second gap filling materials, respectively.
  • the first and second gap filling materials may be, but are not limited to, the same material.
  • the first and second gap filling materials may be optical bonding materials.
  • the first and second gap filling materials may be a photocurable material, but is not limited thereto.
  • the first and second gap fill material may be the same material as the adhesive, but is not limited thereto.
  • the first gap filling material has a refractive index different from the refractive index of the first optical lens 10 and the refractive index of the second optical lens 20 .
  • the second gap filling material has a refractive index different from the refractive index of the second optical lens 20 and the refractive index of the third optical lens 30 .
  • the material of the first and second gap fill materials may have a refractive index greater than 1.0 and less than or equal to 2.0.
  • the first and second gap filling materials may have a refractive index of 1.4 or more and 1.6 or less.
  • the first optical lens 10 , the second optical lens 20 , and the third optical lens 30 may have refractive indices of 1.4 or more and 2.0 or less.
  • the second end 23 of the second optical lens 20 may be a site coupled to the neck pain (not shown).
  • the first end 13 of the first optical lens 10 and/or the third end 33 of the third optical lens 30 are also together with the second end 23 of the second optical lens 20 . It may be a site coupled to the neck (not shown).
  • FIG. 9 is a cross-sectional view schematically showing a bonding lens according to a fifth embodiment of the present invention
  • FIG. 10 is an enlarged view of region E of FIG. 9 .
  • the bonding lens of this embodiment is a lens to which the first to third optical lenses 10 , 20 , and 30 are bonded, similarly to the fourth embodiment described above.
  • this embodiment is different from the above-described fourth embodiment in that the mechanical outer diameter of the second optical lens 20 is smaller than the mechanical outer diameter of the first and third optical lenses 10 and 30 . , we will focus on these differences.
  • the mechanical outer diameter of the second optical lens 20 is smaller than the mechanical outer diameter of the first and third optical lenses 10 and 30 .
  • the end face 23a of the second end 23 of the second optical lens 20 is the end face 13a of the first end 13 of the first optical lens 10 and the end face 13a of the third optical lens ( 30) is located inward than the end face (33a) of the third end (33).
  • the first adhesive surface 14 of the first optical lens 10 is formed as a concave step, and the second adhesive surface 24 of the second optical lens 20 is bonded while being sandwiched by the first adhesive surface. do.
  • the fourth adhesive surface 34 of the third optical lens 30 is formed with a concave step, and the third adhesive surface 25 of the second optical lens 20 is sandwiched by the fourth adhesive surface 34 . glued to the state
  • the first end 13 of the first optical lens 10 and the third end 33 of the third optical lens 30 form an end of an adhesive lens and may be coupled to a barrel (not shown).
  • FIG. 11 is a cross-sectional view schematically showing a bonding lens according to a sixth embodiment of the present invention
  • FIG. 12 is an enlarged view of region F of FIG. 11 .
  • the bonding lens of this embodiment is a lens to which the first to third optical lenses 10 , 20 , and 30 are bonded, similarly to the fourth and fifth embodiments described above.
  • this embodiment is different from the above-described fourth and fifth embodiments in that the mechanical outer diameters of the first to third optical lenses 10, 20, and 30 are sequentially decreased, these differences should be taken into account. will be mainly explained.
  • the first adhesive surface 14 of the first optical lens 10 is a concave step. formed, and the second adhesive surface 24 of the second optical lens 20 is bonded to the first adhesive surface while being sandwiched therebetween.
  • the third adhesive surface 25 of the second optical lens 20 is formed with a concave step,
  • the fourth adhesive surface 34 of the third optical lens 30 is bonded to the third adhesive surface 25 while being sandwiched therein.
  • first end 13 of the first optical lens 10 may be coupled to a barrel (not shown) as an end of the adhesive lens.
  • the second end 23 of the second optical lens 20 and/or the third end 33 of the third optical lens 30 is the first end 13 of the first optical lens 10 .
  • together with the end of the adhesive lens may be coupled to the barrel (not shown).
  • FIG. 13 is a cross-sectional view schematically showing a bonding lens according to a seventh embodiment of the present invention
  • FIG. 14 is an enlarged view of region G of FIG. 13 .
  • the bonding lens of this embodiment is a lens to which the first to third optical lenses 10 , 20 , and 30 are bonded, as in the above-described fourth to sixth embodiments.
  • this embodiment is different from the above-described fourth to sixth embodiments in that the mechanical outer diameters of the first to third optical lenses 10, 20, and 30 are all the same, the description will be focused on these differences decide to do
  • the first adhesive surface 14 and the second optical diameter of the first optical lens 10 are One of the second adhesive surfaces 24 of the lens 20 may have a convex step and the other may have a concave step.
  • the first adhesive surface 14 of the first optical lens 10 is formed with a concave step
  • the second adhesive surface 24 of the second optical lens 20 is formed with a convex step.
  • the second adhesive surface 24 of the second optical lens 20 is bonded to the first adhesive surface 14 of the first optical lens 10 while being sandwiched therein.
  • any one of the fourth adhesive surfaces 34 may be formed as a convex step, and the other may be formed as a concave step.
  • the third adhesive surface 14 of the second optical lens 20 is formed in a convex step
  • the fourth adhesive surface 34 of the third optical lens 30 is formed in a concave step.
  • the first to third ends 13, 23, 33 of the first to third optical lenses 10, 20, and 30 may be integrally coupled to the barrel (not shown) as an end of the adhesive lens.
  • FIG. 15 is a cross-sectional view schematically showing a bonding lens according to an eighth embodiment of the present invention
  • FIG. 16 is an enlarged view of region H of FIG. 15 .
  • the bonding lens of this embodiment is a lens in which the first to third optical lenses 10, 20, and 30 are bonded, as in the above-described seventh embodiment, and the first to third optical lenses
  • the mechanical outer diameters of (10, 20, 30) are all the same.
  • the third adhesive surface 14 of the second optical lens 20 is formed with a concave step
  • the fourth adhesive surface ( 34 ) is formed as a convex step, so that the fourth adhesive surface 34 of the third optical lens 30 is attached to the third adhesive surface 25 of the second optical lens 20 while being sandwiched therein.
  • the second optical lens 20 is fitted to the first optical lens 10 and the third optical lens 30 is fitted to the second optical lens 20, in a state in which the lens is not turned over Three lenses (that is, the first to third lenses 10, 20, 30) may be bonded.
  • FIG. 17 is a cross-sectional view schematically showing a bonding lens according to a ninth embodiment of the present invention
  • FIG. 18 is an enlarged view of region I of FIG. 17 .
  • the bonding lens of this embodiment is a lens in which first to third optical lenses 10 , 20 , 30 are bonded, as in the seventh and eighth embodiments described above, and the first to third The mechanical outer diameters of the 3 optical lenses 10 , 20 , and 30 are all the same.
  • the first adhesive surface 14 of the first optical lens 10 is formed with a convex step
  • the second adhesive surface ( 24) is formed as a concave step, so that the first adhesive surface 14 of the first optical lens 10 is bonded to the second adhesive surface 24 of the second optical lens 20 while being sandwiched therein.
  • the third adhesive surface 14 of the second optical lens 20 is formed with a concave step
  • the fourth adhesive surface 34 of the third optical lens 30 is formed with a convex step, so that the third optical lens
  • the fourth adhesive surface 34 of ( 30 ) is bonded to the third adhesive surface 25 of the second optical lens 20 while being sandwiched therein.
  • the bonding lens is formed using two or three optical lenses, it will be apparent that the bonding lens can be formed by using four or more optical lenses in the same way. will be.
  • FIG. 19 is a plan view schematically showing a bonding lens according to a tenth embodiment of the present invention
  • FIG. 20 is a cross-sectional view of the bonding lens of FIG. 19 taken along line I-I.
  • the bonding lens of this embodiment is a lens in which the first and second optical lenses 10 and 20 are bonded, and the edge of the first bonding surface 14 of the first lens 10 is formed. Since it is the same as the bonding lens of the embodiment with reference to FIGS. 1 and 2 except for chamfering, the description will be focused on these differences.
  • the first adhesive surface 14 of the first optical lens 10 has a concave step shape, and the outer edge of the first adhesive surface 14 is chamfered to form a chamfer 16 .
  • the gap filling material is first applied to the effective surface of any one optical lens (eg, the first optical lens 10). If the amount of the gap filling material (adhesive) is excessive, the optical lens The gap filling material (adhesive) leaks out during bonding, which may contaminate the effective surface of the optical lens or cause errors when assembling into the barrel. Accordingly, the present embodiment allows the leaking gap filling material (adhesive) to be accommodated in the space secured by chamfering the edge of at least one of the bonding surfaces of the optical lenses to be bonded.
  • FIG. 21 is a plan view schematically showing a bonding lens according to an eleventh embodiment of the present invention
  • FIG. 22 is a cross-sectional view of the bonding lens of FIG. 21 taken along line II-II.
  • the bonding lens of this embodiment is a lens in which first and second optical lenses 10 and 20 are bonded, and has an annular shape on the first bonding surface 14 of the first lens 10 . Since it is the same as the bonding lens of the tenth embodiment described above except for forming the groove 16, the description will be focused on these differences.
  • the first adhesive surface 14 of the first optical lens 10 has a concave step shape, and an annular groove ( 16) is formed.
  • the annular groove 16 may be formed over the entire outer periphery as shown in FIG. 21 , but is not limited thereto.
  • the groove 16 may be formed only in a portion of the outer periphery of the first adhesive surface 14 .
  • this embodiment describes an example in which the annular groove 16 is formed on the first adhesive surface 14 of the first optical lens 10 , the second adhesive surface 14 of the second optical lens 10 is ) may be formed.
  • the gap filling material (adhesive) applied in the manufacturing process is excessive, the gap filling material (adhesive) leaks out during bonding of the optical lens, contaminating the effective surface of the optical lens or the barrel. This may cause an error when assembling to the bar, and this embodiment fills a leaking gap in a space secured by forming an annular groove 16 on at least one of the bonding surfaces of the optical lenses to be bonded. Allow the material (adhesive) to be accommodated.
  • FIG. 23 is a plan view schematically showing a bonding lens according to a twelfth embodiment of the present invention
  • FIG. 24 is a cross-sectional view of the bonding lens of FIG. 23 taken along line III-III.
  • the bonding lens of this embodiment is a lens in which the first and second optical lenses 10 and 20 are bonded, and is formed on the first bonding surface 14 of the first lens 10 in the thickness direction. Since it is the same as the bonding lenses of the tenth and eleventh embodiments described above, except that an elongated groove 17 is formed along the
  • the first adhesive surface 14 of the first optical lens 10 has a concave step shape, and is elongated in the thickness direction (ie, the optical axis OA direction) on at least one of the sidewalls of the first adhesive surface 14 .
  • a groove 17 is formed. These elongated grooves 17 may be formed at one location or a plurality of locations on the outer periphery of the first adhesive surface 14 .
  • 24 illustrates a case in which the groove 17 is long formed on the outer sidewall of the first adhesive surface 14, but is not limited thereto.
  • the groove 17 may be formed only at the upper end of the side wall or the lower end of the side wall of the first adhesive surface 14 .
  • the groove 17 is formed on the first adhesive surface 14 of the first optical lens 10
  • the groove 17 is formed on the second adhesive surface 14 of the second optical lens 10 . may be formed.
  • the gap filling material (adhesive) leaks out during bonding of the optical lens, contaminating the effective surface of the optical lens or the barrel.
  • the gap filling material leaking into the space secured by forming the groove 17 in at least one of the bonding surfaces of the optical lenses to be bonded, which may cause an error when assembling to the adhesive) to be acceptable.
  • FIG. 25 is a plan view schematically showing a first lens of a conjugated lens according to a thirteenth embodiment of the present invention
  • FIG. 26 shows a case with a first arrangement of a conjugated lens according to a thirteenth embodiment of the present invention
  • Fig. 27 shows a case with the second arrangement of the bonding lens according to the thirteenth embodiment of the present invention.
  • the bonding lens of this embodiment is a lens in which first and second optical lenses 10 and 20 are bonded, and the first bonding surface 14 of the first lens 10 has two stages. Since it is the same as the junction lens of the first embodiment described with reference to FIGS. 1 and 2 except that it is stepped, the difference will be mainly described.
  • the first bonding surface 14 of the first lens 10 is stepped into two stages, the first end and the second end in the thickness direction. Accordingly, the 2-1 lens 20-1 having an outer diameter corresponding to the step difference of the first stage is joined while being sandwiched in the first stage, and the second lens 2-2 having an outer diameter matching the step difference of the second stage ( 20-2) is joined while being sandwiched in the second stage.
  • the distance between the first lens 10 and the 2-1 lens 20-1 (eg, a gap at the apex)
  • the distance d1 of is different from the distance between the first lens 10 and the second-second lens 20-2 (eg, the distance d2 of the gap at the apex).
  • the multi-step step of the contact surface as described above is an example of the shape of the bonding surface for adjusting the spacing, and the shape of the bonding surface may be variously deformed.
  • the first lens 10 is prepared.
  • a first bonding surface 14 having a concave step is formed at the end 13 of the first lens 10 .
  • a gap filling material 49 is applied to the effective surface of the first lens 10 on the concave step side.
  • the gap fill material 49 may be an optical bonding material.
  • the second lens 20 is placed from the upper side of the first lens 10 .
  • the gap 40 is filled with a gap filling material 49 . Even when the gap filling material 49 is slightly overly applied, overflow of the gap filling material 49 can be prevented by the concave step structure of the first bonding surface 14 . Furthermore, as in the above-described embodiments, a space for accommodating the overflowing gap filling material 49 such as the chamfer 15 or the grooves 16 and 17 may be separately secured.
  • the manufacturing method of the bonding lens according to the present embodiment can precisely adjust the optical axis and the distance between the lens and the lens during the manufacturing process, it is also advantageous for realizing product performance.
  • the bonding lens according to the present embodiment may be treated as one lens by bonding two or more lenses, it is possible to suppress or minimize the misalignment of the optical axis that may occur in the assembly process.
  • the bonding lens according to the present disclosure is fixed to a barrel or a lens holder in a state in which two or more lenses are bonded, assembly thereof may be easy, and precision may be reduced.
  • the imaging device 100 includes an optical system including a bonding lens 110 and an image sensor that receives an image formed by the optical system and converts the light into an electrical image signal.
  • the bonding lens 110 the bonding lens described with reference to FIGS. 1 to 30 may be employed.
  • a camera (imaging device) 100 used in a mobile device 200 such as a mobile phone requires a small size and high performance at the level of a DSLR camera. By applying it, it is possible to implement the ultra-slim mobile device 200 while maintaining high performance.
  • An imaging device may be an imaging device such as a miniature digital camera or a car camera.
  • the imaging device having the bonding lens according to the embodiment of the present invention may be used in various vehicle devices such as a black box, an AVM (around view monitoring) system, or a rear view camera.
  • the junction lens may be applied to a virtual reality device such as a head-up display, an augmented reality device, and the like.
  • the bonding lens may be applied to various action cams such as drones or camcorders for leisure sports.
  • the bonding lens may be applied to various surveillance cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

