WO2021201143A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2021201143A1
WO2021201143A1 PCT/JP2021/013956 JP2021013956W WO2021201143A1 WO 2021201143 A1 WO2021201143 A1 WO 2021201143A1 JP 2021013956 W JP2021013956 W JP 2021013956W WO 2021201143 A1 WO2021201143 A1 WO 2021201143A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
control unit
control
driven
Prior art date
Application number
PCT/JP2021/013956
Other languages
French (fr)
Japanese (ja)
Inventor
和志 久山
正倫 浮舟
岡本 哲也
大野 正雄
柯壁 陳
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2021201143A1 publication Critical patent/WO2021201143A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • This disclosure relates to a freezing device.
  • Patent Document 1 discloses a freezing device including a refrigerant circuit including a first compressor and a second compressor connected to the discharge side of the first compressor. In this freezing device, it is possible to switch between the first operation in which the first compressor is stopped and the second compressor is driven, and the second operation in which the first compressor and the second compressor are driven. be.
  • the inventors of the present application are provided with a bypass pipe that bypasses the discharge side and the suction side of the first compressor and a check valve connected to the bypass pipe in order to switch between the first operation and the second operation.
  • a bypass pipe that bypasses the discharge side and the suction side of the first compressor and a check valve connected to the bypass pipe in order to switch between the first operation and the second operation.
  • the check valve closes due to the increase in the differential pressure between the suction side and the discharge side of the first compressor, and the evaporated refrigerant is sent to the suction side of the first compressor without passing through the bypass pipe. Be done.
  • the refrigerant pressure on the suction side is relatively low in the first compressor, the refrigerant pressure on the discharge side may also decrease accordingly. Therefore, even if the second operation is started, the differential pressure does not rise to the extent that the check valve is closed, and the refrigerant continues to be sucked into the second compressor via the bypass pipe. As a result, the check valve may not close after the start of the second operation.
  • An object of the present disclosure is to provide a refrigerating device that prevents the check valve connected to the bypass pipe from closing after the start of the second operation.
  • the first aspect of the present disclosure is The first compressor (21) and the second compressor (22) connected to the discharge side of the first compressor (21) are included, and the first compressor (21) is stopped and the second compressor is stopped. It is possible to switch between the first operation of performing the refrigeration cycle in which (22) is driven and the second operation of performing the refrigeration cycle in which the first compressor (21) and the second compressor (22) are driven.
  • Refrigerant circuit (20) and A control unit (100) for controlling the refrigerant circuit (20) is provided.
  • the refrigerant circuit (20) A bypass pipe (PB) connecting the suction side and the discharge side of the first compressor (21), and It is connected to the bypass pipe (PB) and has a check valve (29) that limits the flow of refrigerant from the discharge side to the suction side of the first compressor (21).
  • the control unit (100) executes the first control for increasing the differential pressure between the discharge side and the suction side of the first compressor (21) before or at the start of the second operation.
  • the bypass pipe (PB) connects the suction side and the discharge side of the first compressor (21), the suction side and the discharge side of the first compressor (21) are connected by the first control.
  • the differential pressure increases, the differential pressure between the inflow side and the outflow side of the check valve (29) also increases. As a result, it is possible to prevent the check valve (29) from not closing after the start of the second operation.
  • a second aspect of the present disclosure is, in the first aspect, the first aspect.
  • the control unit (100) performs the first compressor (21) as the first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). 21) is driven.
  • the refrigerant is the first compressor ( It is compressed by 21).
  • the differential pressure between the suction side and the discharge side of the first compressor (21) increases.
  • the differential pressure between the inflow side and the outflow side of the check valve (29) can be increased at the start of the subsequent second operation.
  • a third aspect of the present disclosure is the second aspect.
  • the control unit (100) When the pressure difference between the discharge side and the suction side of the first compressor (21) becomes equal to or higher than a predetermined value while the first compressor (21) is driven by the first control, the control unit (100) , The second operation is executed.
  • the second operation can be started after the differential pressure between the discharge side and the suction side of the first compressor (21) is increased to a predetermined value or more.
  • a fourth aspect of the present disclosure is the second aspect.
  • the control unit (100) When the time for driving the first compressor (21) by the first control exceeds a predetermined time, the second operation is executed.
  • the control unit (100) executes the second operation.
  • the second operation can be started after the differential pressure between the suction side and the discharge side of the first compressor (21) is increased to some extent.
  • a fifth aspect of the present disclosure is, in any one of the first to fourth aspects, The control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation.
  • the suction side of the second compressor (22) increases.
  • the suction side of the second compressor (22) and the discharge side of the first compressor (21) have substantially the same pressure. Since the first compressor (21) is stopped, the pressure on the discharge side and the suction side of the first compressor (21) are almost the same. Therefore, in the first operation, when the pressure on the suction side of the second compressor (22) rises, the pressure on the suction side of the first compressor (21) can be increased. As a result, the pressure on the discharge side of the first compressor (21) can be increased at the start of the second operation.
  • a sixth aspect of the present disclosure is, in the fifth aspect, the fifth aspect.
  • the control unit (100) has a predetermined value as an index indicating the pressure of the refrigerant on the suction side of the second compressor (22) while the rotation speed of the second compressor (22) is reduced by the first control. When the above is achieved, the second operation is executed.
  • the pressure of the refrigerant on the suction side of the second compressor (22) increases.
  • the pressure on the suction side of the discharge side of the first compressor (21) also becomes a predetermined value or more.
  • the control unit (100) executes the second operation when the pressure on the suction side of the first compressor (21) becomes equal to or higher than a predetermined value. As a result, the second operation can be started after the differential pressure between the suction side and the discharge side of the first compressor (21) is increased to some extent.
  • a seventh aspect of the present disclosure is the first to sixth aspects.
  • the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven.
  • the rotation speed of at least one of the first compressor (21) and the second compressor (22) is adjusted so as to be equal to or less than the flow rate of the refrigerant of.
  • the flow rate of the refrigerant flowing through the second compressor (22) is equal to or less than the flow rate flowing through the first compressor (21). Then, the pressure on the discharge side of the first compressor (21) rises. As a result, the pressure on the suction side of the first compressor (21) increases, so that the pressure difference between the discharge side and the suction side of the first compressor (21) can be increased.
  • the eighth aspect of the present disclosure is, in the seventh aspect, the seventh aspect.
  • the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven.
  • the rotation speed of the first compressor (21) is not changed so as to be equal to or less than the flow rate of the refrigerant of the above, and the rotation speed of the second compressor (22) is reduced.
  • the flow rate of the refrigerant flowing through the second compressor (22) is set to be equal to or less than the flow rate flowing through the first compressor (21) without changing the rotation speed of the first compressor (21). Can be done.
  • a ninth aspect of the present disclosure is the seventh aspect of the present disclosure.
  • the control unit (100) At the start of the second operation, as the first control, the flow rate of the refrigerant of the second compressor (22) being driven becomes equal to or less than the flow rate of the refrigerant of the first compressor (21) being driven. In addition, the rotation speed of the first compressor (21) is increased without changing the rotation speed of the second compressor (22).
  • the flow rate of the refrigerant flowing through the second compressor (22) is set to be equal to or less than the flow rate flowing through the first compressor (21) without changing the rotation speed of the second compressor (22). Can be done.
  • a tenth aspect of the present disclosure is the first to ninth aspects.
  • the refrigerant circuit (20) It has an injection mechanism (30) that introduces a refrigerant between the discharge side of the first compressor (21) and the suction side of the second compressor (22).
  • the control unit (100) first compresses the refrigerant by the injection mechanism (30) as the first control before switching from the first operation to the second operation or at the start of the second operation. It is introduced between the discharge side of the machine (21) and the suction side of the second compressor (22).
  • the pressure of the refrigerant between the first compressor (21) and the second compressor (22) can be increased by the injection mechanism (30).
  • the pressure on the discharge side of the first compressor (21) can be increased.
  • the eleventh aspect of the present disclosure is the first to tenth aspects.
  • the control unit (100) performs the first control when the outside air temperature is equal to or lower than a predetermined value.
  • the eleventh aspect it is possible to prevent the differential pressure between the suction side and the discharge side of the first compressor (21) from becoming small by performing the first control when the outside air temperature is equal to or lower than a predetermined temperature.
  • FIG. 1 is a piping diagram illustrating the configuration of the freezing device of the first embodiment.
  • FIG. 2 is a block diagram showing the relationship between the control unit, various sensors, and the constituent devices of the refrigerant circuit.
  • FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the first heating operation.
  • FIG. 4 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the second heating operation.
  • FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the first cooling operation.
  • FIG. 6 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the second cooling operation.
  • FIG. 7 is a flowchart of the operation performed by the control unit in the first operation.
  • FIG. 1 is a piping diagram illustrating the configuration of the freezing device of the first embodiment.
  • FIG. 2 is a block diagram showing the relationship between the control unit, various sensors, and the constituent devices of the refrigerant
  • FIG. 8 is a flowchart of the operation performed by the control unit in the second operation.
  • FIG. 9 is a block diagram showing the relationship between the control unit of the refrigerating apparatus according to the first modification, various sensors, and the constituent devices of the refrigerant circuit.
  • FIG. 10 is a flowchart of an operation performed by the control unit of the refrigerating apparatus according to the first modification.
  • FIG. 11 is a view corresponding to FIG. 7 performed by the control unit of the refrigerating apparatus according to the second modification.
  • FIG. 12 is a view corresponding to FIG. 8 performed by the control unit of the refrigerating apparatus according to the third modification.
  • FIG. 13 is a flowchart of an operation performed by the control unit of the refrigerating apparatus according to the modified example 4.
  • the freezing device (10) of the first embodiment heats the target fluid.
  • the target fluid is water.
  • the refrigerating device (10) supplies the heated water to the equipment used such as a hot water supply tank, a coil for heating, and a coil for floor heating.
  • the refrigerating device (10) cools the target fluid.
  • the target fluid is water.
  • the refrigerating device (10) supplies the cooled water to the utilization equipment such as a cooling coil.
  • the refrigerating device (10) includes a refrigerant circuit (20) and a control unit (100).
  • the refrigerant circuit (20) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), a heat source side heat exchanger (24), and a check valve bridge (25). ), An expansion valve (26), a user-side heat exchanger (27), an accumulator (28), and a bypass check valve (29).
  • the refrigerant circuit (20) is filled with a refrigerant, and the refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (20).
  • the refrigerant is, for example, R410A, R32, R407C and the like.
  • the refrigerant circuit (20) can perform the first operation and the second operation.
  • first operation one of the second compressors (22) is driven and the first compressor (21) is stopped.
  • second operation both the first compressor (21) and the second compressor (22) are driven. The first operation and the second operation will be described in detail later.
  • the first compressor (21) compresses the sucked refrigerant and discharges the compressed refrigerant.
  • a first suction pipe (51) and a first discharge pipe (52) are connected to the first compressor (21).
  • the first compressor (21) is, for example, a scroll type compressor.
  • the first compressor (21) has a compression mechanism (not shown) and an electric motor (not shown) for driving the compression mechanism.
  • the motor of the first compressor (21) is a variable capacity type. Specifically, an inverter device is connected to the motor. The inverter device adjusts the output frequency of the electric power supplied from the power source to the motor. As a result, the rotation speed (operating frequency) of the electric motor of the first compressor (21) is adjusted.
  • the second compressor (22) is provided on the discharge side of the first compressor (21).
  • the second compressor (22) compresses the sucked refrigerant and discharges the compressed refrigerant.
  • the second compressor (22) has a larger capacity than the first compressor (21).
  • the second suction pipe (53) and the second discharge pipe (54) are connected in the second compressor (22).
  • the inflow end of the second suction pipe (53) and the outflow end of the first discharge pipe (52) are connected.
  • the first compressor (21) and the second compressor (22) are connected in series.
  • the second compressor (22) is, for example, a scroll type compressor.
  • the second compressor (22) has a compression mechanism (not shown) and an electric motor (not shown) for driving the compression mechanism.
  • the motor of the second compressor (22) is a variable capacity type. Specifically, an inverter device is connected to the motor. The inverter device adjusts the output frequency of the electric power supplied from the power source to the motor. As a result, the rotation speed (operating frequency) of the electric motor of the second compressor (22) is adjusted.
  • the four-way switching valve (23) is an electric switching valve.
  • the four-way switching valve (23) is switched between a first state (a state shown by a solid line in FIG. 1) and a second state (a state shown by a broken line in FIG. 1).
  • a first state a state shown by a solid line in FIG. 1
  • a second state a state shown by a broken line in FIG. 1.
  • the first port (P1) and the fourth port (P4) communicate with each other
  • the second port (P2) and the third port (P3) communicate with each other.
  • the first port (P1) and the third port (P3) communicate with each other
  • the second port (P2) and the fourth port (P4) communicate with each other.
  • the first port (P1) is connected to the outflow end of the second discharge pipe (54).
  • the second port (P2) is connected to the inflow end of the first suction pipe (51).
  • the third port (P3) communicates with the gas side end of the heat source side heat exchanger (24).
  • the fourth port (P4) communicates with the gas side end of the user side heat exchanger (27).
  • the heat source side heat exchanger (24) exchanges heat between the refrigerant and the outdoor air (an example of the heat source side fluid).
  • the heat source side heat exchanger (24) is an outdoor heat exchanger.
  • the check valve bridge (25) has four pipes and four check valves (C) connected to the respective pipes.
  • the four check valves (C) include a first check valve (C1), a second check valve (C2), a third check valve (C3), and a fourth check valve (C4).
  • the main liquid pipe (55) is connected to the check valve bridge (25). Specifically, one end of the main liquid pipe (55) is connected to the inflow side of the second check valve (C2) and the inflow side of the fourth check valve (C4). The other end of the main liquid pipe (55) is connected to the outflow side of the first check valve (C1) and the outflow side of the third check valve (C3).
  • the check valve bridge (25) communicates with the liquid side end of the heat source side heat exchanger (24) and the liquid side end of the user side heat exchanger (27). Specifically, the outflow side of the second check valve (C2) and the inflow side of the first check valve (C1) communicate with the liquid side end of the heat source side heat exchanger (24). The outflow side of the fourth check valve (C4) and the inflow side of the third check valve (C3) communicate with the liquid side end of the utilization side heat exchanger (27).
  • Each of the first to fourth check valves allows the flow of the refrigerant in the direction indicated by the arrow in FIG. 1 and limits the flow of the refrigerant in the opposite direction.
  • the expansion valve (26) expands the refrigerant to reduce the pressure of the refrigerant.
  • the expansion valve (26) corresponds to the decompression mechanism.
  • the expansion valve (26) is composed of an expansion valve (for example, an electronic expansion valve) whose opening degree can be adjusted.
  • the expansion valve (26) is connected to the main liquid pipe (55).
  • the user-side heat exchanger (27) exchanges heat between the refrigerant and water.
  • the user-side heat exchanger (27) has a first flow path (27a) and a second flow path (27b).
  • the first flow path (27a) is a flow path through which the refrigerant flows.
  • the second flow path (27b) is a flow path through which water flows.
  • the second flow path (27b) is connected in the middle of the user side circuit (61) provided in the user equipment. In the user-side heat exchanger (27), the refrigerant flowing through the first flow path (27a) and the water flowing through the second flow path (27b) exchange heat.
  • the accumulator (28) is connected in the middle of the first suction pipe (51).
  • the accumulator (28) is a gas-liquid separator. In the accumulator (28), it is separated into a liquid refrigerant and a gas refrigerant.
  • the accumulator (28) is configured such that only the gas refrigerant flows out of the accumulator (28).
  • the bypass circuit (60) has a bypass pipe (PB) and a bypass check valve (29).
  • the bypass pipe (PB) connects the suction side and the discharge side of the first compressor (21). Specifically, one end of the bypass pipe (PB) is connected to the outflow end of the first discharge pipe (52) and the inflow end of the second suction pipe (53). The other end of the bypass pipe (PB) is connected between the accumulator (28) and the first compressor (21) in the first suction pipe (51).
  • the bypass check valve (29) limits the flow of refrigerant from the discharge side to the suction side of the first compressor (21), while allowing the flow of refrigerant in the opposite direction. Specifically blocking the absolute value [Delta] P O of the differential pressure between the inlet side and the outlet side of the bypass check valve (29) is equal to or greater than [Delta] P n is a predetermined pressure difference, the flow of the refrigerant in the bypass pipe (PB) The valve of the bypass check valve (29) closes so as to do so. Will be described later [Delta] P O and [Delta] P n.
  • the injection mechanism (30) introduces a refrigerant between the discharge side of the first compressor (21) and the suction side of the second compressor (22). Specifically, the injection mechanism (30) supplies a part of the refrigerant flowing through the main liquid pipe (55) to the suction side of the second compressor (22) in the second operation.
  • the injection mechanism (30) has an injection pipe (PJ) and an injection expansion valve (31).
  • One end of the injection pipe (PJ) is connected between the expansion valve (26) and the check valve bridge (25) in the main liquid pipe (55).
  • the other end of the injection pipe (PJ) is connected to the second suction pipe (53).
  • the injection expansion valve (31) is connected to the upstream side of the intermediate heat exchanger (40) in the injection pipe (PJ).
  • the injection expansion valve (31) depressurizes the refrigerant flowing through the injection pipe (PJ).
  • the intermediate heat exchanger (40) has a third flow path (40a) and a fourth flow path (40b).
  • the third flow path (40a) is connected in the middle of the main liquid pipe (55).
  • the fourth flow path (40b) is connected in the middle of the injection pipe (PJ).
  • the refrigerant flowing through the main liquid pipe (55) and the refrigerant flowing through the fourth flow path (40b) exchange heat.
  • the refrigerating apparatus (10) has various sensors such as a temperature sensor that detects the temperature of the refrigerant and the like, and a pressure sensor that detects the pressure of the refrigerant and the like.
  • the detection results (signals) of various sensors are transmitted to the control unit (100).
  • the refrigerating device (10) has a first pressure sensor (41) and a second pressure sensor (42).
  • the first pressure sensor (41) is connected to the first suction pipe (51).
  • the first pressure sensor (41) detects the pressure value P 1 of the refrigerant in the first suction pipe (51).
  • the pressure value P 1 indicates the pressure value of the pressure on the suction side of the first compressor (21).
  • the pressure value P 1 indicates the pressure value on the inflow side of the bypass check valve (29).
  • the second pressure sensor (42) is connected to the second suction pipe (53).
  • Second pressure sensor (42) detects the pressure value P 2 of the refrigerant in the second suction pipe (53).
  • the pressure value P 2 indicates the pressure value on the suction side of the second compressor (22).
  • the pressure value P 2 indicates the pressure value on the discharge side of the first compressor (21).
  • the pressure value P 2 indicates the pressure value on the outflow side of the bypass check valve (29).
  • the freezing device (10) has a control unit (100).
  • the control unit (100) has a microcomputer and a memory device for storing software for operating the microcomputer.
  • the control unit (100) controls the refrigerant circuit (20) based on the signals of various sensors and the control signals from the outside.
  • the control unit (100) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), an expansion valve (26), an injection expansion valve (31), and various types. Includes multiple communication lines connecting to the sensor of.
  • the control unit (100) includes at least the first compressor (21), the second compressor (22), the four-way switching valve (23), the expansion valve (26), and the injection expansion valve (31). It has an output unit that outputs a control signal.
  • the control unit (100) has an input unit into which the detection value of each sensor is input.
  • the first operation includes a first heating operation and a first cooling operation.
  • the second operation includes a second heating operation and a second cooling operation.
  • the second compressor (22) functions as a high-stage compressor
  • the first compressor (21) functions as a low-stage compressor.
  • a refrigeration cycle is performed in which the utilization side heat exchanger (27) serves as a condenser (radiator) and the heat source side heat exchanger (24) serves as an evaporator.
  • the four-way switching valve (23) is set to the first state.
  • the opening degree of the expansion valve (26) is adjusted as appropriate.
  • the injection expansion valve (31) is set to the fully closed state.
  • the first compressor (21) is stopped and the second compressor (22) is driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to water in the heat exchanger (27) on the user side, and condenses.
  • the refrigerant flowing out of the heat exchanger (27) on the user side passes through the check valve bridge (25) and flows through the main liquid pipe (55).
  • the refrigerant flowing through the main liquid pipe (55) is depressurized by the expansion valve (26), passes through the check valve bridge (25) again, and then evaporates in the heat source side heat exchanger (24).
  • the refrigerant flowing out from the heat source side heat exchanger (24) passes through the four-way switching valve (23), the accumulator (28), and the bypass pipe (PB) in order, and is sucked into the second compressor (22) for compression. Will be done.
  • ⁇ Second heating operation> As shown in FIG. 4, in the second heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the utilization side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first state. The opening degree of the expansion valve (26) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Both the first compressor (21) and the second compressor (22) are driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to water in the heat exchanger (27) on the user side, and condenses.
  • the refrigerant flowing out of the heat exchanger (27) on the user side passes through the check valve bridge (25) and flows through the main liquid pipe (55).
  • the refrigerant flowing through the main liquid pipe (55) dissipates heat to the refrigerant flowing through the fourth flow path (40b) in the third flow path (40a) of the intermediate heat exchanger (40) and is supercooled. After that, a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ), and the remaining refrigerant is depressurized by the expansion valve (26) of the main liquid pipe (55).
  • the decompressed refrigerant passes through the check valve bridge (25) and evaporates in the heat source side heat exchanger (24).
