WO2021201387A1 - Neural network-based battery capacity estimation method and device - Google Patents

Neural network-based battery capacity estimation method and device Download PDF

Info

Publication number
WO2021201387A1
WO2021201387A1 PCT/KR2021/000136 KR2021000136W WO2021201387A1 WO 2021201387 A1 WO2021201387 A1 WO 2021201387A1 KR 2021000136 W KR2021000136 W KR 2021000136W WO 2021201387 A1 WO2021201387 A1 WO 2021201387A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
neural network
battery
learning
voltage
Prior art date
Application number
PCT/KR2021/000136
Other languages
French (fr)
Korean (ko)
Inventor
정승호
정승현
김상우
박민준
Original Assignee
(주)아르고스다인
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아르고스다인, 포항공과대학교 산학협력단 filed Critical (주)아르고스다인
Publication of WO2021201387A1 publication Critical patent/WO2021201387A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a method for estimating battery capacity, and more particularly, to a method and apparatus for estimating battery capacity based on a neural network.
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, so charging and discharging are free, Due to its advantages such as a very low self-discharge rate and high energy density, it is receiving a lot of attention.
  • lithium ions start to accumulate on the surface of the positive electrode or negative electrode, not between the layered structures. Due to this, the capacity of the battery is gradually reduced, and in the worst case, the separator that prevents the short circuit of the battery is pierced, which may also cause a problem in the stability of the battery.
  • the learning-based capacity estimation algorithm using machine learning includes a “CV (Constant Voltage) charging-based battery capacity estimation algorithm” and “CC (Constant Current) charging-based battery capacity estimation algorithm”.
  • CV Constant Voltage
  • CC Constant Current
  • the CV charging-based battery capacity estimation algorithm requires full charging to measure the characteristics displayed in the charging period.
  • the method cannot be used because the charging section characteristic cannot be constantly measured due to the cell balancing function.
  • the CC charging-based battery capacity estimation algorithm estimates the battery capacity by using the characteristics that exist in the low SOC (State of Charge) section, in order to use the algorithm, the battery is used up to the low SOC section just before charging. need to discharge. As such, since the CC charging-based battery capacity estimation algorithm discharges the battery to a low SOC section just before charging, the lifespan of the entire battery is reduced, and there is a problem that it takes a long time.
  • SOC State of Charge
  • Patent Document 1 Domestic Patent Publication No. 10-2018-0121317
  • Patent Document 2 Domestic Registered Patent No. 10-2032229
  • the present specification has been devised to solve the above problems, and in CC charging, a method and apparatus for estimating battery capacity based on a neural network capable of estimating the capacity of a battery only with data from an arbitrary charging start time to the charging end Its purpose is to provide
  • Another object of the present invention is to provide a method and apparatus for estimating battery capacity based on a neural network capable of estimating battery capacity without having to discharge to a low SOC section just before charging.
  • the neural network learning method is a method for learning a neural network in a computing device for constant current charging-based battery capacity estimation, any collecting the remaining capacity of the battery from the start of charging of the to the time when the maximum voltage is reached during charging; and learning the neural network by inputting the collected residual capacity into the neural network.
  • the neural network is implemented through a multi-layer perceptron or a fully connected layer.
  • the neural network learning method is a method for learning a neural network in a computing device for estimating battery capacity based on constant current charging, during charging from an arbitrary charging start time. collecting the charging voltage up to the point in time when the maximum voltage is reached; and learning the neural network by inputting a charging time, a collected charging voltage, and a battery remaining capacity at the arbitrary charging start time to the neural network.
  • the voltage curve of the charging section is divided by N (N is a natural number) at equal intervals to collect the charging voltage for each section.
  • the method further comprises the step of assigning a preset weight for each type of battery to the neural network.
  • the neural network is implemented through a multi-layer perceptron or a fully connected layer.
  • the neural network learning apparatus includes a memory for storing one or more instructions: and by executing the stored one or more instructions, from any charging start time to the maximum during charging. It includes one or more processors that collect the charging voltage until the voltage is reached, and configure a neural network for estimating the capacity of the battery by receiving the charging time, the collected charging voltage, and the remaining capacity of the battery at any charging start time. .
  • the one or more processors divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals, and collect the charging voltage for each section.
  • the one or more processors assign a preset weight to the neural network for each battery type.
  • the neural network is implemented through a multi-layer perceptron or a fully connected layer.
  • the neural network-based battery capacity estimation for estimating the battery capacity by inputting and learning the remaining capacity of the battery collected from the start of any charging to the time when the maximum voltage is reached during charging into the neural network.
  • the data server 130 replaces the remaining capacity when the maximum voltage is reached during charging and uses the charging time, the charging voltage, and the remaining capacity at the charging start time as a feature point for learning.
  • FIG. 1 is a block diagram showing a schematic configuration of a battery capacity estimation system according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a voltage curve and a dV/dQ curve
  • FIG. 3 is a block diagram showing an example of hardware capable of realizing the function of the battery capacity estimation device according to the embodiment of the present invention
  • FIG. 4 is a block diagram showing an example of a function of the battery capacity estimation device according to the embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a first embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a second embodiment of the present invention
  • FIG. 8 is a diagram for explaining the structure and implementation of a multi-perceptron.
  • first, second, etc. used herein may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • SOC is an abbreviation for State of Charge, which indicates the state of charge of the battery, and can be expressed by Equation 1 below.
  • Q remaining represents the remaining capacity of the battery
  • Q max represents the capacity of the battery in a fully charged state
  • SOC init and SOC cctocv indicate a charging state at a specific point in the charging process. That is, SOC init indicates the remaining capacity at the start of charging, and SOC cctocv indicates the remaining capacity at the time when the maximum voltage is reached during charging.
  • FIG. 1 is a block diagram showing a schematic configuration of a battery capacity estimation system according to an embodiment of the present invention.
  • the battery capacity estimation system may include a battery charging device 110 , an AP 120 , and a data server 130 .
  • the battery charging device 110 and the data server 130 may be implemented as one device.
  • the battery charging device 110 is a device for charging a battery using a constant current (hereinafter, referred to as 'CC').
  • the battery charging device 110 does not separately discharge the battery, and charges the battery regardless of the current SOC of the battery.
  • the battery charging device 110 collects data such as the charging voltage (V cc ) and the remaining capacity of the battery from an arbitrary charging start time to a time when the maximum voltage is reached during charging, and collects the collected data.
  • the data is transmitted to the battery capacity estimating device, that is, the data server 130 via the AP 120 .
  • the battery charging device 110 may divide the voltage curve of the charging section into N equal intervals (here, N is a natural number) and collect V cc for each section.
  • the data server 130 estimates the capacity of the battery by analyzing the remaining capacity of the battery collected by the battery charging device 110 through artificial intelligence (AI).
  • AI artificial intelligence
  • Equation 2 the capacity of the battery may be expressed by Equation 2 below.
  • I cc represents the charging current and t cc represents the charging time.
  • the data server 130 estimates the capacity of the battery by comparing I cc ⁇ t cc and SOC cctocv - SOC init .
  • the data server 130 may be implemented as a neural network composed of one or more computers, and may estimate the capacity of the battery by inputting the collected data into the neural network.
  • the data server 130 inputs and learns the remaining capacity of the battery collected from the start of any charging to the time when the maximum voltage is reached during charging into the neural network to learn the battery until the low SOC section just before charging.
  • the capacity of the battery can be estimated without the need to discharge the battery.
  • FIG. 2(a) shows a voltage curve
  • FIG. 2(b) shows a dV/dQ curve.
  • FIG. 2 it can be seen that nonlinear features 210 according to SOC are observed in the voltage curve and the dV/dQ curve.
  • Reference numeral 220 of the dV/dQ curve denotes distortion generated during the filtering process, and is not a nonlinear feature point.
  • the data server 130 can replace SOC cctocv and use t cc , V cc , and SOC init as key points for learning. That is, the data server 130 may estimate the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network and learning. In addition, the data server 130, when the battery charging device 110 divides the voltage curve of the charging section into N equal intervals, for each section collected by the battery charging device 110 together with t cc and SOC init . By inputting V cc to the neural network and learning it, the capacity of the battery can be estimated.
  • the data server 130 may estimate the capacity of the battery through machine learning using a multi-layer perceptron algorithm, which is a kind of artificial neural network.
  • An artificial neural network is an algorithm that models the regularity between input data and output data through learning using a given training dataset as an input.
  • the artificial neural network that has completed the learning process may predict the output data with respect to the untrained input data through regularity modeled through the training data set.
  • the algorithm proposed in this embodiment is an algorithm for estimating the capacity of a battery with input data measured during charging in a real situation by using an artificial neural network trained with a learning data set constructed through a prior experiment.
  • the data server 130 can find regularity through learning only with information present in V cc , t cc , and SOC int , and estimate the battery capacity (C max ).
  • the data server 130 divides the charging period into N (eg, 100) equal parts to input V cc to find regularity by sufficiently reflecting information present in the voltage curve.
  • N eg, 100
  • V cc is less or more than 100 equal parts.
  • the data server 130 replaces SOC cctocv and uses t cc , V cc , and SOC init as key points for learning. Therefore, it is possible to exclude the change of the SOC cctocv point.
  • the data server 130 considers changes in characteristics such as the shape of the charging voltage or the charging voltage curve according to the series/parallel connection type of the battery pack or the internal chemical composition of individual batteries, and sets a weight preset for each type of battery in the neural network. may be given.
  • 3 is a block diagram showing an example of hardware capable of realizing the function of the battery capacity estimation device according to the embodiment of the present invention.
  • the function of the battery capacity estimating device 130 can be realized using, for example, the hardware resources shown in FIG. 3 . That is, the function of the battery capacity estimation device 130 is realized by controlling the hardware shown in FIG. 3 using a computer program.
  • this hardware mainly includes a CPU 302 , a Read Only Memory (ROM) 304 , a RAM 306 , a host bus 308 , and a bridge 310 .
  • the hardware includes an external bus 312 , an interface 314 , an input unit 316 , an output unit 318 , a storage unit 320 , a drive 322 , a connection port 324 , and a communication unit 326 .
  • the CPU 302 functions, for example, as an arithmetic processing unit or a control unit, based on various programs recorded in the ROM 304 , the RAM 306 , the storage unit 320 , or the removable recording medium 328 . Controls all or part of the operation of each component.
  • the ROM 304 is an example of a storage device that stores a program read by the CPU 302, data used for calculation, and the like.
  • the RAM 306 for example, a program read by the CPU 302, various parameters that change when the program is executed, and the like are temporarily or permanently stored.
  • a host bus 308 capable of high-speed data transfer.
  • the host bus 308 is connected to an external bus 312 having a relatively low data transfer rate, for example, via a bridge 310 .
  • the input unit 316 for example, a mouse, a keyboard, a touch panel, a touch pad, a button, a switch, a lever, and the like are used.
  • a remote controller capable of transmitting a control signal using infrared or other radio waves may be used.
  • a display device such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), or an electro-luminescence display (ELD) may be used.
  • an audio output device such as a speaker or headphones, or a printer may be used.
  • the storage unit 320 is a device for storing various data.
  • a magnetic storage device such as an HDD is used.
  • a semiconductor storage device such as an SSD (Solid State Drive) or a RAM disk, an optical storage device, a magneto-optical storage device, or the like may be used.
  • the drive 322 is a device that reads information recorded on the removable recording medium 328 which is a removable recording medium or writes information into the removable recording medium 328 .
  • the removable recording medium 328 for example, a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is used. Also, in the removable recording medium 328 , a program for regulating the operation of the battery capacity estimating apparatus 130 may be stored.
  • Connection port 324 is, for example, a USB (Universal Serial Bus) port, IEEE 1394 port, SCSI (Small Computer System Interface), RS-232C port, or an optical audio terminal, such as an external connection device 330 for connecting it's a port
  • a printer or the like is used as the externally connected device 330.
  • the communication unit 326 is a communication device for connecting to the network 332 .
  • a communication circuit for wired or wireless LAN for example, a communication circuit for WUSB (Wireless USB), a communication circuit for a cellular phone network, or the like can be used.
  • the network 332 is, for example, a network connected by wire or wireless.
  • the hardware of the battery capacity estimation apparatus 130 has been described above.
  • the above-mentioned hardware is an example, and a deformation
  • FIG. 4 is a block diagram showing an example of a function of the battery capacity estimation device according to the embodiment of the present invention.
  • the battery capacity estimation device 130 may include a storage unit 232 , a battery data collection unit 234 , and a battery capacity estimation unit 236 .
  • storage part 232 is implement
  • the function of the battery data collection unit 234 can be realized by using the above-described communication unit 326 or the like.
  • the function of the battery capacity estimation unit 236 can be realized using the above-described CPU 302 or the like.
  • the storage unit 232 stores data including the charging voltage and the remaining capacity of the battery.
  • the battery data collection unit 234 collects data such as the charge voltage and the remaining capacity of the battery from an arbitrary charging start time to the time when the maximum voltage is reached during charging while charging the battery and stores the data in the storage unit 232 . .
  • the battery data collection unit 234 may divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals to collect V cc for each section.
  • the battery capacity estimating unit 236 estimates the battery capacity by inputting and learning the remaining capacity of the battery collected from an arbitrary charging start time to a time when the maximum voltage is reached during charging into the neural network.
  • the battery capacity estimator 236 may replace SOC cctocv and use t cc , V cc , and SOC init as key points for learning. That is, the battery capacity estimator 236 may estimate the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network and learning. At this time, the battery capacity estimating unit 236 is collected by the battery data collection unit 234 together with t cc and SOC init when the battery data collection unit 234 divides the voltage curve of the charging section into N equal intervals. The capacity of the battery can be estimated by inputting V cc for each section to the neural network and learning it.
  • the battery capacity estimator 236 may give the neural network a preset weight for each battery type.
  • FIG. 5 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to the first embodiment of the present invention.
  • the battery capacity estimating apparatus 130 collects the remaining capacity of the battery from an arbitrary charging start time to a time when the maximum voltage is reached during charging ( S510 ).
  • the battery capacity estimating apparatus 130 estimates the battery capacity by inputting the collected residual capacity of the battery from the start of any charging to the time when the maximum voltage is reached during charging into the neural network and learning ( S520 ). In this case, the battery capacity estimating apparatus 130 may give the neural network a preset weight for each battery type.
  • FIG. 6 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a second embodiment of the present invention.
  • the battery capacity estimating device 130 collects a charging voltage (V cc ) from an arbitrary charging start time to a time point reaching the maximum voltage during charging ( S610 ).
  • the battery capacity estimating apparatus 130 may divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals to collect V cc for each section.
  • the battery capacity estimating apparatus 130 estimates the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network to learn ( S620 ). At this time, when the voltage curve of the charging section is divided into N equal intervals, the battery capacity estimating device 130 inputs V cc for each section collected together with t cc and SOC init to the neural network and learns, thereby the capacity of the battery can be estimated. Also, the battery capacity estimating apparatus 130 may give the neural network a preset weight for each battery type.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers and microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers
  • the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code may be stored in the memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may transmit and receive data to and from the processor by various known means.
  • the artificial neural network may be configured by stacking several layers, such as a fully connected layer, a convolution layer, and a dense layer.
  • each layer has several nodes therein, and is divided according to an input/output configuration method between nodes (inputs) of the previous layer and nodes (outputs) in each layer.
  • the fully connected layer mainly used in this embodiment may be represented by the structure shown in FIG. 7 .
  • reference numeral 710 denotes a node
  • reference numeral 720 denotes a previous layer
  • reference numeral 730 denotes a current layer. That is, as shown in FIG. 7 , a layer in which all possible connections exist between nodes of the previous layer 720 and nodes of the current layer 730 is referred to as a fully connected layer.
  • the artificial neural network is limited to being implemented through multiple perceptrons or fully connected layers, but is not limited thereto, and may be implemented through structures other than multiple perceptrons or fully connected layers.
  • FIG. 8 is a diagram for explaining the structure and implementation of a multi-perceptron.
  • one node 810 calculates the nodes and weights of the previous layer as a weighted sum and then applies a kind of threshold value. Outputs the result value as 1, otherwise 0.
  • the process (or function) for applying the threshold value is called an activation function.
  • a neuron does not immediately emit an output when receiving an input, but emits an output only when the input is accumulated and grows to a certain level. This function is called an activation function.
  • a bias b indicating a direct bias may be added to the activation function.
  • One node 810 may be expressed by Equation 3 below.
  • one layer 820 may include n nodes of an input layer and m nodes of a hidden layer.
  • one layer 820 may be expressed by Equation 4 below.
  • multiple perceptrons may be composed of an input layer, a plurality of hidden layers, and an output layer.
  • the remaining capacity of the battery can be estimated only from data from an arbitrary charging start time to the charging end. Specifically, when the learning method of the present invention is utilized, the remaining battery capacity can be estimated at a faster rate than in the prior art.
  • the computing device for estimating the battery capacity based on constant current charging using the learning method of the present invention can be utilized in portable electronic products such as laptops, video cameras, and portable phones, thereby contributing to battery life management and prevention of accidents due to battery short. have.