접합 렌즈 및 이를 구비한 촬상 장치가 개시된다. 개시된 접합 렌즈는 적어도 2개의 광학 렌즈들이 접합된 것으로서, 접합 렌즈는 제1 유효면과, 제1 유효면에 대향되는 제2 유효면과, 제2 유효면의 외주로부터 연장된 제1 접착면을 갖는 제1 광학 렌즈; 및 제1 광학 렌즈와 접합되는 것으로서, 제3 유효면과, 제3 유효면의 외주로부터 연장된 제2 접착면과, 제3 유효면에 대향되는 제4 유효면을 갖는 제2 광학 렌즈;를 포함하며, 제1 광학 렌즈의 제2 유효면과 제2 광학 렌즈의 제3 유효면 사이에는 갭이 형성되며, 제1 접착면과 제2 접착면은 접착제에 의해 서로 접합된다.

Description

접합 렌즈 및 이를 구비한 촬상 장치
본 발명은 접합 렌즈 및 이를 구비한 촬상 장치에 관한 것이다.
휴대폰과 같은 모바일 기기에 사용되는 카메라(촬상 장치)는 초소형을 요구하면서도 DSLR 카메라(digital single-lens reflex camera) 수준의 고성능을 요구한다. 이에 모바일 기기에 사용되는 카메라용 렌즈는 비구면 렌즈를 이용하여 컴팩트하면서도 높은 성능구현을 하고 있다. 최근, 휴대폰과 같은 모바일 기기의 두께가 점점 얇아지면서 적용되는 모바일 기기용 카메라 렌즈 또한 고화소에 초슬림을 요구하고 있다. 하지만, 종래의 비구면 렌즈들을 경통에 조립하는 방식으로는 성능 구현에 한계가 있다.
해결하고자 하는 과제는 복수의 렌즈들로 이루어진 광학계를 초슬림하게 구현하면서도 광학적 성능을 확보할 수 있는 접합 렌즈를 제공하는데 있다.
해결하고자 하는 과제는 조립 공정을 단순하게 할 수 있는 접합 렌즈를 제공하는데 있다.
해결하고자 하는 과제는 광학계를 컴팩트하게 구현함으로써 초슬림의 촬상 장치를 제공하는데 있다.
해결하려는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
일 측면에 있어서, 적어도 2개의 광학 렌즈들이 접합된 접합 렌즈는, 접합 렌즈는 제1 유효면과, 제1 유효면에 대향되는 제2 유효면과, 제2 유효면의 외주로부터 연장된 제1 접착면을 갖는 제1 광학 렌즈; 및 제1 광학 렌즈와 접합되는 것으로서, 제3 유효면과, 제3 유효면의 외주로부터 연장된 제2 접착면과, 제3 유효면에 대향되는 제4 유효면을 갖는 제2 광학 렌즈;를 포함하며, 제1 광학 렌즈의 제2 유효면과 제2 광학 렌즈의 제3 유효면 사이에는 갭이 형성되며, 제1 접착면과 제2 접착면은 접착제에 의해 서로 접합된다.
예시적인 실시예들에서, 제2 유효면과 제3 유효면은 서로 다른 형상을 가질 수 있다. 달리 표현하며, 제2 유효면과 제3 유효면 사이의 갭의 크기는 광축에 수직한 지름 방향을 따라 변할 수 있다.
예시적인 실시예들에서, 제2 유효면 및 제3 유효면 중 적어도 어느 한 유효면은 비구면일 수 있다.
예시적인 실시예들에서, 제2 유효면과 제3 유효면은 평면일 수도 있다.
예시적인 실시예들에서, 제1 접착면과 제2 접착면 중 적어도 어느 한 접착면은 광축에 가까운 쪽이 오목하게 단차된 오목 단차를 가질 수 있다.
예시적인 실시예들에서, 제1 접착면은 오목 단차를 규정하는 제1-1 및 제1-2 접착면을 가지며, 제2 접착면은 제1-1 및 제1-2 접착면에 각각 접합되는 제2-1 및 제2-2 접착면을 가지며, 제2-2 접착면은 제2 광학 렌즈의 끝단면의 적어도 일부일 수 있다.
예시적인 실시예들에서, 제1 접착면은 오목 단차를 규정하는 제1-1, 제1-2 및 제1-3 접착면을 가지며, 제2 접착면은 볼록 단차를 규정하는 제2-1, 제2-2 및 제2-3 접착면을 가지며, 제1-1, 제1-2 및 제1-3 접착면은 각각 제2-1, 제2-2 및 제2-3 접착면과 접합되어 있을 수 있다.
예시적인 실시예들에서, 적어도 2개의 광학 렌즈들의 기구적 외경은 동일하지 않아도 된다. 가령, 제1 광학 렌즈의 기구적 외경은 제2 광학 렌즈의 기구적 외경과 같거나 또는 다를 수 있다.
예시적인 실시예들에서, 접합 렌즈는 제2 광학 렌즈와 접합되는 제3 광학 렌즈를 더 포함할 수 있다.
예시적인 실시예들에서, 제2 광학 렌즈는 제4 유효면의 외주로부터 연장된 제3 접착면을 포함하며, 제3 광학 렌즈는 제5 유효면과, 제5 유효면의 외주로부터 연장된 제4 접착면과, 제5 유효면에 대향되는 제6 유효면을 가지며, 제2 광학 렌즈의 제4 유효면과 제3 광학 렌즈의 제5 유효면 사이에는 갭이 형성되며, 제3 접착면과 제4 접착면은 접착제에 의해 서로 접합될 수 있다.
예시적인 실시예들에서, 제3 접착면과 제4 접착면 중 적어도 어느 한 접착면은 광축에 가까운 쪽이 오목하게 단차된 오목 단차를 가질 수 있다.
예시적인 실시예들에서, 제3 광학 렌즈의 기구적 외경은 제1 광학 렌즈의 기구적 외경 및 제2 광학 렌즈의 기구적 외경 중 적어도 일부와 같거나 또는 다를 수 있다.
예시적인 실시예들에서, 제1 광학 렌즈와 제2 광학 렌즈는 플라스틱 재질로 형성될 수 있다.
예시적인 실시예들에서, 갭에는 갭 충전 물질로 채워질 수 있다.
예시적인 실시예들에서, 갭 충전 물질은 광경화성 물질일 수 있다.
예시적인 실시예들에서, 갭 충전 물질은 광학적인 접합 물질일 수 있다.
예시적인 실시예들에서, 갭 충전 물질은 접착제와 동일한 물질일 수 있다.
예시적인 실시예들에서, 갭 충전 물질은 제1 광학 렌즈의 굴절률 및 제2 광학 렌즈의 굴절률과 다른 굴절률을 가질 수 있다.
예시적인 실시예들에서, 갭 충전 물질은 1.0 이상 2.0이하의 굴절률을 가질 수 있다. 바람직하게는 갭 충전 물질은 1.4 이상 1.6이하의 굴절률을 가질 수 있다.
예시적인 실시예들에서, 제1 접착면 및 제2 접착면 중 적어도 어느 한 접착면의 모서리는 모따기되어 있을 수 있다.
예시적인 실시예들에서, 제1 접착면 및 제2 접착면 중 적어도 어느 한 접착면의 둘레를 따라 환형의 홈이 형성되어 있을 수 있다.
예시적인 실시예들에서, 제1 접착면 및 제2 접착면 중 적어도 어느 한 접착면에는 두께 방향을 따라 길다란 홈이 형성되어 있을 수 있다.
예시적인 실시예들에서, 갭의 거리는 제1 접착면 및 제2 접착면 중 적어도 어느 한 접착면의 형상으로 간격을 조정될 수 있다.
예시적인 실시예들에서, 제1 접착면 및 제2 접착면 중 적어도 어느 한 접착면은 2개 이상의 단차 형상을 가질 수 있다.
다른 측면에 있어서, 촬상 장치는 접합 렌즈를 포함한 렌즈 광학계; 및 렌즈 광학계에 의해 결상된 상을 촬상하는 이미지 센서를 포함하며, 접합 렌즈는 접합 렌즈는 제1 유효면과, 제1 유효면에 대향되는 제2 유효면과, 제2 유효면의 외주로부터 연장된 제1 접착면을 갖는 제1 광학 렌즈; 및 제1 광학 렌즈와 접합되는 것으로서, 제3 유효면과, 제3 유효면의 외주로부터 연장된 제2 접착면과, 제3 유효면에 대향되는 제4 유효면을 갖는 제2 광학 렌즈;를 포함하며, 제1 광학 렌즈의 제2 유효면과 제2 광학 렌즈의 제3 유효면 사이에는 갭이 형성되며, 제1 접착면과 제2 접착면은 접착제에 의해 서로 접합된다.
또 다른 측면에 있어서, 모바일 기기는 본체; 및 본체에 내장되는 것으로서, 접합 렌즈를 포함한 렌즈 광학계; 및 렌즈 광학계에 의해 결상된 상을 촬상하는 이미지 센서를 포함하는 촬상 장치;를 포함하며, 접합 렌즈는 접합 렌즈는 제1 유효면과, 제1 유효면에 대향되는 제2 유효면과, 제2 유효면의 외주로부터 연장된 제1 접착면을 갖는 제1 광학 렌즈; 및 제1 광학 렌즈와 접합되는 것으로서, 제3 유효면과, 제3 유효면의 외주로부터 연장된 제2 접착면과, 제3 유효면에 대향되는 제4 유효면을 갖는 제2 광학 렌즈;를 포함하며, 제1 광학 렌즈의 제2 유효면과 제2 광학 렌즈의 제3 유효면 사이에는 갭이 형성되며, 제1 접착면과 제2 접착면은 접착제에 의해 서로 접합된다.
본 개시에 따른 접합 렌즈는 초소형 및 초슬림이면서 고성능을 구현할 수 있다.
본 개시에 따른 접합 렌즈는 렌즈와 렌즈 간격을 최소화 하고 광학적인 접합 물질을 사용하면서 광학수차 제어에 유리하다.
본 개시에 따른 접합 렌즈의 제조 방법은 렌즈와 렌즈간의 광축과 거리를 일정하게 관리하여 제품상 성능 구현에도 유리하다.
본 개시에 따른 접합 렌즈는 둘 이상의 렌즈가 접합되어 하나의 렌즈로 취급될 수 있으므로, 조립 공정에서 발생될 수 있는 광축의 어긋남 문제를 억제 또는 최소화할 수 있다.
본 개시에 따른 접합 렌즈는 둘 이상의 렌즈가 접합된 상태로 경통이나 렌즈 홀더에 고정되므로, 그 조립이 용이할 수 있으며, 정밀도를 놆게 할 수 있다.
본 개시에 따른 접합 렌즈를 구비한 촬상 장치는 성능 및 해상도를 향상시킬 수 있다. 특히, 카메라의 화소가 증가하고 카메라의 사이즈가 감소할수록, 본 개시에 따른 접합 렌즈의 구조는 촬상 장치에 유리하게 적용될 수 있다.
도 1은 본 발명의 제1 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 2는 도 1의 A 영역을 확대한 도면이다.
도 3은 본 발명의 제2 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 4는 도 3의 B 영역을 확대한 도면이다.
도 5는 본 발명의 제3 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 6은 도 5의 C 영역을 확대한 도면이다.
도 7은 본 발명의 제4 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 8은 도 7의 D 영역을 확대한 도면이다.
도 9는 본 발명의 제5 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 10은 도 9의 E 영역을 확대한 도면이다.
도 11은 본 발명의 제6 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 12는 도 11의 F 영역을 확대한 도면이다.
도 13은 본 발명의 제7 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 14는 도 13의 G 영역을 확대한 도면이다.