  • the refrigerant flowing out of the heat source side heat exchanger (24) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed.
  • the refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
  • the refrigerant that has flowed into the injection pipe (PJ) is depressurized by the injection expansion valve (31) and flows from the refrigerant that flows through the third flow path (40a) in the fourth flow path (40b) of the intermediate heat exchanger (40). It absorbs heat and evaporates. After that, the refrigerant flowing through the injection pipe (PJ) is introduced into the second suction pipe (53) of the second compressor (22).
  • a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator.
  • the four-way switching valve (23) is set to the second state.
  • the opening degree of the expansion valve (26) is adjusted as appropriate.
  • the injection expansion valve (31) is set to the fully closed state.
  • the first compressor (21) is stopped and the second compressor (22) is driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23) and condenses in the heat source side heat exchanger (24).
  • the refrigerant flowing out of the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the main liquid pipe (55).
  • the refrigerant flowing through the main liquid pipe (55) is depressurized by the expansion valve (26), passes through the check valve bridge (25) again, and then absorbs heat from water in the user side heat exchanger (27) and evaporates.
  • the refrigerant flowing out from the heat exchanger (27) on the user side passes through the four-way switching valve (23), the accumulator (28), and the bypass pipe (PB) in order, and is sucked into the second compressor (22) for compression. Will be done.
  • ⁇ Second cooling operation> As shown in FIG. 6, in the second cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second state. The opening degree of the expansion valve (26) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Both the first compressor (21) and the second compressor (22) are driven.
  • the refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23) and condenses in the heat source side heat exchanger (24).
  • the refrigerant flowing out from the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the main liquid pipe (55).
  • the refrigerant flowing through the main liquid pipe (55) dissipates heat to the refrigerant flowing through the fourth flow path (40b) in the third flow path (40a) of the intermediate heat exchanger (40) and is supercooled. After that, a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ), and the remaining refrigerant is depressurized by the expansion valve (26) of the main liquid pipe (55).
  • the decompressed refrigerant passes through the check valve bridge (25), absorbs heat from water in the user heat exchanger (27), and evaporates.
  • the refrigerant flowing out from the user-side heat exchanger (27) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed.
  • the refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
  • the refrigerant that has flowed into the injection pipe (PJ) is depressurized by the injection expansion valve (31) and flows from the refrigerant that flows through the third flow path (40a) in the fourth flow path (40b) of the intermediate heat exchanger (40). It absorbs heat and evaporates. After that, the refrigerant flowing through the injection pipe (PJ) is introduced into the second suction pipe (53) of the second compressor (22).
  • the pressure of the refrigerant on the suction side of the stopped first compressor (21) is also relatively low. It may be.
  • the compression ratio of the first compressor (21) is constant, the absolute value of the differential pressure between the discharge side and the suction side of the first compressor (21) is relatively high at the start of the second operation. It becomes smaller. Therefore, the absolute value of the differential pressure between the inflow side and the outflow side of the bypass check valve (29) is relatively small, and even if the second operation is started, the refrigerant flowing through the first suction pipe (51) is the bypass pipe. It is sucked into the second compressor (22) via (PB).
  • the differential pressure of the first compressor (21) is less likely to rise, and the bypass check valve (29) closes even when the first compressor (21) reaches the normal rotation speed. Will remain absent. If the bypass check valve (29) is not closed continuously, some of the refrigerant will continue to be sucked into the second compressor (22) via the bypass pipe (PB) even after the start of the second operation. Two-stage compression of the refrigerant by the first compressor (21) and the second compressor (22) cannot be realized. As a result, there arises a problem that the capacity of the refrigerating apparatus (10) is reduced. In particular, since the first compressor (21) has a smaller compression ratio than the second compressor (22), this problem can occur remarkably.
  • the refrigerating apparatus (10) of the present embodiment suppresses that the bypass check valve (29) does not close after the start of the second operation.
  • the control unit (100) of the freezing device (10) executes the first control.
  • the first control is a control that increases the differential pressure between the discharge side and the suction side of the first compressor (21) before the start of the second operation or at the start of the second operation.
  • control unit (100) executes the first control in the first operation and the second operation.
  • first operation the first control is executed before the second operation is started from the stopped state of the first compressor (21) and the second compressor (22).
  • the second operation the first control is executed before switching from the first operation to the second operation.
  • the control unit (100) drives the first compressor (21) as the first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22).
  • the control unit (100) performs a second operation when the differential pressure between the discharge side and the suction side of the first compressor (21) exceeds a predetermined value while the first compressor (21) is driven by the first control. To execute.
  • the first control in the first operation will be specifically described with reference to FIG. 7.
  • step ST11 the control unit (100) executes the first control while the system of the refrigerating apparatus (10) is stopped. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) stops the second compressor (22) and drives the first compressor (21). The control unit (100) appropriately adjusts the opening degree of the expansion valve (26) and sets the injection expansion valve (31) to the fully closed state.
  • step ST12 is executed.
  • step ST12 the control unit (100), [Delta] P O is the differential pressure between the discharge side and the suction side of the first compressor (21), it is determined whether the [Delta] P n or more predetermined values.
  • the control unit (100) includes a pressure value P 1 of the first pressure sensor (41) detects, seek [Delta] P O from the difference between the pressure value P 2 by the second pressure sensor (42) detects.
  • Controller (100), [Delta] P O is equal to or larger than [Delta] P n.
  • the pressure value P 1 indicates the pressure on the inflow side of the bypass check valve (29), and the pressure value P 2 indicates the pressure on the outflow side of the bypass check valve (29).
  • step ST13 is executed.
  • [Delta] P O is determined to be less than [Delta] P n, since not close the valve of the bypass check valve (29), step ST11 is executed again.
  • step ST13 the control unit (100) starts the second operation. Specifically, the control unit (100) drives the second compressor (22). At the start of the second operation, the differential pressure between the outflow side and the inflow side of the bypass check valve (29) is increased by the first control described above. Therefore, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
  • ⁇ Second operation> If an operation command for executing the second operation is input to the control unit (100) before switching from the first operation to the second operation, the following second operation is performed.
  • the control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation.
  • the control unit (100) determines that the rotation speed of the second compressor (22) is reduced by the first control.
  • the second operation is executed. The first control in the second operation will be specifically described with reference to FIG.
  • step ST21 the control unit (100) starts the first operation. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) stops the second compressor (22) and drives the first compressor (21). The control unit (100) appropriately adjusts the opening degree of the expansion valve (26) and sets the injection expansion valve (31) to the fully closed state. After the start of the first operation, step ST22 is executed.
  • step ST22 the control unit (100) executes the first control. Specifically, the control unit (100) reduces the rotation speed of the second compressor (22). When the rotation speed of the second compressor (22) decreases due to the first control, the pressure on the discharge side of the second compressor (22) increases. The pressures on the discharge side of the second compressor (22) and the suction side of the first compressor (21) are almost the same. Since the first compressor (21) is stopped, the pressures on the discharge side and the suction side of the first compressor (21) are almost the same. As a result, the pressure on the suction side of the first compressor (21) also increases due to the decrease in the rotation speed of the second compressor (22).
  • step ST23 the control unit (100) determines whether or not the pressure value P 2 is equal to or higher than the predetermined pressure value P m.
  • the pressure value P m is such that when the pressure value P 2 is equal to or higher than the pressure value P m before the start of the second operation (driving the first compressor (21)), the pressure value P m starts the second operation (driving the first compressor (21)). ) at a value that is a ⁇ P O ⁇ ⁇ P n.
  • the bypass check valve (29) can be closed when P 2 ⁇ P m before the start of the second operation due to the decrease in the rotation speed of the second compressor (22).
  • step ST24 is executed. If it is determined that P 2 ⁇ P m , step ST24 is executed. If it is determined that P 2 is less than P m , step ST22 is executed.
  • step ST24 the control unit (100) starts the second operation. Specifically, the control unit (100) drives the first compressor (21). At the start of the second operation, the differential pressure between the outflow side and the inflow side of the bypass check valve (29) is increased by the first control described above. Therefore, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
  • the refrigerant circuit (20) of the refrigerating apparatus (10) has a bypass pipe (PB) connecting the suction side and the discharge side of the first compressor (21) and a bypass pipe (PB). It has a check valve (29) that limits the flow of the refrigerant from the discharge side to the suction side of the first compressor (21).
  • the refrigerating apparatus (10) includes a control unit (100) that controls the refrigerant circuit (20), and the control unit (100) discharges the first compressor (21) before or at the start of the second operation. The first control is performed to increase the differential pressure between the side and the suction side.
  • the differential pressure between the suction side and the discharge side of the first compressor increases, and at the same time, the differential pressure between the inflow side and the outflow side of the bypass check valve (29) also increases. Therefore, it is possible to prevent the bypass check valve (29) from being closed after the second operation is started.
  • control unit (100) is first controlled as a first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). Drive the compressor (21).
  • the refrigerant is the first 1 Compressed by the compressor (21).
  • the differential pressure between the suction side and the discharge side of the first compressor (21) increases.
  • the differential pressure between the inflow side and the outflow side of the bypass check valve (29) can be increased at the start of the subsequent second operation.
  • control unit (100) has a pressure difference between the discharge side and the suction side of the first compressor (21) while the first compressor (21) is driven by the first control.
  • the second operation is executed.
  • the differential pressure [Delta] P O between the discharge side and the suction side of the first compressor (21) is predetermined
  • the second operation can be started.
  • the bypass check valve (29) can be closed. As a result, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
  • control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation.
  • control unit (100) applies the pressure of the refrigerant on the suction side of the second compressor (22) while the rotation speed of the second compressor (22) is reduced by the first control.
  • the second operation is executed.
  • the pressure value P 2 on the suction side of the second compressor (22) becomes equal to or higher than the predetermined value P m before the start of the second operation by the first control
  • the second operation can be started.
  • the pressure value P 1 indicating the pressure value on the suction side of the first compressor (21) also becomes the pressure value P m or more.
  • Pressure value P m is a value [Delta] P O is greater than or equal to [Delta] P n. From this, it is possible to surely prevent the bypass check valve (29) from closing after the start of the second operation.
  • the refrigerating apparatus (10) of the present modification 1 includes a first rotation detection unit (45), a second rotation detection unit (46), a first temperature sensor (47), and a second temperature sensor. Has (48). These detectors (45, 46) and sensors (47, 48) are connected to the control unit (100) by a communication line.
  • the first rotation detection unit (45) is provided in the first compressor (21).
  • the first rotation detection unit (45) detects the rotation speed of the first compressor (21).
  • the first rotation detection unit (45) is, for example, a current sensor that detects the current supplied to the first compressor (21).
  • the rotation speed of the first compressor (21) is detected based on the current value detected by the current sensor.
  • the second rotation detection unit (46) is provided in the second compressor (22).
  • the second rotation detection unit (46) detects the rotation speed of the second compressor (22).
  • the second rotation detection unit (46) is, for example, a current sensor that detects the current supplied to the second compressor (22).
  • the rotation speed of the second compressor (22) is detected based on the current value detected by the current sensor.
  • the first temperature sensor (47) is connected to the first suction pipe (51).
  • the first temperature sensor (47) detects the temperature of the refrigerant sucked into the first compressor (21).
  • the second temperature sensor (48) is connected to the second suction pipe (53).
  • the second temperature sensor (48) detects the temperature of the refrigerant sucked into the second compressor (22).
  • the control unit (100) drives both the first compressor (21) and the second compressor (22) at the same time from the stopped state of the system of the refrigerating device (10), so that the second operation is performed. Start operation.
  • the control unit (100) executes the first control at the start of the second operation. Specifically, as the first control, the first compressor ( The rotation rate of the second compressor (22) is reduced without changing the rotation rate of 21). The first control in the third operation will be described with reference to FIG.
  • step ST31 the control unit (100) starts the second operation. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) is the first compressor (21). And the second compressor (22) are driven. The control unit (100) appropriately adjusts the opening degree of the expansion valve (26). After the start of the second operation, step ST32 is executed.
  • step ST32 the control unit (100) executes the first control.
  • the rotation speed of the first compressor (21) is not changed, and the rotation speed of the second compressor (22) is reduced. Therefore, the flow rate of the refrigerant of the first compressor (21) does not change, but the flow rate of the refrigerant of the second compressor (22) decreases.
  • the pressure on the suction side of the second compressor (22) and the pressure on the discharge side of the first compressor (21) increase.
  • step ST33 the control unit (100) determines whether or not the flow rate M2 of the refrigerant of the second compressor (22) is equal to or less than the flow rate M1 of the refrigerant of the first compressor (21).
  • the flow rate M2 becomes equal to or less than the flow rate M1
  • the pressures on the suction side of the second compressor (22) and the discharge side of the first compressor (21) increase, and the bypass check valve (29) can be closed.
  • the differential pressure between the suction side and the discharge side of the first compressor (21) increases.
  • the first control is released and the normal operation is started.
  • the rotation speed of the second compressor (22) is adjusted according to the load of the equipment on the user side. If it is determined that the flow rate M1 is less than the flow rate M2, step ST32 is executed again.
  • control unit (100) obtains the flow rate M of the refrigerant of the compressor based on the rotation speed N of the compressor, the push-out volume (cylinder volume) V, and the suction density ⁇ .
  • the rotation speed N is obtained by the rotation speed detection unit (45, 46).
  • the suction density is determined by the temperature and pressure of the refrigerant sucked into each compressor (21, 22).
  • the push-out volume V is set in advance in the control unit (100) according to the specifications of each compressor (21, 22).
  • control unit (100) obtains the rotation speed N1 of the first compressor (21) based on the detection value of the first rotation detection unit (45).
  • the control unit (100) obtains the suction density ⁇ 1 based on the detected value of the first pressure sensor (41) and the detected value of the first temperature sensor (47).
  • the control unit (100) obtains the flow rate M1 of the refrigerant of the first compressor (21) based on the rotation speed N1, the suction density ⁇ 1, and the push-out volume V1 of the first compressor (21).
  • the control unit (100) obtains the rotation speed N2 of the second compressor (22) based on the detection value of the second rotation detection unit (46).
  • the control unit (100) obtains the suction density ⁇ 2 based on the detected value of the second pressure sensor (42) and the detected value of the second temperature sensor (48).
  • the control unit (100) obtains the flow rate M2 of the refrigerant of the second compressor (22) based on the rotation speed N2, the suction density ⁇ 2, and the push-out volume V2 of the second compressor (22).
  • the flow rate of the refrigerant flowing through the second compressor (22) flows through the first compressor (21) without changing the rotation speed of the first compressor (21). It can be less than or equal to the flow rate. Since it is only necessary to control the rotation speed of the second compressor (22), the first control can be easily executed.
  • the first control can shorten the time until the flow rate of the first compressor (21) becomes equal to or higher than the flow rate of the second compressor (22).
  • the bypass check valve (29) prevent the bypass check valve (29) from not closing after the start of the second operation.
  • step ST41 the control unit (100) executes the same first control as in step ST11 of the first embodiment.
  • step ST42 the control unit (100) determines whether or not the time for driving the first compressor (21) exceeds a predetermined time. When the time for driving the first compressor (21) exceeds a predetermined time, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. When the control unit (100) determines that the predetermined time has elapsed, step ST43 is executed. If the control unit (100) determines that the predetermined time has not elapsed, step ST42 is executed again.
  • step ST43 the control unit (100) drives the second compressor (22) to execute the second operation, as in step ST13 of the first embodiment.
  • control unit (100) determines whether or not a predetermined time has elapsed after the first compressor (21) is driven. It is not necessary to detect the differential pressure [Delta] P O between the discharge side and the suction side of the first compressor (21), it can be easily prevented that the second operation since the start of the bypass check-valve (29) is not closed.
  • the first control according to the third modification of the embodiment is different from the first control of the above embodiment in the second operation.
  • the control unit (100) uses the injection mechanism (30) to discharge the refrigerant to the discharge side of the first compressor (21) and the first control before switching from the first operation to the second operation. 2 Introduce between the compressor (22) and the suction side. Specifically, it will be described with reference to FIG.
  • step ST51 the control unit (100) executes the first operation in the same manner as in step ST21 of the first embodiment.
  • step ST52 the control unit (100) executes the first control.
  • the opening degree of the injection expansion valve (31) is adjusted by the first control.
  • a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ) and is depressurized by the injection expansion valve (31).
  • the decompressed refrigerant undergoes heat exchange in the intermediate heat exchanger (40) and then flows into the second suction pipe (53).
  • the pressure on the suction side of the second compressor (22) rises, and at the same time, the pressure on the suction side of the first compressor (21) also rises.
  • step ST53 the control unit (100) determines whether or not the detected value P 2 of the first pressure sensor (41) is P m or more, as in step ST23 of the first embodiment.
  • step ST54 the control unit (100) executes the second operation in the same manner as in step ST24 of the first embodiment.
  • the refrigerant can be injected from the injection pipe (PJ) into the second suction pipe (53) by opening the injection expansion valve (31).
  • the pressure of the refrigerant on the suction side of the first compressor (21) can be easily increased before switching from the first operation to the second operation.
  • the refrigerating apparatus (10) according to the fourth modification of the embodiment has an outside air temperature sensor (not shown) for detecting the outside air temperature.
  • the outside air temperature sensor is connected to the control unit (100) by a communication line.
  • the first control of this modification is different from the first control of the above embodiment in the first operation to the third operation.
  • the first control according to the present modification in the first operation will be described with reference to FIG.
  • step ST61 the control unit (100) determines whether the temperature value T outside air temperature sensor detects is equal to or less than T O is a predetermined value.
  • the pressure (evaporation pressure) of the refrigerant sucked into the first compressor (21) becomes low.
  • the differential pressure between the discharge side and the suction side of the first compressor (21) is relatively low, so that the bypass check valve (29) does not close. Therefore, when the temperature value T is equal to or less than the predetermined value T O, the first control is executed in step ST61.
  • step ST63 is executed.
  • step ST62 the control unit (100) executes the first control in the same manner as in step ST11 of the first embodiment.
  • step ST63 the control unit (100) as in step ST12 of the first embodiment, it is determined whether [Delta] P O is not less than [Delta] P n.
  • step ST64 the control unit (100) starts the second operation in the same manner as in step ST13 of the first embodiment.
  • the above embodiment may have the following configuration.
  • control unit (100) does not have to make the determination in step ST12. Specifically, the control unit (100) may drive the second compressor (22) after executing the first control (step ST11) (step ST13).
  • step ST32 of the third operation at the start of the second operation, the control unit (100) sets the flow rate of the refrigerant of the second compressor (22) being driven as the first control to the first compressor being driven.
  • the rotation speed of at least one of the first compressor (21) and the second compressor (22) may be adjusted so as to be equal to or less than the flow rate of the refrigerant of (21).
  • control unit (100) may increase the rotation speed of the first compressor (21) without changing the rotation speed of the second compressor (22). Since it is only necessary to adjust the rotation speed of the first compressor (21), the first control can be easily executed.
  • control unit (100) may adjust the rotation speeds of both the first compressor (21) and the second compressor (22). In this case, the control unit (100) adjusts so as to increase the rotation speed of the first compressor (21) and decrease the rotation speed of the second compressor (22).
  • the flow rate M2 of the refrigerant of the second compressor (22) can be set to be equal to or less than the flow rate M1 of the refrigerant of the first compressor (21) in a shorter time.
  • control unit (100) may execute the first control at the start of the second operation.
  • control unit (100) may execute the first control even in the second operation and the third operation when the outside air temperature is equal to or less than a predetermined value.
  • the first control may be performed at the start of the second operation in which the first compressor (21) is driven and then the second compressor (22) is driven.
  • the refrigerating apparatus (10) includes a first temperature sensor (not shown) that detects the temperature of the refrigerant on the suction side of the first compressor (21), and a discharge side (second compressor (22)) of the first compressor (21). ) May be provided with a second temperature sensor (not shown) that detects the temperature of the refrigerant on the suction side).
  • Pressure value P 1 on the suction side of the first compressor (21) may be determined based on the saturation pressure corresponding to the temperature detected in the first temperature sensor.
  • Pressure value P 2 of the suction side of the discharge side and the second compressor (22) of the first compressor (21) may be determined based on the saturation pressure corresponding to the temperature detected in the second temperature sensor.
  • the first compressor (21) and the second compressor (22) may be a rotary type compressor, a swing piston type compressor, or a turbo type compressor. It may be another compressor.
  • the first rotation detection unit (45) and the second rotation detection unit (46) may be devices for detecting the torque value of the compressor (21, 22), respectively, or the rotation of the compressor (21, 22). It may be a device for detecting a number.
  • this disclosure is useful for freezing equipment.