Abstract

The present invention relates to a neural network-based battery capacity estimation method and device, and provides a method for training a neural network in a computing device for constant-current charge-based battery capacity estimation, the method comprising the steps of: collecting the remaining capacities of a battery from an arbitrary charge starting point to a point when a maximum voltage is reached during charging; and inputting the collected remaining capacities to the neural network to train the neural network.

Description

신경망 기반의 배터리 용량 추정 방법 및 장치Method and apparatus for estimating battery capacity based on neural network
본 발명은 배터리 용량 추정 방법에 관한 것으로, 더욱 상세하게는 신경망 기반의 배터리 용량 추정 방법 및 장치에 관한 것이다.The present invention relates to a method for estimating battery capacity, and more particularly, to a method and apparatus for estimating battery capacity based on a neural network.
근래에 들어서, 노트북, 비디오카메라, 및 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 및 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.In recent years, as the demand for portable electronic products such as notebook computers, video cameras, and portable telephones has rapidly increased, and energy storage batteries, robots, and satellites have been developed in earnest, high-performance secondary rechargeable batteries that can be repeatedly charged and discharged Batteries are being actively researched.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 및 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높다는 등의 장점으로 인해 많은 각광을 받고 있다.Currently commercialized batteries include nickel-cadmium batteries, nickel-hydrogen batteries, nickel-zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, so charging and discharging are free, Due to its advantages such as a very low self-discharge rate and high energy density, it is receiving a lot of attention.
그런데 리튬 이차 전지는 배터리의 특성상 충방전을 반복하면 리튬이온들이 층상구조 사이가 아닌 양극이나 음극의 표면에 쌓이기 시작한다. 이로 인해, 점차적으로 배터리 용량이 감소하게 되고, 최악의 경우 배터리 쇼트를 막아주는 분리막이 뚫려 배터리의 안정성에도 문제를 일으킬 수 있다.However, in a lithium secondary battery, when charging and discharging are repeated due to the characteristics of the battery, lithium ions start to accumulate on the surface of the positive electrode or negative electrode, not between the layered structures. Due to this, the capacity of the battery is gradually reduced, and in the worst case, the separator that prevents the short circuit of the battery is pierced, which may also cause a problem in the stability of the battery.
이처럼 변화되는 배터리 용량을 측정하기 위해 장비를 이용하여 배터리를 서서히 방전시키면서 총 전하량을 계산하는 방법이 있다. 이 방법은 가장 정확한 방법이지만 시간이 오래 걸리고 별도의 장비가 필요하다.In order to measure the changed battery capacity, there is a method of calculating the total amount of charge while gradually discharging the battery using equipment. Although this method is the most accurate, it is time consuming and requires additional equipment.
또한, 배터리의 수학적 모델링을 통해 추정하는 방법도 있으나, 배터리의 비선형성이 높아 수학적 모델링이 쉽지 않으며, 배터리 특성이 변경될 때마다 매번 수학적 모델을 산출하여야 한다.In addition, there is a method of estimating through mathematical modeling of the battery, but mathematical modeling is not easy due to the high nonlinearity of the battery, and the mathematical model must be calculated every time the battery characteristics are changed.
한편, 머신 러닝을 이용한 학습 기반 용량 추정 알고리즘에는 "CV(Constant Voltage) 충전 기반의 배터리 용량 추정 알고리즘"과 "CC(Constant Current) 충전 기반의 배터리 용량 추정 알고리즘"이 있다. 하지만, 각각의 알고리즘은 아래 설명하는 바와 같이 실제 현장에서 사용시 어려움이 있다.On the other hand, the learning-based capacity estimation algorithm using machine learning includes a “CV (Constant Voltage) charging-based battery capacity estimation algorithm” and “CC (Constant Current) charging-based battery capacity estimation algorithm”. However, each algorithm has difficulties when used in the actual field as described below.
즉, CV 충전 기반의 배터리 용량 추정 알고리즘은 충전 구간에서 나타내는 특징을 측정하기 위해 완전 충전이 필요하다. 또한, 직렬로 연결된 배터리 팩에 셀 밸런싱(Cell Balancing) 기능이 동작할 경우, 셀 밸런싱 기능으로 인해 충전 구간 특징을 일정하게 측정할 수 없기 때문에, 해당 방법은 사용 불가능하다.That is, the CV charging-based battery capacity estimation algorithm requires full charging to measure the characteristics displayed in the charging period. In addition, when the cell balancing function operates on the battery packs connected in series, the method cannot be used because the charging section characteristic cannot be constantly measured due to the cell balancing function.
또한, CC 충전 기반의 배터리 용량 추정 알고리즘은 낮은 SOC(State of Charge, 충전 상태) 구간에 존재하는 특징을 이용하여 배터리 용량을 추정하기 때문에, 해당 알고리즘을 사용하기 위해 충전 직전 낮은 SOC 구간까지 배터리를 방전할 필요가 있다. 이처럼, CC 충전 기반의 배터리 용량 추정 알고리즘은 충전 직전 낮은 SOC 구간까지 배터리를 방전하기 때문에, 전체 배터리의 수명이 줄어들게 되고, 오랜 시간이 소요되는 문제점이 있었다.In addition, since the CC charging-based battery capacity estimation algorithm estimates the battery capacity by using the characteristics that exist in the low SOC (State of Charge) section, in order to use the algorithm, the battery is used up to the low SOC section just before charging. need to discharge. As such, since the CC charging-based battery capacity estimation algorithm discharges the battery to a low SOC section just before charging, the lifespan of the entire battery is reduced, and there is a problem that it takes a long time.
[선행기술문헌][Prior art literature]
(특허문헌 1) 국내특허공개공보 제10-2018-0121317호(Patent Document 1) Domestic Patent Publication No. 10-2018-0121317
(특허문헌 2) 국내등록특허 제10-2032229호(Patent Document 2) Domestic Registered Patent No. 10-2032229
본 명세서는 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, CC 충전에 있어서, 임의의 충전 시작 시점에서 충전 종료까지의 데이터만으로 배터리의 용량을 추정할 수 있는 신경망 기반의 배터리 용량 추정 방법 및 장치를 제공하는 데 그 목적이 있다.The present specification has been devised to solve the above problems, and in CC charging, a method and apparatus for estimating battery capacity based on a neural network capable of estimating the capacity of a battery only with data from an arbitrary charging start time to the charging end Its purpose is to provide
또한, 본 발명의 다른 목적은 충전 직전 낮은 SOC 구간까지 방전할 필요없이 배터리 용량을 추정할 수 있는 신경망 기반의 배터리 용량 추정 방법 및 장치를 제공한다.Another object of the present invention is to provide a method and apparatus for estimating battery capacity based on a neural network capable of estimating battery capacity without having to discharge to a low SOC section just before charging.
이와 같은 목적을 달성하기 위한, 본 명세서의 실시예에 따르면, 본 명세서에 따른 신경망 학습 방법은, 정전류 충전 기반의 배터리 용량 추정을 위한 컴퓨팅 장치에서 신경망(neural network)을 학습하는 방법에 있어서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 배터리의 잔여 용량을 수집하는 단계; 및 상기 신경망에 수집된 잔여 용량을 입력하여 상기 신경망을 학습하는 단계를 포함한다.According to an embodiment of the present specification, for achieving this object, the neural network learning method according to the present specification is a method for learning a neural network in a computing device for constant current charging-based battery capacity estimation, any collecting the remaining capacity of the battery from the start of charging of the to the time when the maximum voltage is reached during charging; and learning the neural network by inputting the collected residual capacity into the neural network.
바람직하게는, 상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 한다.Preferably, the neural network is implemented through a multi-layer perceptron or a fully connected layer.
본 명세서의 다른 실시예에 따르면, 본 명세서에 따른 신경망 학습 방법은, 정전류 충전 기반의 배터리 용량 추정을 위한 컴퓨팅 장치에서 신경망(neural network)을 학습하는 방법에 있어서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압을 수집하는 단계; 상기 신경망에 충전시간, 수집된 충전 전압, 및 상기 임의의 충전 시작 시점의 배터리 잔여 용량을 입력하여 상기 신경망을 학습하는 단계를 포함한다.According to another embodiment of the present specification, the neural network learning method according to the present specification is a method for learning a neural network in a computing device for estimating battery capacity based on constant current charging, during charging from an arbitrary charging start time. collecting the charging voltage up to the point in time when the maximum voltage is reached; and learning the neural network by inputting a charging time, a collected charging voltage, and a battery remaining capacity at the arbitrary charging start time to the neural network.
바람직하게는, 상기 충전 전압을 수집하는 단계에서, 충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 충전 전압을 수집하는 것을 특징으로 한다.Preferably, in the collecting of the charging voltage, the voltage curve of the charging section is divided by N (N is a natural number) at equal intervals to collect the charging voltage for each section.
바람직하게는, 상기 신경망에 배터리 종류별로 미리 설정된 가중치를 부여하는 단계를 더 포함하는 것을 특징으로 한다.Preferably, the method further comprises the step of assigning a preset weight for each type of battery to the neural network.
바람직하게는, 상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 한다.Preferably, the neural network is implemented through a multi-layer perceptron or a fully connected layer.