도 15는 본 발명의 제8 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 16은 도 15의 H 영역을 확대한 도면이다.
도 17은 본 발명의 제9 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이다.
도 18은 도 17의 I 영역을 확대한 도면이다.
도 19은 본 발명의 제10 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이다.
도 20은 도 19의 접합 렌즈를 I-I선을 따라 절개한 단면도이다.
도 21은 본 발명의 제11 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이다.
도 22는 도 21의 접합 렌즈를 II-II선을 따라 절개한 단면도이다.
도 23은 본 발명의 제12 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이다.
도 24는 도 23의 접합 렌즈를 III-III선을 따라 절개한 단면도이다.
도 25는 본 발명의 제13 실시예에 따른 접합 렌즈의 제1 렌즈를 개략적으로 보여주는 평면도이다.
도 26은 본 발명의 제13 실시예에 따른 접합 렌즈의 제1 배치를 갖는 경우를 도시한다.
도 27은 본 발명의 제13 실시예에 따른 접합 렌즈의 제2 배치를 갖는 경우를 도시한다.
도 28 내지 도 30은 본 발명의 일 실시예에 따른 접합 렌즈의 제조 방법을 도시한다.
도 31은 본 발명의 일 실시예에 따른 접합 렌즈를 포함하는 촬상 장치를 개략적으로 나타내는 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명하기로 한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다. 한편, 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
본 명세서의 실시예들에서 사용되는 용어는 본 개시의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 실시예의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용된 표현 "광학 렌즈의 기구적 외경"은 광학 렌즈에 있어서 유효 영역(유효경)과 비유효 영역(즉, 단부)을 모두 포함하는 외경을 의미한다.
본 명세서에서 사용된 표현 "오목 단차"는 광축에 가까운 쪽이 광축에 먼 쪽에 비하여 오목하게 단차되어 있다는 의미로 사용된다.
본 명세서에서 사용된 표현 "볼록 단차"는 광축에 가까운 쪽이 광축에 먼 쪽에 비하여 볼록하게 단차되어 있다는 의미로 사용된다.
도 1은 본 발명의 제1 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 2는 도 1의 A 영역을 확대한 도면이다.
도 1 및 도 2를 참조하면, 본 실시예의 접합 렌즈는 제1 및 제2 광학 렌즈(10, 20)가 접합된 렌즈이다.
제1 광학 렌즈(10)는 제1 유효면(11)과, 제1 유효면(11)에 대향되는 제2 유효면(12)과, 제2 유효면(12)의 외주로부터 연장된 제1 접착면(14)을 갖는다.
일 실시예에서, 제1 및 제2 유효면(11, 12)은 모두 비구면으로 형성될 수 있다. 다른 실시예에서, 제1 유효면(11)과 제2 유효면(12) 중 어느 한 면이 비구면일 수도 있다. 물론, 제1 및 제2 유효면(11, 12)이 모두 구면으로 형성되는 것을 배제하는 것은 아니다.
제1 및 제2 유효면(11, 12)은 제1 광학 렌즈(10)의 굴절력을 규정하는 제1 유효 영역(R1)에 위치하며, 상기 제1 유효 영역(R1)의 외곽은 제1 비유효 영역(R2)이 된다. 제1 광학 렌즈(10)의 제1 단부(13)는 제1 비유효 영역(R2)에 위치한다.
상기 제1 광학 렌즈(10)의 제1 비유효 영역(R2) 중에서 상기 제2 유효면(12)의 외주로부터 연장되어 형성된 영역에 제1 접착면(14)이 형성된다.
제2 광학 렌즈(20)는 제1 광학 렌즈(10)와 접합되는 것으로서, 제3 유효면(21)과, 제3 유효면(21)에 대향되는 제4 유효면(22)과, 제3 유효면(21)의 외주로부터 연장된 제2 접착면(24)을 갖는다.
일 실시예에서, 제1 유효면(11)은 접합 렌즈의 입사면이고, 제4 유효면(22)은 접합 렌즈의 출사면일 수 있다. 다른 실시예에서, 제1 유효면(11)은 접합 렌즈의 출사면이고, 제4 유효면(22)은 접합 렌즈의 입사면일 수 있다.
일 실시예에서, 제3 및 제4 유효면(21, 22)은 모두 비구면으로 형성될 수 있다. 다른 실시예에서, 제3 유효면(21)과 제4 유효면(22) 중 어느 한 면이 비구면일 수도 있다. 물론, 제3 및 제4 유효면(21, 22)이 모두 구면으로 형성되는 것을 배제하는 것은 아니다.
상기 제1 광학 렌즈(10)의 제2 유효면(12)과 상기 제2 광학 렌즈(20)의 제3 유효면(21)은 서로 다른 형상을 가질 수 있다. 일 실시예에서, 제2 유효면(12)과 제3 유효면(21)이 모두 비구면이며, 서로 다른 비구면 계수를 가질 수 있다. 다른 실시예에서, 제2 유효면(12)과 제3 유효면(21) 중 어느 하나는 비구면이며, 다른 하나는 구면일 수 있다. 또 다른 실시예에서, 제2 유효면(12)과 제3 유효면(21) 중 어느 하나는 비구면이며, 다른 하나는 평면일 수도 있다. 또 다른 실시예에서, 제2 유효면(12)과 제3 유효면(21)은 모두 구면이며, 서로 다른 크기의 곡률 반경을 가질 수도 있다.
제3 및 제4 유효면(21, 22)은 제2 광학 렌즈(20)의 굴절력을 규정하는 제2 유효 영역(R3)에 위치하며, 상기 제2 유효 영역(R3)의 외곽은 제2 비유효 영역(R4)이 된다. 제2 광학 렌즈(20)의 제2 단부(23)는 제2 비유효 영역(R4)에 위치한다.
상기 제2 광학 렌즈(20)의 제2 비유효 영역(R2) 중에서 상기 제3 유효면(21)의 외주로부터 연장되어 형성된 영역에 제2 접착면(24)이 형성된다.
제1 접착면(14)과 제2 접착면(24)은 접착제(50)에 의해 서로 접합된다. 접착제(50)는 예를 들어 광경화성 접착제일 수 있다.
본 실시예에서, 제1 광학 렌즈(10)의 기구적 외경이 제2 광학 렌즈(20)의 기구적 외경보다 크다. 따라서, 제1 광학 렌즈(10)의 제1 접착면(14)이 오목 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)이 제1 접착면(14)에 끼여진 상태로 접합된다. 제1 광학 렌즈(10)의 기구적 외경은 제1 광학 렌즈(10)의 제1 단부(13)의 끝단면(13a)까지의 직경으로 이해될 수 있다. 마찬가지로, 제2 광학 렌즈(20)의 기구적 외경은 제2 광학 렌즈(20)의 제2 단부(23)의 끝단면(23a)까지의 직경으로 이해될 수 있다. 제1 접착면(14)의 오목 단차는 광축(OA)에 가까운 쪽이 광축(OA)에서 먼 쪽에 비하여 오목하게 단차되어 있음을 의미한다. 제1 접착면(14)은 이러한 오목 단차를 규정하는 제1-1 접착면(14a) 및 제1-2 접착면(14b)을 가진다. 제1-1 접착면(14a) 및 제1-2 접착면(14b) 각각은 편평한 면일 수 있다.
제2 접착면(24)은 제2-1 접착면(24a) 및 제2-2 접착면(24b)을 가진다. 제2-1 접착면(24a)은 제3 유효면(21)에서 연장되어 형성되며 편평할 수 있다. 일 실시예에서, 제2-2 접착면(24b)은 제2 광학 렌즈(20)의 끝단면(23a)의 일부일 수 있으며, 편평할 수 있다. 다른 실시예에서, 제2-2 접착면(24b)은 제2 광학 렌즈(20)의 끝단면(23a)일 수 있다. 제2-1 접착면(24a) 및 제2-2 접착면(24b)은 각각 제1-1 접착면(14a) 및 제1-2 접착면(14b)에 접합된다.
제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21) 사이에는 갭(40)이 형성된다.
제2 유효면(12)과 제3 유효면(21)이 서로 다른 형상을 가지므로, 갭(40)의 크기(d)는 광축(OA)에 수직한 지름 방향을 따라 변할 수 있다. 여기서, 갭(40)의 크기(d)는 광축(OA)에 평행한 방향을 기준으로 제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21) 사이의 거리를 의미한다. 접합 렌즈를 최대한 슬림하게 구성하기 위하여, 제1 광학 렌즈(10)와 제2 광학 렌즈(20) 사이의 거리를 최대한 좁힐 수 있다. 즉, 제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(13)이 최대한 근접하도록 구성할 수 있다. 달리 말하면, 유효 영역(R1)의 일부 지점에서 갭(40)의 크기가 0 내지 0에 근접한 값일 수 있다.
일 실시예에서 갭(40)에는 갭 충전 물질로 채워질 수 있다.
일 실시예에서, 갭 충전 물질은 광학적인 접합 물질일 수 있다. 일 예로, 갭 충전 물질은 광경화성 물질일 수 있으나, 이에 제한되는 것은 아니다.
일 실시예에서, 갭 충전 물질은 접착제와 동일한 물질일 수 있으나, 이에 제한되는 것은 아니다.
일 실시예에서, 제1 광학 렌즈(10)와 제2 광학 렌즈(20)는 플라스틱 재질로 형성될 수 있으나, 이에 제한되는 것은 아니다.
갭 충전 물질은 제1 광학 렌즈(10)의 굴절률 및 제2 광학 렌즈(20)의 굴절률과 다른 굴절률을 가진다. 일 실시예에서, 갭 충전 물질은 물질은 1.0 초과 2.0 이하의 굴절률을 가질 수 있다. 바람직하게는 갭 충전 물질은 1.4 이상 1.6 이하의 굴절률을 가질 수 있다.
한편, 제1 광학 렌즈(10) 및 제2 광학 렌즈(20)는 1.4 이상 2.0 이하의 굴절률을 가질 수 있다.
일 실시예에서, 제1 광학 렌즈(10)의 기구적 외경이 제2 광학 렌즈(20)의 기구적 외경보다 크므로, 제1 광학 렌즈(10)의 제1 단부(13)는 경통(미도시)에 결합되는 부위일 수 있다. 물론, 제2 광학 렌즈(20)의 제2 단부(23)도 제1 광학 렌즈(10)의 제1 단부(13)와 함께 경통(미도시)에 결합되는 부위가 될 수 있다.
본 실시예에 따른 접합 렌즈는 제1 광학 렌즈(10)와 제2 광학 렌즈(20) 사이의 간격을 최소화하고 광학적인 접합 물질을 갭 충전 물질로 사용함으로서 광학수차 제어에 유리하다.