Abstract

A refrigeration device (10) is provided with: a refrigerant circuit (20) including a first compressor (21) and a second compressor (22) connected to the discharge side of the first compressor (21); and a control unit (100) for controlling the refrigerant circuit (20). The control unit (100) performs first control of increasing the differential pressure between the discharge side and the intake side of the first compressor (21) before or at the start of a second operation in which the first compressor (21) and a second compressor (22) are driven.

Description

冷凍装置Freezer
 本開示は、冷凍装置に関する。 This disclosure relates to a freezing device.
 特許文献1には、第1圧縮機と、第1圧縮機の吐出側に接続される第2圧縮機とを含む冷媒回路を備えた冷凍装置が開示されている。この冷凍装置では、第1圧縮機が停止され、第2圧縮機が駆動される第1運転と、第1圧縮機と第2圧縮機とが駆動される第2運転とを切り換えることが可能である。 Patent Document 1 discloses a freezing device including a refrigerant circuit including a first compressor and a second compressor connected to the discharge side of the first compressor. In this freezing device, it is possible to switch between the first operation in which the first compressor is stopped and the second compressor is driven, and the second operation in which the first compressor and the second compressor are driven. be.
特開2008-64421号公報Japanese Unexamined Patent Publication No. 2008-64421
 本願発明者らは、第1運転と第2運転とを切り換えるために、第1圧縮機の吐出側と吸入側とをバイパスするバイパス配管と該バイパス配管に接続される逆止弁とを設ける構成を創出した。第1運転では、蒸発器から流出した冷媒が、バイパス配管を経由して駆動中の第2圧縮機に吸入される。第2運転では、第1圧縮機の吸入側と吐出側と差圧が上昇することにより逆止弁が閉じ、蒸発後の冷媒はバイパス配管を経由せずに第1圧縮機の吸入側に送られる。 The inventors of the present application are provided with a bypass pipe that bypasses the discharge side and the suction side of the first compressor and a check valve connected to the bypass pipe in order to switch between the first operation and the second operation. Was created. In the first operation, the refrigerant flowing out of the evaporator is sucked into the second compressor being driven via the bypass pipe. In the second operation, the check valve closes due to the increase in the differential pressure between the suction side and the discharge side of the first compressor, and the evaporated refrigerant is sent to the suction side of the first compressor without passing through the bypass pipe. Be done.
 しかし、第1圧縮機において吸入側の冷媒圧力が比較的低いと、それに伴って吐出側の冷媒圧力も低くなる場合がある。そのため、第2運転が開始しても、逆止弁が閉じるくらいにまで上記差圧が上昇せず、冷媒はバイパス配管を経由して第2圧縮機に吸入され続けてしまう。その結果、第2運転開始以降、逆止弁が閉じなくなるおそれがある。 However, if the refrigerant pressure on the suction side is relatively low in the first compressor, the refrigerant pressure on the discharge side may also decrease accordingly. Therefore, even if the second operation is started, the differential pressure does not rise to the extent that the check valve is closed, and the refrigerant continues to be sucked into the second compressor via the bypass pipe. As a result, the check valve may not close after the start of the second operation.
 本開示の目的は、第2運転開始以降、バイパス配管に接続される逆止弁が閉じなくなることを抑制する冷凍装置を提供することである。 An object of the present disclosure is to provide a refrigerating device that prevents the check valve connected to the bypass pipe from closing after the start of the second operation.
 本開示の第1の態様は、
 第1圧縮機(21)と、該第1圧縮機(21)の吐出側に接続される第2圧縮機(22)とを含み、前記第1圧縮機(21)が停止し第2圧縮機(22)が駆動される冷凍サイクルを行う第1運転と、前記第1圧縮機(21)と前記第2圧縮機(22)とが駆動される冷凍サイクルを行う第2運転とを切り換え可能な冷媒回路(20)と、
 前記冷媒回路(20)を制御する制御部(100)とを備え、
 前記冷媒回路(20)は、
 前記第1圧縮機(21)の吸入側と吐出側とを繋ぐバイパス配管(PB)と、
 前記バイパス配管(PB)に接続され、前記第1圧縮機(21)の吐出側から吸入側に向かう冷媒の流れを制限する逆止弁(29)とを有し、
 前記制御部(100)は、前記第2運転の開始前または開始時に、前記第1圧縮機(21)の吐出側と吸入側との差圧を増大させる第1制御を実行する。
The first aspect of the present disclosure is
The first compressor (21) and the second compressor (22) connected to the discharge side of the first compressor (21) are included, and the first compressor (21) is stopped and the second compressor is stopped. It is possible to switch between the first operation of performing the refrigeration cycle in which (22) is driven and the second operation of performing the refrigeration cycle in which the first compressor (21) and the second compressor (22) are driven. Refrigerant circuit (20) and
A control unit (100) for controlling the refrigerant circuit (20) is provided.
The refrigerant circuit (20)
A bypass pipe (PB) connecting the suction side and the discharge side of the first compressor (21), and
It is connected to the bypass pipe (PB) and has a check valve (29) that limits the flow of refrigerant from the discharge side to the suction side of the first compressor (21).
The control unit (100) executes the first control for increasing the differential pressure between the discharge side and the suction side of the first compressor (21) before or at the start of the second operation.
 第1の態様では、バイパス配管(PB)は、第1圧縮機(21)の吸入側と吐出側とを繋ぐため、第1制御により第1圧縮機(21)の吸入側と吐出側との差圧が増大すると、逆止弁(29)の流入側と流出側との差圧も増大する。その結果、第2運転開始以降、逆止弁(29)が閉じなくなることを抑制できる。 In the first aspect, since the bypass pipe (PB) connects the suction side and the discharge side of the first compressor (21), the suction side and the discharge side of the first compressor (21) are connected by the first control. As the differential pressure increases, the differential pressure between the inflow side and the outflow side of the check valve (29) also increases. As a result, it is possible to prevent the check valve (29) from not closing after the start of the second operation.
 本開示の第2の態様は、第1の態様において、
 前記制御部(100)は、前記第1圧縮機(21)及び前記第2圧縮機(22)の停止状態から前記第2運転を開始する前に、前記第1制御として前記第1圧縮機(21)を駆動させる。
A second aspect of the present disclosure is, in the first aspect, the first aspect.
The control unit (100) performs the first compressor (21) as the first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). 21) is driven.
 第2の態様では、第1圧縮機(21)と第2圧縮機(22)とが停止している状態から、第1圧縮機(21)が駆動されるため、冷媒は第1圧縮機(21)によって圧縮される。このことにより、第1圧縮機(21)の吸入側と吐出側との差圧が増大する。この結果、その後の第2運転の開始時において、逆止弁(29)の流入側と流出側との差圧を増大させることができる。 In the second aspect, since the first compressor (21) is driven from the state where the first compressor (21) and the second compressor (22) are stopped, the refrigerant is the first compressor ( It is compressed by 21). As a result, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. As a result, the differential pressure between the inflow side and the outflow side of the check valve (29) can be increased at the start of the subsequent second operation.
 本開示の第3の態様は、第2の態様において、
 前記制御部(100)は、前記第1制御により前記第1圧縮機(21)が駆動する間、前記第1圧縮機(21)の吐出側と吸入側との差圧が所定値以上になると、前記第2運転を実行させる。
A third aspect of the present disclosure is the second aspect.
When the pressure difference between the discharge side and the suction side of the first compressor (21) becomes equal to or higher than a predetermined value while the first compressor (21) is driven by the first control, the control unit (100) , The second operation is executed.
 第3の態様では、第1圧縮機(21)の吐出側と吸入側との差圧が所定値以上に増大させてから、第2運転を開始できる。 In the third aspect, the second operation can be started after the differential pressure between the discharge side and the suction side of the first compressor (21) is increased to a predetermined value or more.
 本開示の第4の態様は、第2の態様において、
 前記制御部(100)は、
 前記第1制御により前記第1圧縮機(21)が駆動する時間が所定時間を越えると、前記第2運転を実行させる。
A fourth aspect of the present disclosure is the second aspect.
The control unit (100)
When the time for driving the first compressor (21) by the first control exceeds a predetermined time, the second operation is executed.
 第1制御により第1圧縮機(21)が駆動されてから所定時間が経過すると、第1圧縮機(21)の吸入側と吐出側の差圧がある程度上昇する。そこで、第4の態様では、第1制御により第1圧縮機(21)が駆動されてから所定時間が経過すると、制御部(100)が第2運転を実行させる。これにより、第1圧縮機(21)の吸入側と吐出側の差圧をある程度上昇させてから、第2運転を開始することができる。 When a predetermined time elapses after the first compressor (21) is driven by the first control, the differential pressure between the suction side and the discharge side of the first compressor (21) rises to some extent. Therefore, in the fourth aspect, when a predetermined time elapses after the first compressor (21) is driven by the first control, the control unit (100) executes the second operation. As a result, the second operation can be started after the differential pressure between the suction side and the discharge side of the first compressor (21) is increased to some extent.
 本開示の第5の態様は、第1~第4の態様のいずれか1つにおいて、
 前記制御部(100)は、前記第1運転から前記第2運転に切り換える前に、前記第1制御として前記第2圧縮機(22)の回転数を低下させる。
A fifth aspect of the present disclosure is, in any one of the first to fourth aspects,
The control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation.
 第5の態様では、第2圧縮機(22)の回転数が低下すると、第2圧縮機(22)の吸入側の圧力が上昇する。ここで、第2圧縮機(22)の吸入側と第1圧縮機(21)の吐出側とはほぼ同圧である。第1圧縮機(21)は停止しているため、第1圧縮機(21)の吐出側と吸入側とはほぼ同圧となる。そのため、第1運転において、第2圧縮機(22)の吸入側の圧力が上昇すると、第1圧縮機(21)の吸入側の圧力を増大できる。このことにより、第2運転の開始時に、第1圧縮機(21)の吐出側の圧力を上昇できる。 In the fifth aspect, when the rotation speed of the second compressor (22) decreases, the pressure on the suction side of the second compressor (22) increases. Here, the suction side of the second compressor (22) and the discharge side of the first compressor (21) have substantially the same pressure. Since the first compressor (21) is stopped, the pressure on the discharge side and the suction side of the first compressor (21) are almost the same. Therefore, in the first operation, when the pressure on the suction side of the second compressor (22) rises, the pressure on the suction side of the first compressor (21) can be increased. As a result, the pressure on the discharge side of the first compressor (21) can be increased at the start of the second operation.
 本開示の第6の態様は、第5の態様において、
 前記制御部(100)は、前記第1制御により前記第2圧縮機(22)の回転数が低下する間、該第2圧縮機(22)の吸入側の冷媒の圧力を示す指標が所定値以上になると、前記第2運転を実行させる。
A sixth aspect of the present disclosure is, in the fifth aspect, the fifth aspect.
The control unit (100) has a predetermined value as an index indicating the pressure of the refrigerant on the suction side of the second compressor (22) while the rotation speed of the second compressor (22) is reduced by the first control. When the above is achieved, the second operation is executed.
 第6の態様では、第1制御により、第2圧縮機の回転数が低下すると、第2圧縮機(22)の吸入側の冷媒の圧力が増大する。第2圧縮機(22)の吸入側の冷媒の圧力が所定値以上になると、第1圧縮機(21)の吐出側の吸入側の圧力も所定値以上となる。制御部(100)は、第1圧縮機(21)の吸入側の圧力が所定値以上になると第2運転を実行する。これにより、第1圧縮機(21)の吸入側と吐出側の差圧をある程度上昇させてから、第2運転を開始することができる。 In the sixth aspect, when the rotation speed of the second compressor decreases due to the first control, the pressure of the refrigerant on the suction side of the second compressor (22) increases. When the pressure of the refrigerant on the suction side of the second compressor (22) becomes a predetermined value or more, the pressure on the suction side of the discharge side of the first compressor (21) also becomes a predetermined value or more. The control unit (100) executes the second operation when the pressure on the suction side of the first compressor (21) becomes equal to or higher than a predetermined value. As a result, the second operation can be started after the differential pressure between the suction side and the discharge side of the first compressor (21) is increased to some extent.
 本開示の第7の態様は、第1~第6の態様において、
 前記制御部(100)は、前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第1圧縮機(21)および前記第2圧縮機(22)の少なくとも一方の回転数を調節する。
A seventh aspect of the present disclosure is the first to sixth aspects.
At the start of the second operation, the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven. The rotation speed of at least one of the first compressor (21) and the second compressor (22) is adjusted so as to be equal to or less than the flow rate of the refrigerant of.
 第7の態様では、第2運転の開始時(第1圧縮機(21)の駆動時)において、第2圧縮機(22)を流れる冷媒の流量が第1圧縮機(21)を流れる流量以下となると、第1圧縮機(21)の吐出側の圧力が上昇する。このことにより、第1圧縮機(21)の吸入側の圧力が上昇するため、第1圧縮機(21)の吐出側と吸入側との差圧を上昇できる。 In the seventh aspect, at the start of the second operation (when the first compressor (21) is driven), the flow rate of the refrigerant flowing through the second compressor (22) is equal to or less than the flow rate flowing through the first compressor (21). Then, the pressure on the discharge side of the first compressor (21) rises. As a result, the pressure on the suction side of the first compressor (21) increases, so that the pressure difference between the discharge side and the suction side of the first compressor (21) can be increased.
 本開示の第8の態様は、第7の態様において、
 前記制御部(100)は、前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第1圧縮機(21)の回転数を変更せず、前記第2圧縮機(22)の回転数を低下させる。
The eighth aspect of the present disclosure is, in the seventh aspect, the seventh aspect.
At the start of the second operation, the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven. The rotation speed of the first compressor (21) is not changed so as to be equal to or less than the flow rate of the refrigerant of the above, and the rotation speed of the second compressor (22) is reduced.
 第8の態様では、第1圧縮機(21)の回転数を変更することなく、第2圧縮機(22)を流れる冷媒の流量を、第1圧縮機(21)を流れる流量以下とすることができる。 In the eighth aspect, the flow rate of the refrigerant flowing through the second compressor (22) is set to be equal to or less than the flow rate flowing through the first compressor (21) without changing the rotation speed of the first compressor (21). Can be done.
 本開示の第9の態様は、第7の態様において、
 前記制御部(100)は、
 前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第2圧縮機(22)の回転数を変更せず、前記第1圧縮機(21)の回転数を上昇させる。
A ninth aspect of the present disclosure is the seventh aspect of the present disclosure.
The control unit (100)
At the start of the second operation, as the first control, the flow rate of the refrigerant of the second compressor (22) being driven becomes equal to or less than the flow rate of the refrigerant of the first compressor (21) being driven. In addition, the rotation speed of the first compressor (21) is increased without changing the rotation speed of the second compressor (22).
 第9の態様では、第2圧縮機(22)の回転数を変更することなく、第2圧縮機(22)を流れる冷媒の流量を、第1圧縮機(21)を流れる流量以下とすることができる。 In the ninth aspect, the flow rate of the refrigerant flowing through the second compressor (22) is set to be equal to or less than the flow rate flowing through the first compressor (21) without changing the rotation speed of the second compressor (22). Can be done.
 本開示の第10の態様は、第1~第9の態様において、
 前記冷媒回路(20)は、
 前記第1圧縮機(21)の吐出側と前記第2圧縮機(22)の吸入側との間に冷媒を導入するインジェクション機構(30)を有し、
 前記制御部(100)は、前記第1運転から前記第2運転に切り換わる前、又は前記第2運転の開始時に、前記第1制御として、前記インジェクション機構(30)により冷媒を前記第1圧縮機(21)の吐出側と前記第2圧縮機(22)の吸入側との間に導入する。
A tenth aspect of the present disclosure is the first to ninth aspects.
The refrigerant circuit (20)
It has an injection mechanism (30) that introduces a refrigerant between the discharge side of the first compressor (21) and the suction side of the second compressor (22).
The control unit (100) first compresses the refrigerant by the injection mechanism (30) as the first control before switching from the first operation to the second operation or at the start of the second operation. It is introduced between the discharge side of the machine (21) and the suction side of the second compressor (22).
 第10の態様では、インジェクション機構(30)により、第1圧縮機(21)と第2圧縮機(22)との間の冷媒の圧力を上昇させることができる。このことにより、第1圧縮機(21)の吐出側の圧力を上昇させることができる。 In the tenth aspect, the pressure of the refrigerant between the first compressor (21) and the second compressor (22) can be increased by the injection mechanism (30). As a result, the pressure on the discharge side of the first compressor (21) can be increased.
 本開示の第11の態様は、第1~第10の態様において、
 前記制御部(100)は、外気温が所定値以下であるとき、前記第1制御を行う。
The eleventh aspect of the present disclosure is the first to tenth aspects.
The control unit (100) performs the first control when the outside air temperature is equal to or lower than a predetermined value.
 第11の態様では、外気温が所定の温度以下において、第1制御を行うことにより第1圧縮機(21)の吸入側と吐出側との差圧が小さくなることを抑制できる。 In the eleventh aspect, it is possible to prevent the differential pressure between the suction side and the discharge side of the first compressor (21) from becoming small by performing the first control when the outside air temperature is equal to or lower than a predetermined temperature.
図1は、実施形態1の冷凍装置の構成を例示する配管図である。FIG. 1 is a piping diagram illustrating the configuration of the freezing device of the first embodiment. 図2は、制御部と各種のセンサと冷媒回路の構成機器との関係を示すブロック図である。FIG. 2 is a block diagram showing the relationship between the control unit, various sensors, and the constituent devices of the refrigerant circuit. 図3は、第1加熱運転時の冷媒の流れを示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the first heating operation. 図4は、第2加熱運転時の冷媒の流れを示す図1相当図である。FIG. 4 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the second heating operation. 図5は、第1冷却運転時の冷媒の流れを示す図1相当図である。FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the first cooling operation. 図6は、第2冷却運転時の冷媒の流れを示す図1相当図である。FIG. 6 is a view corresponding to FIG. 1 showing the flow of the refrigerant during the second cooling operation. 図7は、第1動作における制御部が行う動作のフローチャートである。FIG. 7 is a flowchart of the operation performed by the control unit in the first operation. 図8は、第2動作における制御部が行う動作のフローチャートである。FIG. 8 is a flowchart of the operation performed by the control unit in the second operation. 図9は、変形例1に係る冷凍装置の制御部と各種のセンサと冷媒回路の構成機器との関係を示すブロック図である。FIG. 9 is a block diagram showing the relationship between the control unit of the refrigerating apparatus according to the first modification, various sensors, and the constituent devices of the refrigerant circuit. 図10は、変形例1に係る冷凍装置の制御部が行う動作のフローチャートである。FIG. 10 is a flowchart of an operation performed by the control unit of the refrigerating apparatus according to the first modification. 図11は、変形例2に係る冷凍装置の制御部が行う図7相当図である。FIG. 11 is a view corresponding to FIG. 7 performed by the control unit of the refrigerating apparatus according to the second modification. 図12は、変形例3に係る冷凍装置の制御部が行う図8相当図である。FIG. 12 is a view corresponding to FIG. 8 performed by the control unit of the refrigerating apparatus according to the third modification. 図13は、変形例4に係る冷凍装置の制御部が行う動作のフローチャートである。FIG. 13 is a flowchart of an operation performed by the control unit of the refrigerating apparatus according to the modified example 4.
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。なお、図中の矢印は、冷媒回路における冷媒の流れを示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that the following embodiments are essentially preferred examples and are not intended to limit the scope of the present invention, its applications, or its uses. The arrows in the figure indicate the flow of the refrigerant in the refrigerant circuit.
 《実施形態1》
 図1に示すように、本実施形態1の冷凍装置(10)は、対象となる流体を加熱する。対象となる流体は水である。冷凍装置(10)は、加熱された水を、給湯タンク、暖房用のコイル、床暖房用のコイルなどの利用機器へ供給する。冷凍装置(10)は、対象となる流体を冷却する。対象となる流体は水である。冷凍装置(10)は、冷却された水を、冷房用のコイルなどの利用機器へ供給する。冷凍装置(10)は、冷媒回路(20)と、制御部(100)とを備える。
<< Embodiment 1 >>
As shown in FIG. 1, the freezing device (10) of the first embodiment heats the target fluid. The target fluid is water. The refrigerating device (10) supplies the heated water to the equipment used such as a hot water supply tank, a coil for heating, and a coil for floor heating. The refrigerating device (10) cools the target fluid. The target fluid is water. The refrigerating device (10) supplies the cooled water to the utilization equipment such as a cooling coil. The refrigerating device (10) includes a refrigerant circuit (20) and a control unit (100).
  〔冷媒回路〕
 冷媒回路(20)は、第1圧縮機(21)と、第2圧縮機(22)と、四路切換弁(23)と、熱源側熱交換器(24)と、逆止弁ブリッジ(25)と、膨張弁(26)と、利用側熱交換器(27)と、アキュムレータ(28)と、バイパス逆止弁(29)とを有する。冷媒回路(20)には、冷媒が充填されており、冷媒回路(20)において冷媒が循環することで冷凍サイクルが行われる。冷媒は、例えば、R410A,R32,R407Cなどである。
[Refrigerant circuit]
The refrigerant circuit (20) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), a heat source side heat exchanger (24), and a check valve bridge (25). ), An expansion valve (26), a user-side heat exchanger (27), an accumulator (28), and a bypass check valve (29). The refrigerant circuit (20) is filled with a refrigerant, and the refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit (20). The refrigerant is, for example, R410A, R32, R407C and the like.
 冷媒回路(20)は、第1運転と第2運転とを行うことが可能である。第1運転では、第2圧縮機(22)の一方が駆動され、第1圧縮機(21)が停止する。第2運転では、第1圧縮機(21)および第2圧縮機(22)の両方が駆動される。なお、第1運転と第2運転とについては、後で詳しく説明する。 The refrigerant circuit (20) can perform the first operation and the second operation. In the first operation, one of the second compressors (22) is driven and the first compressor (21) is stopped. In the second operation, both the first compressor (21) and the second compressor (22) are driven. The first operation and the second operation will be described in detail later.
   〈第1圧縮機〉
 第1圧縮機(21)は、吸入した冷媒を圧縮し、圧縮した冷媒を吐出する。第1圧縮機(21)には、第1吸入管(51)および第1吐出管(52)が接続される。第1圧縮機(21)は、例えばスクロール式圧縮機である。第1圧縮機(21)は、圧縮機構(図示せず)と該圧縮機構を駆動する電動機(図示せず)とを有する。
<First compressor>
The first compressor (21) compresses the sucked refrigerant and discharges the compressed refrigerant. A first suction pipe (51) and a first discharge pipe (52) are connected to the first compressor (21). The first compressor (21) is, for example, a scroll type compressor. The first compressor (21) has a compression mechanism (not shown) and an electric motor (not shown) for driving the compression mechanism.
 第1圧縮機(21)の電動機は、可変容量式である。具体的には、電動機には、インバータ装置が接続される。インバータ装置は、電源から電動機に供給される電力の出力周波数を調節する。これにより、第1圧縮機(21)の電動機の回転数(運転周波数)が調節される。 The motor of the first compressor (21) is a variable capacity type. Specifically, an inverter device is connected to the motor. The inverter device adjusts the output frequency of the electric power supplied from the power source to the motor. As a result, the rotation speed (operating frequency) of the electric motor of the first compressor (21) is adjusted.
   〈第2圧縮機〉
 第2圧縮機(22)は、第1圧縮機(21)の吐出側に設けられる。第2圧縮機(22)は、吸入した冷媒を圧縮し、圧縮した冷媒を吐出する。第2圧縮機(22)は、第1圧縮機(21)よりも容量が大きい。第2圧縮機(22)は、第2吸入管(53)と第2吐出管(54)とが接続される。第2吸入管(53)の流入端と、第1吐出管(52)の流出端とが接続される。第1圧縮機(21)と第2圧縮機(22)とは直列に接続される。