본 명세서의 또 다른 실시예에 따르면, 본 명세서에 따른 신경망 학습 장치는, 하나 이상의 인스트럭션들(instructions)을 저장하는 메모리: 및 상기 저장된 하나 이상의 인스트럭션들을 실행함으로써, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압을 수집하고, 충전시간, 수집된 충전 전압, 및 임의의 충전 시작 시점의 배터리 잔여 용량을 입력받아 배터리의 용량을 추정하는 신경망을 구성하는 하나 이상의 프로세서를 포함한다.According to another embodiment of the present specification, the neural network learning apparatus according to the present specification includes a memory for storing one or more instructions: and by executing the stored one or more instructions, from any charging start time to the maximum during charging. It includes one or more processors that collect the charging voltage until the voltage is reached, and configure a neural network for estimating the capacity of the battery by receiving the charging time, the collected charging voltage, and the remaining capacity of the battery at any charging start time. .
바람직하게는, 상기 하나 이상의 프로세서는 충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 충전 전압을 수집하는 것을 특징으로 한다.Preferably, the one or more processors divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals, and collect the charging voltage for each section.
바람직하게는, 상기 하나 이상의 프로세서는 상기 신경망에 배터리 종류별로 미리 설정된 가중치를 부여하는 것을 특징으로 한다.Preferably, the one or more processors assign a preset weight to the neural network for each battery type.
바람직하게는, 상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 한다.Preferably, the neural network is implemented through a multi-layer perceptron or a fully connected layer.
이상에서 설명한 바와 같이 본 명세서에 의하면, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지 수집된 배터리의 잔여 용량을 신경망에 입력하여 학습시킴으로써, 배터리 용량을 추정하는 신경망 기반의 배터리 용량 추정 방법 및 장치를 제공함으로써, 충전 직전 낮은 SOC 구간까지 배터리를 방전할 필요없이 배터리 용량을 추정할 수 있다.As described above, according to the present specification, the neural network-based battery capacity estimation for estimating the battery capacity by inputting and learning the remaining capacity of the battery collected from the start of any charging to the time when the maximum voltage is reached during charging into the neural network. By providing the method and apparatus, it is possible to estimate the battery capacity without the need to discharge the battery to a low SOC section just before charging.
또한, 본 발명에 따른 데이터 서버(130)는 충전 중 최대 전압에 도달한 시점의 잔여 용량을 대체하여 충전 시간, 충전 전압, 및 충전 시작 시점의 잔여 용량을 학습을 위한 특징점으로 사용하는 신경망 기반의 배터리 용량 추정 방법 및 장치를 제공함으로써, 배터리 용량을 추정함에 있어, 배터리 노화에 따른 내부 저항 증가로 인해 충전 중 최대 전압에 도달한 시점의 잔여 용량 지점이 변화되는 것을 배제시킬 수 있다.In addition, the data server 130 according to the present invention replaces the remaining capacity when the maximum voltage is reached during charging and uses the charging time, the charging voltage, and the remaining capacity at the charging start time as a feature point for learning. By providing a method and apparatus for estimating a battery capacity, it is possible to exclude a change in a point of a residual capacity at a point in time when a maximum voltage is reached during charging due to an increase in internal resistance due to aging of the battery in estimating the battery capacity.
도 1은 본 발명의 실시예에 따른 배터리 용량 추정 시스템의 개략적인 구성을 나타낸 블럭 구성도,1 is a block diagram showing a schematic configuration of a battery capacity estimation system according to an embodiment of the present invention;
도 2는 전압 곡선 및 dV/dQ 곡선을 나타낸 도면,2 is a diagram showing a voltage curve and a dV/dQ curve;
도 3은, 본 발명의 실시 형태에 관한 배터리 용량 추정 장치의 기능을 실현 가능한 하드웨어의 일례를 도시한 블록도,3 is a block diagram showing an example of hardware capable of realizing the function of the battery capacity estimation device according to the embodiment of the present invention;
도 4는, 본 발명의 실시 형태에 관한 배터리 용량 추정 장치가 갖는 기능의 일례를 도시한 블록도,4 is a block diagram showing an example of a function of the battery capacity estimation device according to the embodiment of the present invention;
도 5는 본 발명의 제1 실시예에 따른 신경망 기반의 배터리 용량 추정 방법을 나타낸 흐름도,5 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a first embodiment of the present invention;
도 6은 본 발명의 제2 실시예에 따른 신경망 기반의 배터리 용량 추정 방법을 나타낸 흐름도,6 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a second embodiment of the present invention;
도 7은 완전 연결 계층의 구현예를 보여주는 도면, 및7 is a diagram showing an implementation of a fully connected layer, and
도 8은 다중 퍼셉트론의 구조와 구현을 설명하기 위한 도면이다.8 is a diagram for explaining the structure and implementation of a multi-perceptron.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It should be noted that the technical terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in this specification should be interpreted in the meaning generally understood by those of ordinary skill in the art to which the present invention belongs, unless otherwise defined in this specification, and excessively inclusive. It should not be construed in the meaning of a human being or in an excessively reduced meaning. In addition, when the technical terms used in the present specification are incorrect technical terms that do not accurately express the spirit of the present invention, they should be understood by being replaced with technical terms that can be correctly understood by those skilled in the art. In addition, general terms used in the present invention should be interpreted as defined in advance or according to the context before and after, and should not be interpreted in an excessively reduced meaning.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, as used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various components or various steps described in the specification, some of which components or some steps are It should be construed that it may not include, or may further include additional components or steps.
또한, 본 명세서에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.In addition, the suffixes "module" and "part" for the components used in this specification are given or mixed in consideration of the ease of writing the specification, and do not have distinct meanings or roles by themselves.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는 데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.Also, terms including an ordinal number such as first, second, etc. used herein may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
본 발명의 실시예에서 SOC는 State of Charge의 약자로서 배터리의 충전 상태를 나타내며, 다음의 수학식 1에 의해 표현될 수 있다.In an embodiment of the present invention, SOC is an abbreviation for State of Charge, which indicates the state of charge of the battery, and can be expressed by Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2021000136-appb-I000001
Figure PCTKR2021000136-appb-I000001
여기서, Qremaining은 배터리의 잔여 용량을 나타내고, Qmax는 완전 충전 상태의 배터리의 용량을 나타낸다.Here, Q remaining represents the remaining capacity of the battery, and Q max represents the capacity of the battery in a fully charged state.
한편, 본 발명의 실시예에서 SOCinit와 SOCcctocv는 충전 과정에서 특정 지점의 충전 상태를 나타낸다. 즉, SOCinit는 충전 시작 시점의 잔여 용량을 나타내고, SOCcctocv는 충전 중 최대 전압에 도달한 시점의 잔여 용량을 나타낸다.Meanwhile, in the embodiment of the present invention, SOC init and SOC cctocv indicate a charging state at a specific point in the charging process. That is, SOC init indicates the remaining capacity at the start of charging, and SOC cctocv indicates the remaining capacity at the time when the maximum voltage is reached during charging.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, a preferred embodiment according to the present invention will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same reference numerals regardless of reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다.In addition, in the description of the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easy understanding of the spirit of the present invention, and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 본 발명의 실시예에 따른 배터리 용량 추정 시스템의 개략적인 구성을 나타낸 블럭 구성도이다.1 is a block diagram showing a schematic configuration of a battery capacity estimation system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명에 따른 배터리 용량 추정 시스템은 배터리 충전 장치(110), AP(120), 및 데이터 서버(130)를 포함할 수 있다. 여기서, 배터리 충전 장치(110)와 데이터 서버(130)는 하나의 장치로 구현될 수 있다.Referring to FIG. 1 , the battery capacity estimation system according to the present invention may include a battery charging device 110 , an AP 120 , and a data server 130 . Here, the battery charging device 110 and the data server 130 may be implemented as one device.
배터리 충전 장치(110)는 정전류(Constant Current, 이하, 'CC'라 칭함)를 이용하여 배터리를 충전하는 장치이다.The battery charging device 110 is a device for charging a battery using a constant current (hereinafter, referred to as 'CC').
본 발명에 따른 배터리 충전 장치(110)는 배터리에 대하여 따로 방전을 행하지 않고, 배터리의 현재 SOC에 상관없이 배터리를 충전한다. 또한, 배터리 충전 장치(110)는 배터리를 충전하면서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압(Vcc) 및 배터리의 잔여 용량 등의 데이터를 수집하고, 수집된 데이터를 AP(120)를 경유하여 배터리 용량 추정 장치, 즉, 데이터 서버(130)로 전송한다. 이때, 배터리 충전 장치(110)는 충전 구간의 전압 곡선을 등간격으로 N(여기서, N은 자연수)등분하여, 각 구간별 Vcc를 수집할 수 있다.The battery charging device 110 according to the present invention does not separately discharge the battery, and charges the battery regardless of the current SOC of the battery. In addition, while charging the battery, the battery charging device 110 collects data such as the charging voltage (V cc ) and the remaining capacity of the battery from an arbitrary charging start time to a time when the maximum voltage is reached during charging, and collects the collected data. The data is transmitted to the battery capacity estimating device, that is, the data server 130 via the AP 120 . In this case, the battery charging device 110 may divide the voltage curve of the charging section into N equal intervals (here, N is a natural number) and collect V cc for each section.