도 3은 본 발명의 제2 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 4는 도 3의 B 영역을 확대한 도면이다.
도 3 및 도 4를 참조하면, 본 실시예의 접합 렌즈는 전술한 실시예와 마찬가지로 제1 광학 렌즈(10)와 제2 광학 렌즈(20)가 접합된 렌즈이다. 다만, 본 실시예는 제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21)이 모두 평면이라는 점과, 제2 광학 렌즈(20)의 기구적 외경이 제1 광학 렌즈(10)의 기구적 외경보다 크다는 점에서, 제1 실시예와 차이가 있으므로, 이러한 차이점을 중심으로 설명하기로 한다.
본 실시예에서, 제2 광학 렌즈(20)의 기구적 외경이 제1 광학 렌즈(10)의 기구적 외경보다 크므로, 제2 광학 렌즈(20)의 제2 접착면(24)이 오목 단차로 형성되고, 제1 광학 렌즈(10)의 제1 접착면(14)이 제2 접착면(24)에 끼여진 상태로 접합된다.
제2 접착면(24)은 오목 단차를 규정하는 제2-1 접착면(24a)과 제2-2 접착면(24b)를 포함한다. 전술한 제1 실시예와 달리, 본 실시예의 제3 유효면(21)이 편평하므로, 제2 접착면(24)의 제2-1 접착면(24a)은 제3 유효면(21)에서 그대로 편평하게 연장되어 형성될 수 있다. 마찬가지로, 제2 유효면(12)이 편평하므로, 제1 접착면(14)의 제1-1 접착면(14a)은 제2 유효면(12)에서 그대로 편평하게 연장되어 형성될 수 있다. 물론, 제1-1 접착면(14a)은 제2 유효면(12)에 대해 단차되어 있을 수 있고, 제2-1 접착면(24a) 역시 제3 유효면(21)에 대해 단차되어 있을 수도 있다.
본 실시예의 경우, 갭(40)의 간격은 광축에 수직한 지름 방향에 대하여 일정하다.
제1-1 접착면(14a)과 제2-1 접착면(24a)은 상기 갭(40)의 간격을 유지하며, 제1-2 접착면(14b)과 제2-2 접착면(24b)은 접착제(50)에 의해 접합된다.
전술한 제1 실시예와 마찬가지로 갭(40)에는 갭 충전 물질로 채워질 수 있으며, 이러한 갭 충전 물질은 광학적인 접합 물질(접착제)일 수 있다. 이러한 경우, 비유효 영역에 속하는 제1-1 접착면(14a)과 제2-1 접착면(24a)은 상기 갭(40)의 간격을 유지한 채로 갭 충전 물질(광학적인 접합 물질)에 의해 접합될 수 있다.
갭(40)이 공기로 채워지거나 비접착성 갭 충전 물질로 채워지는 경우, 제1 광학 렌즈(10)와 제2 광학 렌즈(20)는 제1-2 접착면(14b)과 제2-2 접착면(24b) 사이의 접착제(50)에 의해서만 접합된다. 이러한 경우, 본 실시예에서 제1-1 접착면(14a) 및 제2-1 접착면(24a)이라는 용어를 사용하였으나 상기 용어가 접착에 사용되는 것을 의미하지 않을 수 있다.
도 5는 본 발명의 제3 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 6은 도 5의 C 영역을 확대한 도면이다.
도 5 및 도 6을 참조하면, 본 실시예의 접합 렌즈는 전술한 제1 및 제2 실시예와 마찬가지로 제1 광학 렌즈(10)와 제2 광학 렌즈(20)가 접합된 렌즈이다. 다만, 본 실시예는 제1 광학 렌즈(10)의 기구적 외경과 제2 광학 렌즈(20)의 기구적 외경이 같다는 점에서, 전술한 제1 및 제2 실시예와 차이가 있으므로, 이러한 차이점을 중심으로 설명하기로 한다.
본 실시예에서, 제1 광학 렌즈(10)의 기구적 외경과 제2 광학 렌즈(20)의 기구적 외경이 같다. 달리 말하면, 제1 광학 렌즈(10)의 제1 단부(13)의 끝단면(13a)과 제2 광학 렌즈(20)의 제2 단부(23)의 끝단면(23a)은 동일 평면상에 위치할 수 있다.
제1 광학 렌즈(10)의 제1 접착면(14)은 볼록 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)은 오목 단차로 형성될 수 있다. 제1 접착면(14)은 볼록 단차를 규정하는 제1-1 접착면(14a), 제1-2 접착면(14b), 및 제1-3 접착면(14c)을 포함할 수 있다. 제2 접착면(24)은 오목 단차를 규정하는 제2-1 접착면(24a), 제2-2 접착면(24b), 제2-3 접착면(24c)를 포함한다. 제1 광학 렌즈(10)와 제2 광학 렌즈(20)는 제1 접착면(14)의 볼록 단차가 제2 접착면(24)의 오목 단차에 끼워진 상태로 접착제(50)에 의해 접착된다. 즉, 제1-1 접착면(14a), 제1-2 접착면(14b), 및 제1-3 접착면(14c)은 각각 제2-1 접착면(24a), 제2-2 접착면(24b), 제2-3 접착면(24c)에 접착제(50)에 의해 접착된다.
제1 광학 렌즈(10)의 제1 단부(13)와 제2 광학 렌즈(20)의 제2 단부(23)는 일체로 접착 렌즈의 단부를 이루어 경통(미도시)에 결합될 수 있다.
도 7은 본 발명의 제4 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 8은 도 7의 D 영역을 확대한 도면이다.
도 7 및 도 8을 참조하면, 본 실시예의 접합 렌즈는 제1 광학 렌즈(10), 제2 광학 렌즈(20), 및 제3 광학 렌즈(30)가 접합된 트리플 렌즈이다. 본 실시예는 접합 렌즈는 전술한 제1 내지 제3 실시예의 접합 렌즈에 제3 광학 렌즈(30)가 추가적으로 접합된 구성으로 이해될 수 있으므로, 중복된 설명은 생략하고 차이점을 중심으로 설명하기로 한다.
제1 광학 렌즈(10)는 제1 유효면(11)과, 제1 유효면(11)에 대향되는 제2 유효면(12)과, 제2 유효면(12)의 외주로부터 연장된 제1 접착면(14)을 갖는다.
제2 광학 렌즈(20)는 양면에서 제1 광학 렌즈(10) 및 제3 광학 렌즈(30)와 접합되는 것으로서, 제3 유효면(21)과, 제3 유효면(21)에 대향되는 제4 유효면(22)과, 제3 유효면(21)의 외주로부터 연장된 제2 접착면(24), 제4 유효면(22)의 외주로부터 연장된 제3 접착면(25)을 갖는다.
제3 광학 렌즈(30)는 제5 유효면(31)과, 제5 유효면(31)에 대향되는 제6 유효면(32)과, 제5 유효면(31)의 외주로부터 연장된 제4 접착면(34)을 갖는다.
일 실시예에서, 제1 유효면(11)은 접합 렌즈의 입사면이고, 제6 유효면(32)은 접합 렌즈의 출사면일 수 있다. 다른 실시예에서, 제1 유효면(11)은 접합 렌즈의 출사면이고, 제6 유효면(32)은 접합 렌즈의 입사면일 수 있다.
일 실시예에서, 제3 렌즈(30)의 제5 및 제6 유효면(31, 32)은 모두 비구면으로 형성될 수 있다. 다른 실시예에서, 제5 유효면(31)과 제6 유효면(32) 중 어느 한 면이 비구면일 수도 있다. 물론, 제5 및 제6 유효면(31, 32)이 모두 구면으로 형성되는 것을 배제하는 것은 아니다.
제1 실시예에서 설명한 바와 같이 제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21)은 서로 다른 형상을 가질 수 있다. 마찬가지로, 제2 광학 렌즈(20)의 제4 유효면(22)과 제3 광학 렌즈(30)의 제5 유효면(31)은 서로 다른 형상을 가질 수 있다.
일 실시예에서, 제4 유효면(22)과 제5 유효면(31)이 모두 비구면이며, 서로 다른 비구면 계수를 가질 수 있다. 다른 실시예에서, 제4 유효면(22)과 제5 유효면(31) 중 어느 하나는 비구면이며, 다른 하나는 구면일 수 있다. 또 다른 실시예에서, 제4 유효면(22)과 제5 유효면(31) 중 어느 하나는 비구면이며, 다른 하나는 평면일 수도 있다. 또 다른 실시예에서, 제2 유효면(12)과 제3 유효면(21)은 모두 구면이며, 서로 다른 크기의 곡률 반경을 가질 수도 있다. 또 다른 실시예에서, 제2 유효면(12)과 제3 유효면(21)은 모두 평면일 수도 있다.
제1 접착면(14)과 제2 접착면(24)은 접착제(50)에 의해 서로 접합되며, 마찬가지로 제3 접착면(25)과 제4 접착면(34) 역시 접착제(50)에 의해 서로 접합된다.
본 실시예에서, 제2 광학 렌즈(20)의 기구적 외경이 제1 및 제3 광학 렌즈(10, 30)의 기구적 외경보다 크다. 달리 말하면, 제2 광학 렌즈(20)의 제2 단부(23)는 제1 및 제3 광학 렌즈(10, 30)의 제1 및 제3 단부(13, 33)에 대해 돌출되어 있다. 따라서, 제2 광학 렌즈(20)의 제2 접착면(24)과 제3 접착면(25)는 모두 오목 단차로 형성된다. 제1 광학 렌즈(10)의 제1 접착면(14)은 제2 광학 렌즈(20)의 제2 접착면(24)에 끼인 상태로 접합되며, 제3 광학 렌즈(30)의 제4 접착면(34)은 제2 광학 렌즈(20)의 제3 접착면(34)에 끼인 상태로 접합된다. 제1 광학 렌즈(10)의 기구적 외경과 제3 광학 렌즈(30)의 기구적 외경은 서로 같거나 또는 다를 수 있다.
제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21)은 서로 다른 형상을 가질 수 있다. 마찬가지로, 제2 광학 렌즈(20)의 제4 유효면(22)과 제3 광학 렌즈(30)의 제5 유효면(31)은 서로 다른 형상을 가질 수 있다.
제1 광학 렌즈(10)의 제2 유효면(12)과 제2 광학 렌즈(20)의 제3 유효면(21) 사이에는 제1 갭(41)이 형성되며, 제2 광학 렌즈(20)의 제4 유효면(22)과 제3 광학 렌즈(30)의 제5 유효면(31) 사이에는 제2 갭(42)가 형성된다.
제2 유효면(12)과 제3 유효면(21)이 서로 다른 형상을 가지므로, 제1 갭(41)의 크기는 광축(OA)에 수직한 지름 방향을 따라 변할 수 있다. 마찬가지로, 제4 유효면(22)과 제5 유효면(31)이 서로 다른 형상을 가지므로, 제2 갭(42)의 크기 역시 광축(OA)에 수직한 지름 방향을 따라 변할 수 있다.
일 실시예에서 제1 및 제2 갭(40)에는 각각 제1 및 제2 갭 충전 물질로 채워질 수 있다. 제1 및 제2 갭 충전 물질은 같은 물질일 수 있으나, 이에 제한되는 것은 아니다.제1 및 제2 갭 충전 물질은 광학적인 접합 물질일 수 있다. 일 예로, 제1 및 제2 갭 충전 물질은 광경화성 물질일 수 있으나, 이에 제한되는 것은 아니다.