<Second compressor>
The second compressor (22) is provided on the discharge side of the first compressor (21). The second compressor (22) compresses the sucked refrigerant and discharges the compressed refrigerant. The second compressor (22) has a larger capacity than the first compressor (21). In the second compressor (22), the second suction pipe (53) and the second discharge pipe (54) are connected. The inflow end of the second suction pipe (53) and the outflow end of the first discharge pipe (52) are connected. The first compressor (21) and the second compressor (22) are connected in series.
 第2圧縮機(22)は、例えば、スクロール式圧縮機である。第2圧縮機(22)は、圧縮機構(図示せず)と該圧縮機構を駆動する電動機(図示せず)とを有する。 The second compressor (22) is, for example, a scroll type compressor. The second compressor (22) has a compression mechanism (not shown) and an electric motor (not shown) for driving the compression mechanism.
 第2圧縮機(22)の電動機は、可変容量式である。具体的には、電動機には、インバータ装置が接続される。インバータ装置は、電源から電動機に供給される電力の出力周波数を調節する。これにより、第2圧縮機(22)の電動機の回転数(運転周波数)が調節される。 The motor of the second compressor (22) is a variable capacity type. Specifically, an inverter device is connected to the motor. The inverter device adjusts the output frequency of the electric power supplied from the power source to the motor. As a result, the rotation speed (operating frequency) of the electric motor of the second compressor (22) is adjusted.
   〈四路切換弁〉
 四路切換弁(23)は、電動式の切換弁である。四路切換弁(23)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換えられる。第1状態では、第1ポート(P1)と第4ポート(P4)とが連通し、第2ポート(P2)と第3ポート(P3)とが連通する。第2状態では、第1ポート(P1)と第3ポート(P3)とが連通し、第2ポート(P2)と第4ポート(P4)とが連通する。
<Four-way switching valve>
The four-way switching valve (23) is an electric switching valve. The four-way switching valve (23) is switched between a first state (a state shown by a solid line in FIG. 1) and a second state (a state shown by a broken line in FIG. 1). In the first state, the first port (P1) and the fourth port (P4) communicate with each other, and the second port (P2) and the third port (P3) communicate with each other. In the second state, the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) and the fourth port (P4) communicate with each other.
 第1ポート(P1)は、第2吐出管(54)の流出端に接続される。第2ポート(P2)は、第1吸入管(51)の流入端に接続される。第3ポート(P3)は、熱源側熱交換器(24)のガス側端部に連通する。第4ポート(P4)は、利用側熱交換器(27)のガス側端部に連通する。 The first port (P1) is connected to the outflow end of the second discharge pipe (54). The second port (P2) is connected to the inflow end of the first suction pipe (51). The third port (P3) communicates with the gas side end of the heat source side heat exchanger (24). The fourth port (P4) communicates with the gas side end of the user side heat exchanger (27).
   〈熱源側熱交換器〉
 熱源側熱交換器(24)は、冷媒と室外空気(熱源側流体の一例)とを熱交換させる。熱源側熱交換器(24)は、室外熱交換器である。
<Heat source side heat exchanger>
The heat source side heat exchanger (24) exchanges heat between the refrigerant and the outdoor air (an example of the heat source side fluid). The heat source side heat exchanger (24) is an outdoor heat exchanger.
   〈逆止弁ブリッジ〉
 逆止弁ブリッジ(25)は、4つの配管と、それぞれの配管に接続される4つの逆止弁(C)とを有する。4つの逆止弁(C)は、第1逆止弁(C1)と第2逆止弁(C2)と第3逆止弁(C3)と第4逆止弁(C4)とを有する。
<Check valve bridge>
The check valve bridge (25) has four pipes and four check valves (C) connected to the respective pipes. The four check valves (C) include a first check valve (C1), a second check valve (C2), a third check valve (C3), and a fourth check valve (C4).
 逆止弁ブリッジ(25)には、主液管(55)が接続される。具体的に、主液管(55)の一端は、第2逆止弁(C2)の流入側と第4逆止弁(C4)の流入側とに接続される。主液管(55)の他端は、第1逆止弁(C1)の流出側と第3逆止弁(C3)の流出側とに接続される。 The main liquid pipe (55) is connected to the check valve bridge (25). Specifically, one end of the main liquid pipe (55) is connected to the inflow side of the second check valve (C2) and the inflow side of the fourth check valve (C4). The other end of the main liquid pipe (55) is connected to the outflow side of the first check valve (C1) and the outflow side of the third check valve (C3).
 逆止弁ブリッジ(25)は、熱源側熱交換器(24)の液側端部と利用側熱交換器(27)の液側端部に連通する。具体的に、第2逆止弁(C2)の流出側および第1逆止弁(C1)の流入側は、熱源側熱交換器(24)の液側端部に連通する。第4逆止弁(C4)の流出側および第3逆止弁(C3)の流入側は、利用側熱交換器(27)の液側端部に連通する。 The check valve bridge (25) communicates with the liquid side end of the heat source side heat exchanger (24) and the liquid side end of the user side heat exchanger (27). Specifically, the outflow side of the second check valve (C2) and the inflow side of the first check valve (C1) communicate with the liquid side end of the heat source side heat exchanger (24). The outflow side of the fourth check valve (C4) and the inflow side of the third check valve (C3) communicate with the liquid side end of the utilization side heat exchanger (27).
 第1~第4逆止弁(C1~C4)の各々は、図1の矢印で示した方向への冷媒の流れを許容し、その逆方向の冷媒の流れを制限する。 Each of the first to fourth check valves (C1 to C4) allows the flow of the refrigerant in the direction indicated by the arrow in FIG. 1 and limits the flow of the refrigerant in the opposite direction.
   〈膨張機構〉
 膨張弁(26)は、冷媒を膨張させて冷媒の圧力を低下させる。膨張弁(26)は減圧機構に対応する。この例では、膨張弁(26)は、開度を調節可能な膨張弁(例えば電子膨張弁)により構成される。膨張弁(26)は、主液管(55)に接続される。
<Expansion mechanism>
The expansion valve (26) expands the refrigerant to reduce the pressure of the refrigerant. The expansion valve (26) corresponds to the decompression mechanism. In this example, the expansion valve (26) is composed of an expansion valve (for example, an electronic expansion valve) whose opening degree can be adjusted. The expansion valve (26) is connected to the main liquid pipe (55).
   〈利用側熱交換器〉
 利用側熱交換器(27)は、冷媒と水とを熱交換させる。利用側熱交換器(27)は、第1流路(27a)と第2流路(27b)とを有する。第1流路(27a)は、冷媒が流れる流路である。第2流路(27b)は、水が流れる流路である。第2流路(27b)は、利用機器が備える利用側回路(61)の途中に接続される。利用側熱交換器(27)では、第1流路(27a)を流れる冷媒と、第2流路(27b)を流れる水とが熱交換する。
<Heat exchanger on the user side>
The user-side heat exchanger (27) exchanges heat between the refrigerant and water. The user-side heat exchanger (27) has a first flow path (27a) and a second flow path (27b). The first flow path (27a) is a flow path through which the refrigerant flows. The second flow path (27b) is a flow path through which water flows. The second flow path (27b) is connected in the middle of the user side circuit (61) provided in the user equipment. In the user-side heat exchanger (27), the refrigerant flowing through the first flow path (27a) and the water flowing through the second flow path (27b) exchange heat.
   〈アキュムレータ〉
 アキュムレータ(28)は、第1吸入管(51)の途中に接続される。アキュムレータ(28)は、気液分離器である。アキュムレータ(28)内では、液冷媒とガス冷媒とに分離されている。アキュムレータ(28)は、ガス冷媒のみがアキュムレータ(28)から流出されるように構成される。
<accumulator>
The accumulator (28) is connected in the middle of the first suction pipe (51). The accumulator (28) is a gas-liquid separator. In the accumulator (28), it is separated into a liquid refrigerant and a gas refrigerant. The accumulator (28) is configured such that only the gas refrigerant flows out of the accumulator (28).
   〈バイパス回路〉
 バイパス回路(60)は、バイパス配管(PB)とバイパス逆止弁(29)を有する。バイパス配管(PB)は、第1圧縮機(21)の吸入側と吐出側とを繋ぐ。具体的に、バイパス配管(PB)の一端は、第1吐出管(52)の流出端と第2吸入管(53)の流入端とに接続される。バイパス配管(PB)の他端は、第1吸入管(51)におけるアキュムレータ(28)と第1圧縮機(21)との間に接続される。
<Bypass circuit>
The bypass circuit (60) has a bypass pipe (PB) and a bypass check valve (29). The bypass pipe (PB) connects the suction side and the discharge side of the first compressor (21). Specifically, one end of the bypass pipe (PB) is connected to the outflow end of the first discharge pipe (52) and the inflow end of the second suction pipe (53). The other end of the bypass pipe (PB) is connected between the accumulator (28) and the first compressor (21) in the first suction pipe (51).
 バイパス逆止弁(29)は、第1圧縮機(21)の吐出側から吸入側に向かう冷媒の流れを制限する一方、その逆方向の冷媒の流れを許容する。具体的に、バイパス逆止弁(29)の流入側と流出側との差圧の絶対値ΔPが所定の圧力差であるΔP以上になると、バイパス配管(PB)の冷媒の流れを遮断するようにバイパス逆止弁(29)の弁が閉じる。ΔPおよびΔPについては後述する。 The bypass check valve (29) limits the flow of refrigerant from the discharge side to the suction side of the first compressor (21), while allowing the flow of refrigerant in the opposite direction. Specifically blocking the absolute value [Delta] P O of the differential pressure between the inlet side and the outlet side of the bypass check valve (29) is equal to or greater than [Delta] P n is a predetermined pressure difference, the flow of the refrigerant in the bypass pipe (PB) The valve of the bypass check valve (29) closes so as to do so. Will be described later [Delta] P O and [Delta] P n.
  〔インジェクション機構〕
 インジェクション機構(30)は、第1圧縮機(21)の吐出側と第2圧縮機(22)の吸入側との間に冷媒を導入する。具体的に、インジェクション機構(30)は、第2運転において、主液管(55)を流れる冷媒の一部を第2圧縮機(22)の吸入側に供給する。インジェクション機構(30)は、インジェクション配管(PJ)とインジェクション膨張弁(31)とを有する。
[Injection mechanism]
The injection mechanism (30) introduces a refrigerant between the discharge side of the first compressor (21) and the suction side of the second compressor (22). Specifically, the injection mechanism (30) supplies a part of the refrigerant flowing through the main liquid pipe (55) to the suction side of the second compressor (22) in the second operation. The injection mechanism (30) has an injection pipe (PJ) and an injection expansion valve (31).
 インジェクション配管(PJ)の一端は、主液管(55)における膨張弁(26)と逆止弁ブリッジ(25)との間に接続される。インジェクション配管(PJ)の他端は、第2吸入管(53)に接続される。 One end of the injection pipe (PJ) is connected between the expansion valve (26) and the check valve bridge (25) in the main liquid pipe (55). The other end of the injection pipe (PJ) is connected to the second suction pipe (53).
 インジェクション膨張弁(31)は、インジェクション配管(PJ)における中間熱交換器(40)の上流側に接続される。インジェクション膨張弁(31)は、インジェクション配管(PJ)を流れる冷媒を減圧する。 The injection expansion valve (31) is connected to the upstream side of the intermediate heat exchanger (40) in the injection pipe (PJ). The injection expansion valve (31) depressurizes the refrigerant flowing through the injection pipe (PJ).
  〔中間熱交換器〕
 中間熱交換器(40)は、第3流路(40a)と第4流路(40b)とを有する。第3流路(40a)は、主液管(55)の途中に接続される。第4流路(40b)はインジェクション配管(PJ)の途中に接続される。中間熱交換器(40)では、主液管(55)を流れる冷媒と、第4流路(40b)を流れる冷媒とが熱交換する。
[Intermediate heat exchanger]
The intermediate heat exchanger (40) has a third flow path (40a) and a fourth flow path (40b). The third flow path (40a) is connected in the middle of the main liquid pipe (55). The fourth flow path (40b) is connected in the middle of the injection pipe (PJ). In the intermediate heat exchanger (40), the refrigerant flowing through the main liquid pipe (55) and the refrigerant flowing through the fourth flow path (40b) exchange heat.
  〔センサ〕
 冷凍装置(10)は、冷媒などの温度を検出する温度センサや、冷媒などの圧力を検出する圧力センサなどの各種のセンサを有する。各種のセンサの検出結果(信号)は、制御部(100)に送信される。例えば、冷凍装置(10)は、第1圧力センサ(41)、第2圧力センサ(42)を有する。
[Sensor]
The refrigerating apparatus (10) has various sensors such as a temperature sensor that detects the temperature of the refrigerant and the like, and a pressure sensor that detects the pressure of the refrigerant and the like. The detection results (signals) of various sensors are transmitted to the control unit (100). For example, the refrigerating device (10) has a first pressure sensor (41) and a second pressure sensor (42).
 第1圧力センサ(41)は、第1吸入管(51)に接続される。第1圧力センサ(41)は、第1吸入管(51)の冷媒の圧力値Pを検出する。圧力値Pは、第1圧縮機(21)の吸入側の圧力の圧力値を示す。圧力値Pは、バイパス逆止弁(29)の流入側の圧力値を示す。 The first pressure sensor (41) is connected to the first suction pipe (51). The first pressure sensor (41) detects the pressure value P 1 of the refrigerant in the first suction pipe (51). The pressure value P 1 indicates the pressure value of the pressure on the suction side of the first compressor (21). The pressure value P 1 indicates the pressure value on the inflow side of the bypass check valve (29).
 第2圧力センサ(42)は、第2吸入管(53)に接続される。第2圧力センサ(42)は、第2吸入管(53)の冷媒の圧力値Pを検出する。圧力値Pは、第2圧縮機(22)の吸入側の圧力値を示す。圧力値Pは、第1圧縮機(21)の吐出側の圧力値を示す。圧力値Pは、バイパス逆止弁(29)の流出側の圧力値を示す。 The second pressure sensor (42) is connected to the second suction pipe (53). Second pressure sensor (42) detects the pressure value P 2 of the refrigerant in the second suction pipe (53). The pressure value P 2 indicates the pressure value on the suction side of the second compressor (22). The pressure value P 2 indicates the pressure value on the discharge side of the first compressor (21). The pressure value P 2 indicates the pressure value on the outflow side of the bypass check valve (29).
  〔制御部〕
 図2に示すように、冷凍装置(10)は、制御部(100)を有する。制御部(100)はマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイスとを有する。
[Control unit]
As shown in FIG. 2, the freezing device (10) has a control unit (100). The control unit (100) has a microcomputer and a memory device for storing software for operating the microcomputer.
 制御部(100)は、各種のセンサの信号や外部からの制御信号に基づいて、冷媒回路(20)を制御する。制御部(100)は、第1圧縮機(21)と、第2圧縮機(22)と、四路切換弁(23)と、膨張弁(26)と、インジェクション膨張弁(31)と、各種のセンサとを接続する複数の通信線を含む。 The control unit (100) controls the refrigerant circuit (20) based on the signals of various sensors and the control signals from the outside. The control unit (100) includes a first compressor (21), a second compressor (22), a four-way switching valve (23), an expansion valve (26), an injection expansion valve (31), and various types. Includes multiple communication lines connecting to the sensor of.
 制御部(100)は、少なくとも、第1圧縮機(21)と、第2圧縮機(22)と、四路切換弁(23)と、膨張弁(26)と、インジェクション膨張弁(31)とに制御信号を出力する出力部を有する。制御部(100)は、各センサの検出値が入力される入力部を有する。 The control unit (100) includes at least the first compressor (21), the second compressor (22), the four-way switching valve (23), the expansion valve (26), and the injection expansion valve (31). It has an output unit that outputs a control signal. The control unit (100) has an input unit into which the detection value of each sensor is input.
  〔冷凍装置の運転動作〕
 実施形態1の冷凍装置(10)では、第1運転と、第2運転とが行われる。第1運転は、第1加熱運転と、第1冷却運転とを含む。第2運転は、第2加熱運転と、第2冷却運転とを含む。第2運転では、第2圧縮機(22)は高段側圧縮機として機能し、第1圧縮機(21)は低段側圧縮機として機能する。
[Operating operation of refrigeration equipment]
In the freezing device (10) of the first embodiment, the first operation and the second operation are performed. The first operation includes a first heating operation and a first cooling operation. The second operation includes a second heating operation and a second cooling operation. In the second operation, the second compressor (22) functions as a high-stage compressor, and the first compressor (21) functions as a low-stage compressor.
   〈第1加熱運転〉
 図3に示すように、第1加熱運転では、利用側熱交換器(27)が凝縮器(放熱器)となり熱源側熱交換器(24)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第1状態に設定される。膨張弁(26)の開度が適宜調節される。インジェクション膨張弁(31)が全閉状態に設定される。第1圧縮機(21)が停止し、第2圧縮機(22)が駆動する。
<First heating operation>
As shown in FIG. 3, in the first heating operation, a refrigeration cycle is performed in which the utilization side heat exchanger (27) serves as a condenser (radiator) and the heat source side heat exchanger (24) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first state. The opening degree of the expansion valve (26) is adjusted as appropriate. The injection expansion valve (31) is set to the fully closed state. The first compressor (21) is stopped and the second compressor (22) is driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、利用側熱交換器(27)において水に放熱して凝縮する。利用側熱交換器(27)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、主液管(55)を流れる。主液管(55)を流れる冷媒は、膨張弁(26)により減圧され、再び逆止弁ブリッジ(25)を通過した後、熱源側熱交換器(24)において蒸発する。熱源側熱交換器(24)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とバイパス配管(PB)とを順に通過し、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to water in the heat exchanger (27) on the user side, and condenses. The refrigerant flowing out of the heat exchanger (27) on the user side passes through the check valve bridge (25) and flows through the main liquid pipe (55). The refrigerant flowing through the main liquid pipe (55) is depressurized by the expansion valve (26), passes through the check valve bridge (25) again, and then evaporates in the heat source side heat exchanger (24). The refrigerant flowing out from the heat source side heat exchanger (24) passes through the four-way switching valve (23), the accumulator (28), and the bypass pipe (PB) in order, and is sucked into the second compressor (22) for compression. Will be done.
   〈第2加熱運転〉
 図4に示すように、第2加熱運転では、利用側熱交換器(27)が凝縮器(放熱器)となり熱源側熱交換器(24)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第1状態に設定される。膨張弁(26)の開度と、インジェクション膨張弁(31)の開度とが適宜調節される。第1圧縮機(21)および第2圧縮機(22)の両方が駆動する。
<Second heating operation>
As shown in FIG. 4, in the second heating operation, a refrigeration cycle is performed in which the heat exchanger (27) on the utilization side serves as a condenser (radiator) and the heat exchanger (24) on the heat source side serves as an evaporator. Specifically, the four-way switching valve (23) is set to the first state. The opening degree of the expansion valve (26) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Both the first compressor (21) and the second compressor (22) are driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、利用側熱交換器(27)において水に放熱して凝縮する。利用側熱交換器(27)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、主液管(55)を流通する。主液管(55)を流通する冷媒は、中間熱交換器(40)の第3流路(40a)において、第4流路(40b)を流れる冷媒に放熱して過冷却される。その後、主液管(55)を流れる冷媒の一部は、インジェクション配管(PJ)に流入し、残りの冷媒は主液管(55)の膨張弁(26)により減圧される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23), dissipates heat to water in the heat exchanger (27) on the user side, and condenses. The refrigerant flowing out of the heat exchanger (27) on the user side passes through the check valve bridge (25) and flows through the main liquid pipe (55). The refrigerant flowing through the main liquid pipe (55) dissipates heat to the refrigerant flowing through the fourth flow path (40b) in the third flow path (40a) of the intermediate heat exchanger (40) and is supercooled. After that, a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ), and the remaining refrigerant is depressurized by the expansion valve (26) of the main liquid pipe (55).
 減圧された冷媒は、逆止弁ブリッジ(25)を通過し、熱源側熱交換器(24)において蒸発する。熱源側熱交換器(24)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とを順に通過し、第1圧縮機(21)に吸入されて圧縮される。第1圧縮機(21)から吐出された冷媒は、第2圧縮機(22)に吸入されて圧縮される。 The decompressed refrigerant passes through the check valve bridge (25) and evaporates in the heat source side heat exchanger (24). The refrigerant flowing out of the heat source side heat exchanger (24) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed. The refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
 一方、インジェクション配管(PJ)に流入した冷媒は、インジェクション膨張弁(31)により減圧され、中間熱交換器(40)の第4流路(40b)において第3流路(40a)を流れる冷媒から吸熱して蒸発する。その後、インジェクション配管(PJ)を流れる冷媒は、第2圧縮機(22)の第2吸入管(53)に導入される。 On the other hand, the refrigerant that has flowed into the injection pipe (PJ) is depressurized by the injection expansion valve (31) and flows from the refrigerant that flows through the third flow path (40a) in the fourth flow path (40b) of the intermediate heat exchanger (40). It absorbs heat and evaporates. After that, the refrigerant flowing through the injection pipe (PJ) is introduced into the second suction pipe (53) of the second compressor (22).
   〈第1冷却運転〉
 図5に示すように、第1冷却運転では、熱源側熱交換器(24)が凝縮器(放熱器)となり利用側熱交換器(27)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第2状態に設定される。膨張弁(26)の開度が適宜調節される。インジェクション膨張弁(31)が全閉状態に設定される。第1圧縮機(21)が停止し、第2圧縮機(22)が駆動する。
<First cooling operation>
As shown in FIG. 5, in the first cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second state. The opening degree of the expansion valve (26) is adjusted as appropriate. The injection expansion valve (31) is set to the fully closed state. The first compressor (21) is stopped and the second compressor (22) is driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、熱源側熱交換器(24)において凝縮する。熱源側熱交換器(24)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、主液管(55)を流れる。主液管(55)を流れる冷媒は、膨張弁(26)により減圧され、再び逆止弁ブリッジ(25)を通過した後、利用側熱交換器(27)において水から吸熱して蒸発する。利用側熱交換器(27)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とバイパス配管(PB)とを順に通過し、第2圧縮機(22)に吸入されて圧縮される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23) and condenses in the heat source side heat exchanger (24). The refrigerant flowing out of the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the main liquid pipe (55). The refrigerant flowing through the main liquid pipe (55) is depressurized by the expansion valve (26), passes through the check valve bridge (25) again, and then absorbs heat from water in the user side heat exchanger (27) and evaporates. The refrigerant flowing out from the heat exchanger (27) on the user side passes through the four-way switching valve (23), the accumulator (28), and the bypass pipe (PB) in order, and is sucked into the second compressor (22) for compression. Will be done.
   〈第2冷却運転〉
 図6に示すように、第2冷却運転では、熱源側熱交換器(24)が凝縮器(放熱器)となり利用側熱交換器(27)が蒸発器となる冷凍サイクルが行われる。具体的には、四路切換弁(23)が第2状態に設定される。膨張弁(26)の開度と、インジェクション膨張弁(31)の開度とが適宜調節される。第1圧縮機(21)および第2圧縮機(22)の両方が駆動する。
<Second cooling operation>
As shown in FIG. 6, in the second cooling operation, a refrigeration cycle is performed in which the heat source side heat exchanger (24) serves as a condenser (radiator) and the user side heat exchanger (27) serves as an evaporator. Specifically, the four-way switching valve (23) is set to the second state. The opening degree of the expansion valve (26) and the opening degree of the injection expansion valve (31) are appropriately adjusted. Both the first compressor (21) and the second compressor (22) are driven.
 第2圧縮機(22)から吐出された冷媒は、四路切換弁(23)を通過し、熱源側熱交換器(24)において凝縮する。熱源側熱交換器(24)から流出した冷媒は、逆止弁ブリッジ(25)を通過し、主液管(55)を流通する。主液管(55)を流通する冷媒は、中間熱交換器(40)の第3流路(40a)において、第4流路(40b)を流れる冷媒に放熱して過冷却される。その後、主液管(55)を流れる冷媒の一部は、インジェクション配管(PJ)に流入し、残りの冷媒は主液管(55)の膨張弁(26)により減圧される。 The refrigerant discharged from the second compressor (22) passes through the four-way switching valve (23) and condenses in the heat source side heat exchanger (24). The refrigerant flowing out from the heat source side heat exchanger (24) passes through the check valve bridge (25) and flows through the main liquid pipe (55). The refrigerant flowing through the main liquid pipe (55) dissipates heat to the refrigerant flowing through the fourth flow path (40b) in the third flow path (40a) of the intermediate heat exchanger (40) and is supercooled. After that, a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ), and the remaining refrigerant is depressurized by the expansion valve (26) of the main liquid pipe (55).