데이터 서버(130)는 인공 지능(AI: Artificial Intelligence)을 통해 배터리 충전 장치(110)에 의해 수집된 배터리의 잔여 용량을 분석하여 배터리의 용량을 추정한다.The data server 130 estimates the capacity of the battery by analyzing the remaining capacity of the battery collected by the battery charging device 110 through artificial intelligence (AI).
한편, 배터리의 용량은 다음의 수학식 2에 의해 표현될 수 있다.Meanwhile, the capacity of the battery may be expressed by Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2021000136-appb-I000002
Figure PCTKR2021000136-appb-I000002
여기서, Icc는 충전 전류를 나타내고, tcc는 충전 시간을 나타낸다.Here, I cc represents the charging current and t cc represents the charging time.
즉, 본 발명에 따른 데이터 서버(130)는 Icc×tcc와 SOCcctocv - SOCinit을 비교하여 배터리의 용량을 추정한다. 이를 위해, 데이터 서버(130)는 하나 이상의 컴퓨터로 구성되는 신경망으로 구현될 수 있고, 수집된 데이터를 신경망에 입력하여 배터리의 용량을 추정할 수 있다.That is, the data server 130 according to the present invention estimates the capacity of the battery by comparing I cc × t cc and SOC cctocv - SOC init . To this end, the data server 130 may be implemented as a neural network composed of one or more computers, and may estimate the capacity of the battery by inputting the collected data into the neural network.
구체적으로는, 본 발명에 따른 데이터 서버(130)는 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지 수집된 배터리의 잔여 용량을 신경망에 입력하여 학습시킴으로써, 충전 직전 낮은 SOC 구간까지 배터리를 방전할 필요없이 배터리 용량을 추정할 수 있다.Specifically, the data server 130 according to the present invention inputs and learns the remaining capacity of the battery collected from the start of any charging to the time when the maximum voltage is reached during charging into the neural network to learn the battery until the low SOC section just before charging. The capacity of the battery can be estimated without the need to discharge the battery.
한편, 리튬-이온 배터리의 비선형 특징이 전압 곡선에 표현되어, SOCcctocv를 대체 가능하다. 즉, 도 2의 (a)는 전압 곡선을 나타내고, 도 2의 (b)는 dV/dQ 곡선을 나타낸다. 도 2에 도시된 바와 같이, 전압 곡선 및 dV/dQ 곡선에서 SOC에 따른 비선형 특징들(210)이 관찰되는 것을 알 수 있다. dV/dQ 곡선의 도면부호 220은 필터링 과정에서 발생한 왜곡이며, 비선형 특징점이 아니다.On the other hand, the non-linear characteristics of the lithium-ion battery are expressed in the voltage curve, and it is possible to replace the SOC cctocv. That is, FIG. 2(a) shows a voltage curve, and FIG. 2(b) shows a dV/dQ curve. As shown in FIG. 2 , it can be seen that nonlinear features 210 according to SOC are observed in the voltage curve and the dV/dQ curve. Reference numeral 220 of the dV/dQ curve denotes distortion generated during the filtering process, and is not a nonlinear feature point.
따라서, 본 발명에 따른 데이터 서버(130)는 SOCcctocv를 대체하여 tcc, Vcc, 및 SOCinit을 학습을 위한 특징점으로 사용할 수 있다. 즉, 데이터 서버(130)는 tcc, Vcc, 및 SOCinit을 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정할 수 있다. 또한, 데이터 서버(130)는, 배터리 충전 장치(110)가 충전 구간의 전압 곡선을 등간격으로 N등분한 경우, tcc 및 SOCinit과 함께 배터리 충전 장치(110)에 의해 수집된 각 구간별 Vcc를 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정할 수 있다.Therefore, the data server 130 according to the present invention can replace SOC cctocv and use t cc , V cc , and SOC init as key points for learning. That is, the data server 130 may estimate the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network and learning. In addition, the data server 130, when the battery charging device 110 divides the voltage curve of the charging section into N equal intervals, for each section collected by the battery charging device 110 together with t cc and SOC init . By inputting V cc to the neural network and learning it, the capacity of the battery can be estimated.
이를 위해, 데이터 서버(130)는 인공 신경망의 일종인 다중 퍼셉트론(Multi-layer Perceptron) 알고리즘을 사용하여, 기계 학습을 통해 배터리의 용량을 추정할 수 있다.To this end, the data server 130 may estimate the capacity of the battery through machine learning using a multi-layer perceptron algorithm, which is a kind of artificial neural network.
인공 신경망은 주어진 학습 데이터 집합(training dataset)을 입력으로 하여 학습을 통해, 입력 데이터와 출력 데이터 사이의 규칙성을 모델링하는 알고리즘이다. 학습 과정이 완료된 인공 신경망은 학습 데이터 집합을 통해 모델링된 규칙성을 통해, 학습되지 않은 입력 데이터에 대해 출력 데이터를 예측할 수 있다.An artificial neural network is an algorithm that models the regularity between input data and output data through learning using a given training dataset as an input. The artificial neural network that has completed the learning process may predict the output data with respect to the untrained input data through regularity modeled through the training data set.
본 실시예에서 제안된 알고리즘에서는 사전 실험을 통해 구성된 학습 데이터 집합으로 학습된 인공 신경망을 이용하여, 실제 상황에서 충전 중에 측정되는 입력 데이터로 배터리의 용량을 추정하는 알고리즘이다.The algorithm proposed in this embodiment is an algorithm for estimating the capacity of a battery with input data measured during charging in a real situation by using an artificial neural network trained with a learning data set constructed through a prior experiment.
딥 러닝(Deep learning) 기술의 발달로 인해 가공되지 않은 입력으로부터 간단하게 표현되지 않는 복잡한 규칙성을 모델링할 수 있게 되었다. 본 실시예의 해당 알고리즘에서도 전압 곡선에서 쉽게 보이지 않는 규칙성까지 모델링할 수 있게 되었다. 이를 이용하여, 본 발명에 따른 데이터 서버(130)는 Vcc, tcc, SOCint에 존재하는 정보만으로 학습을 통해 규칙성을 찾아내고, 배터리 용량(Cmax)을 추정할 수 있다.With the development of deep learning technology, it has become possible to model complex regularities that are not simply expressed from raw inputs. Even in the corresponding algorithm of this embodiment, it became possible to model even the regularity that is not easily seen in the voltage curve. Using this, the data server 130 according to the present invention can find regularity through learning only with information present in V cc , t cc , and SOC int , and estimate the battery capacity (C max ).
본 발명의 실시예에 따른 데이터 서버(130)가 충전 구간을 N(예를 들면, 100)등분하여 Vcc를 입력하는 것은, 전압 곡선에서 존재하는 정보를 충분히 반영하여 규칙성을 찾기 위함이다. 물론, 전압 곡선에 존재하는 정보를 잘 표현할 수 있다면, Vcc를 100등분보다 더 적거나 많게 하여 입력하여도 상관 없다.The data server 130 according to an embodiment of the present invention divides the charging period into N (eg, 100) equal parts to input V cc to find regularity by sufficiently reflecting information present in the voltage curve. Of course, as long as the information present in the voltage curve can be expressed well, it does not matter if V cc is less or more than 100 equal parts.
이처럼, 본 발명에 따른 데이터 서버(130)는 SOCcctocv를 대체하여 tcc, Vcc, 및 SOCinit을 학습을 위한 특징점으로 사용함으로써, 배터리 용량을 추정함에 있어, 배터리 노화에 따른 내부 저항 증가로 인해 SOCcctocv 지점이 변화되는 것을 배제시킬 수 있다.As such, the data server 130 according to the present invention replaces SOC cctocv and uses t cc , V cc , and SOC init as key points for learning. Therefore, it is possible to exclude the change of the SOC cctocv point.
또한, 데이터 서버(130)는 배터리 팩의 직렬/병렬 연결 형태 또는 개별 배터리 내부 화학적 구성에 따라 충전 전압이나 충전 전압 곡선의 형태 등의 특성이 변화하는 것을 고려하여, 신경망에 배터리 종류별로 미리 설정된 가중치를 부여할 수도 있다.In addition, the data server 130 considers changes in characteristics such as the shape of the charging voltage or the charging voltage curve according to the series/parallel connection type of the battery pack or the internal chemical composition of individual batteries, and sets a weight preset for each type of battery in the neural network. may be given.
[부호의 설명][Explanation of code]
232: 기억부 234: 배터리 데이터 수집부232: storage unit 234: battery data collection unit
236: 배터리 용량 추정부236: battery capacity estimation unit
이하에서는, 본 발명의 실시예에 관한 배터리 용량 추정 장치(130)에 대해서 자세히 설명하기로 한다.Hereinafter, the battery capacity estimation apparatus 130 according to an embodiment of the present invention will be described in detail.
도 3을 참조하면, 배터리 용량 추정 장치(130)의 기능을 실현 가능한 하드웨어에 대해서 설명한다. 도 3은, 본 발명의 실시 형태에 관한 배터리 용량 추정 장치의 기능을 실현 가능한 하드웨어의 일례를 도시한 블록도이다.Referring to FIG. 3 , hardware capable of realizing the function of the battery capacity estimation apparatus 130 will be described. 3 is a block diagram showing an example of hardware capable of realizing the function of the battery capacity estimation device according to the embodiment of the present invention.
배터리 용량 추정 장치(130)가 갖는 기능은, 예컨대, 도 3에 도시하는 하드웨어 자원을 이용하여 실현하는 것이 가능하다. 즉, 배터리 용량 추정 장치(130)가 갖는 기능은, 컴퓨터 프로그램을 이용하여 도 3에 도시하는 하드웨어를 제어함으로써 실현된다.The function of the battery capacity estimating device 130 can be realized using, for example, the hardware resources shown in FIG. 3 . That is, the function of the battery capacity estimation device 130 is realized by controlling the hardware shown in FIG. 3 using a computer program.
도 3에 도시한 바와 같이, 이 하드웨어는, 주로, CPU(302), ROM(Read Only Memory)(304), RAM(306), 호스트 버스(308), 및 브리지(310)를 갖는다. 또한, 이 하드웨어는, 외부 버스(312), 인터페이스(314), 입력부(316), 출력부(318), 기억부(320), 드라이브(322), 접속 포트(324), 및 통신부(326)를 갖는다.As shown in FIG. 3 , this hardware mainly includes a CPU 302 , a Read Only Memory (ROM) 304 , a RAM 306 , a host bus 308 , and a bridge 310 . In addition, the hardware includes an external bus 312 , an interface 314 , an input unit 316 , an output unit 318 , a storage unit 320 , a drive 322 , a connection port 324 , and a communication unit 326 . has