일 실시예에서, 제1 및 제2 갭 충전 물질은 접착제와 동일한 물질일 수 있으나, 이에 제한되는 것은 아니다.
제1 갭 충전 물질은 제1 광학 렌즈(10)의 굴절률 및 제2 광학 렌즈(20)의 굴절률과 다른 굴절률을 가진다. 제2 갭 충전 물질은 제2 광학 렌즈(20)의 굴절률 및 제3 광학 렌즈(30)의 굴절률과 다른 굴절률을 가진다. 일 실시예에서, 제1 및 제2 갭 충전 물질은 물질은 1.0 초과 2.0 이하의 굴절률을 가질 수 있다. 바람직하게는 제1 및 제2 갭 충전 물질은 1.4 이상 1.6 이하의 굴절률을 가질 수 있다.
한편, 제1 광학 렌즈(10), 제2 광학 렌즈(20) 및 제3 광학 렌즈(30)는 1.4 이상 2.0 이하의 굴절률을 가질 수 있다.
일 실시예에서, 제2 광학 렌즈(20)의 기구적 외경이 제1 및 제3 광학 렌즈(10, 30)의 기구적 외경보다 크므로, 제2 광학 렌즈(20)의 제2 단부(23)가 경통(미도시)에 결합되는 부위일 수 있다. 물론, 제1 광학 렌즈(10)의 제1 단부(13) 및/또는 제3 광학 렌즈(30)의 제3 단부(33)도 제2 광학 렌즈(20)의 제2 단부(23)와 함께 경통(미도시)에 결합되는 부위가 될 수 있다.
도 9는 본 발명의 제5 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 10은 도 9의 E 영역을 확대한 도면이다.
도 9 및 도 10을 참조하면, 본 실시예의 접합 렌즈는 전술한 제4 실시예와 마찬가지로 제1 내지 제3 광학 렌즈(10, 20, 30)가 접합된 렌즈이다. 다만, 본 실시예는 제2 광학 렌즈(20)의 기구적 외경이 제1 및 제3 광학 렌즈(10, 30)의 기구적 외경보다 작다는 점에서, 전술한 제4 실시예와 차이가 있으므로, 이러한 차이점을 중심으로 설명하기로 한다.
본 실시예에서, 제2 광학 렌즈(20)의 기구적 외경이 제1 및 제3 광학 렌즈(10, 30)의 기구적 외경보다 작다. 달리 말하면, 제2 광학 렌즈(20)의 제2 단부(23)의 끝단면(23a)은 제1 광학 렌즈(10)의 제1 단부(13)의 끝단면(13a) 및 제3 광학 렌즈(30)의 제3 단부(33)의 끝단면(33a) 보다 안쪽에 위치한다. 이에 따라 제1 광학 렌즈(10)의 제1 접착면(14)은 오목 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)은 상기 제1 접착면에 끼인 상태로 접합된다. 마찬가지로, 제3 광학 렌즈(30)의 제4 접착면(34)은 오목 단차로 형성되고, 제2 광학 렌즈(20)의 제3 접착면(25)은 상기 제4 접착면(34)에 끼인 상태로 접착된다.
제1 광학 렌즈(10)의 제1 단부(13)와 제3 광학 렌즈(30)의 제3 단부(33)는 접착 렌즈의 단부를 이루어 경통(미도시)에 결합될 수 있다.
도 11은 본 발명의 제6 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 12는 도 11의 F 영역을 확대한 도면이다.
도 11 및 도 12를 참조하면, 본 실시예의 접합 렌즈는 전술한 제4 및 제5 실시예와 마찬가지로 제1 내지 제3 광학 렌즈(10, 20, 30)가 접합된 렌즈이다. 다만, 본 실시예는 제1 내지 제3 광학 렌즈(10, 20, 30)의 기구적 외경이 순차적으로 작아진다는 점에서, 전술한 제4 및 제5 실시예와 차이가 있으므로, 이러한 차이점을 중심으로 설명하기로 한다.
본 실시예에서, 제2 광학 렌즈(20)의 기구적 외경이 제1 광학 렌즈(10)의 기구적 외경보다 작으므로 제1 광학 렌즈(10)의 제1 접착면(14)은 오목 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)은 상기 제1 접착면에 끼인 상태로 접합된다.
마찬가지로, 제3 광학 렌즈(30)의 기구적 외경이 제2 광학 렌즈(20)의 기구적 외경보다 작으므로 제2 광학 렌즈(20)의 제3 접착면(25)은 오목 단차로 형성되고, 제3 광학 렌즈(30)의 제4 접착면(34)은 상기 제3 접착면(25)에 끼인 상태로 접착된다.
일 실시예에서, 제1 광학 렌즈(10)의 제1 단부(13)는 접착 렌즈의 단부로서 경통(미도시)에 결합될 수 있다. 다른 실시예에서, 제2 광학 렌즈(20)의 제2 단부(23) 및/또는 제3 광학 렌즈(30)의 제3 단부(33)가 제1 광학 렌즈(10)의 제1 단부(13)와 함께 접착 렌즈의 단부로서 경통(미도시)에 결합될 수도 있다.
도 13은 본 발명의 제7 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 14는 도 13의 G 영역을 확대한 도면이다.
도 13 및 도 14를 참조하면, 본 실시예의 접합 렌즈는 전술한 제4 내지 제6 실시예와 마찬가지로 제1 내지 제3 광학 렌즈(10, 20, 30)가 접합된 렌즈이다. 다만, 본 실시예는 제1 내지 제3 광학 렌즈(10, 20, 30)의 기구적 외경이 모두 같다는 점에서, 전술한 제4 내지 제6 실시예와 차이가 있으므로, 이러한 차이점을 중심으로 설명하기로 한다.
본 실시예에서, 제1 광학 렌즈(10)의 기구적 외경과 제2 광학 렌즈(20)의 기구적 외경이 같으므로 제1 광학 렌즈(10)의 제1 접착면(14) 및 제2 광학 렌즈(20)의 제2 접착면(24) 중 어느 하나는 볼록 단차로 형성되고 다른 하나는 오목 단차로 형성될 수 있다. 예시적으로, 본 실시예는 제1 광학 렌즈(10)의 제1 접착면(14)이 오목 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)이 볼록 단차로 형성되어, 제2 광학 렌즈(20)의 제2 접착면(24)이 제1 광학 렌즈(10)의 제1 접착면(14)에 끼인 상태로 접착된다.
마찬가지로, 제2 광학 렌즈(20)의 기구적 외경과 제3 광학 렌즈(30)의 기구적 외경이 같으므로 제2 광학 렌즈(20)의 제3 접착면(25) 및 제3 광학 렌즈(30)의 제4 접착면(34) 중 어느 하나는 볼록 단차로 형성되고 다른 하나는 오목 단차로 형성될 수 있다. 예시적으로, 본 실시예는 제2 광학 렌즈(20)의 제3 접착면(14)이 볼록 단차로 형성되고, 제3 광학 렌즈(30)의 제4 접착면(34)이 오목 단차로 형성되어, 제2 광학 렌즈(20)의 제3 접착면(25)이 제3 광학 렌즈(30)의 제4 접착면(34)에 끼인 상태로 접착된다.
제1 내지 제3 광학 렌즈(10, 20, 30)의 기구적 외경이 모두 같으므로, 제1 내지 제3 광학 렌즈(10, 20, 30)의 제1 내지 제3 단부(13, 23, 33)은 일체로 접착 렌즈의 단부로서 경통(미도시)에 결합될 수 있다.
도 15는 본 발명의 제8 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 16은 도 15의 H 영역을 확대한 도면이다.
도 15 및 도 16을 참조하면, 본 실시예의 접합 렌즈는 전술한 제7 실시예와 마찬가지로 제1 내지 제3 광학 렌즈(10, 20, 30)가 접합된 렌즈이며, 제1 내지 제3 광학 렌즈(10, 20, 30)의 기구적 외경이 모두 같다. 다만, 전술한 제7 실시예와 달리, 본 실시예는 제2 광학 렌즈(20)의 제3 접착면(14)이 오목 단차로 형성되고, 제3 광학 렌즈(30)의 제4 접착면(34)이 볼록 단차로 형성되어, 제3 광학 렌즈(30)의 제4 접착면(34)이 제2 광학 렌즈(20)의 제3 접착면(25)에 끼인 상태로 접착된다.
제조 공정 측면에서 볼 때, 제2 광학 렌즈(20)가 제1 광학 렌즈(10)에 끼워지고 제3 광학 렌즈(30)가 제2 광학 렌즈(20)에 끼워지므로, 렌즈를 뒤집지 않은 상태에서 3매의 렌즈(즉, 제1 내지 제3 렌즈(10, 20, 30)를 접합시킬 수 있다.
도 17은 본 발명의 제9 실시예에 따른 접합 렌즈를 개략적으로 보여주는 단면도이며, 도 18은 도 17의 I 영역을 확대한 도면이다.
도 17 및 도 18을 참조하면, 본 실시예의 접합 렌즈는 전술한 제7 및 제8 실시예와 마찬가지로 제1 내지 제3 광학 렌즈(10, 20, 30)가 접합된 렌즈이며, 제1 내지 제3 광학 렌즈(10, 20, 30)의 기구적 외경이 모두 같다. 다만, 전술한 제7 실시예와 반대로, 본 실시예는 제1 광학 렌즈(10)의 제1 접착면(14)이 볼록 단차로 형성되고, 제2 광학 렌즈(20)의 제2 접착면(24)이 오목 단차로 형성되어, 제1 광학 렌즈(10)의 제1 접착면(14)이 제2 광학 렌즈(20)의 제2 접착면(24)에 끼인 상태로 접착된다. 또한, 제2 광학 렌즈(20)의 제3 접착면(14)이 오목 단차로 형성되고, 제3 광학 렌즈(30)의 제4 접착면(34)이 볼록 단차로 형성되어, 제3 광학 렌즈(30)의 제4 접착면(34)이 제2 광학 렌즈(20)의 제3 접착면(25)에 끼인 상태로 접착된다.
전술한 실시예들은 2매 혹은 3매의 광학 렌즈로 접합 렌즈를 형성하는 경우를 예로 들어 설명하고 있으나, 동일 방식으로 4매 이상의 광학 렌즈로 접합 렌즈를 형성할 수 있음은 자명하게 이해될 수 있을 것이다.
도 19은 본 발명의 제10 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이며, 도 20은 도 19의 접합 렌즈를 I-I선을 따라 절개한 단면도이다.
도 19 및 도 20을 참조하면, 본 실시예의 접합 렌즈는 제1 및 제2 광학 렌즈(10, 20)가 접합된 렌즈로서, 제1 렌즈(10)의 제1 접합면(14)의 모서리를 모따기한다는 점을 제외하고는 도 1 및 도 2를 참조한 실시예의 접합 렌즈와 동일하므로, 이러한 차이점을 중심으로 설명하기로 한다.