 減圧された冷媒は、逆止弁ブリッジ(25)を通過し、利用側熱交換器(27)において水から吸熱して蒸発する。利用側熱交換器(27)から流出した冷媒は、四路切換弁(23)とアキュムレータ(28)とを順に通過し、第1圧縮機(21)に吸入されて圧縮される。第1圧縮機(21)から吐出された冷媒は、第2圧縮機(22)に吸入されて圧縮される。 The decompressed refrigerant passes through the check valve bridge (25), absorbs heat from water in the user heat exchanger (27), and evaporates. The refrigerant flowing out from the user-side heat exchanger (27) passes through the four-way switching valve (23) and the accumulator (28) in order, is sucked into the first compressor (21), and is compressed. The refrigerant discharged from the first compressor (21) is sucked into the second compressor (22) and compressed.
 一方、インジェクション配管(PJ)に流入した冷媒は、インジェクション膨張弁(31)により減圧され、中間熱交換器(40)の第4流路(40b)において第3流路(40a)を流れる冷媒から吸熱して蒸発する。その後、インジェクション配管(PJ)を流れる冷媒は、第2圧縮機(22)の第2吸入管(53)に導入される。 On the other hand, the refrigerant that has flowed into the injection pipe (PJ) is depressurized by the injection expansion valve (31) and flows from the refrigerant that flows through the third flow path (40a) in the fourth flow path (40b) of the intermediate heat exchanger (40). It absorbs heat and evaporates. After that, the refrigerant flowing through the injection pipe (PJ) is introduced into the second suction pipe (53) of the second compressor (22).
 -第2運転起動時における課題-
 冷凍装置(10)のシステムの停止中や、第1運転の実行中において、外気温度が比較的低いと、停止している第1圧縮機(21)の吸入側の冷媒の圧力も比較的低くなっている場合がある。このような場合、第1圧縮機(21)の圧縮比が一定であると、第2運転開始時において第1圧縮機(21)の吐出側と吸入側との差圧の絶対値は比較的小さくなる。そのため、バイパス逆止弁(29)も流入側と流出側との差圧の絶対値も比較的小さくなり、第2運転が開始されても、第1吸入管(51)を流れる冷媒はバイパス配管(PB)を介して第2圧縮機(22)に吸入される。
-Issues at the start of the second operation-
If the outside air temperature is relatively low while the system of the refrigerating device (10) is stopped or the first operation is being executed, the pressure of the refrigerant on the suction side of the stopped first compressor (21) is also relatively low. It may be. In such a case, if the compression ratio of the first compressor (21) is constant, the absolute value of the differential pressure between the discharge side and the suction side of the first compressor (21) is relatively high at the start of the second operation. It becomes smaller. Therefore, the absolute value of the differential pressure between the inflow side and the outflow side of the bypass check valve (29) is relatively small, and even if the second operation is started, the refrigerant flowing through the first suction pipe (51) is the bypass pipe. It is sucked into the second compressor (22) via (PB).
 この状態が継続されると、第1圧縮機(21)の差圧はより上昇しにくく、第1圧縮機(21)が通常の回転数に達しても、バイパス逆止弁(29)が閉じないままとなる。バイパス逆止弁(29)の閉じない状態が継続されると、第2運転開始後も一部の冷媒はバイパス配管(PB)を経由して第2圧縮機(22)に吸引され続けるため、第1圧縮機(21)と第2圧縮機(22)とによる冷媒の二段圧縮を実現できない。その結果、冷凍装置(10)の能力が低下する問題が生じる。特に、第1圧縮機(21)の方が第2圧縮機(22)よりも圧縮比が小さいため、この問題は顕著に生じ得る。 If this state continues, the differential pressure of the first compressor (21) is less likely to rise, and the bypass check valve (29) closes even when the first compressor (21) reaches the normal rotation speed. Will remain absent. If the bypass check valve (29) is not closed continuously, some of the refrigerant will continue to be sucked into the second compressor (22) via the bypass pipe (PB) even after the start of the second operation. Two-stage compression of the refrigerant by the first compressor (21) and the second compressor (22) cannot be realized. As a result, there arises a problem that the capacity of the refrigerating apparatus (10) is reduced. In particular, since the first compressor (21) has a smaller compression ratio than the second compressor (22), this problem can occur remarkably.
 本実施形態の冷凍装置(10)は、このような課題を考慮し、第2運転開始以降に、バイパス逆止弁(29)が閉じなくなることを抑制する。具体的に、冷凍装置(10)の制御部(100)は、第1制御を実行する。第1制御は、第2運転開始前または第2運転開始時に、第1圧縮機(21)の吐出側と吸入側との差圧を増大させる制御である。 In consideration of such a problem, the refrigerating apparatus (10) of the present embodiment suppresses that the bypass check valve (29) does not close after the start of the second operation. Specifically, the control unit (100) of the freezing device (10) executes the first control. The first control is a control that increases the differential pressure between the discharge side and the suction side of the first compressor (21) before the start of the second operation or at the start of the second operation.
 本実施形態では、制御部(100)は、第1動作および第2動作において、第1制御を実行する。第1動作では、第1圧縮機(21)および第2圧縮機(22)の停止状態から第2運転を開始する前に、第1制御が実行される。第2動作では、第1運転から第2運転に切り換える前に、第1制御が実行される。 In the present embodiment, the control unit (100) executes the first control in the first operation and the second operation. In the first operation, the first control is executed before the second operation is started from the stopped state of the first compressor (21) and the second compressor (22). In the second operation, the first control is executed before switching from the first operation to the second operation.
 〈第1動作〉
 第1圧縮機(21)及び第2圧縮機(22)の停止中において、制御部(100)に第2運転を実行させる運転指令が入力されると、以下の第1動作が行われる。
<First operation>
While the first compressor (21) and the second compressor (22) are stopped, when an operation command for executing the second operation is input to the control unit (100), the following first operation is performed.
 制御部(100)は、第1圧縮機(21)および第2圧縮機(22)の停止状態から第2運転を開始する前に、第1制御として第1圧縮機(21)を駆動させる。制御部(100)は、第1制御により第1圧縮機(21)が駆動する間、第1圧縮機(21)の吐出側と吸入側との差圧が所定値以上になると、第2運転を実行させる。第1動作における第1制御について、図7を参照しながら具体的に説明する。 The control unit (100) drives the first compressor (21) as the first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). The control unit (100) performs a second operation when the differential pressure between the discharge side and the suction side of the first compressor (21) exceeds a predetermined value while the first compressor (21) is driven by the first control. To execute. The first control in the first operation will be specifically described with reference to FIG. 7.
 ステップST11では、冷凍装置(10)のシステムが停止した状態において、制御部(100)は、第1制御を実行する。具体的に、制御部(100)は、四路切換弁(23)を第1状態に切り換える。制御部(100)は、第2圧縮機(22)を停止状態にし、第1圧縮機(21)を駆動させる。制御部(100)は、膨張弁(26)の開度を適宜調節し、インジェクション
膨張弁(31)を全閉状態に設定する。
In step ST11, the control unit (100) executes the first control while the system of the refrigerating apparatus (10) is stopped. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) stops the second compressor (22) and drives the first compressor (21). The control unit (100) appropriately adjusts the opening degree of the expansion valve (26) and sets the injection expansion valve (31) to the fully closed state.
 第1制御が実行されると、第1圧縮機(21)の吸入側と吐出側との差圧が増大する。これに伴い、バイパス逆止弁(29)の流入側と流出側との差圧も増大する。第1制御実行後、ステップST12が実行される。 When the first control is executed, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. Along with this, the differential pressure between the inflow side and the outflow side of the bypass check valve (29) also increases. After executing the first control, step ST12 is executed.
 ステップST12では、制御部(100)は、第1圧縮機(21)の吐出側と吸入側との差圧であるΔPが、所定値であるΔP以上であるか否かを判定する。具体的に、制御部(100)は、第1圧力センサ(41)が検出する圧力値Pと、第2圧力センサ(42)が検出する圧力値Pとの差からΔPを求める。制御部(100)は、ΔPがΔP以上であるか否かを判定する。圧力値Pは、バイパス逆止弁(29)の流入側の圧力を示し、圧力値Pは、バイパス逆止弁(29)の流出側の圧力を示す。そのため、バイパス逆止弁(29)の流入側と流出側との差圧もΔPとなる。このことにより、ΔP≧ΔPであれば、バイパス逆止弁(29)の弁を閉じることができる。 In step ST12, the control unit (100), [Delta] P O is the differential pressure between the discharge side and the suction side of the first compressor (21), it is determined whether the [Delta] P n or more predetermined values. Specifically, the control unit (100) includes a pressure value P 1 of the first pressure sensor (41) detects, seek [Delta] P O from the difference between the pressure value P 2 by the second pressure sensor (42) detects. Controller (100), [Delta] P O is equal to or larger than [Delta] P n. The pressure value P 1 indicates the pressure on the inflow side of the bypass check valve (29), and the pressure value P 2 indicates the pressure on the outflow side of the bypass check valve (29). Therefore, the differential pressure between the inflow side of the bypass check valve (29) and the outflow side the [Delta] P O. Thus, if ΔP O ≧ ΔP n, it is possible to close the valve of the bypass check-valve (29).
 ΔP≧ΔPであると判定されると、ステップST13が実行される。一方、ΔPがΔP未満であると判定されると、バイパス逆止弁(29)の弁は閉まらないため、再度ステップST11が実行される。 When it is determined that the ΔP O ≧ ΔP n, step ST13 is executed. On the other hand, if [Delta] P O is determined to be less than [Delta] P n, since not close the valve of the bypass check valve (29), step ST11 is executed again.
 ステップST13では、制御部(100)は、第2運転を開始する。具体的に、制御部(100)は、第2圧縮機(22)を駆動させる。第2運転の開始時には、上述した第1制御により、バイパス逆止弁(29)の流出側と流入側との差圧が増大している。そのため、第2運転開始以降、バイパス逆止弁(29)が閉じなくなることを抑制できる。 In step ST13, the control unit (100) starts the second operation. Specifically, the control unit (100) drives the second compressor (22). At the start of the second operation, the differential pressure between the outflow side and the inflow side of the bypass check valve (29) is increased by the first control described above. Therefore, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
 〈第2動作〉
 第1運転から第2運転に切り換える前に、制御部(100)に第2運転を実行させる運転指令が入力されると、以下の第2動作が行われる。制御部(100)は、第1運転から第2運転に切り換える前に、第1制御として第2圧縮機(22)の回転数を低下させる。制御部(100)は、第1制御により第2圧縮機(22)の回転数が低下する間、第2圧縮機(22)の吸入側の冷媒の圧力を示す指標が所定値以上になると、第2運転を実行させる。第2動作における第1制御について、図8を参照しながら具体的に説明する。
<Second operation>
If an operation command for executing the second operation is input to the control unit (100) before switching from the first operation to the second operation, the following second operation is performed. The control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation. When the index indicating the pressure of the refrigerant on the suction side of the second compressor (22) becomes equal to or higher than a predetermined value, the control unit (100) determines that the rotation speed of the second compressor (22) is reduced by the first control. The second operation is executed. The first control in the second operation will be specifically described with reference to FIG.
 ステップST21では、制御部(100)は、第1運転を開始させる。具体的に、制御部(100)は、四路切換弁(23)を第1状態に切り換える。制御部(100)は、第2圧縮機(22)を停止状態にし、第1圧縮機(21)を駆動させる。制御部(100)は、膨張弁(26)の開度を適宜調節し、インジェクション膨張弁(31)を全閉状態に設定する。第1運転開始後、ステップST22が実行される。 In step ST21, the control unit (100) starts the first operation. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) stops the second compressor (22) and drives the first compressor (21). The control unit (100) appropriately adjusts the opening degree of the expansion valve (26) and sets the injection expansion valve (31) to the fully closed state. After the start of the first operation, step ST22 is executed.
 ステップST22では、制御部(100)は、第1制御を実行する。具体的に、制御部(100)は、第2圧縮機(22)の回転数を低下させる。第1制御により、第2圧縮機(22)の回転数が低下すると、第2圧縮機(22)の吐出側の圧力が上昇する。第2圧縮機(22)の吐出側と第1圧縮機(21)の吸入側との圧力はほぼ同圧である。第1圧縮機(21)は停止しているため、第1圧縮機(21)の吐出側と吸入側との圧力はほぼ同圧である。このことにより、第2圧縮機(22)の回転数の低下により、第1圧縮機(21)の吸入側の圧力も増大する。 In step ST22, the control unit (100) executes the first control. Specifically, the control unit (100) reduces the rotation speed of the second compressor (22). When the rotation speed of the second compressor (22) decreases due to the first control, the pressure on the discharge side of the second compressor (22) increases. The pressures on the discharge side of the second compressor (22) and the suction side of the first compressor (21) are almost the same. Since the first compressor (21) is stopped, the pressures on the discharge side and the suction side of the first compressor (21) are almost the same. As a result, the pressure on the suction side of the first compressor (21) also increases due to the decrease in the rotation speed of the second compressor (22).
 ステップST23では、制御部(100)は、圧力値Pが所定の圧力値P以上であるか否かを判定する。第2圧縮機(22)の吸入側の冷媒の圧力を示す指標とは、第2圧力センサ(42)が検出する圧力値Pである。圧力値Pは、第2運転開始(第1圧縮機(21)の駆動)前に圧力値Pが圧力値P以上のとき、第2運転開始(第1圧縮機(21)の駆動)時に、ΔP≧ΔPとなる値である。言い換えると、第2圧縮機(22)の回転数が低下することにより、第2運転開始前にP≧Pとなると、バイパス逆止弁(29)は閉じることができる。 In step ST23, the control unit (100) determines whether or not the pressure value P 2 is equal to or higher than the predetermined pressure value P m. The indicator of the pressure on the suction side of the refrigerant of the second compressor (22), a pressure value P 2 by the second pressure sensor (42) detects. The pressure value P m is such that when the pressure value P 2 is equal to or higher than the pressure value P m before the start of the second operation (driving the first compressor (21)), the pressure value P m starts the second operation (driving the first compressor (21)). ) at a value that is a ΔP O ≧ ΔP n. In other words, the bypass check valve (29) can be closed when P 2 ≧ P m before the start of the second operation due to the decrease in the rotation speed of the second compressor (22).
 P≧Pであると判定されると、ステップST24が実行される。PがP未満であると判定されると、ステップST22が実行される。 If it is determined that P 2 ≧ P m , step ST24 is executed. If it is determined that P 2 is less than P m , step ST22 is executed.
 ステップST24では、制御部(100)は第2運転を開始する。具体的に、制御部(100)は、第1圧縮機(21)を駆動させる。第2運転の開始時には、上述した第1制御により、バイパス逆止弁(29)の流出側と流入側との差圧が増大している。そのため、第2運転開始以降、バイパス逆止弁(29)が閉じなくなることを抑制できる。 In step ST24, the control unit (100) starts the second operation. Specifically, the control unit (100) drives the first compressor (21). At the start of the second operation, the differential pressure between the outflow side and the inflow side of the bypass check valve (29) is increased by the first control described above. Therefore, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
 -実施形態の効果-
 実施形態の特徴(1)では、冷凍装置(10)の冷媒回路(20)は、第1圧縮機(21)の吸入側と吐出側とを繋ぐバイパス配管(PB)と、バイパス配管(PB)に接続され、第1圧縮機(21)の吐出側から吸入側に向かう冷媒の流れを制限する逆止弁(29)とを有する。冷凍装置(10)は、冷媒回路(20)を制御する制御部(100)を備え、該制御部(100)は、第2運転の開始前または開始時に、第1圧縮機(21)の吐出側と吸入側との差圧を増大させる第1制御を実行する。
-Effect of embodiment-
In the feature (1) of the embodiment, the refrigerant circuit (20) of the refrigerating apparatus (10) has a bypass pipe (PB) connecting the suction side and the discharge side of the first compressor (21) and a bypass pipe (PB). It has a check valve (29) that limits the flow of the refrigerant from the discharge side to the suction side of the first compressor (21). The refrigerating apparatus (10) includes a control unit (100) that controls the refrigerant circuit (20), and the control unit (100) discharges the first compressor (21) before or at the start of the second operation. The first control is performed to increase the differential pressure between the side and the suction side.
 実施形態の特徴(1)によると、第1圧縮機の吸入側と吐出側との差圧が増大すると同時に、バイパス逆止弁(29)の流入側と流出側との差圧も増大する。そのため、第2運転が開始以降に、バイパス逆止弁(29)が閉まらなくなることを抑制できる。 According to the feature (1) of the embodiment, the differential pressure between the suction side and the discharge side of the first compressor increases, and at the same time, the differential pressure between the inflow side and the outflow side of the bypass check valve (29) also increases. Therefore, it is possible to prevent the bypass check valve (29) from being closed after the second operation is started.
 加えて、第2運転開始後に、冷媒がバイパス配管(PB)を経由して第2圧縮機(22)に吸引されることが抑制される。その結果、第1圧縮機(21)と第2圧縮機(22)とによる冷媒の通常の二段圧縮を実現でき、冷凍装置(10)の能力の低下を抑制できる。 In addition, after the start of the second operation, it is suppressed that the refrigerant is sucked into the second compressor (22) via the bypass pipe (PB). As a result, the usual two-stage compression of the refrigerant by the first compressor (21) and the second compressor (22) can be realized, and the decrease in the capacity of the refrigerating device (10) can be suppressed.
 実施形態の特徴(2)では、制御部(100)は、第1圧縮機(21)及び第2圧縮機(22)の停止状態から第2運転を開始する前に、第1制御として第1圧縮機(21)を駆動させる。 In the feature (2) of the embodiment, the control unit (100) is first controlled as a first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). Drive the compressor (21).
 実施形態の特徴(2)によると、第1圧縮機(21)と第2圧縮機(22)とが停止している状態から、第1圧縮機(21)が駆動されるため、冷媒は第1圧縮機(21)によって圧縮される。このことにより、第1圧縮機(21)の吸入側と吐出側との差圧が増大する。この結果、その後の第2運転の開始時において、バイパス逆止弁(29)の流入側と流出側との差圧を増大させることができる。その結果、第2運転開始以降、バイパス逆止弁(29)が閉まらなくなることを抑制できる。 According to the feature (2) of the embodiment, since the first compressor (21) is driven from the state where the first compressor (21) and the second compressor (22) are stopped, the refrigerant is the first 1 Compressed by the compressor (21). As a result, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. As a result, the differential pressure between the inflow side and the outflow side of the bypass check valve (29) can be increased at the start of the subsequent second operation. As a result, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
 実施形態の特徴(3)では、制御部(100)は、第1制御により第1圧縮機(21)が駆動する間、第1圧縮機(21)の吐出側と吸入側との差圧が所定値以上になると、第2運転を実行させる。 In the feature (3) of the embodiment, the control unit (100) has a pressure difference between the discharge side and the suction side of the first compressor (21) while the first compressor (21) is driven by the first control. When the value exceeds the predetermined value, the second operation is executed.
 実施形態の特徴(3)によると、第1動作において、第1圧縮機(21)が駆動される間、第1圧縮機(21)の吐出側と吸入側との差圧ΔPが、所定値であるΔP以上になると、第2運転を開始できる。バイパス逆止弁(29)の流入側と流出側との差圧がΔP以上に増大すると、バイパス逆止弁(29)は閉じることができる。その結果、第2運転開始以降、バイパス逆止弁(29)が閉まらなくなることを抑制できる。 According to a feature (3) of the embodiment, in the first operation, while the first compressor (21) is driven, the differential pressure [Delta] P O between the discharge side and the suction side of the first compressor (21) is predetermined When the value becomes ΔP n or more, the second operation can be started. When the differential pressure between the inflow side and the outflow side of the bypass check valve (29) increases to ΔP n or more, the bypass check valve (29) can be closed. As a result, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
 実施形態の特徴(4)では、制御部(100)は、第1運転から第2運転に切り換える前に、第1制御として第2圧縮機(22)の回転数を低下させる。 In the feature (4) of the embodiment, the control unit (100) reduces the rotation speed of the second compressor (22) as the first control before switching from the first operation to the second operation.
 実施形態の特徴(4)によると、第2動作において、第2圧縮機(22)の回転数が低下すると、第2圧縮機(22)の吸入側の圧力が上昇すると同時に、第1圧縮機(21)の吐出側の圧力も上昇する。第1運転において、第1圧縮機(21)の吸入側と吐出側とはほぼ同圧であるため、第2運転に切り換える前に、第1圧縮機(21)の吸入側の圧力を上昇させることができる。このことにより、第2運転が開始された時、第1圧縮機(21)の吐出側の冷媒の圧力は上昇する。その結果、ΔPが増大し、第2運転開始以降に、バイパス逆止弁(29)が閉じなくなることを抑制できる。 According to the feature (4) of the embodiment, in the second operation, when the rotation speed of the second compressor (22) decreases, the pressure on the suction side of the second compressor (22) increases, and at the same time, the first compressor The pressure on the discharge side of (21) also rises. In the first operation, the suction side and the discharge side of the first compressor (21) have substantially the same pressure, so the pressure on the suction side of the first compressor (21) is increased before switching to the second operation. be able to. As a result, when the second operation is started, the pressure of the refrigerant on the discharge side of the first compressor (21) rises. As a result, it increases [Delta] P O is the second operation since the start of the bypass check-valve (29) can be prevented from not closed.
 実施形態の特徴(5)では、制御部(100)は、第1制御により第2圧縮機(22)の回転数が低下する間、第2圧縮機(22)の吸入側の冷媒の圧力を示す指標が所定値以上になると、第2運転を実行させる。 In the feature (5) of the embodiment, the control unit (100) applies the pressure of the refrigerant on the suction side of the second compressor (22) while the rotation speed of the second compressor (22) is reduced by the first control. When the indicated index exceeds a predetermined value, the second operation is executed.
 実施形態の特徴(5)によると、第1制御により、第2運転開始前に、第2圧縮機(22)の吸入側の圧力値Pが所定値である圧力値P以上になると、第2運転を開始できる。圧力値Pが圧力値P以上になると、第1圧縮機(21)の吸入側の圧力値を示すPも圧力値P以上になる。圧力値Pは、ΔPがΔP以上となる値である。このことより、第2運転開始以降に、バイパス逆止弁(29)が閉じなくなることを確実に抑制できる。 According to the feature (5) of the embodiment, when the pressure value P 2 on the suction side of the second compressor (22) becomes equal to or higher than the predetermined value P m before the start of the second operation by the first control, The second operation can be started. When the pressure value P 2 becomes the pressure value P m or more, the pressure value P 1 indicating the pressure value on the suction side of the first compressor (21) also becomes the pressure value P m or more. Pressure value P m is a value [Delta] P O is greater than or equal to [Delta] P n. From this, it is possible to surely prevent the bypass check valve (29) from closing after the start of the second operation.
 《実施形態1の変形例1》
 図9に示すように、本変形例1の冷凍装置(10)は、第1回転検出部(45)、第2回転検出部(46)、第1温度センサ(47)、および第2温度センサ(48)を有する。これらの検出部(45,46)およびセンサ(47,48)は、通信線により制御部(100)と接続される。
<< Modification 1 of Embodiment 1 >>
As shown in FIG. 9, the refrigerating apparatus (10) of the present modification 1 includes a first rotation detection unit (45), a second rotation detection unit (46), a first temperature sensor (47), and a second temperature sensor. Has (48). These detectors (45, 46) and sensors (47, 48) are connected to the control unit (100) by a communication line.