CPU(302)는, 예컨대, 연산 처리 장치 또는 제어 장치로서 기능하여, ROM(304), RAM(306), 기억부(320), 또는 리무버블 기록 매체(328)에 기록된 각종 프로그램에 기초하여 각 구성 요소의 동작 전반 또는 그 일부를 제어한다. ROM(304)은, CPU(302)에 판독되는 프로그램이나 연산에 이용하는 데이터 등을 저장하는 기억 장치의 일례이다. RAM(306)에는, 예컨대, CPU(302)에 판독되는 프로그램이나, 그 프로그램을 실행할 때 변화하는 각종 파라미터 등이 일시적 또는 영속적으로 저장된다.The CPU 302 functions, for example, as an arithmetic processing unit or a control unit, based on various programs recorded in the ROM 304 , the RAM 306 , the storage unit 320 , or the removable recording medium 328 . Controls all or part of the operation of each component. The ROM 304 is an example of a storage device that stores a program read by the CPU 302, data used for calculation, and the like. In the RAM 306, for example, a program read by the CPU 302, various parameters that change when the program is executed, and the like are temporarily or permanently stored.
이들 요소는, 예컨대, 고속의 데이터 전송이 가능한 호스트 버스(308)를 통해서 서로 접속된다. 한편, 호스트 버스(308)는, 예컨대, 브리지(310)를 통해서 비교적 데이터 전송 속도가 저속인 외부 버스(312)에 접속된다. 또한, 입력부(316)로서는, 예컨대, 마우스, 키보드, 터치 패널, 터치 패드, 버튼, 스위치, 및 레버 등이 이용된다. 또한, 입력부(316)로서는, 적외선이나 그 밖의 전파를 이용하여 제어 신호를 송신하는 것이 가능한 리모트 컨트롤러가 이용될 수 있다.These elements are connected to each other via, for example, a host bus 308 capable of high-speed data transfer. On the other hand, the host bus 308 is connected to an external bus 312 having a relatively low data transfer rate, for example, via a bridge 310 . As the input unit 316, for example, a mouse, a keyboard, a touch panel, a touch pad, a button, a switch, a lever, and the like are used. Further, as the input unit 316, a remote controller capable of transmitting a control signal using infrared or other radio waves may be used.
출력부(318)로서는, 예컨대, CRT(Cathode Ray Tube), LCD(Liquid Crystal Display), PDP(Plasma Display Panel), 또는 ELD(Electro-Luminescence Display) 등의 디스플레이 장치가 이용될 수 있다. 또한, 출력부(318)로서, 스피커나 헤드폰 등의 오디오 출력 장치, 또는 프린터 등이 이용될 수 있다.As the output unit 318 , for example, a display device such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), or an electro-luminescence display (ELD) may be used. In addition, as the output unit 318, an audio output device such as a speaker or headphones, or a printer may be used.
기억부(320)는, 각종 데이터를 저장하기 위한 장치이다. 기억부(320)로서는, 예컨대, HDD 등의 자기 기억 디바이스가 이용된다. 또한, 기억부(320)로서, SSD(Solid State Drive)나 RAM 디스크 등의 반도체 기억 디바이스, 광기억 디바이스, 또는 광자기 기억 디바이스 등이 이용되어도 된다.The storage unit 320 is a device for storing various data. As the storage unit 320, for example, a magnetic storage device such as an HDD is used. Further, as the storage unit 320, a semiconductor storage device such as an SSD (Solid State Drive) or a RAM disk, an optical storage device, a magneto-optical storage device, or the like may be used.
드라이브(322)는, 착탈 가능한 기록매체인 리무버블 기록 매체(328)에 기록된 정보를 판독하거나, 또는 리무버블 기록 매체(328)에 정보를 기록하는 장치이다. 리무버블 기록 매체(328)로서는, 예컨대, 자기 디스크, 광디스크, 광자기 디스크, 또는 반도체 메모리 등이 이용된다. 또한, 리무버블 기록 매체(328)에는, 배터리 용량 추정 장치(130)의 동작을 규정하는 프로그램이 저장될 수 있다.The drive 322 is a device that reads information recorded on the removable recording medium 328 which is a removable recording medium or writes information into the removable recording medium 328 . As the removable recording medium 328, for example, a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is used. Also, in the removable recording medium 328 , a program for regulating the operation of the battery capacity estimating apparatus 130 may be stored.
접속 포트(324)는, 예컨대, USB(Universal Serial Bus) 포트, IEEE 1394 포트, SCSI(Small Computer System Interface), RS-232C 포트, 또는 광오디오 단자 등, 외부 접속 기기(330)를 접속하기 위한 포트이다. 외부 접속 기기(330)로서는, 예컨대, 프린터 등이 이용된다. Connection port 324 is, for example, a USB (Universal Serial Bus) port, IEEE 1394 port, SCSI (Small Computer System Interface), RS-232C port, or an optical audio terminal, such as an external connection device 330 for connecting it's a port As the externally connected device 330, for example, a printer or the like is used.
통신부(326)는, 네트워크(332)에 접속하기 위한 통신 디바이스이다. 통신부(326)로서는, 예컨대, 유선 또는 무선 LAN용 통신 회로, WUSB(Wireless USB)용 통신 회로, 휴대 전화 네트워크용 통신 회로 등이 이용될 수 있다. 네트워크(332)는, 예컨대, 유선 또는 무선에 의해 접속된 네트워크이다.The communication unit 326 is a communication device for connecting to the network 332 . As the communication unit 326, for example, a communication circuit for wired or wireless LAN, a communication circuit for WUSB (Wireless USB), a communication circuit for a cellular phone network, or the like can be used. The network 332 is, for example, a network connected by wire or wireless.
이상, 배터리 용량 추정 장치(130)의 하드웨어에 대해서 설명하였다. 또한, 상술한 하드웨어는 일례이며, 일부의 요소를 생략하는 변형이나, 새로운 요소를 추가하는 변형 등이 가능하다.The hardware of the battery capacity estimation apparatus 130 has been described above. In addition, the above-mentioned hardware is an example, and a deformation|transformation which omits some elements, a deformation|transformation which adds new elements, etc. are possible.
이어서, 도 4를 참조하면서, 배터리 용량 추정 장치(130)의 기능에 대해서 설명한다. 도 4는, 본 발명의 실시 형태에 관한 배터리 용량 추정 장치가 갖는 기능의 일례를 도시한 블록도이다.Next, the function of the battery capacity estimation apparatus 130 will be described with reference to FIG. 4 . 4 is a block diagram showing an example of a function of the battery capacity estimation device according to the embodiment of the present invention.
도 4에 도시한 바와 같이, 배터리 용량 추정 장치(130)는, 기억부(232), 배터리 데이터 수집부(234), 및 배터리 용량 추정부(236)를 포함할 수 있다.As shown in FIG. 4 , the battery capacity estimation device 130 may include a storage unit 232 , a battery data collection unit 234 , and a battery capacity estimation unit 236 .
또한, 기억부(232)의 기능은, 상술한 RAM(306)이나 기억부(320) 등을 이용하여 실현된다. 배터리 데이터 수집부(234)의 기능은, 상술한 통신부(326) 등을 이용하여 실현할 수 있다. 배터리 용량 추정부(236)의 기능은, 상술한 CPU(302) 등을 이용하여 실현할 수 있다.In addition, the function of the memory|storage part 232 is implement|achieved using the RAM 306, the memory|storage part 320, etc. which were mentioned above. The function of the battery data collection unit 234 can be realized by using the above-described communication unit 326 or the like. The function of the battery capacity estimation unit 236 can be realized using the above-described CPU 302 or the like.
기억부(232)는 충전 전압 및 배터리의 잔여 용량 등을 포함하는 데이터를 저장한다.The storage unit 232 stores data including the charging voltage and the remaining capacity of the battery.
배터리 데이터 수집부(234)는 배터리를 충전하면서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압 및 배터리의 잔여 용량 등의 데이터를 수집하여 기억부(232)에 저장한다. 이때, 배터리 데이터 수집부(234)는 충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 Vcc를 수집할 수 있다.The battery data collection unit 234 collects data such as the charge voltage and the remaining capacity of the battery from an arbitrary charging start time to the time when the maximum voltage is reached during charging while charging the battery and stores the data in the storage unit 232 . . In this case, the battery data collection unit 234 may divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals to collect V cc for each section.
배터리 용량 추정부(236)는 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지 수집된 배터리의 잔여 용량을 신경망에 입력하여 학습시킴으로써, 배터리 용량을 추정한다.The battery capacity estimating unit 236 estimates the battery capacity by inputting and learning the remaining capacity of the battery collected from an arbitrary charging start time to a time when the maximum voltage is reached during charging into the neural network.
또한, 배터리 용량 추정부(236)는 SOCcctocv를 대체하여 tcc, Vcc, 및 SOCinit을 학습을 위한 특징점으로 사용할 수 있다. 즉, 배터리 용량 추정부(236)는 tcc, Vcc, 및 SOCinit을 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정할 수 있다. 이때, 배터리 용량 추정부(236)는, 배터리 데이터 수집부(234)가 충전 구간의 전압 곡선을 등간격으로 N등분한 경우, tcc 및 SOCinit과 함께 배터리 데이터 수집부(234)에 의해 수집된 각 구간별 Vcc를 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정할 수 있다.In addition, the battery capacity estimator 236 may replace SOC cctocv and use t cc , V cc , and SOC init as key points for learning. That is, the battery capacity estimator 236 may estimate the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network and learning. At this time, the battery capacity estimating unit 236 is collected by the battery data collection unit 234 together with t cc and SOC init when the battery data collection unit 234 divides the voltage curve of the charging section into N equal intervals. The capacity of the battery can be estimated by inputting V cc for each section to the neural network and learning it.
추가로, 배터리 용량 추정부(236)는 신경망에 배터리 종류별로 미리 설정된 가중치를 부여할 수도 있다.Additionally, the battery capacity estimator 236 may give the neural network a preset weight for each battery type.
도 5는 본 발명의 제1 실시예에 따른 신경망 기반의 배터리 용량 추정 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to the first embodiment of the present invention.
도 5를 참조하면, 배터리 용량 추정 장치(130)는 배터리를 충전하면서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 배터리의 잔여 용량을 수집한다(S510).Referring to FIG. 5 , while charging the battery, the battery capacity estimating apparatus 130 collects the remaining capacity of the battery from an arbitrary charging start time to a time when the maximum voltage is reached during charging ( S510 ).