제1 광학 렌즈(10)의 제1 접착면(14)은 오목 단차 형상을 지니는바, 제1 접착면(14)의 외곽쪽 모서리는 모따기되어 모따기부(16)가 형성된다. 제조 공정 측면에서 볼 때, 갭 충전 물질을 먼저 어느 한 광학 렌즈(예시적으로 제1 광학 렌즈(10))의 유효면에 도포하게 되는데, 갭 충전 물질(접착제)의 도포량이 과잉될 경우 광학 렌즈의 접합시 갭 충전 물질(접착제)이 바깥으로 누출되어, 광학 렌즈의 유효면을 오염시키거나 경통에 조립할 때 오차를 발생시키는 원인이 될 수 있다. 이에 본 실시예는 접합되는 광학 렌즈들의 접합면들 중 적어도 어느 한 접합면의 모서리를 모따기함으로써 확보되는 공간에 누출되는 갭 충전 물질(접착제)이 수용될 수 있도록 한다.
본 실시예에서 제1 접합면(14)의 모서리 모따기 구성은 도 3 내지 도 18을 참조하여 설명된 실시예들의 접합 렌즈들에도 그대로 적용될 수 있음은 자명하게 이해될 수 있을 것이다.
도 21은 본 발명의 제11 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이며, 도 22는 도 21의 접합 렌즈를 II-II선을 따라 절개한 단면도이다.
도 21 및 도 22를 참조하면, 본 실시예의 접합 렌즈는 제1 및 제2 광학 렌즈(10, 20)가 접합된 렌즈로서, 제1 렌즈(10)의 제1 접합면(14)에 환형의 홈(16)을 형성한다는 점을 제외하고는 전술한 제10 실시예의 접합 렌즈와 동일하므로, 이러한 차이점을 중심으로 설명하기로 한다.
제1 광학 렌즈(10)의 제1 접착면(14)은 오목 단차 형상을 지니는바, 제1 접착면(14)의 둘레를 따라 제1 접착면(14)의 외곽쪽 측벽에 환형의 홈(16)이 형성된다. 이러한 환형의 홈(16)은 도 21에 도시된 바와 같이 외주 전체에 걸쳐 형성될 수 있으나, 이에 제한되는 것은 아니다. 가령, 제1 접착면(14)의 외주의 일부 영역에만 홈(16)이 형성될 수도 있을 것이다. 또한, 본 실시예는 환형의 홈(16)이 제1 광학 렌즈(10)의 제1 접착면(14)에 형성된 예를 설명하고 있으나, 제2 광학 렌즈(10)의 제2 접착면(14)에 형성될 수도 있을 것이다. 제10 실시예에서 설명한 바와 같이 제조 공정에서 갭 충전 물질(접착제)의 도포량이 과잉될 경우 광학 렌즈의 접합시 갭 충전 물질(접착제)이 바깥으로 누출되어, 광학 렌즈의 유효면을 오염시키거나 경통에 조립할 때 오차를 발생시키는 원인이 될 수 있는바, 본 실시예는 접합되는 광학 렌즈들의 접합면들 중 적어도 어느 한 접합면에 환형의 홈(16)을 형성함으로써 확보되는 공간에 누출되는 갭 충전 물질(접착제)이 수용될 수 있도록 한다.
본 실시예에서 제1 접합면(14)의 환형의 홈(16) 구성은 도 3 내지 도 18을 참조하여 설명된 실시예들의 접합 렌즈들에도 그대로 적용될 수 있음은 자명하게 이해될 수 있을 것이다.
도 23은 본 발명의 제12 실시예에 따른 접합 렌즈를 개략적으로 보여주는 평면도이며, 도 24는 도 23의 접합 렌즈를 III-III선을 따라 절개한 단면도이다.
도 23 및 도 24를 참조하면, 본 실시예의 접합 렌즈는 제1 및 제2 광학 렌즈(10, 20)가 접합된 렌즈로서, 제1 렌즈(10)의 제1 접합면(14)에 두께 방향을 따라 길다란 홈(17)을 형성한다는 점을 제외하고는 전술한 제10 및 제11 실시예의 접합 렌즈와 동일하므로, 이러한 차이점을 중심으로 설명하기로 한다.
제1 광학 렌즈(10)의 제1 접착면(14)은 오목 단차 형상을 지니는바, 제1 접착면(14)의 측벽 중 적어도 어느 한 쪽에 두께 방향(즉, 광축(OA) 방향)으로 길다란 홈(17)이 형성된다. 이러한 길다란 홈(17)은 제1 접착면(14)의 외주의 한 개소 또는 복수 개소에 형성될 수 있다. 도 24는 홈(17)이 제1 접착면(14)의 외측 측벽에 길게 형성된 경우를 도시하고 있으나, 이에 제한되는 것은 아니다. 가령, 홈(17)은 제1 접착면(14)의 측벽 상단 또는 측벽 하단에만 형성될 수도 있을 것이다. 또한, 본 실시예는 홈(17)이 제1 광학 렌즈(10)의 제1 접착면(14)에 형성된 예를 설명하고 있으나, 제2 광학 렌즈(10)의 제2 접착면(14)에 형성될 수도 있을 것이다. 제10 실시예에서 설명한 바와 같이 제조 공정에서 갭 충전 물질(접착제)의 도포량이 과잉될 경우 광학 렌즈의 접합시 갭 충전 물질(접착제)이 바깥으로 누출되어, 광학 렌즈의 유효면을 오염시키거나 경통에 조립할 때 오차를 발생시키는 원인이 될 수 있는바, 본 실시예는 접합되는 광학 렌즈들의 접합면들 중 적어도 어느 한 접합면에 홈(17)을 형성함으로써 확보되는 공간에 누출되는 갭 충전 물질(접착제)이 수용될 수 있도록 한다.
본 실시예에서 제1 접합면(14)의 홈(17) 구성은 도 3 내지 도 18을 참조하여 설명된 실시예들의 접합 렌즈들에도 그대로 적용될 수 있음은 자명하게 이해될 수 있을 것이다.
도 25는 본 발명의 제13 실시예에 따른 접합 렌즈의 제1 렌즈를 개략적으로 보여주는 평면도이며, 도 26은 본 발명의 제13 실시예에 따른 접합 렌즈의 제1 배치를 갖는 경우를 도시하며, 도 27은 본 발명의 제13 실시예에 따른 접합 렌즈의 제2 배치를 갖는 경우를 도시한다.
도 25 내지 도 27을 참조하면, 본 실시예의 접합 렌즈는 제1 및 제2 광학 렌즈(10, 20)가 접합된 렌즈로서, 제1 렌즈(10)의 제1 접합면(14)이 2단으로 단차되어 있다는 점을 제외하고는 도 1 및 도 2를 참조하여 설명한 제1 실시예의 접합 렌즈와 동일하므로, 이러한 차이점을 중심으로 설명하기로 한다.
도 25에 도시된 바와 같이 제1 렌즈(10)의 제1 접합면(14)은 두께 방향으로 제1 단 및 제2 단의 2단으로 단차되다. 이에 따라, 제1 단의 단차에 맞는 외경을 갖는 제2-1 렌즈(20-1)는 제1 단에 끼인 상태로 접합되며, 제2 단의 단차에 맞는 외경을 갖는 제2-2 렌즈(20-2)는 제2 단에 끼인 상태로 접합된다. 제1 접합면(14)의 제1 단과 제2 단은 두께 방향으로 높이 차가 있으므로, 제1 렌즈(10)와 제2-1 렌즈(20-1) 사이의 거리(예시적으로 정점에서의 갭의 거리 d1)는 제1 렌즈(10)와 제2-2 렌즈(20-2) 사이의 거리(예시적으로 정점에서의 갭의 거리 d2)와 다르게 된다. 상기와 같이 제1 접합면(14)을 다단의 단차로 구성함으로써, 접합 렌즈를 구성하는 광학 렌즈들 사이의 거리를 용이하게 유지할 수 있다.
상기와 같은 접하면의 다단 단차는 간격을 조절하는 접착면의 형상의 일 예이며, 접합면의 형상은 그바껭 다양하게 변형될 수 있을 것이다.
도 28 내지 도 30은 본 발명의 일 실시예에 따른 접합 렌즈의 제조 방법을 도시한다.
도 28을 참조하면, 먼저 제1 렌즈(10)를 준비한다. 제1 렌즈(10)의 단부(13)에는 오목 단차의 제1 접합면(14)이 형성된다. 제1 렌즈(10)의 오목 단차쪽 유효면에 갭 충전 물질(49)을 도포한다. 전술한 바와 같이 갭 충전 물질(49)은 광학적인 접합 물질일 수 있다.
다음으로, 도 29에 도시되듯이 제2 렌즈(20)를 제1 렌즈(10)의 상부쪽에서부터 놓는다.
도 30에 도시되듯이, 제2 렌즈(20)가 제1 렌즈(10)에 접합하게 될 때, 제1 렌즈의 제1 접합면(14)과 제2 렌즈(20)의 제2 접하면(24)은 맞닿아 접합된다. 갭(40)에는 갭 충전 물질(49)이 채워져 있다. 갭 충전 물질(49)이 다소 과잉 도포되는 경우라도, 제1 접합면(14)의 오목 단차 구조에 의해 갭 충전 물질(49)이 넘치는 것을 방지할 수 있다. 나아가 전술한 실시예들에서처럼 모따기부(15)나, 홈(16, 17)과 같이 넘치는 갭 충전 물질(49)을 수용할 수 있는 공간을 별도로 확보할 수도 있을 것이다.
본 실시예에 따른 접합 렌즈의 제조 방법은 제조 공정중에 렌즈와 렌즈간의 광축과 거리를 정밀하게 할 수 있으므로, 제품상 성능 구현에도 유리하다.
또한, 본 실시예에 따른 접합 렌즈는 둘 이상의 렌즈가 접합되어 하나의 렌즈로 취급될 수 있으므로, 조립 공정에서 발생될 수 있는 광축의 어긋남 문제를 억제 또는 최소화할 수 있다.
본 개시에 따른 접합 렌즈는 둘 이상의 렌즈가 접합된 상태로 경통이나 렌즈 홀더에 고정되므로, 그 조립이 용이할 수 있으며, 정밀도를 놆게 할 수 있을 것이다.
도 31은 본 발명의 일 실시예에 따른 촬상 장치(100)를 채용한 모바일 기기(200)를 개략적으로 나타내는 사시도이다. 촬상 장치(100)는 접합 렌즈(110)를 포함하는 광학계와, 광학계에 의해 결상된 상(image)를 수광하여 전기적인 화상 신호로 변환하는 이미지 센서를 포함한다. 상기 접합 렌즈(110)로는 도 1 내지 도 30을 참조하여 설명한 접합 렌즈가 채용될 수 있다.
최근 휴대폰과 같은 모바일 기기(200)에 사용되는 카메라(촬상 장치)(100)는 초소형을 요구하면서도 DSLR 카메라 수준의 고성능을 요구하고 있는바, 비구면의 접합 렌즈(110)를 촬상 장치(100)에 적용함으로써 고성능을 유지하면서 초슬림의 모바일 기기(200)를 구현할 수 있다..
도 31은 촬상 장치가 스마트 폰과 같은 모바일 기기에 적용된 예를 도시하고 있으나, 이에 한정되는 것은 아니다. 예시적인 실시예에 따른 촬상 장치는 초소형 디지털 카메라, 자동차용 카메라 등의 촬상 장치일 수 있다. 예컨대, 블랙박스, AVM(around view monitoring) 시스템 또는 후방 카메라 등 다양한 차량용 장치에 본 발명의 실시예에 따른 접합 렌즈를 구비한 촬상장치가 사용될 수 있다. 또한, 접합 렌즈는 헤드업 디스플레이와 같은 가상 현실 장치, 증강 현실 장치 등에도 적용될 수 있다. 또한, 상기 접합 렌즈는 드론이나 레저 스포츠용 캠코더와 같은 다양한 액션캠(action cam)에 적용될 수 있다. 그 밖에도, 상기 접합 렌즈는 다양한 감시용 카메라에 적용될 수 있다.
또한, 상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 바람직한 실시예의 예시로서 해석되어야 한다. 예들 들어, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 실시예에 따른 접합 렌즈에서 렌즈들의 형상이 다소 변형되더라도 앞서 설명한 바와 같은 효과를 얻을 수 있음을 알 수 있을 것이다. 그 밖에도 다양한 변형예가 가능함을 알 수 있을 것이다. 때문에 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.