 第1回転検出部(45)は、第1圧縮機(21)に設けられる。第1回転検出部(45)は第1圧縮機(21)の回転数を検出する。第1回転検出部(45)は、例えば、第1圧縮機(21)へ供給される電流を検出する電流センサである。該電流センサが検出する電流値に基づいて第1圧縮機(21)の回転数が検出される。 The first rotation detection unit (45) is provided in the first compressor (21). The first rotation detection unit (45) detects the rotation speed of the first compressor (21). The first rotation detection unit (45) is, for example, a current sensor that detects the current supplied to the first compressor (21). The rotation speed of the first compressor (21) is detected based on the current value detected by the current sensor.
 第2回転検出部(46)は、第2圧縮機(22)に設けられる。第2回転検出部(46)は第2圧縮機(22)の回転数を検出する。第2回転検出部(46)は、例えば、第2圧縮機(22)へ供給される電流を検出する電流センサである。該電流センサが検出する電流値に基づいて第2圧縮機(22)の回転数が検出される。 The second rotation detection unit (46) is provided in the second compressor (22). The second rotation detection unit (46) detects the rotation speed of the second compressor (22). The second rotation detection unit (46) is, for example, a current sensor that detects the current supplied to the second compressor (22). The rotation speed of the second compressor (22) is detected based on the current value detected by the current sensor.
 第1温度センサ(47)は、第1吸入管(51)に接続される。第1温度センサ(47)は、第1圧縮機(21)に吸入される冷媒の温度を検出する。 The first temperature sensor (47) is connected to the first suction pipe (51). The first temperature sensor (47) detects the temperature of the refrigerant sucked into the first compressor (21).
 第2温度センサ(48)は、第2吸入管(53)に接続される。第2温度センサ(48)は、第2圧縮機(22)に吸入される冷媒の温度を検出する。 The second temperature sensor (48) is connected to the second suction pipe (53). The second temperature sensor (48) detects the temperature of the refrigerant sucked into the second compressor (22).
 本変形例1の冷凍装置(10)では、制御部(100)に第2運転を実行させる運転指令が入力されると、以下の第3動作が行われる。第3動作では、制御部(100)は、冷凍装置(10)のシステムの停止状態から第1圧縮機(21)と第2圧縮機(22)との両方を同時に駆動させることにより、第2運転を開始させる。制御部(100)は第2運転の開始時に、第1制御を実行する。具体的に、駆動中の第2圧縮機(22)の冷媒の流量が、駆動中の第1圧縮機(21)の冷媒の流量以下となるように、第1制御として、第1圧縮機(21)の回転数を変更せず、第2圧縮機(22)の回転数を低下させる。第3動作における第1制御について、図10を参照しながら説明する。 In the refrigerating apparatus (10) of the present modification 1, when an operation command for executing the second operation is input to the control unit (100), the following third operation is performed. In the third operation, the control unit (100) drives both the first compressor (21) and the second compressor (22) at the same time from the stopped state of the system of the refrigerating device (10), so that the second operation is performed. Start operation. The control unit (100) executes the first control at the start of the second operation. Specifically, as the first control, the first compressor ( The rotation rate of the second compressor (22) is reduced without changing the rotation rate of 21). The first control in the third operation will be described with reference to FIG.
 ステップST31では、制御部(100)は、第2運転を開始させる。具体的に、制御部(100)は、四路切換弁(23)を第1状態に切り換える。制御部(100)は、第1圧縮機(21)
と第2圧縮機(22)とを駆動させる。制御部(100)は、膨張弁(26)の開度を適宜調節する。第2運転開始後、ステップST32が実行される。
In step ST31, the control unit (100) starts the second operation. Specifically, the control unit (100) switches the four-way switching valve (23) to the first state. The control unit (100) is the first compressor (21).
And the second compressor (22) are driven. The control unit (100) appropriately adjusts the opening degree of the expansion valve (26). After the start of the second operation, step ST32 is executed.
 ステップST32では、制御部(100)は、第1制御を実行する。第1制御により、第1圧縮機(21)の回転数は変更されず、第2圧縮機(22)の回転数が低下する。そのため、第1圧縮機(21)の冷媒の流量は変化しないが、第2圧縮機(22)の冷媒の流量は減少する。第2圧縮機(22)の吸入側および第1圧縮機(21)の吐出側の圧力が上昇する。 In step ST32, the control unit (100) executes the first control. By the first control, the rotation speed of the first compressor (21) is not changed, and the rotation speed of the second compressor (22) is reduced. Therefore, the flow rate of the refrigerant of the first compressor (21) does not change, but the flow rate of the refrigerant of the second compressor (22) decreases. The pressure on the suction side of the second compressor (22) and the pressure on the discharge side of the first compressor (21) increase.
 ステップST33では、制御部(100)は、第2圧縮機(22)の冷媒の流量M2が、第1圧縮機(21)の冷媒の流量M1以下であるか否かを判定する。流量M2が流量M1以下となると、第2圧縮機(22)の吸入側および第1圧縮機(21)の吐出側の圧力が増大し、バイパス逆止弁(29)は閉じることができる。このことにより、第1圧縮機(21)の吸入側と吐出側との差圧が増大する。流量M1≧流量M2と判定されると、第1制御が解除され通常の動作に移行する。第2圧縮機(22)の回転数は、利用側機器の負荷に応じて調整される。流量M1が流量M2未満であると判定されると、再度ステップST32が実行される。 In step ST33, the control unit (100) determines whether or not the flow rate M2 of the refrigerant of the second compressor (22) is equal to or less than the flow rate M1 of the refrigerant of the first compressor (21). When the flow rate M2 becomes equal to or less than the flow rate M1, the pressures on the suction side of the second compressor (22) and the discharge side of the first compressor (21) increase, and the bypass check valve (29) can be closed. As a result, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. When it is determined that the flow rate M1 ≥ the flow rate M2, the first control is released and the normal operation is started. The rotation speed of the second compressor (22) is adjusted according to the load of the equipment on the user side. If it is determined that the flow rate M1 is less than the flow rate M2, step ST32 is executed again.
 ここで、制御部(100)は、圧縮機の回転数Nと、押しのけ容積(シリンダ容積)Vと、吸入密度ρとに基づいて、圧縮機の冷媒の流量Mを求める。流量Mは、質量流量である。具体的に、流量Mは、M=N×V×ρにより求められる。 Here, the control unit (100) obtains the flow rate M of the refrigerant of the compressor based on the rotation speed N of the compressor, the push-out volume (cylinder volume) V, and the suction density ρ. The flow rate M is a mass flow rate. Specifically, the flow rate M is obtained by M = N × V × ρ.
 回転数Nは、回転数検出部(45,46)によって求められる。吸入密度は、各圧縮機(21,22)に吸入される冷媒の温度及び圧力によって求められる。押しのけ容積Vは、各圧縮機(21,22)の仕様に応じて予め制御部(100)に設定される。 The rotation speed N is obtained by the rotation speed detection unit (45, 46). The suction density is determined by the temperature and pressure of the refrigerant sucked into each compressor (21, 22). The push-out volume V is set in advance in the control unit (100) according to the specifications of each compressor (21, 22).
 具体的に、制御部(100)は、第1回転検出部(45)の検出値に基づいて第1圧縮機(21)の回転数N1を求める。制御部(100)は、第1圧力センサ(41)の検出値と第1温度センサ(47)の検出値とに基づいて吸入密度ρ1を求める。制御部(100)は、回転数N1と、吸入密度ρ1と、第1圧縮機(21)の押しのけ容積V1とに基づいて第1圧縮機(21)の冷媒の流量M1を求める。 Specifically, the control unit (100) obtains the rotation speed N1 of the first compressor (21) based on the detection value of the first rotation detection unit (45). The control unit (100) obtains the suction density ρ1 based on the detected value of the first pressure sensor (41) and the detected value of the first temperature sensor (47). The control unit (100) obtains the flow rate M1 of the refrigerant of the first compressor (21) based on the rotation speed N1, the suction density ρ1, and the push-out volume V1 of the first compressor (21).
 制御部(100)は、第2回転検出部(46)の検出値に基づいて第2圧縮機(22)の回転数N2を求める。制御部(100)は、第2圧力センサ(42)の検出値と第2温度センサ(48)の検出値とに基づいて吸入密度ρ2を求める。制御部(100)は、回転数N2と、吸入密度ρ2と、第2圧縮機(22)の押しのけ容積V2とに基づいて第2圧縮機(22)の冷媒の流量M2を求める。 The control unit (100) obtains the rotation speed N2 of the second compressor (22) based on the detection value of the second rotation detection unit (46). The control unit (100) obtains the suction density ρ2 based on the detected value of the second pressure sensor (42) and the detected value of the second temperature sensor (48). The control unit (100) obtains the flow rate M2 of the refrigerant of the second compressor (22) based on the rotation speed N2, the suction density ρ2, and the push-out volume V2 of the second compressor (22).
 本変形例によると、第3動作において、第1圧縮機(21)の回転数を変更することなく、第2圧縮機(22)を流れる冷媒の流量を、第1圧縮機(21)を流れる流量以下とすることができる。第2圧縮機(22)の回転数を制御するだけでよいので、第1制御を簡便に実行できる。 According to this modification, in the third operation, the flow rate of the refrigerant flowing through the second compressor (22) flows through the first compressor (21) without changing the rotation speed of the first compressor (21). It can be less than or equal to the flow rate. Since it is only necessary to control the rotation speed of the second compressor (22), the first control can be easily executed.
 加えて、第1制御により、第1圧縮機(21)の流量が第2圧縮機(22)と同等流量以上になるまでの時間を短縮できる。このことにより、第1圧縮機(21)の吐出側と吸入側との差圧ΔPをすみやかにΔP以上にすることができる。その結果、第2運転開始以降、バイパス逆止弁(29)が閉じなくなることを抑制できる。 In addition, the first control can shorten the time until the flow rate of the first compressor (21) becomes equal to or higher than the flow rate of the second compressor (22). Thus, it is possible to quickly be at least [Delta] P n differential pressure [Delta] P O between the discharge side and the suction side of the first compressor (21). As a result, it is possible to prevent the bypass check valve (29) from not closing after the start of the second operation.
 《実施形態の変形例2》
 実施形態の変形例2では、第1動作における第1制御後の判定方法が上記実施形態と異なる。具体的に、図11を参照しながら説明する。
<< Modification 2 of the embodiment >>
In the second modification of the embodiment, the determination method after the first control in the first operation is different from that of the above embodiment. Specifically, it will be described with reference to FIG.
 ステップST41では、制御部(100)は、実施形態1のステップST11と同様の第1制御を実行する。 In step ST41, the control unit (100) executes the same first control as in step ST11 of the first embodiment.
 ステップST42では、制御部(100)は、第1圧縮機(21)が駆動される時間が所定時間を超えたか否かを判定する。第1圧縮機(21)が駆動される時間が所定時間を超えると、第1圧縮機(21)の吸入側と吐出側との差圧が増大する。制御部(100)が、所定時間を経過したと判定した場合、ステップST43が実行される。制御部(100)が所定時間を経過していないと判定した場合、再度ステップST42が実行される。 In step ST42, the control unit (100) determines whether or not the time for driving the first compressor (21) exceeds a predetermined time. When the time for driving the first compressor (21) exceeds a predetermined time, the differential pressure between the suction side and the discharge side of the first compressor (21) increases. When the control unit (100) determines that the predetermined time has elapsed, step ST43 is executed. If the control unit (100) determines that the predetermined time has not elapsed, step ST42 is executed again.
 ステップST43では、制御部(100)は、実施形態1のステップST13と同様に、第2圧縮機(22)を駆動させて第2運転を実行させる。 In step ST43, the control unit (100) drives the second compressor (22) to execute the second operation, as in step ST13 of the first embodiment.
 本変形例では、制御部(100)は、第1圧縮機(21)が駆動後、所定時間を経過したか否かを判定される。第1圧縮機(21)の吐出側と吸入側との差圧ΔPを検出する必要がないため、第2運転開始以降、バイパス逆止弁(29)が閉じなくなることを簡便に抑制できる。 In this modification, the control unit (100) determines whether or not a predetermined time has elapsed after the first compressor (21) is driven. It is not necessary to detect the differential pressure [Delta] P O between the discharge side and the suction side of the first compressor (21), it can be easily prevented that the second operation since the start of the bypass check-valve (29) is not closed.
 《実施形態の変形例3》
 実施形態の変形例3に係る第1制御は、第2動作における上記実施形態の第1制御と異なる。本変形例では、制御部(100)は、第1運転から第2運転に切り換わる前に、第1制御として、インジェクション機構(30)により冷媒を第1圧縮機(21)の吐出側と第2圧縮機(22)の吸入側との間に導入する。具体的に、図12を参照しながら説明する。
<< Modification 3 of the embodiment >>
The first control according to the third modification of the embodiment is different from the first control of the above embodiment in the second operation. In this modification, the control unit (100) uses the injection mechanism (30) to discharge the refrigerant to the discharge side of the first compressor (21) and the first control before switching from the first operation to the second operation. 2 Introduce between the compressor (22) and the suction side. Specifically, it will be described with reference to FIG.
 ステップST51では、制御部(100)は、実施形態1のステップST21と同様に第1運転を実行させる。 In step ST51, the control unit (100) executes the first operation in the same manner as in step ST21 of the first embodiment.
 ステップST52では、制御部(100)は、第1制御を実行する。第1制御により、インジェクション膨張弁(31)の開度が調節される。第1運転において、主液管(55)を流れる冷媒の一部は、インジェクション配管(PJ)に流入し、インジェクション膨張弁(31)により減圧される。減圧された冷媒は中間熱交換器(40)で熱交換された後、第2吸入管(53)に流入する。このことで、第1運転において第2圧縮機(22)の吸入側の圧力が上昇すると同時に、第1圧縮機(21)の吸入側の圧力も上昇する。 In step ST52, the control unit (100) executes the first control. The opening degree of the injection expansion valve (31) is adjusted by the first control. In the first operation, a part of the refrigerant flowing through the main liquid pipe (55) flows into the injection pipe (PJ) and is depressurized by the injection expansion valve (31). The decompressed refrigerant undergoes heat exchange in the intermediate heat exchanger (40) and then flows into the second suction pipe (53). As a result, in the first operation, the pressure on the suction side of the second compressor (22) rises, and at the same time, the pressure on the suction side of the first compressor (21) also rises.
 ステップST53では、制御部(100)は、実施形態1のステップST23と同様に、第1圧力センサ(41)の検出値PがP以上であるか否かを判定する。 In step ST53, the control unit (100) determines whether or not the detected value P 2 of the first pressure sensor (41) is P m or more, as in step ST23 of the first embodiment.
 ステップST54では、制御部(100)は、実施形態1のステップST24と同様に第2運転を実行させる。 In step ST54, the control unit (100) executes the second operation in the same manner as in step ST24 of the first embodiment.
 本変形例では、インジェクション膨張弁(31)を開けることにより、インジェクション配管(PJ)から冷媒を第2吸入管(53)にインジェクションできる。このことにより、第1運転から第2運転に切り換わる前に、簡便に第1圧縮機(21)の吸入側の冷媒の圧力を上昇させることができる。 In this modification, the refrigerant can be injected from the injection pipe (PJ) into the second suction pipe (53) by opening the injection expansion valve (31). As a result, the pressure of the refrigerant on the suction side of the first compressor (21) can be easily increased before switching from the first operation to the second operation.
 《実施形態の変形例4》
 実施形態の変形例4に係る冷凍装置(10)は、外気温を検出する外気温度センサ(図示省略)を有する。外気温度センサは、通信線により制御部(100)と接続されている。
<< Modification 4 of the embodiment >>
The refrigerating apparatus (10) according to the fourth modification of the embodiment has an outside air temperature sensor (not shown) for detecting the outside air temperature. The outside air temperature sensor is connected to the control unit (100) by a communication line.
 本変形例の第1制御は、第1動作から第3動作における上記実施形態の第1制御と異なる。以下では、第1動作において本変形例に係る第1制御について、図13を参照しながら説明する。 The first control of this modification is different from the first control of the above embodiment in the first operation to the third operation. Hereinafter, the first control according to the present modification in the first operation will be described with reference to FIG.
 ステップST61では、制御部(100)は外気温度センサが検出した温度値Tが所定値であるT以下であるか否かを判定する。ここで、外気温度センサで検出した温度値Tが比較的低い状態において、第2運転を行うと、第1圧縮機(21)に吸入される冷媒の圧力(蒸発圧力)が低くなる。この状態では、第1圧縮機(21)の吐出側と吸入側との差圧は比較的低くなるため、バイパス逆止弁(29)が閉じなくなる。従って、温度値Tが所定値T以下であると判定されたとき、ステップST61において第1制御が実行される。温度値Tが所定値Tより高いと判定されたとき、ステップST63が実行される。 In step ST61, the control unit (100) determines whether the temperature value T outside air temperature sensor detects is equal to or less than T O is a predetermined value. Here, if the second operation is performed in a state where the temperature value T detected by the outside air temperature sensor is relatively low, the pressure (evaporation pressure) of the refrigerant sucked into the first compressor (21) becomes low. In this state, the differential pressure between the discharge side and the suction side of the first compressor (21) is relatively low, so that the bypass check valve (29) does not close. Therefore, when the temperature value T is equal to or less than the predetermined value T O, the first control is executed in step ST61. When the temperature value T is determined to be higher than the predetermined value T O, step ST63 is executed.
 ステップST62では、制御部(100)は、実施形態1のステップST11と同様に、第1制御を実行する。 In step ST62, the control unit (100) executes the first control in the same manner as in step ST11 of the first embodiment.
 ステップST63では、制御部(100)は、実施形態1のステップST12と同様に、ΔPがΔP以上であるか否かを判定する。 In step ST63, the control unit (100) as in step ST12 of the first embodiment, it is determined whether [Delta] P O is not less than [Delta] P n.
 ステップST64では、制御部(100)は、実施形態1のステップST13と同様に、第2運転を開始する。 In step ST64, the control unit (100) starts the second operation in the same manner as in step ST13 of the first embodiment.
 本変形例によると、外気温が所定の温度以下において、第1制御を行うことにより、第2運転開始時の第1圧縮機(21)の吸入側と吐出側との差圧が小さくなることを抑制できる。このことにより、第2運転開始以降にバイパス逆止弁(29)が閉じなくなることを確実に抑制できる。 According to this modification, by performing the first control when the outside air temperature is below a predetermined temperature, the differential pressure between the suction side and the discharge side of the first compressor (21) at the start of the second operation becomes smaller. Can be suppressed. As a result, it is possible to reliably prevent the bypass check valve (29) from closing after the start of the second operation.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
The above embodiment may have the following configuration.
 第1動作において、制御部(100)はステップST12における判定を行わなくてもよい。具体的に、制御部(100)は、第1制御を実行した後(ステップST11)、第2圧縮機(22)を駆動させてもよい(ステップST13)。 In the first operation, the control unit (100) does not have to make the determination in step ST12. Specifically, the control unit (100) may drive the second compressor (22) after executing the first control (step ST11) (step ST13).
 第3動作のステップST32において、制御部(100)は、第2運転の開始時に、第1制御として、駆動中の第2圧縮機(22)の冷媒の流量が、駆動中の第1圧縮機(21)の冷媒の流量以下となるように、第1圧縮機(21)および第2圧縮機(22)の少なくとも一方の回転数を調節してもよい。 In step ST32 of the third operation, at the start of the second operation, the control unit (100) sets the flow rate of the refrigerant of the second compressor (22) being driven as the first control to the first compressor being driven. The rotation speed of at least one of the first compressor (21) and the second compressor (22) may be adjusted so as to be equal to or less than the flow rate of the refrigerant of (21).
 例えば、制御部(100)は、第2圧縮機(22)の回転数を変更せず、第1圧縮機(21)の回転数を上昇させてもよい。第1圧縮機(21)の回転数のみを調節すればよいので簡便に第1制御を実行できる。 For example, the control unit (100) may increase the rotation speed of the first compressor (21) without changing the rotation speed of the second compressor (22). Since it is only necessary to adjust the rotation speed of the first compressor (21), the first control can be easily executed.
 また、制御部(100)は、第1圧縮機(21)および第2圧縮機(22)の両方の回転数を調節してもよい。この場合、制御部(100)は、第1圧縮機(21)の回転数を上昇させ、第2圧縮機(22)の回転数を低減させるように調節する。このことにより、より短時間で第2圧縮機(22)の冷媒の流量M2が第1圧縮機(21)の冷媒の流量M1以下とすることができる。 Further, the control unit (100) may adjust the rotation speeds of both the first compressor (21) and the second compressor (22). In this case, the control unit (100) adjusts so as to increase the rotation speed of the first compressor (21) and decrease the rotation speed of the second compressor (22). As a result, the flow rate M2 of the refrigerant of the second compressor (22) can be set to be equal to or less than the flow rate M1 of the refrigerant of the first compressor (21) in a shorter time.
 実施形態の変形例2において、制御部(100)は、第2運転の開始時に第1制御を実行してもよい。 In the second modification of the embodiment, the control unit (100) may execute the first control at the start of the second operation.
 実施形態の変形例3において、制御部(100)は、第2動作および第3動作においても外気温が所定値以下であるとき第1制御を実行してもよい。 In the third modification of the embodiment, the control unit (100) may execute the first control even in the second operation and the third operation when the outside air temperature is equal to or less than a predetermined value.
 実施形態の変形例1において、第1制御は、第1圧縮機(21)を駆動させてから第2圧縮機(22)を駆動させる第2運転開始時に第1制御を行ってもよい。 In the first modification of the embodiment, the first control may be performed at the start of the second operation in which the first compressor (21) is driven and then the second compressor (22) is driven.
 冷凍装置(10)は、第1圧縮機(21)の吸入側の冷媒温度を検出する第1温度センサ(図示省略)、および第1圧縮機(21)の吐出側(第2圧縮機(22)の吸入側)の冷媒温度を検出する第2温度センサ(図示省略)を備えていてもよい。第1圧縮機(21)の吸入側の圧力値Pは、第1温度センサに検出される温度に相当する飽和圧力に基づいて求めてもよい。第1圧縮機(21)の吐出側および第2圧縮機(22)の吸入側の圧力値Pは、第2温度センサに検出される温度に相当する飽和圧力に基づいて求めてもよい。 The refrigerating apparatus (10) includes a first temperature sensor (not shown) that detects the temperature of the refrigerant on the suction side of the first compressor (21), and a discharge side (second compressor (22)) of the first compressor (21). ) May be provided with a second temperature sensor (not shown) that detects the temperature of the refrigerant on the suction side). Pressure value P 1 on the suction side of the first compressor (21) may be determined based on the saturation pressure corresponding to the temperature detected in the first temperature sensor. Pressure value P 2 of the suction side of the discharge side and the second compressor (22) of the first compressor (21) may be determined based on the saturation pressure corresponding to the temperature detected in the second temperature sensor.
 第1圧縮機(21)および第2圧縮機(22)は、ロータリ式の圧縮機であってもよいし、揺動ピストン式の圧縮機であってもよいし、ターボ式の圧縮機であってもよいし、その他の圧縮機であってもよい。 The first compressor (21) and the second compressor (22) may be a rotary type compressor, a swing piston type compressor, or a turbo type compressor. It may be another compressor.
 第1回転検出部(45)及び第2回転検出部(46)はそれぞれ、圧縮機(21,22)のトルク値を検出する装置であってもよいし、圧縮機(21,22)の回転数を検出する装置であってもよい。 The first rotation detection unit (45) and the second rotation detection unit (46) may be devices for detecting the torque value of the compressor (21, 22), respectively, or the rotation of the compressor (21, 22). It may be a device for detecting a number.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the claims. Further, the above embodiments and modifications may be appropriately combined or replaced as long as the functions of the subject of the present disclosure are not impaired.
 以上説明したように、本開示は、冷凍装置について有用である。 As explained above, this disclosure is useful for freezing equipment.
  20   冷媒回路
  21   第1圧縮機
  22   第2圧縮機
  PB   バイパス配管
  29   バイパス逆止弁(逆止弁)
  30   インジェクション機構
  100   制御部
20 Refrigerant circuit 21 1st compressor 22 2nd compressor PB Bypass piping 29 Bypass check valve (check valve)
30 Injection mechanism 100 Control unit