배터리 용량 추정 장치(130)는 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지 수집된 배터리의 잔여 용량을 신경망에 입력하여 학습시킴으로써, 배터리 용량을 추정한다(S520). 이때, 배터리 용량 추정 장치(130)는 신경망에 배터리 종류별로 미리 설정된 가중치를 부여할 수도 있다.The battery capacity estimating apparatus 130 estimates the battery capacity by inputting the collected residual capacity of the battery from the start of any charging to the time when the maximum voltage is reached during charging into the neural network and learning ( S520 ). In this case, the battery capacity estimating apparatus 130 may give the neural network a preset weight for each battery type.
도 6은 본 발명의 제2 실시예에 따른 신경망 기반의 배터리 용량 추정 방법을 나타낸 흐름도이다.6 is a flowchart illustrating a method for estimating battery capacity based on a neural network according to a second embodiment of the present invention.
도 6을 참조하면, 배터리 용량 추정 장치(130)는 배터리를 충전하면서, 임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압(Vcc)을 수집한다(S610). 이때, 배터리 용량 추정 장치(130)는 충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 Vcc를 수집할 수 있다.Referring to FIG. 6 , while charging the battery, the battery capacity estimating device 130 collects a charging voltage (V cc ) from an arbitrary charging start time to a time point reaching the maximum voltage during charging ( S610 ). In this case, the battery capacity estimating apparatus 130 may divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals to collect V cc for each section.
배터리 용량 추정 장치(130)는 tcc, Vcc, 및 SOCinit을 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정한다(S620). 이때, 배터리 용량 추정 장치(130)는, 충전 구간의 전압 곡선을 등간격으로 N등분한 경우, tcc 및 SOCinit과 함께 수집된 각 구간별 Vcc를 신경망에 입력하여 학습시킴으로써, 배터리의 용량을 추정할 수 있다. 또한, 배터리 용량 추정 장치(130)는 신경망에 배터리 종류별로 미리 설정된 가중치를 부여할 수도 있다.The battery capacity estimating apparatus 130 estimates the capacity of the battery by inputting t cc , V cc , and SOC init to the neural network to learn ( S620 ). At this time, when the voltage curve of the charging section is divided into N equal intervals, the battery capacity estimating device 130 inputs V cc for each section collected together with t cc and SOC init to the neural network and learns, thereby the capacity of the battery can be estimated. Also, the battery capacity estimating apparatus 130 may give the neural network a preset weight for each battery type.
전술한 방법은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(Firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.The above-described method may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로컨트롤러 및 마이크로프로세서 등에 의해 구현될 수 있다.In the case of implementation by hardware, the method according to embodiments of the present invention may include one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), and Programmable Logic Devices (PLDs). , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers and microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. The software code may be stored in the memory unit and driven by the processor. The memory unit may be located inside or outside the processor, and may transmit and receive data to and from the processor by various known means.
한편, 인공 신경망은 완전 연결 계층(Fully Connected Layer), 합성곱 계층(Convolution Layer), 및 밀집 계층(Dense Layer) 등 여러 계층을 쌓아 구성될 수 있다. 이때, 각각의 계층은 그 내부에 여러 노드(node)들을 가지며, 이전 계층의 노드들(입력들)과 각 계층 내 노드들(출력들)과의 입출력 구성 방법에 따라 구분된다.Meanwhile, the artificial neural network may be configured by stacking several layers, such as a fully connected layer, a convolution layer, and a dense layer. At this time, each layer has several nodes therein, and is divided according to an input/output configuration method between nodes (inputs) of the previous layer and nodes (outputs) in each layer.
본 실시예에서 주로 사용된 완전 연결 계층은 도 7과 같은 구조로 표현될 수 있다.The fully connected layer mainly used in this embodiment may be represented by the structure shown in FIG. 7 .
도 7을 참조하면, 도면부호 710은 노드를 나타내고, 도면부호 720은 이전 계층을 나타내며, 도면부호 730은 현재 계층을 나타낸다. 즉, 도 7에 도시된 바와 같이, 이전 계층(720)의 노드들과 현재 계층(730)의 노드들 사이에 가능한 모든 연결이 존재하는 계층을 완전 연결 계층이라고 한다.Referring to FIG. 7 , reference numeral 710 denotes a node, reference numeral 720 denotes a previous layer, and reference numeral 730 denotes a current layer. That is, as shown in FIG. 7 , a layer in which all possible connections exist between nodes of the previous layer 720 and nodes of the current layer 730 is referred to as a fully connected layer.
한편, 본 발명의 실시예에서는 인공 신경망이 다중 퍼셉트론 또는 완전 연결 계층을 통해 구현되는 것으로 한정하고 있으나, 이에 한정되는 것은 아니며, 다중 퍼셉트론이나 완전 연결 계층 외 다른 구조를 통해서도 구현될 수 있다.Meanwhile, in the embodiment of the present invention, the artificial neural network is limited to being implemented through multiple perceptrons or fully connected layers, but is not limited thereto, and may be implemented through structures other than multiple perceptrons or fully connected layers.
도 8은 다중 퍼셉트론의 구조와 구현을 설명하기 위한 도면이다.8 is a diagram for explaining the structure and implementation of a multi-perceptron.
도 8을 참조하면, 다중 퍼셉트론에서 한 개의 노드(810)는 이전 계층의 노드와 가중치들을 가중합(Weighted sum)으로 계산한 후, 일종의 임계값을 적용해서 가중합의 결과가 임계값을 넘는 경우에는 1로, 그렇지 않은 경우에는 0으로 결과값을 출력한다. 여기서, 임계값을 적용하는 처리(또는 함수)를 활성화 함수(activation function)라고 부른다. 과학자들에 의하면, 뉴런(Neuron)은 입력을 받았을 때 바로 출력을 내보내는 것이 아니라, 입력이 누적되어서 어떤 수준 이상으로 커진 경우에만 출력을 내보내게 되는데, 이런 기능을 바로 활성화 함수라고 한다. 또한, 활성화 함수에는 바로 편향을 나타내는 bias b가 더해질 수 있다.Referring to FIG. 8 , in the multi-perceptron, one node 810 calculates the nodes and weights of the previous layer as a weighted sum and then applies a kind of threshold value. Outputs the result value as 1, otherwise 0. Here, the process (or function) for applying the threshold value is called an activation function. According to scientists, a neuron does not immediately emit an output when receiving an input, but emits an output only when the input is accumulated and grows to a certain level. This function is called an activation function. Also, a bias b indicating a direct bias may be added to the activation function.
한 개의 노드(810)는 다음과 같은 수학식 3에 의해 표현될 수 있다.One node 810 may be expressed by Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2021000136-appb-I000003
Figure PCTKR2021000136-appb-I000003
또한, 한 개의 계층(820)은 입력 계층의 n개의 노드와 히든 계층(Hidden Layer)의 m개의 노드로 구성될 수 있다.Also, one layer 820 may include n nodes of an input layer and m nodes of a hidden layer.
즉, 한 개의 계층(820)은 다음과 같은 수학식 4에 의해 표현될 수 있다.That is, one layer 820 may be expressed by Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2021000136-appb-I000004
Figure PCTKR2021000136-appb-I000004
결과적으로, 다중 퍼셉트론은 입력 계층, 복수의 히든 계층, 및 출력 계층으로 구성될 수 있다.Consequently, multiple perceptrons may be composed of an input layer, a plurality of hidden layers, and an output layer.
이상에서 본 명세서에 개시된 실시예들을 첨부된 도면들을 참조로 설명하였다. 이와 같이 각 도면에 도시된 실시예들은 한정적으로 해석되면 아니되며, 본 명세서의 내용을 숙지한 당업자에 의해 서로 조합될 수 있고, 조합될 경우 일부 구성 요소들은 생략될 수도 있는 것으로 해석될 수 있다.The embodiments disclosed herein have been described above with reference to the accompanying drawings. As such, the embodiments shown in each drawing should not be construed as being limited, and may be combined with each other by those skilled in the art having read the contents of the present specification, and when combined, it may be construed that some components may be omitted.
여기서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 명세서에 개시된 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Here, the terms or words used in the present specification and claims should not be construed as being limited to conventional or dictionary meanings, but should be interpreted as meanings and concepts consistent with the technical idea disclosed in the present specification.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 명세서에 개시된 실시예에 불과할 뿐이고, 본 명세서에 개시된 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the present specification and the configurations shown in the drawings are only the embodiments disclosed in the present specification, and do not represent all the technical ideas disclosed in the present specification, so various equivalents that can replace them at the time of the present application It should be understood that there may be water and variations.
본 발명의 학습 방법을 적용하는 경우, 임의의 충전 시작 시점에서 충전 종료까지의 데이터만으로 베터리의 잔여 용량을 추정할 수 있다. 구체적으로, 본 발명의 학습 방법을 활용하는 경우, 종래 기술보다 빠른 속도로 베터리 잔여 용량을 추정할 수 있다.When the learning method of the present invention is applied, the remaining capacity of the battery can be estimated only from data from an arbitrary charging start time to the charging end. Specifically, when the learning method of the present invention is utilized, the remaining battery capacity can be estimated at a faster rate than in the prior art.
또한, 본 발명의 학습 방법을 사용한 정전류 충전 기반의 베터리 용량 추정을 위한 컴퓨팅 장치는 노트북, 비디오카메라, 및 휴대용 전화기 등과 같은 휴대용 전자 제품에 활용되어 베터리 수명 관리와 베터리 쇼트로 인한 사고 방지에 기여할 수 있다.In addition, the computing device for estimating the battery capacity based on constant current charging using the learning method of the present invention can be utilized in portable electronic products such as laptops, video cameras, and portable phones, thereby contributing to battery life management and prevention of accidents due to battery short. have.