Claims (15)

  1. 적어도 2개의 광학 렌즈들이 접합된 접합 렌즈에 있어서,
    제1 유효면과, 상기 제1 유효면에 대향되는 제2 유효면과, 상기 제2 유효면의 외주로부터 연장된 제1 접착면을 갖는 제1 광학 렌즈; 및
    상기 제1 광학 렌즈와 접합되는 것으로서, 제3 유효면과, 상기 제3 유효면의 외주로부터 연장된 제2 접착면과, 상기 제3 유효면에 대향되는 제4 유효면을 갖는 제2 광학 렌즈;를 포함하며,
    상기 제1 광학 렌즈의 제2 유효면과 상기 제2 광학 렌즈의 제3 유효면 사이에는 갭이 형성되며,
    상기 제1 접착면과 상기 제2 접착면은 접착제에 의해 서로 접합되는 것을 특징으로 하는 접합 렌즈.
  2. 청구항 제1 항에 있어서,
    상기 제2 유효면과 상기 제3 유효면은 서로 다른 형상을 갖는 것을 특징으로 하는 접합 렌즈.
  3. 청구항 제1 항에 있어서,
    상기 제2 유효면 및 상기 제3 유효면 중 적어도 어느 한 유효면은 비구면인 것을 특징으로 하는 접합 렌즈.
  4. 청구항 제1 항에 있어서,
    상기 제2 유효면과 상기 제3 유효면은 평면인 것을 특징으로 하는 접합 렌즈.
  5. 청구항 제1 항에 있어서,
    상기 제1 접착면과 상기 제2 접착면 중 적어도 어느 한 접착면은 상기 광축에 가까운 쪽이 오목하게 단차된 오목 단차를 가지는 것을 특징으로 하는 접합 렌즈.
  6. 청구항 제1 항에 있어서,
    상기 제2 광학 렌즈와 접합되는 제3 광학 렌즈를 더 포함하며,
    상기 제2 광학 렌즈는 상기 제4 유효면의 외주로부터 연장된 제3 접착면을 포함하며,
    상기 제3 광학 렌즈는 제5 유효면과, 상기 제5 유효면의 외주로부터 연장된 제4 접착면과, 상기 제5 유효면에 대향되는 제6 유효면을 가지며,
    상기 제2 광학 렌즈의 제4 유효면과 상기 제3 광학 렌즈의 제5 유효면 사이에는 갭이 형성되며,
    상기 제3 접착면과 상기 제4 접착면은 접착제에 의해 서로 접합되는 것을 특징으로 하는 접합 렌즈.
  7. 청구항 제1 항에 있어서,
    상기 갭에는 갭 충전 물질로 채워진 것을 특징으로 하는 접합 렌즈.
  8. 청구항 제7 항에 있어서,
    상기 갭 충전 물질은 상기 접착제와 동일한 물질인 것을 특징으로 하는 접합 렌즈.
  9. 청구항 제1 항에 있어서,
    상기 제1 접착면 및 상기 제2 접착면 중 적어도 어느 한 접착면의 모서리는 모따기된 것을 특징으로 하는 접합 렌즈.
  10. 청구항 제1 항에 있어서,
    상기 제1 접착면 및 상기 제2 접착면 중 적어도 어느 한 접착면의 둘레를 따라 환형의 홈이 형성된 것을 특징으로 하는 접합 렌즈.
  11. 청구항 제1 항에 있어서,
    상기 제1 접착면 및 상기 제2 접착면 중 적어도 어느 한 접착면에는 두께 방향을 따라 길다란 홈이 형성된 것을 특징으로 하는 접합 렌즈.
  12. 청구항 제1 항에 있어서,
    상기 갭의 거리는 상기 제1 접착면 및 상기 제2 접착면 중 적어도 어느 한 접착면의 형상으로 간격을 조정되는 것을 특징으로 하는 접합 렌즈.
  13. 청구항 제12 항에 있어서,
    상기 제1 접착면 및 상기 제2 접착면 중 적어도 어느 한 접착면은 2개 이상의 단차 형상을 갖는 것을 특징으로 하는 접합 렌즈.
  14. 청구항 제1 항 내지 제13 항 중 어느 한 항에 기재된 접합 렌즈를 포함한 렌즈 광학계; 및
    상기 렌즈 광학계에 의해 결상된 상을 촬상하는 이미지 센서를 포함하는 촬상 장치.
  15. 본체; 및
    상기 본체에 내장되는 것으로서, 청구항 제14항의 촬상 장치;를 포함하는 모바일 기기.
PCT/KR2021/004001 2020-03-31 2021-03-31 접합 렌즈 및 이를 구비한 촬상 장치 WO2021201595A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0039437 2020-03-31
KR1020200039437A KR102250168B1 (ko) 2020-03-31 2020-03-31 접합 렌즈 및 이를 구비한 촬상 장치