Claims (11)

  1.  第1圧縮機(21)と、該第1圧縮機(21)の吐出側に接続される第2圧縮機(22)とを含み、前記第1圧縮機(21)が停止し第2圧縮機(22)が駆動される冷凍サイクルを行う第1運転と、前記第1圧縮機(21)と前記第2圧縮機(22)とが駆動される冷凍サイクルを行う第2運転とを切り換え可能な冷媒回路(20)と、
     前記冷媒回路(20)を制御する制御部(100)とを備え、
     前記冷媒回路(20)は、
     前記第1圧縮機(21)の吸入側と吐出側とを繋ぐバイパス配管(PB)と、
     前記バイパス配管(PB)に接続され、前記第1圧縮機(21)の吐出側から吸入側に向かう冷媒の流れを制限する逆止弁(29)とを有し、
     前記制御部(100)は、前記第2運転の開始前または開始時に、前記第1圧縮機(21)の吐出側と吸入側との差圧を増大させる第1制御を実行することを特徴とする冷凍装置。
    The first compressor (21) and the second compressor (22) connected to the discharge side of the first compressor (21) are included, and the first compressor (21) is stopped and the second compressor is stopped. It is possible to switch between the first operation of performing the refrigeration cycle in which (22) is driven and the second operation of performing the refrigeration cycle in which the first compressor (21) and the second compressor (22) are driven. Refrigerant circuit (20) and
    A control unit (100) for controlling the refrigerant circuit (20) is provided.
    The refrigerant circuit (20)
    A bypass pipe (PB) connecting the suction side and the discharge side of the first compressor (21), and
    It is connected to the bypass pipe (PB) and has a check valve (29) that limits the flow of refrigerant from the discharge side to the suction side of the first compressor (21).
    The control unit (100) is characterized in that it executes the first control for increasing the differential pressure between the discharge side and the suction side of the first compressor (21) before or at the start of the second operation. Refrigeration equipment.
  2.  請求項1において、
     前記制御部(100)は、前記第1圧縮機(21)及び前記第2圧縮機(22)の停止状態から前記第2運転を開始する前に、前記第1制御として前記第1圧縮機(21)を駆動させることを特徴とする冷凍装置。
    In claim 1,
    The control unit (100) performs the first compressor (21) as the first control before starting the second operation from the stopped state of the first compressor (21) and the second compressor (22). A freezing device characterized by driving 21).
  3.  請求項2において、
     前記制御部(100)は、前記第1制御により前記第1圧縮機(21)が駆動する間、前記第1圧縮機(21)の吐出側と吸入側との差圧が所定値以上になると、前記第2運転を実行させることを特徴とする冷凍装置。
    In claim 2,
    When the pressure difference between the discharge side and the suction side of the first compressor (21) becomes equal to or higher than a predetermined value while the first compressor (21) is driven by the first control, the control unit (100) , A refrigerating apparatus characterized in that the second operation is executed.
  4.  請求項2において、
     前記制御部(100)は、
     前記第1制御により前記第1圧縮機(21)が駆動する時間が所定時間を越えると、前記第2運転を実行させることを特徴とする冷凍装置。
    In claim 2,
    The control unit (100)
    A refrigerating apparatus characterized in that when the time for driving the first compressor (21) by the first control exceeds a predetermined time, the second operation is executed.
  5.  請求項1~4のいずれか1つにおいて、
     前記制御部(100)は、前記第1運転から前記第2運転に切り換える前に、前記第1制御として前記第2圧縮機(22)の回転数を低下させることを特徴とする冷凍装置。
    In any one of claims 1 to 4,
    The control unit (100) is a refrigerating device characterized in that the rotation speed of the second compressor (22) is reduced as the first control before switching from the first operation to the second operation.
  6.  請求項5において、
     前記制御部(100)は、前記第1制御により前記第2圧縮機(22)の回転数が低下する間、該第2圧縮機(22)の吸入側の冷媒の圧力を示す指標が所定値以上になると、前記第2運転を実行させることを特徴とする冷凍装置。
    In claim 5,
    The control unit (100) has a predetermined value as an index indicating the pressure of the refrigerant on the suction side of the second compressor (22) while the rotation speed of the second compressor (22) is reduced by the first control. When the above is achieved, the refrigerating apparatus is characterized in that the second operation is executed.
  7.  請求項1~6のいずれか1つにおいて、
     前記制御部(100)は、前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第1圧縮機(21)および前記第2圧縮機(22)の少なくとも一方の回転数を調節することを特徴とする冷凍装置。
    In any one of claims 1 to 6,
    At the start of the second operation, the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven. A refrigerating apparatus characterized in that the rotation speed of at least one of the first compressor (21) and the second compressor (22) is adjusted so as to be equal to or less than the flow rate of the refrigerant of.
  8.  請求項7において、
     前記制御部(100)は、前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第1圧縮機(21)の回転数を変更せず、前記第2圧縮機(22)の回転数を低下させることを特徴とする冷凍装置。
    In claim 7,
    At the start of the second operation, the control unit (100) measures the flow rate of the refrigerant of the second compressor (22) being driven as the first control of the first compressor (21) being driven. A refrigerating apparatus characterized in that the rotation speed of the first compressor (21) is not changed so as to be equal to or less than the flow rate of the refrigerant of the above, and the rotation speed of the second compressor (22) is reduced.
  9.  請求項7において、
     前記制御部(100)は、
     前記第2運転の開始時に、前記第1制御として、駆動中の前記第2圧縮機(22)の冷媒の流量が、駆動中の前記第1圧縮機(21)の冷媒の流量以下となるように、前記第2圧縮機(22)の回転数を変更せず、前記第1圧縮機(21)の回転数を上昇させることを特徴とする冷凍装置。
    In claim 7,
    The control unit (100)
    At the start of the second operation, as the first control, the flow rate of the refrigerant of the second compressor (22) being driven becomes equal to or less than the flow rate of the refrigerant of the first compressor (21) being driven. In addition, a refrigerating apparatus characterized in that the rotation speed of the first compressor (21) is increased without changing the rotation speed of the second compressor (22).
  10.  請求項1~9のいずれか1において、
     前記冷媒回路(20)は、
     前記第1圧縮機(21)の吐出側と前記第2圧縮機(22)の吸入側との間に冷媒を導入するインジェクション機構(30)を有し、
     前記制御部(100)は、前記第1運転から前記第2運転に切り換わる前、又は前記第2運転の開始時に、前記第1制御として、前記インジェクション機構(30)により冷媒を前記第1圧縮機(21)の吐出側と前記第2圧縮機(22)の吸入側との間に導入することを特徴とする冷凍装置。
    In any one of claims 1 to 9,
    The refrigerant circuit (20)
    It has an injection mechanism (30) that introduces a refrigerant between the discharge side of the first compressor (21) and the suction side of the second compressor (22).
    The control unit (100) first compresses the refrigerant by the injection mechanism (30) as the first control before switching from the first operation to the second operation or at the start of the second operation. A freezing device that is installed between the discharge side of the machine (21) and the suction side of the second compressor (22).
  11.  請求項1~10のいずれか1つにおいて、
     前記制御部(100)は、外気温が所定値以下であるとき、前記第1制御を行うことを特徴とする冷凍装置。
    In any one of claims 1 to 10,
    The control unit (100) is a freezing device that performs the first control when the outside air temperature is equal to or lower than a predetermined value.
PCT/JP2021/013956 2020-03-31 2021-03-31 Refrigeration device WO2021201143A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064518 2020-03-31
JP2020064518A JP6897837B1 (en) 2020-03-31 2020-03-31 Refrigerator