Claims (10)

  1. 정전류 충전 기반의 배터리 용량 추정을 위한 컴퓨팅 장치에서 신경망(neural network)을 학습하는 방법에 있어서,In a method for learning a neural network in a computing device for estimating battery capacity based on constant current charging,
    임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 배터리의 잔여 용량을 수집하는 단계; 및collecting the remaining capacity of the battery from the start of any charging to the time when the maximum voltage is reached during charging; and
    상기 신경망에 수집된 잔여 용량을 입력하여 상기 신경망을 학습하는 단계;learning the neural network by inputting the collected residual capacity into the neural network;
    를 포함하는 신경망 학습 방법.A neural network learning method comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 하는 신경망 학습 방법.The neural network learning method, characterized in that implemented through a multi-layer perceptron (Multi-layer Perceptron) or a fully connected layer (Fully Connected Layer).
  3. 정전류 충전 기반의 배터리 용량 추정을 위한 컴퓨팅 장치에서 신경망(neural network)을 학습하는 방법에 있어서,In a method for learning a neural network in a computing device for estimating battery capacity based on constant current charging,
    임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압을 수집하는 단계; 및collecting the charging voltage from the start of any charging to the time when the maximum voltage is reached during charging; and
    상기 신경망에 충전시간, 수집된 충전 전압, 및 상기 임의의 충전 시작 시점의 배터리 잔여 용량을 입력하여 상기 신경망을 학습하는 단계;learning the neural network by inputting a charging time, a collected charging voltage, and a battery remaining capacity at the arbitrary charging start time to the neural network;
    를 포함하는 신경망 학습 방법.A neural network learning method comprising a.
  4. 제3항에 있어서, 상기 충전 전압을 수집하는 단계에서,4. The method of claim 3, wherein in the collecting the charging voltage,
    충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 충전 전압을 수집하는 것을 특징으로 하는 신경망 학습 방법.A neural network learning method, characterized in that by dividing the voltage curve of the charging section into equal intervals by N (N is a natural number), and collecting the charging voltage for each section.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 신경망에 배터리 종류별로 미리 설정된 가중치를 부여하는 단계;assigning a preset weight to the neural network for each battery type;
    를 더 포함하는 것을 특징으로 하는 신경망 학습 방법.Neural network learning method, characterized in that it further comprises.
  6. 제3항에 있어서,4. The method of claim 3,
    상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 하는 신경망 학습 방법.The neural network learning method, characterized in that implemented through a multi-layer perceptron (Multi-layer Perceptron) or a fully connected layer (Fully Connected Layer).
  7. 하나 이상의 인스트럭션들(instructions)을 저장하는 메모리: 및a memory storing one or more instructions; and
    상기 저장된 하나 이상의 인스트럭션들을 실행함으로써,By executing the stored one or more instructions,
    임의의 충전 시작 시점부터 충전 중 최대 전압에 도달한 시점까지의 충전 전압을 수집하고, 충전시간, 수집된 충전 전압, 및 임의의 충전 시작 시점의 배터리 잔여 용량을 입력받아 배터리의 용량을 추정하는 신경망을 구성하는 하나 이상의 프로세서;A neural network that collects the charging voltage from the start of any charging to the time when the maximum voltage is reached during charging, and estimates the capacity of the battery by receiving the charging time, the collected charging voltage, and the remaining capacity of the battery at any charging start time. One or more processors constituting the;
    를 포함하는 신경망 학습 장치.A neural network learning device comprising a.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 하나 이상의 프로세서는 충전 구간의 전압 곡선을 등간격으로 N(N은 자연수)등분하여, 각 구간별 충전 전압을 수집하는 것을 특징으로 하는 신경망 학습 장치.The one or more processors divide the voltage curve of the charging section into N equal parts (N is a natural number) at equal intervals, and collect the charging voltage for each section.
  9. 제7항에 있어서,8. The method of claim 7,
    상기 하나 이상의 프로세서는 상기 신경망에 배터리 종류별로 미리 설정된 가중치를 부여하는 것을 특징으로 하는 신경망 학습 장치.The one or more processors are configured to assign a preset weight to the neural network for each battery type.
  10. 제7항에 있어서,8. The method of claim 7,
    상기 신경망은 다중 퍼셉트론(Multi-layer Perceptron) 또는 완전 연결 계층(Fully Connected Layer)을 통해 구현되는 것을 특징으로 하는 신경망 학습 장치.The neural network learning apparatus, characterized in that implemented through a multi-layer perceptron (Multi-layer Perceptron) or a fully connected layer (Fully Connected Layer).
PCT/KR2021/000136 2020-03-30 2021-01-06 Neural network-based battery capacity estimation method and device WO2021201387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200038007A KR102387780B1 (en) 2020-03-30 2020-03-30 Method and apparatus for estimating battery capacity based on neural network
KR10-2020-0038007 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021201387A1 true WO2021201387A1 (en) 2021-10-07