Publications (1)

Publication Number Publication Date
WO2021201595A1 true WO2021201595A1 (ko) 2021-10-07

Family

ID=75914661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/004001 WO2021201595A1 (ko) 2020-03-31 2021-03-31 접합 렌즈 및 이를 구비한 촬상 장치

Country Status (2)

Country Link
KR (1) KR102250168B1 (ko)
WO (1) WO2021201595A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182090A (ja) * 2000-12-18 2002-06-26 Ricoh Co Ltd リブ一体型レンズ、これを用いた光学ユニット、画像読取装置および画像形成装置
KR20060097193A (ko) * 2005-03-04 2006-09-14 디엔제이 클럽 인코 카메라 모듈 및 그 제조 방법
KR20120065656A (ko) * 2010-12-13 2012-06-21 삼성전기주식회사 카메라 모듈
JP2017037155A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 接合レンズおよびカメラ
KR20180105696A (ko) * 2016-01-28 2018-09-28 닝보 써니 오포테크 코., 엘티디. 광학 렌즈 헤드, 촬상 모듈 및 이들의 조립 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182090A (ja) * 2000-12-18 2002-06-26 Ricoh Co Ltd リブ一体型レンズ、これを用いた光学ユニット、画像読取装置および画像形成装置
KR20060097193A (ko) * 2005-03-04 2006-09-14 디엔제이 클럽 인코 카메라 모듈 및 그 제조 방법
KR20120065656A (ko) * 2010-12-13 2012-06-21 삼성전기주식회사 카메라 모듈
JP2017037155A (ja) * 2015-08-07 2017-02-16 日立マクセル株式会社 接合レンズおよびカメラ
KR20180105696A (ko) * 2016-01-28 2018-09-28 닝보 써니 오포테크 코., 엘티디. 광학 렌즈 헤드, 촬상 모듈 및 이들의 조립 방법

Also Published As

Publication number Publication date
KR102250168B1 (ko) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2012169778A2 (en) Imaging lens and camera module
WO2014014222A1 (en) Camera module
WO2015005611A1 (en) Photographing lens and electronic apparatus including the same
WO2019146974A1 (ko) 카메라 모듈
WO2018056770A1 (ko) 카메라 렌즈 배럴, 카메라 모듈 및 광학 장치
WO2020122594A1 (ko) 렌즈 어셈블리 및 이를 포함하는 카메라 모듈
WO2022124850A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2018080100A1 (ko) 렌즈 광학계
WO2014142438A1 (en) Telephoto zoom lens system and electronic apparatus including the same
WO2017164605A1 (ko) 촬영 렌즈 광학계
WO2021006694A1 (ko) 광학기기
WO2016140526A1 (ko) 촬상 렌즈 및 이를 포함하는 카메라 모듈
WO2021201595A1 (ko) 접합 렌즈 및 이를 구비한 촬상 장치
WO2022035219A1 (ko) 광학계
WO2020251243A1 (ko) 쉐이퍼 유닛 및 흔들림 보정 장치
WO2021020760A1 (ko) 렌즈 광학계
WO2018080103A1 (ko) 렌즈 광학계
WO2020242039A1 (ko) 액체렌즈
WO2019146980A1 (ko) 액체 렌즈 모듈, 이를 포함하는 렌즈 어셈블리 및 이 어셈블리를 포함하는 카메라 모듈
WO2023003365A1 (ko) 광학계 및 이를 포함하는 광학 모듈 및 카메라 모듈
WO2022035134A1 (ko) 광학계
WO2022050723A1 (ko) 광학계 및 이를 포함하는 카메라 모듈
WO2017200306A1 (ko) 광각 렌즈계 및 이를 포함한 차량용 카메라
WO2021071320A1 (ko) 촬상 렌즈
WO2019225973A1 (ko) 액체 렌즈 및 이를 포함하는 렌즈 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780943

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21780943

Country of ref document: EP

Kind code of ref document: A1