Publications (1)

Publication Number Publication Date
WO2021201143A1 true WO2021201143A1 (en) 2021-10-07

Family

ID=76650099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013956 WO2021201143A1 (en) 2020-03-31 2021-03-31 Refrigeration device

Country Status (2)

Country Link
JP (1) JP6897837B1 (en)
WO (1) WO2021201143A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010282A (en) * 2005-07-04 2007-01-18 Hitachi Ltd Two-stage compression type refrigeration cycle device
JP2008064421A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
WO2017038131A1 (en) * 2015-09-01 2017-03-09 株式会社デンソー Two-stage pressure boosting type refrigeration cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010282A (en) * 2005-07-04 2007-01-18 Hitachi Ltd Two-stage compression type refrigeration cycle device
JP2008064421A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Refrigerating device
WO2017038131A1 (en) * 2015-09-01 2017-03-09 株式会社デンソー Two-stage pressure boosting type refrigeration cycle

Also Published As

Publication number Publication date
JP6897837B1 (en) 2021-07-07
JP2021162236A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
EP2565555B1 (en) Refrigeration cycle apparatus
WO2006013861A1 (en) Refrigeration unit
WO2018097138A1 (en) Refrigerating device
JP4096544B2 (en) Refrigeration equipment
JP6765438B2 (en) Air conditioner
JP7116346B2 (en) Heat source unit and refrigerator
WO2020262624A1 (en) Refrigeration device
EP2434237A2 (en) Refrigerant system
WO2020203708A1 (en) Refrigeration cycle device
WO2021201143A1 (en) Refrigeration device
JP2008002743A (en) Refrigerating device
CN114341571B (en) Refrigerating device
JP4277354B2 (en) Air conditioner
KR20190121561A (en) Air conditioner
WO2021010130A1 (en) Refrigeration device
CN111919073A (en) Refrigerating device
JP2003042585A (en) Air conditioner
WO2021201141A1 (en) Freezing apparatus
JP6835176B1 (en) Refrigeration equipment
JP6835185B1 (en) Heat source unit and refrigeration equipment
JP4779609B2 (en) Refrigeration equipment
JP2022070152A (en) Air conditioner
JP2960211B2 (en) Pressure sensor destruction prevention control device for air conditioner
JP2003222412A (en) Refrigeration unit
JP2003232571A (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779893

Country of ref document: EP

Kind code of ref document: A1