Family

ID=77929616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000136 WO2021201387A1 (en) 2020-03-30 2021-01-06 Neural network-based battery capacity estimation method and device

Country Status (2)

Country Link
KR (1) KR102387780B1 (en)
WO (1) WO2021201387A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740739A (en) * 2021-07-22 2021-12-03 西安交通大学 Method for predicting residual life of vehicle-mounted starting maintenance-free lead-acid storage battery
CN114280491A (en) * 2021-12-23 2022-04-05 中山大学 Retired battery residual capacity estimation method based on active learning

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230118235A (en) * 2022-02-04 2023-08-11 한양대학교 산학협력단 Battery soc estimation mathod and device based on meta-learning
KR20240030459A (en) * 2022-08-30 2024-03-07 주식회사 엘지에너지솔루션 Apparatus for predicting condition of battery and operating method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546989A (en) * 2005-06-13 2008-12-25 エルジー・ケム・リミテッド Apparatus and method for estimating remaining battery capacity
JP2019023853A (en) * 2017-05-03 2019-02-14 株式会社半導体エネルギー研究所 Neural network, power storage system, vehicle, and electronic apparatus
KR101965832B1 (en) * 2017-11-27 2019-04-05 (주) 페스코 Battery SOC estimation system and battery SOC estimation method using the same
WO2019087018A1 (en) * 2017-11-02 2019-05-09 株式会社半導体エネルギー研究所 Capacity estimation method and capacity estimation system for power storage device
CN110045292A (en) * 2019-05-07 2019-07-23 东莞理工学院 Lithium ion battery SOC prediction technique based on big data and bp neural network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715372A (en) * 1995-01-10 1998-02-03 Lucent Technologies Inc. Method and apparatus for characterizing an input signal
JP4609883B2 (en) 2005-02-16 2011-01-12 株式会社デンソー Fully charged capacity calculation device for power storage device for vehicle
CN102074757B (en) * 2010-12-24 2013-02-13 惠州市亿能电子有限公司 Method for estimating charge states of lithium ion battery
JP6295858B2 (en) 2014-07-02 2018-03-20 日産自動車株式会社 Battery management device
KR102032229B1 (en) 2015-11-18 2019-10-16 현대일렉트릭앤에너지시스템(주) System and method for estimating state of health for battery
KR102483644B1 (en) 2017-04-28 2023-01-02 삼성전자주식회사 Method and apparatus of predicting capacity fade rate of a rechargeable battery
JP6997056B2 (en) 2018-09-03 2022-01-17 本田技研工業株式会社 Capacity estimation system, capacity estimation method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546989A (en) * 2005-06-13 2008-12-25 エルジー・ケム・リミテッド Apparatus and method for estimating remaining battery capacity
JP2019023853A (en) * 2017-05-03 2019-02-14 株式会社半導体エネルギー研究所 Neural network, power storage system, vehicle, and electronic apparatus
WO2019087018A1 (en) * 2017-11-02 2019-05-09 株式会社半導体エネルギー研究所 Capacity estimation method and capacity estimation system for power storage device
KR101965832B1 (en) * 2017-11-27 2019-04-05 (주) 페스코 Battery SOC estimation system and battery SOC estimation method using the same
CN110045292A (en) * 2019-05-07 2019-07-23 东莞理工学院 Lithium ion battery SOC prediction technique based on big data and bp neural network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740739A (en) * 2021-07-22 2021-12-03 西安交通大学 Method for predicting residual life of vehicle-mounted starting maintenance-free lead-acid storage battery
CN114280491A (en) * 2021-12-23 2022-04-05 中山大学 Retired battery residual capacity estimation method based on active learning
CN114280491B (en) * 2021-12-23 2024-01-05 中山大学 Retired battery residual capacity estimation method based on active learning

Also Published As

Publication number Publication date
KR102387780B1 (en) 2022-04-18
KR20210121411A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
WO2021201387A1 (en) Neural network-based battery capacity estimation method and device
WO2022034983A1 (en) Battery cell defectiveness and fire early diagnosis method and apparatus based on neural network
WO2012091287A1 (en) Battery pack management device and method involving indicating the degree of degradation of a secondary battery cell, and battery pack including same
WO2014065615A1 (en) Apparatus and method for estimating state of charge of battery
WO2013051828A2 (en) Battery management system and battery management method
WO2013035963A1 (en) Battery charging device adaptively varying charging voltage and method for controlling battery charging thereof
WO2019199057A1 (en) Battery diagnostic device and method
WO2015084115A1 (en) Device and method for estimating capacity degradation of battery
WO2019212148A1 (en) Device and method for testing secondary battery
WO2019050279A1 (en) Method for diagnosing state of reuse of battery
WO2022065676A1 (en) Battery resistance calculation apparatus and method
WO2021025295A1 (en) Battery management device, battery management method, and battery pack
WO2022039505A1 (en) Battery management system, battery management method, battery pack, and electric vehicle
WO2022035149A1 (en) Device and method for diagnosing battery abnormality
WO2021020817A1 (en) Battery state prediction device and battery state prediction method
WO2020189998A1 (en) Battery bank control device and method
WO2024010175A1 (en) Method and electronic device for forecasting remaining useful life (rul) of battery
WO2022019703A1 (en) Device and method for diagnosing battery
WO2022149958A1 (en) Battery control device, battery system, power supply system, and battery control method
WO2023022406A1 (en) Learning ability evaluation method, learning ability evaluation device, and learning ability evaluation system
WO2019199062A1 (en) Device, method, battery pack and electrical system for deciding electrode information of battery
WO2021256864A1 (en) Battery management system, battery management method, battery pack, and electric vehicle
WO2022035151A1 (en) Battery abnormality diagnosis device and method
WO2022149822A1 (en) Battery management device and method
WO2021157816A1 (en) Method and electronic device for real time adaptive charging of battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780712

Country of ref document: EP

Kind code of ref document: A1